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ABSTRACT

Many realistic multi-agent problems naturally require agents to be capable of per-
forming asynchronously without waiting for other agents to terminate (e.g., multi-
robot domains). Such problems can be modeled as Macro-Action Decentralized
Partially Observable Markov Decision Processes (MacDec-POMDPs). Current
policy gradient methods are not applicable to agents’ asynchronous decision-
making over macor-actions in MacDec-POMDPs, as these methods assume that
agents synchronously reason about action selection at every timestep. To al-
low asynchronous learning and decision-making, we formulate a set of asyn-
chronous multi-agent actor-critic methods that allow agents to directly optimize
asynchronous (macro-action-based) policies in three standard training paradigms:
decentralized learning, centralized learning, and centralized training for decentral-
ized execution. Empirical results in various domains show high-quality solutions
can be learned for large domains when using our methods.

1 INTRODUCTION

In recent years, multi-agent policy gradient methods using the actor-critic framework have achieved
impressive success in solving a variety of cooperative and competitive domains (Lowe et al., 2017;
Foerster et al., 2018; Du et al., 2019; Iqbal & Sha, 2019; Vinyals et al., 2019; Li et al., 2019; Wang
et al., 2020; Yang et al., 2020; Zhou et al., 2020; Baker et al., 2020; Su et al., 2021; Wang et al., 2021;
Du et al., 2021). However, as these methods assume synchronized primitive-action execution over
agents, they struggle to solve tasks that involve long-term reasoning and asynchronous behavior,
such as real-world multi-robot applications (e.g., search and rescue (Queralta et al., 2020), package
delivery (Choudhury et al., 2021) and warehouse service (Xiao et al., 2020)).

The Macro-Action Decentralized Partially Observable Markov Decision Process (MacDec-
POMDP) (Amato et al., 2014; 2019) provides a general formalism for multi-agent asynchronous
collaborative decision-making under uncertainty. Macro-actions represent temporally extended ac-
tions that have (potentially) different durations. This introduces asynchronous high-level decision-
making over agents, as agents can start and terminate macro-actions at different timesteps. Such
asynchronicity actually makes multi-agent reinforcement learning (MARL) more challenging be-
cause it is difficult to determine what information to use and when to update agents’ policies from
either the decentralized or centralized perspective.

Despite several efforts made recently to enable agents to learn asynchronous hierarchical policies
such as extending DQN (Mnih et al., 2015) to learn macro-action-value functions (Xiao et al., 2019),
transferring MacDec-POMDPs to event-driven processes with continuous timing (Menda et al.,
2019), and adapting a single-agent option-critic framework (Bacon et al., 2017) to multi-agent do-
mains to learn all components (e.g. low-level policy, high-level abstraction, high-level policy) from
scratch (Chakravorty et al., 2019), none of them provides a principled way for optimizing macro-
action-based policies via asynchronous policy gradients to solve general multi-agent problems with
asynchronous decision-making.

In this paper, we propose a group of macro-action-based multi-agent actor-critic methods to general-
ize the current primitive-action-based multi-agent actor-critic methods to multi-agent problems with
macro-actions as well as allowing asynchronous policy optimization. First, we formulate a macro-
action-based independent actor-critic (Mac-IAC) method. Although independent learning suffers
from a theoretical curse of environmental non-stationarity, it allows fully online learning and may

1



Under review as a conference paper at ICLR 2022

still work well in certain domains. Second, we introduce a macro-action-based centralized actor-
critic (Mac-CAC) method, for the case where full communication is available during execution.
We also formulate a centralized training for decentralized execution (CTDE) paradigm (Kraemer &
Banerjee, 2016; Oliehoek et al., 2008) variant of our method. CTDE has gained popularity since
such methods can learn better decentralized policies by using centralized information during train-
ing. Current primitive-action-based multi-agent actor-critic methods typically use a centralized critic
to optimize each decentralized actor. However, the asynchronous joint macro-action execution from
the centralized perspective could be very different with the completion time being very different
from each agent’s decentralized perspective. To this end, we first present a Naive Independent Actor
with Centralized Critic (Naive IACC) method that naively uses a joint macro-action-value function
as the critic for each actor’s policy gradient estimation; and then propose an Independent Actor with
Individual Centralized Critic (Mac-IAICC) method addressing the above challenge.

We evaluate our proposed methods on diverse macro-action-based multi-agent problems: a bench-
mark Box Pushing domain (Xiao et al., 2019), a variant of the Overcooked domain (Wu et al., 2021)
and a larger warehouse service domain (Xiao et al., 2019). Experimental results show that our meth-
ods are able to learn high-quality solutions while primitive-action-based methods cannot, and show
the strength of Mac-IAICC for learning decentralized policies over Naive IAICC and Mac-IAC. To
our knowledge, this is the first general formalization of macro-action-based multi-agent actor-critic
frameworks considering the three state-of-the-art multi-agent training paradigms.

2 BACKGROUND

This section first introduces the formal definitions of the Dec-POMDP and the MacDec-POMDP,
and then reviews single-agent and multi-agent actor-critic policy gradient methods with primitive-
actions. We also provide an overview of value-based MARL methods with macro-actions.

2.1 DEC-POMDPS AND MACDEC-POMDPS

The decentralized partially observable Markov decision processes (Dec-POMDP) (Oliehoek & Am-
ato, 2016) is a general framework to model fully cooperative multi-agent tasks, where agents make
decisions in a decentralized way based on only local information. Formally, a Dec-POMDP is de-
fined by a tuple 〈I, S,A,Ω, T,O,R,H, γ〉, where I is a set of agents; S is the environmental state
space; A = ×i∈IAi is the joint primitive-action space over each agent’s primitive-action set Ai;
Ω = ×i∈IΩi is the joint primitive-observation space over each agent’s primitive-observation set Ωi.
At every timestep, under a state s, agents synchronously execute a joint primitive-action~a = ×i∈Iai,
each individually selected by an agent using a policy πi : HA

i × Ai → [0, 1], a mapping from local
primitive observation-action historyHA

i to primitive-actions. The environment then transits to a new
state s′ according to a state transition function T (s,~a, s′) = P (s′ | s,~a). Agents receive a global
reward r(s,~a) issued by a reward function R : S×A→ R, and obtain a joint primitive-observation
~o = ×i∈Ioi drawn from an observation function O(~o,~a, s′) = P (~o | ~a, s′) in state s′. The objective
is to find a joint policy ~π = ×iπi such that the expected sum of discounted rewards from an initial
state, V ~π(s(0)) = E

[∑H−1
t=0 γ

tr
(
s(t),~a(t)

)
| s(0), ~π

]
, gets optimized, where γ ∈ [0, 1] is a discount

factor, and H is the number of (primitive) timesteps until the problem terminates (the horizon).

The macro-action decentralized partially observable Markov decision process (MacDec-
POMDP) (Amato et al., 2014; 2019) incorporates the option framework (Sutton et al., 1999) into
the Dec-POMDP by defining each agent’s macro-action as a tuple mi = 〈Imi , πmi , βmi〉, where
the initiation set Imi ⊂ HM

i defines how to initiate a macro-action based on macro-observation-
action history HM

i at the high-level; πmi : HA
i × Ai → [0, 1] is the low-level policy for the

execution of a macro-action; and a stochastic termination function βmi : HA
i → [0, 1] determines

how to terminate a macro-action based on primitive-observation-action history HA
i at the low-level.

A MacDec-POMDP is thus formally defined by a tuple 〈I, S,A,M,Ω, ζ, T,O, Z,R,H, γ〉, where
I, S,A,Ω, T,O,R,H and γ remain the same definitions as in the Dec-POMDP;M = ×i∈IMi is the
joint macro-action space over each agent’s macro-action space Mi; ζ = ×i∈Iζi is the joint macro-
observation space over each agent’s macro-observation space ζi; and Z = {Zi}i∈I is a set of macro-
observation likelihood models. During execution, each agent independently selects a macro-action
mi using a high-level policy Ψi : HM

i ×Mi → [0, 1], a mapping from macro-observation-action his-
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tory to macro-actions, and captures a macro-observation zi ∈ ζi according to the macro-observation
probability function Zi(zi,mi, s

′) = P (zi | mi, s
′) when the macro-action terminates in a state s′.

The objective of solving MacDec-POMDPs with finite horizon is to find a joint high-level policy
~Ψ = ×i∈IΨi that maximizes the value, V ~Ψ(s(0)) = E

[∑H−1
t=0 γ

tr
(
s(t),~a(t)

)
| s(0), ~π, ~Ψ

]
.

2.2 SINGLE-AGENT ACTOR-CRITIC

In single-agent reinforcement learning, the policy gradient theorem (Sutton et al., 2000) formulates a
principled way to optimize a parameterized policy πθ via gradient ascent on the policy’s performance
defined as J(θ) = Eπθ

[∑∞
t=0 γ

tr
(
s(t), a(t)

)]
. In POMDPs, the gradient w.r.t. parameters of a

observation-action history-based policy πθ(a | h) is expressed as:

∇θJ(θ) = Eπθ
[
∇θ log πθ(a | h)Qπθ (h, a)

]
(1)

where, h is often maintained by having a RNN in the policy network (Hausknecht & Stone, 2015).

The actor-critic framework (Konda & Tsitsiklis, 2000) learns an on-policy action-value function
Qπθφ (h, a) (critic) via temporal-difference (TD) learning (Sutton, 1988) to approximate the action-
value for the policy (actor) updates. Variance reduction is commonly achieved by training a history-
value function V πθw (h) and using it as a baseline (Weaver & Tao, 2001) as well as bootstrapping to
estimate the action-value. Accordingly, the actor-critic policy gradient can be written as:

∇θJ(θ) = Eπθ
[
∇θ log πθ(a | h)

(
r + γV πθw (h′)− V πθw (h)

)]
(2)

where, r is the immediate reward received by the agent at the corresponding timestep.

2.3 INDEPENDENT ACTOR-CRITIC

The single-agent actor-critic algorithm can be adapted to multi-agent problems in a simple way such
that each agent independently learns its own actor and critic while treating other agents as part of the
world (Foerster et al., 2018). We consider a variance reduction version of independent actor-critic
(IAC) with the policy gradient as follows:

∇θiJ(θi) = E~π~θ
[
∇θi log πθi(ai | hi)

(
r + γV

πθi
wi (h′i)− V

πθi
wi (hi)

)]
(3)

where, r is a shared reward over agents at every timestep. Due to other agents’ policy updating
and exploring, from any agent’s local perspective, the environment appears non-stationary which
can lead to unstable learning of the critic without convergence guarantees (Lowe et al., 2017). This
instability often prevents IAC from learning high-quality cooperative policies.

2.4 INDEPENDENT ACTOR WITH CENTRALIZED CRITIC

To address the above difficulties existing in independent learning approaches, centralized training
for decentralized execution (CTDE) provides agents with access to global information during offline
training while allowing agents to rely on only local information during online decentralized execu-
tion. Typically, the key idea of exploiting CTDE with actor-critic is to train a joint action-value
function, Q~π~θφ (x,~a), as the centralized critic and use it to compute gradients w.r.t. the parameters of
each decentralized policy (Foerster et al., 2018; Lowe et al., 2017), which can be formulated as:

∇θiJ(θi) = E~π~θ
[
∇θi log πθi(ai | hi)Q

~π~θ
φ (x,~a)

]
(4)

where, x represents the available centralized information (e.g., joint observation, joint observation-
action history, or the true state). Although the centralized critic in Eq. 4 can facilitate the update
of decentralized policies in the direction that optimizes global collaborative performance, it also
introduces extra variance over other agents’ actions (Lyu et al., 2021; Wang et al., 2021). Therefore,
we consider the version of independent actor with centralized critic (IACC) with a general variance
reduction trick (Foerster et al., 2018; Su et al., 2021), the policy gradient of which is:

∇θiJ(θi) = E~π~θ
[
∇θi log πθi(ai | hi)

(
r + γV

~π~θ
w (x′)− V ~π~θw (x)

)]
(5)
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2.5 LEARNING MACRO-ACTION-BASED DEEP Q-NETS

An essential aspect of macro-action-based multi-agent systems is the asynchronicity of macro-action
execution over agents, where agents may start and complete their own macro-actions at different
timesteps. Previous deep MARL methods for Dec-POMDPs cannot work in this case as they are all
based on primitive actions synchronously executed by agents. In recent work, macro-action-based
multi-agent deep Q-learning methods have been proposed for MacDec-POMDPs (Xiao et al., 2019).

For decentralized learning, a new buffer, Macro-Action Concurrent Experience Reply Trajectories
(Mac-CERTs), is designed for collecting each agent’s macro-observation, macro-action, and re-
ward information. In this buffer, the transition experience of each agent i is represented as a tuple
〈zi,mi, z

′
i, r

c
i 〉, where rci =

∑tmi+τmi−1
t=tmi

γt−tmi r(t) is a cumulative reward of the macro-action tak-
ing τmi timesteps to be completed from its beginning timestep tmi . During training, a mini-batch of
concurrent sequential experiences is sampled from Mac-CERTs. Each agent independently accesses
its own sampled experiences and obtains a ‘squeezed’ trajectories by removing the transitions in the
middle of each macro-action execution, which ends up with a mini-batch of transitions when the
corresponding macro-action terminates (i.e., removing time information). Updates for each macro-
action-value function Qφi(hi,mi) take place only when the agent’s macro-action is complete by
minimizing a TD loss over the ‘squeezed’ data. In the centralized learning case, the objective is
to learn a joint macro-action-value function Qφ(~h, ~m). To this end, the other special buffer called
Macro-Action Joint Experience Replay Trajectories (Mac-JERTs) is developed for collecting agents’
joint transition experience at every timestep and each is represented as a tuple 〈~z, ~m, ~z ′, ~r c〉, where
~r c =

∑t~m+~τ~m−1
t=t~m

γt−t~mrt is a shared joint cumulative reward from the beginning timestep t~m of the
joint macro-action ~m to its termination, defined as when any agent finishes its own macro-action,
after ~τ~m timesteps. In each training iteration, the joint macro-action-value function is optimized
over a mini-batch of ‘squeezed’ (depending on each joint macro-action termination) sequential joint
experiences via TD learning. Other choices for what information to retain are also possible (e.g., the
whole sequence of macro-actions or including time to complete) but this squeezing procedure was
found to work well.

In our proposed macro-action-based actor-critic methods, we extend the above approaches to train
critics on-policy, and the trajectory squeezing is changed variously for each method in order to
achieve improved asynchronous macro-action-based policy updates via policy gradient.

3 APPROACH

Multi-agent deep reinforcement learning with asynchronous decision-making and macro-actions is
more challenging as it is difficult to determine when to update each agent’s policy and what in-
formation to use. Although the macro-action-based deep Q-learning methods (Xiao et al., 2019)
(in Section 2.5) give us the base to learn macro-action value functions, they do not directly extend
to the policy gradient case, particularly in the case of centralized training for decentralized execu-
tion (CTDE). In this section, we propose principled formulations of on-policy macro-action-based
multi-agent actor-critic methods for decentralized learning (Section 3.1), centralized learning (Sec-
tion 3.2), and CTDE (Section 3.3). In each case, we first introduce the version with a Q-value
function as the critic and then present the variance reduction version in our implementation. We use
hi to represent an agent’s local macro-observation-action history, and~h to represent the joint history.

3.1 MACRO-ACTION-BASED INDEPENDENT ACTOR-CRITIC (MAC-IAC)

Similar to the idea of IAC with primitive-actions (Section 2.3), a straightforward extension is to have
each agent independently optimize its own macro-action-based policy (actor) using a local macro-
action-value function (critic). Hence, we start with deriving a macro-action-based policy gradient
theorem in Appendix A.1 by incorporating the general Bellman equation for the state values of a
macro-action-based policy (Sutton et al., 1999) into the policy gradient theorem in MDPs (Sutton
et al., 2000), and then extend it to MacDec-POMDPs so that each agent can have the following
policy gradient w.r.t. the parameters of its macro-action-based policy Ψθi(mi|hi) as:

∇θiJ(θi) = E~Ψ~θ

[
∇θi log Ψθi(mi | hi)Q

Ψθi
φi

(hi,mi)

]
(6)

4



Under review as a conference paper at ICLR 2022

During training, each agent accesses to its own trajectories and squeezes them in the same way as
the decentralized case mentioned in Section 2.5 to train the critic Q

Ψθi
φi

(hi,mi) via on-policy TD
learning and perform gradient ascent using Eq. 6 to update the policy when the agent’s macro-action
terminates. In our case, we train a local history value function V

Ψθi
wi (hi) as each agent’s critic and

use it as a baseline to achieve variance reduction. The corresponding policy gradient is as follows:

∇θiJ(θi) = E~Ψ~θ

[
∇θi log Ψθi(mi | hi)

(
rci + γτmiV

Ψθi
wi (h′i)− V

Ψθi
wi (hi)

)]
(7)

where, the cumulative reward rci is w.r.t. the execution of agent i’s macro-action mi.

3.2 MACRO-ACTION-BASED CENTRALIZED ACTOR-CRITIC (MAC-CAC)

In the fully centralized learning case, we treat all agents as a single joint agent to learn a centralized
actor Ψθ(~m | ~h) with a centralized critic QΨθ

φ (~h, ~m), and the policy gradient can be expressed as:

∇θJ(θ) = EΨθ

[
∇θ log Ψθ(~m | ~h)QΨθ

φ (~h, ~m)

]
(8)

Similarly, in order to achieve low variance optimization for the actor, we learn a centralized history
value function V Ψθ

w (~h) by minimizing a TD-error loss over joint trajectories that are squeezed w.r.t.
each joint macro-action termination (as long as one of the agents terminates its macro-action, intro-
duced under the centralized case in Section 2.5). Accordingly, the policy’s updates are performed
when each joint macro-action is completed by ascending the following gradient:

∇θJ(θ) = EΨθ

[
∇θ log Ψθ(~m | ~h)

(
~r c + γ~τ~mV Ψθ

w (~h′)− V Ψθ
w (~h)

)]
(9)

where the cumulative reward ~r c is w.r.t. the execution of the joint macro-action ~m.

3.3 MACRO-ACTION-BASED INDEPENDENT ACTOR WITH CENTRALIZED CRITIC
(MAC-IACC)

As mentioned earlier, fully centralized learning requires perfect online communication that is often
hard to guarantee, and fully decentralized learning suffers from environmental non-stationarity due
to agents’ changing policies. In order to learn better decentralized macro-action-based policies, in
this section, we propose two macro-action-based actor-critic algorithms using the CTDE paradigm.
Typically, the difference between a joint macro-action’s termination from the centralized perspective
and a macro-action’s termination from each agent’s local perspective gives rise to a new challenge:
what kind of centralized critic to learn and how to use it to optimize decentralized policies under
such an asymmetric asynchrony from the two perspectives, which we mainly investigate below.

3.3.1 NAIVE MAC-IACC

A naive way of incorporating macro-actions into a CTDE-based actor-critic framework is to directly
adapt the idea of the primitive-action-based IACC (Section 2.4) to have a shared joint macro-action-

value function Q
~Ψ~θ
φ (x, ~m) in each agent’s decentralized macro-action-based policy gradient as:

∇θiJ(θi) = E~Ψ~θ

[
∇θi log Ψθi(mi | hi)Q

~Ψ~θ
φ (x, ~m)

]
(10)

To reduce variance, with a value function V
~Ψ~θ
w (x) as the centralized critic, the policy gradient

w.r.t. the parameters of each agent’s high-level policy can be rewritten as the following format:

∇θiJ(θi) = E~Ψ~θ

[
∇θi log Ψθi(mi | hi)

(
~r c + γ~τ~mV

~Ψ~θ
w (x′)− V

~Ψ~θ
w (x)

)]
(11)

Here, the critic is trained in the fully centralized manner described in Section 3.2 while allowing
it to access additional global information (e.g., joint macro-observation-action history, ground truth
state or both) represented by the symbol x. However, updates of each agent’s policy Ψθi(mi | hi)
only occur at the agent’s own macro-action termination timesteps rather than depending on joint
macro-action terminations in the centralized critic training.
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3.3.2 INDEPENDENT ACTOR WITH INDIVIDUAL CENTRALIZED CRITIC (MAC-IAICC)

Note that naive Mac-IACC is technically incorrect. The cumulative reward ~r c in Eq 11 is based
on the corresponding joint macro-action’s termination that is defined as when any agent finishes its

own macro-action, which produces two potential issues: a) ~r c + γ~τ~mV
~Ψ~θ
w (x′) may not estimate

the value of the macro-action mi well as the reward does not depend on mi’s termination; b) from
agent i’s perspective, its policy gradient estimation may involve higher variance associated with the
asynchronous macro-action terminations of other agents.

To tackle aforementioned issues, we propose to learn a separate centralized critic V
~Ψ~θ
wi (x′) for each

agent via TD-learning. In this case, each TD-error for updating V
~Ψ~θ
wi (x′) is computed by using the

reward rci that is accumulated purely based on the execution of the agent i’s macro-action mi. With
this TD-error estimation, each agent’s decentralized macro-action-based policy gradient becomes:

∇θiJ(θi) = E~Ψ~θ

[
∇θi log Ψθi(mi | hi)

(
rci + γτmiV

~Ψ~θ
wi (x′)− V

~Ψ~θ
wi (x)

)]
(12)

Now, from agent i’s perspective, rci + γτmiV
~Ψ~θ
wi (x′) is capable of offering a more accurate value

prediction for the macro-actionmi, since both the reward, rci and the value function V
~Ψ~θ
wi (x′) depend

on agent i’s macro-action termination. Also, unlike the case in Naive Mac-IACC, other agents’
terminations cannot lead to extra noisy estimated rewards w.r.t. mi anymore so that the variance on
policy gradient estimation gets reduced. Then, updates for both the critic and the actor occur when
the corresponding agent’s macro-action ends as well as taking the advantage of information sharing.

The pseudo code and detailed trajectory squeezing process for each proposed method are presented
in Appendix A.2.

4 EXPERIMENTS

4.1 ENVIRONMENTS

We investigate the performance of our proposed algorithms over a variety of multi-agent problems
with macro-actions (Fig. 1): Box Pushing (Xiao et al., 2019), Overcooked (Wu et al., 2021), and a
larger Warehouse Tool Delivery (Xiao et al., 2019) domain. Macro-actions in domains are defined
by us using prior domain knowledge as they are straightforward in these tasks. We describe the key
properties of each domain here and leave more details in Appendix A.3.

(a) Box Pushing (b) Overcooked-A (c) Overcooked-B (d) Overcooked-C

(e) Warehouse-A (f) Warehouse-B (g) Warehouse-C

Figure 1: Experimental environments.

Box Pushing (Fig. 1a). Two agents aim to cooperatively push the big box to the yellow goal area
rather than pushing a small box on each own. Boxes can only be moved towards the north. Agents
have four primitive-actions: move forward, turn-left, turn-right and stay. In the macro-action-based
case, each agent has three one-step macro-actions: Turn-left, Turn-right, and Stay, as well as three
multi-step macro-actions: Move-to-small-box(i) and Move-to-big-box(i) navigate the agent to the
red spot below the corresponding box and terminate with agent facing the box; Push operates the
agent to keep moving forward until arriving the world’s boundary, touching the big box along or
pushing a small box to the goal. Each agent can only capture the status (empty, teammate, boundary,
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small or big box) of the cell in front of it as one macro-observation. When any box is pushed to the
goal, the team receives a terminal reward (+300 for the big box and +20 for each small box). A
penalty −10 is issued when any agent hits the boundary or pushes the big box on its own.

Figure 2: Lettuce-tomato salad recipe.

Overcooked (Fig. 1b-d). Two agents must learn to co-
operatively prepare a lettuce-tomato salad and deliver it
to the ‘star’ cell as soon as possible. The challenge is
that the recipe of making a lettuce-tomato salad (Fig. 2)
is unknown to agents. Agents have to learn the correct
procedure in terms of picking up raw vegetables, chop-
ping, and merging in a plate before delivering. With primitive-actions (up, down, left, right, and
stay), agents can move around and achieve picking, placing, chopping and delivering by moving
against the corresponding cell. The macro-action set consists of: a) five one-step macro-actions that
are same as the primitive ones; b) Chop, takes three timesteps to cut a raw vegetable into pieces; c)
long-term navigation macro-actions: Get-Lettuce, Get-Tomato, Get-Plate-1/2, Go-Cut-Board-1/2
and Deliver, which move an agent to the location of the corresponding object with various possible
terminal effects (e.g., holding a vegetable in hand or placing a chopped vegetable in a plate); d) Go-
Counter, navigates an agent to one of the middle counter cells as well as placing or picking an object
there. Full details of macro-actions are listed in Appendix A.3.2. Agents only observe the positions
and status of the entities within a 5× 5 egocentric view field. Reward mechanism involves: +10 for
chopping a vegetable into pieces, +200 terminal reward for delivering a lettuce-tomato salad,−5 for
delivering any wrong entity that is then reset to the original position, and −0.1 for every timestep.

Warehouse Tool Delivery (Fig. 1e-g). In each workshop (e.g., W-0), a human is working on an
assembly task (involving 4 sub-tasks that each takes a number of timesteps to be finished) and
requires three particular tools for future sub-tasks to continue. A arm robot (grey) with the duty of
finding tools for each human on the table (brown) and passing them to mobile robots (green, blue
and yellow) who are responsible for delivering tools to humans. Note that, the correct tools needed
by each human are unknown to robots, which has to be learned during training in order to perform
timely delivery without letting humans wait there. We make the original problem more challenging
by: adding one more human into the domain (Fig. 1e); increasing the number of both agents and
humans to further examine the scalability of our methods and the effectiveness of Mac-IAICC on
handling more intricate asynchronous terminations over agents (Fig. 1f); and including one faster
human (orange) to check if agents can learn a priority for assisting him (Fig. 1g).

Mobile robots move around in a certain speed in the continuous space by running one of the fol-
lowing macro-actions: Go-W(i), moves to the waypoint (red) at a workshop; Go-TR, goes to the
waypoint at the right side of the tool room; and Get-Tool, navigates to a pre-allocated waypoint
besides the arm robot and waits there until either receiving a tool or 10 timesteps have passed. Ap-
plicable macro-actions for the arm robot involves: Search-Tool(i) lasts 6 timesteps to find the tool
i and place it in a staging area (containing at most two tools), otherwise freezes the robot for the
same amount of time when the area is fully occupied; Pass-to-M(i) costs 4 timesteps to pass a tool
to a mobile robot from the staging area in a first-in-first-out order; and Wait-M, takes 1 timestep to
wait for mobile robots. Arm robot only observes the type of each tool in the staging area and which
mobile robot is waiting beside. Mobile robot always detects its position and the type of each tool
carried by itself, while observes the number of tools in the staging area or the sub-task a human is
working on only when locating at the tool room or the workshop respectively. The team receives:
+100 for sending a correct tool to a human in time, −20 for a delayed delivery, −10 for the arm
robot running Pass-to-M(i) without mobile robot i being next to it, and −1 every timestep.

4.2 EXPERIMENTAL IMPLEMENTATION

All methods apply the same neural network architecture for both actor and critic, which consists of
two fully connected (FC) layers with Leaky-Relu activation function, one GRU layer (Cho et al.,
2014) and one more FC layer followed by an output layer. In all methods, decentralized actors and
decentralized critics have 32 units on FC and GRU layers, while the centralized have 64 units on the
GRU layer due to dealing with larger joint macro-observation and macro-action spaces. Exploration
is deployed by applying a linear decaying ε-soft policy (Foerster et al., 2018). Hyper-parameter tun-
ing uses grid search over a wide range of candidates (refer to Appendix A.5). The performance met-
ric of one training trial is a mean discounted return measured by periodically (every 100 episodes)
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Figure 3: Decentralized learning and centralized learning with macro-actions vs primitive-actions.

evaluating the learned policies over 10 testing episodes. We plot the averaged performance of each
method over 20 independent trials with one standard error and smooth the curves over 10 neighbors.
The return of a benchmark policy created by using prior domain knowledge is also involved.

5 RESULTS AND DISCUSSIONS

Advantages of learning with macro-actions. We first present a comparison of our macro-action-
based actor-critic methods against the primitive-action-based in fully decentralized and fully cen-
tralized cases. We consider various grid world sizes of Box Pushing domain (top row in Fig. 3,
where the benchmark policy’s return is the optima) and three Overcooked scenarios (bottom row
in Fig. 3). The results show the significant outperformance of using macro-actions over primitive-
actions. More concretely, in Box Pushing domain, reasoning about primitive movements at every
timestep with such a limited observation setup makes this problem intractable to agents so that they
cannot learn any good behaviors other than to keep moving around. The necessary cooperation in
this task is not required in the low-level navigation but at the high-level (e.g., go to the big box and
push) so that, with the macro-actions, Mac-CAC reaches near-optimal performance enabling agents
to push the big box together. Unlike the centralized critic conditioning on joint information, even
in the macro-action case, it is hard for each agent’s decentralized critic to correctly measure the re-
sponsibility for a penalty caused by teammate pushing the big box alone. Mac-IAC thus converges
to a local-optima of pushing two small boxes in order to avoid getting the penalty.

In Overcooked domain, an efficient solution requires agents to asynchronously work on independent
subtasks (e.g., one agent goes to get plate while the other agent chops vegetables), which explains
why Mac-IAC can solve the task well in cases, A and B. This also indicates that using local infor-
mation is enough for agents to achieve high-quality behaviors. As a result, Mac-CAC learns slower
since it must figure out the redundant part of joint information in the larger joint macro-level history
and action spaces and it sometimes leads to a local optimum. However, in case C, the challenge
from the decentralized perspective is that agents cannot observe the status of the left side due to the
limited view, and there is no immediate reward caused by the agent’s action at the right side. The
benefit of centralized learning emerges in this case so that Mac-CAC outperforms Mac-IAC. The
primitive-action-based methods begin to learn, but perform poorly in such long-horizon tasks.

Advantages of having individual centralized critics. Fig. 4 shows the evaluations of our macro-
action-based multi-agent actor-critic methods in all three domains, where we mainly investigate the
superiority of Mac-IAICC over Naive Mac-IACC on learning decentralized policies. As each agent’s
observation is extremely limited in Box Pushing, we allow centralized critics in both Mac-IAICC
and Naive Mac-IACC to access to the state (agents’ poses and boxes’ positions), but joint macro-
observation-action history in another two domains. In the Box Pushing task (Fig. 4’s top row),
Mac-IAICC and Naive Mac-IACC both show the quality of decentralized policies. However, with
the growing grid world size, Naive Mac-IACC loses its value while Mac-IAICC keeps its perfor-
mance near the centralized one. This is because, from each agent’s perspective, the bigger the world
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Figure 4: Comparison of asynchronous macro-action-based actor-critic methods.

size is, the more timesteps a macro-action could take, and the less accurate value estimation the critic
of Naive Mac-IACC offers as it is trained depending on any agent’s macro-action termination. Con-
versely, Mac-IAICC gives each agent a separate centralized critic trained with the reward associated
with its own macro-action execution. In Overcooked-A and B (Fig. 4’s mid row), as Mac-IAICC’s
performance is determined by the training of two agents’ critics, it learns slower than Naive Mac-
IACC in the early stage but both converge to the same value in the end; and in the scenario C, better
decentralized policies are learned by the two CTDE-based methods. Because of the middle block
in Overcooked-C, macro-action terminations from both centralized and decentralized perspectives
become more frequent than that in A and B, which slows Naive Mac-IACC’s learning but does not
hurt the sample efficiency of Mac-IAICC. Finally, in the large warehouse domain (Fig. 4’s last row),
Mac-IAC performs the worst due to its natural limitations and the domain’s partial observability.
In particular, it is difficult for the gray robot to learn an efficient way to find correct tools purely
based on local information and very delayed rewards depending on the mobile robots’ behaviors.
By leveraging joint information, Mac-IAICC performs the best over all three cases. Furthermore,
Mac-IAICC’s advantage over Naive Mac-IACC is more significant in the case B than in the case A
where it converges to a higher value with much lower variance. This result confirms Mac-IAICC’s
scalability and effectiveness on handling more complex asynchronous executions when more agents
are involved. As the difficulty for Mac-CAC discussed earlier in Overcooked, Mac-CAC also gets
stuck at a local-optimum in Warehouse-A and B, and converges slightly slower than Mac-IAICC in
the case C. Visualization of learned policies using Mac-IAICC are displayed in Appendix A.4.

6 CONCLUSION

This paper introduces the first general formulation for asynchronous multi-agent macro-action-based
policy gradients under partial observability along with proposing a decentralized actor-critic method
(Mac-IAC), a centralized actor-critic method (Mac-CAC), and two CTDE-based actor-critic meth-
ods (Naive Mac-IACC and Mac-IAICC). Empirically, our methods are able to learn high-quality
macro-action-based policies allowing agents to perform asynchronous collaborations in large and
long-horizon problems. Importantly in Mac-IAICC, the strength of allowing each agent to have an
individual centralized critic associated with its own macro-acion executions clearly improves per-
formance in many of the domains. This work provides a foundation for future macro-action-based
MARL algorithm development, including other work on asynchronous execution as well as methods
which also learn the macro-actions.
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A APPENDIX

A.1 MACRO-ACTION-BASED POLICY GRADIENT THEOREM

As POMDPs can always be transformed to history-based MDPs, we can directly adapt the general
Bellman equation for the state values of a hierarchical policy (Sutton et al., 1999) to a macro-action-
based POMDP by replacing the state s with a history h as follows (for keeping the notaion simple,
we use τ to represent the number of timesteps taken by the corresponding macro-action m, and we
use h to represent macro-observation-action history):

V Ψ(h) =
∑
m

Ψ(m|h)QΨ(h,m) (13)

QΨ(h,m) = rc(h,m) +
∑
h′

P (h′|h,m)V Ψ(h′) (14)

where,

rc(h,m) = Eτ∼βm(h),stm |h

[ tm+τ−1∑
t=tm

γtrt

]
(15)

P (h′|h,m) = P (z′|h,m) =

∞∑
τ=1

γτP (z′, τ |h,m) (16)

=

∞∑
τ=1

γτP (τ |h,m)P (z′|h,m, τ) (17)

=

∞∑
τ=1

γτP (τ |h,m)P (z′|h,m, τ) (18)

= Eτ∼βm(h)

[
γτEs|h

[
Es′|s,m,τ [P (z′|m, s′)]

]]
(19)

Next, we follow the proof of the policy gradient theorem (Sutton et al., 2000):

∇θV Ψθ (h) = ∇θ

[∑
m

Ψθ(m|h)QΨθ (h,m)

]
(20)

=
∑
m

[
∇θΨθ(m|h)QΨθ (h,m) + Ψθ(m|h)∇θQΨθ (h,m)

]
(21)

=
∑
m

[
∇θΨθ(m|h)QΨθ (h,m) + Ψθ(m|h)∇θ

(
rc(h,m) +

∑
h′

P (h′|h,m)V Ψθ (h′)
)]

(22)

=
∑
m

[
∇θΨθ(m|h)QΨθ (h,m) + Ψθ(m|h)

∑
h′

P (h′|h,m)∇θV Ψθ (h′)
)]

(23)

=
∑
ĥ∈H

∞∑
k=0

P (h→ ĥ, k,Ψθ)
∑
m

∇θΨθ(m|ĥ)QΨθ (ĥ,m) (after repeated unrolling)

(24)
Then, we can have:

∇θJ(θ) = ∇θV Ψθ (h0) (25)

=
∑
h∈H

∞∑
k=0

P (h0 → h, k,Ψθ)
∑
m

∇θΨθ(m|h)QΨθ (h,m) (26)

=
∑
h

ρΨθ (h)
∑
m

∇θΨθ(m|h)QΨθ (h,m) (27)

=
∑
h

ρΨθ (h)
∑
m

Ψθ(m|h)∇θ log Ψθ(m|h)QΨθ (h,m) (28)

= EΨθ

[
∇θ log Ψθ(m|h)QΨθ (h,m)

]
(29)
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A.2 ALGORITHM

In this section, we present the pesudo code of each proposed macro-action-based actor-critic algo-
rithm with an example to show how the sequential experiences are squeezed for training the critic
and the actor. We describe all methods in the on-policy learning manner while off-policy learning
can be achieved by applying importance sampling weights and not resetting the buffer.

A.2.1 MAC-IAC

Figure 5: An example of the trajectory squeezing process in Mac-IAC. We collect each agent’s
high-level transition tuple at every primitive-step. Each agent is allowed to obtain a new macro-
observation if and only if the current macro-action terminates, otherwise, the next macro-observation
is set as same as the previous one. Each agent separately squeezes its sequential experiences by
picking out the transitions when its macro-action terminates (red cells). Each agent independently
train the critic and the policy using the squeezed trajectory.

Algorithm 1 Mac-IAC
1: Initialize a decentralized policy network for each agent i: Ψθi

2: Initialize decentralized critic networks for each agent i: V
Ψθi
wi , V

Ψθi

w−i
3: Initialize a buffer D
4: for episode = 1 to M do
5: t = 0
6: Reset env
7: while not reaching a terminal state and t < H do
8: t← t+ 1
9: for each agent i do

10: if the macro-action mi is terminated then
11: mi ∼ Ψθi(· | hi; ε)
12: else
13: Continue running current macro-action mi

14: for each agent i do
15: Get cumulative reward rci , next macro-observation z′i
16: Collect 〈zi,mi, z

′
i, r

c
i 〉 into the buffer D

17: if episode mod Itrain = 0 then
18: for each agent i do
19: Squeeze agent i’s trajectories in the buffer D
20: Perform a gradient decent step on L(wi) =

(
y−V Ψθi

wi (hi)
)2
D , where y = rci +γτmiV

Ψθi

w−i
(h′i)

21: Perform a gradient ascent on:
22: ∇θiJ(θi) = E~Ψ~θ

[
∇θi log Ψθi(mi|hi)

(
rci + γτmiV

Ψθi

w−i
(h′i)− V

Ψθi
wi (hi)

)]
23: Reset buffer D
24: if episode mod ITargetUpdate = 0 then
25: for each agent i do
26: Update the critic target network w−i ← wi
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A.2.2 MAC-CAC

Figure 6: An example of the trajectory squeezing process in Mac-CAC. Joint sequential experiences
are squeezed by picking out joint transition tuples when the joint macro-action terminates, in that,
any agent’s macro-action termination (marked in red) ends the joint macro-action at the timestep.
For example, at t = 1, agents execute a joint macro-action ~m = 〈m1,m4〉 for one timestep; at
t = 2, the joint macro-action becomes 〈m1,m5〉 as Agent2 finished m4 at last step and chooses a
new macro-action m5; Agent1 finished its macro-action m1 at t = 2 and selects a new macro-action
m2 at t = 3 so that the joint macro-action switches to 〈m2,m5〉 which keeps running until the 4th
timestep. Therefore, the first two joint macro-actions have two single-step reward respectively, and
reward of joint macro-action 〈m2,m5〉 is an accumulative reward over two consecutive timesteps.

Algorithm 2 Mac-CAC
1: Initialize a centralized policy network: Ψθ

2: Initialize centralized critic networks: V Ψθ
w , V Ψθ

w−
3: Initialize a centralized buffer D ← Mac-JERTs,
4: for episode = 1 to M do
5: t = 0
6: Reset env
7: while not reaching a terminal state and t < H do
8: t← t+ 1
9: if the joint macro-action ~m is terminated then

10: ~m ∼ Ψθ(· | ~h, ~mundone; ε)
11: else
12: Continue running current joint macro-action ~m
13: Get a joint cumulative reward ~r c, next joint macro-observation ~z ′

14: Collect 〈~z, ~m, ~z ′, ~r c〉 into the buffer D
15: if episode mod Itrain = 0 then
16: Squeeze joint macro-level trajectories in the buffer D according to joint macro-action terminations
17: Perform a gradient decent step on L(w) =

(
y − V Ψθ

w (~h)
)2
D , where y = ~r c + γ~τ~mV

Ψθ
w−

(~h′)

18: Perform a gradient ascent on∇θJ(θ) = EΨθ

[
∇θ log Ψθ(~m | ~h)

(
~r c+γ~τ~mV

Ψθ
w−

(~h′)−V Ψθ
w (~h)

)]
19: Reset buffer D
20: if episode mod ITargetUpdate = 0 then
21: Update the critic target network w− ← w

where, ~mundone is the sub-joint-macro-action over the agents who have not terminated their macro-
actions and will continue running.
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A.2.3 NAIVE MAC-IACC

In the pseudo code of Naive Mac-IACC presented below, we assume the accessible centralized
information x is joint macro-observation-action history in the centralized critic.

Figure 7: An example of the trajectory squeezing process in Navie Mac-IACC.The joint trajectory is
first squeezed depending on joint macro-action termination for training the centralized critic (line 18-
19 in Algorithm 3). Then, the trajectory is further squeezed for each agent depending on each agent’s
own macro-action termination for training the decentralized policy (line 20-23 in Algorithm 3.

Algorithm 3 Naive Mac-IACC
1: Initialize a decentralized policy network for each agent i: Ψθi

2: Initialize centralized critic networks: V
~Ψ~θ
w , V

~Ψ~θ
w−

3: Initialize a decentralized buffer D ← Mac-JERTs,
4: for episode = 1 to M do
5: t = 0
6: Reset env
7: while not reaching a terminal state and t < H do
8: t← t+ 1
9: for each agent i do

10: if the macro-action mi is terminated then
11: mi ∼ Ψθi(· | hi; ε)
12: else
13: Continue running current macro-action mi

14: Get a reward ~r c accumulated based on current joint macro-action termination
15: Get next joint macro-observations ~z ′

16: Collect 〈~z, ~m, ~z ′, ~r c〉 into the buffer D
17: if episode mod Itrain = 0 then
18: Squeeze joint macro-level trajectories in the buffer D according to joint macro-action terminations

19: Perform a gradient decent step on L(w) =
(
y − V

~Ψ~θ
w (~h)

)2
D , where y = ~r c + γ~τ~mV

~Ψ~θ
w−

(~h′)
20: for each agent i do
21: Squeeze agent i’s trajectories in the buffer D according to its own macro-action terminations
22: Perform a gradient ascent on:

23: ∇θiJ(θi) = E~Ψ~θ

[
∇θi log Ψθi(mi|hi)

(
~r c + γ~τ~mV

~Ψ~θ
w−

(~h′)− V
~Ψ~θ
w (~h)

)]
24: Reset buffer D
25: if episode mod ITargetUpdate = 0 then
26: Update the critic target network w− ← w
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A.2.4 MAC-IAICC

In the pseudo code of Mac-IAICC presented below, we assume the accessible centralized informa-
tion x is joint macro-observation-action history in the centralized critic.

Figure 8: An example of the trajectory squeezing process in Mac-IAICC: each agent learns an
individual centralized critic for the decentralized policy optimization. In order to achieve a better use
of centralized information, the recurrent layer in each critic’s neural network should receive all the
valid joint macro-observation-action information (when any agent terminates its macro-action (line
20-22) and obtain a new joint macro-observation). However, the critic’s TD updates and the policy’s
updates still rely on each agent’s individual macro-action termination and the accumulative reward
at the corresponding timestep (line 23-26). Hence, the trajectory squeezing process for training each
critic still depends on joint-macro-action termination but only retaining the accumulative rewards
w.r.t. the corresponding agent’s macro-action termination for computing the TD loss (the middle
part in the above picture). Then, each agent’s trajectory is further squeezed depending on its macro-
action termination to update the decentralized policy.
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Algorithm 4 Mac-IAICC
1: Initialize a decentralized policy network for each agent i: Ψθi

2: Initialize centralized critic networks for each agent i: V
~Ψ~θ
wi , V

~Ψ~θ

w−i
3: Initialize a decentralized buffer D
4: for episode = 1 to M do
5: t = 0
6: Reset env
7: while not reaching a terminal state and t < H do
8: t← t+ 1
9: for each agent i do

10: if the macro-action mi is terminated then
11: mi ∼ Ψθi(· | hi; ε)
12: else
13: Continue running current macro-action mi

14: for each agent i do
15: Get a reward rci accumulated based on agent i’s macro-action termination
16: Get next joint macro-observations ~z ′

17: Collect 〈~z, ~m, ~z ′, {rc1, . . . , rcn}〉 into the buffer D
18: if episode mod Itrain = 0 then
19: for each agent i do
20: Squeeze trajectories in the buffer D according to joint macro-action terminations
21: Compute the TD-error of each timestep in the squeezed experiences:

22: L(wi) =
(
y − V

~Ψ~θ
wi (~h)

)2
D , where y = rci + γτmiV

~Ψ~θ

w−i
(~h′)

23: Perform a gradient descent only over the TD-errors when agent i’s macro-action is terminated
24: Squeeze agent i’s trajectories in the buffer D according to its own macro-action terminations
25: Perform a gradient ascent on:

26: ∇θiJ(θi) = E~Ψ~θ

[
∇θi log Ψθi(mi|hi)

(
rci + γτmiV

~Ψ~θ

w−i
(~h′)− V

~Ψ~θ
wi (~h)

)]
27: Reset buffer D
28: if episode mod ITargetUpdate = 0 then
29: for each agent i do
30: Update the critic target network w−i ← wi
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A.3 DOMAIN DESCRIPTION AND RESULTS

A.3.1 BOX PUSHING

Domain Setup.

(a) 8x8 (b) 10x10 (c) 12x12

Figure 9: Experimental environments.

Goal. The objective of the two agents is to learn collaboratively push the middle big box to the goal
area at the top rather than pushing a small box on each own.

State. The global state information consists of the position and orientation of each agent and each
box’s position in a grid world.

Primitive-Action Space. move forward, turn-left, turn-right and stay.

Macro-Action Space.

• One-step macro-actions: Turn-left, Turn-right, and Stay.

•Multi-step macro-actions: Move-to-small-box(i) that navigates the agent to the red spot below the
corresponding small box and terminate with agent facing the box; Move-to-big-box(i) that navigates
the agent to a red spot below the big box and terminate with agent facing the big box; Push that op-
erates the agent to keep moving forward and terminate while arriving the world’s boundary, touching
the big box along or pushing a small box to the goal.

Observation Space. In both the primitive-observation and macro-observation, each agent is only
allowed to capture one of five states of the cell in front of it: empty, teammate, boundary, small box,
big box.

Dynamics. The transition in this task is deterministic. Boxes can only be moved towards the north
when the agent faces the box and moves forward. The small box can be moved by a single agent
while the big box require two agents to move it together.

Rewards. The team receives +300 for pushing big box to the goal area and +20 for pushing a small
box to the goal area. A penalty −10 is issued when any agent hits the boundary or pushes the big
box on its own.

Episode Termination. Each episode terminates when any box is pushed to the goal area, or when
100 timesteps has elapsed.
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Figure 10: Decentralized learning with macro-actions vs primitive-actions in Box Pushing domain.
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Figure 11: Centralized learning with macro-actions vs primitive-actions in Box Pushing domain.
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Figure 12: Comparison of macro-action-based multi-agent actor-critic methods in Box Pushing.

A.3.2 OVERCOOKED

Domain Setup

(a) Overcooked-A (b) Overcooked-B (c) Overcooked-C (d) Lettuce-Tomato salad recipe

Figure 13: Experimental environments.

Goal. Two agents need to learn cooperating with each other to prepare a Lettuce-Tomato salad and
deliver it to the ‘star’ counter cell as soon as possible. The challenge is that the recipe of making
a lettuce-tomato salad (Fig. 2) is unknown to agents. Agents have to learn the correct procedure in
terms of picking up raw vegetables, chopping, and merging in a plate before delivering.

State Space. The environment is a 7×7 grid world involving two agents, one tomato, one lettuce,
two plates, two cutting boards and on delivery cell. The global state information consists of the
location of each agent and above items, and the status of each vegetable: chopped, unchopped, or
the progress under chopping.

Primitive-Action Space. Each agent has five primitive-actions: up, down, left, right and stay.
Agents can move around and achieve picking, placing, chopping and delivering by moving against
the corresponding counter cell (e.g. standing at the cell next to the lettuce and executing right to
pick it up.
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Macro-Action Space.

• One-step macro-actions:

Stay, stay at the current position and terminate.

Up, Down, Left and Right, each moves the agent to the corresponding nearby cell and terminate.

•Multi-step macro-actions:

Get-Tomato and Get-Lettuce, navigate the agent to the latest observed position of the vegetable. If
the vegetable is there, pick it up, otherwise the agent moves to the initial position of the vegetable,
and picks it up if the vegetable is there, otherwise terminates the macro-action.

Termination conditions:

Case 1: The agent is next to the chopped/unchopped food and picks it up.
Case 2: The agent observes that the food is being held by the other agent or itself.
Case 3: The agent is next to the unchopped food holding a plate or other food.
Case 4: The agent is next to the other agent and this agent is next to the food.
Case 5: The agent is next to the cutting board counter and the unchopped food is on the counter.
Case 6: The agent does not find the tomato/lettuce in the latest position it observed it. And the agent
goes to the initial position of the food and does not find it, either.
Case 7: Two agents attempt to enter the same cell. One agent stays and terminates according to a
predefined priority.

Get-Plate-1/2, navigates the agent to the latest observed position of the plate. If the plate is there,
pick it up, otherwise the agent moves to the initial position of the plate, and picks it up if the plate is
there, otherwise terminates the macro-action.

Termination conditions:

Case 1: The agent is next to the plate and picks it up.
Case 2: The agent observes that the plate is being held by the other agent or itself.
Case 3: The agent is next to the plate but holding another plate or unchopped food.
Case 4: The agent is next to the other agent and this agent is next to the plate.
Case 5: The agent does not find the plate in the latest position it observed it. And the agent goes to
the initial position of the plate and does not find it, either.
Case 6: Two agents attempt to enter the same cell. One agent stays and terminates according to a
predefined priority.

Go-Cut-Board-1/2, navigates the agent to the corresponding cutting board.

Termination conditions:

Case 1: The agent is next to the cutting board counter without holding anything.
Case 2: The cutting board is empty. The agent is next to the cutting board while holding plate or
food, and then put it on the cutting board.
Case 3: There is a plate or food on the cutting board. The agent stops at the cell next to the cutting
board.
Case 4: The cutting board is being used by teammate, the agent stops at the cell next to the teammate.
Case 5: Two agents attempt to enter the same cell. One agent stays and terminates according to a
predefined priority.

Chop, chops the raw vegetable into pieces, which takes three timesteps.

Termination conditions:

Case 1: The vegetable on the cutting board has been chopped into pieces.
Case 2: Immediately terminates when the agent is not next to a cutting board.
Case 3: Immediately terminates when there is no unchopped food on the cutting board.
Case 4: The agent holds something.
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Deliver, navigates the agent to the ‘star’ counter cell for delivering by putting down the in-hand
object.

Termination conditions:

Case 1: The agent is next to the delivery counter without holding anything.
Case 2: The agent is next to the delivery counter holding a object and put down the object on the
delivery counter cell.
Case 3: Teammate is standing in front of the delivery counter cell, the agent terminates at the cell
next to teammate.
Case 4: Two agents attempt to enter the same cell. One agent stays and terminates according to a
predefined priority.

Go-Counter, navigates the agent to one empty counter cell in the middle of the map. The priority of
the targeting counter cell is from middle to the sides. This macro-action is only available in map B
and C.

Termination conditions:

Case 1: The agent is next to the counter cell without holding anything.
Case 2: The agent is next to the counter cell that is not empty.
Case 3: The agent is next to the counter cell and puts in-hand object on it.
Case 4: Teammate is in front of the target counter cell, the agent then stops next to the teammate.
Case 5: Two agents attempt to enter the same cell. One agent stays and terminates according to a
predefined priority.

Observation Space: The macro-observation space for each agent is the same as the primitive ob-
servation space. Agents are only allowed to observe the positions and status of the entities within a
5× 5 egocentric view field. The initial position of all the items are known to the agents.

Dynamics: The transition in this task is deterministic. If an agent delivers any wrong item, the item
will be reset to its initial position. From the low-level perspective, to chop a vegetable into pieces
on a cutting board, the agent needs to stand next to the cutting board and executes left three times.
Only the chopped food can be put on a plate.

Reward: +10 for chopping a vegetable, +200 terminal reward for delivering a lettuce-tomato salad,
−5 for delivering any wrong entity, and −0.1 for every timestep.

Episode Termination: Each episode terminates either when agents successfully deliver a lettuce-
tomato salad correct dish or reaching the maximal timesteps, 200.
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Figure 14: Decentralized learning with macro-actions vs primitive-actions in Overcooked domain.
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Figure 15: Centralized learning with macro-actions vs primitive-actions in Overcooked domain.
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Figure 16: Comparison of macro-action-based multi-agent actor-critic methods in Overcooked.
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A.3.3 WAREHOUSE TOOL DELIVERY

Domain Setup

(a) Warehouse-A (b) Warehouse-B (c) Warehouse-C

Figure 17: Experimental environments.

In this Warehouse Tool Delivery domain, we consider three different scenarios shown in Fig. 17. We
make the original problem (Xiao et al., 2019) (only one human worker involved) more challenging
by: 1) adding one more human into the environment (Fig. 17a); 2) increasing the number of agents
and having three humans in the environment to further examine the scalability of our methods and
the effectiveness of Mac-IAICC on handling more noisy asynchronous terminations over agents
(Fig. 17a); 3) having one faster human involved to check whether the agents can learn a priority for
delivering tool to him or not.

Goal. Under all scenarios, in each workshop, a human is working on an assembly task involving
4 subtasks to be finished (each subtask takes amount of primitive timesteps) and requires three
particular tools for each future subtask to continue. Humans either work in the same speed (Fig. 17a-
b) or have one of them working faster (the orange one in Fig.17c). The robot team includes a arm
robot (grey) with the duty of finding tools for each human on the table (brown) and passing them
to mobile robots (green, blue and yellow) who are responsible for delivering tools to the humans.
The objective of the robots is to assist the humans to finish their assembly tasks as soon as possible
by finding the correct tools in a efficient order. To make this problem more challenging, the correct
tools that each human needs are unknown to the robots, which has to be learned during training in
order to perform timely delivery without letting any human wait over there.

State. The environment is either a 5 × 7 (Fig. 17a) or a 5 × 9 (Fig. 17b-c) continuous space. A
global state consists of the 2D position of each mobile robots, the execution status of the arm robot’s
current macro-action (e.g how munch steps are left for completing the macro-action, but in real-
world, this should be the angle and speed of each arm’s joint), the subtask each human is working
with a percentage indicating the progress of the subtask, and the position of each tools (either on the
brown table or carried by a mobile robot). Note that, there are enough tools for each human such
that the number of each type of tool exactly matches with the number of humans in the environment.
The initial state of every episode is always same as shown in Fig. 17, where humans always start
from the first step.

Macro-Action Space.

The available macro-actions for each mobile robot include:

• Go-W(i), navigates to the red waypoint at the corresponding workshop;

• Go-TR, navigates to the red waypoint at the right side of the tool room;

• Get-Tool, navigates to a pre-allocated waypoint besides the arm robot and waits over there until
either 10 timesteps have passed or receiving a tool from the gray robot.

The available macro-actions for the arm robot include:

• Search-Tool(i), takes 6 timesteps to find tool i and place it in a staging area (containing at most
two tools) when the area is not fully occupied, otherwise freezes the robot for the same amount of
time;

• Pass-to-M(i), takes 4 timesteps to pass a tool to a mobile robot from the staging area in the order
of first-in-first-out;

•Wait-M, takes 1 timestep to wait for mobile robots coming.
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Macro-Observation Space.

The arm robot’s macro-observation include the information about the type of each tool in the staging
area and which mobile robot is waiting beside.

Each mobile robot always observes its own position and the type of each tool carried by itself, while
observes the number of tools in the staging area or the subtask a human working on only when
locating at the tool room or the workshop respectively.

Dynamics. Transitions are deterministic. Each mobile robot moves in a speed 0.8 and is only
allowed to receive tools from the arm robot rather than from humans. Each human is only allowed to
possess the tool for the next subtask from a mobile robot when the robot locates at the corresponding
workshop and carries the exact tool. In the Warehouse-A, each human takes 18 timesteps to finish
each subtask; in the Warehouse-B, each human takes 40 timesteps to finish each subtask; and in the
Warehouse-C, each subtask takes the faster human 30 timesteps while taking the slower human 40
timesteps. Human cannot start the next subtask without obtaining the correct tool.

Rewards. The team receives a +100 reward when a correct tool is delivered to a human in time
while getting an extra−20 penalty for a delayed delivery such that the human has paused over there.
A −10 reward occurs when the grey robot does Pass-to-M(i) but the mobile robot i is not next to it,
and a −1 reward is issued every timestep.

Episode Termination. Each episode terminates when all humans obtained all the correct tools for
all subtasks, otherwise, the episode will run until the maximal timesteps (200 for Warehouse-A and
250 for Warehouse-B and C).
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Figure 18: Comparison of macro-action-based multi-agent actor-critic methods in Warehouse Tool
Delivery domain.
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A.4 BEHAVIOR VISUALIZATION

In the section, we display the decentralized behaviors learned by using Mac-IAICC under all con-
sidered domains.

A.4.1 BOX PUSHING

We show the behaviors learned under the grid world size 14× 14 in Fig. 19. Although the averaged
performance of the training is not near-optimal (Fig. 12), several runs can learn the optimal behavior.

(a) Green agent executes Move-
to-big-box(1) to move to the
left waypoint below the big box
while the blue agent runs Move-
to-big-box(2) to move to the right
waypoint below the big box.

(b) After completing the previ-
ous macro-actions, agents choose
Push to move the big box to-
wards the goal together.

(c) Agents finish the task by
pushing the big box to the goal
area.

Figure 19: Visualization of the optimal macro-action-based behaviors learned using Mac-IAICC in
the Box Pushing domain under a 14× 14 grid world.
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A.4.2 OVERCOOKED

Map A. In this map, a simple collaborative strategy is that two agents pick up the tomato and lettuce,
bring them to the cutting board, chop them into pieces, and then let one agent go to get one plate,
put the chopped food on the plate and delivery it. While the agent is getting the plate, the other agent
has nothing to do, which waste some time. Our method learns a more efficiently way, it makes one
agent chop both of the tomato and lettuce, meanwhile, the other agent goes to pick up the plate. It
makes both of the agents work in parallel, which saves the time.

(a) The blue agent exe-
cutes Get-Lettuce. The
pink agent executes Get-
Tomato.

(b) After the pink agent
gets the tomato, it exe-
cutes Go-Cut-Board-1 to
put the food on the cut-
ting board.

(c) After the blue agent
gets the lettuce, it exe-
cutes Go-Cut-Board-2 to
put the food on the cut-
ting board.

(d) After the pink agent
puts the tomato on the
cutting board, it executes
Get-Plate-1 to get a plate.

(e) After the blue agent
puts the lettuce on the
cutting board, it executes
Chop to chop the lettuce
into pieces.

(f) After the blue agent
chops the lettuce into
pieces, it executes Get-
Tomato to approach
tomato.

(g) After the blue agent
is in front of the tomato,
it executes Chop to chop
the tomato into pieces.

(h) After the pink agent
gets the plate, it executes
Get-Tomato to put the
tomato on the plate.

(i) After the blue agent
chops the tomato into
pieces, it executes Get-
Plate-2 to avoid blocking
pink agent’s way.

(j) After the pink agent
puts the tomato on the
plate, it executes Get-
Lettuce.

(k) After the pink agent
puts the lettuce on the
plate, it executes Deliver.

(l) The pink agent suc-
cessfully delivers the
lettuce-tomato salad.

Figure 20: Visualization of running decentralized policies learned by Mac-IAICC in Overcooked-A.
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Map B. In this map, the best strategy is that the pink agent should take the advantage of the middle
counters to pass vegetables to the other agent. Our method learns a sub-optimal policy such that the
blue agent still crosses the narrow passage to get the vegetable at the right side of the map.

(a) The blue agent exe-
cutes Get-Lettuce. The
pink agent executes Get-
Tomato.

(b) After the pink agent
gets the tomato, it exe-
cutes Go-Cut-Board-2 to
put the food on the cut-
ting board.

(c) After the blue agent
gets the lettuce, it exe-
cutes Go-Cut-Board-1 to
put the food on the cut-
ting board.

(d) After the pink agent
puts the tomato on the
cutting board, it executes
Chop to chop the tomato
into pieces.

(e) After the pink agent
chops the lettuce into
pieces, it executes Get-
Plate-1.

(f) After the blue agent
puts the lettuce on the
cutting board, it executes
Chop to chop the let-
tuce into pieces. Af-
ter the pink agent gets
the plate, it executes Go-
Cut-Board-2 to get the
chopped tomato.

(g)After the blue agent
chops the lettuce into
pieces, it executes Get-
Plate-2 to avoid blocking
pink agent’s way.

(g) After the pink agent
puts the tomato on the
plate, it executes Get-
Lettuce.

(h) After the pink agent
puts the lettuce on the
plate, it executes Deliver.

(i) The pink agent suc-
cessfully delivers the
lettuce-tomato salad.

Figure 21: Visualization of running decentralized policies learned by Mac-IAICC in Overcooked-B.
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Map C. In this map, the policy trained by our method learns to use the macro-action Go-Counter to
pass vegetables and plates to teammate.

(a) The blue agent ex-
ecutes Go-Cut-board-2.
The pink agent executes
Get-Tomato.

(b) The pink agent exe-
cutes Go-Counter to put
the tomato on one of the
middle counter cells.

(c) After the pink agent
puts the tomato on the
counter, it executes Get-
Lettuce. The blue agent
executes Get-Tomato.

(d) After the blue agent
gets the tomato, it exe-
cutes Go-Cut-Board-2.

(e) After the pink agent
gets the lettuce, it exe-
cutes Go-Counter to put
the food on one of the
middle counter cells.

(f) After the blue agent
puts the tomato on the
cutting board, it executes
Chop to chop the food
into pieces.

(g) After the pink agent
puts the lettuce on the
counter, it executes Get-
Plate-2.

(h) After the blue agent
chops the tomato into
pieces, it executes Get-
Lettuce.

(i) The blue agent exe-
cutes Go-Cut-Board-1 to
put the lettuce on the cut-
ting board.The pink agent
executes Go-Counter to
put the plate on the
counter.

(j) After the blue agent
puts the lettuce on the
cutting board, it executes
Chop to chop the food
into pieces.

(k) After the blue agent
chops the lettuce into
pieces, it executes Get-
Lettuce to pick up the
chopped lettuce.

(l) After the blue agent
holds the chopped let-
tuce, it executes Go-
Counter to put the lettuce
on the plate.

(m) After the blue agent
puts the lettuce on the
plate, it executes Get-
Tomato.

(n) After the blue agent
puts the tomato on the
plate, it executes Deliver.

(o) The blue agent
successfully delivers the
lettuce-tomato salad.

Figure 22: Visualization of running decentralized policies learned by Mac-IAICC in Overcooked-C.
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A.4.3 WAREHOUSE TOOL DELIVERY

Warehouse-A. In this domain, a simple collaborative strategy is that two mobile robots separately
assist a particular human (e.g. green robot always delivers tool to W-1 and blue robot always delivers
tool to W-2). However, according to each human’s working speed, this strategy causes all deliveries
are late except the first one such that humans always wait after finishing each subtask, which results
in many penalties. By using our method Mac-IAICC, robots learn a more efficient collaboration
shown below, which only leads to one delayed delivery but others are all in time.

(a) Initial State. (b) Mobile robots moves to-
wards the table by running Get-
Tool, and arm robot runs Search-
Tool(0) to find Tool-0.

(c) Mobile robots wait there and
arm robot keeps looking for the
first tool.

(d) Arm robot executes Pass-to-
M(1) to pass the first tool to the
blue robot.

(e) Arm robot executes Search-
Tool(1) to find Tool-1, and blue
robot moves to workshop-1 by
executing Go-W(1).

(f) Blue robot successfully deliv-
ers Tool-0 to workshop-1.

(g) Blue robot runs Get-Tool to
go back table, and arm robot exe-
cutes Pass-to-M(0) to pass Tool-
1 to green robot.

(h) Green robot executes Go-
W(0) and arm robot runs Search-
Tool(2). Blue robot waits for
tools.

(i) Green observes human-0
needs Tool-0 while it carries
Tool-1, so that it executes Go-
W(1) to check if human-1 needs
Tool-1.

(j) Green robot successfully de-
livers Tool-1 to human-1.

(k) Arm robot executes Pass-to-
M(1) to pass Tool-2 to blue robot.

(l) Arm robot executes Search-
Tool(0) to find the other Tool-0,
and green robot runs Get-Tool to
go back arm robot.

31



Under review as a conference paper at ICLR 2022

(m) Arm robot executes Pass-to-
M(1) to pass Tool-0 to blue robot,
and blue robot carries Tool-0 and
Tool-2 now.

(n) Blue robot smartly runs Go-
W(0) to first delivery Tool-0 to
human-0, and arm robot executes
Search-Tool(1) to find the other
Tool-1.

(o) Blue robot successfully deliv-
ers Tool-0 to human-0, and hu-
man starts working on next sub-
task.

(p) Blue robot executes Go-W(1)
and successfully delivers Tool-2
to human-1. Human-1 now have
obtained all necessary tools.

(q) Arm robot executes Pass-to-
M(0) to pass Tool-1 to green
robot, and blue robot runs Get-
Tool to go back the table.

(r) Green robot runs Go-W(0)
to deliver Tool-1 to human-0,
and arm robot executes Search-
Tool(2) to find the last Tool-2.

(s) Green robot successfully de-
livers Tool-1 to human-0.

(t) Arm robot executes Pass-to-
M(1) to give Tool-2 to blue robot,
and green robot goes to check
human-1 by running Go-W(1).

(u) Blue robots directly goes to
workshop-0 by running Go-W(0)
and finishes the last tool delivery
for human-0. The entire task is
done.
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Warehouse-B. In this scenario, our hand-coded strategy controls each mobile robot to focus on
serving a particular workshop, which is able to finish the task without any delayed delivery. By
using Mac-IAICC, robots learn another cooperative behaviors that achieve timely delivery for all
tools by using only two mobile robots (the green one and the yellow one) and achieve the same
return as the hand-coded one.

(a) Initial State. (b) Both green and yellow robots
move towards the table by running
Get-Tool. Blue runs Go-W(0) to
go to workshop-0. Arm robot runs
Search-Tool(0) to find Tool-0.

(c) Green and yellow robots wait
there and arm robot keeps looking
for the Tool-0. Blue robot arrives
at workshop-0.

(d) Blue robot runs Get-Tool to go
back the table.

(e) Arm robot executes Pass-to-
M(2) to pass Tool-0 to yellow
robot.

(f) All mobile robots keep running
Get-Tool to wait there for tools,
and arm robot executes Search-
Tool(0) to find the 2nd Tool-0.

(g) Arm robot executes Pass-to-
M(2) to pass the 2nd Tool-0 to the
yellow robot, Now yellow robot
carries two Tool-O..

(h) Arm robot executes Search-
Tool(0) to find the 3rd Tool-0,
while yellow robot runs Go-W(1)
to deliver Tool-0 to the furthest
workshop-1.

(i) Yellow robot successfully de-
livers Tool-0 to human-1.

(j) Yellow robot runs Go-W(2) to
deliver the other Tool-0 to human-
2, and arm robot executes Pass-
to-M(0) to pass the 3rd Tool-O to
green robot.

(k) Yellow robot successfully de-
livers Tool-0 to human-2. Green
robot runs Go-W(0) to deliver
Tool-0 to human-0. Arm robot
executes Search-Tool(1) to find
Tool-1.

(l) Yellow robot runs Get-Tool to
return tool room. Green robot
keeps moving towards workshop-
0 under the execution of Go-W(0).
Arm robot is looking for Tool-
0 under the running of previous
macro-action.
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(m) Arm robot executes Search-
Tool(1) again to find the 2nd Tool-
1. Green robot successfully de-
livers Tool-0 to human-0. Yellow
robot is moving towards table.

(n) Green robot runs Get-Tool to
go back table. Yellow robot is
waiting for tools.

(o) Arm robot executes Pass-to-
M(2) to pass a Tool-1 to yellow
robot.

(p) Arm robot executes Pass-to-
M(2) again to pass the other Tool-
1 to yellow robot.

(q) Arm robot executes Search-
Tool(1) to find the 3rd Tool-1,
and yellow robot runs Go-W(1) to
first deliver Tool-1 to the furthest
workshop-1.

(r) Yellow robot successfully de-
livers Tool-1 to human-1.

(s) Yellow robot runs Go-W(2) to
deliver the other Tool-1 to human-
2, and arm robot executes Pass-
to-M(0) to pass the 3rd Tool-1 to
green robot.

(t) Yellow robot successfully de-
livers Tool-1 to human-2. Green
robot runs Go-W(0) to deliver
Tool-1 to human-0. Arm robot
executes Search-Tool(2) to find
Tool-2.

(u) Arm robot executes Search-
Tool(2) again to find the 2nd Tool-
2. Green robot successfully de-
livers Tool-1 to human-0. Yellow
robot is moving towards table.

(v) Green robot runs Get-Tool to
go back table. Yellow robot is
waiting for tools.

(w) Arm robot executes Pass-to-
M(2) to pass a Tool-2 to yellow
robot.

(x) Arm robot executes Pass-to-
M(2) again to pass the other Tool-
2 to yellow robot.
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(y) Arm robot executes Search-
Tool(2) to find the 3rd Tool-2,
and yellow robot runs Go-W(1) to
first deliver Tool-2 to the furthest
workshop-1.

(z) Yellow robot successfully de-
livers Tool-2 to human-1.

(A) Yellow robot runs Go-W(2) to
deliver the other Tool-2 to human-
2, and arm robot executes Pass-
to-M(0) to pass the 3rd Tool-2 to
green robot.

(B) Yellow robot successfully de-
livers Tool-2 to human-2. Green
robot runs Go-W(0) to deliver
Tool-2 to human-0.

(C) Green robot successfully de-
livers Tool-2 to human-2. Humans
have received all tools, and for
robots, the task is done.
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Warehouse-C

In this scenario, the arm robot leans an efficient order to find correct tools that humans need in
such a way that first getting the proper tools for each human’s second subtask; second, getting the
proper tools for each human’s third subtask; and finally getting the proper tools for each human’s
last subtask. Mobile robots are also clever such that the green robot focuses on delivering tools to
two workshops (0 and 2) and gives the priority to the faster human in workshop-0, meanwhile, the
blue robot mainly focuses on assisting the human-1 in workshop-1 (W-1) by delivering the correct
tools one by one in time, but also helps delivering one tool to human-2.

(a) Initial State. (b) Arm robot executes Search-
Tool(0) to find Tool-0, and two
mobile robots are moving towards
the table by running Get-Tool.

(c) Arm robot executes Pass-to-
M(0) to pass Tool-0 to green
robot. Blue robot waits there for
tools.

(d) Green robot runs Go-W(0) to
deliver Tool-0 to the faster human,
and arm robot executes Search-
Tool(0) to find the 2nd Tool-0.

(e) Green robot successfully deliv-
ers Tool-0 to human-0, and arm
robot is still under the execution of
previous macro-action.

(f) Arm robot executes Pass-to-
M(1) to give Tool-0 to blue robot,
and green robot goes to check
human-2’s status by running Go-
W(2).

(g) Arm robot executes Search-
Tool(0) to find the 3rd Tool-
0. Blue robot moves towards
workshop-1 by running Go-W(1)
and green robot runs Get-Tool to
go back arm robot.

(h) Arm robot executes Search-
Tool(1) to find Tool-1. Mobile
robots continue running the previ-
ous macro-actions.

(i) Blue robot successfully deliv-
ers Tool-0 to human-1, and green
robot waits there for next tool.
Arm robot is under the execution
of previous macro-action.

(j) Blue robot goes back table by
running Get-Tool.

(k) Arm robot passes the last Tool-
0 to the green robot by execut-
ing Pass-to-M(0), and blue robot
is under the execution of Get-Tool.

(l) Arm robot executes Pass-to-
M(0) again to give Tool-1 to green
robot, and blue arrives at table and
waits for next tool.
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(m) Green robot runs Go-W(0) to
first deliver Tool-1 to the faster
human, and arm robot executes
Search-Tool(1) to find the 2nd
Tool-1.

(n) Green robot successfully de-
livers Tool-1 to human-0, and arm
robot is still searching for Tool-1.

(o) Arm robot executes Search-
Tool(1) again to find the last
Tool-1, meanwhile, green robot
successfully delivers Tool-0 to
human-2 by running Go-W(2).

(p) Green robot runs Go-W(1) to
check the status of human-1.

(q) Arm robot executes Pass-to-
M(1) to give Tool-1 to blue robot,
and green robot runs Get-Tool to
go back table.

(r) Arm robot executes Pass-to-
M(1) again to give the last Tool-1
to blue robot, and now blue robot
carries two Tool-1s.

(s) Arm robot executes Search-
Tool(2) to find Tool-2. Green
robot waits there for next tool,
and blue robot moves towards
workshop-1 by running Go-W(1)
for delivery.

(t) Blue robot delivers Tool-1 to
human-1 in time.

(u) Arm robot executes Pass-to-
M(0) to give Tool-2 to green robot,
and blue robot runs Go-W(2) to
send Tool-1 to workshop-2.

(v) Arm robot executes Search-
Tool(2) to find the 2nd Tool-2.
Green robot keeps waiting there
for more tools by running Get-
Tool again, and blue robot delivers
Tool-1 to human-2 in time.

(w) Blue robot arrives at
workshop-0 to check the status
of human-0 by running Go-W(0),
and arm robot is still looking for
the 2nd Tool-2.

(x) Blue robot goes back tool
room by running Get-Tool, and
arm robot is under the execution of
Pass-to-M(0).
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(y) Arm robot passes the 2nd
Tool-2 to green robot by execut-
ing Pass-to-M(0), and now green
robot carries two Tool-2s. Blue
robot is under the execution of
previous macro-action.

(z) Green robot runs Go-W(0)
to first send Tool-2 to the faster
human-0, and blue robot waits be-
side table for next tool. Arm
robot executes Search-Tool(2) to
find the last Tool-2.

(A) Green robot delivers Tool-2 to
human-0 in time.

(B) Arm robot passes the last
Tool-2 to blue robot by execut-
ing Pass-to-M(1). Green arrives
at workshop-2 right after human-2
finishes the second subtask and is
going to start working on the next
subtask. According to the dynam-
ics setup, at this timestep, human-
2 cannot possess the Tool-2 from
the green robot.

(C) Green robot then goes to
workshop-1 to send Tool-2 to
human-1 by executing Go-W(1)
and successfully delivers it to
human-1. Blue robot cannot ob-
serves this so that it still executes
Go-W(1) to send Tool-2 to human-
1.

(D) Blue robot arrives at
workshop-1 and observes that
human-1 has already obtained
the last tool he needs. Blue robot
decides to send the Tool-2 to
human-2 by running Go-W(2).

(E) Blue robot successfully deliv-
ers Tool-2 to human-2. Humans
have received all tools, and for
robots, the task is done.
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A.5 HYPER-PARAMETERS

In following subsections, we first list the hyper-parameter candidates used for tuning each method
via grid search in the corresponding domain, and then show the hyper-parameter table with the
parameters used by each method achieving the best performance. We choose the best performance
of each method depending on its final converged value as the first priority and the sample efficiency
as the second.

A.5.1 BOX PUSHING

Table 1: Hyper-parameter candidates for grid search tuning.

learning rate pair (actor,critic) (1e-3,3e-3), (1e-3,1e-3) (5e-4,3e-3), (5e-4,1e-3)
(5e-4,5e-4), (3e-4,3e-3)

Episodes per train 8, 16, 32
Target-net update freq (episode) 32, 64, 128
N-step TD 0, 3, 5

Table 2: Hyper-parameter candidates for grid search tuning.

learning rate pair (actor,critic) (1e-3,3e-3), (1e-3,1e-3) (5e-4,3e-3), (5e-4,1e-3)
(5e-4,5e-4), (3e-4,3e-3)

Episodes per train 48
Target-net update freq (episode) 48, 96, 144
N-step TD 0, 3, 5

Table 3: Hyper-parameters used for methods in Box Pushing 6× 6.

Parameter IAC CAC Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 40K 40K 40K 40K 40K 40K
Actor learning rate 0.001 0.0005 0.0005 0.001 0.0005 0.0003
Critic learning rate 0.003 0.001 0.003 0.003 0.001 0.003
Episodes per train 8 8 32 32 32 32
Target-net update freq 32 128 32 64 32 128

(episode)
N-step TD 5 5 0 3 0 0
εstart 1 1 1 1 1 1
εend 0.01 0.01 0.01 0.01 0.01 0.01
εdecay (episode) 4K 4K 4K 4K 4K 4K

Table 4: Hyper-parameters used for methods in Box Pushing 8× 8.

Parameter IAC CAC Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 40K 40K 40K 40K 40K 40K
Actor learning rate 0.001 0.001 0.0005 0.0003 0.0005 0.0003
Critic learning rate 0.003 0.003 0.003 0.003 0.001 0.003
Episodes per train 8 8 48 32 32 32
Target-net update freq 32 128 48 32 128 64

(episode)
N-step TD 3 3 0 3 0 0
εstart 1 1 1 1 1 1
εend 0.01 0.01 0.01 0.01 0.01 0.01
εdecay (episode) 4K 4K 4K 4K 4K 4K
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Table 5: Hyper-parameters used for methods in Box Pushing 10× 10.

Parameter IAC CAC Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 40K 40K 40K 40K 40K 40K
Actor learning rate 0.001 0.001 0.001 0.0005 0.0005 0.0003
Critic learning rate 0.003 0.003 0.001 0.001 0.001 0.003
Episodes per train 8 8 16 32 32 32
Target-net update freq 64 128 32 128 128 32

(episode)
N-step TD 0 0 3 3 0 0
εstart 1 1 1 1 1 1
εend 0.01 0.01 0.01 0.01 0.01 0.01
εdecay (episode) 6K 6K 6K 6K 6K 6K

Table 6: Hyper-parameters used for methods in Box Pushing 12× 12.

Parameter IAC CAC Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 40K 40K 40K 40K 40K 40K
Actor learning rate 0.001 0.001 0.001 0.001 0.0005 0.0003
Critic learning rate 0.003 0.003 0.003 0.003 0.0005 0.003
Episodes per train 8 8 16 8 48 48
Target-net update freq 128 128 128 128 48 144

(episode)
N-step TD 0 0 3 0 0 0
εstart 1 1 1 1 1 1
εend 0.01 0.01 0.01 0.01 0.01 0.01
εdecay (episode) 6K 6K 6K 6K 6K 6K

Table 7: Hyper-parameters used for methods in Box Pushing 14× 14.

Parameter IAC CAC Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 40K 40K 40K 40K 40K 40K
Actor learning rate 0.001 0.001 0.001 0.001 0.0005 0.0005
Critic learning rate 0.003 0.003 0.001 0.001 0.0005 0.003
Episodes per train 8 8 8 16 32 48
Target-net update freq 128 128 32 128 128 48

(episode)
N-step TD 0 0 3 3 0 0
εstart 1 1 1 1 1 1
εend 0.01 0.01 0.01 0.01 0.01 0.01
εdecay (episode) 8K 8K 8K 8K 8K 8K
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A.5.2 OVERCOOKED

Table 8: Hyper-parameter candidates for grid search tuning.

learning rate pair (actor,critic) (1e-4, 3e-3) (3e-4,3e-3)
Episodes per train 4
Target-net update freq (episode) 8, 16, 32
N-step TD 3, 5

Table 9: Hyper-parameter candidates for grid search tuning.

learning rate pair (actor,critic) (1e-4, 3e-3) (3e-4,3e-3)
Episodes per train 8, 16
Target-net update freq (episode) 16, 32, 64
N-step TD 3, 5

Table 10: Hyper-parameters used for methods in Overcooked-A.

Parameter IAC CAC Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 100K 100K 100K 100K 100K 100K
Actor learning rate 0.0003 0.0003 0.0003 0.0001 0.0003 0.0003
Critic learning rate 0.003 0.003 0.003 0.003 0.003 0.003
Episodes per train 16 4 16 4 8 8
Target-net update freq 64 16 32 8 16 32

(episode)
N-step TD 5 5 5 5 5 5
εstart 1 1 1 1 1 1
εend 0.05 0.05 0.05 0.05 0.05 0.05
εdecay (episode) 40K 40K 40K 40K 40K 40K

Table 11: Hyper-parameters used for methods in Overcooked-B.

Parameter IAC CAC Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 100K 100K 100K 100K 100K 100K
Actor learning rate 0.0003 0.0001 0.0003 0.0001 0.0003 0.0003
Critic learning rate 0.003 0.003 0.003 0.003 0.003 0.003
Episodes per train 8 8 8 8 4 4
Target-net update freq 32 16 64 16 32 8

(episode)
N-step TD 5 5 5 3 5 3
εstart 1 1 1 1 1 1
εend 0.05 0.05 0.05 0.05 0.05 0.05
εdecay (episode) 40K 40K 40K 40K 40K 40K
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Table 12: Hyper-parameters used for methods in Overcooked-C.

Parameter IAC CAC Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 100K 100K 100K 100K 100K 100K
Actor learning rate 0.0003 0.0003 0.0003 0.0001 0.0003 0.0003
Critic learning rate 0.003 0.003 0.003 0.003 0.003 0.003
Episodes per train 16 8 16 4 16 4
Target-net update freq 64 32 32 32 64 32

(episode)
N-step TD 5 5 5 3 5 5
εstart 1 1 1 1 1 1
εend 0.05 0.05 0.05 0.05 0.05 0.05
εdecay (episode) 40K 40K 40K 40K 40K 40K

A.5.3 WAREHOUSE TOOL DELIVERY

Table 13: Hyper-parameter candidates for grid search tuning.

learning rate pair (actor,critic) (1e-3,1e-3), (5e-4,1e-3) (5e-4,5e-4) (3e-4,3e-3)
Episodes per train 4, 8
Target-net update freq (episode) 8, 16, 32, 64
N-step TD 0, 3, 5

Table 14: Hyper-parameter candidates for grid search tuning.

learning rate pair (actor,critic) (1e-3,1e-3), (5e-4,1e-3) (5e-4,5e-4) (3e-4,3e-3)
Episodes per train 16
Target-net update freq (episode) 16, 32, 64
N-step TD 0, 3, 5

Table 15: Hyper-parameters used for methods in Warehouse-A.

Parameter Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 40K 40K 40K 40K
Actor learning rate 0.0005 0.0003 0.0003 0.0005
Critic learning rate 0.0005 0.003 0.003 0.0005
Episodes per train 16 4 8 4
Target-net update freq 64 16 32 64

(episode)
N-step TD 5 3 5 5
εstart 1 1 1 1
εend 0.01 0.01 0.01 0.01
εdecay (episode) 10K 10K 10K 10K
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Table 16: Hyper-parameters used for methods in Warehouse-B.

Parameter Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 90K 90K 90K 90K
Actor learning rate 0.0005 0.0003 0.0003 0.0003
Critic learning rate 0.0005 0.003 0.003 0.003
Episodes per train 8 8 4 4
Target-net update freq 32 64 32 16

(episode)
N-step TD 5 3 5 5
εstart 1 1 1 1
εend 0.01 0.01 0.01 0.01
εdecay (episode) 10K 10K 10K 10K

Table 17: Hyper-parameters used for methods in Warehouse-C.

Parameter Mac-IAC Mac-CAC Mac-NIACC Mac-IAICC

Training Episodes 90K 90K 90K 90K
Actor learning rate 0.0005 0.0005 0.0003 0.0003
Critic learning rate 0.001 0.001 0.003 0.003
Episodes per train 4 4 4 4
Target-net update freq 64 64 32 64

(episode)
N-step TD 5 3 5 5
εstart 1 1 1 1
εend 0.05 0.05 0.05 0.05
εdecay (episode) 10K 10K 10K 10K
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