
Under review as a conference paper at ICLR 2022

ASYNCHRONOUS MULTI-AGENT ACTOR-CRITIC
WITH MACRO-ACTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Many realistic multi-agent problems naturally require agents to be capable of per-
forming asynchronously without waiting for other agents to terminate (e.g., multi-
robot domains). Such problems can be modeled as Macro-Action Decentralized
Partially Observable Markov Decision Processes (MacDec-POMDPs). Current
policy gradient methods are not applicable to agents’ asynchronous decision-
making over macor-actions in MacDec-POMDPs, as these methods assume that
agents synchronously reason about action selection at every timestep. To al-
low asynchronous learning and decision-making, we formulate a set of asyn-
chronous multi-agent actor-critic methods that allow agents to directly optimize
asynchronous (macro-action-based) policies in three standard training paradigms:
decentralized learning, centralized learning, and centralized training for decentral-
ized execution. Empirical results in various domains show high-quality solutions
can be learned for large domains when using our methods.

1 INTRODUCTION

In recent years, multi-agent policy gradient methods using the actor-critic framework have achieved
impressive success in solving a variety of cooperative and competitive domains (Lowe et al., 2017;
Foerster et al., 2018; Du et al., 2019; Iqbal & Sha, 2019; Vinyals et al., 2019; Li et al., 2019; Wang
et al., 2020; Yang et al., 2020; Zhou et al., 2020; Baker et al., 2020; Su et al., 2021; Wang et al., 2021;
Du et al., 2021). However, as these methods assume synchronized primitive-action execution over
agents, they struggle to solve tasks that involve long-term reasoning and asynchronous behavior,
such as real-world multi-robot applications (e.g., search and rescue (Queralta et al., 2020), package
delivery (Choudhury et al., 2021) and warehouse service (Xiao et al., 2020)).

The Macro-Action Decentralized Partially Observable Markov Decision Process (MacDec-
POMDP) (Amato et al., 2014; 2019) provides a general formalism for multi-agent asynchronous
collaborative decision-making under uncertainty. Macro-actions represent temporally extended ac-
tions that have (potentially) different durations. This introduces asynchronous high-level decision-
making over agents, as agents can start and terminate macro-actions at different timesteps. Such
asynchronicity actually makes multi-agent reinforcement learning (MARL) more challenging be-
cause it is difficult to determine what information to use and when to update agents’ policies from
either the decentralized or centralized perspective.

Despite several efforts made recently to enable agents to learn asynchronous hierarchical policies
such as extending DQN (Mnih et al., 2015) to learn macro-action-value functions (Xiao et al., 2019),
transferring MacDec-POMDPs to event-driven processes with continuous timing (Menda et al.,
2019), and adapting a single-agent option-critic framework (Bacon et al., 2017) to multi-agent do-
mains to learn all components (e.g. low-level policy, high-level abstraction, high-level policy) from
scratch (Chakravorty et al., 2019), none of them provides a principled way for optimizing macro-
action-based policies via asynchronous policy gradients to solve general multi-agent problems with
asynchronous decision-making.

In this paper, we propose a group of macro-action-based multi-agent actor-critic methods to general-
ize the current primitive-action-based multi-agent actor-critic methods to multi-agent problems with
macro-actions as well as allowing asynchronous policy optimization. First, we formulate a macro-
action-based independent actor-critic (Mac-IAC) method. Although independent learning suffers
from a theoretical curse of environmental non-stationarity, it allows fully online learning and may

1

Under review as a conference paper at ICLR 2022

still work well in certain domains. Second, we introduce a macro-action-based centralized actor-
critic (Mac-CAC) method, for the case where full communication is available during execution.
We also formulate a centralized training for decentralized execution (CTDE) paradigm (Kraemer &
Banerjee, 2016; Oliehoek et al., 2008) variant of our method. CTDE has gained popularity since
such methods can learn better decentralized policies by using centralized information during train-
ing. Current primitive-action-based multi-agent actor-critic methods typically use a centralized critic
to optimize each decentralized actor. However, the asynchronous joint macro-action execution from
the centralized perspective could be very different with the completion time being very different
from each agent’s decentralized perspective. To this end, we first present a Naive Independent Actor
with Centralized Critic (Naive IACC) method that naively uses a joint macro-action-value function
as the critic for each actor’s policy gradient estimation; and then propose an Independent Actor with
Individual Centralized Critic (Mac-IAICC) method addressing the above challenge.

We evaluate our proposed methods on diverse macro-action-based multi-agent problems: a bench-
mark Box Pushing domain (Xiao et al., 2019), a variant of the Overcooked domain (Wu et al., 2021)
and a larger warehouse service domain (Xiao et al., 2019). Experimental results show that our meth-
ods are able to learn high-quality solutions while primitive-action-based methods cannot, and show
the strength of Mac-IAICC for learning decentralized policies over Naive IAICC and Mac-IAC. To
our knowledge, this is the first general formalization of macro-action-based multi-agent actor-critic
frameworks considering the three state-of-the-art multi-agent training paradigms.

2 BACKGROUND

This section first introduces the formal definitions of the Dec-POMDP and the MacDec-POMDP,
and then reviews single-agent and multi-agent actor-critic policy gradient methods with primitive-
actions. We also provide an overview of value-based MARL methods with macro-actions.

2.1 DEC-POMDPS AND MACDEC-POMDPS

The decentralized partially observable Markov decision processes (Dec-POMDP) (Oliehoek & Am-
ato, 2016) is a general framework to model fully cooperative multi-agent tasks, where agents make
decisions in a decentralized way based on only local information. Formally, a Dec-POMDP is de-
fined by a tuple hI; S;A;
; T;O;R;H; i, where I is a set of agents; S is the environmental state
space; A = �i2IAi is the joint primitive-action space over each agent’s primitive-action set Ai;

 = �i2I
i is the joint primitive-observation space over each agent’s primitive-observation set
i.
At every timestep, under a state s, agents synchronously execute a joint primitive-action~a = �i2Iai,
each individually selected by an agent using a policy �i : HA

i � Ai ! [0; 1], a mapping from local
primitive observation-action historyHA

i to primitive-actions. The environment then transits to a new
state s0 according to a state transition function T (s;~a; s0) = P (s0 j s;~a). Agents receive a global
reward r(s;~a) issued by a reward function R : S�A! R, and obtain a joint primitive-observation
~o = �i2Ioi drawn from an observation function O(~o;~a; s0) = P (~o j ~a; s0) in state s0. The objective
is to find a joint policy ~� = �i�i such that the expected sum of discounted rewards from an initial
state, V ~�(s(0)) = E

hPH�1
t=0

tr
�
s(t);~a(t)

�
j s(0); ~�

i
, gets optimized, where 2 [0; 1] is a discount

factor, and H is the number of (primitive) timesteps until the problem terminates (the horizon).

The macro-action decentralized partially observable Markov decision process (MacDec-
POMDP) (Amato et al., 2014; 2019) incorporates the option framework (Sutton et al., 1999) into
the Dec-POMDP by defining each agent’s macro-action as a tuple mi = hImi ; �mi ; �mii, where
the initiation set Imi � HM

i defines how to initiate a macro-action based on macro-observation-
action history HM

i at the high-level; �mi : HA
i � Ai ! [0; 1] is the low-level policy for the

execution of a macro-action; and a stochastic termination function �mi : HA
i ! [0; 1] determines

how to terminate a macro-action based on primitive-observation-action history HA
i at the low-level.

A MacDec-POMDP is thus formally defined by a tuple hI; S;A;M;
; �; T;O; Z;R;H; i, where
I; S;A;
; T;O;R;H and remain the same definitions as in the Dec-POMDP;M = �i2IMi is the
joint macro-action space over each agent’s macro-action space Mi; � = �i2I�i is the joint macro-
observation space over each agent’s macro-observation space �i; and Z = fZigi2I is a set of macro-
observation likelihood models. During execution, each agent independently selects a macro-action
mi using a high-level policy 	i : HM

i �Mi ! [0; 1], a mapping from macro-observation-action his-

2

Under review as a conference paper at ICLR 2022

tory to macro-actions, and captures a macro-observation zi 2 �i according to the macro-observation
probability function Zi(zi;mi; s

0) = P (zi j mi; s
0) when the macro-action terminates in a state s0.

The objective of solving MacDec-POMDPs with finite horizon is to find a joint high-level policy
~	 = �i2I	i that maximizes the value, V ~	(s(0)) = E

hPH�1
t=0

tr
�
s(t);~a(t)

�
j s(0); ~�; ~	

i
.

2.2 SINGLE-AGENT ACTOR-CRITIC

In single-agent reinforcement learning, the policy gradient theorem (Sutton et al., 2000) formulates a
principled way to optimize a parameterized policy �� via gradient ascent on the policy’s performance
defined as J(�) = E��

�P1
t=0

tr
�
s(t); a(t)

��
. In POMDPs, the gradient w.r.t. parameters of a

observation-action history-based policy ��(a j h) is expressed as:

r�J(�) = E��
h
r� log ��(a j h)Q�� (h; a)

i
(1)

where, h is often maintained by having a RNN in the policy network (Hausknecht & Stone, 2015).

The actor-critic framework (Konda & Tsitsiklis, 2000) learns an on-policy action-value function
Q��� (h; a) (critic) via temporal-difference (TD) learning (Sutton, 1988) to approximate the action-
value for the policy (actor) updates. Variance reduction is commonly achieved by training a history-
value function V ��w (h) and using it as a baseline (Weaver & Tao, 2001) as well as bootstrapping to
estimate the action-value. Accordingly, the actor-critic policy gradient can be written as:

r�J(�) = E��
h
r� log ��(a j h)

�
r + V ��w (h0)� V ��w (h)

�i
(2)

where, r is the immediate reward received by the agent at the corresponding timestep.

2.3 INDEPENDENT ACTOR-CRITIC

The single-agent actor-critic algorithm can be adapted to multi-agent problems in a simple way such
that each agent independently learns its own actor and critic while treating other agents as part of the
world (Foerster et al., 2018). We consider a variance reduction version of independent actor-critic
(IAC) with the policy gradient as follows:

r�iJ(�i) = E~�~�
h
r�i log ��i(ai j hi)

�
r + V

��i
wi (h0i)� V

��i
wi (hi)

�i
(3)

where, r is a shared reward over agents at every timestep. Due to other agents’ policy updating
and exploring, from any agent’s local perspective, the environment appears non-stationary which
can lead to unstable learning of the critic without convergence guarantees (Lowe et al., 2017). This
instability often prevents IAC from learning high-quality cooperative policies.

2.4 INDEPENDENT ACTOR WITH CENTRALIZED CRITIC

To address the above difficulties existing in independent learning approaches, centralized training
for decentralized execution (CTDE) provides agents with access to global information during offline
training while allowing agents to rely on only local information during online decentralized execu-
tion. Typically, the key idea of exploiting CTDE with actor-critic is to train a joint action-value
function, Q~�~�� (x;~a), as the centralized critic and use it to compute gradients w.r.t. the parameters of
each decentralized policy (Foerster et al., 2018; Lowe et al., 2017), which can be formulated as:

r�iJ(�i) = E~�~�
h
r�i log ��i(ai j hi)Q

~�~�
� (x;~a)

i
(4)

where, x represents the available centralized information (e.g., joint observation, joint observation-
action history, or the true state). Although the centralized critic in Eq. 4 can facilitate the update
of decentralized policies in the direction that optimizes global collaborative performance, it also
introduces extra variance over other agents’ actions (Lyu et al., 2021; Wang et al., 2021). Therefore,
we consider the version of independent actor with centralized critic (IACC) with a general variance
reduction trick (Foerster et al., 2018; Su et al., 2021), the policy gradient of which is:

r�iJ(�i) = E~�~�
h
r�i log ��i(ai j hi)

�
r + V

~�~�
w (x0)� V ~�~�w (x)

�i
(5)

3

Under review as a conference paper at ICLR 2022

2.5 LEARNING MACRO-ACTION-BASED DEEPQ-NETS

An essential aspect of macro-action-based multi-agent systems is the asynchronicity of macro-action
execution over agents, where agents may start and complete their own macro-actions at different
timesteps. Previous deep MARL methods for Dec-POMDPs cannot work in this case as they are all
based on primitive actions synchronously executed by agents. In recent work, macro-action-based
multi-agent deep Q-learning methods have been proposed for MacDec-POMDPs (Xiao et al., 2019).

For decentralized learning, a new buffer,Macro-Action Concurrent Experience Reply Trajectories
(Mac-CERTs), is designed for collecting each agent's macro-observation, macro-action, and re-
ward information. In this buffer, the transition experience of each agenti is represented as a tuple
hzi ; mi ; z0

i ; r c
i i , wherer c

i =
P t m i + � m i � 1

t = t m i
 t � t m i r (t) is a cumulative reward of the macro-action tak-

ing � m i timesteps to be completed from its beginning timesteptm i . During training, a mini-batch of
concurrent sequential experiences is sampled from Mac-CERTs. Each agent independently accesses
its own sampled experiences and obtains a `squeezed' trajectories by removing the transitions in the
middle of each macro-action execution, which ends up with a mini-batch of transitions when the
corresponding macro-action terminates (i.e., removing time information). Updates for each macro-
action-value functionQ� i (hi ; mi) take place only when the agent's macro-action is complete by
minimizing a TD loss over the `squeezed' data. In the centralized learning case, the objective is
to learn a joint macro-action-value functionQ� (~h; ~m). To this end, the other special buffer called
Macro-Action Joint Experience Replay Trajectories(Mac-JERTs) is developed for collecting agents'
joint transition experience at every timestep and each is represented as a tupleh~z; ~m; ~z0; ~r ci , where
~r c =

P t ~m + ~� ~m � 1
t = t ~m

 t � t ~m r t is a shared joint cumulative reward from the beginning timestept ~m of the
joint macro-action~m to its termination, de�ned as whenany agent �nishes its own macro-action,
after ~� ~m timesteps. In each training iteration, the joint macro-action-value function is optimized
over a mini-batch of `squeezed' (depending on each joint macro-action termination) sequential joint
experiences via TD learning. Other choices for what information to retain are also possible (e.g., the
whole sequence of macro-actions or including time to complete) but this squeezing procedure was
found to work well.

In our proposed macro-action-based actor-critic methods, we extend the above approaches to train
critics on-policy, and the trajectory squeezing is changed variously for each method in order to
achieve improved asynchronous macro-action-based policy updates via policy gradient.

3 APPROACH

Multi-agent deep reinforcement learning with asynchronous decision-making and macro-actions is
more challenging as it is dif�cult to determinewhento update each agent's policy andwhat in-
formation to use. Although the macro-action-based deep Q-learning methods (Xiao et al., 2019)
(in Section 2.5) give us the base to learn macro-action value functions, they do not directly extend
to the policy gradient case, particularly in the case of centralized training for decentralized execu-
tion (CTDE). In this section, we propose principled formulations of on-policy macro-action-based
multi-agent actor-critic methods for decentralized learning (Section 3.1), centralized learning (Sec-
tion 3.2), and CTDE (Section 3.3). In each case, we �rst introduce the version with a Q-value
function as the critic and then present the variance reduction version in our implementation. We use
hi to represent an agent's local macro-observation-action history, and~h to represent the joint history.

3.1 MACRO-ACTION-BASED INDEPENDENTACTOR-CRITIC (MAC-IAC)

Similar to the idea of IAC with primitive-actions (Section 2.3), a straightforward extension is to have
each agent independently optimize its own macro-action-based policy (actor) using a local macro-
action-value function (critic). Hence, we start with deriving amacro-action-based policy gradient
theoremin Appendix A.1 by incorporating the general Bellman equation for the state values of a
macro-action-based policy (Sutton et al., 1999) into thepolicy gradient theoremin MDPs (Sutton
et al., 2000), and then extend it to MacDec-POMDPs so that each agent can have the following
policy gradient w.r.t. the parameters of its macro-action-based policy	 � i (mi jhi) as:

r � i J (� i) = E~	 ~�

�
r � i log 	 � i (mi j hi)Q

	 � i
� i

(hi ; mi)
�

(6)

4

Under review as a conference paper at ICLR 2022

During training, each agent accesses to its own trajectories and squeezes them in the same way as
the decentralized case mentioned in Section 2.5 to train the criticQ

	 � i
� i

(hi ; mi) via on-policy TD
learning and perform gradient ascent using Eq. 6 to update the policy when the agent's macro-action
terminates. In our case, we train a local history value functionV

	 � i
w i (hi) as each agent's critic and

use it as a baseline to achieve variance reduction. The corresponding policy gradient is as follows:

r � i J (� i) = E~	 ~�

�
r � i log 	 � i (mi j hi)

�
r c

i + � m i V
	 � i

w i (h0
i) � V

	 � i
w i (hi)

�
�

(7)

where, the cumulative rewardr c
i is w.r.t. the execution of agenti 's macro-actionmi .

3.2 MACRO-ACTION-BASED CENTRALIZED ACTOR-CRITIC (MAC-CAC)

In the fully centralized learning case, we treat all agents as a single joint agent to learn a centralized
actor	 � (~m j ~h) with a centralized criticQ	 �

� (~h; ~m), and the policy gradient can be expressed as:

r � J (�) = E	 �

�
r � log 	 � (~m j ~h)Q	 �

� (~h; ~m)
�

(8)

Similarly, in order to achieve low variance optimization for the actor, we learn a centralized history
value functionV 	 �

w (~h) by minimizing a TD-error loss over joint trajectories that are squeezed w.r.t.
each joint macro-action termination (as long as one of the agents terminates its macro-action, intro-
duced under the centralized case in Section 2.5). Accordingly, the policy's updates are performed
when each joint macro-action is completed by ascending the following gradient:

r � J (�) = E	 �

�
r � log 	 � (~m j ~h)

�
~r c + ~� ~m V 	 �

w (~h0) � V 	 �
w (~h)

�
�

(9)

where the cumulative reward~r c is w.r.t. the execution of the joint macro-action~m.

3.3 MACRO-ACTION-BASED INDEPENDENTACTOR WITH CENTRALIZED CRITIC
(MAC-IACC)

As mentioned earlier, fully centralized learning requires perfect online communication that is often
hard to guarantee, and fully decentralized learning suffers from environmental non-stationarity due
to agents' changing policies. In order to learn better decentralized macro-action-based policies, in
this section, we propose two macro-action-based actor-critic algorithms using the CTDE paradigm.
Typically, the difference between a joint macro-action's termination from the centralized perspective
and a macro-action's termination from each agent's local perspective gives rise to a new challenge:
what kind of centralized critic to learn and how to use it to optimize decentralized policies under
such an asymmetric asynchrony from the two perspectives, which we mainly investigate below.

3.3.1 NAIVE MAC-IACC

A naive way of incorporating macro-actions into a CTDE-based actor-critic framework is to directly
adapt the idea of the primitive-action-based IACC (Section 2.4) to have a shared joint macro-action-

value functionQ
~	 ~�
� (x ; ~m) in each agent's decentralized macro-action-based policy gradient as:

r � i J (� i) = E~	 ~�

�
r � i log 	 � i (mi j hi)Q

~	 ~�
� (x ; ~m)

�
(10)

To reduce variance, with a value functionV
~	 ~�

w (x) as the centralized critic, the policy gradient
w.r.t. the parameters of each agent's high-level policy can be rewritten as the following format:

r � i J (� i) = E~	 ~�

�
r � i log 	 � i (mi j hi)

�
~r c + ~� ~m V

~	 ~�
w (x0) � V

~	 ~�
w (x)

�
�

(11)

Here, the critic is trained in the fully centralized manner described in Section 3.2 while allowing
it to access additional global information (e.g., joint macro-observation-action history, ground truth
state or both) represented by the symbolx. However, updates of each agent's policy	 � i (mi j hi)
only occur at the agent's own macro-action termination timesteps rather than depending on joint
macro-action terminations in the centralized critic training.

5

Under review as a conference paper at ICLR 2022

3.3.2 INDEPENDENTACTOR WITH INDIVIDUAL CENTRALIZED CRITIC (MAC-IAICC)

Note that naive Mac-IACC is technically incorrect. The cumulative reward~r c in Eq 11 is based
on the corresponding joint macro-action's termination that is de�ned as whenanyagent �nishes its

own macro-action, which produces two potential issues: a)~r c + ~� ~m V
~	 ~�

w (x0) may not estimate
the value of the macro-actionmi well as the reward does not depend onmi 's termination; b) from
agenti 's perspective, its policy gradient estimation may involve higher variance associated with the
asynchronous macro-action terminations of other agents.

To tackle aforementioned issues, we propose to learn a separate centralized criticV
~	 ~�

w i (x0) for each

agent via TD-learning. In this case, each TD-error for updatingV
~	 ~�

w i (x0) is computed by using the
rewardr c

i that is accumulated purely based on the execution of the agenti 's macro-actionmi . With
this TD-error estimation, each agent's decentralized macro-action-based policy gradient becomes:

r � i J (� i) = E~	 ~�

�
r � i log 	 � i (mi j hi)

�
r c

i + � m i V
~	 ~�

w i (x0) � V
~	 ~�

w i (x)
�
�

(12)

Now, from agenti 's perspective,r c
i + � m i V

~	 ~�
w i (x0) is capable of offering a more accurate value

prediction for the macro-actionmi , since both the reward,r c
i and the value functionV

~	 ~�
w i (x0) depend

on agenti 's macro-action termination. Also, unlike the case in Naive Mac-IACC, other agents'
terminations cannot lead to extra noisy estimated rewards w.r.t.mi anymore so that the variance on
policy gradient estimation gets reduced. Then, updates for both the critic and the actor occur when
the corresponding agent's macro-action ends as well as taking the advantage of information sharing.

The pseudo code and detailed trajectory squeezing process for each proposed method are presented
in Appendix A.2.

4 EXPERIMENTS

4.1 ENVIRONMENTS

We investigate the performance of our proposed algorithms over a variety of multi-agent problems
with macro-actions (Fig. 1): Box Pushing (Xiao et al., 2019), Overcooked (Wu et al., 2021), and a
larger Warehouse Tool Delivery (Xiao et al., 2019) domain. Macro-actions in domains are de�ned
by us using prior domain knowledge as they are straightforward in these tasks. We describe the key
properties of each domain here and leave more details in Appendix A.3.

(a) Box Pushing (b) Overcooked-A (c) Overcooked-B (d) Overcooked-C

(e) Warehouse-A (f) Warehouse-B (g) Warehouse-C

Figure 1: Experimental environments.

Box Pushing(Fig. 1a). Two agents aim to cooperatively push the big box to the yellow goal area
rather than pushing a small box on each own. Boxes can only be moved towards the north. Agents
have four primitive-actions:move forward, turn-left, turn-right andstay. In the macro-action-based
case, each agent has three one-step macro-actions:Turn-left, Turn-right , andStay, as well as three
multi-step macro-actions:Move-to-small-box(i)andMove-to-big-box(i)navigate the agent to the
red spot below the corresponding box and terminate with agent facing the box;Push operates the
agent to keep moving forward until arriving the world's boundary, touching the big box along or
pushing a small box to the goal. Each agent can only capture the status (empty, teammate, boundary,

6

Under review as a conference paper at ICLR 2022

small or big box) of the cell in front of it as one macro-observation. When any box is pushed to the
goal, the team receives a terminal reward (+300 for the big box and+20 for each small box). A
penalty� 10 is issued when any agent hits the boundary or pushes the big box on its own.

Figure 2: Lettuce-tomato salad recipe.

Overcooked(Fig. 1b-d). Two agents must learn to co-
operatively prepare a lettuce-tomato salad and deliver it
to the `star' cell as soon as possible. The challenge is
that the recipe of making a lettuce-tomato salad (Fig. 2)
is unknown to agents. Agents have to learn the correct
procedure in terms of picking up raw vegetables, chop-
ping, and merging in a plate before delivering. With primitive-actions (up, down, left, right, and
stay), agents can move around and achieve picking, placing, chopping and delivering by moving
against the corresponding cell. The macro-action set consists of: a) �ve one-step macro-actions that
are same as the primitive ones; b)Chop, takes three timesteps to cut a raw vegetable into pieces; c)
long-term navigation macro-actions:Get-Lettuce, Get-Tomato, Get-Plate-1/2, Go-Cut-Board-1/2
andDeliver, which move an agent to the location of the corresponding object with various possible
terminal effects (e.g., holding a vegetable in hand or placing a chopped vegetable in a plate); d)Go-
Counter, navigates an agent to one of the middle counter cells as well as placing or picking an object
there. Full details of macro-actions are listed in Appendix A.3.2. Agents only observe thepositions
andstatusof the entities within a5� 5 egocentric view �eld. Reward mechanism involves:+10 for
chopping a vegetable into pieces,+200 terminal reward for delivering a lettuce-tomato salad,� 5 for
delivering any wrong entity that is then reset to the original position, and� 0:1 for every timestep.

Warehouse Tool Delivery(Fig. 1e-g). In each workshop (e.g., W-0), a human is working on an
assembly task (involving 4 sub-tasks that each takes a number of timesteps to be �nished) and
requires three particular tools for future sub-tasks to continue. A arm robot (grey) with the duty of
�nding tools for each human on the table (brown) and passing them to mobile robots (green, blue
and yellow) who are responsible for delivering tools to humans. Note that, the correct tools needed
by each human are unknown to robots, which has to be learned during training in order to perform
timely delivery without letting humans wait there. We make the original problem more challenging
by: adding one more human into the domain (Fig. 1e); increasing the number of both agents and
humans to further examine the scalability of our methods and the effectiveness of Mac-IAICC on
handling more intricate asynchronous terminations over agents (Fig. 1f); and including one faster
human (orange) to check if agents can learn a priority for assisting him (Fig. 1g).

Mobile robots move around in a certain speed in the continuous space by running one of the fol-
lowing macro-actions:Go-W(i), moves to the waypoint (red) at a workshop;Go-TR, goes to the
waypoint at the right side of the tool room; andGet-Tool, navigates to a pre-allocated waypoint
besides the arm robot and waits there until either receiving a tool or 10 timesteps have passed. Ap-
plicable macro-actions for the arm robot involves:Search-Tool(i)lasts 6 timesteps to �nd the tool
i and place it in a staging area (containing at most two tools), otherwise freezes the robot for the
same amount of time when the area is fully occupied;Pass-to-M(i)costs 4 timesteps to pass a tool
to a mobile robot from the staging area in a �rst-in-�rst-out order; andWait-M, takes 1 timestep to
wait for mobile robots. Arm robot only observes thetypeof each tool in the staging area andwhich
mobile robotis waiting beside. Mobile robot always detects itspositionand thetypeof each tool
carried by itself, while observes thenumberof tools in the staging area or thesub-taska human is
working on only when locating at the tool room or the workshop respectively. The team receives:
+100 for sending a correct tool to a human in time,� 20 for a delayed delivery,� 10 for the arm
robot runningPass-to-M(i)without mobile roboti being next to it, and� 1 every timestep.

4.2 EXPERIMENTAL IMPLEMENTATION

All methods apply the same neural network architecture for both actor and critic, which consists of
two fully connected (FC) layers with Leaky-Relu activation function, one GRU layer (Cho et al.,
2014) and one more FC layer followed by an output layer. In all methods, decentralized actors and
decentralized critics have 32 units on FC and GRU layers, while the centralized have 64 units on the
GRU layer due to dealing with larger joint macro-observation and macro-action spaces. Exploration
is deployed by applying a linear decaying� -soft policy (Foerster et al., 2018). Hyper-parameter tun-
ing uses grid search over a wide range of candidates (refer to Appendix A.5). The performance met-
ric of one training trial is a mean discounted return measured by periodically (every 100 episodes)

7

Under review as a conference paper at ICLR 2022

Figure 3: Decentralized learning and centralized learning with macro-actions vs primitive-actions.

evaluating the learned policies over 10 testing episodes. We plot the averaged performance of each
method over 20 independent trials with one standard error and smooth the curves over 10 neighbors.
The return of a benchmark policy created by using prior domain knowledge is also involved.

5 RESULTS AND DISCUSSIONS

Advantages of learning with macro-actions. We �rst present a comparison of our macro-action-
based actor-critic methods against the primitive-action-based in fully decentralized and fully cen-
tralized cases. We consider various grid world sizes of Box Pushing domain (top row in Fig. 3,
where the benchmark policy's return is the optima) and three Overcooked scenarios (bottom row
in Fig. 3). The results show the signi�cant outperformance of using macro-actions over primitive-
actions. More concretely, in Box Pushing domain, reasoning about primitive movements at every
timestep with such a limited observation setup makes this problem intractable to agents so that they
cannot learn any good behaviors other than to keep moving around. The necessary cooperation in
this task is not required in the low-level navigation but at the high-level (e.g., go to the big box and
push) so that, with the macro-actions, Mac-CAC reaches near-optimal performance enabling agents
to push the big box together. Unlike the centralized critic conditioning on joint information, even
in the macro-action case, it is hard for each agent's decentralized critic to correctly measure the re-
sponsibility for a penalty caused by teammate pushing the big box alone. Mac-IAC thus converges
to a local-optima of pushing two small boxes in order to avoid getting the penalty.

In Overcooked domain, an ef�cient solution requires agents to asynchronously work on independent
subtasks (e.g., one agent goes to get plate while the other agent chops vegetables), which explains
why Mac-IAC can solve the task well in cases, A and B. This also indicates that using local infor-
mation is enough for agents to achieve high-quality behaviors. As a result, Mac-CAC learns slower
since it must �gure out the redundant part of joint information in the larger joint macro-level history
and action spaces and it sometimes leads to a local optimum. However, in case C, the challenge
from the decentralized perspective is that agents cannot observe the status of the left side due to the
limited view, and there is no immediate reward caused by the agent's action at the right side. The
bene�t of centralized learning emerges in this case so that Mac-CAC outperforms Mac-IAC. The
primitive-action-based methods begin to learn, but perform poorly in such long-horizon tasks.

Advantages of having individual centralized critics. Fig. 4 shows the evaluations of our macro-
action-based multi-agent actor-critic methods in all three domains, where we mainly investigate the
superiority of Mac-IAICC over Naive Mac-IACC on learning decentralized policies. As each agent's
observation is extremely limited in Box Pushing, we allow centralized critics in both Mac-IAICC
and Naive Mac-IACC to access to the state (agents' poses and boxes' positions), but joint macro-
observation-action history in another two domains. In the Box Pushing task (Fig. 4's top row),
Mac-IAICC and Naive Mac-IACC both show the quality of decentralized policies. However, with
the growing grid world size, Naive Mac-IACC loses its value while Mac-IAICC keeps its perfor-
mance near the centralized one. This is because, from each agent's perspective, the bigger the world

8

	Introduction
	Background
	Dec-POMDPs and MacDec-POMDPs
	Single-Agent Actor-Critic
	Independent Actor-Critic
	Independent Actor with Centralized Critic
	Learning Macro-Action-Based Deep Q-Nets

	Approach
	Macro-Action-Based Independent Actor-Critic (Mac-IAC)
	Macro-Action-Based Centralized Actor-Critic (Mac-CAC)
	Macro-Action-Based Independent Actor with Centralized Critic (Mac-IACC)
	Naive Mac-IACC
	Independent Actor with Individual Centralized Critic (Mac-IAICC)

	Experiments
	Environments
	Experimental Implementation

	Results and Discussions
	Conclusion
	Appendix
	Macro-Action-Based Policy Gradient Theorem
	Algorithm
	Mac-IAC
	Mac-CAC
	Naive Mac-IACC
	Mac-IAICC

	Domain Description and Results
	Box Pushing
	Overcooked
	Warehouse Tool Delivery

	Behavior Visualization
	Box Pushing
	Overcooked
	Warehouse Tool Delivery

	Hyper-parameters
	Box Pushing
	Overcooked
	Warehouse Tool Delivery

