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Abstract

Determining genetic variant effects on molecular phenotypes like gene expression is a task of
paramount importance to medical genetics. DNA convolutional neural networks (CNNs) attain
state-of-the-art performance at predicting variant effects on gene regulation. However, most
applications of such models focus on single nucleotide polymorphisms (SNPs), as technical chal-
lenges limit their application to insertions and deletions (indels). Sequence shifts from indels
introduce technical variance in deep CNNs through misalignment of pooling blocks and output
boundaries, creating artificially inflated variant effect scores compared to SNPs and confounding
their interpretation. In this work, we demonstrate this technical variance in model predictions
and present two strategies based on data augmentation with sequence shifts that reduce it.
Applied to the state-of-the-art Borzoi model, our stitching approach improves indel eQTL clas-
sification accuracy across GTEx tissues. Furthermore, we demonstrate these techniques and
observe compelling eQTL concordance for larger structural variants and tandem repeats. We
additionally introduce in silico deletion (ISD) as an interpretation technique and validate it
using MPRA data, demonstrating concordance between predicted and experimental measure-
ments for deletion effects. Our strategies expand the utility of regulatory sequence machine
learning for studying the full spectrum of noncoding genetic variation in human development
and disease.

1 Introduction

Dissecting and precisely understanding the contribution of DNA sequence to cell type-specific reg-
ulatory activity is a key ongoing challenge of genome research. Deep learning methods have been
successfully applied across diverse regulatory stages, achieving state-of-the-art accuracy at predict-
ing various measurements on unseen DNA sequences, including gene expression [1, 2], RNA splicing
[3, 4], alternative polyadenylation [5, 2], transcription initiation [6, 7, 8], RNA degradation rate
[9], transcription factor (TF) binding [10, 11], and 3D genome contacts [12, 13]. Deciphering the
consequences of inherited and acquired mutations is a particularly important application of such
methods. Neural networks are capable of rapidly predicting the regulatory effects of individual
variants via comparing reference versus alternative sequence predictions. These variant effect pre-
dictions may be used to study rare and de novo variants in disease [14] and prioritize putative
causal variants from GWAS [15].

Most genetic variant analyses thus far have focused on substitution single nucleotide polymor-
phisms (SNPs), while insertions and deletions (indels) have received less attention. However, small
indels make up about 24% of common variants in the gnomAD v4 database [16] and are equally
enriched for heritability compared to SNPs [17]. Thus, ignoring indels in genetic analyses risks
missing valuable insights and incorrectly prioritizing SNPs.

In our experience developing regulatory sequence deep learning models, we find that estimating
indel effects has technical challenges. These models take a fixed length one-hot-encoded nucleotide
sequence as input. When an indel is introduced, the sequence shifts on at least one side of the
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alteration. As we will show below, these shifts produce undesirable technical variance (i.e. non-
biological) due to changing boundaries of the predicted output and convolution blocks. In this
work, we explain this problem and measure its influence on estimated indel effect scores. Although
technical variance in indel effect estimation cannot be completely absolved in our current framework,
we propose and evaluate techniques to alleviate it. We further demonstrate how these strategies
expand the applicability of a large multi-task regulatory sequence model Borzoi, an extension of
the Enformer model [1] to RNA-seq, to a broader class of tasks involving comparisons between
inserted or deleted alternative alleles.

2 Results

2.1 Boundary shifts introduce technical variance in DNA convolutional net-
works

Deep neural networks for DNA sequences usually consist of repeated blocks that include convolu-
tion, normalization, activation, and pooling operations. The pooling operation typically computes
an unparameterized function of a local window, e.g. taking the channel-wise maximum. Input
sequence shifts (that are not multiples of the window size) change pooling window boundaries, pro-
ducing different values for the downstream computations (Fig. 1A). The model outputs, whether
they represent a single prediction or a sequence of predictions, correspond to specific boundaries,
which also shift.

We analyzed such shifts using Borzoi, a recent model trained to predict RNA-seq, CAGE,
DNase/ATAC-seq, and ChIP-seq coverage in 32 bp bins across a 524 kb sequence. A 1 nt shift of
the sequence containing the WDR77 gene exemplifies the problem, producing a 1.04x fold change in
predicted blood RNA-seq coverage, despite representing the same DNA sequence (Fig. 1B). Many
expression QTLs (eQTLs) have effect sizes within this range, highlighting that distinguishing a
true indel eQTL from this background shift variance would be difficult. Larger indel shifts would
be expected to produce even more substantial changes to the model predictions, interfering with
the downstream interpretation of model scores.

2.2 Indel effect predictions skew towards greater magnitudes

To predict genetic variant effects using deep learning, typically we center the input sequence on the
variant. Insertions and deletions inevitably introduce input sequence shifts like the one above. A
baseline insertion procedure might insert the additional nucleotides in place, shift the adjacent right-
side nucleotides rightward, and trim the far right nucleotides to maintain a fixed length (Fig. 2A).
A baseline deletion procedure might delete the nucleotide, shift the adjacent right-side nucleotides
leftward, and pad the far right of the sequence to maintain a fixed length. Both scenarios produce
misaligned nucleotides (and thus pooling and output boundaries) for half the sequence. In addition
to the shifts, insertions lose some sequence outside of the input region, and deletions add padded
null values (or new reference sequence) at the edge. These factors lead to non-biological technical
variance in indel effect scores.

This technical variance depends on the exact scoring metric used to compare the reference
and alternative allele predictions. Regulatory sequence models can be broadly classified into two
categories. One, models that predict a single value (such as the presence or absence of a peak)
typically score variants by computing the difference or log fold change between reference and al-
ternative allele predictions. Two, models that predict a sequence of values (such as aligned read
coverage) across the input sequence compute one of several statistics to compare the pair of vectors
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Figure 1: Sequence shift effect on pooling boundaries and predictions. A) Shifting an example
sequence before a max pooling block affects the boundaries of the operation. For a width 2 max
pool, the 2 nt shift output is similar, but with all values shifted by one position. However, the 1 nt
shift changes some output values because the max operation is computed between different adjacent
pairs. B) Shifted sequences may produce considerably different predictions. For the WDR77 gene
sequence, Borzoi predicts blood RNA-seq coverage with fold change of 1.04 upon shifting the
sequence 1 nt to the left. Coverage from three GTEx:blood RNA-seq tracks were averaged for the
calculation and plot.

and collapse the spatial length axis. These include the sum of the difference or log fold change
at each position in the predicted vectors (SUM), L2 norm, or Kullback-Leibler divergence (after
normalization) [11]. Here, we focus on SUM scores, which maintain the prediction sign, and L2
norm, which is unsigned, but demonstrates greater sensitivity to complex and subtle effects [2].

To estimate the technical variance in indel scoring, we scored a set of 3,000 SNPs and 3,000
common indels (minor allele frequency ≥ 0.05) in the gnomAD v4 database [16] with Borzoi (see
Methods). We focused on 1 bp indels, for which we expect the true effect size distributions to be
similar, as one nucleotide is affected in both the indels and SNPs. Instead, the predicted variant
effect distributions drastically differed between SNPs and indels for both the SUM and L2 scores
(Fig. 2B). While both the SNP and indel SUM scores are centered at zero, the indel distribution
has significantly greater variance (“indel-default” in Fig. 2B, σ2 = 77.07, vs. SNP σ2 = 0.31).
The SNP L2 distribution has a roughly exponential shape, peaked near zero, indicating that most
variants alter the coverage track predictions negligibly, but some can have large effects. In contrast,
the indel L2 distribution shifts to greater magnitudes (µ = 1.34 for “indel-default” in Fig. 2B vs.
µ = 0.05 for SNP), reflecting the technical variation from the factors described above. This makes
joint analysis in which SNP and indel effect predictions must be compared challenging because even
nonfunctional indels have greater magnitude scores than most SNPs.

2.3 Shift augmentation strategies alleviate variance

Practitioners have at least two equally valid options when introducing indel alleles into the reference
sequence. Considering an insertion, one can exactly match nucleotides to the left of the variant,
insert the alternative allele, shift the nucleotides to the right of the variant, and truncate at the
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input sequence length, removing nucleotides from the right edge. Alternatively, one can flip this
recipe. In other words, one can introduce the insertion to the right or left of the sequence center.
Importantly, the first option has exactly matched pooling block and output boundaries for all
nucleotides to the left of the variant (referred to as “left-matched”), and the second option has
exactly matched pooling block and output boundaries for all nucleotides to the right of the variant
(“right-matched”, Fig. 2A). We will exploit this property to derive variance-minimization strategies.
For insertions larger than 1 bp, additional options emerge where one inserts some nucleotides on the
left and some on the right, but these options have shifted boundaries on both sides of the variant,
making them less interesting for our strategies. Deletions can be handled analogously.

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2025. ; https://doi.org/10.1101/2025.04.07.647656doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.07.647656
http://creativecommons.org/licenses/by-nc-nd/4.0/


B

chr6:138,403,284-138,422,420

ISM

Reference allele

Alternative allele

C
o

u
n

t
C

o
u

n
t

ISM

ELF2
C

T

G

A

2

A

G

C

3

A

G
C

4

A
C

5

G

6

G

7

A

8

A

9

C

A

G
G

A

C
T
T

C

A
G
T

C
A

G

Pooled GTEx Testis RNA-seq 
(n

ref 
= 39, n

alt 
= 9)

Variant

Reference

Alternative

Borzoi stitch (GTEx RNA:testis)

chr6:138,404,180 

C>CG,    = -0.936, 

PIP = 0.99

Sum
exons

(ref) = 484.7
Sum

exons
(alt) = 363.2

alt / ref = 0.75

HEBP2

ENST00000448741.5
ENST00000607197.6
ENST00000367697.7

GENCODE v41

D

C GTEx indel eQTL classification

0.5 0.6 0.7 0.8 0.9

AUROC Default

0.5

0.6

0.7

0.8

0.9

A
U

R
O

C
 A

v
e

ra
g

e

p = 3.02e-05
Mean = 0.702

Mean = 0.731

0.5 0.6 0.7 0.8 0.9

AUROC Average

0.5

0.6

0.7

0.8

0.9

A
U

R
O

C
 S

ti
tc

h

p = 1.49e-08
Mean = 0.731

Mean = 0.796

AUROC Basset-default

A
U

R
O

C
 B

a
s
s
e

t-
a

v
e

ra
g

e

0.5 0.6 0.7 0.8 0.9

0.5

0.6

0.7

0.8

0.9

p = 0.05
Mean = 0.646

Mean = 0.666

L2 score

P
ro

b
a

b
ili

ty

SUM score

0 1 2

0.0

0.2

0.4

0.6

0.8

−20 −10 0 10 20

0.0

0.2

0.4

0.6

0.8
SNP

Indel-stitch

Indel-default

Indel-average

Reference

Insertion

+Stitch

+Average

matched
left

matched
right

score(       )

score(       )

score(      )

matched
left

matched
right

A

Figure 2: Indel shift augmentation improves effect predictions. A) Insertion strategy depiction.
Baseline procedures might match the left side, misalign the right side, and push out some edge
sequence on the right, or vice versa. Our “average” strategy averages the scores for the “left-
matched” and “right-matched” procedures. Our stitch strategy concatenates predictions from
output bins that remain matched in the left and the right shift procedures, then computes the
score for the resulting vector. (Continues on the next page)

As demonstrated above, shifted boundaries create technical variance. We therefore hypothesized
that regions with matched boundaries could be exploited to alleviate variance. Thus, we compute
predictions for the reference sequence and then both the left-matched and right-matched alternative
sequences. Our first strategy acknowledges the inclusion of misaligned boundary regions, but takes
the average of both the left and right shifts to mitigate the effect of newly inserted or deleted
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Figure 2: (Continued) B) L2 and SUM score distributions for N=3,000 common SNPs and N=3,000
common 1 bp indels with the default (left-matched), average, and stitch strategies. We created
a single variant effect score by averaging across all Borzoi output tracks. C) Shift augmentation
strategies (average and stitch) improve fine-mapped indel classification performance for random
forest classifiers trained on both Borzoi and Basset outputs on 1,168 unique fine-mapped GTEx
eQTLs. Each point in the scatterplot represents a GTEx tissue. D) Predicted testis RNA-seq
coverage for chr6:138,404,180 C>CG eQTL variant in the promoter of the HEBP2 gene, and
measured RNA-seq counts from testis samples pooled over n=39 reference and n=9 heterozygous
variant individuals. The eQTL has a PIP=0.99 and βposterior = −0.936. In silico saturation
mutagenesis (ISM) maps for the reference and alternative alleles reveal the introduction of a new
ETS domain motif with repressive influence.

nucleotides (“average”). Our second strategy ignores predictions in shifted regions by stitching
together left side predictions from the left-matched prediction and right side predictions from the
right-matched prediction (“stitch”) (Fig. 2A). The “stitch” recipe is only applicable for models
with sequential outputs; models with single value outputs (e.g. peak probabilities) can only use
the “average” recipe. For insertions, stitching of the alternative sequences with left- and right-
matched shifts should be performed. For deletions, stitching the alternative sequence double counts
nucleotides adjacent to the reference, and one should instead introduce shifts and stitch the reference
sequence, as if the reference were an insertion relative to the alternative sequence. See the Methods
for a more verbose explanation and Supplem. Fig. S1 for examples.

We assessed these strategies on the common SNPs and indels studied above. For tests yielding
extremely small P-values (p ≤ 1× 10−9), we reported a lower bound of 1× 10−9 to avoid numerical
precision issues while still indicating the high level of statistical significance. Indels scored with
the average strategy have a slightly lower SUM score variance compared to the default strategy
(trimmed Levene’s test p ≤ 1×10−9). Their L2 score distribution is similar to the default strategy,
still varying to larger values relative to the SNP L2 score distribution. The stitch strategy mitigated
some of the SUM score variance (default vs. stitch variance trimmed Levene’s test p ≤ 1 × 10−9)
and significantly shifted the L2 score distribution towards smaller values compared to the default
strategy (two-sided Mann-Whitney U test p ≤ 1 × 10−9). However, both still differ visibly and
significantly from the SNP score distributions (SUM: trimmed Levene’s test p ≤ 1 × 10−9; L2:
two-sided Mann-Whitney U test p ≤ 1×10−9). These observations highlight the importance of the
misaligned sequence for indel scoring and point to some improvement alleviating technical variance.

2.4 Shift augmentation strategies improves indel eQTL benchmarking

To evaluate the indel scoring strategies, we measured their ability to discriminate fine-mapped indel
eQTLs from a negative set of variants. We constructed a benchmark task using 1,168 small indels
(≤ 8 nt) fine-mapped to have > 0.9 posterior probability of being causal in some tissue in the
GTEx project and selected negative indels that match the inserted/deleted nucleotides but lack
evidence of being a causal eQTL (Methods). We aimed to predict whether a given indel is a causal
eQTL based on Borzoi variant effect predictions using the different scoring strategies provided to
a random forest classifier that considers all output tracks. For SNPs, L2 scores outperform SUM
scores for this task [2], so we focused on indel L2 scores.

First, we trained tissue-wise classifiers on the left-matched baseline, achieving a mean AUROC
of 0.702 across tissues (Fig. 2C). Averaging the left- and right-matched scores, despite still allowing
for mis-alignment, increases causal eQTL classification accuracy to AUROC 0.731. By avoiding
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Figure 3: Shift augmentation stitching improves structural variant effect predictions. A) SV eQTL
classification performance for random forest classifiers trained on Borzoi outputs for 9,832 GTEx
eQTL SVs using the default left-matched versus stitching strategies. Each point in the scatterplot
represents a GTEx tissue. B) Predicted blood RNA-seq coverage for the reference sequence and
alternative alleles for chr6:41,880,061 distal SNP (top) and chr6:41,897,089-41,897,626 (bottom)
distal deletion. Both variants are associated with mean corpuscular hemoglobin and mean corpus-
cular volume, but they are in perfect LD (r2 = 1). C) ISM of the reference (top) and alternative
deletion (bottom) alleles for the chr6:41,897,089-41,897,626 deletion variant.

mis-alignment, stitching the left and right shift predictions further improved the mean AUROC to
0.796.

Fig 2D displays an example fine-mapped insertion eQTL. chr6:138,404,180 C>CG attenuates
expression of the HEBP2 gene in testis (βposterior = −0.936, PIP= 0.99), which is correctly captured
by the Borzoi prediction. In silico mutagenesis (ISM) revealed the insertion creates a new TF motif
that best matches ELF2 in the CISBP2 database [18], but may be bound by similar ETS-domain
TFs such as ETV6 or ELF4, for which repression has been reported [19, 20].

While models like Borzoi that predict sequential coverage vectors are especially sensitive to indel
boundary shifts, models that predict single values are also affected by indel shifts via their pooling
blocks. We additionally benchmarked the DNase peak prediction model Basset against the same
eQTL classification task (Methods) [21]. For Basset, the baseline left-matched classifiers achieved
AUROC 0.646, and the average shift strategy improved Basset classifiers to mean AUROC 0.666
(Fig. 2C).

We evaluated how well we can predict the effect of indels on the target gene expression, us-
ing effect size estimates from the same fine-mapped GTEx eQTL variants. Default SUM score
predictions for the tissue-matched tracks achieved an unimpressive Spearman ρ = 0.052. The av-
erage strategy increases performance to ρ = 0.078, and the stitch strategy further increases it to
ρ = 0.162. Altogether, these results highlight that alleviating the technical noise of indel scoring
improves concordance with eQTL statistics.

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2025. ; https://doi.org/10.1101/2025.04.07.647656doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.07.647656
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.5 Shift augmentation stitching extends to larger structural variation

Structural variation (SV) refers to larger insertions, deletions, inversions, and other more complex
differences that require more careful genotyping strategies. We hypothesized that our shift mitiga-
tion strategies would extend to large indel SVs, too, and enable meaningful Borzoi predictions for
these variants. We constructed a benchmark from 9,832 unique marginally associated SV eQTLs
from GTEx [22] and a matched set of negative variants. For each positive SV, we sampled a neg-
ative non-eQTL SV with closest matched size and at least one expressed gene exon within the
model input window (Methods). Despite the noisy positive set due to the absence of fine mapping,
the model is able to distinguish between the positive set of eQTL SVs and the negatives with an
AUROC 0.588 with the default strategy. Again, we observe that minimizing misaligned bins with
the stitch strategy improves AUROC to 0.603 (Fig. 3A). Fig. 3B shows an example of two variants
(one SNP, one SV deletion) in perfect LD (r2 = 1.0) [23] discovered as an eQTL for CCND3 in
GTEX whole blood and associated with blood traits (mean corpuscular hemoglobin and mean cor-
puscular volume). Only the SV, a 537 nt deletion downstream of the gene, located 44 kb upstream
from its TSS, is predicted by Borzoi to alter CCND3 RNA-seq. ISM attribution scores of the
reference allele show multiple regulatory motifs with established relevance in blood cells: ZNF560,
POU3F2/POU3F3/POU3F4, and SNAI2 (Fig. 3C).

2.6 Short tandem repeat variation effect prediction

Short tandem repeats (STRs) are prevalent in the human genome and often implicated in gene ex-
pression changes and disease [24]. However, tandem repeat variation is often excluded from genetic
analyses due to bioinformatic challenges of genotyping such variants. As sequencing technologies
and bioinformatic algorithms improve, it will be easier to estimate the contribution of tandem re-
peat variation to heritability of various traits. Meanwhile, it is useful to have a method to predict
the effect of tandem repeat variation on expression. We assessed the ability of Borzoi with shift
augmentation stitching to predict the effect of STRs with variable length on nearby gene expression
using a set of fine-mapped STR eQTLs called from GTEx data [24]. Fig. 4A shows an example
of predicted NOP56 gene expression response to STR variation. The true effect size β in GTEx
muscle has the same direction as the predicted slope βpred from the ordinary least squares (OLS)
regression fit, where we assumed linear dependency between allele number and log2 fold change
(FC) of the allele expression relative to repeat number. We utilized the fine-mapped eQTL STRs
from [24] with different PIP thresholds to ask whether variants with higher PIP, which are more
likely to be causal, have more concordant prediction scores. For each likely causal STR eQTL, we
fit an OLS on the dependency of the log2FC of a given gene expression versus variable STR count,
filtered for regressions with a coefficient t-test p < 0.05, and compared the resulting slope βpred
with βtrue (Methods). 36.1% (tissue-specific) and 36.6% (tissue-average) of the variants passed the
significance test of the regression fit. Both the accuracy of predicted β direction and Spearman cor-
relation of βpred with βtrue improve with higher PIP cutoff values (Fig. 4B,C). Taking the average
of all GTEx RNA-seq tracks produced more concordant accuracies than matching tissue-specific
tracks, perhaps because it helps denoise the predicted effect.

2.7 In silico predictions of deletion effects are concordant with MPRA mea-
surements

In silico mutagenesis (ISM) has emerged as a keystone regulatory sequence interpretation tech-
nique to identify the influential TF motifs and other sequence factors driving model predictions.
Typical ISM mutates every reference nucleotide to its three alternatives, computing a prediction for
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Figure 4: Shift augmentation stitching enables short tandem repeat variation effect prediction.
A) Borzoi predicts NOP56 expression is modulated by the expansion of short tandem motif
(CCTGGG)n. log2FC of gene expression predicted in GTEx muscle tissue is shown on the y-
axis with respect to the reference allele gene expression. The GRCh37/hg19 reference has 3 full
repeats. B) Accuracy of sign prediction of the variable tandem repeat effect on gene expression
β as a function of fine-mapped PIP threshold. Accuracy was computed using 1,000 bootstrap
resampling experiments, with the standard deviation shown in the plot. For each PIP cutoff, we
computed the accuracy using either predictions derived from averaging across all GTEx RNA-seq
tracks or matching tissue-specific tracks only. C) Spearman correlation of predicted variable STR
effect on gene expression β as a function of fine-mapped PIP threshold. Spearman ρ was computed
using 1,000 bootstrap resampling experiments, with the standard deviation shown in the plot. For
the three PIP thresholds, the numbers of variants with statistically significant (p < 0.05) regression
fits are as follows: PIP=0.5: N=153 (tissue-average), N=179 (tissue-specific); PIP=0.75: N=69
(tissue-average), N=79 (tissue-specific).

each, and scoring the reference nucleotide based on the reference prediction relative to the average
alternative. In silico deletion (ISD) of reference nucleotides could be an alternative to the typical
ISM technique. We aimed to evaluate how well ISD works in comparison with ISM. Kircher et
al. performed saturation mutagenesis of a set of disease-associated gene regulatory elements using
massively parallel reporter assays (MPRA) [25]. Although they intended and focused on substi-
tution mutations, error-prone PCR in the experimental protocol occasionally introduced deletions
instead, which the authors measured and recorded. We sought to evaluate Borzoi ISD using a
SUM score with shift augmentation stitching against these deletion measurements, as well as the
substitution measurements and Borzoi ISM. We performed stitching of the reference sequence, as
described above (visualization in Supplem. Fig. S1), requiring three forward passes through the
model for this proof of concept; different designs could further reduce the computational expense
if large-scale analysis were desired.

We selected two promoters with the highest correlation between the aggregated experimen-
tal substitution and deletion measurements for the same nucleotide positions: HBG1 and LDLR
(Pearson r = 0.502, 0.458 respectively). For substitutions, Borzoi ISM scores are concordant with
the experimental substitution measurements (Fig. 5A,C,G,I) with Pearson r = 0.731 and 0.569
for HBG1 and LDLR. Borzoi deletion scores are also concordant, albeit at lower levels, with both
the experimental deletion (Pearson r = 0.219, 0.394; Fig. 5B,D,H,J) and substitution measure-
ments (Pearson r = 0.284, 0.376; Fig. 5E,K). Borzoi substitution and deletion scores are correlated
(Pearson r = 0.298, 0.609, Fig. 5F,L), with several interesting differences. For HBG1, the primary
TF motifs emerge from both methods and the lower correlation is driven more by the flanking nu-
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Figure 5: In silico nucleotide deletions are concordant with MPRA measurements. A), G) Compar-
ison of MPRA saturation mutagenesis scores with Borzoi-derived ISM scores for HBG1 and LDLR
gene promoters. The nucleotide height quantifies the aggregate score for the reference nucleotide
relative to the three alternative substitutions. B), H) Comparison of MPRA deletion scores with
Borzoi-derived deletion scores for HBG1 and LDLR gene promoters. The many missing experimen-
tal nucleotide deletions are shown in gray and excluded from the scatterplots. C), I) Scatterplots
and correlations of Borzoi ISM scores with MPRA substitution measurements. D), J) Scatterplots
and correlations of Borzoi deletion scores with MPRA deletion measurements. E), K) Scatterplots
and correlations of Borzoi deletion scores with MPRA substitution measurements. F), L) Scatter-
plots and correlations of Borzoi deletion scores with Borzoi ISM scores.
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cleotides. On the right, the T in the center of the G-rich motif is not sensitive to substitution, but
Borzoi predicts its very sensitive to deletion, indicating that spacing may be critical. For LDLR,
ISD misses an ATGACGT motif on the right that substitution predictions highlight (via Borzoi
here and Enformer, too [1]), but the experimental data has no support for this motif, and it does
not match anything in common TF databases well. For the majority of other tested promoters, we
observe similar trends (Supplem. Fig. S2). This suggests that in silico deletion mutagenesis is a
valid approach to probe regulatory sequence function.

3 Conclusions and future work

Dissecting the influence of genetic mutations on genes and their expression is a key task in genomics
to harness and exploit the abundant genetic associations with traits. DNA sequence models like
Enformer and Borzoi can predict genetic variant effects across assays and cell types to prioritize
variants that affect transcript structure and expression level. However, indels are often omitted
from variant prioritization analyses because of technical challenges. In this work, we demonstrated
the presence of technical variance introduced by sequence shifts in sequence convolutional neural
networks, exemplified by the Borzoi model. Even minor sequence shifts lead to misalignment of
pooling block and output bin windows, resulting in prediction differences. In this work, we proposed
and evaluated two shift mitigation strategies to reduce the influence of sequence shifts on indel effect
prediction scores.

For models like Borzoi with sequential predictions in bins across the length of the sequence,
the variance introduced by indels is best alleviated with a stitching strategy in which predictions
from only the aligned regions of the sequence are extracted and concatenated to reconstruct the
full prediction. To evaluate all strategies, we studied fine-mapped indel eQTLs from the GTEx
project. We found that averaging the predictions from the left- and right-matched alternative al-
lele sequences improves eQTL classification accuracy for both Borzoi and a single value prediction
model, Basset. Stitching further improves accuracy for Borzoi, and represents our recommended
strategy for future genetic analysis using this model. We further demonstrated the stitching strat-
egy on larger structural variant and short tandem repeat eQTLs from GTEx, observing useful
predictions on these more complex variants.

Shift augmentation stitching comes at the expense of excluding predictions in bins that over-
lap the indel sequence itself, which may not be appropriate in some cases. For example, as the
indel size grows to be very large, predictions overlapping entire regulatory elements and/or exons
may be disregarded. In this scenario, the included output bins will very likely also reflect sub-
stantial differences between the alternative and reference predictions, generating a large variant
score anyway. Further, we expect that researchers will lean more heavily on prediction visualiza-
tion strategies, rather than generic scores, as the indel size considered grows very large and the
likelihood of molecular consequences saturates to certainty.

Despite a substantial reduction in the prediction variance introduced by indels with the stitching
strategy, the distribution of predicted indel scores still diverges from the SNP score distribution. For
applications that require fully matched distributions, additional techniques like quantile normal-
ization, could be used. However, this may be counterproductive for larger indels, which likely have
effect distributions reflecting larger influence. Fully alleviating the technical variance introduced by
indels may require redesigning convolutional network architectures to remove all boundaries, e.g.
by avoiding pooling and striding blocks and predicting at nucleotide resolution. The evaluations
described here may be used to aid this architecture design evolution.

We additionally studied model sequence interpretation via nucleotide attribution scores derived
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from single nucleotide deletions, instead of the more common nucleotide substitutions of in silico
mutagenesis (ISM) analysis. Regulatory sequence saturation deletion scores were concordant with
experimental MPRA measurements for several human promoters with high quality data, and offered
an intriguing alternative perspective for these regions. Thus, in silico deletion (ISD) analysis
represents another option for ISM in cases, where deletions may represent the mutational process
with higher fidelity.

In conclusion, our proposed strategies expand the applicability of regulatory sequence deep
learning models to indel variants from small to large, including tandem repeats, enabling the
comprehensive analysis of a wider range of genetic variation.
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5 Methods

5.1 DNA sequence deep learning architectures

Regulatory sequence models, such as Borzoi and Enformer, predict continuous coverage tracks from
input DNA sequence of length Lin. These architectures can be generalised as f(X) = Y , where
XLin×4 ∈ {0, 1} represents one-hot coded DNA sequence, and Y Lout×Ntracks ∈ [0,+∞), where
Lin = 524, 288;Lout = 16, 384;Ntracks = 7, 611 for Borzoi. Alternatively, some architectures, such
as Basset, predict a single value instead of a sequence, i.e. Lout = 1. The core elements of the
architecture are convolutional blocks, interleaved with pooling layers that downsample incoming
representations by computing a channel-wise summary statistic (such as maximum or mean) of a
specified window, which will have width two throughout this analysis. When the input sequence
shifts, pooling blocks will lead to differences in the extracted features, and the output bin boundaries
will change.

5.2 Borzoi variant scores

We primarily study the recently published Borzoi model [2], which predicts 7,611 human ChIP,
ATAC/DNase, CAGE, and RNA tracks via length 16,384 arrays where each position represents a
32 nt window. Briefly, the model consists of convolutional blocks, as describe above, to embed local
sequence information, followed by transformer blocks that attend to longer sequence context and
model distal interactions. The model has both human and mouse heads, but we only considered
human tracks in this study.

To predict the effect of a variant on transcription and chromatin state, we center the input
sequence at the variant and compute a forward pass through the model for the reference and
alternative allele sequences. These forward passes include computing predictions for the forward and
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reverse complement sequences and averaging their outputs (after inverting the reverse complement
transform). Generally, we then compute the inverse of any transformations performed on the
original training data and then compute log2(y + 1) on the bin values.

Finally, we seek to collapse the length axis in order to produce a single score for each output
track. To consider the signed effect (e.g. up- or down-regulating gene expression), we compute the
‘SUM’ score by summing values across the length axes and taking the difference between alleles:
SUM =

∑16,384
i=1 (yalt−yref ). To consider a more sensitive, but unsigned effect, we compute the ‘L2’

score as an L2 norm of the difference between length-wise vectors: L2 =
√∑16,384

i=1 (yalt − yref )2.
We compute these scores using four model replicates and take their average as an ensemble.

5.3 Indel shift augmentation strategies

While SNPs involve a simple substitution of one nucleotide for another, insertions and deletions
alter the sequence more dramatically, from the perspective of a convolutional neural network. Using
standard VCF coding, the most natural insertion would add the new nucleotides to the right of
center and push several nucleotides (determined by the insertion length) off the right edge of the
sequence (Fig. 2A, Supplem. Fig. S1). Because the left side of the input sequence remains
unchanged relative to the reference sequence, we refer to this method as “left-matched”. However,
a symmetric “right-matched” shift, in which the new nucleotides are added to the left of the center
and several nucleotides are pushed off the left edge of the sequence, is equally valid. Analogously,
a natural deletion would remove nucleotides to the right of center and introduce padded sequence
at the right edge of the sequence (“left-matched”) or remove nucleotides to the left of center and
introduce padded sequence at the left edge of the sequence (“right-matched”).

We propose computing both of these versions for each indel, since they will produce different
but equally valid scores. Subsequently, they must be combined into a single vector of scores (one
per track). In our simplest strategy, we treat these as an ensemble and take their average. When
Lout > 1, an intriguing alternative emerges. Because the “left-matched” and “right-matched”
versions each match the reference on one side of the variant, the two halves can be stitched together
into a prediction that matches the reference across the full sequence. Specifically, we split the
prediction pairs exactly at the center of the length axis and concatenate the left-matched predictions
to the right-matched predictions to form a full prediction tensor. We disregard the right portion of
the left-matched predictions and the left portion of the right-matched predictions. We then compute
variant scores comparing the reference predictions to these stitched alternative predictions.

Upon close inspection, we realized that computing deletion predictions as described above does
not exactly produce aligned predictions and double counts the nucleotides to the left of the deletion.
The proper way to align the predictions is to perform the shifts to the sequence with the added
nucleotides. That is, deletions should be treated as insertions to the reference, and the shift
recipe described above should be applied to the reference, instead of the alternative sequence. See
Supplementary Figure S1 for visualization representations of these scenarios.

In all analyses here, we center the variant, but some cases might prefer to relax this requirement.
For example, large-scale SNP scoring can be accelerated by predicting the reference sequence once,
followed by predicting alternative sequences for all variants that overlap the reference sequence.
With large sequences containing many variants, the computation time will approach 2x faster
by avoiding redundant reference sequence predictions. However, variants can occur at arbitrary
locations in the sequence, which challenges the precision of the stitching strategy. Nevertheless,
one can adopt the strategy despite the imprecision, and a minimum of one output bin will contain
some degree of misalignment.

These indel scoring strategies and example visualization notebooks are implemented in the open
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source baskerville (https://github.com/calico/baskerville) and Borzoi (https://github.
com/calico/borzoi) code repositories.

5.4 Basset variant scores

To explore shift strategies for models with Lout = 1, such as binary peak predictors, we chose
the Basset model [21]. Basset predicts 164 DNase peak probabilities for a 600 nt input sequence,
using convolution/pooling blocks that operate at window widths of 3, 4, and 4. As described
above, one can apply left-matched or right-matched shifts to predict alternative indel alleles. We
computed Basset predictions using the Kipoi model repository [26]. Input sequences for Basset
were centered at the indel of interest, and we compared reference and alternative allele predictions
using subtraction: yalt − yref .

5.5 Fine-mapped eQTL data and discrimination task

We made use of GTEx v8 eQTLs fine-mapped by the SuSiE algorithm [27]. This set contains
1,168 unique indels up to size 8 from 49 tissues with a credible set posterior inclusion probabil-
ity (PIP)>0.9. The first benchmark is to discriminate between the causal (positive) eQTLs and
negative variants matched for indel size and PIP<0.01 but |Z-score| > 4 for the same gene. If un-
available for a given gene, we selected from the genome-wide set with PIP<0.01 and |Z-score| > 6.
These variants, and thus our predictions, are mapped to the GRCh38/hg38 human genome assem-
bly. For this analysis, we focused on L2 scores, which were shown to be more informative for eQTL
classification [2]. For each tissue, we trained a random forest classifier using RandomForestClas-
sifier from sklearn.ensemble with the following parameters: min samples leaf=1, max depth=64,
n estimators=100, max features=“log2”. We performed 8 fold cross-validation and report the mean
AUROC of 100 independent stochastic classifier training procedures. This evaluation considers the
full richness of the prediction vector across Borzoi and Basset tracks to identify eQTL indels.

Second, we evaluated how well the indel effect size on target gene expression can be estimated
with Borzoi predictions. For this analysis, we sliced the matching RNA-seq tracks for each GTEx
tissue, computed the SUM metric, and averaged across the sliced tracks. We made use of the SuSiE
β posterior statistic, and filtered out all eQTLs that are significant for multiple genes, but influence
gene expression of the genes in opposing directions. For the eQTLs with consistent effect directions,
we took the mean of the β posterior if this eQTL affected multiple genes as the true effect size. For
tissues with > 35 consistent fine-mapped indel eQTLs (24 tissues), we computed the Spearman ρ
correlation between SUM scores and eQTL coefficients.

5.6 Structural variant eQTL classification benchmark

GTEx structural variant (SV) eQTLs were independently retrieved from analysis performed by
Kirsche et al. with the Jasmine and Iris tools [22]. We focused on lead SV eQTLs for each
gene-tissue pair that passed the FDR threshold and limited SV size to 1/16th of the input se-
quence size (524288/16 = 32768 bp) to ensure sufficient sequence context around the SV. For
variants that had marginally significant associations with multiple genes, we only considered one
eGene with the lowest association p-value, producing a total set of 9,832 unique variants. To
create a negative set for a classification task, we retrieved all variants from the cohort-level call
set that did not have a marginal eQTL association. We filtered away variants with AF≤0.05.
We matched each positive SV to a negative SV with the closest available size, for which at
least one expressed gene exon fell within the input sequence. We made use of gene expres-
sion from the GTEx portal https://www.gtexportal.org/home/downloads/adult-gtex/bulk_
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tissue_expression: GTEx Analysis 2017-06-05 v8 RNASeQCv1.1.9 gene median tpm.gct. These
variants, and thus our predictions, are mapped to the GRCh38/hg38 human genome assembly. Fi-
nally, we trained random forest classifiers on Borzoi L2 scores, using the stitch strategy, with the
procedure described above.

5.7 Tandem repeat eQTL β prediction benchmark

GTEx short tandem repeat (STR) eQTLs were independently retrieved from the Supplementary
Data of [24]. We only considered variant-gene pairs that had the same effect direction on gene
expression in all significant tissues. We note that the number of repeats found by genotyping in
the original study does not always coincide with the number of repeats counted from the reference
genome assembly. For each variant, we found the reference repeat number by counting the number
of full repeats in the reference genome (GRCh37/hg19, as in the original study), and iteratively
removed up to 4 repeats (or the number of repeats corresponding to reference TR, if less than 4), and
added up to 4 repeats, and predicted resulting gene expression using Borzoi with shift augmentation
stitching. If the STR started with a partial motif, the repeats were removed or appended from
the first found full repeat coordinate. We then fitted a linear regression model on gene expression
log2FC with respect to the reference allele versus allele number (absolute number of repeats) using
ordinary least squares from python statsmodels package. We used either the average of all available
GTEx tissue RNA-seq tracks, or only tissue-matched GTEx RNA-seq tracks. Unlike most variant
scoring, the regression statistics offer a built-in confidence measure, and we only included variants
with significant regression coefficient p-value (t-test p < 0.05) in the analysis. We then used different
PIP thresholds to compute the accuracy of direction of change with STR expansion, and Spearman
correlation of the fitted βpred with fine-mapped βtrue reported in the original study.

5.8 in silico versus MPRA substitution and deletion mutagenesis

Borzoi-generated in silico substitution mutagenesis scores (ISM) for the MPRA saturation muta-
genesis dataset [25] were computed as follows. For each position, we computed predictions for the
reference sequence and the three substitution variants, with the input sequence centered on each
variant. We cropped the output window to the center 4kb to capture local changes for promoters.
Fold change scores were then computed gene-agnostically for DNase and H3K4me3 tracks, while
RNA tracks were computed gene-specifically as: S = log2(

∑L
i=1 y

alt + 1) − log2(
∑L

i=1 y
ref + 1),

where L = 4kb or L = bins ∩ exons, respectively. The total score for a variant is the average of all
cell type-matched DNase, H3K4me3 and RNA track scores. To assign each position a single score,
we computed the negative mean of the three mutation scores per position; i.e. if mutating away
from a given nucleotide decreases the coverage of the tracks, it will have a positive ISM score.

For in silico deletion mutagenesis (ISD), we computed scores similarly, but using one-nucleotide
deletions instead of substitutions. As described above for general deletion variants, we applied
reference sequence stitching for ISD calculations. We made use of the same cell type to promoter
matching as in [2]. The experimental MPRA score was derived by averaging the log2 variant
expression effect values from all three alternative alleles [25]. For visualization, reference nucleotides
are shown with the respective ISM or ISD RNA-only scores. Deletion scores missing in experimental
data were omitted from the correlation analysis.

Although reference-stitching maintains precise alignment, it costs three forward passes per nu-
cleotide scored. For large-scale ISD analysis, one could relax this constraint using the follow strategy
that costs a single forward pass per nucleotide. Arrange the sequence so that the output bins of
interest are safely to the right of the center, and compute the reference sequence prediction once.
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For each nucleotide, introduce the deletion using a right-matched strategy so that the output bins
of interest are unaffected and comparison is clean.
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A Supplementary figures

Figure S1: Shift augmentation stitching visualization for insertions and deletions. Inserted or
deleted nucleotides are shown in orange, while nucleotides compensating for the deletion on the edge
of the sequence are shown in teal. Purple and pink boxes show the left- and right-matched stitched
parts of sequence, respectively. For insertions, the alternative alleles shifted to the left and to the
right by the number of inserted nucleotides are stitched to avoid mismatched nucleotides, whereas
for deletions the reference is shifted by N = len(deletion) to the left, and stitched before computing
the score with the alternative. Originally, we applied alternative allele stitching for both insertion
and deletion, but upon careful examination we noticed that with alt-stitched strategy, deletions
will have repeated nucleotides at the stitch boundary (see middle diagram, repeated nucleotides
are highlighted in red boxes). Performing the stitching strategy to the reference instead maintains
precise alignments and avoids this double counting
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Figure S2: Associations between Borzoi-derived ISM and ISD scores versus MPRA saturation
mutagenesis scores for gene promoters from [25]. A) Correlations between MPRA substitution
scores and Borzoi ISM. B) Correlations between MPRA substitution scores and Borzoi ISD. C)
Correlations between MPRA deletion scores and Borzoi ISD. D) Concordance between Borzoi ISM
and ISD scores for the same nucleotide positions. Spearman and Pearson correlations are shown in
each plot for all experimentally available nucleotide positions.
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