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Abstract

Several challenges make it difficult for sparse neural networks to compete with
dense models. First, setting a large fraction of weights to zero impairs forward
and gradient signal propagation. Second, sparse studies often need to test multiple
sparsity levels, while also introducing new hyperparameters (HPs), leading to
prohibitive tuning costs. Indeed, the standard practice is to re-use the learning
HPs originally crafted for dense models. Unfortunately, we show sparse and dense
networks do not share the same optimal HPs. Without stable dynamics and effective
training recipes, it is costly to test sparsity at scale, which is key to surpassing
dense networks and making the business case for sparsity acceleration in hardware.
A holistic approach is needed to tackle these challenges and we propose sparse
maximal update parameterization (SµPar) as one such approach. SµPar ensures
activations, gradients, and weight updates all scale independently of sparsity level.
Further, by reparameterizing the HPs, SµPar enables the same HP values to be
optimal as we vary both sparsity level and model width. HPs can be tuned on
small dense networks and transferred to large sparse models, greatly reducing
tuning costs. On large-scale language modeling, SµPar training improves loss
by up to 8.2% over the common approach of using the dense model standard
parameterization.

1 Intro

Sparsity has emerged as a key technique to mitigate the increasing computational costs of training
and inference in deep neural networks. Activation sparsity can cut down feed-forward network com-
putation via techniques like mixture-of-experts [12] and nonlinearities with zero-output regions [38],
while further techniques target attention mechanisms to reduce their quadratic complexity [6, 30, 60].

Complementing activation sparsity, this work focuses on weight sparsity, whereby a significant
fraction of model weights are kept at zero. It has long been known that dense neural networks can be
heavily pruned after training [32]. With the goal of reducing costs during training, recent work has
explored static weight sparsity from initialization. In particular, using a random sparsity pattern has
re-emerged as a surprisingly effective strategy [35, 62], and we adopt this strategy in this paper.

Unfortunately, several challenges have hindered progress in weight-sparse neural networks. First,
sparsity impairs signal propagation during training [33, 11, 1]. Second, with today’s techniques,
sparse training is costly. Sparse techniques typically introduce extra hyperparameters (HPs), e.g.,
number of pruning iterations at initialization [64, 7, 59], and it is common to train models across
different sparsity levels. Since tuning should be performed at each level and the search space grows
exponentially with the number of HPs, the tuning costs essentially “defeat the purpose” of sparsity,
i.e., to reduce computation [64]. Finally, today there is only a nascent ecosystem of hardware
acceleration for unstructured sparsity, so most researchers get little sparsity benefit when tuning.
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Figure 2: SµPar enables sparse training
at scale, helping to surpass dense and
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These costs have led to the standard practice of simply re-using HPs that were previously optimized
for the baseline dense models (Section 2). One might hope that sparse models thrive with the same
learning rates and other HPs as their dense counterparts. Unfortunately, they do not: different sparsity
levels (including 0% sparsity) have different optimal HPs (Figure 1, left). With impaired training
dynamics, prohibitive tuning cost, and lacking the established training recipes enjoyed by dense
models, it is unclear how to effectively train sparse networks at scale (Figure 2).

To remedy this situation, we propose sparse maximal update parameterization (SµPar, pronounced
“soo-pahr”), a novel, holistic approach to stabilize sparse training dynamics. SµPar fulfills the maximal
update desiderata (Section 3) by parameterizing weight initialization and learning rates with respect
to change in width and sparsity level. Analogous to maximal update parameterization (µP) [68, 67],
SµPar enjoys well-controlled activation, gradient, and weight update scales in expectation, avoiding
exploding or vanishing signal when changing both sparsity and model width.
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Figure 3: For LLMs, SµPar forms the
Pareto frontier loss across sparsity levels,
with no HP tuning required.

By reparameterizing HPs in this way, SµPar enables the
same HP values to be optimal as sparsity varies (Figure 1,
right). We therefore enjoy µTransfer: we can tune small
proxy models and transfer optimal HPs directly to mod-
els at scale. In fact, we discovered our µP HPs, tuned
for dense models in prior work (and equivalent to SµPar
with sparsity=0%), correspond to the optimal learning rate
and initial weight variance for all sparse models tuned in
this paper! As sparsity increases, our formulation shows
the standard parameterization (SP) and µP suffer from
vanishing signal, further clarifying prior observations of
gradient flow issues in sparse networks. The improve-
ments enabled by SµPar set the Pareto-frontier best loss
across sparsity levels. Figure 3 previews this improvement
for large language models trained from compute-optimal
configurations [24]. Here, SµPar benefits grow with in-
creasing sparsity, to 8.2% better than SP and 2.1% better
than µP at 99.2% sparsity. These loss improvements corre-
spond to 4.1× and 1.5× compute efficiency gains along the Chinchilla scaling law, respectively.

2 Related work

Sparse training landscape While pruning-after-training has the goal of more-efficient infer-
ence [21, 27], sparse training aims to reduce training costs, ultimately unlocking sparse models
that are bigger and better than the largest possible dense models [10, 23]. Sparse training can be
divided into static sparsity, where the connectivity is fixed (our focus) and dynamic sparsity, where
the sparsity mask can evolve [23]. We use unstructured sparsity, though our approach general-
izes to structured approaches where a particular sparsity pattern increases efficiency on specific
hardware [71, 28, 41, 14, 31, 1]. Unstructured connectivity may be based on both random prun-
ing [43, 18, 61, 35, 62] and various pruning-at-initialization criteria [34, 64, 65, 59, 7]. Liu et al. [35]
found that as models scale, the relative performance of randomly pruned networks grow. Furthermore,
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Frantar et al. [15] found the optimal level of sparsity increases with the amount of training data [15].
Together, these findings suggest that as neural networks continue to get wider and deeper, and trained
on more and more data, very sparse randomly-pruned networks may emerge as an attractive option.

Improving sparse training dynamics Many prior works identify various training dynamics issues
when training sparse models. In particular, prior works note sparsity impacts weight initialization [37,
33, 52, 11], activation variance [31], gradient flow [65, 40, 61, 11, 1], and step sizes during weight
updates [15]. These prior works fix these issues in targeted ways, often showing benefits to sparse
model training loss. We advocate for a holistic approach, and discuss the relationship between these
prior works and our approach in Section 5 after describing and evaluating SµPar.

Sparse sensitivity to HPs Due to the costs of training with fixed weight sparsity, re-using dense
HPs is standard practice.1 However, some prior work has suggested such training is sensitive to
HPs, e.g., learning rates [37, 61], or learning rate schedules [16], although systematic tuning was not
performed. For dynamic sparse training (DST), it is also conventional to re-use dense HPs, whether in
dense-to-sparse [40, 15] or sparse-to-sparse (evolving mask) training [2, 8, 36, 11, 63]. As with fixed
sparsity, work here has also suggested sensitivity to HPs, e.g., to dropout and label smoothing [16].
DST may also benefit from extra training steps [10] or smaller batch sizes [36], although in DST this
may mainly be due to a greater number of opportunities for connectivity exploration [36].

3 Sparse maximal update parameterization (SµPar)

We now provide background, motivation, and derivation for SµPar, first introducing notation (Section
3.1) and then defining µDesiderata (Section 3.2) with a brief overview of µP (Section 3.3). Finally we
show the problem SµPar solves (Section 3.4), and provide an overview of SµPar (Section 3.5).

3.1 Notation

The operations for a single sparse training step are illustrated in Figure 4. The definition and
dimensions are: layer index l ∈ [0, L], batch size B, learning rate η, loss function L, forward
pass function F , input dimension dl−1, input activations Xl ∈ RB×dl−1

, input activation gradient
∂L
∂Xl = ∇XlL = ∇Xl ∈ RB×dl−1

, output dimension dl, output activations Xl+1 ∈ RB×dl

, output
activation gradient ∂L

∂Xl+1 = ∇Xl+1L = ∇Xl+1 ∈ RB×dl

, weights Wl ∈ Rdl−1×dl

, initialization
variance σW l for weights Wl, weight update ∆Wl ∈ Rdl−1×dl

, and ∆Xl+1 ∈ RB×dl

is the effect
of the weight update on output activations: ∆Xl+1 = Xl(∆Wl ⊙Ml). Unless otherwise specified,
Ml ∈ {0, 1}dl−1×dl

is an unstructured random static mask with sparsity s and density ρ = 1 − s.
When changing model scale or sparsity, we refer to a width multiplier mdl = dl

dl
base

and density
multiplier mρ = ρ

ρbase
.

Xl F

Wl ⊙Ml

∂F∇Xl

+ ∆Wl ⊙Ml Optimizer ∇Xl+1

Xl+1

Forward

Backward

Weight Update

Layer l

Figure 4: By controlling the scale of the forward pass, backward pass, and weight update operations,
across all sparse layers, and all training steps, we achieve stable training dynamics.

1Such re-use is typically indicated in paper appendices or supplemental materials, e.g., [43, 34, 37, 33, 16,
64, 65, 59, 13, 7, 18, 61, 35, 62]. Also, dynamic sparsity approaches often compare to fixed sparsity; these
baselines are likewise reported to re-use the dense HPs [2, 44, 10, 36, 11, 63].
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If we apply sparsity to a linear layer (i.e., F is a fully-connected layer), our aim is to control:

1. Forward pass: Xl+1 = F(Xl,Wl ⊙Ml) = Xl(Wl ⊙Ml)

2. Backward pass: ∇Xl = ∇Xl+1(Wl ⊙Ml)⊤.

3. Weight update: Xl+1 +∆Xl+1 = Xl(Wl ⊙Ml) +Xl(∆Wl ⊙Ml).

3.2 µDesiderata: Defining the goal of µP and SµPar

Prior works [67, 69] introduce desiderata which define the goal of µP. We define a more general set
of desiderata which we refer to as “Generalized-µDesiderata”.

Generalized-µDesiderata: ∥Xl∥F , ∥∇Xl∥F , ∥∆Xl∥F are each invariant to some variable(s) we
would like to scale, ∀l.

Variables to scale include width [68, 67, 69], depth [70], and sparsity (this work). Satisfying
µDesiderata represents a more holistic approach to stabilizing training dynamics compared to control-
ling only a subset of operations in a training step (e.g., only X l,∀l).

3.3 Maximal update parameterization (µP)

Here we provide a brief overview of maximal update parameterization (µP) [68, 67, 69]. Yang and
Hu [68] first show that as model width increases, the scale of activations throughout training also
increases. This motivated defining the µP-µDesiderata.

µP-µDesiderata: ∥Xl∥F , ∥∇Xl∥F , ∥∆Xl∥F are each invariant to change in width mdl , ∀l.

µP was introduced as the unique parameterization that satisfies the µDesiderata with respect to width.
They show µP enables µTransfer: the optimum learning rate, initialization weight variance, scalar
multipliers, and learning rate schedule all remain consistent as width is increased for µP models. They
leverage µTransfer to take a tune small, train large approach where hyperparameters are extensively
tuned for a small model then transferred, enabling improvements over standard practice. Yang et al.
[69] show that the µP-µDesiderata can also be satisfied by controlling the spectral norm of weights.

3.4 Sparsifying models causes vanishing activations and gradients

As Yang et al. [67] show, activation magnitudes explode with increasing model width. In Figure 5 we
show sparsity has the opposite effect: increasing sparsity causes shrinking activation magnitudes.

Finding 1: Sparsity causes vanishing activations and gradients with both SP and µP.

This finding motivates us to define the SµPar-µDesiderata and develop SµPar to satisfy it.

SµPar-µDesiderata: ∥Xl∥F , ∥∇Xl∥F , ∥∆Xl∥F are each invariant to change in width mdl and
change in density mρ, ∀l.

3.5 SµPar Overview

SµPar is the unique parameterization which satisfies the SµPar-µDesiderata. In this section, we
walk through the changes required to control each of the three operations in a sparse training step,
providing an overview of the SµPar derivation. We focus on the AdamW [39] optimizer used in our
experiments. For a more detailed derivation, including both SGD and Adam, see Appendix B.

Forward pass at initialization To ensure ∥Xl+1∥F is invariant to changes in width mdl−1 and
density mρ, we can control the mean and variance of Xl+1

ij . Since at initialization E[Wl] = 0,
E[Xl+1] = 0 and the mean is controlled. The variance of Xl+1

ij can be written as:

Var(Xl+1
ij ) = mdl−1dl−1

basemρρbaseσ
2
W l(Var(X

l) + E[Xl]2) (1)

To ensure Var(Xl+1
ij ) scales independent of mdl−1 and mρ, we choose σ2

Wl =
σ2

Wl,base

m
dl−1mρ

.
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Figure 5: Mean absolute value of output activations for attention and feed forward blocks after
training step t. In SP and µP models, decreasing density causes activations to vanish (note axes on
log-scale). In SµPar models, density has little effect on activation scales and there is no vanishing.

Backward gradient pass at initialization To ensure ∥∇Xl∥F is invariant to changes in width
mdl−1 and density mρ we can control the mean and variance of ∇Xl. Since at initialization
E[Wl] = 0, E[∇Xl] = 0 and the mean is controlled. The variance of ∇Xl

ij can be written as:

Var(∇Xl
ij) = mdldlbasemρρbaseσ

2
WlVar(∇Xl+1) (2)

To ensure Var(∇Xl
ij) scales independent of mdl and mρ, we choose σ2

Wl =
σ2

Wl,base

m
dl

mρ
. Typically

mdl = mdl−1 across hidden layers, allowing the same σ2
Wl to fix both forward and backward scales.

Effect of Adam weight update We desire ∥∆Xl+1∥F to be is invariant to changes in width mdl−1

and density mρ. By the law of large numbers, the expected size of each element can be written as:

∆Xl+1
ij → ηlmdl−1dl−1

basemρρbaseE

Xl
ik

 ∑T
t γt

∑b
h X

l,t
hk∇Xl+1,t

hj√∑T
t ωt

∑b
h(X

l,t
hk∇Xl+1,t

hj )2

 , as (dl−1ρ) → ∞

(3)

To ensure ∆Xl+1
ij and ∥∆Xl+1∥F scale invariant to mdl−1 ,mρ, we choose ηl =

ηl
base

m
dl−1mρ

.

Implementation Summary Table 1 summarizes the differences between SP, µP, and SµPar. Since
we only sparsify hidden weights, SµPar matches µP for input, output, bias, layer-norm, and attention
logits. Also note width and density multipliers are usually the same for all layers, allowing simplified
notation md,mρ for width and density multipliers respectively. This correction is equivalent to µP
[67] when ρ = 1 and mρ = 1. The correction to hidden weight initialization we derive is similar to
the sparsity-aware initialization in prior work [37, 52, 11]. SµPar should also easily extend to 2:4
sparsity pattern because, in expectation, the rows and columns of M l should have equal density.

4 SµPar Training Results

Here, we present empirical results showing the effectiveness of SµPar over SP and µP when training
sparse models. When using SP or µP, optimal HPs drift as we change the sparsity level, possibly
leading to inconclusive or even reversed findings. SµPar has stable optimal HPs across both model
width and sparsity level, and we show it improves over SP and µP across different scaling approaches.
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Table 1: Summary of SP, µP, and SµPar
Parameterization SP µP SµPar

Embedding Var. σ2
base σ2

base σ2
base

Embedding LR ηbase ηbase ηbase
Embedding Fwd. X0Wemb αinput ·X0Wemb αinput ·X0Wemb
Hidden Var. σ2

base σ2
base/md σ2

base/(mdmρ)
Hidden LR (Adam) ηbase ηbase/md ηbase/(mdmρ)
Unembedding Fwd. XLW⊤

emb αoutputX
LW⊤

emb/md αoutputX
LW⊤

emb/md

Attention logits Q⊤K/
√
dhead Q⊤K/dhead Q⊤K/dhead

Taken together, we see that SµPar sets the Pareto frontier best loss across all sparsities and widths,
including when we scale to a large dense model with width equal to GPT-3 XL [4]. Optimal dense
µP HPs—when adjusted using SµPar—are also optimal HPs for all sparse models that we test here.

All tests in this section use GPT-like transformer language models [51, 9], trained on the SlimPajama
dataset [57]. We refer the reader to Appendix C for full methodology of all experiments.

4.1 Sparse hyperparameter transfer

We first show sparsifying a dense model using either SP or µP leads to non-smooth drift in optimal
HPs as the sparsity level changes. Figure 6 shows validation loss for SP, µP, and SµPar models when
trained with varying sparsity levels and sweeping across different peak learning rates. For the SP
configuration, as sparsity increases, the optimal learning rate increases in a somewhat unpredictable
way. µP experiences similar shift in optimal learning rate, though shifts are even more abrupt. For
SµPar, the optimal learning rate is consistently near 2−6 across all sparsity levels.
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Figure 6: SµPar ensures stable optimal learning rate for any sparsity level, unlike SP and µP.

We also sweep base weight initialization values and find even more chaotic behaviors for SP and µP
with different sparsity levels (Figure 7, left and center, respectively)2. µP even shows discontinuities
in optimal initialization values at different sparsity levels. We attribute this discontinuity to widely
varying expected activation scales between embedding and transformer decoder layers, where embed-
ding activation scales will tend to dominate for high sparsity levels. SµPar shows consistent optimal
initialization (right plot). Figures 6 and 7 demonstrate our second finding.

Finding 2: With SP and µP, dense and sparse networks do not share the same optimal HPs.

Figure 8 summarizes our HP transfer tests, showing loss for each parameterization across all sparsities.
Even when selecting the best learning rate at each sparsity level for SP and µP, SµPar (largely) forms
the Pareto frontier with an average gap of 0.8% better than SP and 2.1% better than µP.

2These results are taken from a point early in training as models with widely varying initialization tend to
become unstable later in training.
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Figure 7: Across sparsity levels, SP and µP show unstable optimal initialization. SµPar is stable.
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Figure 9: SµPar ensures stable optimal learning rate in Iso-Parameter sparse + wide scaling.

Finding 3: SµPar corrects HPs to achieve Pareto frontier loss across sparsity levels.

4.2 Studying SµPar Indicates How Some Sparse Scaling Techniques Appear to Work

2 6 2 5 2 4 2 3 2 2 2 1 20

Density

3.55

3.60

3.65

3.70

3.75

3.80

3.85

Tr
ai

n 
Lo

ss

SP
P

S Par

Figure 8: Summarizing loss results from
Figure 6 with best tuned HPs for each
parameterization and sparsity.

So far, we see SµPar can transfer optimal HPs across spar-
sity levels, but we have also designed it to transfer HPs
across different model widths (hidden sizes), similar to
µP. Here, we further demonstrate that SµPar transfers op-
timal HPs across width. More generally, sparse scaling
that keeps a fixed number of non-zero weights per neuron
allows SP and µP to also transfer HPs.

Figure 9 shows learning rate transfer tests when changing
both the model’s hidden size, dmodel, and sparsity level in
a common scaling approach called Iso-Parameter scaling.
Iso-Parameter scaling keeps the model’s number of non-
zero parameters approximately the same, as width and
sparsity are varied3. Here, we see the common result that
SP models starting from dense HPs do tend to significantly
improve as we increase width and sparsity. Note, though, the optimal learning rate for each sparsity
level still shifts. When we correct dense HPs using µP or SµPar, the dense baseline significantly
improves, but only SµPar shows consistent loss improvement and stable HPs in Iso-Parameter scaling.

Although SP and µP have better stabilized HPs when Iso-Parameter scaling, SµPar still dominates
in full training runs. Figure 10 shows losses at the end of training for small models scaled up using
Iso-Parameter scaling. Here, all runs use dense optimal HPs, but the SP and µP models experience
detuning as sparsity increases.

3Not perfectly Iso-Parameter due to unsparsified layers (embedding, bias, layer-norm, etc.)
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In the Iso-Parameter setting, SP, µP, and SµPar show similar losses early in training with high
sparsity levels and optimal HPs. This consistency is expected based on the SµPar formulation:
When the number of non-zero weights per neuron (WPN) in the network is the same, µP and SµPar
become synonymous, because initialization and learning rate adjustment factors will be constant (i.e.,
dmodel · ρ = WPN = O(1)). Optimized SP HPs will also tend to work well.
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Figure 10: Losses at the end of training when
Iso-Parameter scaling, keeping the number of
non-zero parameters fixed.
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Figure 11: The SP optimized LR is stable when
scaling width and sparsity to maintain same num-
ber of non-zero weights per neuron (Iso-WPN).

We define this new scaling setting, which we call Iso-WPN, to verify this hypothesis. In Figure 11,
we test SP HPs with Iso-WPN scaling and see the optimal learning rate stays consistently between
2−7 and 2−6 with roughly aligned curves (we omit similar µP and SµPar plots for space, because
their corrections are the same). The conclusion is that when scaling SP models in an Iso-WPN sparse
setting, HPs should maintain similar training dynamics. More generally, as WPN decreases (e.g., by
increasing sparsity), the optimal learning rate will tend to increase proportionally, and vice versa4.

Reviewing results in Figures 6, 7, 9, and 11, SµPar is the only parameterization that ensures optimal
HP transfer across model widths and sparsity levels, satisfying our SµPar µDesiderata.

Finding 4: SµPar enables optimal HP transfer for any combination of width and sparsity.

4.3 SµPar Scaling to Large Language Model Pretraining

We conclude this section reflecting on the demonstration of SµPar improvements in a large-scale
language model. We train 610M parameter models starting from a Chinchilla [24] compute-optimal
training configuration with 20 tokens per parameter from the SlimPajama dataset. This larger model—
with hidden size 2048, 10 layers, and attention head size 64—permits sweeping over a larger range of
sparsity levels, so we test up to 99.2% sparsity (density 2−7).

Figure 3 shows validation loss for each parameterization as we sweep sparsity levels. As sparsity
increases, SP and µP losses fall farther behind SµPar. Since these models are trained with a large
number of tokens, we attribute the widening loss gap mostly to increasingly under-tuned learning
rates for SP and µP as sparsity increases–the weight updates lose gradient information throughout
training. Retuning SP and µP could recover some of the gap to SµPar, but that could be costly: These
runs take 3-6 hours each on a Cerebras CS-3 system (or > 9 days on an NVIDIA A100 GPU).

Finding 5: Large networks trained with SµPar improve over SP and µP due to improved tuning.

5 Discussion and Limitations

SµPar can be a holistic solution As mentioned, prior works make targeted corrections to improve
sparse training. These corrections arise from observations that sparsity can cause degraded activation,
gradient, and/or weight update signal propagation. We review these observations and corrections in
light of the SµPar µDesiderata to advocate for holistic control of sparse training dynamics.

4Our results generalize the Yang et al. finding that optimal LR decreases as width increases [67, Figure 1].
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Sparsifying Can Cause Vanishing Activations Evci et al. [11] note that by initializing weights
using dense methods (e.g., [17, 22]), the “vast majority” of sparse networks have vanishing activations.
Lasby et al. [31, App. A] analyze activation variance as a guide for selecting structured sparsity.
The µDesiderata suggest activation norms be measured and controlled with respect to sparsity, so
activation variance can be considered a proxy to whether sparsity might negatively impact training
dynamics. Evci et al. [11] ultimately initialize variances via neuron-specific sparse connectivity,
while Liu et al. [37] and Ramanujan et al. [52] propose scaling weight variances proportional to layer
sparsity. These corrections, however, only target controlling activations but not weight updates.

Gradient Flow Partially Measures the Weight Update µDesideratum Sparsity also impairs
gradient flow—the magnitude of the gradient to the weights—during training [11, 1]. Since gradient
flow is measured using the norm of the weight gradients, it measures a piece of the weight update.
Unfortunately, gradient flow does not directly measure the effect of the weight update step, which can
also involve adjustments for things like optimizer state (e.g., momentum and velocity), the learning
rate, and weight decay. Prior works propose techniques to improve gradient flow during sparse
training and pruning by adjusting individual hyperparameters or adding normalization [65, 40, 11, 1].
However, these techniques might overlook the effects of the optimizer and learning rates in weight
updates. Notably, Tessera et al. [61] do consider some of these effects, but their proposed techniques
maintain gradient flow only in the Iso-Parameter scaling setting rather than arbitrary sparsification.

Frantar et al. [15, App. A.1] also endeavor to control weight updates, where they observe diminished
step sizes when optimizing sparse networks with Adafactor [55]. They correct this by computing
Adafactor’s root-mean-square scaling adjustments over unpruned weights and updates. However,
such normalization does not prevent activations from scaling with model width [67, 69]. In this sense,
sparsity-aware fixes to Adafactor can improve dynamics, but will not address instability holistically.

Weight Initialization Only Controls Dynamics at Initialization We noted works above that
adjust sparse weight initializations [11, 37, 52]. Additionally, Lee et al. [33] explore orthogonal
weight initialization [49], both before pruning (to ensure SNIP [34] pruning scores are on a similar
scale across layers) and after (to improve trainability of the sparse network). While adjusting weights
can improve sparse training dynamics at initialization, such adjustments are insufficient to stabilize
signals after multiple steps of training, in the same way that standard weight initializations fail to
stabilize training of dense networks.

Limitations While we have focused on pre-training with static sparsity, it is also common to prune
a pre-trained dense model, then fine-tune to recover accuracy. SµPar requires further extension to
handle this case, as well as dynamic sparse training. One challenge is that by making pruning (and
re-growing) of weights dependent on weight values, the pruned weight distribution significantly
differs from the unpruned distribution. Handling such cases is a subject of our ongoing research.

For weight sparsity more generally, the most pressing limitation is the lack of hardware accelera-
tion [41]. While new software [53, 31, 46] continues to better leverage existing hardware, the growth
of software and hardware co-design is also encouraging [63, 5], as effective sparsity techniques can
be specifically optimized in deep learning hardware. But to effectively plan hardware, we need to
train and test sparse prototypes at next-level sizes, at scales where the optimum sparsity level may be
higher than in current networks [15]. Performing such scaling law-style studies requires incredible
resources even for dense models with well-established training recipes [29, 24]. As SµPar reduces
training and tuning costs, it can help unlock these studies and guide future hardware design.

For a discussion of the broader impacts of SµPar, see Appendix A.

6 Conclusion

Nobody said training with sparsity was easy. We showed that with the standard parameterization
and µP, increasing sparsity level directly correlates with vanishing activations. Impaired training
dynamics prevent sparse models from sharing the same optimal hyperparameters, suggesting prior
results based on re-use of dense HPs merit re-examination. In contrast, by holistically controlling the
training process, SµPar prevents vanishing activations and enables HP transfer (across both width
and sparsity). LLMs trained with SµPar improve over µP and the standard parameterization. As such,
we hope SµPar makes things a little easier for sparsity research going forward.
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A Broader impacts

Sparsity is recognized to reduce carbon emissions [48] and offset well-known environmental and
financial costs of large model training [3]. For example, unstructured sparsity can be accelerated by
the Cerebras Wafer-Scale Engine5 and 2:4 block sparsity can be accelerated by NVIDIA Ampere
GPUs6. There is growing recognition that HP tuning is a key contributor to these costs. HP tuning is
costly, possibly undermining equity in AI research due to financial resources [58]. During model
retraining, sensitivity to HPs also leads to downstream costs [58]. SµPar can reduce these costs and
sensitivities and thus improve equity.

Sparsity also has potential drawbacks. Hooker et al. [25] showed that even when top-line performance
metrics are comparable, pruned networks may perform worse on specific subsets of the data (including
on underrepresented groups [26]), may amplify sensitivity to adversarial examples, and may be more
sensitive to distribution shift. These sensitivities may depend on the degree of sparsity [20]. It remains
an open question whether such drawbacks occur only with pruning or when training with sparsity
from scratch (as in SµPar) [23], and how such sensitivity may impact susceptibility to misuse [66].
We require sparsity-specific methods to detect [56, 45] and mitigate [19, 47] harm. Moreover, since
many large models are later pruned for deployment, we recommend testing and documenting in the
model card [42] any adverse affects of sparsification at the time of model release.

B SµPar detailed derivation

B.1 Forward pass at initialization

The first stage where we would like to control training dynamics is in the layer’s forward function.
For a random unstructured sparsity mask Ml, since each column of Ml has dl−1ρ non-zero elements
in expectation, we can rewrite the forward pass as:

Xl+1
ij =

[
Xl(Wl ⊙Ml)

]
ij
=

dl−1∑
q=1

Xl
iq(W

l
qj ·Ml

qj) =

dl−1ρ∑
k:Ml

kj=1

Xl
ikW

l
kj (4)

Our goal is to ensure ∥Xl+1∥F is invariant to changes in width mdl−1 and density mρ. To achieve
this we can ensure the mean and variance of Xl+1

ij are invariant to mdl−1 and mρ.

Mean: As expectation is linear and Xl and Wl are independent at initialization:

E[Xl+1
ij ] = E

 dl−1ρ∑
k:Ml

kj=1

Xl+1
ik Wl

kj

 =

dl−1ρ∑
k:Ml

kj=1

E[Xl
ikW

l
kj ] =

dl−1ρ∑
k:Ml

kj=1

E[Xl
ik]E[Wl

kj ] (5)

Therefore, since at initialization E[Wl
ij ] = 0, E[Xl+1

ij ] = 0 and the mean is controlled.

Variance: As expectation is linear and each weight element is IID:

Var(Xl+1
ij ) = Var

 dl−1ρ∑
k:Ml

kj=1

Xl
ikW

l
kj

 =

dl−1ρ∑
k:Ml

kj=1

Var(Xl
ikW

l
kj) (6)

Then, since Xl and Wl are independent at initialization:

Var(Xl+1
ij ) =

dl−1ρ∑
k:Ml

kj=1

(Var(Xl
ik) + E[Xl

ik]
2)(Var(Wl

kj) + E[Wl
kj ]

2)− (E[Xl
ik]E[Wl

kj ])
2 (7)

Finally, since at initialization E[Wl
kj ] = 0 and redefining Var(Wl

kj) = σ2
Wl :

Var(Xl+1
ij ) =

dl−1ρ∑
k:Ml

kj=1

(Var(Xl
ik) + E[Xl

ik]
2)Var(Wl

kj) = dl−1ρσ2
Wl(Var(X

l) + E[Xl]2) (8)

5https://www.cerebras.net/blog/harnessing-the-power-of-sparsity-for-large-gpt-ai-models
6https://www.nvidia.com/en-us/data-center/ampere-architecture/
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Rewriting in terms of multipliers for the width mdl−1 = dl−1

dl−1
base

and the change in density mρ = ρ
ρbase

:

Var(Xl+1
ij ) = mdl−1dl−1

basemρρbaseσ
2
Wl(Var(X

l) + E[Xl]2) (9)

Solution: To ensure Var(Xl+1
ij ) scales independently of mdl−1 and mρ, we choose to set σ2

Wl =
σ2

Wl,base

m
dl−1mρ

. This ensures that ∥Xl+1∥F is invariant to changes in width mdl−1 and density mρ.

Note that this correction is equivalent to µP [67] when mρ = 1. Further, the sparsity factor in the
denominator matches the correction for sparsity-aware initialization from Evci et al. [11].

B.2 Backward gradient pass at initialization

The next stage we would like to control training dynamics is in the layer’s backward pass. For
a random unstructured sparsity mask Ml, since each row of Ml has dlρ non-zero elements in
expectation, we can rewrite the backward pass as:

∇Xl
ij =

[
∇Xl+1(Wl ⊙Ml)⊤

]
ij
=

dl∑
q

∇Xl+1
iq (Wl

jq ·Ml
jq) =

dlρ∑
k:Ml

jk=1

∇Xl+1
ik Wl

jk (10)

Our goal is to ensure ∥∇Xl∥F is invariant to changes in width mdl−1 and density mρ. To achieve
this, we can ensure the mean and variance of ∇Xl are invariant to mdl−1 and mρ.

Mean: As expectation is linear and Xl and Wl are (roughly) independent at initialization:

E[∇Xl
ij ] = E

 dlρ∑
k:Ml

jk=1

∇Xl+1
ik Wl

jk

 =

dlρ∑
k:Ml

jk=1

E[∇Xl+1
ik Wl

jk] =

dlρ∑
k:Ml

jk=1

E[∇Xl+1
ik ]E[Wl

jk]

(11)

Therefore, since at initialization E[Wl
jk] = 0, E[∇Xl

ij ] = 0, the mean is controlled.

Variance: As expectation is linear and each weight element is IID:

Var(∇Xl
ij) = Var

 dlρ∑
k:Ml

jk=1

∇Xl+1
ik Wl

jk

 =

dlρ∑
k:Ml

jk=1

Var(∇Xl+1
ik Wl

jk) (12)

From the backward pass mean derivation, we know E[∇Xl+1
ij ] = 0. Then, similar to the forward

pass variance derivation, we can simplify using the facts that at initialization, ∇Xl+1 and Wl are
(roughly) independent and E[Wl] = 0. Similarly we can also define Var(Wl

kj) = σ2
Wl and rewrite

in terms of width multiplier mdl = dl

dl
base

and changes in density mρ = ρ
ρbase

:

Var(∇Xl
ij) = mdldlbasemρρbaseσ

2
WlVar(∇Xl+1) (13)

Solution: To ensure Var(∇Xl
ij) scales independently of mdl and mρ, we choose to set σ2

Wl =
σ2

Wl,base

m
dl

mρ
. This ensures that ∥∇Xl

ij∥F is invariant to changes in width mdl and density mρ. Typically,

we scale model width such that dl = dl−1, or these dimensions are scaled proportionally. This
proportional scaling allows the same initialization variance to correct both forward activation and
backward gradient scales, making them independent of width. Further, since we assume random
sparsity across layer’s weights, the sparsity initialization correction factor, mρ, is the same for both
the forward activations and backward gradients.

B.3 Effect of Adam weight update

We desire that the Frobenius norm of the effect of the Adam weight update, ∥∆Xl+1∥F , is invariant
to changes in width mdl−1 and density mρ. To achieve this we examine the expected size of each
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element.Here, we use η to be the learning rate for layer l. For a random unstructured sparsity mask
Ml, since each column of Ml has dl−1ρ non-zero elements in expectation:

∆Xl+1
ij =

[
ηXl(∆Wl ⊙Ml)

]
ij
= η

dl−1∑
q=1

Xl
iq(∆Wl

qj ·Ml
qj) = η

dl−1ρ∑
k:Ml

kj=1

Xl
ik∆Wl

kj (14)

Following the formulation in Yang et al. [67], Adam weight updates take the form:

∆Wl
kj =

∑T
t γt

∑B
b Xl,t

bk∇Xl+1,t
bj√∑T

t ωt

∑B
b (X

l,t
bk∇Xl+1,t

bj )2
(15)

where T is the current training step and γt, ωt are the moving average weights at each training step.
Here, we can just consider the weight update associated with an unpruned weight, since a pruned
weight will have value and update 0 (i.e., pruned weights trivially satisfy that their effect on forward
activations cannot depend on width or sparsity). We can expand ∆Xl+1

ij as:

∆Xl+1
ij = η

dl−1ρ∑
k:Ml

kj=1

Xl
ik

 ∑T
t γt

∑B
b Xl,t

bk∇Xl+1,t
bj√∑T

t ωt

∑B
b (X

l,t
bk∇Xl+1,t

bj )2

 (16)

By the Law of Large Numbers:

∆Xl+1
ij → ηdl−1ρE

Xl
ik

 ∑T
t γt

∑b
h X

l,t
hk∇Xl+1,t

hj√∑T
t ωt

∑b
h(X

l,t
hk∇Xl+1,t

hj )2

 , as (dl−1ρ) → ∞ (17)

Rewriting in terms of width multiplier mdl−1 = dl−1

dl−1
base

and changes in density mρ = ρ
ρbase

.

∆Xl+1
ij → ηmdl−1dl−1

basemρρbaseE

Xl
ik

 ∑T
t γt

∑b
h X

l,t
hk∇Xl+1,t

hj√∑T
t ωt

∑b
h(X

l,t
hk∇Xl+1,t

hj )2

 , as (dl−1ρ) → ∞

(18)

Solution: To ensure ∆Xl+1
ij and ∥∆Xl+1∥F scale invariant to mdl−1 ,mρ, we choose η = ηbase

m
dl−1mρ

.
Note that this correction is equivalent to µP [67] when ρ = 1,mρ = 1.

B.4 SGD weight update

Similar to the Adam weight update analysis above, we also analyze a weight update with stochastic
gradient descent (SGD). We desire that the Frobenius norm of the effect of the SGD weight update,
∥∆Xl+1∥F , is invariant to changes in width mdl−1 and density mρ. To achieve this we examine the
expected size of each element. For a random unstructured sparsity mask Ml, since each column of
Ml has dl−1ρ non-zero elements in expectation:

∆Xl+1
ij =

[
ηXl(∆Wl ⊙Ml)

]
ij
= η

dl−1∑
k=1

Xl
ik(∆Wl

kj ·Ml
kj) = η

dl−1ρ∑
k:Ml

kj=1

Xl
ik∆Wl

kj (19)

Following the formulation in Yang et al. [67], SGD weight updates take the form:

∆Wl
kj =

[
(Xl)⊤∇Xl+1

dl−1

]
kj

=
1

dl−1

B∑
b=1

Xl
bk∇Xl+1

bj (20)

We can expand ∆Xl+1
ij as:

∆Xl+1
ij =

η

dl−1

dl−1ρ∑
k:Ml

kj=1

Xl
ik(

B∑
b=1

Xl
bk∇Xl+1

bj ) (21)
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By the Law of Large Numbers:

∆Xl+1
ij → ηdl−1ρ

dl−1
E[Xl

ik(

B∑
b

Xl
bk∇Xl+1

bj )], as (dl−1ρ) → ∞ (22)

Rewriting in terms of change in density mρ = ρ
ρbase

.

∆Xl+1
ij → ηmρρbaseE[Xl

ik(

B∑
b

Xl
bk∇Xl+1

bj )], as (dl−1ρ) → ∞ (23)

Solution: To ensure ∆Xl+1
ij and ∥∆Xl+1∥F scale independently of mdl−1 and mρ, we choose

η = ηbase
mρ

. Note that this correction is equivalent to µP [67] when ρ = 1,mρ = 1.

B.5 Additional notes about derivation

We make a few supplementary notes about the above derivation:

• Throughout our derivation, we use ρ to refer to the density level. Note that since this
derivation is local to a single layer in the model, the density (or sparsity) level can also
be parameterized independently for each layer. If a sparsity technique will use layer-wise
independent sparsity levels, appropriate corrections should be made for each layer.

• Similar to the ρ notation, we use η to denote the learning rate, but this learning rate can be
layer-specific depending on sparsity level. Appropriate corrections must be made if using
layer-wise independent sparsities.

• The use of the Law of Large Numbers in portions of the above derivation indicate that
SµPar is expected to provide stable training dynamics as the number of non-zero weights
per neuron (WPN) tends to infinity. However, in sparse settings, the WPN can tend to be
small. If WPN is small, training dynamics may be affected, and this might be a direction for
future work.

• In this work, we only consider sparsifying linear projection layers. As a result, SµPar matches
µP for other layers like input, output, bias, layer-norm, and attention logits. Depending on
the sparsification technique, these other layers might need to be reviewed for their effects on
training dynamics.

C Experimental details

In Table 2, we provide extensive details on hyperparameters, model size, and training schedule for all
experiments in this paper. All models in this paper were trained on the SlimPajama dataset [57], a
cleaned and deduplicated version of the RedPajama dataset.

SµPar Base Hyperparameter Tuning To find the optimized set of hyperparameters for SµPar, we
actually tune µP HPs on a dense proxy model. By formulation of SµPar, these HPs transfer optimally
to all the sparse models trained for this work. This dense proxy model is a GPT-2 model, but with
small changes: ALiBi position embeddings [50] and SwiGLU nonlinearity [54]. We configure it with
width: dmodel = dmodel,base = 256, number of layers: nlayers = 24, and head size: dhead = 64, resulting
in 39M parameters. We trained this proxy model on 800M tokens with a batch size of 256 sequences
and sequence length 2048 tokens. We randomly sampled 350 configurations of base learning rates,
base initialization standard deviation, and embedding and output logits scaling factors. From this
sweep we obtained the tuned hyperparameters listed in Table 3.
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Table 3: Tuned hyperparameters for our dense proxy model.
Hyperparameter Value

σ2
W,base 0.08665602
ηbase 1.62E-2
αinput 9.1705
αoutput 1.0951835
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