
CtxWF: Context Window Focus with Global Management for LLM Agents
in Multi-Document Workspace

Anonymous ACL submission

Abstract

LLM-based agent systems have achieved re-001
markable progress in automatically solving nat-002
ural language processing tasks. However, real-003
world tasks often involve working within a004
multi-file workspace that requires exploratory005
implementation of specific objectives, demand-006
ing LLMs to acquire, process, and manage007
substantial information from workspace data008
sources. Due to the limited attention span of009
LLMs, excessive or disorganized information010
can lead to distraction from core objectives dur-011
ing reasoning, ultimately resulting in subop-012
timal outputs. To enhance LLMs’ capability013
in handling complex real-world tasks, inspired014
by human problem-solving strategies, we pro-015
pose CtxWF, a context window-focused agent016
that resolves long-term complex tasks through017
global context management and concentrated018
execution of short-term sub-tasks. CtxWF fea-019
tures three key innovations: (1) Proactive acqui-020
sition of essential contextual information prior021
to task resolution, (2) Single-responsibility spe-022
cialization of LLM reasoning to reduce context023
window requirements, (3) Refinement of en-024
vironmental feedback for context updates to025
enhance information quality post short-term026
task execution. We showcase the effective-027
ness of CtxWF on agent-based data science028
tasks, where it achieves state-of-the-art accu-029
racy across multiple models. The GPT-4o-030
powered CtxWF attains an accuracy of 42.26%,031
representing a 10.01% improvement over base-032
line methods.033

1 Introduction034

Remarkable progress has been observed in re-035

cent Large Language Models (LLMs) for various036

natural language processing tasks, while LLM-037

based agent systems further extend these capabil-038

ities. However, compared to simply transform-039

ing instructions into executable code (Yu et al.,040

2018; Lin et al., 2018; Chen et al., 2021; Huang041

et al., 2024a; Lu et al., 2022), research on lever- 042

aging LLMs for complex real-world programming 043

tasks remains insufficient. Taking real-world data 044

analysis tasks as an example, the contextual in- 045

formation required for tasks is not always pre- 046

organized as natural language instructions, but 047

rather needs to be actively explored by LLMs 048

within the workspace. For instance, in the task 049

illustrated in Figure 1, LLMs need to proactively 050

retrieve the algorithmic formula stored in the 051

wrFormula.tex file, compute the top 10 most pop- 052

ular movies from the tmdb_5000_movies.csv file, 053

and store the results in result.csv following the for- 054

mat of sample_result.csv. 055

When tackling complex real-world data anal- 056

ysis tasks, humans actively utilize existing tools 057

(e.g., Notepad, Excel) to interact with their envi- 058

ronment (external world). Through this interac- 059

tion, they acquire task-relevant information into 060

working memory (Baddeley, 1992) for cognitive 061

reasoning (Alderson-Day and Fernyhough, 2015). 062

The brain filters task-related information, designs 063

task plans based on this filtered data, focuses atten- 064

tion on specific implementations, and self-regulates 065

(Zavershneva and van der Veer, 2018; Luria, 1965; 066

Dick and Overton, 2009) through environmental 067

feedback. For example, given the task description 068

and workspace files in Figure 1, humans first iden- 069

tify useful files, extract necessary information (e.g., 070

the algorithm formula from wrFormula.tex and 071

table schemas of CSV files) into working memory, 072

then derive code solutions, and iteratively refine 073

them by observing execution feedback (e.g., con- 074

sole outputs). 075

Recent studies have explored methods utilizing 076

LLMs for interactive environment planning and 077

action. In these approaches, environmental out- 078

comes are fed back to the LLMs in text form, 079

enabling LLMs to generate domain-specific ac- 080

tions or plans, which are then executed by a con- 081

troller (Liu et al., 2024b; Ahn et al., 2022; Nakano 082

1

Figure 1: Comparison between existing methods and our approach.

et al., 2021; Yao et al., 2020; Huang et al., 2022).083

Alternative approaches treat code generation as084

the primary interaction mechanism between agents085

and environments (Qiao et al., 2023; Wang et al.,086

2024b), avoiding domain-specific action design087

while enhancing problem-solving versatility. How-088

ever, these agents over-rely on LLMs, burdening089

them with multiple responsibilities during rea-090

soning (e.g., information supplementation, task091

planning, and implementation) and flooding agent092

contexts with lengthy, disorganized multi-turn093

dialogue histories. As shown in Figure 1’s exist-094

ing methods: (1) Initial solutions often lack CSV095

schema information, leading to hallucinated code096

(e.g., falsely assuming a “VoteCount” column in097

tmdb_5000_movies.csv); (2) When LLMs per-098

form reflective reasoning in a single iteration while099

simultaneously handling multiple responsibilities,100

their reasoning contexts become overly lengthy and101

disorganized, which often leads to erroneous out-102

comes; (3) Multi-round reflection, while eventu-103

ally prompting schema checks, suffers from inef-104

ficiency, high error rates, and redundant context105

accumulation. Moreover, some hallucinated code106

executions may not generate explicit errors, result-107

ing in executable but incorrect solutions.108

To address these challenges, we propose109

CtxWF, inspired by human attentional focus dur-110

ing problem-solving, which employs three key 111

strategies: (1) Proactively acquiring task-critical 112

information as contextual background before LLM 113

reasoning; (2) Decomposing complex long-term 114

task planning into multiple short-term phases, sep- 115

arating planning from implementation to simplify 116

reasoning responsibilities; (3) Distilling feedback 117

from successful short-term task executions to fil- 118

ter noise and guide LLMs toward correct paths 119

upon errors. These mechanisms enable CtxWF to 120

dynamically plan and execute phased tasks while 121

maintaining clean, focused reasoning contexts with 122

sufficient background information. Our approach 123

uses off-the-shelf LLMs as reasoning engines with- 124

out model training or fine-tuning, operating fully 125

autonomously without human intervention. 126

We demonstrate CtxWF’s effectiveness on DA- 127

Code (Huang et al., 2024b), a real-world complex 128

data analysis benchmark reflecting practical scenar- 129

ios. Compared to the baseline DA-Agent (Huang 130

et al., 2024b), CtxWF achieves superior perfor- 131

mance across multiple LLMs and task difficulty 132

levels. The GPT-4o-powered CtxWF reaches an 133

accuracy of 42.26%, outperforming DA-Agent by 134

10.01%. The results demonstrate that CtxWF fully 135

unleashes the potential of LLMs in solving com- 136

plex data analysis tasks. 137

2

Figure 2: The Operational Workflow of CtxWF.

2 Method138

CtxWF focuses on three core design components to139

manage reasoning contexts: (1) The agent actively140

acquires critical information required for current141

task objectives as background context during rea-142

soning, (2) When utilizing LLMs for single-step143

reasoning, the agent concentrates on well-defined144

responsibilities to reduce context length during in-145

ference, and (3) The agent refines feedback infor-146

mation obtained from environmental interactions to147

ensure beneficial updates rather than noise injection148

into subsequent reasoning contexts. Specifically, as149

shown in Figure 2, CtxWF initially obtains prelim-150

inary reasoning contexts during the preprocessing151

phase. Subsequently, it employs LLMs for inter-152

active environment planning and action execution:153

first abstractly deducing the objective of the next154

step and matching it with corresponding actions155

from the action space, then performing secondary156

planning for phase-specific implementation based157

on action objectives. The framework continuously158

refines environmental feedback generated by ac-159

tion execution to update agent contexts, thereby160

dynamically creating, maintaining, and adjusting161

high-level action plans (Yao et al., 2023). The full162

prompt template is provided in Appendix A.163

2.1 Proactive Information Acquisition164

In real-world data analysis tasks, agents must165

contend with diverse data sources within their166

workspace when solving problems. To address 167

this challenge, we have designed a mechanism that 168

enables agents to proactively acquire essential in- 169

formation before generating code-based (or SQL- 170

based) solutions through LLMs. As illustrated in 171

Figure 2, prior to action prediction, CtxWF lever- 172

ages the planning capabilities of LLMs (Wei et al., 173

2022) and builds on an LLM as a natural language 174

planner during preprocessing. Prompted by action 175

descriptions, the planner generates action chains 176

in order to retrieve task-relevant information to up- 177

date the agent context (Lu et al., 2023). Specifically 178

for SQL generation, CtxWF first acquires database 179

schema information pertinent to the current task as 180

reasoning context before initiating SQL generation. 181

See Appendix A.1 for the full prompt structure. 182

2.2 Two-Stage Planning Framework 183

The objective of two-stage planning is to decom- 184

pose a complex task into correct action sequences, 185

resulting in a task solution. To empower agents 186

to adapt to diverse complex tasks while maintain- 187

ing specialized reasoning responsibilities for LLMs 188

in each step, our system has customized a set of 189

generic Actions. We retain executable code gen- 190

eration as the core action, as it allows integrat- 191

ing various LLM behaviors into a unified action 192

space (Wang et al., 2024b), thereby liberating agent 193

capabilities from the constraints of manually de- 194

signed predefined tool sets. Additionally, in data 195

3

Figure 3: The Operational Workflow of the GenerateCode action (left) and the GenerateSQL action (right).

analysis tasks, operations such as text content re-196

trieval, tabular file structure acquisition, and SQL197

query execution are frequently required. However,198

LLMs often indiscriminately fetch entire file con-199

tents when accessing such information. This ne-200

cessitates our specialized design for these actions,201

rather than relying entirely on executable code.202

We provide high-level specifications of these ac-203

tions below, with their concrete implementations204

detailed in our experiments.205

• ReadTable(file_path): This action retrieves206

structural metadata (e.g., column names, data207

types) and a data preview from structured208

files.209

• ReadText(file_path, task_goal): Designed to210

search target content in text files using LLMs’211

natural language processing capabilities.212

• GenerateCode(task_goal): This action gen-213

erates code through LLMs and executes it214

within a Docker sandbox to accomplish speci-215

fied parameterized objectives. The operational216

workflow is illustrated in Figure 3 (left).217

• GenerateSQL(file_path, task_goal): This218

action first retrieves all table names from219

the target database, obtains relevant table220

schemas, then generates and executes SQL221

queries to achieve specified tasks. The op-222

erational workflow is illustrated in Figure 3223

(right).224

• Decompress(file_path): This action auto-225

matically selects appropriate decompression226

methods based on file extensions to handle227

compressed files.228

• Answer(output): This action submits final229

task results, which may include filenames, text230

information, or failure notifications.231

As illustrated in Figure 2, the primary objective 232

of Stage 1 is to enable LLMs to perform high-level 233

task planning at the holistic level. This stage contin- 234

uously generates subsequent action purposes based 235

on the agent’s contextual state and final task ob- 236

jective, while predicting the next executable action 237

from the action space to achieve the designated 238

purpose. Conversely, Stage 2 focuses on enabling 239

LLMs to conduct detailed task planning for imple- 240

menting concrete operations required by the cur- 241

rent action. The separation of abstract high-level 242

planning (Stage 1) from concrete implementation 243

planning (Stage 2) stems from their distinct respon- 244

sibilities. It is well-established that LLMs have lim- 245

ited attention capacity. Ambiguous responsibilities 246

or excessively lengthy contextual information may 247

induce hallucinations and related issues. Our hier- 248

archical approach allows LLMs to concentrate all 249

computational attention on singular responsibilities, 250

simultaneously reducing the required contextual 251

information for reasoning. Furthermore, detailed 252

task implementation often proves challenging to 253

resolve through single-pass LLM reasoning. This 254

decoupled architecture facilitates human-controlled 255

refinement of specific action implementations (e.g., 256

code generation, SQL command formulation) dur- 257

ing the reasoning process. 258

The detailed prompt for the first stage is provided 259

in Appendix A.2.1. Briefly, the prompt comprises 260

four key components: 261

• Action Space: A predefined set of actions 262

controlling LLMs’ behavior, primarily catego- 263

rized into information retrieval, code genera- 264

tion, and auxiliary actions. 265

• Files Info: Real-time file information in the 266

current workspace represented as a directory 267

tree structure. 268

4

Figure 4: LLMs employ programmatic code execution to retrieve tabular data schemas or textual content.

• Task: Textual description of the current ob-269

jective.270

• Action History: Record of the agent’s real-271

time progress and achieved outcomes.272

2.3 Refinement of Environmental Feedback273

Information274

In traditional approaches, agents directly store275

each interaction record with LLMs in their context.276

While practitioners recognize that richer informa-277

tion can enhance LLMs’ global comprehension, the278

indiscriminate inclusion of excessive information279

into the reasoning context can introduce substantial280

noise. Compared to allowing LLMs to freely ac-281

cess vast amounts of irrelevant information, CtxWF282

refines contextual information fed back to the agent283

when implementing the actions. This approach ef-284

fectively reduces the context window size required285

for LLMs’ reasoning processes, enabling LLMs286

to comprehend contextual background information287

more effortlessly during inference. Additionally,288

we incorporate scenario-specific guidance to redi-289

rect LLMs back to valid trajectories when erro-290

neous behaviors occur, avoiding unproductive error291

correction cycles. For each action implementation,292

we meticulously monitor its output to retain task-293

beneficial information while filtering irrelevant con-294

tent. Implementation details of these actions are295

provided in Appendix A.3.296

The customization objectives for key actions are 297

outlined below: 298

ReadTable: This action filters out raw data in 299

structured files, retaining only structural metadata. 300

As illustrated in the upper section of Figure 4, while 301

LLMs attempt to retrieve table information through 302

code execution, only the structural metadata in the 303

output proves operationally meaningful. The sub- 304

stantial data entries highlighted in red, when incor- 305

porated into the LLM’s reasoning context, not only 306

fail to facilitate downstream data processing but ac- 307

tively introduces noise into the reasoning process. 308

The automated filtration mechanism embedded in 309

this action systematically eliminates such extrane- 310

ous data elements. 311

ReadText: This action selectively outputs task- 312

relevant content from specified files, eliminating 313

extraneous text. This mechanism is critical when 314

processing multiple lengthy text files, as excessive 315

file content occupying the LLM’s context often 316

leads to attention dispersion, task failure, and un- 317

necessarily consuming tokens. In the lower sec- 318

tion of Figure 4, while LLMs attempt to extract 319

calculation formulas through code, the irrelevant 320

text segments highlighted in red provide no op- 321

erational value. This action systematically filters 322

such non-essential content through targeted pattern 323

matching. 324

GenerateCode: In Figure 3 (left), when code 325

execution errors occur, this action loads only the 326

5

previous code snippet and its corresponding error327

into a temporary action context (distinct from the328

agent’s planning context). The action then asks329

LLMs to debug and regenerate the code, focusing330

each reasoning cycle on resolving a single error.331

Since excessive debug cycles typically indicate332

overcomplicated initial code proposals, making333

it difficult for LLMs to pinpoint error messages,334

the agent prompts LLMs to re-plan task objectives335

upon reaching a predefined threshold of debugging336

cycles.337

GenerateSQL: This action follows the same338

feedback design principles as GenerateCode (Fig-339

ure 3, right).340

3 Experiments341

3.1 Dataset and Baseline342

DA-Code is a code generation benchmark specifi-343

cally designed for evaluating LLM-based agents in344

data science tasks. Distinct from conventional code345

generation benchmarks, this benchmark is designed346

to enable agents to explore data and leverage pro-347

gramming capabilities to solve challenging objec-348

tives, rather than simply translating explicit natural349

language instructions into code. Unlike existing350

benchmarks like DS-1000 (Lai et al., 2023) and Hu-351

manEval (Chen et al., 2021), which primarily focus352

on directly converting natural language instructions353

into executable code, DA-Code establishes a more354

realistic scenario that simulates real-world data sci-355

ence tasks under given requirements and workspace356

constraints. DA-Code tasks not only feature in-357

herently complex solutions but also incorporate358

diverse data sources (databases, spreadsheets, doc-359

uments, codebases, etc.) containing multifaceted360

information and data from authentic programming361

scenarios. Moreover, these information sources362

may be saturated with noise and extraneous infor-363

mation. We constructed a subset DA-Code-100364

containing 100 randomly sampled tasks for evalu-365

ation, with difficulty levels distributed as 23 easy,366

60 medium, and 17 challenging tasks.367

To address the challenges posed by the DA-368

Code benchmark where no existing agent frame-369

work has demonstrated sufficient capability, the au-370

thors of DA-Code developed DA-Agent, an LLM-371

based agent framework specialized for complex372

data analysis through dynamic environment inter-373

actions. DA-Agent demonstrates superior perfor-374

mance compared to prevailing agent frameworks375

including OpenHand (Wang et al., 2024c), Auto-376

Gen (Wu et al., 2024), and X-Agent (Team, 2023) 377

in comprehensive evaluations. Notably, while DA- 378

Agent replaces Python code with Bash commands 379

for environmental information retrieval, LLMs still 380

acquire substantial noise through Bash operations. 381

For instance, using head command to read CSV 382

files could capture redundant lines, and cat com- 383

mand outputs the entire file contents indiscrimi- 384

nately. 385

3.2 Overall Performance 386

3.2.1 Experimental Setup 387

We employed two state-of-the-art open-source 388

models, Qwen2.5-72B-Instruct (Yang et al., 2024) 389

and DeepSeek-V3 (Liu et al., 2024a), as open- 390

source representatives, along with the closed- 391

source model GPT-4o-2024-08-06 (Achiam et al., 392

2023) as base testing models. All models were 393

configured with a temperature of 0, a maximum 394

of 20 action steps, and a 60-second timeout per 395

action execution. We evaluated each LLM-based 396

agent on DA-Code-100 through three rounds of 397

testing. For each task, we calculated both the av- 398

erage score (aggregating performance across three 399

trials) and the peak score (highest achievement in 400

any trial). The final evaluation metrics Avg@3 and 401

Max@3 were subsequently derived by computing 402

the mean values of these task-specific scores across 403

all benchmark tasks. 404

3.2.2 Experimental Result 405

As shown in Table 1, we compared the performance 406

of CtxWF against baseline methods across various 407

base LLMs. The results demonstrate that CtxWF 408

achieves superior evaluation metrics across almost 409

all models and difficulty levels, except for a minor 410

2.04% decrease in maximum score at medium dif- 411

ficulty on Qwen2-72B-Instruct. This indicates our 412

method’s enhanced capability to leverage LLMs’ 413

reasoning potential in most scenarios. Compared 414

with existing methods (Figure 1) that rely on multi- 415

ple reflection iterations to supplement LLMs’ rea- 416

soning context, our proactive information acquisi- 417

tion mechanism obtains most of the task-relevant 418

contextual information before LLMs initiate their 419

reasoning process. This approach directly re- 420

duces the likelihood of LLM hallucinations at their 421

source, while also preventing context overload is- 422

sues caused by storing extensive intermediate re- 423

flection steps as historical records in the agent’s 424

reasoning context. Furthermore, while reflection- 425

based methods prove effective for detectable er- 426

6

Model Easy Medium Hard Total

Avg@3 Max@3 Avg@3 Max@3 Avg@3 Max@3 Avg@3 Max@3

DA-Agent (Qwen2.5-72B) 40.77 44.62 22.94 35.70 12.12 21.69 25.21 35.37
DA-Agent (DeepSeek-V3) 44.50 50.27 25.62 29.12 14.87 18.69 28.13 32.21
DA-Agent (gpt-4o) 38.66 49.67 21.81 29.19 13.31 19.48 24.24 32.25

CtxWF (Qwen2.5-72B) 49.11 55.48 25.09 33.66 15.13 25.84 28.92 37.35
CtxWF (DeepSeek-V3) 47.38 57.66 29.05 39.50 18.98 22.69 31.55 40.82
CtxWF (gpt-4o) 45.03 54.25 27.95 42.80 18.31 24.15 30.24 42.26

Table 1: Performance comparison between CtxWF and baselines on selected LLMs. Avg@3 denotes the agent’s
mean accuracy rate across three testing trials. Max@3 reflects the peak accuracy rate observed during these trials.

rors (e.g., code execution failures), they struggle427

to supplement missing task-critical information in428

other scenarios. For instance, in Figure 1, while429

sample_result.csv specifies "Movie" as the re-430

quired column header, reflection-based methods431

would submit results immediately after successful432

code execution. In contrast, CtxWF proactively ac-433

quires the structure of sample_result.csv and ex-434

plicitly specifies column headers during file preser-435

vation.436

Notably, CtxWF (GPT-4o) achieves a peak accu-437

racy of 42.26%, representing a 10.01 percentage-438

point improvement over DA-Agent (GPT-4o),439

which substantiates that our methodology enables440

more effective exploitation of LLMs’ latent capabil-441

ities. Furthermore, CtxWF (DeepSeek-V3) attains442

an average accuracy of 31.55%, outperforming its443

DA-Agent counterpart by 3.42 percentage points,444

which suggests more consistent performance in445

complex data analysis tasks.446

3.3 Ablation Study447

3.3.1 Experimental Setup448

We investigate the performance degradation in av-449

erage accuracy and peak accuracy when removing450

key functional designs of GPT-4o-based CtxWF451

for task processing (Table 2), using three rounds of452

testing on the DA-Code-100 dataset. The experi-453

mental configurations are designed as follows:454

• w/o Preprocess1: The proactive information455

acquisition mechanism operates in two phases:456

Preprocess1 initializes contextual information457

before action prediction, while Preprocess2 re-458

trieves table schema information before SQL459

generation. This experiment removes the first460

preprocessing phase.461

• w/o Preprocess1 & 2: This configuration462

eliminates both preprocessing phases de- 463

signed for active information acquisition. 464

• w/o Refinement of Env Feedback: This 465

setup removes the environment feedback re- 466

finement module, simulating scenarios where 467

LLMs freely access information (printing first 468

five rows when reading tables or full text files). 469

It also disables guidance mechanisms when 470

code/SQL generation fails. 471

• w/o Two-Stage Planning & Refinement of 472

Env Feedback: Since feedback refinement 473

requires separation of abstract planning and 474

detailed implementation, removing two-stage 475

planning consequently disables the feedback 476

refinement capability. 477

Configuration ∆Avg@3 ∆Max@3

w/o Preprocess1 −1.44% −5.02%
w/o Preprocess1 & 2 −3.16% −5.35%
w/o Refinement of Env Feedback −3.54% −3.57%
w/o Two-Stage Planning &

Refinement of Env Feedback −3.66% −7.4%

Table 2: Ablation Study

3.3.2 Experimental Result 478

The experimental results analysis demonstrates that 479

each module in the proposed method contributes 480

significantly to model performance. The compara- 481

tive analysis of ablation study data yields supple- 482

mentary insights: 483

• The complete removal of the proactive in- 484

formation acquisition functionality causes 485

more severe accuracy degradation compared 486

to solely removing the preprocessing 1, indi- 487

cating that the proactive information acqui- 488

sition mechanism benefits LLMs’ reasoning 489

capabilities across diverse scenarios. 490

7

• The simultaneous removal of both two-stage491

planning and environmental feedback opti-492

mization modules leads to the most substantial493

performance drop (-7.4% in max@3 metric),494

proving that the synergistic gain between the495

hierarchical planning mechanism and feed-496

back refinement module effectively enhances497

the model’s upper-bound capability in han-498

dling complex tasks. Moreover, the com-499

pounded accuracy deterioration from remov-500

ing both components exceeds that of solely501

eliminating environmental feedback optimiza-502

tion, suggesting that the two-stage planning503

mechanism itself plays a pivotal standalone504

role.505

4 Related Work506

LLM-based Agent Systems: Agent systems con-507

structed with LLMs have significantly enhanced the508

performance of LLMs in solving various complex509

tasks. Currently, there are four primary agent de-510

sign patterns: (1) Reflection: Enabling agents to re-511

view and revise based on self-generated outputs or512

environmental feedback. SELF-REFINE (Madaan513

et al., 2023), ReACT (Yao et al., 2023), and Re-514

flexion (Shinn et al., 2023) demonstrate that post-515

generation reflection effectively improves LLM per-516

formance, though they primarily focus on enhanc-517

ing reasoning through iterative multi-step feedback.518

(2) Tool Invocation: Expanding LLM capabilities519

beyond pure NLP tasks by invoking external APIs.520

Gorilla (Patil et al., 2024) and ToolLLM (Qin et al.,521

2024) improve API-calling accuracy through API522

dataset construction and model fine-tuning, while523

Chameleon (Lu et al., 2023) enhances LLM per-524

formance via plug-and-play module integration.525

(3) Planning: Leveraging LLMs’ reasoning abil-526

ities to automate task decomposition and execution527

planning. Methods like CoT (Wei et al., 2022),528

PoT (Chen et al., 2023), and SCoT (Li et al., 2025)529

enhance reasoning performance by generating in-530

termediate reasoning steps before final solutions.531

(4) Multi-Agent Collaboration: Coordinating mul-532

tiple role-playing LLMs to accomplish complex533

tasks. Systems like ChatDev (Qian et al., 2024) and534

AutoGen (Wu et al., 2024) simulate real-world col-535

laborative environments to solve intricate problems.536

However, existing approaches inadequately address537

the critical role of context quality during LLM rea-538

soning. CtxWF innovatively improves reasoning539

performance by integrating reflection (error feed-540

back mechanisms during code/SQL execution and541

guided regeneration after failures), tools (action in- 542

vocation), planning (preprocessing and action plan- 543

ning phases), and multi-agent principles (single- 544

responsibility role design). These integrations col- 545

lectively ensure high-quality context—sufficient 546

information, minimal noise, and task-specific fo- 547

cus—during every LLM reasoning step. 548

Code as Action: LLMs have achieved remark- 549

able results on code generation benchmarks. Given 550

code’s universality, many systems employ code as 551

the primary agent-environment interaction medium. 552

VOYAGER (Wang et al., 2024a) enables automated 553

exploration in Minecraft through code-based inter- 554

actions. CodeAct (Wang et al., 2024b) exclusively 555

uses code for multi-step task solving, while Open- 556

Hands (Wang et al., 2024c) extends this paradigm 557

for coding-specific agents. However, prioritizing 558

generality through pure code generation often sac- 559

rifices accuracy. CtxWF addresses this trade-off 560

through three key strategies: (1) guiding LLMs to 561

proactively acquire task-critical information before 562

code generation, (2) encouraging task decomposi- 563

tion when handling overly complex problems, (3) 564

controlling feedback quality post environment in- 565

teraction. These mechanisms collectively enhance 566

LLMs’ performance in real-world data analysis 567

tasks resolution. 568

5 Conclusion 569

In summary, we present a novel agent design 570

methodology that addresses the limitations of cur- 571

rent LLM-based agents by focusing on the man- 572

agement of global context. Our approach enables 573

agents to concentrate on single objectives dur- 574

ing each reasoning cycle while maintaining high- 575

quality reasoning context, thereby achieving supe- 576

rior overall performance. The proposed method 577

demonstrates promising capabilities in automati- 578

cally resolving complex real-world problems, ex- 579

hibiting remarkable effectiveness on the challeng- 580

ing DA-Code benchmark for real-world data anal- 581

ysis. It establishes new state-of-the-art accuracy 582

across multiple models and evaluation metrics. We 583

anticipate that incorporating additional optimiza- 584

tion strategies and novel algorithms into the exist- 585

ing design framework could further enhance per- 586

formance across broader application scenarios in 587

future research. 588

8

6 Limitations589

Domain Limitations: Our approach requires cus-590

tomizing the workflows of agents to replace certain591

decision-making processes of LLMs, which com-592

promises some degree of generality. However, such593

trade-offs are inevitable when constructing stable594

and effective agents, as there exists an inherent595

tension between generality and determinism.596

Inaccuracy Issues: Despite our meticulous de-597

sign of the agent architecture for accuracy, sev-598

eral failure patterns persist: (1) During two-stage599

planning, LLMs frequently generate overly com-600

plex subsequent action objectives. Even with cus-601

tomized prompting strategies to induce simpler602

task decomposition, LLMs often reiterate identical603

problematic goals; (2) When executing ReadText604

actions, LLMs occasionally extract only partial605

task-relevant content, with omitted critical infor-606

mation leading to subsequent operations deviating607

from file-specified requirements; (3) Our current608

assumption of a compact action space (to preserve609

LLM context window capacity) may limit handling610

of complex tasks requiring extensive actions. Po-611

tential solutions could involve dynamic retrieval of612

action sets via RAG (Retrieval-Augmented Gener-613

ation) (Gao et al., 2023) prior to task planning.614

These limitations highlight promising directions615

for future agent research. While substantial opti-616

mization opportunities remain, we maintain these617

shortcomings do not diminish the significance of618

our contributions. The current CtxWF framework,619

despite employing basic code-generated actions620

and a simplistic error feedback mechanism for621

LLM reflection, already demonstrates competitive622

performance. We posit that integrating domain623

expert workflows (e.g., data scientists’ problem-624

solving patterns) into agent architectures could en-625

able LLMs to generate more effective solutions - a626

valuable direction for subsequent research.627

7 Ethics Statement628

The system is designed to augment rather than re-629

place data scientists. By incorporating human cog-630

nitive decision-making processes into the agent631

design architecture, our approach strategically en-632

hances LLM performance in data analysis through633

controlled restriction of certain decision-making634

authorities. All datasets employed in this study635

were sourced from repositories with explicit MIT636

open-source licenses. The complete implementa-637

tion codebase, including evaluation datasets, will638

subsequently be released under the same MIT li- 639

cense to ensure reproducibility and community ac- 640

cessibility. 641

References 642

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama 643
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, 644
Diogo Almeida, Janko Altenschmidt, Sam Altman, 645
Shyamal Anadkat, et al. 2023. Gpt-4 technical report. 646
arXiv preprint arXiv:2303.08774. 647

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen 648
Chebotar, Omar Cortes, Byron David, Chelsea Finn, 649
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Haus- 650
man, et al. 2022. Do as i can, not as i say: Ground- 651
ing language in robotic affordances. arXiv preprint 652
arXiv:2204.01691. 653

Ben Alderson-Day and Charles Fernyhough. 2015. In- 654
ner speech: Development, cognitive functions, phe- 655
nomenology, and neurobiology. Psychological bul- 656
letin, 141(5):931. 657

Alan Baddeley. 1992. Working memory. Science, 658
255(5044):556–559. 659

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 660
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka- 661
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 662
Greg Brockman, et al. 2021. Evaluating large 663
language models trained on code. arXiv preprint 664
arXiv:2107.03374. 665

Wenhu Chen, Xueguang Ma, Xinyi Wang, and 666
William W. Cohen. 2023. Program of thoughts 667
prompting: Disentangling computation from reason- 668
ing for numerical reasoning tasks. Transactions on 669
Machine Learning Research. 670

Anthony Steven Dick and Willis F. Overton. 2009. Self- 671
and social-regulation social interaction and the devel- 672
opment of social understanding and executive func- 673
tions. 674

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, 675
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen 676
Wang. 2023. Retrieval-augmented generation for 677
large language models: A survey. arXiv preprint 678
arXiv:2312.10997. 679

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and 680
Igor Mordatch. 2022. Language models as zero-shot 681
planners: Extracting actionable knowledge for em- 682
bodied agents. In Proceedings of the 39th Interna- 683
tional Conference on Machine Learning, volume 162 684
of Proceedings of Machine Learning Research, pages 685
9118–9147. PMLR. 686

Yiming Huang, Zhenghao Lin, Xiao Liu, Yeyun Gong, 687
Shuai Lu, Fangyu Lei, Yaobo Liang, Yelong Shen, 688
Chen Lin, Nan Duan, and Weizhu Chen. 2024a. 689
Competition-level problems are effective LLM eval- 690
uators. In Findings of the Association for Computa- 691
tional Linguistics: ACL 2024, pages 13526–13544, 692

9

https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://api.semanticscholar.org/CorpusID:52995971
https://api.semanticscholar.org/CorpusID:52995971
https://api.semanticscholar.org/CorpusID:52995971
https://api.semanticscholar.org/CorpusID:52995971
https://api.semanticscholar.org/CorpusID:52995971
https://api.semanticscholar.org/CorpusID:52995971
https://api.semanticscholar.org/CorpusID:52995971
https://proceedings.mlr.press/v162/huang22a.html
https://proceedings.mlr.press/v162/huang22a.html
https://proceedings.mlr.press/v162/huang22a.html
https://proceedings.mlr.press/v162/huang22a.html
https://proceedings.mlr.press/v162/huang22a.html
https://doi.org/10.18653/v1/2024.findings-acl.803
https://doi.org/10.18653/v1/2024.findings-acl.803
https://doi.org/10.18653/v1/2024.findings-acl.803

Bangkok, Thailand. Association for Computational693
Linguistics.694

Yiming Huang, Jianwen Luo, Yan Yu, Yitong Zhang,695
Fangyu Lei, Yifan Wei, Shizhu He, Lifu Huang,696
Xiao Liu, Jun Zhao, and Kang Liu. 2024b. DA-697
code: Agent data science code generation benchmark698
for large language models. In Proceedings of the699
2024 Conference on Empirical Methods in Natural700
Language Processing, pages 13487–13521, Miami,701
Florida, USA. Association for Computational Lin-702
guistics.703

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,704
Ruiqi Zhong, Luke Zettlemoyer, Wen-Tau Yih,705
Daniel Fried, Sida Wang, and Tao Yu. 2023. DS-706
1000: A natural and reliable benchmark for data sci-707
ence code generation. In Proceedings of the 40th708
International Conference on Machine Learning, vol-709
ume 202 of Proceedings of Machine Learning Re-710
search, pages 18319–18345. PMLR.711

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2025. Struc-712
tured chain-of-thought prompting for code genera-713
tion. ACM Trans. Softw. Eng. Methodol., 34(2).714

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer,715
and Michael D. Ernst. 2018. NL2Bash: A corpus716
and semantic parser for natural language interface717
to the linux operating system. In Proceedings of718
the Eleventh International Conference on Language719
Resources and Evaluation (LREC 2018), Miyazaki,720
Japan. European Language Resources Association721
(ELRA).722

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,723
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi724
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a.725
Deepseek-v3 technical report. arXiv preprint726
arXiv:2412.19437.727

Junwei Liu, Kaixin Wang, Yixuan Chen, Xin Peng,728
Zhenpeng Chen, Lingming Zhang, and Yiling Lou.729
2024b. Large language model-based agents for730
software engineering: A survey. arXiv preprint731
arXiv:2409.02977.732

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-733
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter734
Clark, and Ashwin Kalyan. 2022. Learn to explain:735
Multimodal reasoning via thought chains for science736
question answering. In Advances in Neural Infor-737
mation Processing Systems, volume 35, pages 2507–738
2521. Curran Associates, Inc.739

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-740
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and741
Jianfeng Gao. 2023. Chameleon: Plug-and-play com-742
positional reasoning with large language models. In743
Advances in Neural Information Processing Systems,744
volume 36, pages 43447–43478. Curran Associates,745
Inc.746

Aleksandr Romanovich Luria. 1965. Ls vygotsky and747
the problem of localization of functions. Neuropsy-748
chologia, 3(4):387–392.749

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler 750
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, 751
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, 752
Shashank Gupta, Bodhisattwa Prasad Majumder, 753
Katherine Hermann, Sean Welleck, Amir Yazdan- 754
bakhsh, and Peter Clark. 2023. Self-refine: Itera- 755
tive refinement with self-feedback. In Advances in 756
Neural Information Processing Systems, volume 36, 757
pages 46534–46594. Curran Associates, Inc. 758

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, 759
Long Ouyang, Christina Kim, Christopher Hesse, 760
Shantanu Jain, Vineet Kosaraju, William Saunders, 761
et al. 2021. Webgpt: Browser-assisted question- 762
answering with human feedback. arXiv preprint 763
arXiv:2112.09332. 764

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E 765
Gonzalez. 2024. Gorilla: Large language model 766
connected with massive apis. In Advances in Neural 767
Information Processing Systems, volume 37, pages 768
126544–126565. Curran Associates, Inc. 769

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan 770
Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng 771
Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, 772
and Maosong Sun. 2024. ChatDev: Communicative 773
agents for software development. In Proceedings 774
of the 62nd Annual Meeting of the Association for 775
Computational Linguistics (Volume 1: Long Papers), 776
pages 15174–15186, Bangkok, Thailand. Association 777
for Computational Linguistics. 778

Bo Qiao, Liqun Li, Xu Zhang, Shilin He, Yu Kang, 779
Chaoyun Zhang, Fangkai Yang, Hang Dong, Jue 780
Zhang, Lu Wang, et al. 2023. Taskweaver: 781
A code-first agent framework. arXiv preprint 782
arXiv:2311.17541. 783

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan 784
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, 785
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, 786
Ruobing Xie, Jie Zhou, Mark Gerstein, dahai li, 787
Zhiyuan Liu, and Maosong Sun. 2024. ToolLLM: 788
Facilitating large language models to master 16000+ 789
real-world APIs. In The Twelfth International Con- 790
ference on Learning Representations. 791

Noah Shinn, Federico Cassano, Ashwin Gopinath, 792
Karthik Narasimhan, and Shunyu Yao. 2023. Re- 793
flexion: language agents with verbal reinforcement 794
learning. In Advances in Neural Information Process- 795
ing Systems, volume 36, pages 8634–8652. Curran 796
Associates, Inc. 797

X Team. 2023. Xagent: An autonomous agent for com- 798
plex task solving. XAgent blog. 799

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man- 800
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An- 801
ima Anandkumar. 2024a. Voyager: An open-ended 802
embodied agent with large language models. Trans- 803
actions on Machine Learning Research. 804

10

https://doi.org/10.18653/v1/2024.emnlp-main.748
https://doi.org/10.18653/v1/2024.emnlp-main.748
https://doi.org/10.18653/v1/2024.emnlp-main.748
https://doi.org/10.18653/v1/2024.emnlp-main.748
https://doi.org/10.18653/v1/2024.emnlp-main.748
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://doi.org/10.1145/3690635
https://doi.org/10.1145/3690635
https://doi.org/10.1145/3690635
https://doi.org/10.1145/3690635
https://doi.org/10.1145/3690635
https://aclanthology.org/L18-1491/
https://aclanthology.org/L18-1491/
https://aclanthology.org/L18-1491/
https://aclanthology.org/L18-1491/
https://aclanthology.org/L18-1491/
https://proceedings.neurips.cc/paper_files/paper/2022/file/11332b6b6cf4485b84afadb1352d3a9a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/11332b6b6cf4485b84afadb1352d3a9a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/11332b6b6cf4485b84afadb1352d3a9a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/11332b6b6cf4485b84afadb1352d3a9a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/11332b6b6cf4485b84afadb1352d3a9a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/871ed095b734818cfba48db6aeb25a62-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/871ed095b734818cfba48db6aeb25a62-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/871ed095b734818cfba48db6aeb25a62-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/e4c61f578ff07830f5c37378dd3ecb0d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/e4c61f578ff07830f5c37378dd3ecb0d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/e4c61f578ff07830f5c37378dd3ecb0d-Paper-Conference.pdf
https://doi.org/10.18653/v1/2024.acl-long.810
https://doi.org/10.18653/v1/2024.acl-long.810
https://doi.org/10.18653/v1/2024.acl-long.810
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=ehfRiF0R3a

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang,805
Yunzhu Li, Hao Peng, and Heng Ji. 2024b. Exe-806
cutable code actions elicit better LLM agents. In807
Forty-first International Conference on Machine808
Learning.809

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xi-810
angru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi Song,811
Bowen Li, Jaskirat Singh, et al. 2024c. Openhands:812
An open platform for ai software developers as gen-813
eralist agents. arXiv preprint arXiv:2407.16741.814

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten815
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,816
and Denny Zhou. 2022. Chain-of-thought prompt-817
ing elicits reasoning in large language models. In818
Advances in Neural Information Processing Systems,819
volume 35, pages 24824–24837. Curran Associates,820
Inc.821

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,822
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,823
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah,824
Ryen W White, Doug Burger, and Chi Wang. 2024.825
Autogen: Enabling next-gen LLM applications via826
multi-agent conversation. In ICLR 2024 Workshop827
on Large Language Model (LLM) Agents.828

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,829
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,830
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-831
nical report. arXiv preprint arXiv:2412.15115.832

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and833
Karthik Narasimhan. 2020. Keep CALM and ex-834
plore: Language models for action generation in text-835
based games. In Proceedings of the 2020 Conference836
on Empirical Methods in Natural Language Process-837
ing (EMNLP), pages 8736–8754, Online. Association838
for Computational Linguistics.839

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak840
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.841
React: Synergizing reasoning and acting in language842
models. In The Eleventh International Conference843
on Learning Representations.844

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,845
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-846
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir847
Radev. 2018. Spider: A large-scale human-labeled848
dataset for complex and cross-domain semantic pars-849
ing and text-to-SQL task. In Proceedings of the 2018850
Conference on Empirical Methods in Natural Lan-851
guage Processing, pages 3911–3921, Brussels, Bel-852
gium. Association for Computational Linguistics.853

Ekaterina Zavershneva and Rene van der Veer. 2018.854
Thinking and speech.855

11

https://openreview.net/forum?id=jJ9BoXAfFa
https://openreview.net/forum?id=jJ9BoXAfFa
https://openreview.net/forum?id=jJ9BoXAfFa
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://openreview.net/forum?id=uAjxFFing2
https://openreview.net/forum?id=uAjxFFing2
https://openreview.net/forum?id=uAjxFFing2
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://api.semanticscholar.org/CorpusID:171433785

A Method856

A.1 Proactive Information Acquisition857

Prompt for the preprocessing steps before proceed-858

ing to the next action planning:859
860

ROLE861
You are an assistant who evaluates862

whether the current code task863
requires more file information864
according to the rules. If the rules865
are violated , you can only use the866

actions provided in the ACTION SPACE867
to acquire all the necessary info868

that has not been acquired.869
870

ACTION SPACE871
{retrieval_action_space}872

873
Rules874
1. You need to ensure that I have875

already obtained the necessary file876
information before executing the877
current code task.878

2. You should first obtain the relevant879
information about the file before880
saving content to a file.881

3. You should ensure that you have882
obtained the format information for883
the specified file.884

885
Current directory886
{files_info}887

888
Current code task889
{current_task}890

891
RESPONSE FORMAT892
1. thought: Based on the information I893

listed above , do reasoning to894
evaluate the code task.895

2. actions: All the signature of the896
actions you need.897

898
‘‘‘json899
{900

"thought ": "thought",901
"actions ": [" signature "]902

}903
‘‘‘904905

Prompt for selecting relevant database table906

names from the database before generating SQL:907
908

ROLE909
You are a database expert , skilled at910

identifying the tables in a database911
that need to be examined further912

based on the current task goal.913
914

Database table name915
‘‘‘916
{tables}917
‘‘‘918

919
Current task goal920
{current_task}921

922
RESPONSE FORMAT923

1. thought: Based on the information I 924
listed above , do reasoning to 925
evaluate the task. 926

2. tables: All the name of the tables 927
you need to be examined further. 928

929
‘‘‘json 930
{ 931

"thought ": "thought", 932
"tables ": [] 933

} 934
‘‘‘ 935936

A.2 Stage 1 937

A.2.1 Prompt for planning 938

The prompt used in the first stage to predict the 939

next action: 940
941

ROLE 942
You are a data scientist proficient in 943

data analysis , skilled at using code 944
to solve data -related problems. You 945
can only use the actions provided 946

in the ACTION SPACE to determine the 947
next action to do. The maximum 948

number of the actions you can take 949
is {max_steps }. 950

951
ACTION SPACE 952
{action_space} 953

954
KNOWN FACTS 955
Current directory 956
{files_info} 957
Final task 958
{task} 959
Completed action so far 960
{action_history} 961

962
ATTENTION 963
1. You need to fully understand the 964

action space and its arguments 965
before using it. 966

2. You should first understand the known 967
facts before handling the task. 968

3. You only need to execute the action 969
for the same argument once. 970

4. Before finishing the task , ensure all 971
instructions are met and verify the 972
existence and correctness of any 973

generated files. 974
5. If a task goal fails multiple times , 975

try breaking it down into multiple 976
simpler subtasks , and print the 977
results of the subtasks or save them 978
to a temporary file. Finally , merge 979
these files. 980

981
RESPONSE FORMAT 982
For each task input , your response 983

should contain: 984
1. Based on the information I listed 985

above , do reasoning about what the 986
next action should be. (prefix " 987
Thought: "). 988

2. One action string in the ACTION SPACE 989
(prefix "Action: "). 990991

12

A.2.2 Action space992

ReadTable993
994

ViewTable Action995
* Signature: ViewTable(file_path ="path/996

to/table_file ")997
* Description: This action will get the998

table structure and a portion of the999
data of the table file located at ’1000

file_path ’.1001
* Constraints:1002

- The table file must be accessible1003
and in a tabular data format (e.g1004
., .csv , .tsv).1005

* Example: ViewTable(file_path ="info.csv1006
")10071008

ReadText1009
1010

ReadTextFile Action1011
* Signature: ReadTextFile(file_path ="1012

path/to/file", task_goal ="a detailed1013
description of the information you1014

want to obtain in the file")1015
* Description: This action will read the1016

file and extract a ** relevant1017
section of text** from the file1018
specified by ’file_path ’ based on1019
the ’task_goal ’.1020

* Example: ReadTextFile(file_path ="info.1021
txt", task_goal ="the description for1022
’money ’")10231024

GenerateCode1025
1026

CodeTaskExecutor Action1027
* Signature: CodeTaskExecutor(task_goal1028

=" task_goal ")1029
* Description: This action will generate1030

and execute the program code to1031
achieve the task goal.1032

* Example: CodeTaskExecutor(task_goal ="1033
Print the ’Hello , world!’ string .")10341035

GenerateSQL1036
1037

SQLTaskExecutor Action1038
* Signature: SQLTaskExecutor(file_path ="1039

path/to/database_file", task_goal ="a1040
detailed description of the task")1041

* Description: This action will generate1042
and execute the SQL commands on the1043
specified database file to achieve1044

the task goal.1045
* Constraints:1046

- The database file must be accessible1047
and in a format compatible with1048

SQLite (e.g., .sqlite , .db).1049
* Example: SQLTaskExecutor(file_path ="1050

data.sqlite", task_goal =" Calculate1051
the average of the quantities .")10521053

Decompress1054
1055

Decompress Action1056
* Signature: Decompress(file_path ="path/1057

to/compressed_file ")1058
* Description: This action will extract1059

the contents of the compressed file1060
located at ’file_path ’. It supports1061
.zip and .tar and .gz formats.1062

* Examples: 1063
- Example1: Decompress(file_path ="data 1064

.zip") 1065
- Example2: Decompress(file_path ="data 1066

.gz") 10671068

Answer 1069
1070

Answer Action 1071
* Signature: Answer(output =" 1072

literal_answer_or_output_path ") 1073
* Description: This action denotes the 1074

completion of the entire task and 1075
returns the final answer or the 1076
output file/folder path. Make sure 1077
the output file is located in the 1078
initial workspace directory. 1079

* Examples: 1080
- Example1: Answer(output ="New York") 1081
- Example2: Answer(output =" result.csv 1082

") 1083
- Example3: Answer(output ="FAIL") 10841085

A.3 Stage 2 1086

The implementation details of some actions in the 1087

second stage are as follows: 1088

ReadTable 1089
1090

import pandas as pd 1091
1092

pd.set_option(’display.max_columns ’, 1093
None) 1094

pd.set_option(’display.expand_frame_repr 1095
’, False) 1096

1097
file_path = "{ file_path }" 1098
if file_path.endswith(’.xlsx ’) or 1099

file_path.endswith(’.xls ’): 1100
df = pd.read_excel(file_path) 1101

elif file_path.endswith(’.tsv ’): 1102
df = pd.read_csv(file_path , sep=’\t 1103

’) 1104
else: 1105

df = pd.read_csv(file_path) 1106
1107

print(df.head (1)) 1108
print (’...’) 1109
print(f’[{len(df)} rows x {len(df. 1110

columns)} columns]’) 11111112

ReadText 1113
1114

You are a helpful assistant in 1115
information retrieval. Now I need to 1116
obtain some information , and you 1117

should extract the relevant snippets 1118
from the file content based on the 1119

descriptions I provide. 1120
1121

The relevant snippets I need to obtain: 1122
‘‘‘ 1123
{task_goal} 1124
‘‘‘ 1125

1126
The contents of the ’{file_path}’ file: 1127
‘‘‘ 1128
{file_content} 1129
‘‘‘ 1130

13

1131
You should only respond in the format as1132

described below:1133
RESPONSE FORMAT:1134
For each input , your response should1135

contain:1136
1. One analysis of the query , reasoning1137

to determine the required1138
information (prefix "Thought: ").1139

2. One string of the relevant original1140
content snippets (prefix "Content:1141
").1142

1143
Thought: ...1144
Content:1145
‘‘‘Plain Text1146
...1147
‘‘‘11481149

GenerateCode1150

Prompt for generating code:1151
1152

ROLE1153
You are a data scientist proficient in1154

data analysis , skilled at using1155
Python code to solve data -related1156
problems. You can utilize some1157
provided APIs to address the current1158
task. If you need to print1159

information , please use the print1160
function.1161

1162
USEFUL APIS1163
{apis}1164

1165
KNOWN FACTS1166
Current directory1167
{files_info}1168
Final task1169
{task}1170
Acquired information1171
{action_history}1172
Current task1173
{current_task}1174
Wrong code from the last round1175
{last_code_info}1176

1177
RESPONSE FORMAT1178
For each task input , your response1179

should contain:1180
1. One analysis of the known facts ,1181

reasoning to complete the current1182
task (prefix "Thought: ").1183

2. One executable piece of python code1184
to achieve the current task (prefix1185
"Code: ").1186

‘‘‘python1187
...1188
‘‘‘11891190

GenerateSQL1191

Refer to Appendix A.1 for the prompt used to1192

select relevant database table names.1193

Prompt for generating SQL:1194
1195

ROLE1196
You are a database expert skilled at1197

achieving current task goal through1198
SQL commands.1199

1200
KNOWN FACTS 1201
Current directory 1202
{files_info} 1203
Final task 1204
{task} 1205
Current task 1206
{current_task} 1207
Acquired information 1208
{action_history} 1209
Database table names 1210
‘‘‘ 1211
{tables} 1212
‘‘‘ 1213
Relevant tables structure 1214
{table_columns} 1215
Wrong sql command from the last round 1216
{last_sql_info} 1217

1218
RESPONSE FORMAT 1219
1. thought: Based on the information I 1220

listed above , do reasoning to 1221
generate the SQL commands to achieve 1222
the current task goal. 1223

2. sql_command: An SQL command string. 1224
3. output: The file path where the 1225

results are saved as a CSV file. 1226
1227

‘‘‘json 1228
{ 1229

"thought ": "", 1230
"sql_command ": "", 1231
"output ": "" 1232

} 1233
‘‘‘ 12341235

14

	Introduction
	Method
	Proactive Information Acquisition
	Two-Stage Planning Framework
	Refinement of Environmental Feedback Information

	Experiments
	Dataset and Baseline
	Overall Performance
	Experimental Setup
	Experimental Result

	Ablation Study
	Experimental Setup
	Experimental Result

	Related Work
	Conclusion
	Limitations
	Ethics Statement
	Method
	Proactive Information Acquisition
	Stage 1
	Prompt for planning
	Action space

	Stage 2

