CtxWF: Context Window Focus with Global Management for LLLM Agents
in Multi-Document Workspace

Anonymous ACL submission

Abstract

LLM-based agent systems have achieved re-
markable progress in automatically solving nat-
ural language processing tasks. However, real-
world tasks often involve working within a
multi-file workspace that requires exploratory
implementation of specific objectives, demand-
ing LLMs to acquire, process, and manage
substantial information from workspace data
sources. Due to the limited attention span of
LLMs, excessive or disorganized information
can lead to distraction from core objectives dur-
ing reasoning, ultimately resulting in subop-
timal outputs. To enhance LLMs’ capability
in handling complex real-world tasks, inspired
by human problem-solving strategies, we pro-
pose CtxWEF, a context window-focused agent
that resolves long-term complex tasks through
global context management and concentrated
execution of short-term sub-tasks. CtxWF fea-
tures three key innovations: (1) Proactive acqui-
sition of essential contextual information prior
to task resolution, (2) Single-responsibility spe-
cialization of LLM reasoning to reduce context
window requirements, (3) Refinement of en-
vironmental feedback for context updates to
enhance information quality post short-term
task execution. We showcase the effective-
ness of CtxWF on agent-based data science
tasks, where it achieves state-of-the-art accu-
racy across multiple models. The GPT-4o-
powered CtxWF attains an accuracy of 42.26%,
representing a 10.01% improvement over base-
line methods.

1 Introduction

Remarkable progress has been observed in re-
cent Large Language Models (LLMs) for various
natural language processing tasks, while LLM-
based agent systems further extend these capabil-
ities. However, compared to simply transform-
ing instructions into executable code (Yu et al.,
2018; Lin et al., 2018; Chen et al., 2021; Huang

et al., 2024a; Lu et al., 2022), research on lever-
aging LLMs for complex real-world programming
tasks remains insufficient. Taking real-world data
analysis tasks as an example, the contextual in-
formation required for tasks is not always pre-
organized as natural language instructions, but
rather needs to be actively explored by LLMs
within the workspace. For instance, in the task
illustrated in Figure 1, LLMs need to proactively
retrieve the algorithmic formula stored in the
wrFormula. tex file, compute the top 10 most pop-
ular movies from the tmdb_5000_movies.csv file,
and store the results in result.csv following the for-
mat of sample_result.csv.

When tackling complex real-world data anal-
ysis tasks, humans actively utilize existing tools
(e.g., Notepad, Excel) to interact with their envi-
ronment (external world). Through this interac-
tion, they acquire task-relevant information into
working memory (Baddeley, 1992) for cognitive
reasoning (Alderson-Day and Fernyhough, 2015).
The brain filters task-related information, designs
task plans based on this filtered data, focuses atten-
tion on specific implementations, and self-regulates
(Zavershneva and van der Veer, 2018; Luria, 1965;
Dick and Overton, 2009) through environmental
feedback. For example, given the task description
and workspace files in Figure 1, humans first iden-
tify useful files, extract necessary information (e.g.,
the algorithm formula from wrFormula.tex and
table schemas of CSV files) into working memory,
then derive code solutions, and iteratively refine
them by observing execution feedback (e.g., con-
sole outputs).

Recent studies have explored methods utilizing
LLMs for interactive environment planning and
action. In these approaches, environmental out-
comes are fed back to the LLMs in text form,
enabling LLMs to generate domain-specific ac-
tions or plans, which are then executed by a con-
troller (Liu et al., 2024b; Ahn et al., 2022; Nakano
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Figure 1: Comparison between existing methods and our approach.

et al., 2021; Yao et al., 2020; Huang et al., 2022).
Alternative approaches treat code generation as
the primary interaction mechanism between agents
and environments (Qiao et al., 2023; Wang et al.,
2024b), avoiding domain-specific action design
while enhancing problem-solving versatility. How-
ever, these agents over-rely on LLMs, burdening
them with multiple responsibilities during rea-
soning (e.g., information supplementation, task
planning, and implementation) and flooding agent
contexts with lengthy, disorganized multi-turn
dialogue histories. As shown in Figure 1’s exist-
ing methods: (1) Initial solutions often lack CSV
schema information, leading to hallucinated code
(e.g., falsely assuming a “VoteCount” column in
tmdb_5000_movies.csv); (2) When LLMs per-
form reflective reasoning in a single iteration while
simultaneously handling multiple responsibilities,
their reasoning contexts become overly lengthy and
disorganized, which often leads to erroneous out-
comes; (3) Multi-round reflection, while eventu-
ally prompting schema checks, suffers from inef-
ficiency, high error rates, and redundant context
accumulation. Moreover, some hallucinated code
executions may not generate explicit errors, result-
ing in executable but incorrect solutions.

To address these challenges, we propose
CtxWF, inspired by human attentional focus dur-

ing problem-solving, which employs three key
strategies: (1) Proactively acquiring task-critical
information as contextual background before LLM
reasoning; (2) Decomposing complex long-term
task planning into multiple short-term phases, sep-
arating planning from implementation to simplify
reasoning responsibilities; (3) Distilling feedback
from successful short-term task executions to fil-
ter noise and guide LLMs toward correct paths
upon errors. These mechanisms enable CtxWF to
dynamically plan and execute phased tasks while
maintaining clean, focused reasoning contexts with
sufficient background information. Our approach
uses off-the-shelf LLMs as reasoning engines with-
out model training or fine-tuning, operating fully
autonomously without human intervention.

We demonstrate CtxWF’s effectiveness on DA-
Code (Huang et al., 2024b), a real-world complex
data analysis benchmark reflecting practical scenar-
i0s. Compared to the baseline DA-Agent (Huang
et al., 2024b), CtxWF achieves superior perfor-
mance across multiple LLMs and task difficulty
levels. The GPT-4o0-powered CtxWF reaches an
accuracy of 42.26%, outperforming DA-Agent by
10.01%. The results demonstrate that CtxWF fully
unleashes the potential of LL.Ms in solving com-
plex data analysis tasks.
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Figure 2: The Operational Workflow of CtxWF.

2 Method

CtxWF focuses on three core design components to
manage reasoning contexts: (1) The agent actively
acquires critical information required for current
task objectives as background context during rea-
soning, (2) When utilizing LLMs for single-step
reasoning, the agent concentrates on well-defined
responsibilities to reduce context length during in-
ference, and (3) The agent refines feedback infor-
mation obtained from environmental interactions to
ensure beneficial updates rather than noise injection
into subsequent reasoning contexts. Specifically, as
shown in Figure 2, CtxWF initially obtains prelim-
inary reasoning contexts during the preprocessing
phase. Subsequently, it employs LLMs for inter-
active environment planning and action execution:
first abstractly deducing the objective of the next
step and matching it with corresponding actions
from the action space, then performing secondary
planning for phase-specific implementation based
on action objectives. The framework continuously
refines environmental feedback generated by ac-
tion execution to update agent contexts, thereby
dynamically creating, maintaining, and adjusting
high-level action plans (Yao et al., 2023). The full
prompt template is provided in Appendix A.

2.1 Proactive Information Acquisition

In real-world data analysis tasks, agents must
contend with diverse data sources within their

workspace when solving problems. To address
this challenge, we have designed a mechanism that
enables agents to proactively acquire essential in-
formation before generating code-based (or SQL-
based) solutions through LLLMs. As illustrated in
Figure 2, prior to action prediction, CtxWF lever-
ages the planning capabilities of LLMs (Wei et al.,
2022) and builds on an LLM as a natural language
planner during preprocessing. Prompted by action
descriptions, the planner generates action chains
in order to retrieve task-relevant information to up-
date the agent context (Lu et al., 2023). Specifically
for SQL generation, CtxWF first acquires database
schema information pertinent to the current task as
reasoning context before initiating SQL generation.
See Appendix A.1 for the full prompt structure.

2.2 Two-Stage Planning Framework

The objective of two-stage planning is to decom-
pose a complex task into correct action sequences,
resulting in a task solution. To empower agents
to adapt to diverse complex tasks while maintain-
ing specialized reasoning responsibilities for LLMs
in each step, our system has customized a set of
generic Actions. We retain executable code gen-
eration as the core action, as it allows integrat-
ing various LLM behaviors into a unified action
space (Wang et al., 2024b), thereby liberating agent
capabilities from the constraints of manually de-
signed predefined tool sets. Additionally, in data
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Figure 3: The Operational Workflow of the GenerateCode action (left) and the GenerateSQL action (right).

analysis tasks, operations such as text content re-
trieval, tabular file structure acquisition, and SQL
query execution are frequently required. However,
LLMs often indiscriminately fetch entire file con-
tents when accessing such information. This ne-
cessitates our specialized design for these actions,
rather than relying entirely on executable code.
We provide high-level specifications of these ac-
tions below, with their concrete implementations
detailed in our experiments.

* ReadTable(file_path): This action retrieves
structural metadata (e.g., column names, data
types) and a data preview from structured
files.

* ReadText(file_path, task_goal): Designed to
search target content in text files using LLMs’
natural language processing capabilities.

* GenerateCode(task_goal): This action gen-
erates code through LLMs and executes it
within a Docker sandbox to accomplish speci-
fied parameterized objectives. The operational
workflow is illustrated in Figure 3 (left).

* GenerateSQL(file_path, task_goal): This
action first retrieves all table names from
the target database, obtains relevant table
schemas, then generates and executes SQL
queries to achieve specified tasks. The op-
erational workflow is illustrated in Figure 3
(right).

* Decompress(file_path): This action auto-
matically selects appropriate decompression
methods based on file extensions to handle
compressed files.

* Answer(output): This action submits final
task results, which may include filenames, text
information, or failure notifications.

As illustrated in Figure 2, the primary objective
of Stage 1 is to enable LLMs to perform high-level
task planning at the holistic level. This stage contin-
uously generates subsequent action purposes based
on the agent’s contextual state and final task ob-
jective, while predicting the next executable action
from the action space to achieve the designated
purpose. Conversely, Stage 2 focuses on enabling
LLMs to conduct detailed task planning for imple-
menting concrete operations required by the cur-
rent action. The separation of abstract high-level
planning (Stage 1) from concrete implementation
planning (Stage 2) stems from their distinct respon-
sibilities. It is well-established that LLMs have lim-
ited attention capacity. Ambiguous responsibilities
or excessively lengthy contextual information may
induce hallucinations and related issues. Our hier-
archical approach allows LLMs to concentrate all
computational attention on singular responsibilities,
simultaneously reducing the required contextual
information for reasoning. Furthermore, detailed
task implementation often proves challenging to
resolve through single-pass LLM reasoning. This
decoupled architecture facilitates human-controlled
refinement of specific action implementations (e.g.,
code generation, SQL command formulation) dur-
ing the reasoning process.

The detailed prompt for the first stage is provided
in Appendix A.2.1. Briefly, the prompt comprises
four key components:

* Action Space: A predefined set of actions
controlling LLMs’ behavior, primarily catego-
rized into information retrieval, code genera-
tion, and auxiliary actions.

* Files Info: Real-time file information in the
current workspace represented as a directory
tree structure.



import as
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where,

\begin{enumrate}

\item $v$ : Number of votes for the movie

\item $m$ : Minimum votes required to be listed in the chart, set to the 85th percentile.
\item $R$ : Average rating of the movie

\end{enumrate}

We'll use this formula to calculate a score for each movie, which will help us in recommending
movies to users.

Now, let's proceed with the implementation of demographic filtering.

\end{document}

Figure 4: LLMs employ programmatic code execution to retrieve tabular data schemas or textual content.

» Task: Textual description of the current ob-
jective.

* Action History: Record of the agent’s real-
time progress and achieved outcomes.

2.3 Refinement of Environmental Feedback
Information

In traditional approaches, agents directly store
each interaction record with LLMs in their context.
While practitioners recognize that richer informa-
tion can enhance LLMs’ global comprehension, the
indiscriminate inclusion of excessive information
into the reasoning context can introduce substantial
noise. Compared to allowing LLMs to freely ac-
cess vast amounts of irrelevant information, CtxWF
refines contextual information fed back to the agent
when implementing the actions. This approach ef-
fectively reduces the context window size required
for LLMs’ reasoning processes, enabling LLMs
to comprehend contextual background information
more effortlessly during inference. Additionally,
we incorporate scenario-specific guidance to redi-
rect LLMs back to valid trajectories when erro-
neous behaviors occur, avoiding unproductive error
correction cycles. For each action implementation,
we meticulously monitor its output to retain task-
beneficial information while filtering irrelevant con-
tent. Implementation details of these actions are
provided in Appendix A.3.

The customization objectives for key actions are
outlined below:

ReadTable: This action filters out raw data in
structured files, retaining only structural metadata.
As illustrated in the upper section of Figure 4, while
LLMs attempt to retrieve table information through
code execution, only the structural metadata in the
output proves operationally meaningful. The sub-
stantial data entries highlighted in red, when incor-
porated into the LLM’s reasoning context, not only
fail to facilitate downstream data processing but ac-
tively introduces noise into the reasoning process.
The automated filtration mechanism embedded in
this action systematically eliminates such extrane-
ous data elements.

ReadText: This action selectively outputs task-
relevant content from specified files, eliminating
extraneous text. This mechanism is critical when
processing multiple lengthy text files, as excessive
file content occupying the LLM’s context often
leads to attention dispersion, task failure, and un-
necessarily consuming tokens. In the lower sec-
tion of Figure 4, while LLLMs attempt to extract
calculation formulas through code, the irrelevant
text segments highlighted in red provide no op-
erational value. This action systematically filters
such non-essential content through targeted pattern
matching.

GenerateCode: In Figure 3 (left), when code
execution errors occur, this action loads only the



previous code snippet and its corresponding error
into a temporary action context (distinct from the
agent’s planning context). The action then asks
LLMs to debug and regenerate the code, focusing
each reasoning cycle on resolving a single error.
Since excessive debug cycles typically indicate
overcomplicated initial code proposals, making
it difficult for LLMs to pinpoint error messages,
the agent prompts LLMs to re-plan task objectives
upon reaching a predefined threshold of debugging
cycles.

GenerateSQL: This action follows the same
feedback design principles as GenerateCode (Fig-
ure 3, right).

3 Experiments

3.1 Dataset and Baseline

DA-Code is a code generation benchmark specifi-
cally designed for evaluating LLM-based agents in
data science tasks. Distinct from conventional code
generation benchmarks, this benchmark is designed
to enable agents to explore data and leverage pro-
gramming capabilities to solve challenging objec-
tives, rather than simply translating explicit natural
language instructions into code. Unlike existing
benchmarks like DS-1000 (Lai et al., 2023) and Hu-
manEval (Chen et al., 2021), which primarily focus
on directly converting natural language instructions
into executable code, DA-Code establishes a more
realistic scenario that simulates real-world data sci-
ence tasks under given requirements and workspace
constraints. DA-Code tasks not only feature in-
herently complex solutions but also incorporate
diverse data sources (databases, spreadsheets, doc-
uments, codebases, etc.) containing multifaceted
information and data from authentic programming
scenarios. Moreover, these information sources
may be saturated with noise and extraneous infor-
mation. We constructed a subset DA-Code-100
containing 100 randomly sampled tasks for evalu-
ation, with difficulty levels distributed as 23 easy,
60 medium, and 17 challenging tasks.

To address the challenges posed by the DA-
Code benchmark where no existing agent frame-
work has demonstrated sufficient capability, the au-
thors of DA-Code developed DA-Agent, an LLM-
based agent framework specialized for complex
data analysis through dynamic environment inter-
actions. DA-Agent demonstrates superior perfor-
mance compared to prevailing agent frameworks
including OpenHand (Wang et al., 2024c), Auto-

Gen (Wu et al., 2024), and X-Agent (Team, 2023)
in comprehensive evaluations. Notably, while DA-
Agent replaces Python code with Bash commands
for environmental information retrieval, LLMs still
acquire substantial noise through Bash operations.
For instance, using head command to read CSV
files could capture redundant lines, and cat com-
mand outputs the entire file contents indiscrimi-
nately.

3.2 Overall Performance

3.2.1 Experimental Setup

We employed two state-of-the-art open-source
models, Qwen2.5-72B-Instruct (Yang et al., 2024)
and DeepSeek-V3 (Liu et al., 2024a), as open-
source representatives, along with the closed-
source model GPT-40-2024-08-06 (Achiam et al.,
2023) as base testing models. All models were
configured with a temperature of 0, a maximum
of 20 action steps, and a 60-second timeout per
action execution. We evaluated each LLM-based
agent on DA-Code-100 through three rounds of
testing. For each task, we calculated both the av-
erage score (aggregating performance across three
trials) and the peak score (highest achievement in
any trial). The final evaluation metrics Avg@3 and
Max @3 were subsequently derived by computing
the mean values of these task-specific scores across
all benchmark tasks.

3.2.2 Experimental Result

As shown in Table 1, we compared the performance
of CtxWF against baseline methods across various
base LLMs. The results demonstrate that CtxWF
achieves superior evaluation metrics across almost
all models and difficulty levels, except for a minor
2.04% decrease in maximum score at medium dif-
ficulty on Qwen2-72B-Instruct. This indicates our
method’s enhanced capability to leverage LLMs’
reasoning potential in most scenarios. Compared
with existing methods (Figure 1) that rely on multi-
ple reflection iterations to supplement LLMs’ rea-
soning context, our proactive information acquisi-
tion mechanism obtains most of the task-relevant
contextual information before LLMs initiate their
reasoning process. This approach directly re-
duces the likelihood of LLM hallucinations at their
source, while also preventing context overload is-
sues caused by storing extensive intermediate re-
flection steps as historical records in the agent’s
reasoning context. Furthermore, while reflection-
based methods prove effective for detectable er-



Model ‘ Easy ‘ Medium ‘ Hard ‘ Total
| Avg@3 Max@3 | Avg@3 Max@3 | Avg@3 Max@3 | Avg@3 Max@3

DA-Agent (Qwen2.5-72B) | 40.77 ~ 44.62 | 2294 3570 | 1212 2169 | 2521 3537
DA-Agent (DeepSeek-V3) | 4450 5027 | 2562  29.12 | 1487 1869 | 28.13 3221
DA-Agent (gpt-40) 3866  49.67 | 21.81 2919 | 1331 1948 | 2424 3225
CtxWF (Qwen2.5-72B) 49.11 5548 | 2509 3366 | 1513 2584 | 2892 3735
CtxWF (DeepSeek-V3) 4738  57.66 | 29.05 3950 | 18.98 2269 | 3155  40.82
CtxWF (gpt-40) 4503 5425 | 27.95 4280 | 1831 2415 | 3024  42.26

Table 1: Performance comparison between CtxWF and baselines on selected LLMs. Avg@3 denotes the agent’s
mean accuracy rate across three testing trials. Max @3 reflects the peak accuracy rate observed during these trials.

rors (e.g., code execution failures), they struggle
to supplement missing task-critical information in
other scenarios. For instance, in Figure 1, while
sample_result.csv specifies "Movie" as the re-
quired column header, reflection-based methods
would submit results immediately after successful
code execution. In contrast, CtxWF proactively ac-
quires the structure of sample_result.csv and ex-
plicitly specifies column headers during file preser-
vation.

Notably, CtxWF (GPT-40) achieves a peak accu-
racy of 42.26%, representing a 10.01 percentage-
point improvement over DA-Agent (GPT-40),
which substantiates that our methodology enables
more effective exploitation of LLMs’ latent capabil-
ities. Furthermore, CtxWF (DeepSeek-V 3) attains
an average accuracy of 31.55%, outperforming its
DA-Agent counterpart by 3.42 percentage points,
which suggests more consistent performance in
complex data analysis tasks.

3.3 Ablation Study
3.3.1 Experimental Setup

We investigate the performance degradation in av-
erage accuracy and peak accuracy when removing
key functional designs of GPT-4o0-based CtxWF
for task processing (Table 2), using three rounds of
testing on the DA-Code-100 dataset. The experi-
mental configurations are designed as follows:

* w/o Preprocess1: The proactive information
acquisition mechanism operates in two phases:
Preprocess]1 initializes contextual information
before action prediction, while Preprocess2 re-
trieves table schema information before SQL
generation. This experiment removes the first
preprocessing phase.

* w/o Preprocessl & 2: This configuration

eliminates both preprocessing phases de-
signed for active information acquisition.

* w/o Refinement of Env Feedback: This
setup removes the environment feedback re-
finement module, simulating scenarios where
LLMs freely access information (printing first
five rows when reading tables or full text files).
It also disables guidance mechanisms when
code/SQL generation fails.

* w/o Two-Stage Planning & Refinement of
Env Feedback: Since feedback refinement
requires separation of abstract planning and
detailed implementation, removing two-stage
planning consequently disables the feedback
refinement capability.

Configuration ‘ AAvg@3 AMax@3
wi/o Preprocess 1 -1.44%  —5.02%
w/o Preprocess1 & 2 -3.16%  —5.35%
w/o Refinement of Env Feedback | —3.54%  —3.57%
w/o Two-Stage Planning &

Refinement of Env Feedback | —3.66% —7.4%

Table 2: Ablation Study

3.3.2 Experimental Result

The experimental results analysis demonstrates that
each module in the proposed method contributes
significantly to model performance. The compara-
tive analysis of ablation study data yields supple-
mentary insights:

* The complete removal of the proactive in-
formation acquisition functionality causes
more severe accuracy degradation compared
to solely removing the preprocessing 1, indi-
cating that the proactive information acqui-
sition mechanism benefits LLMs’ reasoning
capabilities across diverse scenarios.



* The simultaneous removal of both two-stage
planning and environmental feedback opti-
mization modules leads to the most substantial
performance drop (-7.4% in max @3 metric),
proving that the synergistic gain between the
hierarchical planning mechanism and feed-
back refinement module effectively enhances
the model’s upper-bound capability in han-
dling complex tasks. Moreover, the com-
pounded accuracy deterioration from remov-
ing both components exceeds that of solely
eliminating environmental feedback optimiza-
tion, suggesting that the two-stage planning
mechanism itself plays a pivotal standalone
role.

4 Related Work

LLM-based Agent Systems: Agent systems con-
structed with LLMs have significantly enhanced the
performance of LLMs in solving various complex
tasks. Currently, there are four primary agent de-
sign patterns: (1) Reflection: Enabling agents to re-
view and revise based on self-generated outputs or
environmental feedback. SELF-REFINE (Madaan
et al., 2023), ReACT (Yao et al., 2023), and Re-
flexion (Shinn et al., 2023) demonstrate that post-
generation reflection effectively improves LLM per-
formance, though they primarily focus on enhanc-
ing reasoning through iterative multi-step feedback.
(2) Tool Invocation: Expanding LL.M capabilities
beyond pure NLP tasks by invoking external APIs.
Gorilla (Patil et al., 2024) and ToolLLM (Qin et al.,
2024) improve API-calling accuracy through API
dataset construction and model fine-tuning, while
Chameleon (Lu et al., 2023) enhances LLM per-
formance via plug-and-play module integration.
(3) Planning: Leveraging LLLMs’ reasoning abil-
ities to automate task decomposition and execution
planning. Methods like CoT (Wei et al., 2022),
PoT (Chen et al., 2023), and SCoT (Li et al., 2025)
enhance reasoning performance by generating in-
termediate reasoning steps before final solutions.
(4) Multi-Agent Collaboration: Coordinating mul-
tiple role-playing LLMs to accomplish complex
tasks. Systems like ChatDev (Qian et al., 2024) and
AutoGen (Wu et al., 2024) simulate real-world col-
laborative environments to solve intricate problems.
However, existing approaches inadequately address
the critical role of context quality during LLM rea-
soning. CtxWF innovatively improves reasoning
performance by integrating reflection (error feed-
back mechanisms during code/SQL execution and

guided regeneration after failures), tools (action in-
vocation), planning (preprocessing and action plan-
ning phases), and multi-agent principles (single-
responsibility role design). These integrations col-
lectively ensure high-quality context—sufficient
information, minimal noise, and task-specific fo-
cus—during every LLM reasoning step.

Code as Action: LLMs have achieved remark-
able results on code generation benchmarks. Given
code’s universality, many systems employ code as
the primary agent-environment interaction medium.
VOYAGER (Wang et al., 2024a) enables automated
exploration in Minecraft through code-based inter-
actions. CodeAct (Wang et al., 2024b) exclusively
uses code for multi-step task solving, while Open-
Hands (Wang et al., 2024c¢) extends this paradigm
for coding-specific agents. However, prioritizing
generality through pure code generation often sac-
rifices accuracy. CtxWF addresses this trade-off
through three key strategies: (1) guiding LLMs to
proactively acquire task-critical information before
code generation, (2) encouraging task decomposi-
tion when handling overly complex problems, (3)
controlling feedback quality post environment in-
teraction. These mechanisms collectively enhance
LLMs’ performance in real-world data analysis
tasks resolution.

5 Conclusion

In summary, we present a novel agent design
methodology that addresses the limitations of cur-
rent LLM-based agents by focusing on the man-
agement of global context. Our approach enables
agents to concentrate on single objectives dur-
ing each reasoning cycle while maintaining high-
quality reasoning context, thereby achieving supe-
rior overall performance. The proposed method
demonstrates promising capabilities in automati-
cally resolving complex real-world problems, ex-
hibiting remarkable effectiveness on the challeng-
ing DA-Code benchmark for real-world data anal-
ysis. It establishes new state-of-the-art accuracy
across multiple models and evaluation metrics. We
anticipate that incorporating additional optimiza-
tion strategies and novel algorithms into the exist-
ing design framework could further enhance per-
formance across broader application scenarios in
future research.



6 Limitations

Domain Limitations: Our approach requires cus-
tomizing the workflows of agents to replace certain
decision-making processes of LLMs, which com-
promises some degree of generality. However, such
trade-offs are inevitable when constructing stable
and effective agents, as there exists an inherent
tension between generality and determinism.
Inaccuracy Issues: Despite our meticulous de-
sign of the agent architecture for accuracy, sev-
eral failure patterns persist: (1) During two-stage
planning, LLMs frequently generate overly com-
plex subsequent action objectives. Even with cus-
tomized prompting strategies to induce simpler
task decomposition, LLMs often reiterate identical
problematic goals; (2) When executing ReadText
actions, LLLMs occasionally extract only partial
task-relevant content, with omitted critical infor-
mation leading to subsequent operations deviating
from file-specified requirements; (3) Our current
assumption of a compact action space (to preserve
LLM context window capacity) may limit handling
of complex tasks requiring extensive actions. Po-
tential solutions could involve dynamic retrieval of
action sets via RAG (Retrieval-Augmented Gener-
ation) (Gao et al., 2023) prior to task planning.
These limitations highlight promising directions
for future agent research. While substantial opti-
mization opportunities remain, we maintain these
shortcomings do not diminish the significance of
our contributions. The current CtxWF framework,
despite employing basic code-generated actions
and a simplistic error feedback mechanism for
LLM reflection, already demonstrates competitive
performance. We posit that integrating domain
expert workflows (e.g., data scientists’ problem-
solving patterns) into agent architectures could en-
able LLMs to generate more effective solutions - a
valuable direction for subsequent research.

7 Ethics Statement

The system is designed to augment rather than re-
place data scientists. By incorporating human cog-
nitive decision-making processes into the agent
design architecture, our approach strategically en-
hances LLM performance in data analysis through
controlled restriction of certain decision-making
authorities. All datasets employed in this study
were sourced from repositories with explicit MIT
open-source licenses. The complete implementa-
tion codebase, including evaluation datasets, will

subsequently be released under the same MIT li-
cense to ensure reproducibility and community ac-
cessibility.
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A Method

A.1 Proactive Information Acquisition

Prompt for the preprocessing steps before proceed-
ing to the next action planning:

A.2 Stagel

A.2.1 Prompt for planning

The prompt used in the first stage to predict the
next action:

Prompt for selecting relevant database table
names from the database before generating SQL:




A.2.2 Action space
ReadTable

## ViewTable Action
* Signature: ViewTable(file_path="path/
to/table_file")
* Description: This action will get the
table structure and a portion of the
data of the table file located at ’
file_path’.
* Constraints:
- The table file must be accessible
and in a tabular data format (e.g

., .csv, .tsv).
* Example: ViewTable(file_path="info.csv
n )
ReadText

## ReadTextFile Action
* Signature: ReadTextFile(file_path="
path/to/file"”, task_goal="a detailed
description of the information you
want to obtain in the file")
* Description: This action will read the
file and extract a **relevant
section of text** from the file
specified by ’file_path’ based on

the ’task_goal’.
* Example: ReadTextFile(file_path="info.
txt"”, task_goal="the description for
’mon ey o )
GenerateCode

## CodeTaskExecutor Action

* Signature: CodeTaskExecutor (task_goal
="task_goal")

* Description: This action will generate
and execute the program code to
achieve the task goal.

* Example: CodeTaskExecutor (task_goal="
Print the ’Hello, world!’ string.")

GenerateSQL

## SQLTaskExecutor Action
* Signature: SQLTaskExecutor(file_path="
path/to/database_file"”, task_goal="a
detailed description of the task")
* Description: This action will generate
and execute the SQL commands on the
specified database file to achieve
the task goal.
* Constraints:
- The database file must be accessible
and in a format compatible with
SQLite (e.g., .sqlite, .db).
* Example: SQLTaskExecutor(file_path="
data.sqlite”, task_goal="Calculate
the average of the quantities.”)

Decompress

## Decompress Action

* Signature: Decompress(file_path="path/
to/compressed_file")

* Description: This action will extract
the contents of the compressed file
located at ’file_path’. It supports
.zip and .tar and .gz formats.
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* Examples:

- Examplel: Decompress(file_path="data
.zip")

- Example2: Decompress(file_path="data
. gZ II)

Answer

## Answer Action

* Signature: Answer (output="
literal_answer_or_output_path”)

* Description: This action denotes the
completion of the entire task and
returns the final answer or the
output file/folder path. Make sure
the output file is located in the
initial workspace directory.

* Examples:

- Examplel: Answer (output="New York")
- Example2: Answer (output="result.csv
n )
- Example3: Answer (output="FAIL")
A.3 Stage2

The implementation details of some actions in the
second stage are as follows:
ReadTable

import pandas as pd

pd.set_option(’display.max_columns’,
None)

pd.set_option(’display.expand_frame_repr
>, False)

file_path = "{file_path}”
if file_path.endswith(’.xlsx’) or
file_path.endswith(’.xls’):

df = pd.read_excel(file_path)
elif file_path.endswith(’.tsv’):
df = pd.read_csv(file_path, sep=’\t
)
else:
df = pd.read_csv(file_path)

print (df.head (1))

print(’...")

print(f’[{len(df)} rows x {len(df.
columns)} columns]’)

ReadText

You are a helpful assistant in
information retrieval. Now I need to
obtain some information, and you
should extract the relevant snippets
from the file content based on the
descriptions I provide.

The relevant snippets I need to obtain:

e

{task_goal}

6

The contents of the file:

i

{file_content?}

€

"{file_path}’
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1195
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1198
1199

GenerateCode
Prompt for generating code:

GenerateSQL

Refer to Appendix A.1 for the prompt used to
select relevant database table names.

Prompt for generating SQL.:
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