
Moment- and Power-Spectrum-Based Gaussianity
Regularization for Text-to-Image Models

Jisung Hwang Jaihoon Kim Minhyuk Sung
KAIST

{4011hjs,jh27kim,mhsung}@kaist.ac.kr

Abstract
We propose a novel regularization loss that enforces standard Gaussianity, encour-
aging samples to align with a standard Gaussian distribution. This facilitates a range
of downstream tasks involving optimization in the latent space of text-to-image
models. We treat elements of a high-dimensional sample as one-dimensional stan-
dard Gaussian variables and define a composite loss that combines moment-based
regularization in the spatial domain with power spectrum-based regularization
in the spectral domain. Since the expected values of moments and power spec-
trum distributions are analytically known, the loss promotes conformity to these
properties. To ensure permutation invariance, the losses are applied to randomly
permuted inputs. Notably, existing Gaussianity-based regularizations fall within
our unified framework: some correspond to moment losses of specific orders,
while the previous covariance-matching loss is equivalent to our spectral loss but
incurs higher time complexity due to its spatial-domain computation. We showcase
the application of our regularization in generative modeling for test-time reward
alignment with a text-to-image model, specifically to enhance aesthetics and text
alignment. Our regularization outperforms previous Gaussianity regularization,
effectively prevents reward hacking and accelerates convergence.

1 Introduction
The Gaussian distribution plays a central role in numerous machine learning applications, widely used
to model measurement noise, uncertainty, and the mean of independent samples. Its mathematical
simplicity and analytical tractability have made it a default modeling choice in many contexts.
In particular, within generative modeling, the standard Gaussian is commonly used as the latent
distribution mapped to complex data distributions.

Given the pervasive presence of Gaussianity not only in machine learning but also across the broader
sciences, quantifying how closely a data point follows—or deviates from—a Gaussian distribution,
i.e., measuring Gaussianity, has become a fundamental technique [1, 32, 2, 9, 22, 31, 13, 30, 16,
10, 3]. In generative modeling in particular, measuring Gaussianity can facilitate optimization by
identifying the latent Gaussian variable that best maps to a desired data point, thereby enabling
more precise and controllable generation. For example, in the context of widely used text-to-image
models [20, 11, 6, 23, 25], prior work has shown that Gaussianity-based regularization can improve
downstream tasks such as aesthetic image generation [33] and text-image alignment [12].

In this work, we study the structural properties of the standard Gaussian distribution and propose a
novel regularization loss that unifies various existing approaches under a unified theoretical framework.
Leveraging the identity covariance of the standard Gaussian, we treat a high-dimensional sample
as a collection of i.i.d. scalar standard Gaussian variables—that is, as D samples drawn from a
one-dimensional standard Gaussian. With a specific ordering, we analyze the distribution of these
scalar values in both the one-dimensional spatial and spectral domains. In the spatial domain, we
utilize the moments of the samples—the expected values of their powers—and define a moment-based
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regularization loss. Notably, previously proposed losses such as norm-based [27, 12], kurtosis-
based [7], and KL-divergence-based [18] regularization can be interpreted as, or shown to be
asymptotically equivalent to, specific instances of this moment-based formulation.

Spatial-domain regularization alone is often insufficient in generative modeling, as it can leave
residual patterns that lead to mappings to unrealistic data points (Figure 1 (c)). To address this,
we further analyze the samples in the spectral domain and introduce an additional regularization
loss based on the fact that the empirical power spectrum of i.i.d. Gaussian samples follows a chi-
square distribution. This corresponds to fitting the sample covariance to the identity matrix in the
spatial domain, aligning with prior work [33]. However, by operating in the spectral domain, we
reduce the computational complexity from O(D2) to O(D logD), thereby eliminating the need for
dimension-wise sampling.

Crucially, because both spatial and spectral regularization should hold regardless of the ordering of
elements in a high-dimensional Gaussian sample, we enforce permutation invariance by applying our
losses to randomly permuted versions of the input.

As applications of Gaussianity regularization, inspired by Eyring et al. [12], we showcase test-time
reward alignments using a one-step text-to-image model [20], specifically for enhancing image
aesthetics and text alignment. Reward alignment refers to the task of optimizing the latent sample of
a generative model so that the resulting output maximizes a given reward function, such as aesthetic
quality or textual alignment. However, directly optimizing the latent can lead to overfitting to the
reward signal—known as reward hacking—which often degrades output quality (e.g., reduced image
realism). Our Gaussianity regularization effectively mitigates this issue by encouraging the optimized
latents to remain close to the original Gaussian prior. Across both aesthetic and text alignment tasks,
our method outperforms existing regularization approaches, achieving the highest scores across all
metrics while preventing reward hacking and accelerating convergence.

2 Related Work
2.1 Gaussianity Testing and Regularization
The Gaussian distribution is a fundamental component in statistics, and numerous methods have
been developed to assess whether a set of samples conforms to it. Classical tests such as K-S, A-D,
and CvM [1, 32, 2, 9, 22] measure discrepancies between empirical and theoretical cumulative
distribution functions. Other approaches assess Gaussianity using order statistics [31] or quantile
alignment [13, 30]. These methods, however, are based on non-differentiable functions and are
therefore limited in their applicability to optimization-based techniques in machine learning.

There have also been differentiable approaches applied as regularization across a range of machine
learning applications. A classical example is the KL divergence used in variational autoencoders
(VAEs) [18] to measure the difference between the approximate posterior and a standard Gaussian
prior—though this operates on distributional parameters rather than directly on samples. Chmiel et
al. [7] introduced a kurtosis-based regularizer that penalizes heavy-tailed behavior in model weights
to improve training stability. More recently, norm-based regularization [27, 12, 4] has been used to
constrain latent vectors to lie on a hyperspherical shell, matching the expected norm of a unit Gaussian.
However, these methods only address marginal statistics and do not account for inter-component
dependencies. We propose a unified approach that incorporates these approaches as components,
with the relationships detailed in Section 3.1.3.

Probability-Regularized Noise Optimization (PRNO) [33] is a notable example that aligns the
empirical covariance matrix of latent samples with the identity, thereby capturing inter-component
dependencies. While effective, this method incurs quadratic memory and time complexity, making it
less scalable in high-dimensional settings. In our unified framework, we propose a more efficient
regularization that achieves the same objective but in the spectral domain, with details provided in
Section 3.2.2 and Appendix C.

2.2 Reward Alignment via Latent Noise Optimization

Reward alignment refers to the process of steering generative models to produce outputs that maximize
a given reward function. While previous approaches using direct fine-tuning [26, 8] or reinforcement
learning [5, 34, 37] have been widely studied, these methods are computationally expensive and
require retraining the model for each new reward—posing significant scalability challenges.
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(a) Neither Domain Matched (b) Spectral Domain Matched

Spatial CDF Spectral CDF Latent Sampled Image Spatial CDF Spectral CDF Latent Sampled Image

(c) Spatial Domain Matched (d) Both Domains Matched

Spatial CDF Spectral CDF Latent Sampled Image Spatial CDF Spectral CDF Latent Sampled Image

Figure 1: Effect of Spatial and Spectral Distribution. Each block presents the spatial and spectral
CDFs, a latent visualization, and the generated image. The numeric value in each CDF plot quantifies
the deviation from the ideal Gaussian distribution (lower is better). All images are generated using
FLUX [20] with the prompt “A car.” When both spatial and spectral properties are matched (d), the
output is clean and realistic; mismatches in either domain lead to visible degradation in quality.

In contrast, noise optimization offers an efficient alternative by directly optimizing the initial Gaussian
noise at inference time, improving the outputs of pretrained generative models without additional
training. Due to its effectiveness, noise optimization has been widely applied in various domains,
including images [27, 12, 4, 33], motion [17, 38], and music [29].

Recently, ReNO [12] demonstrated that noise optimization can be effectively applied to one-step
generative models, offering superior reward alignment compared to multi-step models thanks to the
much clearer expectation of the final output from the latent sample. However, ReNO builds on a
previous Gaussianity regularization method [27], which covers only part of our unified framework.
As a result, the optimized latent samples often deviate from the standard Gaussian prior, leading
to degraded image quality. We show that our unified regularization more effectively preserves
Gaussianity, maintaining high image quality while maximizing the reward.

3 Regularization for Standard Gaussianity

We propose a regularization term that captures the structural properties of the standard Gaussian
distribution and unifies several existing methods. Let x = (x1, . . . , xD) ∈ RD be a latent vector
with i.i.d. components, xi ∼ N (0, 1). We specifically view x as an ordered sequence of samples,
where any random permutation should yield a statistically equivalent vector. Thus, x must exhibit
both the correct marginal distribution and no inter-component dependencies. A valid regularization
must enforce both aspects of i.i.d. Gaussianity.

With a specific ordering of the sample sequence, our method enforces Gaussianity in both the
spatial and spectral domains. In the spatial domain, we match moments of the elements in x,
generalizing several existing methods such as KL-divergence-based [18], kurtosis-based [7], and
norm-based [27, 12] regularization. In the spectral domain, we match the empirical power spectrum,
leveraging the fact that the empirical power spectrum of i.i.d. standard Gaussian samples follows a
chi-squared distribution.

We observe that this dual-domain regularization is especially crucial for the latent samples of
generative models, which assume an i.i.d. standard Gaussian prior. As shown in Figure 1, enforcing
Gaussianity in only one domain is insufficient—spatial and spectral properties are complementary and
must both be satisfied to replicate the behavior of true Gaussian samples. By jointly regularizing both
domains, our method yields more faithful latent representations and improves generative performance.

In the following subsections, we formalize the spatial and spectral regularization terms in Section 3.1
and 3.2, respectively, and present our final loss formulation in Section 3.3.
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3.1 Regularization in Spatial Domain

In this subsection, we introduce a regularization term based on the moment properties of the standard
Gaussian distribution in the spatial domain. We show that this approach unifies several existing
regularization methods as special cases of moment matching in the spatial domain.

3.1.1 Moment Conditions of Standard Gaussianity
To formally justify our approach, we begin by recalling a classical result that uniquely characterizes
the standard Gaussian distribution via its moments.
Theorem 1. Let X be a real-valued random variable. Suppose that for all integers n ≥ 0, the n-th
moment of X , defined as E[Xn], satisfies

E[Xn] =

0 if n is odd,
(2k)!

2kk!
if n = 2k is even.

(1)

Then X follows the standard Gaussian distribution, i.e., X ∼ N (0, 1).

Proof. We consider the Moment-Generating Function (MGF) of X:

E[etX ] = E

[ ∞∑
n=0

tnXn

n!

]
=

∞∑
n=0

tn

n!
E[Xn] =

∞∑
k=0

t2k

(2k)!
· (2k)!
2kk!

=

∞∑
k=0

1

k!

(
t2

2

)k

= et
2/2. (2)

Since this matches the MGF of the standard Gaussian distribution N (0, 1), and the MGF uniquely
determines the distribution, we conclude that X ∼ N (0, 1).

3.1.2 Moment-Based Regularization Loss
Motivated by Theorem 1, we define the following moment-based loss term to enforce the n-th
moment condition of the standard Gaussian distribution:

Ln =

∣∣∣∣∣∣
∣∣∣∣∣ 1D

D∑
k=1

xnk

∣∣∣∣∣
1/n

− µ1/n
n

∣∣∣∣∣∣ , (3)

where µn denotes the theoretical n-th moment of the standard Gaussian distribution, as specified in
Theorem 1. This loss penalizes differences between the empirical n-th moment and its target value,
encouraging each latent component to match the desired marginal distribution.

The computation of Ln scales linearly with the latent dimension D, resulting in both time and
memory complexity of O(D). This makes the loss highly efficient and suitable for application to
high-dimensional latent spaces commonly used in modern generative models.

3.1.3 Connection to Existing Regularization Terms
The moment-based regularization introduced above is designed to reproduce the marginal statisti-
cal properties of a standard Gaussian distribution in the spatial domain. Several widely adopted
regularization methods can be viewed as specific instances or constrained approximations of this
principle. Below, we revisit three representative methods—KL divergence [18], kurtosis [7], and
norm-based [27, 12] losses—and interpret them through the lens of spatial-domain moment matching.

KL Regularization Loss [18]. The Kullback–Leibler (KL) divergence is widely used in the VAE
framework to align the latent distribution with a standard Gaussian prior. Assuming that the empirical
distribution of x ∈ RD is approximately Gaussian with empirical mean µx and variance σ2

x, the KL
divergence from the standard Gaussian is given by:

LKL(x) =
1

2

(
µ2
x + σ2

x − log σ2
x − 1

)
. (4)

This loss penalizes mismatches in the first and second moments of the latent distribution, encouraging
both the empirical mean and variance to match those of N (0, 1). As such, minimizing the moment
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losses L1 and L2 effectively minimizes LKL. The KL loss thus serves as a compact surrogate for
enforcing low-order moment alignment in the spatial domain.

Kurtosis Regularization Loss [7]. Another approach focuses on matching the fourth central moment
(kurtosis), which controls the tail behavior of the distribution. While this loss is often used to improve
robustness against quantization noise in neural networks, it also serves as a valid constraint for
Gaussianity enforcement. For a standard Gaussian distribution, the kurtosis is exactly 3. The kurtosis
regularization loss penalizes deviation from this value:

Lkurt(x) =

(
1

D

D∑
i=1

(
xi − µx

σx

)4

− 3

)2

, µx =
1

D

D∑
i=1

xi, σ2
x =

1

D

D∑
i=1

(xi − µx)
2. (5)

This loss encourages the latent distribution to match the fourth-order structure of the standard Gaus-
sian. When normalization by empirical mean and variance is omitted, minimizing Lkurt becomes
equivalent to minimizing the fourth-order moment loss L4. Even with normalization, jointly minimiz-
ing L1, L2, and L4 naturally reduces the kurtosis loss. Thus, Lkurt can be interpreted as a constrained
variant of higher-order moment regularization in the spatial domain.

Norm Regularization Loss [27, 12]. A common approach is to penalize deviations in the ℓ2 norm of
the latent vector x ∈ RD, assuming that each xi is independently drawn from a standard Gaussian
distribution. In this case, the norm ∥x∥2 follows a chi distribution χD, whose probability density
function is given by:

pnorm(r) =
1

2
D
2 −1 Γ

(
D
2

) rD−1 e−
r2

2 , r ≥ 0. (6)

Maximizing the likelihood of this distribution leads to the norm-based loss:

Lnorm(x) = − log pnorm(∥x∥2) =
∥x∥22
2

− (D − 1) log ∥x∥2 + c, (7)

where c is a constant independent of x. This loss is minimized when the squared norm satisfies ∥x∥22 =

D − 1, which corresponds to an average squared component magnitude of 1
D

∑D
i=1 x

2
i = 1 − 1

D .
As D → ∞, this converges to the second moment of the standard Gaussian. Thus, Lnorm implicitly
enforces the second moment condition in the spatial domain and is asymptotically equivalent to our
moment loss L2.

In summary, many existing regularization terms can be reinterpreted as moment-matching strategies
in the spatial domain. Our framework generalizes these ideas by explicitly formulating and unifying
them through the lens of empirical moment alignment.

3.2 Regularization in Spectral Domain

As shown in Figure 1 (c), even if a latent vector has the correct marginal distribution in the spatial
domain, spectral mismatch can degrade generative performance. This reflects a failure to fully
reproduce the i.i.d. nature of the Gaussian prior. Hence, in this subsection, we propose a regularization
term to enforce the spectral-domain properties of the standard Gaussian.

While the moment-based loss (Equation 3) in the previous section is invariant under permutations,
spectral regularization is sensitive to the ordering of vector elements. The discrete Fourier transform
(DFT) treats the latent vector as a structured signal, and structural dependencies—such as spatial
correlations—appear in its frequency components. We focus on the power spectrum, defined as
Pk = E[|x̂k|2], which captures how signal energy is distributed across frequencies.

We show that for i.i.d. Gaussian vectors, the normalized DFT magnitudes |x̂k|/
√
D follow a χ2/

√
2

distribution for most k. Based on this, we design a loss that aligns the empirical power spectrum
with its expected distribution. We also relate our method to the covariance-based regularization in
PRNO [33], highlighting the efficiency and theoretical grounding of our approach.

3.2.1 Spectral Distribution of Standard Gaussianity
We begin by analyzing the statistical distribution of the square root of the empirical power spectrum,
defined as the magnitude of the DFT coefficients: |x̂k|, where x̂ = DFT(x). When the latent vector
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x ∈ RD consists of i.i.d. standard Gaussian samples, this distribution exhibits well-defined behavior
that forms the theoretical basis for our spectral regularization.
Lemma 1. Let x ∈ RD be a random vector with i.i.d. elements xi ∼ N (0, 1), and let x̂ = DFT(x).
Assume D is even. Then,

|x̂k|√
D

∼
{
χ2/

√
2 if k /∈ {0, D/2},

χ1 otherwise.
(8)

The proof is provided in Appendix B. This lemma shows that when the latent vector x consists of i.i.d.
standard Gaussian samples, the magnitudes of its discrete Fourier transform (DFT) coefficients follow
specific scaled chi distributions. For most frequency indices k /∈ {0, D/2}, |x̂k|/

√
D ∼ χ2/

√
2,

while for k = 0 and k = D/2, |x̂k|/
√
D ∼ χ1.

In practice, the latent dimension D is large (e.g., 65,536 in FLUX [20]), so the bulk of the spectrum
follows the χ2/

√
2 distribution. Since this property is preserved under permutation, we apply our

spectral loss after randomly shuffling the latent vector to remove any ordering bias.

3.2.2 Power-Spectrum-Based Regularization Loss
As shown in Section 3.2.1, the magnitudes of the normalized DFT coefficients of i.i.d. standard Gaus-
sian samples—which correspond to the square roots of the empirical power spectrum—approximately
follow a χ2/

√
2 distribution for most frequency indices. A naïve approach, inspired by norm-based

regularization [27], is to construct a spectral loss by applying the negative log-likelihood of this
distribution to the empirical power spectrum. Specifically, we define the loss as follows:

Lspectral_nll =

D∑
i=1

[
− log

(
2|x̂i|√
D

)
+

|x̂i|2

D

]
, (9)

where the probability density function of χ2/
√
2 is given by f(r) = 2r · e−r2 for r ≥ 0.

Figure 2: Distribution of χ2/
√
2 and mean of

16 independent χ2/
√
2 samples.

The χ2/
√
2 distribution inherently exhibits high vari-

ance, as illustrated in Figure 2. However, minimizing
Lspectral_nll drives all spectral components toward its
peak (i.e., r = 1/

√
2), concentrating the spectrum at

a single value. This contradicts the natural variability
of the underlying distribution and fails to faithfully re-
produce its spread. As a result, this loss formulation
overly sharpens the empirical power spectrum distri-
bution, ultimately distorting the marginal distribution
of the latent vector and degrading its Gaussianity.

To mitigate this issue, we adopt an alternative strat-
egy that preserves variance while promoting spectral
alignment: instead of applying the loss to individual coefficients, we compute it over the mean of
randomly sampled frequency subsets. As shown in Figure 2, the distribution of the sample mean over
16 i.i.d. χ2/

√
2 variables exhibits a bell-shaped curve with significantly reduced variance, while still

reflecting the underlying distribution.

Based on this observation, we define our power spectrum regularization loss as follows:

Lpower =
1

|B|
∑
B∈B

∣∣∣∣∣ 1

|B|
∑
k∈B

|x̂k|√
D

− µpower

∣∣∣∣∣ , (10)

where B denotes the set of batches, andB represents the indices within each batch. In our experiments,
we set the batch size to |B| = 16, and the target mean to µpower = 0.875, which approximates the
expected value of χ2/

√
2.

This batched averaging preserves natural variation across the spectrum and avoids collapsing the distri-
bution. It also reduces the influence of outlier frequencies at k = 0 and k = D/2, which follow differ-
ent distributions. Notably, this regularization achieves the same objective as PRNO [33]—minimizing
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INITIAL LATENT Checkerboard KL [18] (Equation 4) 10K iters., 11.2 sec.

Spatial CDF Spectral CDF Latent Sampled Image Spatial CDF Spectral CDF Latent Sampled Image

Kurtosis [7] (Equation 5) 10K iters., 16.1 sec. Norm [27] (Equation 7) 10K iters., 10.4 sec.

Spatial CDF Spectral CDF Latent Sampled Image Spatial CDF Spectral CDF Latent Sampled Image

PRNO [33] 100 iters., 14.1 sec. LN (0,I) (Equation 11) 100 iters., 0.26 sec.

Spatial CDF Spectral CDF Latent Sampled Image Spatial CDF Spectral CDF Latent Sampled Image

Figure 3: Effectiveness of Regularization Losses in Guiding Latents. A latent vector initialized
with a checkerboard pattern is optimized using various regularization losses. Each block follows the
format of Figure 1. Images are generated by FLUX [20] with the prompt “A guitar”.

deviation from identity covariance—but enforces it in the spectral domain in a more efficient and
effective manner. A detailed discussion of this connection is provided in Appendix C.

Computational Perspective. Calculating Lpower is highly efficient due to the use of the Fast Fourier
Transform (FFT) algorithm. Unlike the naive discrete Fourier transform, which has a computational
complexity of O(D2), the FFT reduces this to O(D logD). Furthermore, FFT operations are
inherently parallelizable and benefit significantly from GPU acceleration. Given that FFT is a core
component in many scientific computing libraries, it is already highly optimized in most modern
frameworks. As a result, we observed no significant increase in runtime compared to simpler
O(D)-based regularization methods.

3.3 Our Gaussianity Regularization Loss Table 1: Comparison of regularization methods for
standard Gaussianity.

Method Time
Complexity

Memory
Complexity

Connection
with Our Loss

KL [18] O(D) O(D) L1,L2

Kurtosis [7] O(D) O(D) L4

Norm [27, 12] O(D) O(D) L2

PRNO [33] O(Dk) O(Dk) L1,Lpower

Ours O(D logD) O(D) –

By combining the two loss components—the
moment regularization loss (Equation 3) and
the power spectrum regularization loss (Equa-
tion 10)—we define our final regularization
loss as:

LN (0,I) =
∑
n∈K

Ln + λpowerLpower, (11)

where K denotes the set of moments used for matching. In our experiments, we set K = {1, 2}, as
enforcing the first and second moments, together with the power spectrum regularization Lpower, is
empirically sufficient to approximate the standard Gaussian distribution. We set λpower = 25.0.

3.4 Toy Experiment Using an Image Generative Model
We conduct a toy experiment using the image generative model FLUX [20] to evaluate how different
regularization terms guide a latent vector toward a standard Gaussian distribution when optimized
from a highly structured initialization. The initial latent is set to a checkerboard pattern, and the results
are shown in Figure 3. Spatial-only methods—KL [18], Kurtosis [7], and Norm [27]—reduce the
deviation in the spatial domain but retain strong checkerboard artifacts even after 10K optimization
iterations. PRNO [33] improves alignment in both spatial and spectral domains, yet the latent still
exhibits visible structure and the sampled image shows unnatural textures. In contrast, our method
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Aesthetic Image Generation Text-Aligned Image Generation

Figure 4: Quantitative Results for Aesthetic Image Generation Text-Aligned Image Generation.
Curves show performance at 100-iteration intervals, with dot sizes indicating progress from 100 to
500 iterations. Points closer to the upper right represent better trade-offs between the given reward
(x-axis) and held-out reward (y-axis). Our method reaches the highest reward with equal iterations
and consistently yields better trade-offs on HPSv2 [35] and ImageReward [36].

effectively matches distributions in both domains, producing a clean, high-quality output from a
noise-like latent—while requiring approximately 50× less time than PRNO.

4 Applications: Reward Alignment in Text-to-Image Generative Models
Inspired by the previous work, ReNO [12], we present two applications of reward alignment in a one-
step text-to-image generative model: aesthetic image generation and text-aligned image generation.

Baselines. In all experiments, we use FLUX [20] as the base generative model, which is a one-step
text-to-image model. We compare our regularization method against KL [18], Kurtosis [7], ReNO
(Norm) [12], and PRNO [33]. Additionally, we report two reference baselines: one without any
optimization (No Opt.) and one without regularization (No Reg.).

Implementation Details. We initialize the latent vector from the prior distribution (a unit Gaussian)
and perform optimization for 500 iterations using Nesterov momentum with a coefficient of 0.9
and gradient clipping set to 0.01. The generated images are evaluated every 100 iterations. The
learning rate is set to 0.1 for aesthetic score [28] and 1.0 for PickScore [19]. We set the regularization
coefficient to 2.0 for all regularization methods. The regularization gradient is normalized and
scaled to match the magnitude of the reward gradient, ensuring balanced contributions during
optimization. All experiments were conducted on an NVIDIA A6000 GPU with 48GB VRAM,
taking approximately 2 minutes per 100 optimization iterations.

4.1 Aesthetic Image Generation
We use aesthetic score [28], which measures the visual appeal of an image, as the given reward—the
objective used to optimize the latent. Evaluation is conducted on the animal prompts from DDPO [5].
We report the given reward along with held-out rewards—ImageReward [36] and HPSv2 [35]—which
are not used during optimization and serve to assess image quality and text alignment.

Results. We present quantitative and qualitative results in Figure 4 and Figure 5, respectively.
Figure 4 shows curves of the baseline aesthetic score plotted against the held-out rewards. The size
of each dot indicates the number of optimization iterations, shown in intervals of 100 iterations.

Notably, optimizing the latent solely based on the given reward—without any regularization—leads
to a phenomenon known as reward hacking, where the model exploits flaws in the reward function
to achieve higher scores without improving, or even degrading, the actual image quality. This
is evidenced by the steady decline of the blue curve in Figure 4, which indicates that the image
quality—measured by the held-out rewards such as HPSv2 [35] and ImageReward [36]—deteriorates
as the optimization progresses, despite the given reward increasing. The corresponding visual
degradation is also apparent in the cartoon-like artifacts observed in the generated samples (column
No Reg. in Figure 5). While previous works introduce regularization terms that enforce Gaussianity,
these methods fall short as they fail to capture both the spatial and spectral properties of a unit
Gaussian, leading to suboptimal results (see KL, Kurtosis, and ReNO columns in Figure 5). In
contrast, our regularization is robust to reward hacking and consistently achieves the highest scores
across all metrics—outperforming ReNO [12] and PRNO [33] at every optimization iteration.
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No Opt. No Reg. KL [18] Kurtosis [7] ReNO [12] PRNO [33] Ours
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“The designer carefully selected fabrics and colors for the upcoming fashion line.”

Figure 5: Qualitative Results for Aesthetic and Text-Aligned Image Generation. Our method
generates images with higher aesthetic quality and better prompt alignment compared to baselines [18,
7, 12, 33] and not regularized optimization.

4.2 Text-Aligned Image Generation
For text-aligned image generation, we use PickScore [19] as the given reward, which measures both
image-text alignment and perceptual image quality. This setup is a special case because the given
reward is closely aligned with the objective of Gaussianity regularization which also improves the
perceptual quality of the generated images in text-to-image generative models [20]. We evaluate
on 60 prompts sampled from T2I-CompBench++ [15], comprising 10 prompts from each of the six
categories: 3D spatial, complex, non-spatial, shape, spatial, and texture.

Results. Quantitative and qualitative results are presented in Figure 4 and Figure 5, respectively. As
shown in Figure 4, methods incorporating Gaussianity regularization initially exhibit a strong positive
scaling trend, reflecting the close alignment between the PickScore reward and the regularization
objective. However, these regularization methods—including the No Reg. case—rely solely on
spatial-domain constraints [18, 7, 12], and quickly plateau in performance—a limitation further
evidenced by the suboptimal generation quality shown in Figure 5. By explicitly guiding latent
vectors to stay close to the unit Gaussian manifold, our method promotes stable gradient flow—a
property also noted in prior work [24, 14, 21]. As a result, it achieves higher rewards throughout
optimization and outperforms baselines with fewer updates.

5 Conclusion
We introduced a unified regularization framework for enforcing standard Gaussianity. Unlike prior
approaches that focus solely on marginal statistics or covariance matching, our method captures both
spatial and spectral properties, improving conformity to a unit Gaussian distribution while remaining
computationally efficient. We validated the effectiveness of our approach on reward alignment tasks in
text-to-image generative models, including aesthetic and text-aligned image generation. Our method
consistently outperforms existing Gaussianity regularization techniques by mitigating reward hacking
and accelerating convergence. These results underscore the importance of structured Gaussianity
enforcement and open up new directions for broader applications.
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Limitation and Societal Impacts. While our loss effectively guides latent vectors toward Gaussian-
ity during optimization and serves well as a regularization objective, we observe that its value alone
does not reliably indicate how closely a given latent matches a true standard Gaussian distribution.
That is, a low loss value does not necessarily guarantee full Gaussianity. Developing an efficient and
principled metric for directly evaluating Gaussianity remains an open direction for future research.
In addition, as our method builds on pretrained generative models, which may have been trained on
uncurated datasets, it inherits the inherent biases and artifacts of the underlying base model. This
may lead to the unintended generation of biased or undesirable visual content.

Acknowledgements
This work was supported by the NRF of Korea (RS-2023-00209723); IITP grants (RS-2022-
II220594, RS-2023-00227592, RS-2024-00399817, RS-2025-25441313, RS-2025-25443318, RS-
2025-02653113); and the Technology Innovation Program (RS-2025-02317326), all funded by the
Korean government (MSIT and MOTIE), as well as by the DRB-KAIST SketchTheFuture Research
Center.

References
[1] Kolmogorov An. Sulla determinazione empirica di una legge didistribuzione. Giorn Dell’inst Ital Degli

Att, 4:89–91, 1933.

[2] Theodore W Anderson and Donald A Darling. A test of goodness of fit. Journal of the American statistical
association, 49(268):765–769, 1954.

[3] Francis J Anscombe and William J Glynn. Distribution of the kurtosis statistic b2 for normal samples.
Biometrika, 70(1):227–234, 1983.

[4] Heli Ben-Hamu, Omri Puny, Itai Gat, Brian Karrer, Uriel Singer, and Yaron Lipman. D-Flow: Differentiat-
ing through flows for controlled generation. In ICML, 2024.

[5] Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models
with reinforcement learning. arXiv preprint arXiv:2305.13301, 2024.

[6] Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping
Luo, Huchuan Lu, and Zhenguo Li. PixArt-σ: Weak-to-strong training of diffusion transformer for 4k
text-to-image generation. arXiv preprint arXiv:2403.04692, 2024.

[7] Brian Chmiel, Ron Banner, Gil Shomron, Yury Nahshan, Alex Bronstein, Uri Weiser, et al. Robust
quantization: One model to rule them all. In NeurIPS, 2020.

[8] Kevin Clark, Paul Vicol, Kevin Swersky, and Fleet David J. Directly fine-tuning diffusion models on
differentiable rewards. In ICLR, 2024.

[9] Harald Cramer. On the composition of elementary errors. Skand. Aktuarietids, 11:13–74, 1928.

[10] Ralph B D’agostino, Albert Belanger, and Ralph B D’Agostino Jr. A suggestion for using powerful and
informative tests of normality. The American Statistician, 44(4):316–321, 1990.

[11] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi,
Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution
image synthesis. In ICML, 2024.

[12] Luca Eyring, Shyamgopal Karthik, Karsten Roth, Alexey Dosovitskiy, and Zeynep Akata. ReNO: Enhanc-
ing one-step text-to-image models through reward-based noise optimization. In NeurIPS, 2024.

[13] Ramanathan Gnanadesikan and Martin B Wilk. Probability plotting methods for the analysis of data.
Biometrika, 55(1):1–17, 1968.

[14] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Improved
training of Wasserstein GANs. In NeurIPS, 2017.

[15] Kaiyi Huang, Chengqi Duan, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2I-CompBench++: An
enhanced and comprehensive benchmark for compositional text-to-image generation. IEEE Transactions
on Pattern Analysis Machine Intelligence, 2025.

10



[16] Carlos M Jarque and Anil K Bera. Efficient tests for normality, homoscedasticity and serial independence
of regression residuals. Economics letters, 6(3):255–259, 1980.

[17] Korrawe Karunratanakul, Konpat Preechakul, Emre Aksan, Thabo Beeler, Supasorn Suwajanakorn, and
Siyu Tang. Optimizing diffusion noise can serve as universal motion priors. In CVPR, 2024.

[18] Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes. In ICLR, 2014.

[19] Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-a-pic:
An open dataset of user preferences for text-to-image generation. In NeurIPS, 2023.

[20] Black Forest Labs. FLUX. https://github.com/black-forest-labs/flux, 2024.

[21] Aitor Lewkowycz and Guy Gur-Ari. On the training dynamics of deep networks with L2 regularization. In
NeurIPS, 2020.

[22] Hubert W Lilliefors. On the Kolmogorov-Smirnov test for normality with mean and variance unknown.
Journal of the American statistical Association, 62(318):399–402, 1967.

[23] Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, and qiang liu. a: One step is enough for high-quality
diffusion-based text-to-image generation. In ICLR, 2024.

[24] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[25] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna,
and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image synthesis. arXiv
preprint arXiv:2307.01952, 2023.

[26] Mihir Prabhudesai, Anirudh Goyal, Deepak Pathak, and Katerina Fragkiadaki. Aligning text-to-image
diffusion models with reward backpropagation. arXiv preprint arXiv:2310.03739, 2023.

[27] Dvir Samuel, Rami Ben-Ari, Nir Darshan, Haggai Maron, and Gal Chechik. Norm-guided latent space
exploration for text-to-image generation. In NeurIPS, 2023.

[28] C. Schuhmann. Laion aesthetics. https://laion.ai/blog/laion-aesthetics, 2022.

[29] Omar Shaikh, Michelle Lam, Joey Hejna, Yijia Shao, Michael Bernstein, and Diyi Yang. Aligning language
models with demonstrated feedback. In ICLR, 2025.

[30] Samuel S Shapiro and RS Francia. An approximate analysis of variance test for normality. Journal of the
American statistical Association, 67(337):215–216, 1972.

[31] Samuel S Shapiro and Martin B Wilk. An analysis of variance test for normality (complete samples).
Biometrika, 52(3-4):591–611, 1965.

[32] Nickolay Smirnov. Table for estimating the goodness of fit of empirical distributions. The annals of
mathematical statistics, 19(2):279–281, 1948.

[33] Zhiwei Tang, Jiangweizhi Peng, Jiasheng Tang, Mingyi Hong, Fan Wang, and Tsung-Hui Chang. Tuning-
free alignment of diffusion models with direct noise optimization. In ICML 2024 Workshop on Structured
Probabilistic Inference & Generative Modeling, 2024.

[34] Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam, Stefano
Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using direct preference
optimization. In CVPR, 2024.

[35] Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li. Human
preference score v2: A solid benchmark for evaluating human preferences of text-to-image synthesis. arXiv
preprint arXiv:2306.09341, 2023.

[36] Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
ImageReward: learning and evaluating human preferences for text-to-image generation. In NeurIPS, 2023.

[37] Kai Yang, Jian Tao, Jiafei Lyu, Chunjiang Ge, Jiaxin Chen, Qimai Li, Weihan Shen, Xiaolong Zhu, and
Xiu Li. Using human feedback to fine-tune diffusion models without any reward model. In CVPR, 2024.

[38] Kaifeng Zhao, Gen Li, and Siyu Tang. DartControl: A diffusion-based autoregressive motion model for
real-time text-driven motion control. In ICLR, 2024.

11

https://github.com/black-forest-labs/flux
https://laion.ai/blog/ laion- aesthetics


NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our claims reflect the contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitation of our work in the paper.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We present complete proofs in the paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide evaluation setup of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will publicly release the code upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We present evaluation setup in the paper

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We could not plot the error bars due to computational bottleneck.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details on compute resources are presented in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We comply the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We present societal impact of our work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We use prompts that do not possess harmful content.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited relevant data sources and papers.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: No LLM is used to develop the core methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

Stroke-based Image Generation
Input Gen. image 1 Gen. image 2 Input Gen. image 1 Gen. image 2

Reward Alignment given Lightness
0 iter. 100 iters. 500 iters. 0 iter. 100 iters. 500 iters.

Reward Alignment given Darkness
0 iter. 100 iters. 500 iters. 0 iter. 100 iters. 500 iters.

Figure A.1: Showcase of Our Regularization Term in Other Applications. We demonstrate
the versatility of our regularization in three additional tasks: stroke-based image generation (top)
and reward alignment under lightness (middle) and darkness (bottom). In the first row, images are
generated from coarse stroke inputs, where our regularization helps produce semantically faithful
and visually coherent outputs. In the second and third rows, we apply reward-guided optimization to
adjust image lightness or darkness over time, showing smooth and stable progression from the initial
sample (0 iters.) to reward-aligned outputs (500 iters.).

A Other Applications

To demonstrate the broader applicability of our proposed regularization, we present three additional
applications, as shown in Figure A.1: stroke-based image generation (top), and reward alignment
based on lightness and darkness objectives (middle and bottom, respectively).

In the stroke-based image generation task, the input is a coarse color-stroke map that encodes a rough
spatial layout and scene structure. We begin by performing image inversion using the FLUX-dev [20]
model to obtain an initial latent representation. We then optimize this latent by minimizing the L2
distance to the inverted latent while applying our regularization loss, which encourages the optimized
latent to remain close to both the standard Gaussian manifold and the original inversion. The final
image is generated from the optimized latent. This optimization step helps preserve semantic fidelity
to the stroke input while enabling the generation of photorealistic images. As shown in the first row
of Figure A.1, our method produces semantically aligned and visually coherent results that maintain
the structure and framing of the original strokes.

In the second and third rows, we present reward-aligned image generation for lightness and darkness.
For the lightness task, the reward is defined as the mean of all pixel values—encouraging brighter
outputs—while for the darkness task, we use the negative of this mean to promote darker results. We
apply our regularization with these rewards during latent optimization. In both cases, our method
effectively guides the latent toward the desired visual attribute without sacrificing image quality.
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B Proof for Lemma 1

Lemma A.1. Let x ∈ RD be a random vector whose elements are i.i.d. samples from the unit
Gaussian distribution, i.e., xi ∼ N (0, 1). Let x̂ = DFT(x) ∈ CD denote its discrete Fourier
transform. Then:

• For all k /∈ {0, D/2} (assuming D is even), the magnitude |x̂k| follows a scaled chi
distribution with 2 degrees of freedom:

|x̂k|√
D

∼ χ2√
2
. (12)

• For k = 0 and k = D/2, where x̂k ∈ R, the magnitude follows a scaled chi distribution
with 1 degree of freedom:

|x̂k|√
D

∼ χ1. (13)

Proof. Let x = (x0, x1, . . . , xD−1) ∈ RD with i.i.d. xn ∼ N (0, 1). The DFT of x is defined as

x̂k =

D−1∑
n=0

xn · e−2πikn/D, k = 0, 1, . . . , D − 1. (14)

This is a linear transformation with complex coefficients of unit magnitude. For k /∈ {0, D/2}, x̂k is
complex with real and imaginary parts

ℜ(x̂k) =
D−1∑
n=0

xn cos

(
2πkn

D

)
, (15)

ℑ(x̂k) = −
D−1∑
n=0

xn sin

(
2πkn

D

)
, (16)

which are independent Gaussian variables with variances

Var(ℜ(x̂k)) =
∑

cos2
(
2πkn

D

)
=
D

2
, (17)

Var(ℑ(x̂k)) =
∑

sin2
(
2πkn

D

)
=
D

2
. (18)

Thus, ℜ(x̂k),ℑ(x̂k) ∼ N (0, D/2), and the magnitude satisfies

|x̂k| =
√
ℜ(x̂k)2 + ℑ(x̂k)2 ∼

√
D/2 · χ2. (19)

which implies
|x̂k|√
D

∼ χ2√
2
. (20)

For k ∈ {0, D/2} (when D is even), the Fourier coefficients are real:

x̂0 =

D−1∑
n=0

xn, (21)

x̂D/2 =

D−1∑
n=0

xn(−1)n. (22)

Each is a sum of D i.i.d. standard Gaussian variables, so x̂k ∼ N (0, D) and hence

|x̂k| ∼
√
D · χ1 ⇒ |x̂k|√

D
∼ χ1. (23)
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C Connection to Probability-Regularized Noise Optimization (PRNO)

In this section, we show that the power spectrum regularization Lpower (10) is a practical surrogate for
the likelihood-style regularization used in Probability-Regularized Noise Optimization (PRNO) [33].

Intuitively, the regularization Lpower in the spectral domain spreads energy evenly across frequencies
and suppresses global offsets. Theorem A.1 formalizes this by proving that minimizing Lpower drives
the first and second moments to approximately 0 and 1, respectively, and renders the latent vector
rotation–isotropic (i.e., with no preferred direction). Then, Theorem A.2 shows that these properties
align with the objectives of PRNO by pushing the latent vector toward maximal likelihood in a broad
range of cases.

We first introduce the notation and setup, and then present the two theorems with their proofs.

Setup and notation. Let D = mk = PB > 10,000 be even, with the spatial block size fixed to
k = 4 (as in the official PRNO implementation code [33]) and the frequency block size set to B = 16
(these constants are used in all our experiments). Let Π ∈ RD×D be a uniformly random permutation
matrix and let F ∈ CD×D denote the DFT matrix. For any x ∈ RD, define the permuted signal and
its DFT by

x̂(Π) := FΠx ∈ CD. (24)

Frequency blocks. For Bp := {pB, . . . , (p+ 1)B − 1} with selector RBp
∈ {0, 1}B×D, define

x̂[p](Π) := RBp x̂(Π) ∈ CB . (25)

Then, Lpower (10) can be written as follow:

Lpower(Πx) :=
1

D

P−1∑
p=0

∣∣∣∣ 1√
D

∥∥x̂[p](Π)
∥∥
1
− µpowerB

∣∣∣∣ . (26)

Spatial blocks. For Ki := {ik, . . . , (i+ 1)k − 1} with selector RKi
∈ {0, 1}k×D, define

x(i)(Π) := RKi
(Π x) ∈ Rk. (27)

Define the block mean and block covariance

x(Π) :=
1

m

m−1∑
i=0

x(i)(Π), S(Π) :=
1

m

m−1∑
i=0

x(i)(Π) x(i)(Π)
⊤
. (28)

Diagnostics:
M1(Πx) :=

∥∥x(Π)
∥∥
2
, M2(Πx) :=

∥∥S(Π)− Ik
∥∥
2
. (29)

For M ≥ 0 define
p1(M) := min

{
2 exp

(
− m

2kM
2
)
, 1
}
, (30)

ψ(M) :=
(√

1 +M − 1−
√
k/m

)2
+
, (31)

p2(M) := min
{
2 exp

(
− m

4 ψ(M)
)
, 1
}
. (32)

PRNO [33] maximizes EΠ [log p1(M1(Πx))] and EΠ [log p2(M2(Πx))].

Theorem A.1. Assume that x minimizes EΠ

[
Lpower(Πx)

]
. Then

µx =
1

D

D−1∑
j=0

xj ≈ 0, σ2
x =

∥x∥22
D

− µ2
x ≈ 1 (33)

and x is rotation–isotropic.
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Proof of Theorem A.1. Recall

Lpower(Πx) =
1

D

P−1∑
p=0

∣∣∣∣ 1√
D

∥∥x̂[p](Π)
∥∥
1
− µpowerB

∣∣∣∣ . (34)

To analyze the minimizer of EΠ

[
Lpower(Πx)

]
, we begin by investigating the expectation of the

magnitude of each DFT coefficient.

Let x ∈ RD and write x = µx1 + r with
∑D−1

j=0 rj = 0 and 1
D

∑D−1
j=0 r2j = σ2

x. Let fk be a

non-DC/non-Nyquist DFT row of F, so |fj | = 1,
∑D−1

j=0 fj = 0, and
∑D−1

j=0 |fj |2 = D.

Since
∑

j fj = 0,
1√
D

⟨fk,Πx⟩ = 1√
D

⟨fk,Πr⟩. (35)

Define cj := fj/
√
D so that

∑D−1
j=0 cj = 0 and

∑D−1
j=0 |cj |2 = 1. Then

Y :=
1√
D

⟨fk,Πr⟩ =
D−1∑
j=0

cj rΠ(j). (36)

Because Π is uniform and the population mean of {rj} is 0,

EΠ[Y ] = 0. (37)

Using the known covariances of sampling without replacement, Var(rΠ(j)) = σ2
x and

Cov(rΠ(i), rΠ(j)) = − σ2
x

D−1 for i ̸= j.

Then, we obtain

VarΠ(Y ) = σ2
x

D−1∑
j=0

|cj |2 −
σ2
x

D − 1

D−1∑
i,j=0
i ̸=j

ci cj =
(
1 +

1

D − 1

)
σ2
x =

D

D − 1
σ2
x. (38)

Y is a sum of many small, mean-zero terms sampled without replacement; by Hoeffding’s combina-
torial CLT (or Lindeberg-type arguments),

Y =

D−1∑
j=0

cj rΠ(j) ≈ CN
(
0,

D

D − 1
σ2
x

)
. (39)

If Z ∼ CN (0, σ2), then E[|Z|] =
√
π
2 σ. Hence,

EΠ

[
1√
D

|⟨fk,Πx⟩|
]
= EΠ[ |Y | ] ≈

√
π

2

√
D

D − 1
σx. (40)

For the DC DFT row,

f0 = 1,
1√
D

⟨f0,Πx⟩ = 1√
D

⟨1, x⟩ =
√
Dµx. (41)

Thus,

EΠ

[
1√
D

|⟨f0,Πx⟩|
]
=

√
D |µx|. (42)

For the Nyquist DFT row fD/2 we take fj = (−1)j , hence cj = fj/
√
D = (−1)j/

√
D ∈ R and

1√
D

⟨fD/2,Πr⟩ =
D−1∑
j=0

cj rΠ(j) ∈ R. (43)
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As before,

EΠ

[
1√
D

⟨fD/2,Πr⟩
]
= 0, VarΠ

(
1√
D

⟨fD/2,Πr⟩
)

=
D

D − 1
σ2
x. (44)

By a finite-population (permutation) CLT in the real case,

1√
D

⟨fD/2,Πr⟩ ≈ N
(
0,

D

D − 1
σ2
x

)
, (45)

and therefore, using E|Z| =
√
2/π σ for Z ∼ N (0, σ2),

EΠ

[
1√
D

∣∣⟨fD/2,Πx⟩
∣∣] ≈

√
2

π

√
D

D − 1
σx. (46)

We analyze Yp := 1√
D

∥∥x̂[p](Π)
∥∥
1
− µpowerB, which constitutes Lpower(Πx).

The expectation over all permutations is

EΠ[Yp] =

(p+1)B−1∑
k=pB

EΠ

[
1√
D

∣∣⟨fk,Πx⟩
∣∣]− µpowerB (47)

DC–including block (p = 0).

EΠ[Y0] = (B − 1)

√
π

2

√
D

D − 1
σx +

√
D |µx| − µpowerB. (48)

Nyquist–including block (p = P
2 ).

EΠ[YP/2] = (B − 1)

√
π

2

√
D

D − 1
σx +

√
2

π

√
D

D − 1
σx − µpowerB. (49)

Ordinary (non-DC/non-Nyquist) blocks.

EΠ[Yp] = B

√
π

2

√
D

D − 1
σx − µpowerB. (50)

By convexity of | · |, for each block the mean absolute deviation equals absolute bias + nonnegative
fluctuation. Using the block-wise biases EΠ[Yp], we obtain

EΠ

[
Lpower(Πx)

]
=

1

D

P−1∑
p=0

|EΠ[Yp]|+Φ(x), (51)

where Φ(x) ≥ 0 is the fluctuation term.

To minimize EΠ

[
Lpower(Πx)

]
, we first consider minimizing

P−1∑
p=0

|EΠ[Yp]| = |EΠ[Y0]|+
∣∣EΠ[YP/2]

∣∣+ ∑
p ̸=0,P2

|EΠ[Yp]| . (52)

The only term containing µx is |EΠ[Y0]|. Thus, setting

|µx| =
1√
D

(
µpowerB − (B − 1)

√
π

2

√
D

D − 1
σx

)
+

(53)

minimizes the |EΠ[Y0]| to 0.
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The rest terms are only dependent to σx as∣∣EΠ[YP/2]
∣∣+ ∑

p ̸=0,P2

|EΠ[Yp]| =

∣∣∣∣∣
(
(B − 1)

√
π

2

√
D

D − 1
+

√
2

π

√
D

D − 1

)
σx − µpowerB.

∣∣∣∣∣
+ (P − 2)

∣∣∣∣∣B
√
π

2

√
D

D − 1
σx − µpowerB

∣∣∣∣∣ .
(54)

This is minimized when

σx =
D −B

(D −B − 1)
√
π
2

√
D

D−1 +
√

2
π

√
D

D−1

µpower. (55)

Given that B = 16, µpower = 0.875, and D > 104, σx ≈ 0.987, and |µx| < 0.009. Therefore,

µx ≈ 0, σx ≈ 1 with error of roughly 0.01. (56)

Next, let us consider the fluctuation term. For easier notations, set g(t) := |t− µpowerB| and define,
for each block p,

Zp(Π; x) :=
1√
D

∥∥x̂[p](Π)
∥∥
1
, hp(x) := EΠ[Zp(Π; x)], εp(Π; x) := Zp(Π; x)− hp(x). (57)

By Jensen’s inequality,

EΠ[g(Zp)] = g
(
hp(x)

)
+∆p(x), ∆p(x) := EΠ

[
g
(
hp(x) + εp

)
− g
(
hp(x)

)]
≥ 0, (58)

and hence

EΠ

[
Lpower(Πx)

]
=

1

D

P−1∑
p=0

g
(
hp(x)

)
+ Φ(x), Φ(x) :=

1

D

P−1∑
p=0

∆p(x). (59)

Let ν be the uniform probability measure on O(D), independent of x, and let

xiso
d
= Rx, R ∼ ν, (60)

be an isotropized representative. Define the rotation–averaged block–mean profile

hp(x) := ER∼ν hp(Rx) = ER∼ν EΠ[Zp(Π;Rx)] = hp(xiso), p = 0, . . . , P − 1. (61)

Applying Jensen to the scalar convex map g after exposing both sources of randomness (R,Π) yields,
for each p,

ER,Π

[
g(Zp(Π;Rx))

]
≥ g
(
ER,ΠZp(Π;Rx)

)
= g
(
hp(x)

)
. (62)

Using Equation (58) for Rx and taking expectation in R,

ER,Π

[
g(Zp(Π;Rx))

]
= ER

[
g(hp(Rx))

]
+ ER

[
∆p(Rx)

]
≥ g

(
hp(x)

)
+ ER

[
∆p(Rx)

]
, (63)

where we also used Jensen on g to obtain ER[g(hp(Rx))] ≥ g(hp(x)). On the other hand, evaluating
Equation (58) at xiso and using Equation (61),

EΠ

[
g(Zp(Π; xiso))

]
= g
(
hp(x)

)
+ ∆p(xiso). (64)

By convexity and permutation/DFT invariance, the mapping x 7→ ∆p(x) is convex in the (unordered)
block–magnitude profile, so averaging over rotations cannot increase it; hence

∆p(xiso) ≤ ER

[
∆p(Rx)

]
, p = 0, . . . , P − 1. (65)

Summing the last two displays over p and dividing by D gives

EΠ

[
Lpower(Πxiso)

]
≤ ER∼ν EΠ

[
Lpower(ΠRx)

]
. (66)

This establishes that the isotropic law has expected loss no larger than the rotation–average of the
loss for x.
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Theorem A.2. Assume that x minimizes EΠ

[
Lpower(Πx)

]
. Then,

Pr
Π

(
p1
(
M1(Πx)

)
= 1

)
≳ 0.883, Pr

Π

(
p2
(
M2(Πx)

)
= 1

)
≳ 0.999. (67)

Consequently, for the majority permutations Π, p1
(
M1(Πx)

)
= p2

(
M2(Πx)

)
= 1.

Proof of Theorem A.2. We first show for p1(M1(Πx)), and then show for p2(M2(Πx)).

Proof of p1. Recall

x(Π) :=
1

m

m−1∑
i=0

x(i)(Π) ∈ Rk, M1(Πx) :=
∥∥x(Π)

∥∥
2
. (68)

Because Π is a uniform permutation and the spatial blocks are formed by reshaping into m blocks
of size k, each coordinate of x(Π) is the average of m distinct entries sampled without replacement
from the D-point population {xj}D−1

j=0 . Hence, for each coordinate a ∈ {1, . . . , k},

EΠ

[
x(Π)a

]
= µx. (69)

For the variance, write x(Π)a = 1
m

∑m
i=1Xi, where X1, . . . , Xm are the m draws without replace-

ment from {xj}. Then

Var
(
X
)
=

1

m2

 m∑
i=1

Var(Xi) +
∑
i ̸=j

Cov(Xi, Xj)

 . (70)

A direct counting argument for sampling without replacement gives Var(Xi) = σ2
x and, for i ̸= j,

Cov(Xi, Xj) = −σ2
x/(D − 1). Substituting,

Var
(
X
)
=

1

m2

(
mσ2

x +m(m− 1)

(
− σ2

x

D − 1

))
=
σ2
x

m
· D −m

D − 1
. (71)

Therefore,

VarΠ
(
x(Π)a

)
=

1

m

D −m

D − 1
σ2
x. (72)

For the cross–covariance of two distinct coordinates a ̸= b of x(Π), use the same decomposition and
the same counting covariance for distinct draws:

CovΠ
(
x(Π)a, x(Π)b

)
=

1

m2

m∑
i,j=1

Cov
(
X

(a)
i , X

(b)
j

)
(73)

=
1

m2
·m2

(
− σ2

x

D − 1

)
= − 1

m

1

D − 1
σ2
x. (74)

Collecting the coordinates,

CovΠ
(
x(Π)

)
=

1

m

σ2
x

D − 1

(
(D −m) Ik − (11⊤ − Ik)

)
. (75)

Since D −m > 7500 ≫ 1, the covariance can be approximated as

CovΠ
(
x(Π)

)
≈ 1

m

σ2
x

D − 1
(D −m) Ik. (76)

At the EΠ[Lpower] minimizer, µx ≈ 0 and σ2
x ≈ 1. Therefore, Equation (69)–(75) become

EΠ

[
x(Π)

]
≈ 0, CovΠ

(
x(Π)

)
≈ 1

m

D −m

D − 1
Ik. (77)
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The minimizer is also rotation–isotropic. Under isotropy and m≫ 1, a multivariate combinatorial
CLT (sampling without replacement) implies that

x(Π) ≈ N
(
0,

D −m

m(D − 1)
Ik

)
. (78)

In particular,

M1(Πx)2 =
∥∥x(Π)

∥∥2
2

d
≈ D −m

m(D − 1)
χ2
k. (79)

From Equation (79),

Pr
Π

(
log 2− m

2kM
2
1 ≥ 0

)
≈ Pr

(
χ2
k ≤ 2k log 2 · D − 1

D −m

)
. (80)

For k = 4 and m = D/4 we have D−1
D−m = 4

3

(
1− 1

D

)
, and the χ2

4 CDF is Fχ2
4
(x) = 1− e−x/2(1 +

x/2). Therefore the probability admits the exact closed form

Pr
Π

(
log 2− m

8 M1(Πx)2 ≥ 0
)
= 1− 2−

16
3 (1−

1
D )
(
1 +

16

3

(
1− 1

D

)
log 2

)
, (81)

which is increasing in D and, for every D > 104, exceeds

1− 2−16/3
(
1 + 16

3 log 2
)
> 1− 2−

16
3 (1−

1
104

)
(
1 +

16

3

(
1− 1

104

)
log 2

)
≈ 0.883. (82)

Combining with Equation (81) gives

Pr
Π

(
log 2− m

2kM1(Πx)2 ≥ 0
)

≳ 0.883. (83)

By the definition p1(M) = min{2 exp(−m
2kM

2), 1},{
log 2− m

2kM
2
1 ≥ 0

}
=
{
log p1

(
M1

)
= 0
}
=
{
p1
(
M1

)
= 1
}
. (84)

Therefore,
Pr
Π

(
p1
(
M1

)
= 1
)

≳ 0.883. (85)

Proof of p2. Recall

S(Π) :=
1

m

m−1∑
i=0

x(i)(Π) x(i)(Π)
⊤
∈ Rk×k, M2(Πx) :=

∥∥S(Π)− Ik
∥∥
2

(86)

Fix a particular block i and coordinates a ̸= b. Then,

EΠ

[
x(i)(Π)a x

(i)(Π)b
]
=

1

D(D − 1)

∑
j ̸=k

xjxk =
1

D(D − 1)

( D∑
j=1

xj

)2
−

D∑
j=1

x2j

 . (87)

Using
∑D

j=1 xj = Dµx and
∑D

j=1 x
2
j = D(µ2

x + σ2
x), we rewrite Equation (87) as

EΠ

[
x(i)(Π)a x

(i)(Π)b
]
=
D2µ2

x −D(µ2
x + σ2

x)

D(D − 1)
= µ2

x −
σ2
x

D − 1
. (88)

Likewise, for a = b (a single position),

EΠ

[
x(i)(Π)2a

]
=

1

D

D∑
j=1

x2j = q. (89)

Since all blocks are identically distributed under the permutation, Equation (88)–(89) hold for every
block i.
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Let S(Π) ∈ Rk×k denote the block sample covariance

S(Π) :=
1

m

m−1∑
i=0

x(i)(Π) x(i)(Π)
⊤
. (90)

Taking permutation expectation and using linearity,

EΠ[S(Π)] =
1

m

m−1∑
i=0

EΠ

[
x(i)(Π) x(i)(Π)

⊤]
= EΠ

[
x(0)(Π) x(0)(Π)

⊤]
, (91)

so it suffices to compute the expectation for a single block, already encoded by Equation (88)–(89).
Collecting the diagonal and off-diagonal entries:(

EΠ[S(Π)]
)
aa

= µ2
x + σ2

x,
(
EΠ[S(Π)]

)
ab

= µ2
x −

σ2
x

D − 1
(a ̸= b). (92)

In matrix form,

EΠ[S(Π)] = µ2
x 11

⊤ + σ2
xIk − σ2

x

D − 1

(
11⊤ − Ik

)
. (93)

Let
u :=

1√
k
∈ Rk, U := span{u}, U⊥ := {v ∈ Rk : ⟨v, u⟩ = 0}, (94)

and the associated orthogonal projectors

P := uu⊤ =
1

k
11⊤, P⊥ := Ik − P. (95)

We use the identities

11⊤ = kP, Ik = P + P⊥, 11⊤ − Ik = (k − 1)P − P⊥, (96)

to expand EΠ[S(Π)] along P ⊕ P⊥. Subtract Ik to focus on the deviation:

∆ := EΠ[S(Π)]− Ik = µ2
x 11

⊤ + σ2
xIk − σ2

x

D − 1

(
11⊤ − Ik

)
− Ik. (97)

Insert the projector decompositions:

∆ = µ2
x kP + σ2

x(P + P⊥)−
σ2
x

D − 1

(
(k − 1)P − P⊥

)
− (P + P⊥). (98)

Group the P and P⊥ coefficients separately:

∆ =
[
σ2
x − 1 + kµ2

x −
k − 1

D − 1
σ2
x

]
P +

[
σ2
x − 1 +

1

D − 1
σ2
x

]
P⊥. (99)

Thus ∆ is diagonal in the orthogonal decomposition U ⊕ U⊥ with eigenvalues

λ∥ = σ2
x − 1 + kµ2

x −
k − 1

D − 1
σ2
x, (100)

λ⊥ = σ2
x − 1 +

1

D − 1
σ2
x. (101)

Since ∆ is diagonal on U ⊕ U⊥,∥∥EΠ[S(Π)]− Ik
∥∥
2
= ∥∆∥2 = max{ |λ∥|, |λ⊥| }. (102)

At the minimizer of EΠ[Lpower(Πx)], Theorem A.1 implies µx ≈ 0, σ2
x ≈ 1. Applying these to

Equation (100)–(101) gives

|λ∥| =
∣∣∣σ2

x − 1 + kµ2
x −

k − 1

D − 1
σ2
x

∣∣∣ ≈ k − 1

D − 1
, (103)
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|λ⊥| =
∣∣∣σ2

x − 1 +
1

D − 1
σ2
x

∣∣∣ ≈ 1

D − 1
. (104)

For k = 4 and D > 104 we have k ≪ D, so both right-hand sides are of order 1/D and therefore
negligible at the fluctuation scales considered below. Consequently,∥∥EΠ[S(Π)]− Ik

∥∥
2
= max{ |λ∥|, |λ⊥| } ≈ 0. (105)

Hence, at the minimizer, M2(Πx) is governed by fluctuations around Ik rather than by deterministic
bias.

To obtain an exact i.i.d. model for the fluctuations, let

g ∼ N (0, ID), g =
(
g(0), . . . , g(m−1)

)
, g(i) ∈ Rk, (106)

so g(i) i.i.d.∼ N (0, Ik). Enforce q = 1 by projecting onto the sphere:

x := c g, x(i) = c g(i), c :=

√
D

∥g∥2
. (107)

Thus

S(Π)
d
≈ 1

m

m−1∑
i=0

x(i)x(i)
⊤
= c2

( 1

m

m−1∑
i=0

g(i)g(i)
⊤)

︸ ︷︷ ︸
=: Sg

, mSg ∼ Wishartk(m, Ik). (108)

Hence the only dependence among the x(i) is the common scalar c. By χ2 concentration,

c2 =
D

∥g∥22
= 1 +OP(D

−1/2). (109)

Using the operator–norm triangle inequality,

∥S(Π)− Ik∥ ≈ ∥c2Sg − Ik∥ ≤ |c2 − 1| ∥Sg∥+ ∥Sg − Ik∥. (110)

Since ∥Sg∥ = λmax(Sg) concentrates at (1+
√
γ)2 with γ := k/m, the first term isOP(D

−1/2), neg-
ligible compared to the spectral–edge fluctuation scale m−2/3 that drives the second term. Therefore,
up to a vanishing radial error, M2(Πx) is governed by the Wishart shape fluctuations of Sg .

Let λmax denote the maximum eigenvalue of Sg and set γ := k/m. The (orthogonal) Tracy–Widom
edge law (with k fixed, m→ ∞) states

λmax − (1 +
√
γ)2

(1 +
√
γ)4/3 γ1/6m−2/3

d−→ ξ, ξ ∼ TW1, (111)

and the upper tail satisfies Pr(ξ > t) ≤ exp(− 2
3 t

3/2). Expanding the square root at the edge
(1 +

√
γ)2 gives(√

λmax − 1−√
γ
)2
+
=

(1 +
√
γ)2/3γ1/3

4
m−4/3 (ξ+)

2 (1 + o(1)). (112)

Because ∥Sg − Ik∥ ≥ λmax − 1, Equation (112) controls the surrogate of the shape fluctuation.

From Equation (110) and (109),

M2(Πx) = ∥S(Π)− Ik∥ ≈ ∥Sg − Ik∥+ oP(1). (113)

Since x 7→ (
√
1 + x − 1 − √

γ)2+ is 1–Lipschitz in a neighborhood of the edge, we may transfer
Equation (112) to S(Π):

ψ
(
M2(Πx)

)
=
(√

1 +M2(Πx)−1−√
γ
)2
+

≲
(1 +

√
γ)2/3γ1/3

4
m−4/3 (ξ+)

2 (1+o(1)), (114)

with the same ξ ∼ TW1. The o(1) is uniform for fixed k and m→ ∞.
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The clipping event {log 2− m
4 ψ(M2) ≥ 0} fails only if

ψ
(
M2(Πx)

)
>

4 log 2

m
. (115)

By Equation (114), this implies

ξ > tm :=
( 16 log 2

(1 +
√
γ)2/3γ1/3

)1/2
m1/6. (116)

Using Pr(ξ > t) ≤ exp
(
− 2

3 t
3/2
)

yields

Pr
Π

(
log 2− m

4 ψ(M2(Πx)) < 0
)

≲ exp
(
− 16

3
(log 2)3/4

m1/2

(1 +
√
γ)1/2 k1/4

)
. (117)

For k = 4, k1/4 =
√
2; with m = D/4 we have γ = 16/D and

√
γ = 4/

√
D ≤ 0.04, hence

(1 +
√
γ)1/2 ≤

√
1.04. Writing

cmin :=
16

3
(log 2)3/4

1√
2
√
1.04

≈ 2.80, (118)

and using m1/2 = 1
2

√
D > 50 for D > 104, Equation (117) gives

Pr
Π

(
log 2− m

4 ψ(M2(Πx)) ≥ 0
)

≳ 1− exp
(
− cminm

1/2
)
≥ 1− exp(−140). (119)

By the definition p2(M) := min
{
2 exp

(
− m

4 ψ(M)
)
, 1
}

,{
log 2− m

4 ψ(M2(Πx)) ≥ 0
}

=
{
log p2

(
M2

)
= 0
}
=
{
p2
(
M2

)
= 1
}
. (120)

Therefore,
Pr
Π

(
p2
(
M2

)
= 1
)

≳ 1− exp(−140) > 0.999. (121)

D Ablation Studies
We present results for text-aligned image generation with varying λpower and K.

λpower 0 5 10 25 50 100

PickScore↑ 0.2481 0.2516 0.2513 0.2548 0.2521 0.2533
HPSv2↑ 0.2968 0.2974 0.3032 0.3028 0.3060 0.3042

Table A.1: Quantitative results with varying λpower.
We observe that performance remains stable across a wide range of λpower values and consistently
improves relative to the case λpower = 0. These results suggest that our loss is not sensitive to this
parameter. We chose 25.0 considering the trade-off.

K ∅ {1} {1, 2} {1, 2, 3, 4} {1, . . . , 6} {1, . . . , 8}

PickScore↑ 0.2484 0.2500 0.2548 0.2510 0.2521 0.2525
HPSv2↑ 0.2933 0.2962 0.3028 0.3012 0.2999 0.2984

Table A.2: Quantitative results with varying K.
The performance with {1, 2} shows a clear improvement over both ∅ and {1}. However, we did
not observe further gains when extending to higher-order moment terms. The first two terms were
sufficient to surpass baseline performance.
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E Full Quantitative Results
We present the full quantitative results for the two main applications. Table A.3 reports results for
aesthetic image generation, while Table A.4 presents results for text-aligned image generation.

Given
Aesthetic

Score

100 iterations 200 iterations 300 iterations 400 iterations 500 iterations
Aest.
Score↑

Image-
Reward↑ HPSv2↑ Aest.

Score↑
Image-
Reward↑ HPSv2↑ Aest.

Score↑
Image-
Reward↑ HPSv2↑ Aest.

Score↑
Image-
Reward↑ HPSv2↑ Aest.

Score↑
Image-
Reward↑ HPSv2↑

No Opt. 5.9880 0.8299 0.2958 5.9880 0.8299 0.2958 5.9880 0.8299 0.2958 5.9880 0.8299 0.2958 5.9880 0.8299 0.2958
No Reg. 6.3861 0.3988 0.2726 7.0175 0.4076 0.2679 7.4236 0.3418 0.2645 7.8216 0.3514 0.2639 8.1079 0.3460 0.2641
KL [18] 6.3499 0.7132 0.2863 6.7753 0.5287 0.2794 7.3469 0.4812 0.2749 7.8422 0.4815 0.2749 8.1393 0.4225 0.2735

Kurtosis [7] 6.5597 0.7932 0.2930 6.9711 0.7446 0.2900 7.4069 0.7424 0.2897 7.7676 0.7329 0.2914 8.0477 0.8041 0.2920
ReNO [12] 6.5455 0.8331 0.2937 7.0600 0.7545 0.2915 7.4974 0.7913 0.2918 7.8621 0.7493 0.2908 8.1508 0.7749 0.2883
PRNO [33] 6.5860 0.8235 0.2913 6.9030 0.7689 0.2869 7.2650 0.7203 0.2830 7.7159 0.6493 0.2836 8.0760 0.6375 0.2833

Ours 6.6110 0.8798 0.2964 7.1356 0.7538 0.2922 7.6559 0.7837 0.2923 8.1061 0.8243 0.2934 8.4435 0.8397 0.2927

Table A.3: Quantitative Results on Aesthetic Image Generation. We report the aesthetic score
values used as given reward ( ) during inference-time optimization. To assess generalization across
reward metrics, we also include ImageReward and HPSv2 as held-out rewards ( ). Bold values
indicate the best performance in each metric at each optimization iteration.

Given
Pickscore

100 iterations 200 iterations 300 iterations 400 iterations 500 iterations
Pick-
score↑

Image-
Reward↑ HPSv2↑ Pick-

score↑
Image-
Reward↑ HPSv2↑ Pick-

score↑
Image-
Reward↑ HPSv2↑ Pick-

score↑
Image-
Reward↑ HPSv2↑ Pick-

score↑
Image-
Reward↑ HPSv2↑

No Opt. 0.2246 0.4825 0.2752 0.2246 0.4825 0.2752 0.2246 0.4825 0.2752 0.2246 0.4825 0.2752 0.2246 0.4825 0.2752
No Reg. 0.2327 0.4911 0.2795 0.2374 0.5139 0.2825 0.2412 0.5193 0.2868 0.2430 0.5238 0.2868 0.2445 0.5198 0.2876
KL [18] 0.2329 0.3396 0.2744 0.2382 0.3750 0.2806 0.2416 0.3874 0.2834 0.2440 0.4121 0.2861 0.2464 0.4127 0.2876

Kurtosis [7] 0.2327 0.4587 0.2751 0.2377 0.5405 0.2793 0.2407 0.5405 0.2823 0.2440 0.5322 0.2853 0.2459 0.5315 0.2863
ReNO [12] 0.2342 0.4615 0.2819 0.2388 0.4844 0.2871 0.2436 0.5245 0.2913 0.2461 0.5245 0.2925 0.2485 0.5343 0.2945
PRNO [33] 0.2339 0.5341 0.2785 0.2408 0.5548 0.2843 0.2449 0.5647 0.2876 0.2481 0.5495 0.2896 0.2514 0.6061 0.2936

Ours 0.2360 0.5514 0.2862 0.2422 0.5900 0.2931 0.2480 0.5824 0.2985 0.2514 0.5625 0.3001 0.2548 0.5897 0.3028

Table A.4: Quantitative Results on Text-Aligned Image Generation. We report the Pickscore
values used as given reward ( ) during inference-time optimization. To assess generalization across
reward metrics, we also include ImageReward and HPSv2 as held-out rewards ( ). Bold values
indicate the best performance in each metric at each optimization iteration.
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