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Abstract

Bayesian optimization (BO) is an attractive machine learning framework for per-
forming sample-efficient global optimization of black-box functions. The optimiza-
tion process is guided by an acquisition function that selects points to acquire in
each round of BO. In batched BO, when multiple points are acquired in parallel,
commonly used acquisition functions are often high-dimensional and intractable,
leading to the use of sampling-based alternatives. We propose a statistical physics
inspired acquisition function for BO with Gaussian processes that can natively
handle batches. Batched Energy-Entropy acquisition for BO (BEEBO) enables
tight control of the explore-exploit trade-off of the optimization process and gen-
eralizes to heteroskedastic black-box problems. We demonstrate the applicability
of BEEBO on a range of problems, showing competitive performance to existing
methods.

1 Introduction

Figure 1: q-UCB does not allow for controlling its
explore-exploit trade-off with large batches. A GP
surrogate (background) was initialized with 100
random points of the Ackley function. q-UCB was
run with κ = 0.1 and κ = 100, BEEBO with T ′=
0.05 and T ′=50. Batch size Q=100.

Bayesian Optimization (BO) has since its in-
ception [1, 2] made a profound contribution to
the realm of global optimization of black-box
functions through the usage of Bayesian statis-
tics. For global optimization problems pursuing
x∗ = argmaxx∈X ftrue(x), BO has surfaced as
a premier strategy for efficiently handling espe-
cially complex and costly unknown functions,
ftrue(x). While BO is traditionally formulated in
a single-point scenario, where individual points
are queried and results are observed sequentially,
there are situations where batched acquisition
is needed. Such situations arise when ftrue(x)
is expensive to evaluate in either time or cost,
but can be effectively evaluated in parallel by
dispatching multiple experiments, reducing the
overall optimization time. This is often the case
in e.g. drug discovery, materials design or hyper-
parameter tuning for deep models [3, 4, 5, 6, 7].

The realization that BO could be employed for
the training of deep neural networks, as sug-
gested by [3], sparked renewed research interest,
with advancements encompassing a variety of
areas, including the generalization to accommo-
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date noisy inputs [8, 9], heteroskedastic noise [10, 11], multi-task problems [12], multi-fidelity [13],
high-dimensional input spaces [14], and parallel methods with batch queries [15, 16]. Generally,
these desired properties are addressed by customizing one of the two key components in BO, either
the surrogate model or the acquisition function. The surrogate model f approximates the black-box
function ftrue using the available data. In BO, the surrogate is formulated from a Bayesian perspective,
allowing us to quantify the model’s uncertainty when evaluating new points. Typically, the model
of choice is a Gaussian Process (GP) [17]. The acquisition function is responsible for guiding the
selection of new input point(s) to evaluate at each optimization step, utilizing the surrogate model to
identify promising regions in the input domain and exploring the unknown function further.

Any acquisition process needs to trade off exploration (reducing uncertainty to learn a better surrogate
model) against exploitation (selecting points with a high expected ftrue(x) based on the current
surrogate). In this work, we are particularly interested in acquisition processes that make this trade-off
controllable using a hyperparameter. Controllability can be a desirable property if e.g. domain
knowledge relating to the difficulty of the optimization process and the quality of the surrogate
model is available, or if the strategy needs to be adjusted depending on future experimental budgets.
Similarly, it can be desirable to acquire multiple x with high ftrue(x) in a batch (as opposed to just
finding the optimum x∗, with the remaining x being considered explorative). This is useful when
optima identified in BO can be subject to constraints that are unknown at optimization time, but
may render x∗ intractable [18]. Such constraints arise when the ftrue explored in BO is a necessary
simplification of the actual objective. Practical examples include e.g. the synthesizability of a material
at larger scale, when BO experiments are performed at lab scale; or the in vivo activity of a molecule
with BO experiments performed in vitro.

A wide range of batch mode acquisition functions has been proposed, with approaches often lever-
aging random sampling strategies or Monte Carlo (MC) integration, which can adversely affect
controllability for large batches (Figure 1). In contrast, we here introduce BEEBO (Batched Energy-
Entropy acquisition for BO), a statistical physics inspired acquisition function for BO with GP
surrogate models that natively generalizes to batched acquisition. BEEBO enables

• Parallel gradient-based optimization of the inputs, without requiring sampling or Monte
Carlo integrals.

• Tight control of the explore-exploit trade-off in batch mode using a single temperature
hyperparameter.

• Risk-averse BO under heteroskedastic noise.

We demonstrate the application of BEEBO on a wide range of test problems, and investigate its
behaviour under heteroskedastic noise.

2 Related works

Batch variants of traditional strategies Parallel acquisition in BO has seen a variety of approaches,
often starting from established single-point acquisition functions like probability of improvement
(PI), expected improvement (EI), knowledge gradient (KG) or upper confidence bound (UCB)
[2, 19, 20, 21, 22]. Reformulating these to batch mode with Q query points, we obtain q-PI, q-
EI, and q-UCB [23, 24]. While the single-point specifications provide an analytical form and
enable gradient-based optimization, batch expressions are more challenging and require different
optimization strategies, typically involving greedy algorithms [25] or deriving an integral expression
over multiple points.

For instance, in the popular EI acquisition function, a single point is selected by maximizing
the expression aEI (x) = E[max (0, f (x)− f∗t )] =

∫
max (0, f (x)− f∗t )P (f |x) df . Here f∗t

represents the best observed evaluation of ftrue so far. With a surrogate model in the form of a GP,
the acquisition function depends only on the predictive mean and variance functions, µ (x) and
C (x). Effectively, we need to evaluate the cumulative normal distribution, which quickly becomes
intractable for large batch sizes and approximating the gradient of the q-EI acquisition function
typically requires MC estimation [26, 27]. However, proper MC integration can be laborious and
is sensitive to both the dimension of the problem and the choice of batch size Q. Specifically, MC
methods face the curse of dimensionality problem when applied to high-dimensional integrals, as
they require an exponentially increasing number of sample points to maintain accuracy, making them

2



computationally impractical for such tasks [28, 29]. Of particular interest is Wilson et al. [24], in
which they adopt the reparameterization trick [30, 31] on acquisition functions integrals, enabling
gradient based approaches to the optimization of PI, EI, and UCB. This demonstrates particular
usefulness in modest to higher dimensions.

While EI trades off exploration and exploitation, users do not have a direct control over the balance.
To alleviate this, Sobester et al. [32] proposed a weighted EI formulation. An alternative strategy
with an explicit explore-exploit trade-off is offered by the UCB acquisition function, aUCB (x) =

µ(x) +
√
κ ·
√
C(x), which directly expresses exploration and exploitation as two terms, traded off

by the parameter κ. As we are particularly interested in enabling this direct user control, we focus our
primary comparison on q-UCB in the main text, while a more extensive comparison with alternative
methods can be found in Appendix B, both theoretically and experimentally.

Greedy strategies As mentioned, a popular approach for leveraging single-point acquisition
functions is devising batch filling strategies that score candidate points sequentially. Kriging Believer
(KB) [33] uses EI to select points and iteratively updates the GP by fantasizing an observation with
the posterior mean. Likewise, GP-BUCB [34] uses fantasized observations to update

√
C(x) at each

step. Local penalization (LP) [35] introduces a penalization function that repulses selection away
from already selected points. Contal et al. [36] propose selecting a single point using UCB and
dedicating the remainder of the batch budget for exploration in a restricted region around the believed
optimum. GLASSES [37] treats batch selection as a multi-step lookahead problem to overcome the
myopia of only considering the immediate effect of selecting a point.

Entropy based strategies From an information theory perspective, BO can be interpreted as
seeking to reduce uncertainty over the location of optima of the unknown function. This has given
rise to entropy-based acquisition functions such as entropy search (ES) [38], predictive entropy search
(PES) [39] and max-value entropy search (MES) [13, 40, 41]. MES is distinct in that it seeks to
quantify the mutual information between the unknown ftrue(x∗) and the observations y|D, rather
than the location of x∗. General-purpose Information-Based Bayesian OptimizatioN (GIBBON)
[42] provides an extension of MES that enables application to batched acquisition as well as other
challenges such as multi-fidelity BO. GIBBON proposes a lower bound formulation for the intractable
batch MES criterion, which is then optimized using greedy selection. Despite being formulated to
handle a large degree of parallelism, Moss et al. [42] reported that GIBBON fails in practice for large
batches with Q > 50. Potentially, this behaviour is a consequence of the accuracy of the lower bound
approximation. A heuristic scaling of the batch diversity was proposed to improve performance with
large batches. GIBBON may also be interpreted as a determinantal point process (DPP) [4, 43]. In
Appendix B we provide a detailed discussion of the relationship of the BEEBO acquisition function
to GIBBON and DPPs. Note that while we will also make use of the term entropy in BEEBO, the
quantity is distinct from the ones leveraged by the aforementioned approaches in the sense that it
does not relate to an unknown optimum.

Thompson sampling Given the challenges of generalizing acquisition functions to batch mode,
Thompson sampling (TS), which was originally adopted from bandit problems [44, 45, 46, 47, 48], is
a popular alternative strategy for guiding batched BO. While being an attractive approach in general, it
has been demonstrated that default TS can become too exploitative, motivating the use of alternatives
such as Bayesian Quadrature [49], or advanced strategies on top of TS that ensure diversity [18].
Eriksson et al. [50] demonstrate that overexploration also can be problematic in higher dimensions,
and alleviate this using local trust regions in TuRBO. Maintaining such regions with high precision
discretization can be memory-expensive, as indicated by [51], who suggest using MCMC-BO with
adaptive local optimization to address this by transitioning a set of candidate points towards more
promising positions.

3 The BEEBO acquisition function

Assume ftrue : X → R is some real output associated with the input and a set of data be given
D = {(xi, yi)}Ni=1 where yi ∈ R represent some noisy observations of ftrue(xi), say

yi = ftrue(xi) + ϵi (1)
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with ϵi denoting the measurement noise. Let x = (x1, · · · , xQ) ∈ XQ represent a collection of test
points we wish to assign an acquisition value to. In keeping with the BO framework, we assume a
given posterior probability distribution over the surrogate function f evaluated at x,

f(x) ∼ P (f |D,x) (2)

The lack of knowledge we have of the surrogate function at x is quantified by the differential entropy
H:

H
(
f |D,x

)
= −

∫
P
(
f |D,x

)
ln
(
P
(
f |D,x

))
df (3)

This entropy can be contrasted with the expected entropy of the surrogate function if Q observations
y = (y1, · · · , yQ) were acquired at x, i.e. if the training data D would be augmented with D′(y) =

{(xq, yq)}Qq=1 to form the joint data set Daug(y) =
(
D,D′(y)

)
. We refer to this entropy as Haug:

Haug
(
f |D,x

)
=

∫
P (y |D,x)H

(
f |Daug(y)

)
dy, (4)

where P (y |D,x) represent the posterior predictive distribution at x. The expected information
gain, I(x), from acquiring observations at x is given by the expected reduction of entropy from this
process:

I(x) = H
(
f |D,x

)
−Haug

(
f |D,x

)
(5)

We propose to represent the explore component of the acquisition function, aBEEBO, by I(x). The
information gain I(x) is distinct from the quantities exploited by entropy search approaches, as it
quantifies global uncertainty reduction, rather than estimating the information over an unknown x∗.
The information gain is directly applicable to multivariate functions and to heteroskedastic settings
where σ2 = σ2(x). Since large measurement uncertainties imply smaller information gain, aBEEBO
exhibits risk-averse behaviour [11] by automatically prioritizing regions of small uncertainties from
where more precise information of ftrue can be obtained, everything else being equal.

The exploit component of BEEBO relies on taking expectation values of a scalar function of the
random variable f(x), Ẽ : RQ → R, that summarizes the optimality properties of a given batch x.
Natural choices would be the mean or the maximum of f(x). Of particular interest is expressing the
optimality as a softmax-weighted sum over f(x), as this allows us to smoothly interpolate between
the two regimes:

E(x) = −E[Ẽ(x)] ·Q = −E

[
Q∑

q=1

softmax(βf)qfq

]
·Q, (6)

where β is the softmax inverse temperature. At β = 0, we recover the mean. We scale the expectation
with Q so that both I and E scale linearly with increasing batch size. While the mean provides a
closed form expression for its expectation, this is not the case for the general softmax-weighted sum
of a multivariate normal. Using Taylor expansion, we introduce an approximation of the expectation
of the softmax-weighted sum that is fully differentiable and can be computed in closed form. A
detailed derivation is provided in Appendix A. At β = 0, all Q points contribute equally to E(x),
whereas at β > 0, points that do not compete for optimality are dynamically released. This effect
can be quantified as the effective number of points via the entropy of the softmax weights. In the
following, we will refer to the (exact) β = 0 limit as meanBEEBO, and the (approximated) general
case as maxBEEBO.

The BEEBO acquisition function then takes the form

aBEEBO(x) = −E(x) + T · I(x), (7)

where T sets the balance between exploitation (small T ) and exploration (large T ). As both E
and I scale with the batch size Q, a given choice of T would set the explore-exploit balance in an
approximately Q-independent manner. This acquisition function bears a strong similarity to the
definition of (negative) free energies in statistical physics, where E and I correspond to respectively
the thermodynamic energy and entropy of the system and T corresponds to the temperature.
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3.1 BEEBO with Gaussian processes

Gaussian processes offer a particular convenient framework for BO, due to the availability of closed-
form expressions for the inference step [17]. Specifically

P (f |D,x) = N (f |µ(x), C(x))
µ(x) = K(x,xD) ·M−1

D · yD

C(x) = K(x,x)−K(x,xD) ·M−1
D ·K(xD,x)

MD = K(xD,xD) + σ2(xD) (8)

where N (· |µ,C) is the multivariate Gaussian distribution with mean µ, and covariance C, xD and
yD are the x and y values of the acquired data, σ(xD) = diag

(
σ2
1 , · · · , σ2

N

)
is a diagonal matrix with

the measurement uncertainties in the diagonal and K(·, ·) are matrices derived from the GP-kernel,
k(·, ·), i.e. K(x,x′)ij = k(xi, x

′
j). It is worth noting that C(x) only depends on the input location of

the test points x and the data points xD with their corresponding measurement uncertainties, σ2(xD),
but not on the actual observations, yD. Consequently, the entropy of the posterior distribution

H
(
f |D,x

)
=
Q

2
ln(2πe) +

1

2
ln det(C(x)) (9)

is independent of yD as well, with ln det denoting the log determinant. Similarly, the expected
entropy of f if observations at x were acquired, simply reads

Haug
(
f |D,x

)
=
Q

2
ln(2πe) +

1

2
ln det(Caug(x)), (10)

where

Caug(x) = K(x,x)−K(x,xaug) ·M−1
aug ·K(xaug,x)

Maug = K(xaug,xaug) + σ2(xaug) (11)

and xaug = xDaug . The BEEBO acquisition function is then given by

aBEEBO(x) = E[Ẽ(x)] ·Q+ T · I(x) (12)

where the expectation is either the mean, 1
Q

∑Q
q=1 µq, or the closed form approximation of the

softmax-weighted sum described in Appendix A, and

I(x) =
1

2
ln det(C(x))− 1

2
ln det(Caug(x)). (13)

Algorithm 1: meanBEEBO optimization
Input: model GP , initial batch points x,
temperature T
repeat

Calculate µ(x), C(x) from Equation 8 using GP
E ← −

∑Q
q=1 µq

GPaug ← fantasize(GP,x)
Calculate Caug(x) from Equation 11 using GPaug

I ← 1
2 ln det (C(x))−

1
2 ln det (Caug(x))

a← −E + T ∗ I
x← x+ γ∇a

until converged
Output: optimized batch points x

All operations needed to compute the ac-
quisition value aBEEBO(x) are analytical.
Using automatic differentiation, the batch
of points x can therefore be optimized with
gradient-based methods, as laid out for
meanBEEBO in Algorithm 1, with learn-
ing rate γ. In the pseudocode, GP denotes
a trained GP model object that holds the
training data and the kernel function. Using
the kernel’s learned amplitude A, we can
relate BEEBO’s T parameter to the κ of
UCB. This allows us to configure BEEBO
using a scaled temperature T ′ that ensures
both methods have equal gradients at iso-
surfaces, enabling the user to follow exist-
ing guidance and intuition from UCB to
control the trade-off. A derivation is pro-
vided in Appendix B.1.

5



4 Experiments

Table 1: Overview of the test problems used in the
experiments.

Function Dimension

Ackley 2, 10, 20, 50, 100
Shekel 4
Hartmann 6
Cosine 8
Rastrigin 2, 10, 20, 50, 100
Rosenbrock 2, 10, 20, 50, 100
Styblinski-Tang 2, 10, 20, 50, 100
Powell 10, 20, 50, 100
Embedded Hartmann 6 100

Test problems We benchmark acquisition
function performance on a range of maximiza-
tion test problems with varying dimensions (Ta-
ble 1) available in BoTorch [52]. Test problems
that are evaluated on multiple dimensions sup-
port specifying the respective arbitrary d. As
a high-dimensional problem with low inherent
dimensionality, we embed the six-dimensional
Hartmann function in d = 100 [50, 53, 54]. We
additionally test on two robot control problems
(robot arm pushing and rover trajectory plan-
ning) in Appendix D.3 [55, 56].

On each test problem, we perform 10 rounds of
BO using q-UCB or BEEBO with a given explore-exploit parameter for direct comparison. We use
the scaled temperature T ′ (B.1) to ensure that both methods operate at the same trade-off. In round 0,
we seed the surrogate GP with Q random points that were drawn so that each point has a minimum
distance of 0.5 to the test problem’s true optimum. We perform ten replicate runs for each problem
and method, with replicate seeds controlled so that all methods start from the same Q random points
in a replicate. As we evaluate performance in a fixed-round, fixed-Q optimization scenario, we set
the explore hyperparameter to 0 in the last round (for maxBEEBO, we also set the softmax β to 0).
We use Q = 100 for all experiments, which is commonly understood to be a large batch size [50].
Additional results on small batch sizes (5, 10) are provided in Appendix D.2. All experiments use
BoTorch’s default utilities for acquisition function optimization and GPyTorch [57] GP training (C.1).

Heteroskedastic noise We investigate performance when optimizing under heteroskedastic noise
on the 2D Branin function with three global optima. To construct a heteroskedastic problem, we
specify noise so that the noise level is maximal at optima 2 and 3, decaying exponentially with
distance to any of the two noised optima (C.4). No noise maximum is added at optimum 1. Therefore,
while all three optima share the same ftrue(x) (Figure A1), only optimum 1 is favorable in terms of
heteroskedastic risk. We perform BO for ten rounds with β = 0.1 andQ = 10 using a heteroskedastic
GP that learns surrogate models for both ftrue(x) and σ2(x). We report results over five replicate
runs.

Metrics We report the mean best observed objective value after 10 rounds over the five replicates.
As test problems have highly varying scales, we normalize the results on each test problem using
min-max normalization. Typically, the minimum of a maximization problem is not known explicitly.
We therefore set the minimum for normalization to the highest value observed among the random seed
points. The maximum is given by the ftrue(x

∗) of the problem. The metric thus directly quantifies
how much progress has been made to the true optimum from the random starting configuration on a
0-1 scale.

As we are not only interested in identifying a single x with good ftrue(x), we additionally quantify
the overall quality of the final (exploitative) batch. We compute the batch instantaneous regret
R =

∑
q<Q ftrue(x

∗)− ftrue(xq) of the last, exploitative batch. To bring results on all test problems
to a similar scale, we divide it by the batch instantaneous regret of a batch ofQ random points on each
problem. We refer to this metric as the relative batch instantaneous regret, Rrel = Rt=10/Rrandom.

For BO under heteroskedastic noise, we wish to quantify the preference of a given method for
different optima. As optima share the same ftrue(x

∗), metrics operating on ftrue(x) are inherently
unsuitable, and preference needs to be evaluated on x directly. For each acquired point xi, we
compute the distances ∥xi − x∗j∥2 to the J individual optima. We report the mean distance to each
optimum over all points in a batch.
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Table 2: Highest observed value after 10 rounds of BO with Q = 100. The best value at each κ
is indicated in blue. BEEBO is configured with T ′ = 1/2

√
κ. Full BO curves are provided in D.6,

confidence intervals and statistical tests in Tables A2, A3 and A4

.

Problem d
√
κ = 0.1

√
κ = 1.0

√
κ = 10.0

meanBEEBO maxBEEBO q-UCB meanBEEBO maxBEEBO q-UCB meanBEEBO maxBEEBO q-UCB

Ackley 2 0.993 0.982 0.973 0.985 0.980 0.967 0.975 0.988 0.988
Levy 2 1.000 1.000 1.000 0.999 1.000 1.000 0.999 0.998 0.998
Rastrigin 2 0.981 0.993 0.951 0.989 0.983 0.983 0.983 0.993 0.933
Rosenbrock 2 0.976 0.982 0.949 0.956 0.979 0.943 0.955 0.938 0.962
Styblinski-Tang 2 0.961 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999
Shekel 4 0.540 0.300 0.244 0.915 0.378 0.330 0.698 0.411 0.264
Hartmann 6 1.000 0.894 0.918 1.000 0.976 0.950 0.986 0.974 0.889
Cosine 8 1.000 0.999 0.934 0.999 0.972 0.924 0.619 0.895 0.621
Ackley 10 0.915 0.819 0.800 0.908 0.736 0.772 0.822 0.546 0.513
Levy 10 0.989 0.966 0.904 0.966 0.953 0.904 0.966 0.914 0.560
Powell 10 0.987 0.951 0.920 0.970 0.949 0.916 0.861 0.909 0.283
Rastrigin 10 0.463 0.558 0.420 0.536 0.573 0.522 0.595 0.590 0.311
Rosenbrock 10 0.994 0.991 0.966 0.991 0.986 0.971 0.904 0.975 0.645
Styblinski-Tang 10 0.837 0.822 0.309 0.835 0.638 0.492 0.289 0.229 0.049
Ackley 20 0.827 0.818 0.741 0.851 0.781 0.753 0.777 0.404 0.474
Levy 20 0.949 0.945 0.926 0.943 0.904 0.900 0.889 0.907 0.819
Powell 20 0.955 0.939 0.948 0.965 0.913 0.913 0.872 0.915 0.845
Rastrigin 20 0.399 0.484 0.423 0.473 0.472 0.480 0.508 0.522 0.401
Rosenbrock 20 0.993 0.992 0.973 0.995 0.983 0.982 0.907 0.933 0.924
Styblinski-Tang 20 0.737 0.667 0.203 0.689 0.394 0.561 0.330 0.274 0.034
Ackley 50 0.235 0.623 0.638 0.342 0.594 0.759 0.823 0.465 0.730
Levy 50 0.940 0.971 0.948 0.965 0.958 0.951 0.943 0.879 0.941
Powell 50 0.954 0.975 0.970 0.982 0.969 0.961 0.950 0.938 0.980
Rastrigin 50 0.322 0.472 0.431 0.476 0.470 0.397 0.432 0.439 0.481
Rosenbrock 50 0.971 0.976 0.968 0.984 0.981 0.986 0.983 0.962 0.981
Styblinski-Tang 50 0.584 0.509 0.312 0.675 0.342 0.694 0.393 0.325 0.356
Ackley 100 0.277 0.417 0.708 0.190 0.540 0.645 0.863 0.682 0.844
Emb. Hartmann 6 100 0.951 0.957 0.896 0.987 0.936 0.913 0.928 0.907 0.916
Levy 100 0.837 0.966 0.950 0.961 0.950 0.934 0.944 0.940 0.964
Powell 100 0.810 0.985 0.982 0.952 0.980 0.981 0.983 0.979 0.984
Rastrigin 100 0.497 0.441 0.446 0.401 0.455 0.442 0.459 0.455 0.443
Rosenbrock 100 0.822 0.953 0.972 0.971 0.976 0.969 0.980 0.970 0.978
Styblinski-Tang 100 0.537 0.423 0.308 0.474 0.353 0.532 0.401 0.296 0.278

Mean 0.795 0.811 0.758 0.828 0.790 0.801 0.788 0.744 0.678
Median 0.940 0.951 0.920 0.961 0.949 0.913 0.889 0.907 0.819

5 Results

5.1 BO on test problems

We benchmark BEEBO against q-UCB at three rates of κ. Overall, we find that the simpler mean-
BEEBO variant outperforms maxBEEBO in terms of mean performance on all but the lowest rate
of κ (Table 2). As we consider the configuration with the lowest rate to be exploit-dominated, this
can be understood as a consequence of maxBEEBO effectively releasing non-contributing points for
further exploration, with the low explore rate seeming sufficient to induce the necessary diversity.

While results on individual test problems vary, meanBEEBO shows improved performance over
q-UCB especially in the medium dimension range up to 50. For d=100, we find mixed performance,
with meanBEEBO gradually becoming more competitive with increasing κ. This is due to the fact
that with increasing dimensionality, more exploration is beneficial for learning a good surrogate
model before an actual BO process becomes effective. As we find that q-UCB inherently performs
more random-like sampling at large Q, irrespective of κ, it benefits in such situations.

On average over all 33 performed experiments, meanBEEBO improves upon q-UCB for large batches
at any of the three rates (Table A3). We additionally benchmarked BEEBO against other popular BO
strategies without explore-exploit hyperparameters. Interestingly, we found that the Kriging Believer
(KB) iterative heuristic [33] can perform very competitively for large batches when using LogEI [58]
as the acquisition function (Table A1), especially on the two robot control problems (Appendix D.3),
but can be slower to optimize than BEEBO (Table A9).

When evaluating Rrel in the ultimate round of BO, we find that BEEBO allows us to effectively
acquire a batch with high ftrue(x), highlighting the controllability of the acquisition function (Table 3).
The Rrel of q-UCB is only slightly better than the R of a random batch in many cases, even though the
explore component was explicitly set to 0. We note that this is not due to the surrogate function being
unsuitable - the results in Table 2 indicate that in most cases the location of ftrue(x

∗) is approximately
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Table 3: Relative batch instantaneous regret Rrel in round 10 (κ = 0) with Q = 100. The best value
at each κ is indicated in blue. BEEBO is configured with T ′ = 1/2

√
κ. Lower means better.

Problem d
√
κ = 0.1

√
κ = 1.0

√
κ = 10.0

meanBEEBO maxBEEBO q-UCB meanBEEBO maxBEEBO q-UCB meanBEEBO maxBEEBO q-UCB

Ackley 2 0.292 0.259 1.006 0.268 0.245 0.999 0.257 0.165 1.002
Levy 2 0.134 0.114 1.236 0.092 0.102 1.046 0.102 0.111 1.114
Rastrigin 2 0.455 0.578 1.010 0.425 0.454 0.999 0.407 0.500 1.020
Rosenbrock 2 0.001 0.004 0.992 0.001 0.004 1.094 0.002 0.002 1.014
Styblinski-Tang 2 0.168 0.172 1.024 0.169 0.170 1.027 0.170 0.170 1.051
Shekel 4 0.810 0.776 0.993 0.688 0.730 0.995 0.688 0.695 0.988
Hartmann 6 0.060 0.229 0.968 0.078 0.086 0.971 0.100 0.098 0.862
Cosine 8 0.045 0.001 0.953 0.001 0.016 0.975 0.222 0.061 0.922
Ackley 10 0.478 0.338 0.931 0.314 0.345 0.943 0.253 0.452 0.950
Levy 10 0.041 0.030 1.188 0.023 0.048 1.011 0.261 0.103 1.111
Powell 10 0.016 0.027 1.037 0.009 0.067 1.101 0.067 0.151 1.215
Rastrigin 10 0.629 0.563 0.920 0.523 0.541 0.907 0.567 0.402 0.905
Rosenbrock 10 0.002 0.013 0.906 0.004 0.015 0.770 0.074 0.052 0.918
Styblinski-Tang 10 0.196 0.220 1.174 0.223 0.337 1.126 0.559 0.496 1.219
Ackley 20 0.629 0.219 0.945 0.282 0.292 0.950 0.226 0.586 0.917
Levy 20 0.128 0.241 0.839 0.063 0.113 0.914 0.140 0.182 1.056
Powell 20 0.093 0.081 0.809 0.010 0.074 0.689 0.028 0.110 0.870
Rastrigin 20 0.686 0.600 0.864 0.610 0.635 0.838 0.541 0.555 0.852
Rosenbrock 20 0.047 0.105 0.591 0.004 0.048 0.578 0.036 0.051 0.903
Styblinski-Tang 20 0.426 0.398 1.113 0.378 0.504 1.107 0.691 0.578 1.177
Ackley 50 0.895 0.464 0.949 0.738 0.606 0.947 0.177 0.530 0.874
Levy 50 0.055 0.029 0.611 0.033 0.085 0.681 0.051 0.268 0.892
Powell 50 0.018 0.021 0.542 0.014 0.078 0.499 0.018 0.064 0.785
Rastrigin 50 0.793 0.573 0.813 0.653 0.592 0.810 0.795 0.585 0.768
Rosenbrock 50 0.016 0.021 0.539 0.049 0.031 0.520 0.010 0.048 0.594
Styblinski-Tang 50 0.463 0.478 1.012 0.676 0.574 1.196 0.681 0.727 0.981
Ackley 100 0.718 0.636 0.948 0.900 0.466 0.935 0.137 0.321 0.863
Emb. Hartmann 6 100 0.068 0.144 0.573 0.035 0.086 0.863 0.175 0.172 0.692
Levy 100 0.119 0.031 0.615 0.044 0.164 0.716 0.042 0.056 0.586
Powell 100 0.094 0.011 0.465 0.027 0.041 0.493 0.013 0.018 0.524
Rastrigin 100 0.506 0.501 0.759 0.604 0.557 0.832 0.540 0.544 0.780
Rosenbrock 100 0.114 0.044 0.518 0.027 0.048 0.589 0.014 0.031 0.507
Styblinski-Tang 100 0.389 0.522 0.924 0.503 0.582 1.203 0.562 0.742 0.930

Mean 0.291 0.256 0.872 0.257 0.265 0.889 0.261 0.292 0.904
Median 0.134 0.219 0.931 0.092 0.164 0.943 0.175 0.172 0.917

known by round 10. Rather, we assume that this a consequence of the challenges of MC-based
optimization of the acquisition function at large Q.

5.2 BO under heteroskedastic noise

We compare performance of meanBEEBO and q-UCB on the 3-optimum Branin function. Under
heteroskedastic noise, we find that BEEBO preferentially optimizes towards the low-noise optimum 1
at the expense of the noisy optima 2 and 3 (Figure 2) and is therefore risk-averse. In the homoskedastic
case, BEEBO does not exhibit this preference and optimizes for multiple optima. As expected,
q-UCB, which only uses the model posterior variance

√
C(x) instead of quantifying the actual

information gain, does not display any preference for low-noise optima, showing similar behaviour
under heteroskedastic and homoskedastic noise and remaining risk-neutral.

6 Discussion

We introduce BEEBO, an acquisition function for BO with GPs that can be optimized analytically
and that scales natively to batched acquisition. By exploiting the independence of the information
gain I(x) on measurements y when using GP surrogates, BEEBO models the interdependence of
unknown points x in a batch and can optimize their positions jointly using gradient descent.

BEEBO enables full control of its explore-exploit trade-off using a hyperparameter T that directly
balances two terms, akin to UCB. Unlike in the reparametrization-based q-methods, BEEBO’s T has
predictable behaviour also at increasing batch sizes.

The numerical complexity of BEEBO is dominated by the need to compute the inverse of Maug in
Equation 11, which in a plain implementation scales as O((N +Q)3). However, this can be reduced
to O(N2Q); specifically, the Cholesky decomposition of Maug can be expressed as Q rank-1 updates
of the pre-computed Cholesky decomposition of MD, where each update will have the complexity
of O(N2). The calculation of the energy, E, and the information gain, I , scales as O(N ·Q) and
O(Q3), respectively, and are thus sub-dominant to the update needed for M−1

aug . For large N this
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Figure 2: Mean distances of acquired points to the different optima of the Branin function. Under
heteroskedastic noise, BEEBO is risk-averse and preferentially optimizes towards the low-noise
optimum 1. Under homoskedastic noise, there is no preference. q-UCB does not adapt its behaviour
to noise, remaining risk-neutral. The means and standard deviations over five replicates are shown.

approach may nevertheless become prohibitively slow. To overcome this limitation, methods for
scalable GPs and fast predictive covariances such as LOVE [59] can be considered. The LOVE
method allows a further reduction of the complexity of the Cholelsky update of Maug to O(N · r ·Q)
[60], where r is the rank of the LOVE approximation for MD, typically r ≪ N .

As opposed to q-UCB, BEEBO can take heteroskedastic noise into account when computing the
information gain, and preferentially acquires more informative low-noise points. We note that when
the noise function σ2(x) is unknown, and needs to be explored at the same time with ftrue(x), it is
critical that the initial random points sufficiently capture the noise landscape well enough for the
information gain component to be useful, as the uncertainty of the surrogate on σ2(x) is not used.
This would require a fully Bayesian approach that integrates over the distribution of σ2(x). The
problem does not arise if the heteroskedastic noise of an experiment is known beforehand by e.g.
instrument calibration. While not the focus of this work, we note that using the information gain
could also be beneficial in sequential single-sample BO on heteroskedastic problems.

7 Outlook

In our experiments, we have focused on maintaining consistent explore-exploit ratios throughout the
optimization rounds to ensure an equitable experimental comparison with q-UCB and demonstrate
the effect of the hyperparameter choice. However, a more dynamic approach involving variable
ratios could be more effective in real-world applications with a predetermined number of rounds
[61]. Adopting a fully Bayesian perspective, one could consider the temperature hyperparameter
T as a random variable. This opens up an intriguing avenue for BEEBO, where T could be drawn
from a prior distribution that e.g. varies across optimization rounds, depending on the specific
application. By tailoring this distribution, one could encourage a high level of exploration in the
initial rounds, gradually transitioning towards a more exploitation-focused approach towards the end.
In the presented experiments, we have implemented this as a strict constraint, maintaining a fixed T
until the final round, at which point we shift to full exploitation, i.e., T = 0.

While not explored in this work, we note that the BEEBO expression could naturally be extended to
multi-objective optimization problems by capitalizing on GPs that handle vector-valued functions,
such as multi-task GPs [12, 62]. Through e.g. the usage of the intrinsic model of coregionalization,
we obtain a covariance function k, and thereby a covariance matrix C(x), over all input-task pairs. As
the multi-task covariance matrix is jointly Gaussian, the expression of the information gain remains
unchanged and can be computed like in the single-task case. The energyE(x) becomes vector-valued,
providing an energy term for each of the tasks. This would allow for the introduction of task-specific
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weights in the acquisition function. As the extension only affects the surrogate model, the scaling
remains cubic in the number of input-task observations.

Beyond GPs, BEEBO could be generalized to work with any probabilistic model. However, GPs
are unique in that Haug is available in closed form and can be used to compute I(x) analytically,
without solving the integral over y in Equation 4. Other models may require approximations and
sampling-based approaches for computing the information gain.

Availability

A BoTorch implementation of BEEBO is available at

https://github.com/novonordisk-research/BEE-BO.
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A Approximating the expectation of the softmax weighted sum

A.1 Motivation

We are free to choose any energy function Ẽ in BEEBO, the only requirement being that we are able
to compute an expectation of Ẽ in order to obtain the scalar summary E = E[−Ẽ(f)]. Of particular
interest is the softmax weighted sum,

Ẽ(f) =

Q∑
i=1

softmax(βf)ifi, (A1)

where β is the softmax inverse temperature. The softmax weight vector ω computed as

ωi =
exp(βfi)∑Q

j=1 exp(βfj) + exp(βyymax)
(A2)

where exp(βyymax) is an optional reference threshold value, as in expected improvement, which
we set to 0 if not used (βy is either simply β or a dynamically scaled value that ensures Ẽ(f) does
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not become 0, see Equation A28). The parameter β allows us to interpolate between two extreme
regimes,

Ẽ(f) =
1

Q

Q∑
i=1

fi forβ → 0 (A3)

Ẽ(f) =max(f) forβ →∞ (A4)

In the first regime, all points of a batch equally contribute to the energy, whereas in the second regime
only the single point "responsible" for the maximum is controlling the energy. Note that for numerical
reasons, operating towards the β →∞ limit is impractical, as it will lead to zero gradients for all but
one point, preventing optimization. We can set β = A−1/2, with A being the prior uncertainty scale
of the GP kernel. Since A represents the expected energy fluctuations for points far from data, this
weighting scheme will reflect a natural compromise between Equation A3 and Equation A4.

As opposed to the mean, in the general case, the expectation of the maximum of a Q-dimensional
multivariate normal is not available in closed form. To our best knowledge, this is also the case for the
softmax weighted sum. In the following, we derive a closed-form approximation of the expectation
of the softmax of βf that can be used for gradient-based optimization.

A.2 Derivation

Consider the softmax denominator

d(f) =

Q∑
j=1

exp(βfj) + exp(βyymax). (A5)

We will Taylor expand ln(d) to the second order, using

∂ ln(d)

∂fi
= β

1

d
exp(βfi) = βωi (A6)

∂2 ln(d)

∂fi∂fj
= β2

(
− 1

d2
exp(β(fi + fj) +

1

d2
δij exp(βfi))

)
(A7)

= β2(ωiδij − ωiωj), (A8)

where δij is the Kronecker delta. So

ln(d) ≈ ln(da) + βwT ·∆f +
β2

2
∆fT ·W ·∆f , (A9)

where a is the Taylor expansion point, da is d evaluated at a, ∆f = f − a, w is the Q-dimensional
vector ω evaluated at a, andW is theQ×QmatrixW = diag(w)−wwT . Inserted into Equation A2
we have

ω(f)i ≈ wi ∗ exp(β∆fi − βwT ·∆f − β2

2
∆fT ·W ·∆f) (A10)

With this approximation we can calculate the expectation value

E[ω(f)i ∗ fi] =
wi

√
det(C(x)−1)

(2π)Q/2

∫
exp(λi(f)) ∗ fidf (A11)

λi(f) = β∆fi − βwT ·∆fT − β2

2
∆fT ·W ·∆f − 1

2
(f − µ)T · C(x)−1 · (f − µ)

(A12)

= c(i) − 1

2
(f − ν(i))T · C(x)−1

softmax · (f − ν(i)), (A13)
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Where c(i), ν(i) and C(x)softmax are defined as follows:

C(x)softmax =
(
C(x)−1 + β2W

)−1
(A14)

b(i) = e(i) −w (A15)

ν(i) = C(x)softmax ·
(
βb(i) + C(x)−1 · µ+ β2W · a

)
(A16)

c(i) =
1

2
(ν(i))T · C(x)−1

softmax · ν
(i) − β(b(i))T · a (A17)

− β2

2
aT ·W · a− 1

2
µT · C(x)−1 · µ (A18)

and e(i) is the i’th basis vector with components e(i)j = δij . We can avoid the explict use of the
precision matrix by rewriting the updated covariance matrix as

C(x)softmax =
(
C(x)−1 · (I + β2C(x) ·W )

)−1
= U(x) · C(x),

where we have defined U(x) =
(
I + β2C(x) ·W

)−1
. The updated mean vectors can conveniently

be expressed as

ν(i) = C(x)softmax · (βb(i) + C(x)−1 · µ+ β2W · a) (A19)

ν(i) = βC(x)softmax · e(i) + C(x)softmax ·
(
−βw + C(x)−1 · µ+ β2W · a

)
(A20)

ν(i) = βC(x)softmax · e(i) + ν′, (A21)

where ν′ is a constant vector for all (i). Similarly

c(i) = −βai +
1

2
β2
(
C(x)softmax

)
i,i

+ βν′i + c′ (A22)

c′ = βwT · a+
1

2
ν′T · C(x)−1

softmax · ν
′ − β2

2
aT ·W · a− 1

2
µT · C(x)−1 · µ (A23)

with c′ again being a constant for all (i). The expectation of the softmax weighted summary is given
by

E[Ẽ] = K ∗
Q∑
i=1

wi ∗ exp(c(i)) ∗ ν(i)i (A24)

where K =

√
det(C(x)−1)√

det(C(x)−1+β2W )
=
√
det(U(x)). The most natural choice for the expansion point is

a = µ in which case ν(i) and c(i) reduces to

ν(i) = βC(x)softmax ·
(
e(i) −w

)
+ µ (A25)

c(i) =
β2

2

(
e(i) −w

)T · C(x)softmax ·
(
e(i) −w

)
(A26)

A.3 Practical considerations

Linear algebra For numerical reasons, we avoid computing C(x)softmax explicitly, and instead use
the U(x) · C(x) factorization to compute solutions with U(x)−1 = I + β2C(x) ·W .

C(x)softmax ·
(
e(i) −w

)
= U(x) ·

(
C(x) · e(i) − C(x) ·w

)
(A27)

Following GPyTorch practices, we make use of the LinearOperator package to exploit the structure
of U(x)−1 as an AddedDiagLinearOperator when solving. For determinants, we find that Linear-
Operator’s logdet implementation gives nondeterministic results, and we therefore perform a dense
cast before computing K using default Pytorch.

While the factorization is numerically advantageous, it is still limited with regards to β. We find that
at β > 5, numerical errors prevent a reliable calculation of the expectation. In practice, A−1/2 lies in
a range that allows numerically accurate solutions.
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Softmax When ymax grows much larger than the softmax input vector f - a situation that can arise
easily when initializing with random points for gradient-based optimization - the softmax weights ω
can become numerically zero for all "real" points, thus leading to E(x) = 0, and vanishing gradients.
As we always wish to preserve a minimal energy contribution from the real points, we parametrize the
inverse temperature applied to ymax, βy , using a hyperparameter α that denotes the minimal fraction
of probability mass pertaining to real points. This parametrization resembles the LogEI version of the
expected improvement acquisition function [58] to address the problem of vanishing EI-gradients.

Let N denote the softmax denominator excluding ymax, N =
∑Q

j=1 exp(β∆fi). We define

exp(βy∆ymax) = min

(
1− α
α

N, exp(β∆ymax)

)
(A28)

We used α = 0.05 as a default in all our experiments.

A.4 Number of effective points

We can interpret the softmax as the number of effective points contributing to the energy of the batch.
The entropy H of the softmax is given by

H(ω) = −
Q∑
i=1

ωi ln(ωi), (A29)

and the number of effective points, Deff, is exp(H(ω)), so that

Deff = exp

(
−

Q∑
i=1

ωi ln(ωi)

)
. (A30)

Deff is bounded by 1 (approaching the maximum) and Q (approaching the mean). Note that if we
include ymax in the softmax denominator, we add ωymax ln(ωymax) to H(ω), and the resulting number
becomes bounded by 1 and Q+ 1.

B Relationship to other acquisition strategies

In the following section, we will discuss how BEEBO is related to UCB, GIBBON, Determinantal
Point Processes (DPP), the Local Penalization heuristic and RAHBO. We will base our analysis on
meanBEEBO, as the softmax-mediated interdependency of points in maxBEEBO prevents a simple
interpretation of the objective in a single-point stepwise manner and does not allow for the same
direct analogies to other strategies.

B.1 Relationship of BEEBO T and UCB κ hyperparameters

BEEBO bears some resemblance to the UCB acquisition function, which in the single particle mode,
Q = 1, reads

aUCB(x) = µ(x) +
√
κ
√
C(x), (A31)

where the parameter κ controls the balance between exploitation and exploration and µ(x) and C(x)
are respectively the mean and variance of the posterior distribution, P (f |x,D), as before. We
note that aUCB does not account for the uncertainty of the measurement at x, and therefore remains
risk-neutral under heteroskedastic noise [11]. To understand the relationship between BEEBO and
UCB, we will therefore limit ourselves to the homoskedastic case and furthermore assume that
measurement variances σ2 are much smaller than the typical prior variance of the GP surrogate, A, of
f , e.g. A ≃ N−1Tr(K), so σ2 ≪ A and M−1 = (K + σ2)−1 ≈ K−1. In this limit, the variance
of f(x) after measurement (indexed at i = n, say) reduces to σ2:

C(x) =
(
(K−1 + σ−2I)−1

)
nn

=
(
K(K + σ2I)−1σ2

)
nn
≈ σ2 (A32)
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and the information gain becomes

I(x) ≈ 1

2
ln(C(x))− log(σ).

Consequently, the gradient of the two acquisition functions reads

∇aUCB(x) = ∇µ(x) +
√
κ

2 ·
√
C(x)

· ∇C(x)

∇aBEEBO(x) = ∇µ(x) + T

2 · C(x)
· ∇C(x).

The two gradients will be identical at points x where the posterior uncertainties satisfy
√
C(x) = T√

κ
.

For comparison, we may desire equal gradients at iso-surfaces corresponding to a given fraction, ν,
of the prior uncertainty scale

√
A, by setting T accordingly as T = ν ·

√
A ·
√
κ. In our experiments,

we use ν = 1
2 and configure BEEBO using a dimensionless T ′ explore-exploit parameter, defined as

T ′ = T√
A

, and set T ′ = 1
2

√
κ for a given benchmark experiment.

B.2 GIBBON

GIBBON [42] approximates the (intractable) General-purpose max-value Entropy Search acquisition
function, which quantifies the mutual information MI(f∗true;y|D) of a batch of measurements y
and the unknown optimum f∗true. It does so using a lower bound on the information gain and MC
estimation of the expectation over f∗true. It can be written as

αGIBBON(x) =
1

2
ln det(R)− 1

2|M|
∑

m∈M

Q∑
i=1

ln

(
1− ρ2i

ϕ(γi(m))

ϕ(γi(m))

[
γi(m) +

ϕ(γi(m))

ϕ(γi(m))

])

αGIBBON(x) =
1

2
ln det(R) +

Q∑
i=1

α̂GIBBON(xi), (A33)

where R is the correlation matrix with entries Rij =
C(x)ij√

C(x)iiC(x)jj
, M is a set of samples for

the max-value f∗true, and ρi is the correlation of yi and ftrue(xi). ϕ and ϕ are the standard normal
cumulative distribution and probability density functions, and γi(m) = m−µ

σ .

The definition of BEEBO introduced in Equation 7, with the scalar summarization function set to the
expected mean, E(x) = − 1

Q

∑Q
i=1 µ(xi), gives

αBEEBO(x) = T ∗ 1
2
(ln det (C(x))− ln det (Caug(x))) +

Q∑
i=1

µ(xi). (A34)

From the second formulation of GIBBON, it becomes obvious that although being distinct in their
motivation and derivation, BEEBO and GIBBON implement acquisition functions with a similar
structure. Taking an information theoretic and multi-fidelity BO standpoint, GIBBON refers to this
trade-off as diversity against quality, whereas in BEEBO we follow the intuitions of UCB, and use
exploration and exploitation.

• Quality - Exploitation: GIBBON employs an MC estimate of the lower bound approximation
of the information gain provided by each point, whereas BEEBO directly summarizes the
optimality of all points in closed form, either as their mean or an approximated softmax
weighted sum.

• Diversity - Exploration: In GIBBON, the diversity derived from the differential entropy
H(f |D,x) is the entropy of the posterior correlation 1

2 ln det(R). In BEEBO, we em-
ploy the reduction of entropy, the information gain I(x). Under homoskedastic noise,
I(x) ∝ ln det(C(x)). SinceR(x) = diag(C(x))−1/2 ·C(x) ·diag(C(x))−1/2, we have that
ln det(R) = ln det(C(x))−

∑Q
i ln(C(x)ii). Therefore, maximizing the log determinant

of R penalizes points that have high variance.
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Therefore, while GIBBON presents an attractive approximation of max-value Entropy Search for
batched acquisition, BEEBO is an alternative that avoids approximating a quality criterion using
MC. Moreover, GIBBON’s diversity criterion implicitly penalizes points that have high variance,
whereas BEEBO’s criterion maximizes the reduction of variance. We find that BEEBO is orders of
magnitudes faster to compute than GIBBON (Figure A3).

In the context of large batches (Q >> 10), a modification of GIBBON exists that is further similar
to BEEBO. Departing from the strict max-value entropy search derivation, a scaling factor Q−2 is
introduced to counteract a growing dominance of the diversity term:

αscaledGIBBON(x) =
1

2Q2
∗ ln det(R) +

Q∑
i=1

α̂MES(xi). (A35)

This scaling is motivated by the fact that R contains Q2 elements. However, we note that R is
summarized by its log determinant, which scales linearly in Q: As the determinant is the product of
the eigenvalues, the log determinant is the sum of the log-eigenvalues. The number of eigenvalues
scales linearly with matrix size Q, and so does the log determinant.

B.3 Determinantal Point Processes

A Determinantal Point Process [43] specifies a probability over a set of points, or a "configuration of
points" drawn from a ground set. Specifically, the probability of a set of Q points x is given by

P (x) ∝ det (Lx) , (A36)

where Lx is a Q×Q symmetric matrix. Kulesza et al. [43] provide a decomposition of the general
DPP kernel L that makes quality and diversity components explicit, so that

Lij = q(xi)q(xj)k(xi, xj), (A37)

with k being a Rd×Rd → R+ similarity kernel, and q being a unary Rd → R scalar quality function.
This framework is naturally amenable to batch BO, as we seek to select a collection of points that
trade off quality (optimality) and diversity. Note that both k and q are distinct functions that need to
be specified by the user, leading to the practical complication that they must be chosen very carefully
so that their scales do not dominate each other, which limits the utility of this decomposition in
practice [42].

In the following, we show how BEEBO is equivalent to a DPP, and derive the necessary k and q.
Again, we consider BEEBO

αBEEBO(x) = −E(x) + T ∗ I(x), (A38)

with the scalar summarization function set to E(x) = −
∑Q

i=1 f(xi). We will first focus on the
information gain term I(x), which we can rearrange as

I(x) =
1

2
ln det(C(x))− 1

2
ln det(Caug(x)) =

1

2
ln det

(
C(x) · C−1

aug (x)
)
. (A39)

Our similarity kernel k is therefore given by the entries of the matrix S = C(x) · Caug(x)
−1, so that

k(xi, xj) = Sij . Note that due to the augmented covariance term, the implied k also depends on all
other currently selected points in x, and Lx is not a submatrix of an all-sample L. Therefore, BEEBO
does not implement a DPP under heteroskedastic noise. However, if we only consider homoskedastic
noise, BEEBO’s I(x) simplifies to the posterior entropy [63], and therefore S = C(x). As C(x) can
be accessed as a submatrix of an all-sample C, this permits a DPP.

Given the choice of E(f), we can rewrite BEEBO as
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αBEEBO(x) = ln det (S) ∗ T ∗ 1
2
+

Q∑
i=1

µi

2

T
∗ αBEEBO(x) = ln det (S) +

Q∑
i=1

2

T
∗ µi

2

T
∗ αBEEBO(x) = ln det (S) + ln det (D)) with D = diag(exp(

2

T
∗ µ))

2

T
∗ αBEEBO(x) = ln det

(
D

1
2 · S ·D 1

2

)
D

1
2
ii =

√
exp(

2

T
µi) = exp(

1

T
µi)

αBEEBO(x) = ln det
(
D

1
2 · S ·D 1

2

)
∗ T ∗ 1

2

αBEEBO(x) = ln det (L) ∗ T ∗ 1
2

(A40)

where L is a matrix with entries Lij = Sij exp(
1
T ∗ µi) exp(

1
T ∗ µj). BEEBO therefore uses the

DPP quality function q(xi) = exp( 1
T ∗ µi), and, like proven previously for GIBBON, a batch x with

maximal αBEEBO corresponds to the MAP of a DPP.

B.4 Local penalization

Local penalization (LP) is a greedy batch selection strategy that given any arbitrary single-point
acquisition function, ensures diversity by applying a penalization function ψ(x, x′) that downweights
the acquisition value of candidate locations x based on their proximity to already selected points. The
criterion for selecting xi is given by

xi = argmaxα(x)

i−1∏
j=1

ψ(x, xj). (A41)

Note that in this formulation, the product includes all previously selected points, not just the current
batch. The penalization function ψ may in principle be chosen freely. Gonzalez et al. [35] propose
exploiting the fact that ftrue is Lipschitz continuous in order to bound the position of the unknown
optimum and penalize accordingly. The Lipschitz constant L is inferred from the GP surrogate and
used to parametrize ψ. In LP, acquisition function optimization proceeds iteratively. After an xi is
chosen, the corresponding penalizing multiplier is added to the objective before optimizing for the
next xi+1.

While BEEBO enables optimization to proceed in parallel, it is of course possible to also optimize
BEEBO greedily (under homoskedastic noise, I is submodular). In this case, it implements an LP
strategy where α(x) = µ(x). Rather than a product of individual Rd×Rd → R function evaluations,
the penalizer implied by BEEBO is the information gain I(x) : Ri×d → R that we evaluate by
concatenating a candidate point to the already acquired x at each iteration. Like in GIBBON, this
constitutes an LP strategy that does not require estimation of any properties of ftrue beyond learning
the GP surrogate.

B.5 RAHBO

Risk-averse Heteroskedastic Bayesian Optimization (RAHBO) [11] is a UCB-derived single-point
acquisition function that avoids heteroskedastic risk, preferentially selecting points with low noise.
While it is not applicable to batched acquisition directly, we here compare it to single-sample BEEBO
to highlight different ways of addressing noise. Given a heteroskedastic surrogate model that learns
an additional GP for the noise, the variance proxy, RAHBO reads
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αRAHBO(x) = UCBf (x)−α ∗ LCBvar(x)

αRAHBO(x) = µf (x) + βf ∗ σf (x)−α(µvar(x)− βvar ∗ σvar(x)) , (A42)

where µf and σf are the posterior mean and variance of the surrogate model and βf is the standard
UCB trade-off hyperparameter, yielding the standard upper confidence bound UCBf . α is the chosen
risk tolerance, and LCB is the lower confidence bound of the variance GP with posterior mean µvar
and variance σvar traded off using βvar.

At Q = 1, BEEBO can be expressed as

αBEEBO = µf (x) + T ∗ 1
2
ln(σf (x))− T ∗

1

2
ln(σaug

f (x))

αBEEBO = µf (x) + T ∗ 1
2
ln

(
σf (x)

σaug
f (x)

)
, (A43)

where the variance proxy at x is considered via the augmented posterior variance σaug
f .

While RAHBO penalizes risk on an absolute scale, subject to α, BEEBO optimizes for high uncer-
tainty reduction, quantified as the log ratio of the variance before and after making measurements.

Moreover, RAHBO differentiates between known and unknown variance proxies, and uses the LCBvar
term to discount the predicted variance according to its uncertainty. In its closed-form analytical
expression, BEEBO does not permit for the uncertainty of the variance proxy to be taken into account,
being more similar to the known variance RAHBO

αRAHBO(x) = µf (x) + βf ∗ σf (x)− αµvar(x) (A44)

where µvar is a noise-free proxy. Either a sampling-based approach, or approximations to I(x) would
need to be introduced to handle variance proxy uncertainty in BEEBO.

C Implementation details

C.1 Acquisition function optimization

BEEBO was implemented for full compatibility with the BoTorch framework (version 0.9.4) [52]
as an AnalyticAcquistionFunction. Standard BoTorch utilities for initializing and training GPs,
initializing q-batches and performing gradient descent optimization of the acquisition function are
used. We trained GPyTorch (version 1.11) [57] GP models with KeOps [64] Matérn 5/2 kernels
(following BoTorch defaults with a separate length scale for each input dimension, and Gamma priors
on the length and output scales). Log determinants for the information gain were computed using
singular value decomposition for numerical stability.

GPyTorch provides a get_fantasy_model method that allows for the efficient augmentation of the
training data of a GP with a set of points, as done in BEEBO. However, we observed that GPy-
Torch’s implementation suffers from GPU memory leaks when used with automatic differentiation
enabled. We therefore instantiate augmented models explicitly, not making use of the (more efficient)
augmentation strategy.

All experiments were performed with double precision. SobolQMCNormalSampler was used for
acquisition functions making use of the reparametrization trick. Experiments were run on individual
Nvidia RTX 6000 and V100 GPUs. Five replicates for the benchmarking experiments required a total
of approx. 5,000 RTX 6000 GPU hours, with the majority of the run time dedicated to the GIBBON
baseline, rather than BEEBO itself (Figure A3, Table A9).

C.2 Benchmark BO methods

All methods were benchmarked in BoTorch. For q-EI, we used LogEI [58]. For TS, 10.000 base Sobol
samples were drawn and sampled with MaxPosteriorSampling using the Cholesky decomposition
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of the covariance matrix. GIBBON was optimized using sequential optimization following the
BoTorch tutorial. We additionally implemented a custom version of GIBBON that applies the Q−2

scaling factor to the diversity term, as proposed in GIBBON’s supplementary material. We used
100,000 random discretized candidates for max-value sampling. In a few iterations, optimizing
GIBBON seemed challenging, with BoTorch reporting that no nonzero initialization candidate
could be identified. KB was optimized using a custom greedy optimization loop with fantasized
observations, using (single-sample) LogEI as the underlying acquisition function. TuRBO-1 was
optimized following its BoTorch tutorial. None of the methods use a hyperparameter for controlling
their explore-exploit trade-off. The results are therefore based on 10 iterations at defaults.

C.3 Test problems

Test functions All test functions were used in their BoTorch implementations. As done in previous
work, the embedded Hartmann function was created by appending all-0 dummy dimensions to the
original six dimensions [53, 54, 50].

Control problems We consider two control problems from previous work: A 14-dimensional
parameter tuning task for controlling robot arms pushing two objects to a target location [55], and
a 60-dimensional trajectory planning task for a rover navigating through a maze of obstacles [56].
Instead of converting the problem objectives into rewards as in the original work, we operate on the
actual minimization objectives directly (distance to target, navigation loss), and follow BoTorch’s
approach of simply inverting the objective in order to yield maximization problems. Both problems
were adapted from their available implementations in Wang et al. [56] to follow the BoTorch test
problem API.

C.4 Heteroskedastic noise

The (inverted) Branin function has three global optima f(x∗) = −0.397887 at x∗1 =
(9.42478, 2.475), x∗2 = (−π, 12.275) and x∗3 = (π, 2.275). We define heteroskedastic noise so
that the variance is maximal at x∗2 and x∗3. The noise decays exponentially with the distance from any
of the two noised optima at a rate λ.

σ2(x) = σ2
max ∗ exp(−λ ∗min(∥x− x∗2∥2, ∥x− x∗3∥2) (A45)

For our experiments, we set σ2
max = 100 and λ = 0.05. As the surrogate function, we use a

HeteroskedasticSingleTaskGP provided in BoTorch. This model learns two GPs simultaneously,
one for the function f(x) and one for the (also unknown) variance function σ2(x). When querying
the oracle with a batch of points, noised observations of f(x) are provided together with the true σ2

at each point. The homoskedastic control experiment uses a SingleTaskGP with inferred noise level.
The homoskedastic noise is set to σ2 = 77.5, which is the average noise level of the heteroskedastic
function over the whole domain.
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Figure A1: The Branin function with added heteroskedastic noise following Equation A45. σ2
max =

100, λ = 0.05.

D Extended results

D.1 Results including additional baselines

Table A1: BO on noise-free synthetic test problems. The normalized highest observed value after
10 rounds of BO with q=100 is shown. Colors are normalized row-wise. The BEE-BO and q-UCB
columns are equivalent to Table 2. Higher means better. Results are means over five replicate runs.

Problem d meanBEEBO maxBEEBO q-UCB q-EI TS KB GIBBON TuRBO

T ′=0.05 T ′=0.5 T ′=5.0 T ′=0.05 T ′=0.5 T ′=5.0
√
κ=0.1

√
κ=1.0

√
κ=10.0 - - - default scaled -

Ackley 2 0.993 ± 0.005 0.985 ± 0.031 0.975 ± 0.035 0.982 ± 0.023 0.980 ± 0.035 0.988 ± 0.013 0.973 ± 0.023 0.967 ± 0.022 0.988 ± 0.011 0.987 ± 0.012 1.000 ± 0.000 0.981 ± 0.014 0.878 ± 0.100 0.951 ± 0.027 0.951 ± 0.027
Levy 2 1.000 ± 0.000 0.999 ± 0.001 0.999 ± 0.001 1.000 ± 0.000 1.000 ± 0.000 0.998 ± 0.002 1.000 ± 0.000 1.000 ± 0.000 0.998 ± 0.002 1.000 ± 0.000 0.999 ± 0.002 1.000 ± 0.000 0.988 ± 0.008 0.993 ± 0.010 0.993 ± 0.010
Rastrigin 2 0.981 ± 0.024 0.989 ± 0.016 0.983 ± 0.016 0.993 ± 0.007 0.983 ± 0.011 0.993 ± 0.006 0.951 ± 0.021 0.983 ± 0.015 0.933 ± 0.025 0.995 ± 0.007 1.000 ± 0.000 0.976 ± 0.021 0.903 ± 0.087 0.944 ± 0.038 0.944 ± 0.038
Rosenbrock 2 0.976 ± 0.045 0.956 ± 0.071 0.955 ± 0.080 0.982 ± 0.032 0.979 ± 0.027 0.938 ± 0.123 0.949 ± 0.074 0.943 ± 0.129 0.962 ± 0.079 0.982 ± 0.029 0.966 ± 0.079 0.976 ± 0.068 0.633 ± 0.355 0.843 ± 0.301 0.843 ± 0.301
Styblinski-Tang 2 0.961 ± 0.072 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.001 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.001 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.996 ± 0.003 0.999 ± 0.001 0.999 ± 0.001
Shekel 4 0.540 ± 0.242 0.915 ± 0.082 0.698 ± 0.296 0.300 ± 0.079 0.378 ± 0.230 0.411 ± 0.222 0.244 ± 0.116 0.330 ± 0.212 0.264 ± 0.023 0.515 ± 0.253 0.155 ± 0.033 0.371 ± 0.220 0.187 ± 0.057 0.282 ± 0.076 0.282 ± 0.076
Hartmann 6 1.000 ± 0.000 1.000 ± 0.000 0.986 ± 0.013 0.894 ± 0.073 0.976 ± 0.045 0.974 ± 0.042 0.918 ± 0.058 0.950 ± 0.052 0.889 ± 0.062 0.993 ± 0.014 0.810 ± 0.056 0.993 ± 0.013 0.844 ± 0.073 0.887 ± 0.074 0.887 ± 0.074
Cosine 8 1.000 ± 0.000 0.999 ± 0.001 0.619 ± 0.099 0.999 ± 0.001 0.972 ± 0.016 0.895 ± 0.077 0.934 ± 0.032 0.924 ± 0.032 0.621 ± 0.192 0.802 ± 0.060 1.000 ± 0.000 0.985 ± 0.011 0.900 ± 0.071 0.937 ± 0.046 0.937 ± 0.046
Ackley 10 0.915 ± 0.033 0.908 ± 0.042 0.822 ± 0.034 0.819 ± 0.024 0.736 ± 0.053 0.546 ± 0.073 0.800 ± 0.048 0.772 ± 0.051 0.513 ± 0.140 0.802 ± 0.049 1.000 ± 0.000 0.746 ± 0.045 0.410 ± 0.062 0.548 ± 0.100 0.548 ± 0.100
Levy 10 0.989 ± 0.003 0.966 ± 0.022 0.966 ± 0.032 0.966 ± 0.023 0.953 ± 0.015 0.914 ± 0.045 0.904 ± 0.041 0.904 ± 0.041 0.560 ± 0.238 0.931 ± 0.023 0.958 ± 0.008 0.978 ± 0.012 0.889 ± 0.049 0.881 ± 0.075 0.881 ± 0.075
Powell 10 0.987 ± 0.010 0.970 ± 0.015 0.861 ± 0.122 0.951 ± 0.046 0.949 ± 0.040 0.909 ± 0.085 0.920 ± 0.056 0.916 ± 0.047 0.283 ± 0.236 0.920 ± 0.052 0.883 ± 0.057 0.971 ± 0.009 0.755 ± 0.204 0.834 ± 0.118 0.834 ± 0.118
Rastrigin 10 0.463 ± 0.123 0.536 ± 0.157 0.595 ± 0.066 0.558 ± 0.091 0.573 ± 0.122 0.590 ± 0.087 0.420 ± 0.075 0.522 ± 0.081 0.311 ± 0.138 0.456 ± 0.101 1.000 ± 0.000 0.431 ± 0.099 0.359 ± 0.135 0.210 ± 0.158 0.210 ± 0.158
Rosenbrock 10 0.994 ± 0.005 0.991 ± 0.007 0.904 ± 0.068 0.991 ± 0.007 0.986 ± 0.010 0.975 ± 0.028 0.966 ± 0.033 0.971 ± 0.024 0.645 ± 0.255 0.984 ± 0.005 0.870 ± 0.050 0.993 ± 0.005 0.974 ± 0.021 0.979 ± 0.015 0.979 ± 0.015
Styblinski-Tang 10 0.837 ± 0.072 0.835 ± 0.068 0.289 ± 0.155 0.822 ± 0.050 0.638 ± 0.107 0.229 ± 0.156 0.309 ± 0.190 0.492 ± 0.167 0.049 ± 0.104 0.740 ± 0.147 0.430 ± 0.198 0.852 ± 0.071 0.056 ± 0.080 0.255 ± 0.193 0.255 ± 0.193
Ackley 20 0.827 ± 0.045 0.851 ± 0.032 0.777 ± 0.067 0.818 ± 0.023 0.781 ± 0.035 0.404 ± 0.100 0.741 ± 0.027 0.753 ± 0.030 0.474 ± 0.148 0.731 ± 0.048 1.000 ± 0.000 0.755 ± 0.050 0.252 ± 0.106 0.299 ± 0.110 0.299 ± 0.110
Levy 20 0.949 ± 0.028 0.943 ± 0.017 0.889 ± 0.073 0.945 ± 0.025 0.904 ± 0.041 0.907 ± 0.056 0.926 ± 0.031 0.900 ± 0.045 0.819 ± 0.075 0.934 ± 0.025 0.977 ± 0.004 0.955 ± 0.024 0.879 ± 0.097 0.746 ± 0.157 0.746 ± 0.157
Powell 20 0.955 ± 0.028 0.965 ± 0.017 0.872 ± 0.085 0.939 ± 0.020 0.913 ± 0.077 0.915 ± 0.061 0.948 ± 0.031 0.913 ± 0.058 0.845 ± 0.104 0.936 ± 0.040 0.966 ± 0.016 0.967 ± 0.020 0.912 ± 0.061 0.876 ± 0.094 0.876 ± 0.094
Rastrigin 20 0.399 ± 0.083 0.473 ± 0.064 0.508 ± 0.043 0.484 ± 0.089 0.472 ± 0.088 0.522 ± 0.074 0.423 ± 0.081 0.480 ± 0.061 0.401 ± 0.073 0.456 ± 0.070 1.000 ± 0.000 0.447 ± 0.084 0.413 ± 0.047 0.397 ± 0.098 0.397 ± 0.098
Rosenbrock 20 0.993 ± 0.003 0.995 ± 0.003 0.907 ± 0.069 0.992 ± 0.005 0.983 ± 0.013 0.933 ± 0.047 0.973 ± 0.014 0.982 ± 0.008 0.924 ± 0.049 0.987 ± 0.007 0.946 ± 0.021 0.995 ± 0.002 0.953 ± 0.044 0.980 ± 0.016 0.980 ± 0.016
Styblinski-Tang 20 0.737 ± 0.065 0.689 ± 0.114 0.330 ± 0.165 0.667 ± 0.099 0.394 ± 0.090 0.274 ± 0.055 0.203 ± 0.105 0.561 ± 0.143 0.034 ± 0.053 0.621 ± 0.104 0.210 ± 0.201 0.645 ± 0.112 0.104 ± 0.081 0.332 ± 0.112 0.332 ± 0.112
Ackley 50 0.235 ± 0.275 0.342 ± 0.276 0.823 ± 0.045 0.623 ± 0.264 0.594 ± 0.218 0.465 ± 0.103 0.638 ± 0.041 0.759 ± 0.015 0.730 ± 0.021 0.745 ± 0.042 1.000 ± 0.000 0.546 ± 0.140 0.273 ± 0.067 0.179 ± 0.121 0.179 ± 0.121
Levy 50 0.940 ± 0.082 0.965 ± 0.020 0.943 ± 0.018 0.971 ± 0.019 0.958 ± 0.016 0.879 ± 0.025 0.948 ± 0.016 0.951 ± 0.035 0.941 ± 0.015 0.952 ± 0.012 0.987 ± 0.001 0.955 ± 0.016 0.880 ± 0.023 0.901 ± 0.095 0.901 ± 0.095
Powell 50 0.954 ± 0.029 0.982 ± 0.008 0.950 ± 0.023 0.975 ± 0.008 0.969 ± 0.010 0.938 ± 0.024 0.970 ± 0.004 0.961 ± 0.015 0.980 ± 0.007 0.965 ± 0.014 0.986 ± 0.003 0.957 ± 0.030 0.955 ± 0.014 0.939 ± 0.027 0.939 ± 0.027
Rastrigin 50 0.322 ± 0.137 0.476 ± 0.042 0.432 ± 0.051 0.472 ± 0.034 0.470 ± 0.021 0.439 ± 0.024 0.431 ± 0.039 0.397 ± 0.050 0.481 ± 0.041 0.468 ± 0.036 1.000 ± 0.000 0.409 ± 0.068 0.447 ± 0.045 0.305 ± 0.098 0.305 ± 0.098
Rosenbrock 50 0.971 ± 0.016 0.984 ± 0.002 0.983 ± 0.010 0.976 ± 0.008 0.981 ± 0.005 0.962 ± 0.019 0.968 ± 0.005 0.986 ± 0.003 0.981 ± 0.012 0.979 ± 0.005 0.977 ± 0.003 0.984 ± 0.011 0.973 ± 0.013 0.977 ± 0.008 0.977 ± 0.008
Styblinski-Tang 50 0.584 ± 0.087 0.675 ± 0.062 0.393 ± 0.161 0.509 ± 0.064 0.342 ± 0.090 0.325 ± 0.060 0.312 ± 0.105 0.694 ± 0.039 0.356 ± 0.079 0.632 ± 0.129 0.236 ± 0.205 0.699 ± 0.044 0.203 ± 0.039 0.506 ± 0.084 0.506 ± 0.084
Ackley 100 0.277 ± 0.343 0.190 ± 0.344 0.863 ± 0.028 0.417 ± 0.361 0.540 ± 0.281 0.682 ± 0.093 0.708 ± 0.015 0.645 ± 0.102 0.844 ± 0.016 0.742 ± 0.074 0.007 ± 0.004 0.299 ± 0.120 0.244 ± 0.231 0.348 ± 0.246 0.348 ± 0.246
Emb. Hartmann 6 100 0.951 ± 0.090 0.987 ± 0.008 0.928 ± 0.076 0.957 ± 0.079 0.936 ± 0.068 0.907 ± 0.057 0.896 ± 0.076 0.913 ± 0.064 0.916 ± 0.122 0.870 ± 0.153 0.446 ± 0.294 0.912 ± 0.118 0.633 ± 0.163 0.636 ± 0.169 0.636 ± 0.169
Levy 100 0.837 ± 0.155 0.961 ± 0.024 0.944 ± 0.016 0.966 ± 0.013 0.950 ± 0.017 0.940 ± 0.019 0.950 ± 0.008 0.934 ± 0.035 0.964 ± 0.009 0.952 ± 0.021 0.183 ± 0.290 0.903 ± 0.053 0.763 ± 0.283 0.913 ± 0.182 0.913 ± 0.182
Powell 100 0.810 ± 0.036 0.952 ± 0.066 0.983 ± 0.008 0.985 ± 0.002 0.980 ± 0.006 0.979 ± 0.006 0.982 ± 0.005 0.981 ± 0.009 0.984 ± 0.005 0.971 ± 0.015 0.397 ± 0.332 0.964 ± 0.022 0.691 ± 0.115 0.685 ± 0.123 0.685 ± 0.123
Rastrigin 100 0.497 ± 0.034 0.401 ± 0.160 0.459 ± 0.024 0.441 ± 0.117 0.455 ± 0.026 0.455 ± 0.029 0.446 ± 0.016 0.442 ± 0.041 0.443 ± 0.020 0.482 ± 0.023 0.332 ± 0.461 0.634 ± 0.088 0.290 ± 0.112 0.286 ± 0.085 0.286 ± 0.085
Rosenbrock 100 0.822 ± 0.075 0.971 ± 0.012 0.980 ± 0.009 0.953 ± 0.084 0.976 ± 0.009 0.970 ± 0.011 0.972 ± 0.006 0.969 ± 0.016 0.978 ± 0.013 0.974 ± 0.003 0.290 ± 0.377 0.936 ± 0.052 0.966 ± 0.075 0.931 ± 0.114 0.931 ± 0.114
Styblinski-Tang 100 0.537 ± 0.045 0.474 ± 0.110 0.401 ± 0.106 0.423 ± 0.045 0.353 ± 0.055 0.296 ± 0.030 0.308 ± 0.042 0.532 ± 0.109 0.278 ± 0.041 0.536 ± 0.077 0.205 ± 0.248 0.627 ± 0.058 0.222 ± 0.053 0.221 ± 0.054 0.221 ± 0.054

Mean 0.795 0.828 0.788 0.811 0.790 0.744 0.758 0.801 0.678 0.819 0.734 0.813 0.631 0.667 0.727
Median 0.940 0.961 0.889 0.951 0.949 0.907 0.920 0.913 0.819 0.931 0.966 0.955 0.755 0.834 0.819
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Table A2: BO on noise-free synthetic test problems. The relative batch instantaneous regret of the
last, exploitative batch is shown. Colors are normalized row-wise. The BEEBO and q-UCB columns
are equivalent to Table 3. Lower means better. Results are means over five replicate runs.

Problem d meanBEEBO maxBEEBO q-UCB q-EI TS KB GIBBON TuRBO

T ′=0.05 T ′=0.5 T ′=5.0 T ′=0.05 T ′=0.5 T ′=5.0
√
κ=0.1

√
κ=1.0

√
κ=10.0 - - - default scaled -

Ackley 2 0.292 ± 0.102 0.268 ± 0.120 0.257 ± 0.098 0.259 ± 0.125 0.245 ± 0.109 0.165 ± 0.098 1.006 ± 0.020 0.999 ± 0.022 1.002 ± 0.024 0.946 ± 0.050 0.498 ± 0.203 0.800 ± 0.157 1.048 ± 0.025 0.821 ± 0.191 0.248 ± 0.138
Levy 2 0.134 ± 0.055 0.092 ± 0.056 0.102 ± 0.037 0.114 ± 0.012 0.102 ± 0.037 0.111 ± 0.012 1.236 ± 0.378 1.046 ± 0.134 1.114 ± 0.167 1.106 ± 0.138 0.280 ± 0.288 0.184 ± 0.194 1.637 ± 0.568 0.678 ± 0.477 0.091 ± 0.160
Rastrigin 2 0.455 ± 0.053 0.425 ± 0.147 0.407 ± 0.335 0.578 ± 0.230 0.454 ± 0.150 0.500 ± 0.055 1.010 ± 0.069 0.999 ± 0.042 1.020 ± 0.060 0.839 ± 0.115 0.692 ± 0.180 0.763 ± 0.169 1.106 ± 0.130 0.600 ± 0.223 0.062 ± 0.064
Rosenbrock 2 0.001 ± 0.001 0.001 ± 0.001 0.002 ± 0.001 0.004 ± 0.002 0.004 ± 0.002 0.002 ± 0.001 0.992 ± 0.325 1.094 ± 0.337 1.014 ± 0.194 1.215 ± 0.314 0.004 ± 0.005 0.008 ± 0.009 1.875 ± 1.701 0.045 ± 0.052 0.000 ± 0.000
Styblinski-Tang 2 0.168 ± 0.012 0.169 ± 0.008 0.170 ± 0.008 0.172 ± 0.006 0.170 ± 0.009 0.170 ± 0.008 1.024 ± 0.095 1.027 ± 0.062 1.051 ± 0.095 0.851 ± 0.155 0.039 ± 0.002 0.285 ± 0.413 1.674 ± 1.055 1.240 ± 0.719 0.181 ± 0.064
Shekel 4 0.810 ± 0.094 0.688 ± 0.090 0.688 ± 0.090 0.776 ± 0.073 0.730 ± 0.057 0.695 ± 0.082 0.993 ± 0.009 0.995 ± 0.004 0.988 ± 0.006 0.964 ± 0.032 0.936 ± 0.030 1.000 ± 0.016 1.003 ± 0.003 0.985 ± 0.028 0.587 ± 0.125
Hartmann 6 0.060 ± 0.022 0.078 ± 0.030 0.100 ± 0.015 0.229 ± 0.111 0.086 ± 0.072 0.098 ± 0.028 0.968 ± 0.057 0.971 ± 0.015 0.862 ± 0.054 0.867 ± 0.043 0.358 ± 0.007 0.352 ± 0.194 1.029 ± 0.011 1.023 ± 0.016 0.049 ± 0.023
Cosine 8 0.045 ± 0.135 0.001 ± 0.001 0.222 ± 0.063 0.001 ± 0.000 0.016 ± 0.008 0.061 ± 0.039 0.953 ± 0.066 0.975 ± 0.050 0.922 ± 0.059 1.112 ± 0.158 0.446 ± 0.026 1.069 ± 0.283 1.690 ± 0.142 0.678 ± 0.290 0.087 ± 0.047
Ackley 10 0.478 ± 0.143 0.314 ± 0.082 0.253 ± 0.056 0.338 ± 0.055 0.345 ± 0.080 0.452 ± 0.063 0.931 ± 0.014 0.943 ± 0.015 0.950 ± 0.022 0.942 ± 0.070 0.983 ± 0.012 0.917 ± 0.230 1.017 ± 0.003 1.014 ± 0.004 0.316 ± 0.088
Levy 10 0.041 ± 0.042 0.023 ± 0.020 0.261 ± 0.067 0.030 ± 0.026 0.048 ± 0.030 0.103 ± 0.066 1.188 ± 0.166 1.011 ± 0.083 1.111 ± 0.081 0.741 ± 0.202 0.520 ± 0.082 0.352 ± 0.188 2.704 ± 0.222 1.387 ± 1.054 0.022 ± 0.011
Powell 10 0.016 ± 0.021 0.009 ± 0.002 0.067 ± 0.022 0.027 ± 0.012 0.067 ± 0.027 0.151 ± 0.044 1.037 ± 0.184 1.101 ± 0.156 1.215 ± 0.275 0.232 ± 0.093 0.148 ± 0.042 0.041 ± 0.018 2.882 ± 0.202 0.432 ± 0.568 0.003 ± 0.002
Rastrigin 10 0.629 ± 0.091 0.523 ± 0.132 0.567 ± 0.130 0.563 ± 0.156 0.541 ± 0.104 0.402 ± 0.150 0.920 ± 0.027 0.907 ± 0.048 0.905 ± 0.036 0.931 ± 0.069 0.809 ± 0.100 0.962 ± 0.100 1.191 ± 0.022 0.782 ± 0.060 0.344 ± 0.107
Rosenbrock 10 0.002 ± 0.000 0.004 ± 0.002 0.074 ± 0.009 0.013 ± 0.008 0.015 ± 0.007 0.052 ± 0.021 0.906 ± 0.109 0.770 ± 0.098 0.918 ± 0.075 0.078 ± 0.041 0.098 ± 0.016 0.005 ± 0.001 2.462 ± 0.153 0.251 ± 0.161 0.004 ± 0.006
Styblinski-Tang 10 0.196 ± 0.027 0.223 ± 0.029 0.559 ± 0.056 0.220 ± 0.040 0.337 ± 0.022 0.496 ± 0.063 1.174 ± 0.136 1.126 ± 0.077 1.219 ± 0.055 1.247 ± 0.344 0.809 ± 0.103 0.689 ± 0.144 2.339 ± 0.229 1.118 ± 0.393 0.177 ± 0.075
Ackley 20 0.629 ± 0.143 0.282 ± 0.157 0.226 ± 0.068 0.219 ± 0.036 0.292 ± 0.063 0.586 ± 0.084 0.945 ± 0.030 0.950 ± 0.020 0.917 ± 0.012 0.927 ± 0.091 0.979 ± 0.002 1.017 ± 0.001 1.016 ± 0.002 0.841 ± 0.118 0.571 ± 0.104
Levy 20 0.128 ± 0.095 0.063 ± 0.067 0.140 ± 0.111 0.241 ± 0.151 0.113 ± 0.055 0.182 ± 0.062 0.839 ± 0.109 0.914 ± 0.148 1.056 ± 0.121 0.941 ± 1.228 0.734 ± 0.040 0.212 ± 0.038 3.269 ± 0.155 0.967 ± 0.762 0.058 ± 0.025
Powell 20 0.093 ± 0.059 0.010 ± 0.012 0.028 ± 0.019 0.081 ± 0.022 0.074 ± 0.015 0.110 ± 0.024 0.809 ± 0.117 0.689 ± 0.117 0.870 ± 0.217 0.106 ± 0.028 0.487 ± 0.102 0.019 ± 0.005 3.510 ± 0.321 0.238 ± 0.153 0.009 ± 0.003
Rastrigin 20 0.686 ± 0.068 0.610 ± 0.053 0.541 ± 0.094 0.600 ± 0.044 0.635 ± 0.058 0.555 ± 0.044 0.864 ± 0.034 0.838 ± 0.042 0.852 ± 0.035 0.784 ± 0.116 0.861 ± 0.020 0.858 ± 0.330 1.246 ± 0.072 0.651 ± 0.111 0.487 ± 0.109
Rosenbrock 20 0.047 ± 0.031 0.004 ± 0.002 0.036 ± 0.026 0.105 ± 0.057 0.048 ± 0.038 0.051 ± 0.013 0.591 ± 0.171 0.578 ± 0.147 0.903 ± 0.130 0.060 ± 0.018 0.387 ± 0.096 0.006 ± 0.002 2.681 ± 0.116 0.326 ± 0.233 0.005 ± 0.004
Styblinski-Tang 20 0.426 ± 0.187 0.378 ± 0.128 0.691 ± 0.165 0.398 ± 0.074 0.504 ± 0.036 0.578 ± 0.074 1.113 ± 0.099 1.107 ± 0.121 1.177 ± 0.094 0.924 ± 0.100 0.887 ± 0.035 0.765 ± 0.127 2.765 ± 0.114 1.070 ± 0.459 0.287 ± 0.108
Ackley 50 0.895 ± 0.042 0.738 ± 0.246 0.177 ± 0.044 0.464 ± 0.270 0.606 ± 0.233 0.530 ± 0.102 0.949 ± 0.033 0.947 ± 0.037 0.874 ± 0.025 0.842 ± 0.045 0.986 ± 0.001 0.567 ± 0.255 1.015 ± 0.001 0.835 ± 0.128 0.820 ± 0.051
Levy 50 0.055 ± 0.047 0.033 ± 0.029 0.051 ± 0.044 0.029 ± 0.016 0.085 ± 0.116 0.268 ± 0.071 0.611 ± 0.105 0.681 ± 0.092 0.892 ± 0.277 0.113 ± 0.070 0.881 ± 0.014 0.093 ± 0.030 1.807 ± 0.611 0.196 ± 0.125 0.232 ± 0.043
Powell 50 0.018 ± 0.009 0.014 ± 0.005 0.018 ± 0.008 0.021 ± 0.020 0.078 ± 0.066 0.064 ± 0.029 0.542 ± 0.149 0.499 ± 0.137 0.785 ± 0.166 0.052 ± 0.033 0.868 ± 0.034 0.021 ± 0.010 0.646 ± 0.640 0.162 ± 0.362 0.053 ± 0.028
Rastrigin 50 0.793 ± 0.184 0.653 ± 0.247 0.795 ± 0.374 0.573 ± 0.061 0.592 ± 0.048 0.585 ± 0.075 0.813 ± 0.030 0.810 ± 0.044 0.768 ± 0.019 0.662 ± 0.050 0.934 ± 0.012 0.860 ± 0.353 1.234 ± 0.220 0.716 ± 0.121 0.560 ± 0.037
Rosenbrock 50 0.016 ± 0.009 0.049 ± 0.123 0.010 ± 0.007 0.021 ± 0.009 0.031 ± 0.019 0.048 ± 0.021 0.539 ± 0.175 0.520 ± 0.134 0.594 ± 0.142 0.033 ± 0.010 0.801 ± 0.037 0.014 ± 0.005 1.337 ± 0.430 0.031 ± 0.022 0.055 ± 0.027
Styblinski-Tang 50 0.463 ± 0.206 0.676 ± 1.257 0.681 ± 0.142 0.478 ± 0.099 0.574 ± 0.079 0.727 ± 0.031 1.012 ± 0.065 1.196 ± 0.136 0.981 ± 0.049 0.685 ± 0.238 0.961 ± 0.018 0.620 ± 0.358 1.696 ± 0.490 0.617 ± 0.178 0.454 ± 0.055
Ackley 100 0.718 ± 0.340 0.900 ± 0.256 0.137 ± 0.027 0.636 ± 0.313 0.466 ± 0.275 0.321 ± 0.092 0.948 ± 0.031 0.935 ± 0.036 0.863 ± 0.038 0.805 ± 0.087 0.997 ± 0.001 0.731 ± 0.156 1.005 ± 0.013 0.940 ± 0.080 0.902 ± 0.009
Emb. Hartmann 6 100 0.068 ± 0.052 0.035 ± 0.031 0.175 ± 0.119 0.144 ± 0.134 0.086 ± 0.089 0.172 ± 0.117 0.573 ± 0.042 0.863 ± 0.041 0.692 ± 0.131 0.423 ± 0.307 0.869 ± 0.023 0.110 ± 0.107 0.864 ± 0.021 0.872 ± 0.026 0.098 ± 0.094
Levy 100 0.119 ± 0.103 0.044 ± 0.032 0.042 ± 0.013 0.031 ± 0.013 0.164 ± 0.103 0.056 ± 0.025 0.615 ± 0.085 0.716 ± 0.107 0.586 ± 0.107 0.139 ± 0.096 0.975 ± 0.021 0.094 ± 0.050 1.129 ± 0.956 0.116 ± 0.208 0.303 ± 0.028
Powell 100 0.094 ± 0.017 0.027 ± 0.022 0.013 ± 0.009 0.011 ± 0.003 0.041 ± 0.054 0.018 ± 0.016 0.465 ± 0.070 0.493 ± 0.092 0.524 ± 0.130 0.086 ± 0.161 1.008 ± 0.049 0.027 ± 0.010 0.431 ± 0.080 0.420 ± 0.183 0.104 ± 0.013
Rastrigin 100 0.506 ± 0.051 0.604 ± 0.142 0.540 ± 0.035 0.501 ± 0.092 0.557 ± 0.053 0.544 ± 0.047 0.759 ± 0.019 0.832 ± 0.034 0.780 ± 0.025 0.658 ± 0.050 0.986 ± 0.012 0.624 ± 0.087 0.918 ± 0.214 0.713 ± 0.144 0.584 ± 0.018
Rosenbrock 100 0.114 ± 0.043 0.027 ± 0.011 0.014 ± 0.009 0.044 ± 0.051 0.048 ± 0.039 0.031 ± 0.015 0.518 ± 0.100 0.589 ± 0.127 0.507 ± 0.092 0.091 ± 0.072 0.962 ± 0.045 0.046 ± 0.026 0.758 ± 0.520 0.127 ± 0.205 0.133 ± 0.019
Styblinski-Tang 100 0.389 ± 0.030 0.503 ± 0.222 0.562 ± 0.142 0.522 ± 0.095 0.582 ± 0.132 0.742 ± 0.082 0.924 ± 0.042 1.203 ± 0.188 0.930 ± 0.049 0.584 ± 0.208 0.979 ± 0.013 0.333 ± 0.059 0.752 ± 0.052 0.855 ± 0.179 0.538 ± 0.027

Mean 0.29 0.26 0.26 0.26 0.26 0.29 0.87 0.89 0.90 0.64 0.70 0.44 1.57 0.66 0.26
Median 0.13 0.09 0.17 0.22 0.16 0.17 0.93 0.94 0.92 0.78 0.86 0.35 1.23 0.71 0.18

Table A3: Paired t-test p-values for the results of meanBEEBO in Table 2. The combined p-value
was computed using Fisher’s method. P-values smaller than 0.05 are indicated in bold.

meanBEEBO T ′=0.05 meanBEEBO T ′=0.5 meanBEEBO T ′=5.0

Problem d q-UCB q-EI TS KB GIBBON GIBBON (s) TuRBO q-UCB q-EI TS KB GIBBON GIBBON (s) TuRBO q-UCB q-EI TS KB GIBBON GIBBON (s) TuRBO

Ackley 2 8E-03 7E-02 1E+00 9E-03 3E-03 8E-04 1E-01 1E-01 6E-01 9E-01 3E-01 8E-03 1E-02 4E-01 9E-01 8E-01 1E+00 7E-01 8E-03 7E-02 6E-01
Levy 2 4E-01 5E-01 2E-01 1E+00 6E-04 4E-02 7E-02 7E-01 1E+00 3E-01 1E+00 5E-04 5E-02 7E-02 2E-01 1E+00 7E-01 1E+00 9E-04 7E-02 7E-02
Rastrigin 2 7E-03 9E-01 1E+00 3E-01 1E-02 1E-02 9E-01 2E-01 8E-01 1E+00 4E-02 7E-03 2E-03 5E-01 5E-04 1E+00 1E+00 2E-01 4E-03 9E-03 8E-01
Rosenbrock 2 1E-01 8E-01 2E-01 5E-01 6E-03 1E-01 3E-02 3E-01 9E-01 8E-01 9E-01 6E-03 1E-01 1E-01 8E-01 9E-01 9E-01 1E+00 9E-03 1E-01 8E-02
Styblinski-Tang 2 9E-01 9E-01 9E-01 9E-01 9E-01 9E-01 2E-05 3E-01 5E-01 1E-01 9E-01 2E-03 5E-02 5E-06 1E-01 6E-01 6E-02 1E+00 2E-03 1E-02 5E-06
Shekel 4 5E-03 4E-01 4E-04 4E-02 4E-04 6E-03 9E-01 4E-06 4E-04 8E-10 2E-05 1E-08 7E-09 5E-03 6E-04 9E-02 1E-04 1E-02 2E-04 6E-04 4E-01
Hartmann 6 8E-04 7E-02 1E-06 7E-02 4E-05 5E-04 1E-04 7E-03 7E-02 1E-06 7E-02 4E-05 5E-04 1E-04 3E-04 9E-01 2E-06 9E-01 1E-04 1E-03 3E-04
Cosine 8 6E-05 1E-06 1E+00 1E-03 8E-04 1E-03 6E-05 2E-05 1E-06 1E+00 2E-03 9E-04 1E-03 8E-05 5E-01 1E+00 1E+00 1E+00 1E+00 1E+00 1E+00
Ackley 10 4E-05 3E-05 1E+00 3E-06 5E-09 1E-06 8E-05 6E-05 2E-04 1E+00 5E-06 5E-10 8E-07 1E-04 8E-05 1E-01 1E+00 8E-04 4E-09 1E-05 1E-02
Levy 10 5E-05 1E-05 1E-07 6E-03 5E-05 7E-04 3E-03 1E-03 3E-03 1E-01 9E-01 8E-04 5E-03 7E-01 2E-04 1E-03 2E-01 8E-01 1E-04 5E-04 7E-01
Powell 10 3E-03 1E-03 1E-04 3E-04 3E-03 1E-03 1E-01 2E-03 9E-03 6E-04 6E-01 4E-03 2E-03 9E-01 1E-05 9E-01 7E-01 1E+00 4E-02 3E-01 1E+00
Rastrigin 10 2E-01 4E-01 1E+00 2E-01 6E-02 6E-05 1E+00 4E-01 6E-02 1E+00 5E-03 5E-03 4E-05 1E+00 1E-04 7E-05 1E+00 3E-04 8E-06 4E-05 1E+00
Rosenbrock 10 5E-03 2E-03 6E-06 1E-01 1E-03 8E-04 3E-01 5E-03 3E-03 5E-06 1E+00 4E-03 4E-03 8E-01 4E-03 1E+00 1E-01 1E+00 1E+00 1E+00 1E+00
Styblinski-Tang 10 6E-06 1E-02 3E-04 8E-01 2E-09 2E-06 3E-03 1E-05 1E-02 2E-04 8E-01 3E-09 3E-06 3E-03 8E-04 1E+00 1E+00 1E+00 2E-04 3E-01 1E+00
Ackley 20 8E-04 7E-04 1E+00 9E-03 4E-08 1E-07 3E-06 7E-05 1E-04 1E+00 1E-03 6E-09 2E-07 1E-06 9E-06 4E-02 1E+00 2E-01 2E-08 1E-06 8E-06
Levy 20 6E-02 2E-01 1E+00 8E-01 2E-02 1E-03 1E-01 1E-02 2E-01 1E+00 1E+00 3E-02 1E-03 2E-01 2E-02 1E+00 1E+00 1E+00 4E-01 1E-02 9E-01
Powell 20 3E-01 1E-02 1E+00 1E+00 2E-02 7E-03 1E+00 2E-03 1E-02 6E-01 6E-01 9E-03 5E-03 8E-01 2E-01 1E+00 1E+00 1E+00 1E+00 6E-01 1E+00
Rastrigin 20 8E-01 1E+00 1E+00 9E-01 7E-01 5E-01 1E+00 6E-01 2E-01 1E+00 1E-01 2E-02 2E-02 9E-01 1E-04 1E-02 1E+00 2E-02 2E-03 2E-03 6E-01
Rosenbrock 20 6E-04 1E-02 2E-05 1E+00 9E-03 1E-02 3E-01 4E-05 3E-04 1E-05 8E-01 8E-03 6E-03 1E-01 8E-01 1E+00 1E+00 1E+00 1E+00 1E+00 1E+00
Styblinski-Tang 20 1E-08 5E-04 2E-05 2E-03 3E-10 8E-07 1E-04 2E-02 6E-02 6E-05 1E-01 3E-08 2E-05 3E-02 5E-05 1E+00 1E-01 1E+00 5E-04 5E-01 1E+00
Ackley 50 1E+00 1E+00 1E+00 1E+00 6E-01 3E-01 4E-01 1E+00 1E+00 1E+00 1E+00 3E-01 6E-02 8E-02 2E-04 4E-03 1E+00 2E-04 1E-09 2E-07 6E-10
Levy 50 6E-01 7E-01 1E+00 7E-01 3E-02 8E-02 9E-05 2E-01 4E-02 1E+00 8E-02 8E-06 2E-02 3E-08 4E-01 9E-01 1E+00 9E-01 6E-06 1E-01 2E-06
Powell 50 9E-01 8E-01 1E+00 6E-01 5E-01 1E-01 1E-02 2E-04 3E-04 1E+00 8E-03 2E-06 9E-05 1E-06 1E+00 1E+00 1E+00 7E-01 8E-01 9E-02 1E-02
Rastrigin 50 1E+00 1E+00 1E+00 1E+00 1E+00 4E-01 1E+00 5E-04 3E-01 1E+00 3E-02 5E-02 1E-04 1E-01 1E+00 1E+00 1E+00 2E-01 8E-01 4E-03 8E-01
Rosenbrock 50 3E-01 9E-01 9E-01 1E+00 6E-01 8E-01 2E-02 9E-01 8E-03 3E-05 4E-01 1E-02 2E-02 4E-04 3E-01 2E-01 4E-02 6E-01 2E-02 1E-01 3E-04
Styblinski-Tang 50 1E-04 9E-01 2E-04 1E+00 3E-07 3E-02 3E-03 9E-01 1E-01 4E-05 8E-01 9E-10 3E-04 1E-05 2E-01 1E+00 8E-02 1E+00 2E-03 9E-01 9E-01
Ackley 100 1E+00 1E+00 2E-02 6E-01 5E-01 7E-01 7E-02 1E+00 1E+00 6E-02 8E-01 6E-01 7E-01 2E-01 4E-02 5E-04 3E-15 3E-07 2E-05 2E-04 2E-15
Emb. Hartmann 6 100 7E-02 1E-02 4E-04 1E-01 2E-05 3E-05 3E-01 2E-03 2E-02 1E-04 4E-02 4E-05 5E-05 3E-02 4E-01 2E-01 8E-05 4E-01 6E-05 8E-05 7E-01
Levy 100 1E+00 1E+00 2E-05 9E-01 3E-01 9E-01 6E-03 2E-02 2E-01 6E-06 1E-03 3E-02 2E-01 3E-09 1E+00 8E-01 9E-06 3E-02 4E-02 3E-01 5E-10
Powell 100 1E+00 1E+00 1E-03 1E+00 3E-03 5E-03 1E+00 9E-01 8E-01 2E-04 8E-01 4E-07 7E-05 1E-03 7E-01 3E-02 2E-04 2E-02 1E-05 2E-05 2E-08
Rastrigin 100 2E-03 1E-01 1E-01 1E+00 5E-04 4E-06 6E-05 8E-01 9E-01 3E-01 1E+00 2E-03 2E-02 4E-01 7E-02 1E+00 2E-01 1E+00 3E-04 9E-05 6E-05
Rosenbrock 100 1E+00 1E+00 3E-04 1E+00 1E+00 1E+00 9E-01 2E-01 7E-01 2E-04 2E-02 4E-01 2E-01 6E-08 4E-01 5E-02 1E-04 2E-02 3E-01 1E-01 5E-08
Styblinski-Tang 100 3E-06 5E-01 8E-04 1E+00 4E-08 4E-08 3E-06 9E-01 9E-01 9E-03 1E+00 3E-05 3E-05 3E-02 3E-03 1E+00 2E-02 1E+00 4E-04 1E-03 4E-01

Combined 4E-16 2E-02 8E-02 1E+00 6E-47 1E-40 2E-18 1E-20 2E-12 7E-06 1E-03 2E-63 3E-51 2E-36 2E-21 1E+00 1E+00 1E+00 4E-44 4E-27 2E-23

Table A4: Paired t-test p-values for the results of maxBEEBO in Table 2. The combined p-value was
computed using Fisher’s method. P-values smaller than 0.05 are indicated in bold.

maxBEEBO T ′=0.05 maxBEEBO T ′=0.5 maxBEEBO T ′=5.0

Problem d q-UCB q-EI TS KB GIBBON GIBBON (s) TuRBO q-UCB q-EI TS KB GIBBON GIBBON (s) TuRBO q-UCB q-EI TS KB GIBBON GIBBON (s) TuRBO

Ackley 2 2E-01 7E-01 1E+00 5E-01 3E-03 2E-03 4E-01 2E-01 7E-01 9E-01 5E-01 1E-02 4E-02 5E-01 5E-01 5E-01 1E+00 1E-01 4E-03 5E-03 3E-01
Levy 2 8E-01 9E-01 3E-01 1E+00 7E-04 5E-02 7E-02 3E-01 9E-01 2E-01 1E+00 5E-04 4E-02 7E-02 5E-01 1E+00 9E-01 1E+00 3E-03 9E-02 7E-02
Rastrigin 2 2E-04 7E-01 1E+00 8E-03 5E-03 2E-03 3E-01 5E-01 1E+00 1E+00 2E-01 1E-02 4E-03 9E-01 3E-05 7E-01 1E+00 2E-02 6E-03 1E-03 2E-01
Rosenbrock 2 8E-02 5E-01 2E-01 3E-01 6E-03 9E-02 3E-02 2E-01 6E-01 3E-01 4E-01 5E-03 9E-02 4E-02 9E-01 9E-01 1E+00 1E+00 1E-02 2E-01 2E-01
Styblinski-Tang 2 4E-01 2E-01 7E-04 1E+00 2E-03 1E-02 5E-06 5E-01 8E-01 2E-01 1E+00 2E-03 3E-02 5E-06 4E-01 8E-01 6E-01 9E-01 4E-03 1E-01 5E-06
Shekel 4 1E-01 1E+00 2E-04 8E-01 5E-04 3E-01 1E+00 3E-01 9E-01 5E-03 5E-01 2E-02 1E-01 1E+00 3E-02 9E-01 4E-03 3E-01 7E-03 4E-02 1E+00
Hartmann 6 9E-01 1E+00 2E-05 1E+00 4E-03 3E-01 1E+00 1E-01 8E-01 1E-05 8E-01 2E-04 2E-03 2E-02 9E-04 9E-01 7E-06 9E-01 2E-04 3E-03 1E-02
Cosine 8 6E-05 1E-06 1E+00 1E-03 8E-04 1E-03 7E-05 1E-03 2E-05 1E+00 1E+00 4E-03 2E-02 8E-04 2E-03 1E-02 1E+00 1E+00 6E-01 9E-01 9E-01
Ackley 10 2E-01 2E-01 1E+00 2E-04 2E-08 1E-05 2E-02 9E-01 1E+00 1E+00 7E-01 6E-08 6E-05 9E-01 2E-01 1E+00 1E+00 1E+00 1E-04 5E-01 1E+00
Levy 10 5E-04 3E-03 9E-02 9E-01 6E-04 5E-03 8E-01 3E-03 4E-03 9E-01 1E+00 7E-04 5E-03 1E+00 1E-03 9E-01 1E+00 1E+00 1E-01 1E-01 1E+00
Powell 10 8E-02 4E-02 1E-03 9E-01 2E-03 1E-03 1E+00 4E-02 4E-02 2E-03 9E-01 3E-03 2E-03 1E+00 9E-06 8E-01 7E-02 1E+00 1E-02 5E-02 1E+00
Rastrigin 10 3E-04 1E-02 1E+00 3E-03 6E-04 9E-05 1E+00 2E-01 2E-03 1E+00 1E-04 1E-03 1E-04 1E+00 2E-04 5E-03 1E+00 4E-03 1E-04 7E-05 9E-01
Rosenbrock 10 1E-02 4E-03 6E-06 1E+00 6E-03 6E-03 8E-01 1E-02 3E-01 4E-06 1E+00 9E-03 2E-02 1E+00 1E-03 8E-01 4E-06 1E+00 4E-01 7E-01 1E+00
Styblinski-Tang 10 7E-06 5E-02 2E-04 1E+00 5E-10 4E-06 2E-03 7E-03 9E-01 8E-03 1E+00 2E-07 8E-05 6E-01 1E-02 1E+00 1E+00 1E+00 9E-03 6E-01 1E+00
Ackley 20 1E-04 6E-04 1E+00 9E-03 1E-08 3E-07 2E-06 1E-02 2E-02 1E+00 9E-02 4E-08 7E-07 2E-06 9E-01 1E+00 1E+00 1E+00 6E-04 2E-02 1E+00
Levy 20 1E-01 1E-01 1E+00 8E-01 6E-02 9E-04 1E-01 3E-01 1E+00 1E+00 1E+00 3E-01 2E-03 8E-01 2E-02 9E-01 1E+00 1E+00 2E-01 3E-03 7E-01
Powell 20 9E-01 4E-01 1E+00 1E+00 6E-02 2E-02 1E+00 5E-01 9E-01 1E+00 1E+00 5E-01 2E-02 1E+00 3E-03 9E-01 1E+00 1E+00 4E-01 1E-02 1E+00
Rastrigin 20 5E-03 7E-02 1E+00 3E-02 1E-02 3E-03 9E-01 6E-01 1E-01 1E+00 1E-01 4E-02 1E-02 9E-01 9E-05 1E-02 1E+00 2E-02 1E-03 5E-03 4E-01
Rosenbrock 20 5E-04 1E-02 1E-05 1E+00 8E-03 9E-03 4E-01 4E-01 9E-01 4E-06 1E+00 2E-02 2E-01 1E+00 3E-01 1E+00 9E-01 1E+00 9E-01 1E+00 1E+00
Styblinski-Tang 20 5E-08 1E-01 9E-05 3E-01 2E-09 2E-06 1E-01 1E+00 1E+00 1E-02 1E+00 4E-06 7E-02 1E+00 4E-07 1E+00 1E-01 1E+00 1E-05 9E-01 1E+00
Ackley 50 6E-01 9E-01 1E+00 2E-01 2E-02 9E-04 8E-04 1E+00 1E+00 1E+00 3E-01 7E-04 3E-03 4E-04 1E+00 1E+00 1E+00 9E-01 5E-04 3E-04 5E-05
Levy 50 2E-02 2E-02 1E+00 8E-03 3E-06 1E-02 1E-07 3E-01 1E-01 1E+00 4E-01 8E-07 4E-02 4E-07 1E+00 1E+00 1E+00 1E+00 5E-01 7E-01 5E-05
Powell 50 4E-02 3E-02 1E+00 5E-02 2E-04 7E-04 8E-06 8E-02 2E-01 1E+00 9E-02 6E-03 1E-03 5E-06 1E+00 1E+00 1E+00 1E+00 1E+00 5E-01 4E-03
Rastrigin 50 1E-02 4E-01 1E+00 2E-02 4E-02 6E-04 2E-01 2E-04 5E-01 1E+00 1E-02 8E-02 3E-04 2E-01 1E+00 1E+00 1E+00 1E-01 7E-01 5E-04 7E-01
Rosenbrock 50 7E-03 9E-01 7E-01 1E+00 2E-01 7E-01 5E-03 1E+00 2E-01 2E-02 8E-01 4E-02 2E-01 7E-04 1E+00 1E+00 1E+00 1E+00 1E+00 1E+00 3E-01
Styblinski-Tang 50 5E-05 1E+00 2E-03 1E+00 3E-07 5E-01 2E-01 1E+00 1E+00 8E-02 1E+00 4E-05 1E+00 1E+00 8E-01 1E+00 1E-01 1E+00 6E-05 1E+00 1E+00
Ackley 100 1E+00 1E+00 3E-03 2E-01 6E-02 1E-01 1E-02 9E-01 1E+00 9E-05 2E-02 1E-02 1E-01 4E-04 1E+00 9E-01 1E-09 8E-07 2E-04 2E-03 1E-08
Emb. Hartmann 6 100 3E-02 4E-02 7E-05 9E-02 2E-05 3E-05 2E-01 3E-01 1E-01 2E-04 2E-01 2E-04 2E-04 5E-01 6E-01 2E-01 3E-04 6E-01 3E-04 4E-04 9E-01
Levy 100 5E-03 7E-02 6E-06 1E-03 2E-02 2E-01 5E-10 1E-01 6E-01 7E-06 1E-02 4E-02 3E-01 1E-09 1E+00 9E-01 7E-06 2E-02 4E-02 3E-01 2E-09
Powell 100 6E-02 6E-03 2E-04 9E-03 1E-05 2E-05 7E-09 7E-01 7E-02 2E-04 2E-02 1E-05 2E-05 9E-09 1E+00 1E-01 2E-04 3E-02 1E-05 2E-05 5E-08
Rastrigin 100 6E-01 8E-01 2E-01 1E+00 1E-02 4E-03 6E-02 2E-01 1E+00 2E-01 1E+00 1E-03 9E-05 3E-04 2E-01 1E+00 2E-01 1E+00 2E-03 1E-04 2E-04
Rosenbrock 100 8E-01 8E-01 1E-04 2E-01 6E-01 4E-01 4E-03 1E-01 2E-01 1E-04 1E-02 3E-01 1E-01 3E-08 9E-01 9E-01 1E-04 4E-02 4E-01 2E-01 2E-07
Styblinski-Tang 100 3E-04 1E+00 6E-03 1E+00 2E-05 5E-06 1E-01 1E+00 1E+00 4E-02 1E+00 5E-04 5E-04 9E-01 1E-01 1E+00 1E-01 1E+00 4E-03 2E-03 1E+00

Combined 1E-27 3E-04 1E+00 1E+00 6E-69 1E-44 1E-24 9E-02 1E+00 1E+00 1E+00 3E-51 9E-36 3E-16 1E-04 1E+00 1E+00 1E+00 8E-31 6E-16 3E-03
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D.2 Results for batch sizes 5 and 10

Table A5: BO on noise-free synthetic test problems. The normalized highest observed value after 10
rounds of BO with q=5 is shown. Colors are normalized row-wise. Higher means better. Results are
means over ten replicate runs.

Problem d meanBEEBO maxBEEBO q-UCB q-EI TS KB GIBBON TuRBO

T ′=0.05 T ′=0.5 T ′=5.0 T ′=0.05 T ′=0.5 T ′=5.0
√
κ=0.1

√
κ=1.0

√
κ=10.0 - - - default -

Ackley 2 0.116 ± 0.249 0.240 ± 0.358 0.903 ± 0.052 0.865 ± 0.073 0.865 ± 0.044 0.849 ± 0.049 0.793 ± 0.096 0.919 ± 0.062 0.785 ± 0.084 0.885 ± 0.042 0.555 ± 0.312 0.865 ± 0.063 0.799 ± 0.091 0.550 ± 0.409
Levy 2 0.800 ± 0.198 0.880 ± 0.186 0.995 ± 0.005 0.994 ± 0.008 0.998 ± 0.003 0.995 ± 0.009 0.997 ± 0.004 0.996 ± 0.008 0.992 ± 0.006 0.997 ± 0.004 0.912 ± 0.128 0.998 ± 0.006 0.975 ± 0.018 0.821 ± 0.208
Rastrigin 2 0.513 ± 0.210 0.493 ± 0.289 0.920 ± 0.038 0.875 ± 0.075 0.924 ± 0.044 0.851 ± 0.095 0.842 ± 0.088 0.950 ± 0.029 0.839 ± 0.136 0.871 ± 0.129 0.701 ± 0.163 0.875 ± 0.087 0.808 ± 0.096 0.509 ± 0.275
Rosenbrock 2 0.955 ± 0.134 0.973 ± 0.056 0.976 ± 0.029 0.961 ± 0.097 0.984 ± 0.019 0.829 ± 0.331 0.926 ± 0.224 0.894 ± 0.314 0.892 ± 0.314 0.912 ± 0.228 0.763 ± 0.324 0.889 ± 0.313 0.872 ± 0.308 0.884 ± 0.312
Styblinski-Tang 2 0.594 ± 0.295 0.705 ± 0.316 0.897 ± 0.106 0.669 ± 0.284 0.850 ± 0.161 0.893 ± 0.167 0.837 ± 0.227 0.898 ± 0.168 0.913 ± 0.138 0.948 ± 0.068 0.692 ± 0.298 0.909 ± 0.131 0.866 ± 0.108 0.422 ± 0.313
Shekel 4 0.198 ± 0.046 0.236 ± 0.087 0.194 ± 0.071 0.167 ± 0.052 0.177 ± 0.079 0.112 ± 0.065 0.131 ± 0.065 0.260 ± 0.069 0.103 ± 0.041 0.196 ± 0.072 0.131 ± 0.038 0.160 ± 0.053 0.142 ± 0.085 0.175 ± 0.075
Hartmann 6 0.950 ± 0.040 0.948 ± 0.044 0.880 ± 0.097 0.935 ± 0.046 0.862 ± 0.204 0.681 ± 0.255 0.795 ± 0.118 0.954 ± 0.037 0.486 ± 0.207 0.944 ± 0.040 0.792 ± 0.106 0.950 ± 0.039 0.905 ± 0.075 0.916 ± 0.049
Cosine 8 0.553 ± 0.101 0.701 ± 0.093 0.847 ± 0.058 0.611 ± 0.105 0.702 ± 0.079 0.663 ± 0.051 0.698 ± 0.119 0.824 ± 0.054 0.793 ± 0.089 0.759 ± 0.064 0.722 ± 0.322 0.741 ± 0.085 0.685 ± 0.084 0.624 ± 0.110
Ackley 10 0.053 ± 0.068 0.272 ± 0.295 0.537 ± 0.162 0.143 ± 0.146 0.425 ± 0.228 0.290 ± 0.157 0.191 ± 0.104 0.620 ± 0.061 0.228 ± 0.117 0.597 ± 0.068 0.348 ± 0.451 0.532 ± 0.127 0.530 ± 0.081 0.310 ± 0.129
Levy 10 0.595 ± 0.222 0.570 ± 0.291 0.910 ± 0.093 0.695 ± 0.086 0.802 ± 0.115 0.839 ± 0.081 0.848 ± 0.127 0.847 ± 0.111 0.855 ± 0.119 0.826 ± 0.155 0.558 ± 0.289 0.817 ± 0.097 0.844 ± 0.077 0.640 ± 0.215
Powell 10 0.938 ± 0.041 0.932 ± 0.045 0.925 ± 0.048 0.936 ± 0.032 0.924 ± 0.028 0.797 ± 0.258 0.844 ± 0.146 0.932 ± 0.040 0.656 ± 0.233 0.940 ± 0.029 0.600 ± 0.323 0.933 ± 0.035 0.795 ± 0.153 0.898 ± 0.076
Rastrigin 10 0.377 ± 0.118 0.331 ± 0.133 0.375 ± 0.101 0.276 ± 0.097 0.292 ± 0.095 0.357 ± 0.094 0.400 ± 0.085 0.413 ± 0.168 0.269 ± 0.142 0.406 ± 0.065 0.231 ± 0.152 0.426 ± 0.032 0.400 ± 0.087 0.365 ± 0.156
Rosenbrock 10 0.967 ± 0.030 0.984 ± 0.018 0.987 ± 0.009 0.974 ± 0.020 0.971 ± 0.015 0.964 ± 0.022 0.965 ± 0.057 0.984 ± 0.014 0.974 ± 0.014 0.976 ± 0.017 0.776 ± 0.224 0.973 ± 0.021 0.944 ± 0.043 0.962 ± 0.041
Styblinski-Tang 10 0.631 ± 0.135 0.662 ± 0.106 0.270 ± 0.170 0.623 ± 0.136 0.552 ± 0.131 0.166 ± 0.176 0.394 ± 0.117 0.594 ± 0.111 0.139 ± 0.153 0.632 ± 0.133 0.261 ± 0.191 0.602 ± 0.192 0.258 ± 0.222 0.400 ± 0.105
Ackley 20 0.019 ± 0.011 0.044 ± 0.062 0.354 ± 0.175 0.059 ± 0.061 0.182 ± 0.173 0.148 ± 0.086 0.276 ± 0.112 0.231 ± 0.208 0.186 ± 0.092 0.199 ± 0.141 0.109 ± 0.313 0.172 ± 0.147 0.303 ± 0.161 0.052 ± 0.024
Levy 20 0.571 ± 0.155 0.608 ± 0.175 0.795 ± 0.082 0.663 ± 0.118 0.681 ± 0.132 0.760 ± 0.127 0.788 ± 0.098 0.663 ± 0.145 0.780 ± 0.068 0.665 ± 0.112 0.373 ± 0.214 0.660 ± 0.148 0.751 ± 0.110 0.567 ± 0.158
Powell 20 0.864 ± 0.062 0.889 ± 0.061 0.902 ± 0.060 0.872 ± 0.075 0.874 ± 0.053 0.854 ± 0.101 0.920 ± 0.048 0.894 ± 0.060 0.812 ± 0.125 0.882 ± 0.076 0.460 ± 0.180 0.894 ± 0.049 0.891 ± 0.071 0.764 ± 0.134
Rastrigin 20 0.237 ± 0.121 0.256 ± 0.103 0.272 ± 0.127 0.217 ± 0.120 0.239 ± 0.119 0.266 ± 0.143 0.311 ± 0.124 0.223 ± 0.111 0.257 ± 0.091 0.225 ± 0.111 0.109 ± 0.083 0.227 ± 0.125 0.308 ± 0.047 0.167 ± 0.095
Rosenbrock 20 0.923 ± 0.012 0.958 ± 0.011 0.964 ± 0.021 0.924 ± 0.026 0.942 ± 0.024 0.932 ± 0.034 0.928 ± 0.023 0.958 ± 0.012 0.942 ± 0.026 0.941 ± 0.036 0.368 ± 0.257 0.960 ± 0.018 0.932 ± 0.030 0.891 ± 0.037
Styblinski-Tang 20 0.576 ± 0.080 0.529 ± 0.125 0.401 ± 0.085 0.529 ± 0.078 0.487 ± 0.079 0.271 ± 0.092 0.275 ± 0.092 0.558 ± 0.083 0.180 ± 0.110 0.497 ± 0.101 0.130 ± 0.088 0.591 ± 0.075 0.371 ± 0.096 0.258 ± 0.077
Ackley 50 0.012 ± 0.011 0.009 ± 0.007 0.024 ± 0.016 0.013 ± 0.006 0.013 ± 0.005 0.023 ± 0.011 0.014 ± 0.012 0.014 ± 0.007 0.070 ± 0.030 0.043 ± 0.038 0.008 ± 0.007 0.017 ± 0.009 0.029 ± 0.014 0.044 ± 0.010
Levy 50 0.464 ± 0.086 0.411 ± 0.145 0.347 ± 0.119 0.393 ± 0.122 0.363 ± 0.143 0.382 ± 0.116 0.241 ± 0.114 0.374 ± 0.161 0.504 ± 0.158 0.419 ± 0.153 0.191 ± 0.078 0.486 ± 0.135 0.450 ± 0.087 0.501 ± 0.102
Powell 50 0.708 ± 0.073 0.732 ± 0.056 0.716 ± 0.077 0.634 ± 0.098 0.694 ± 0.051 0.745 ± 0.076 0.416 ± 0.141 0.711 ± 0.069 0.786 ± 0.079 0.678 ± 0.135 0.292 ± 0.251 0.783 ± 0.055 0.804 ± 0.068 0.697 ± 0.089
Rastrigin 50 0.206 ± 0.090 0.209 ± 0.061 0.132 ± 0.058 0.177 ± 0.060 0.190 ± 0.058 0.170 ± 0.061 0.072 ± 0.039 0.187 ± 0.058 0.277 ± 0.085 0.185 ± 0.071 0.076 ± 0.057 0.162 ± 0.083 0.210 ± 0.083 0.262 ± 0.046
Rosenbrock 50 0.713 ± 0.083 0.751 ± 0.077 0.698 ± 0.117 0.640 ± 0.114 0.705 ± 0.067 0.679 ± 0.094 0.430 ± 0.158 0.768 ± 0.065 0.819 ± 0.076 0.724 ± 0.116 0.257 ± 0.163 0.766 ± 0.057 0.777 ± 0.076 0.684 ± 0.061
Styblinski-Tang 50 0.428 ± 0.060 0.392 ± 0.069 0.384 ± 0.079 0.382 ± 0.048 0.351 ± 0.060 0.234 ± 0.067 0.203 ± 0.074 0.368 ± 0.055 0.287 ± 0.124 0.336 ± 0.057 0.133 ± 0.069 0.414 ± 0.038 0.293 ± 0.054 0.269 ± 0.077
Ackley 100 0.042 ± 0.013 0.035 ± 0.016 0.079 ± 0.021 0.037 ± 0.011 0.060 ± 0.012 0.081 ± 0.021 0.048 ± 0.021 0.051 ± 0.022 0.180 ± 0.041 0.069 ± 0.021 0.005 ± 0.004 0.042 ± 0.011 0.013 ± 0.005 0.028 ± 0.006
Emb. Hartmann 6 100 0.554 ± 0.216 0.577 ± 0.198 0.645 ± 0.225 0.561 ± 0.234 0.413 ± 0.197 0.649 ± 0.112 0.547 ± 0.227 0.566 ± 0.212 0.693 ± 0.125 0.678 ± 0.163 0.411 ± 0.161 0.703 ± 0.155 0.485 ± 0.163 0.765 ± 0.163
Levy 100 0.522 ± 0.069 0.545 ± 0.053 0.598 ± 0.053 0.595 ± 0.050 0.589 ± 0.101 0.680 ± 0.082 0.511 ± 0.101 0.599 ± 0.064 0.796 ± 0.041 0.611 ± 0.092 0.115 ± 0.072 0.600 ± 0.051 0.216 ± 0.063 0.398 ± 0.075
Powell 100 0.660 ± 0.071 0.643 ± 0.103 0.810 ± 0.076 0.657 ± 0.063 0.725 ± 0.057 0.860 ± 0.073 0.626 ± 0.186 0.679 ± 0.085 0.938 ± 0.014 0.673 ± 0.089 0.228 ± 0.194 0.725 ± 0.088 0.303 ± 0.150 0.654 ± 0.107
Rastrigin 100 0.259 ± 0.046 0.256 ± 0.058 0.304 ± 0.032 0.280 ± 0.052 0.290 ± 0.052 0.323 ± 0.028 0.263 ± 0.049 0.290 ± 0.056 0.409 ± 0.029 0.304 ± 0.056 0.060 ± 0.041 0.279 ± 0.035 0.119 ± 0.040 0.188 ± 0.039
Rosenbrock 100 0.610 ± 0.085 0.600 ± 0.096 0.714 ± 0.058 0.556 ± 0.127 0.617 ± 0.136 0.748 ± 0.044 0.528 ± 0.142 0.652 ± 0.091 0.885 ± 0.029 0.643 ± 0.077 0.212 ± 0.108 0.712 ± 0.061 0.364 ± 0.090 0.552 ± 0.102
Styblinski-Tang 100 0.354 ± 0.065 0.356 ± 0.061 0.331 ± 0.043 0.332 ± 0.053 0.318 ± 0.070 0.321 ± 0.054 0.267 ± 0.062 0.331 ± 0.049 0.324 ± 0.047 0.303 ± 0.037 0.095 ± 0.048 0.350 ± 0.042 0.148 ± 0.067 0.275 ± 0.077

Mean 0.514 0.537 0.609 0.553 0.578 0.558 0.525 0.612 0.577 0.605 0.354 0.612 0.533 0.500
Median 0.554 0.570 0.698 0.611 0.617 0.679 0.511 0.652 0.693 0.665 0.261 0.703 0.485 0.509

Table A6: BO on noise-free synthetic test problems. The normalized highest observed value after 10
rounds of BO with q=10 is shown. Colors are normalized row-wise. Higher means better. Results are
means over ten replicate runs.

Problem d meanBEEBO maxBEEBO q-UCB q-EI TS KB GIBBON TuRBO

T ′=0.05 T ′=0.5 T ′=5.0 T ′=0.05 T ′=0.5 T ′=5.0
√
κ=0.1

√
κ=1.0

√
κ=10.0 - - - default -

Ackley 2 0.154 ± 0.307 0.466 ± 0.334 0.913 ± 0.062 0.861 ± 0.119 0.936 ± 0.045 0.939 ± 0.038 0.875 ± 0.059 0.951 ± 0.021 0.869 ± 0.060 0.940 ± 0.048 0.755 ± 0.293 0.909 ± 0.057 0.775 ± 0.082 0.575 ± 0.411
Levy 2 0.908 ± 0.124 0.998 ± 0.001 0.997 ± 0.003 0.999 ± 0.001 0.999 ± 0.001 0.996 ± 0.004 0.998 ± 0.002 0.997 ± 0.004 0.988 ± 0.015 0.997 ± 0.003 0.919 ± 0.083 0.998 ± 0.002 0.985 ± 0.013 0.844 ± 0.154
Rastrigin 2 0.545 ± 0.307 0.684 ± 0.238 0.953 ± 0.038 0.942 ± 0.053 0.932 ± 0.048 0.911 ± 0.034 0.911 ± 0.043 0.936 ± 0.033 0.839 ± 0.096 0.939 ± 0.034 0.731 ± 0.255 0.913 ± 0.054 0.902 ± 0.070 0.726 ± 0.300
Rosenbrock 2 0.976 ± 0.048 0.979 ± 0.040 0.883 ± 0.313 0.992 ± 0.009 0.961 ± 0.100 0.987 ± 0.014 0.955 ± 0.118 0.977 ± 0.035 0.989 ± 0.014 0.972 ± 0.047 0.863 ± 0.312 0.994 ± 0.008 0.837 ± 0.305 0.829 ± 0.303
Styblinski-Tang 2 0.441 ± 0.263 0.983 ± 0.027 0.941 ± 0.065 0.991 ± 0.011 0.991 ± 0.013 0.964 ± 0.052 0.989 ± 0.012 0.998 ± 0.003 0.984 ± 0.020 0.997 ± 0.003 0.836 ± 0.186 0.983 ± 0.021 0.911 ± 0.063 0.266 ± 0.187
Shekel 4 0.287 ± 0.099 0.257 ± 0.071 0.250 ± 0.103 0.245 ± 0.073 0.265 ± 0.096 0.145 ± 0.037 0.151 ± 0.051 0.266 ± 0.064 0.101 ± 0.028 0.200 ± 0.054 0.132 ± 0.049 0.197 ± 0.103 0.136 ± 0.068 0.300 ± 0.131
Hartmann 6 0.968 ± 0.035 0.968 ± 0.034 0.929 ± 0.062 0.966 ± 0.046 0.949 ± 0.046 0.880 ± 0.081 0.917 ± 0.054 0.964 ± 0.037 0.626 ± 0.184 0.956 ± 0.047 0.855 ± 0.025 0.964 ± 0.037 0.887 ± 0.043 0.968 ± 0.028
Cosine 8 0.728 ± 0.100 0.821 ± 0.106 0.775 ± 0.095 0.747 ± 0.079 0.756 ± 0.088 0.679 ± 0.104 0.763 ± 0.059 0.785 ± 0.083 0.817 ± 0.082 0.753 ± 0.058 1.000 ± 0.000 0.743 ± 0.063 0.626 ± 0.048 0.797 ± 0.083
Ackley 10 0.105 ± 0.075 0.505 ± 0.252 0.718 ± 0.088 0.256 ± 0.176 0.525 ± 0.251 0.276 ± 0.113 0.559 ± 0.078 0.731 ± 0.040 0.226 ± 0.094 0.642 ± 0.045 1.000 ± 0.000 0.675 ± 0.062 0.437 ± 0.084 0.648 ± 0.056
Levy 10 0.833 ± 0.093 0.836 ± 0.099 0.950 ± 0.020 0.828 ± 0.155 0.905 ± 0.039 0.866 ± 0.039 0.897 ± 0.062 0.914 ± 0.065 0.927 ± 0.034 0.928 ± 0.043 0.955 ± 0.052 0.864 ± 0.080 0.722 ± 0.130 0.773 ± 0.141
Powell 10 0.961 ± 0.028 0.949 ± 0.037 0.898 ± 0.042 0.933 ± 0.046 0.906 ± 0.090 0.877 ± 0.068 0.927 ± 0.052 0.928 ± 0.055 0.846 ± 0.118 0.940 ± 0.043 0.798 ± 0.139 0.960 ± 0.020 0.741 ± 0.217 0.962 ± 0.020
Rastrigin 10 0.397 ± 0.148 0.277 ± 0.123 0.378 ± 0.101 0.274 ± 0.157 0.348 ± 0.162 0.325 ± 0.159 0.389 ± 0.147 0.418 ± 0.100 0.266 ± 0.151 0.386 ± 0.075 0.759 ± 0.396 0.421 ± 0.069 0.318 ± 0.128 0.449 ± 0.112
Rosenbrock 10 0.985 ± 0.011 0.982 ± 0.014 0.978 ± 0.009 0.979 ± 0.013 0.967 ± 0.023 0.957 ± 0.032 0.948 ± 0.042 0.976 ± 0.017 0.991 ± 0.007 0.979 ± 0.012 0.930 ± 0.050 0.984 ± 0.010 0.913 ± 0.104 0.989 ± 0.013
Styblinski-Tang 10 0.689 ± 0.127 0.706 ± 0.133 0.274 ± 0.182 0.675 ± 0.149 0.455 ± 0.134 0.182 ± 0.153 0.408 ± 0.140 0.597 ± 0.154 0.105 ± 0.088 0.624 ± 0.128 0.220 ± 0.163 0.660 ± 0.168 0.170 ± 0.130 0.585 ± 0.143
Ackley 20 0.032 ± 0.029 0.198 ± 0.290 0.600 ± 0.148 0.058 ± 0.038 0.309 ± 0.233 0.229 ± 0.080 0.397 ± 0.085 0.685 ± 0.062 0.337 ± 0.082 0.582 ± 0.037 0.111 ± 0.313 0.576 ± 0.077 0.365 ± 0.067 0.173 ± 0.106
Levy 20 0.714 ± 0.091 0.656 ± 0.146 0.895 ± 0.047 0.720 ± 0.094 0.864 ± 0.061 0.798 ± 0.054 0.892 ± 0.043 0.831 ± 0.055 0.879 ± 0.060 0.774 ± 0.067 0.291 ± 0.185 0.646 ± 0.086 0.870 ± 0.063 0.682 ± 0.103
Powell 20 0.889 ± 0.098 0.919 ± 0.055 0.899 ± 0.061 0.890 ± 0.072 0.911 ± 0.041 0.897 ± 0.038 0.908 ± 0.074 0.924 ± 0.031 0.848 ± 0.082 0.914 ± 0.051 0.355 ± 0.213 0.931 ± 0.036 0.875 ± 0.073 0.839 ± 0.060
Rastrigin 20 0.243 ± 0.101 0.213 ± 0.115 0.352 ± 0.101 0.278 ± 0.078 0.323 ± 0.082 0.326 ± 0.080 0.425 ± 0.093 0.335 ± 0.079 0.300 ± 0.066 0.353 ± 0.074 0.087 ± 0.075 0.278 ± 0.127 0.330 ± 0.095 0.224 ± 0.122
Rosenbrock 20 0.952 ± 0.016 0.973 ± 0.015 0.989 ± 0.005 0.961 ± 0.020 0.975 ± 0.011 0.945 ± 0.025 0.957 ± 0.020 0.979 ± 0.006 0.974 ± 0.011 0.973 ± 0.010 0.434 ± 0.307 0.979 ± 0.006 0.964 ± 0.021 0.914 ± 0.066
Styblinski-Tang 20 0.626 ± 0.115 0.596 ± 0.093 0.381 ± 0.111 0.601 ± 0.089 0.519 ± 0.120 0.262 ± 0.107 0.272 ± 0.065 0.570 ± 0.108 0.186 ± 0.112 0.562 ± 0.094 0.131 ± 0.101 0.611 ± 0.094 0.348 ± 0.072 0.391 ± 0.080
Ackley 50 0.020 ± 0.014 0.011 ± 0.006 0.035 ± 0.031 0.013 ± 0.012 0.017 ± 0.011 0.038 ± 0.006 0.153 ± 0.161 0.032 ± 0.017 0.342 ± 0.128 0.153 ± 0.088 0.012 ± 0.006 0.019 ± 0.005 0.093 ± 0.065 0.065 ± 0.012
Levy 50 0.473 ± 0.087 0.578 ± 0.169 0.463 ± 0.117 0.490 ± 0.066 0.403 ± 0.113 0.541 ± 0.150 0.647 ± 0.180 0.439 ± 0.111 0.760 ± 0.068 0.609 ± 0.137 0.284 ± 0.257 0.506 ± 0.094 0.518 ± 0.131 0.523 ± 0.082
Powell 50 0.758 ± 0.073 0.785 ± 0.059 0.851 ± 0.037 0.706 ± 0.090 0.777 ± 0.084 0.752 ± 0.102 0.800 ± 0.148 0.834 ± 0.061 0.919 ± 0.025 0.790 ± 0.069 0.367 ± 0.104 0.853 ± 0.036 0.843 ± 0.053 0.766 ± 0.054
Rastrigin 50 0.164 ± 0.042 0.173 ± 0.040 0.200 ± 0.043 0.186 ± 0.035 0.172 ± 0.062 0.186 ± 0.088 0.231 ± 0.129 0.206 ± 0.056 0.306 ± 0.096 0.270 ± 0.078 0.085 ± 0.051 0.157 ± 0.090 0.169 ± 0.069 0.300 ± 0.055
Rosenbrock 50 0.822 ± 0.025 0.834 ± 0.063 0.903 ± 0.034 0.743 ± 0.055 0.789 ± 0.085 0.692 ± 0.074 0.892 ± 0.068 0.875 ± 0.049 0.949 ± 0.017 0.882 ± 0.033 0.423 ± 0.119 0.861 ± 0.034 0.893 ± 0.021 0.787 ± 0.090
Styblinski-Tang 50 0.449 ± 0.032 0.454 ± 0.061 0.434 ± 0.067 0.444 ± 0.069 0.427 ± 0.047 0.325 ± 0.067 0.263 ± 0.083 0.455 ± 0.035 0.285 ± 0.060 0.432 ± 0.047 0.167 ± 0.215 0.529 ± 0.039 0.426 ± 0.059 0.287 ± 0.094
Ackley 100 0.050 ± 0.022 0.050 ± 0.014 0.180 ± 0.075 0.039 ± 0.010 0.044 ± 0.020 0.134 ± 0.034 0.096 ± 0.042 0.066 ± 0.018 0.350 ± 0.090 0.145 ± 0.069 0.008 ± 0.004 0.052 ± 0.016 0.016 ± 0.006 0.044 ± 0.011
Emb. Hartmann 6 100 0.720 ± 0.133 0.873 ± 0.102 0.868 ± 0.083 0.732 ± 0.166 0.745 ± 0.186 0.735 ± 0.168 0.688 ± 0.251 0.825 ± 0.153 0.845 ± 0.132 0.692 ± 0.258 0.463 ± 0.194 0.845 ± 0.163 0.536 ± 0.231 0.845 ± 0.087
Levy 100 0.532 ± 0.132 0.677 ± 0.066 0.722 ± 0.111 0.633 ± 0.040 0.608 ± 0.045 0.745 ± 0.063 0.595 ± 0.152 0.676 ± 0.066 0.855 ± 0.027 0.664 ± 0.097 0.143 ± 0.051 0.691 ± 0.052 0.284 ± 0.062 0.467 ± 0.048
Powell 100 0.699 ± 0.102 0.772 ± 0.063 0.898 ± 0.050 0.701 ± 0.114 0.730 ± 0.081 0.880 ± 0.049 0.717 ± 0.144 0.833 ± 0.051 0.959 ± 0.012 0.805 ± 0.047 0.319 ± 0.137 0.835 ± 0.020 0.443 ± 0.146 0.741 ± 0.060
Rastrigin 100 0.270 ± 0.043 0.357 ± 0.062 0.351 ± 0.032 0.306 ± 0.029 0.320 ± 0.065 0.352 ± 0.035 0.271 ± 0.075 0.336 ± 0.037 0.412 ± 0.031 0.352 ± 0.059 0.054 ± 0.038 0.320 ± 0.028 0.111 ± 0.032 0.271 ± 0.041
Rosenbrock 100 0.701 ± 0.113 0.746 ± 0.058 0.883 ± 0.041 0.679 ± 0.072 0.708 ± 0.084 0.830 ± 0.074 0.668 ± 0.093 0.789 ± 0.060 0.927 ± 0.025 0.742 ± 0.052 0.218 ± 0.152 0.797 ± 0.028 0.383 ± 0.128 0.614 ± 0.046
Styblinski-Tang 100 0.402 ± 0.041 0.364 ± 0.021 0.355 ± 0.047 0.361 ± 0.052 0.347 ± 0.067 0.315 ± 0.037 0.309 ± 0.031 0.361 ± 0.047 0.330 ± 0.054 0.374 ± 0.046 0.106 ± 0.045 0.416 ± 0.045 0.163 ± 0.060 0.305 ± 0.063

Mean 0.560 0.625 0.670 0.613 0.633 0.605 0.632 0.681 0.647 0.676 0.449 0.672 0.545 0.574
Median 0.626 0.684 0.851 0.701 0.730 0.735 0.688 0.789 0.839 0.742 0.355 0.743 0.518 0.614
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Table A7: BO on noise-free synthetic test problems. The relative batch instantaneous regret of the
last, exploitative batch with q=5 is shown. Colors are normalized row-wise. Lower means better.
Results are means over ten replicate runs.

Problem d meanBEEBO maxBEEBO q-UCB q-EI TS KB GIBBON TuRBO

T ′=0.05 T ′=0.5 T ′=5.0 T ′=0.05 T ′=0.5 T ′=5.0
√
κ=0.1

√
κ=1.0

√
κ=10.0 - - - default -

Ackley 2 1.003 ± 0.296 0.916 ± 0.306 0.166 ± 0.097 0.372 ± 0.233 0.336 ± 0.149 0.229 ± 0.091 0.867 ± 0.083 0.836 ± 0.101 0.791 ± 0.130 0.838 ± 0.207 0.631 ± 0.269 0.963 ± 0.119 0.933 ± 0.080 0.622 ± 0.346
Levy 2 0.288 ± 0.220 0.238 ± 0.371 0.037 ± 0.039 0.034 ± 0.051 0.021 ± 0.021 0.027 ± 0.040 1.217 ± 0.686 0.856 ± 0.832 1.212 ± 1.060 0.626 ± 0.535 1.300 ± 2.236 0.255 ± 0.446 1.409 ± 0.605 0.219 ± 0.232
Rastrigin 2 0.951 ± 0.343 0.819 ± 0.520 0.396 ± 0.325 0.579 ± 0.320 0.480 ± 0.401 0.487 ± 0.220 1.027 ± 0.344 0.913 ± 0.151 0.988 ± 0.188 0.768 ± 0.268 0.806 ± 0.400 0.958 ± 0.329 1.293 ± 0.372 0.612 ± 0.319
Rosenbrock 2 0.009 ± 0.009 0.018 ± 0.032 0.006 ± 0.007 0.117 ± 0.347 0.003 ± 0.006 0.023 ± 0.027 6.307 ± 14.676 2.837 ± 3.999 3.306 ± 4.617 1.373 ± 2.340 0.162 ± 0.163 0.061 ± 0.119 8.714 ± 13.216 0.005 ± 0.013
Styblinski-Tang 2 0.446 ± 0.490 0.478 ± 0.463 0.354 ± 0.456 0.288 ± 0.265 0.202 ± 0.125 0.306 ± 0.389 0.974 ± 0.852 0.994 ± 0.561 0.954 ± 0.721 1.003 ± 0.785 0.987 ± 0.567 0.779 ± 0.702 1.047 ± 0.362 0.298 ± 0.195
Shekel 4 0.892 ± 0.082 0.817 ± 0.064 0.816 ± 0.077 0.902 ± 0.055 0.879 ± 0.077 0.894 ± 0.069 0.970 ± 0.020 0.938 ± 0.018 0.964 ± 0.019 0.949 ± 0.063 0.952 ± 0.051 0.958 ± 0.079 0.984 ± 0.037 0.848 ± 0.050
Hartmann 6 0.157 ± 0.179 0.089 ± 0.088 0.110 ± 0.093 0.106 ± 0.118 0.135 ± 0.154 0.297 ± 0.264 0.749 ± 0.128 0.781 ± 0.104 0.794 ± 0.161 0.634 ± 0.222 0.467 ± 0.228 0.568 ± 0.489 0.747 ± 0.277 0.175 ± 0.108
Cosine 8 0.425 ± 0.207 0.240 ± 0.079 0.117 ± 0.045 0.301 ± 0.111 0.233 ± 0.066 0.283 ± 0.040 0.719 ± 0.203 0.728 ± 0.212 0.742 ± 0.205 0.454 ± 0.261 0.562 ± 0.139 0.464 ± 0.199 0.994 ± 0.781 0.399 ± 0.120
Ackley 10 0.942 ± 0.078 0.732 ± 0.296 0.456 ± 0.162 0.879 ± 0.092 0.586 ± 0.220 0.695 ± 0.159 0.917 ± 0.052 0.711 ± 0.091 0.893 ± 0.072 0.784 ± 0.180 0.899 ± 0.113 0.672 ± 0.180 0.824 ± 0.113 0.760 ± 0.108
Levy 10 0.420 ± 0.226 0.325 ± 0.185 0.053 ± 0.045 0.273 ± 0.132 0.135 ± 0.060 0.117 ± 0.083 0.715 ± 0.489 0.985 ± 0.500 0.911 ± 0.554 0.434 ± 0.521 0.610 ± 0.269 0.337 ± 0.279 0.720 ± 0.741 0.408 ± 0.249
Powell 10 0.008 ± 0.004 0.009 ± 0.006 0.014 ± 0.013 0.012 ± 0.010 0.022 ± 0.012 0.045 ± 0.047 0.583 ± 0.519 0.748 ± 0.479 0.757 ± 0.848 0.080 ± 0.069 0.535 ± 0.308 0.135 ± 0.258 0.288 ± 0.327 0.026 ± 0.019
Rastrigin 10 0.644 ± 0.111 0.666 ± 0.171 0.583 ± 0.102 0.708 ± 0.092 0.658 ± 0.141 0.648 ± 0.049 0.838 ± 0.081 0.864 ± 0.110 0.881 ± 0.097 0.754 ± 0.105 0.941 ± 0.118 0.755 ± 0.237 0.792 ± 0.131 0.729 ± 0.095
Rosenbrock 10 0.009 ± 0.006 0.004 ± 0.003 0.003 ± 0.002 0.009 ± 0.010 0.014 ± 0.014 0.023 ± 0.021 0.525 ± 0.217 0.614 ± 0.505 0.439 ± 0.279 0.058 ± 0.053 0.451 ± 0.217 0.052 ± 0.047 0.211 ± 0.118 0.043 ± 0.030
Styblinski-Tang 10 0.319 ± 0.220 0.230 ± 0.099 0.522 ± 0.121 0.266 ± 0.117 0.304 ± 0.107 0.601 ± 0.178 0.866 ± 0.242 0.879 ± 0.268 1.208 ± 0.312 1.015 ± 0.783 0.953 ± 0.171 1.043 ± 0.977 0.724 ± 0.222 0.475 ± 0.190
Ackley 20 0.967 ± 0.033 0.946 ± 0.082 0.634 ± 0.183 0.930 ± 0.079 0.807 ± 0.185 0.834 ± 0.093 0.881 ± 0.095 0.906 ± 0.078 0.914 ± 0.046 0.820 ± 0.142 0.981 ± 0.069 0.854 ± 0.125 0.856 ± 0.115 0.965 ± 0.016
Levy 20 0.475 ± 0.205 0.377 ± 0.194 0.159 ± 0.092 0.313 ± 0.220 0.245 ± 0.067 0.200 ± 0.111 0.824 ± 0.475 0.858 ± 0.201 0.669 ± 0.316 0.341 ± 0.103 0.895 ± 0.112 0.315 ± 0.139 0.345 ± 0.131 0.588 ± 0.139
Powell 20 0.053 ± 0.029 0.043 ± 0.021 0.039 ± 0.029 0.054 ± 0.039 0.053 ± 0.031 0.075 ± 0.059 0.758 ± 0.526 1.041 ± 0.665 0.728 ± 0.337 0.058 ± 0.025 1.196 ± 0.463 0.052 ± 0.028 0.111 ± 0.028 0.294 ± 0.235
Rastrigin 20 0.781 ± 0.187 0.738 ± 0.201 0.825 ± 0.122 0.793 ± 0.163 0.726 ± 0.092 0.722 ± 0.158 0.880 ± 0.161 0.970 ± 0.097 0.878 ± 0.156 0.898 ± 0.140 1.044 ± 0.074 0.827 ± 0.142 0.774 ± 0.063 0.872 ± 0.084
Rosenbrock 20 0.037 ± 0.019 0.024 ± 0.015 0.016 ± 0.009 0.036 ± 0.017 0.031 ± 0.020 0.039 ± 0.021 0.521 ± 0.320 0.776 ± 0.334 0.402 ± 0.350 0.043 ± 0.028 0.984 ± 0.206 0.027 ± 0.014 0.446 ± 1.091 0.147 ± 0.089
Styblinski-Tang 20 0.694 ± 0.669 0.574 ± 0.508 0.424 ± 0.093 0.356 ± 0.096 0.380 ± 0.055 0.532 ± 0.090 0.866 ± 0.173 0.897 ± 0.178 0.932 ± 0.234 0.481 ± 0.071 0.990 ± 0.102 1.028 ± 1.281 0.619 ± 0.177 0.741 ± 0.128
Ackley 50 0.989 ± 0.013 0.991 ± 0.006 0.974 ± 0.018 0.989 ± 0.009 0.989 ± 0.004 0.979 ± 0.014 0.998 ± 0.004 0.998 ± 0.004 0.968 ± 0.024 0.967 ± 0.042 1.002 ± 0.004 0.984 ± 0.007 0.972 ± 0.013 0.966 ± 0.009
Levy 50 1.403 ± 1.462 1.022 ± 1.053 0.558 ± 0.117 0.583 ± 0.083 0.637 ± 0.216 0.549 ± 0.100 1.220 ± 0.283 1.253 ± 0.393 0.852 ± 0.184 0.567 ± 0.154 1.072 ± 0.144 0.499 ± 0.129 0.603 ± 0.114 0.559 ± 0.095
Powell 50 0.151 ± 0.026 0.141 ± 0.031 0.150 ± 0.038 0.194 ± 0.055 0.173 ± 0.035 0.151 ± 0.039 1.274 ± 0.495 1.198 ± 0.589 0.798 ± 0.283 0.317 ± 0.317 1.052 ± 0.184 0.126 ± 0.036 0.140 ± 0.047 0.303 ± 0.089
Rastrigin 50 0.913 ± 0.306 0.846 ± 0.139 0.871 ± 0.066 0.823 ± 0.089 0.794 ± 0.076 0.817 ± 0.051 1.039 ± 0.042 0.960 ± 0.040 0.919 ± 0.065 0.900 ± 0.085 1.008 ± 0.042 0.882 ± 0.077 0.839 ± 0.081 0.777 ± 0.061
Rosenbrock 50 0.223 ± 0.085 0.193 ± 0.077 0.236 ± 0.110 0.284 ± 0.102 0.227 ± 0.063 0.257 ± 0.069 1.167 ± 0.286 0.977 ± 0.376 0.697 ± 0.180 0.295 ± 0.197 1.074 ± 0.140 0.198 ± 0.053 0.234 ± 0.075 0.395 ± 0.076
Styblinski-Tang 50 0.499 ± 0.058 0.617 ± 0.278 0.537 ± 0.045 0.540 ± 0.046 0.570 ± 0.062 0.677 ± 0.069 1.178 ± 0.251 1.321 ± 0.360 0.917 ± 0.178 0.664 ± 0.179 0.996 ± 0.064 0.542 ± 0.069 0.726 ± 0.133 0.745 ± 0.061
Ackley 100 0.959 ± 0.016 0.965 ± 0.016 0.920 ± 0.022 0.962 ± 0.013 0.938 ± 0.012 0.915 ± 0.021 0.989 ± 0.007 0.989 ± 0.009 0.957 ± 0.016 0.938 ± 0.022 1.001 ± 0.004 0.961 ± 0.009 0.994 ± 0.005 0.972 ± 0.004
Emb. Hartmann 6 100 0.430 ± 0.214 0.371 ± 0.159 0.348 ± 0.242 0.389 ± 0.209 0.532 ± 0.173 0.362 ± 0.128 0.887 ± 0.071 0.860 ± 0.081 0.851 ± 0.044 0.474 ± 0.231 0.909 ± 0.086 0.300 ± 0.162 0.960 ± 0.084 0.390 ± 0.135
Levy 100 0.465 ± 0.100 0.397 ± 0.052 0.363 ± 0.051 0.345 ± 0.040 0.354 ± 0.087 0.301 ± 0.077 1.039 ± 0.208 0.952 ± 0.070 0.853 ± 0.024 0.362 ± 0.096 1.024 ± 0.063 0.362 ± 0.045 0.882 ± 0.094 0.588 ± 0.049
Powell 100 0.231 ± 0.064 0.233 ± 0.066 0.139 ± 0.049 0.224 ± 0.046 0.181 ± 0.036 0.099 ± 0.048 0.886 ± 0.129 1.024 ± 0.252 0.760 ± 0.107 0.516 ± 0.903 0.982 ± 0.128 0.195 ± 0.071 0.769 ± 0.070 0.306 ± 0.053
Rastrigin 100 0.709 ± 0.048 0.706 ± 0.072 0.686 ± 0.040 0.710 ± 0.095 0.679 ± 0.058 0.671 ± 0.037 0.939 ± 0.030 0.922 ± 0.030 0.924 ± 0.028 0.719 ± 0.068 1.006 ± 0.037 0.706 ± 0.057 0.943 ± 0.030 0.790 ± 0.021
Rosenbrock 100 0.323 ± 0.064 0.328 ± 0.052 0.248 ± 0.048 0.366 ± 0.084 0.316 ± 0.082 0.227 ± 0.051 0.968 ± 0.152 0.935 ± 0.113 0.830 ± 0.078 0.378 ± 0.172 1.027 ± 0.062 0.255 ± 0.055 0.818 ± 0.091 0.443 ± 0.061
Styblinski-Tang 100 0.577 ± 0.055 0.581 ± 0.060 0.607 ± 0.042 0.612 ± 0.054 0.625 ± 0.043 0.615 ± 0.045 0.987 ± 0.114 0.941 ± 0.093 0.916 ± 0.051 0.649 ± 0.058 1.000 ± 0.050 0.592 ± 0.050 0.912 ± 0.091 0.704 ± 0.060

Mean 0.527 0.475 0.375 0.435 0.402 0.415 1.075 0.987 0.927 0.611 0.894 0.536 0.989 0.520
Median 0.465 0.397 0.354 0.356 0.336 0.306 0.917 0.939 0.881 0.634 0.984 0.542 0.818 0.559

Table A8: BO on noise-free synthetic test problems. The relative batch instantaneous regret of the
last, exploitative batch with q=10 is shown. Colors are normalized row-wise. Lower means better.
Results are means over ten replicate runs.

Problem d meanBEEBO maxBEEBO q-UCB q-EI TS KB GIBBON TuRBO

T ′=0.05 T ′=0.5 T ′=5.0 T ′=0.05 T ′=0.5 T ′=5.0
√
κ=0.1

√
κ=1.0

√
κ=10.0 - - - default -

Ackley 2 0.935 ± 0.250 0.582 ± 0.306 0.213 ± 0.092 0.333 ± 0.167 0.221 ± 0.113 0.181 ± 0.081 0.907 ± 0.036 0.887 ± 0.061 0.885 ± 0.053 0.749 ± 0.093 0.622 ± 0.333 0.846 ± 0.240 0.958 ± 0.029 0.530 ± 0.402
Levy 2 0.157 ± 0.099 0.060 ± 0.075 0.063 ± 0.052 0.033 ± 0.027 0.087 ± 0.039 0.077 ± 0.067 1.166 ± 0.735 1.137 ± 1.309 1.049 ± 0.691 0.638 ± 0.350 0.407 ± 0.453 0.073 ± 0.113 1.996 ± 1.164 0.138 ± 0.148
Rastrigin 2 0.631 ± 0.269 0.676 ± 0.294 0.404 ± 0.209 0.566 ± 0.189 0.482 ± 0.399 0.662 ± 0.296 0.994 ± 0.255 0.927 ± 0.213 1.016 ± 0.234 0.608 ± 0.109 0.831 ± 0.427 0.708 ± 0.121 1.217 ± 0.214 0.292 ± 0.299
Rosenbrock 2 0.002 ± 0.002 0.002 ± 0.004 0.005 ± 0.004 0.003 ± 0.003 0.002 ± 0.002 0.007 ± 0.012 1.054 ± 0.835 1.335 ± 1.611 2.055 ± 4.821 0.471 ± 0.644 0.116 ± 0.228 0.009 ± 0.011 2.095 ± 3.809 0.001 ± 0.001
Styblinski-Tang 2 0.233 ± 0.080 0.124 ± 0.071 0.371 ± 0.396 0.190 ± 0.181 0.290 ± 0.353 0.234 ± 0.259 1.129 ± 0.298 1.104 ± 0.304 0.861 ± 0.295 0.930 ± 0.436 0.359 ± 0.312 0.294 ± 0.400 1.273 ± 0.469 0.261 ± 0.105
Shekel 4 0.825 ± 0.067 0.827 ± 0.039 0.783 ± 0.095 0.862 ± 0.050 0.827 ± 0.078 0.871 ± 0.039 0.983 ± 0.014 0.965 ± 0.015 0.978 ± 0.012 0.936 ± 0.031 0.968 ± 0.034 1.007 ± 0.013 0.990 ± 0.012 0.720 ± 0.138
Hartmann 6 0.189 ± 0.110 0.118 ± 0.070 0.106 ± 0.096 0.059 ± 0.080 0.061 ± 0.064 0.126 ± 0.098 0.861 ± 0.097 0.853 ± 0.079 0.775 ± 0.092 0.834 ± 0.169 0.347 ± 0.157 0.748 ± 0.293 0.876 ± 0.085 0.039 ± 0.027
Cosine 8 0.217 ± 0.084 0.159 ± 0.100 0.167 ± 0.073 0.213 ± 0.066 0.188 ± 0.064 0.270 ± 0.092 0.831 ± 0.118 0.917 ± 0.166 0.797 ± 0.215 1.055 ± 0.570 0.570 ± 0.194 0.793 ± 0.604 1.003 ± 0.159 0.200 ± 0.067
Ackley 10 0.866 ± 0.093 0.548 ± 0.223 0.277 ± 0.090 0.734 ± 0.162 0.531 ± 0.226 0.707 ± 0.123 0.833 ± 0.061 0.842 ± 0.063 0.924 ± 0.044 0.891 ± 0.102 0.859 ± 0.026 0.965 ± 0.095 0.972 ± 0.018 0.445 ± 0.082
Levy 10 0.196 ± 0.167 0.143 ± 0.123 0.024 ± 0.010 0.123 ± 0.098 0.086 ± 0.055 0.118 ± 0.064 0.936 ± 0.297 0.845 ± 0.284 0.866 ± 0.284 0.504 ± 0.386 0.591 ± 0.168 0.305 ± 0.230 0.747 ± 0.286 0.139 ± 0.060
Powell 10 0.012 ± 0.016 0.017 ± 0.015 0.018 ± 0.017 0.027 ± 0.026 0.032 ± 0.017 0.056 ± 0.033 0.885 ± 0.507 0.948 ± 0.604 0.985 ± 0.461 0.213 ± 0.204 0.682 ± 0.268 0.322 ± 0.709 0.442 ± 0.327 0.009 ± 0.007
Rastrigin 10 0.773 ± 0.187 0.775 ± 0.116 0.615 ± 0.122 0.714 ± 0.177 0.593 ± 0.117 0.598 ± 0.169 0.869 ± 0.097 0.909 ± 0.084 0.856 ± 0.128 0.719 ± 0.042 0.828 ± 0.090 0.738 ± 0.149 0.791 ± 0.067 0.423 ± 0.073
Rosenbrock 10 0.008 ± 0.008 0.006 ± 0.005 0.004 ± 0.002 0.011 ± 0.008 0.013 ± 0.007 0.034 ± 0.017 0.550 ± 0.287 0.684 ± 0.259 0.744 ± 0.178 0.155 ± 0.115 0.303 ± 0.136 0.087 ± 0.072 0.633 ± 0.537 0.005 ± 0.006
Styblinski-Tang 10 0.276 ± 0.155 0.389 ± 0.329 0.523 ± 0.135 0.257 ± 0.086 0.419 ± 0.077 0.545 ± 0.070 1.036 ± 0.164 1.079 ± 0.255 1.074 ± 0.198 1.060 ± 0.498 0.907 ± 0.125 1.064 ± 0.761 0.926 ± 0.186 0.256 ± 0.084
Ackley 20 0.957 ± 0.040 0.858 ± 0.204 0.392 ± 0.146 0.923 ± 0.048 0.674 ± 0.233 0.757 ± 0.071 0.850 ± 0.045 0.822 ± 0.088 0.899 ± 0.044 0.778 ± 0.141 0.984 ± 0.034 0.492 ± 0.078 0.978 ± 0.012 0.871 ± 0.062
Levy 20 0.232 ± 0.066 0.685 ± 0.872 0.065 ± 0.033 0.262 ± 0.209 0.099 ± 0.039 0.135 ± 0.034 0.683 ± 0.291 0.970 ± 0.274 0.794 ± 0.390 0.348 ± 0.134 0.950 ± 0.119 0.425 ± 0.183 0.431 ± 0.394 0.327 ± 0.102
Powell 20 0.078 ± 0.144 0.025 ± 0.017 0.029 ± 0.022 0.038 ± 0.027 0.030 ± 0.012 0.036 ± 0.011 0.568 ± 0.241 0.748 ± 0.472 0.603 ± 0.397 0.082 ± 0.039 0.937 ± 0.209 0.035 ± 0.014 0.126 ± 0.054 0.098 ± 0.057
Rastrigin 20 0.739 ± 0.102 0.730 ± 0.076 0.707 ± 0.074 0.732 ± 0.101 0.660 ± 0.102 0.660 ± 0.099 0.843 ± 0.119 0.865 ± 0.055 0.824 ± 0.059 0.712 ± 0.035 0.999 ± 0.053 0.747 ± 0.093 0.724 ± 0.061 0.783 ± 0.081
Rosenbrock 20 0.019 ± 0.007 0.013 ± 0.008 0.004 ± 0.002 0.018 ± 0.009 0.011 ± 0.005 0.031 ± 0.030 0.461 ± 0.335 0.784 ± 0.288 0.410 ± 0.200 0.036 ± 0.008 0.788 ± 0.119 0.018 ± 0.007 0.095 ± 0.039 0.074 ± 0.045
Styblinski-Tang 20 0.268 ± 0.074 0.288 ± 0.069 0.445 ± 0.058 0.311 ± 0.082 0.410 ± 0.117 0.679 ± 0.152 1.104 ± 0.212 1.104 ± 0.216 1.080 ± 0.296 0.628 ± 0.224 0.985 ± 0.078 0.852 ± 1.063 0.859 ± 0.657 0.523 ± 0.131
Ackley 50 0.981 ± 0.018 0.990 ± 0.005 0.960 ± 0.034 0.988 ± 0.015 0.987 ± 0.009 0.961 ± 0.011 0.960 ± 0.046 0.994 ± 0.007 0.862 ± 0.058 0.893 ± 0.085 1.001 ± 0.005 0.982 ± 0.005 0.934 ± 0.064 0.949 ± 0.010
Levy 50 0.464 ± 0.115 0.965 ± 1.096 0.445 ± 0.107 0.482 ± 0.119 0.489 ± 0.120 0.417 ± 0.127 1.023 ± 0.305 1.373 ± 0.357 0.611 ± 0.174 0.516 ± 0.309 1.032 ± 0.194 1.034 ± 1.514 0.554 ± 0.194 0.487 ± 0.055
Powell 50 0.127 ± 0.030 0.109 ± 0.018 0.076 ± 0.032 0.147 ± 0.031 0.113 ± 0.037 0.177 ± 0.076 1.177 ± 0.598 1.302 ± 0.455 0.522 ± 0.332 0.269 ± 0.418 0.972 ± 0.192 0.082 ± 0.031 0.398 ± 0.913 0.218 ± 0.062
Rastrigin 50 0.889 ± 0.124 0.858 ± 0.050 0.764 ± 0.111 0.804 ± 0.065 0.789 ± 0.045 0.776 ± 0.085 0.943 ± 0.093 0.940 ± 0.037 0.829 ± 0.063 0.826 ± 0.133 0.997 ± 0.046 1.000 ± 0.323 0.832 ± 0.041 0.696 ± 0.035
Rosenbrock 50 0.131 ± 0.030 0.123 ± 0.054 0.075 ± 0.035 0.197 ± 0.043 0.159 ± 0.073 0.249 ± 0.103 0.784 ± 0.390 1.066 ± 0.234 0.417 ± 0.180 0.107 ± 0.023 1.039 ± 0.137 0.117 ± 0.042 0.135 ± 0.056 0.285 ± 0.085
Styblinski-Tang 50 0.450 ± 0.039 0.500 ± 0.148 0.534 ± 0.238 0.467 ± 0.089 0.487 ± 0.068 0.593 ± 0.053 1.050 ± 0.210 1.313 ± 0.213 0.797 ± 0.117 0.520 ± 0.073 0.990 ± 0.055 0.633 ± 0.631 0.804 ± 0.821 0.697 ± 0.068
Ackley 100 0.950 ± 0.023 0.948 ± 0.016 0.815 ± 0.075 0.961 ± 0.010 0.954 ± 0.019 0.861 ± 0.033 0.968 ± 0.022 0.992 ± 0.010 0.914 ± 0.056 0.905 ± 0.057 0.999 ± 0.002 0.949 ± 0.015 0.992 ± 0.002 0.959 ± 0.007
Emb. Hartmann 6 100 0.265 ± 0.179 0.118 ± 0.092 0.107 ± 0.085 0.220 ± 0.151 0.199 ± 0.155 0.208 ± 0.125 0.784 ± 0.109 0.815 ± 0.127 0.756 ± 0.133 0.543 ± 0.163 0.870 ± 0.048 0.157 ± 0.175 0.941 ± 0.065 0.301 ± 0.120
Levy 100 0.402 ± 0.108 0.291 ± 0.069 0.242 ± 0.083 0.328 ± 0.058 0.351 ± 0.077 0.247 ± 0.053 1.017 ± 0.196 1.154 ± 0.164 0.976 ± 0.179 0.442 ± 0.386 0.999 ± 0.040 0.318 ± 0.120 0.821 ± 0.054 0.515 ± 0.037
Powell 100 0.189 ± 0.063 0.141 ± 0.031 0.066 ± 0.024 0.190 ± 0.067 0.166 ± 0.047 0.083 ± 0.027 0.865 ± 0.237 1.232 ± 0.274 0.861 ± 0.315 0.141 ± 0.029 0.916 ± 0.092 0.112 ± 0.020 0.727 ± 0.063 0.226 ± 0.039
Rastrigin 100 0.726 ± 0.068 0.702 ± 0.077 0.628 ± 0.042 0.709 ± 0.084 0.666 ± 0.085 0.636 ± 0.046 0.946 ± 0.057 0.946 ± 0.051 0.806 ± 0.090 0.788 ± 0.119 1.002 ± 0.027 0.730 ± 0.058 0.927 ± 0.024 0.715 ± 0.037
Rosenbrock 100 0.227 ± 0.076 0.200 ± 0.059 0.093 ± 0.040 0.255 ± 0.080 0.229 ± 0.080 0.153 ± 0.080 0.880 ± 0.167 1.060 ± 0.106 0.823 ± 0.223 0.225 ± 0.047 0.988 ± 0.070 0.164 ± 0.016 0.766 ± 0.057 0.366 ± 0.047
Styblinski-Tang 100 0.527 ± 0.052 0.568 ± 0.036 0.598 ± 0.054 0.566 ± 0.044 0.581 ± 0.036 0.625 ± 0.029 1.051 ± 0.145 1.267 ± 0.286 0.965 ± 0.017 0.667 ± 0.271 0.987 ± 0.039 0.522 ± 0.020 0.898 ± 0.033 0.677 ± 0.041

Mean 0.422 0.410 0.322 0.386 0.360 0.387 0.909 1.005 0.867 0.581 0.813 0.525 0.844 0.401
Median 0.268 0.291 0.242 0.262 0.290 0.249 0.936 0.965 0.861 0.628 0.937 0.522 0.859 0.327
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D.3 Control problems

Figure A2: Experiments on the 14D robot arm pushing and 60D rover trajectory planning control
problems. 10 replicates each. GIBBON (s) refers to the scaled larged-batch variant of GIBBON.

D.4 Run time

Figure A3: Example run times for the 10-round BO experiment on the 6D Hartmann problem with
Q=100. Error bars are over 5 replicate runs. Run times vary depending on the test problem, with
GIBBON appearing especially sensitive, becoming e.g. 10x slower on the 50D Ackley problem.

28



Table A9: Total run times for five replicates of the experiments presented in Table A1. We sum over
all test problems.

Method Configuration Total time [h]

meanBEEBO T ′ = 0.05 66.12
meanBEEBO T ′ = 0.5 47.08
meanBEEBO T ′ = 5.0 37.13
maxBEEBO T ′ = 0.05 54.85
maxBEEBO T ′ = 0.5 44.20
maxBEEBO T ′ = 5.0 47.63
q-UCB

√
κ = 0.1 3.33

q-UCB
√
κ = 1.0 3.70

q-UCB
√
κ = 10.0 4.41

q-EI - 24.33
TS - 6.56
KB - 223.78
GIBBON default 3380.48
GIBBON scaled 1055.93

D.5 Results with random initialization in round 0

Table A10: BO with random initialization on noise-free synthetic test problems. The normalized
highest observed value after 10 rounds of BO with q=100 is shown. Colors are normalized row-wise.
Higher means better. Results are means over five replicate runs.

Problem d meanBEEBO maxBEEBO q-UCB q-EI TS KB TuRBO

T ′=0.05 T ′=0.5 T ′=5.0 T ′=0.05 T ′=0.5 T ′=5.0
√
κ=0.1

√
κ=1.0

√
κ=10.0 - - - -

Ackley 2 0.994 ± 0.011 0.971 ± 0.041 0.988 ± 0.006 0.985 ± 0.012 0.977 ± 0.029 0.912 ± 0.069 0.793 ± 0.255 0.904 ± 0.059 0.968 ± 0.019 0.957 ± 0.056 1.000 ± 0.000 0.928 ± 0.076 0.972 ± 0.027
Levy 2 0.995 ± 0.008 0.997 ± 0.002 0.995 ± 0.005 0.997 ± 0.002 0.998 ± 0.002 0.966 ± 0.044 0.983 ± 0.023 0.985 ± 0.010 0.954 ± 0.047 0.994 ± 0.004 0.993 ± 0.004 0.997 ± 0.003 0.992 ± 0.017
Rastrigin 2 0.838 ± 0.190 0.674 ± 0.433 0.836 ± 0.138 0.784 ± 0.350 0.756 ± 0.356 0.847 ± 0.199 0.540 ± 0.359 0.675 ± 0.250 0.296 ± 0.255 0.873 ± 0.173 0.800 ± 0.447 0.691 ± 0.299 0.902 ± 0.220
Rosenbrock 2 0.893 ± 0.080 0.900 ± 0.103 0.605 ± 0.395 0.525 ± 0.496 0.705 ± 0.413 0.242 ± 0.306 0.678 ± 0.394 0.475 ± 0.452 0.469 ± 0.485 0.728 ± 0.304 0.888 ± 0.249 0.753 ± 0.423 0.875 ± 0.266
Styblinski-Tang 2 1.000 ± 0.001 1.000 ± 0.000 1.000 ± 0.000 0.998 ± 0.002 0.999 ± 0.002 0.999 ± 0.002 0.998 ± 0.001 0.999 ± 0.002 0.993 ± 0.008 0.999 ± 0.001 0.998 ± 0.002 1.000 ± 0.000 1.000 ± 0.000
Shekel 4 0.839 ± 0.311 0.829 ± 0.360 0.706 ± 0.326 0.390 ± 0.353 0.476 ± 0.274 0.388 ± 0.316 0.183 ± 0.068 0.376 ± 0.308 0.266 ± 0.073 0.530 ± 0.350 0.087 ± 0.060 0.178 ± 0.071 0.824 ± 0.247
Hartmann 6 1.000 ± 0.000 1.000 ± 0.000 0.984 ± 0.016 0.955 ± 0.063 0.989 ± 0.024 0.992 ± 0.010 0.960 ± 0.052 0.998 ± 0.002 0.919 ± 0.057 0.991 ± 0.020 0.715 ± 0.150 0.998 ± 0.001 0.965 ± 0.045
Cosine 8 1.000 ± 0.000 0.997 ± 0.002 0.377 ± 0.144 0.999 ± 0.000 0.968 ± 0.023 0.871 ± 0.057 0.906 ± 0.079 0.903 ± 0.050 0.390 ± 0.242 0.787 ± 0.118 1.000 ± 0.000 0.987 ± 0.009 0.912 ± 0.066
Ackley 10 0.935 ± 0.026 0.904 ± 0.039 0.820 ± 0.037 0.816 ± 0.037 0.742 ± 0.052 0.507 ± 0.137 0.790 ± 0.015 0.776 ± 0.038 0.561 ± 0.170 0.782 ± 0.036 1.000 ± 0.000 0.789 ± 0.023 0.784 ± 0.026
Levy 10 0.981 ± 0.013 0.957 ± 0.028 0.930 ± 0.034 0.956 ± 0.026 0.926 ± 0.024 0.919 ± 0.022 0.866 ± 0.036 0.839 ± 0.068 0.813 ± 0.126 0.920 ± 0.064 0.942 ± 0.026 0.949 ± 0.041 0.941 ± 0.072
Powell 10 0.971 ± 0.029 0.953 ± 0.030 0.672 ± 0.387 0.923 ± 0.109 0.900 ± 0.103 0.702 ± 0.398 0.886 ± 0.061 0.822 ± 0.161 0.219 ± 0.302 0.851 ± 0.191 0.833 ± 0.169 0.939 ± 0.058 0.985 ± 0.008
Rastrigin 10 0.465 ± 0.144 0.495 ± 0.180 0.570 ± 0.091 0.526 ± 0.087 0.516 ± 0.140 0.642 ± 0.083 0.394 ± 0.143 0.564 ± 0.152 0.193 ± 0.172 0.441 ± 0.065 1.000 ± 0.000 0.394 ± 0.088 0.672 ± 0.165
Rosenbrock 10 0.992 ± 0.006 0.990 ± 0.002 0.865 ± 0.068 0.990 ± 0.003 0.986 ± 0.007 0.966 ± 0.037 0.965 ± 0.043 0.952 ± 0.019 0.220 ± 0.373 0.975 ± 0.017 0.820 ± 0.029 0.992 ± 0.003 0.993 ± 0.004
Styblinski-Tang 10 0.815 ± 0.051 0.814 ± 0.062 0.245 ± 0.050 0.784 ± 0.025 0.643 ± 0.124 0.217 ± 0.157 0.165 ± 0.115 0.584 ± 0.177 0.028 ± 0.062 0.619 ± 0.093 0.399 ± 0.163 0.827 ± 0.066 0.654 ± 0.085
Robot Pushing 14 0.350 ± 0.121 0.377 ± 0.124 0.560 ± 0.172 0.425 ± 0.107 0.310 ± 0.140 0.395 ± 0.131 0.424 ± 0.154 0.522 ± 0.170 0.379 ± 0.093 0.417 ± 0.160 0.247 ± 0.118 0.694 ± 0.255 0.518 ± 0.149
Ackley 20 0.843 ± 0.016 0.857 ± 0.028 0.789 ± 0.048 0.819 ± 0.030 0.788 ± 0.040 0.390 ± 0.106 0.706 ± 0.063 0.775 ± 0.039 0.460 ± 0.052 0.740 ± 0.054 1.000 ± 0.000 0.763 ± 0.048 0.438 ± 0.103
Levy 20 0.936 ± 0.035 0.939 ± 0.019 0.896 ± 0.044 0.953 ± 0.027 0.901 ± 0.046 0.911 ± 0.038 0.928 ± 0.016 0.929 ± 0.029 0.768 ± 0.048 0.921 ± 0.024 0.979 ± 0.003 0.956 ± 0.013 0.925 ± 0.041
Powell 20 0.947 ± 0.036 0.966 ± 0.013 0.840 ± 0.111 0.936 ± 0.019 0.880 ± 0.100 0.908 ± 0.076 0.946 ± 0.007 0.928 ± 0.050 0.819 ± 0.122 0.926 ± 0.047 0.964 ± 0.014 0.969 ± 0.016 0.957 ± 0.036
Rastrigin 20 0.373 ± 0.042 0.462 ± 0.049 0.518 ± 0.054 0.514 ± 0.059 0.480 ± 0.077 0.491 ± 0.087 0.450 ± 0.115 0.463 ± 0.069 0.383 ± 0.094 0.451 ± 0.053 1.000 ± 0.000 0.481 ± 0.068 0.523 ± 0.064
Rosenbrock 20 0.992 ± 0.004 0.993 ± 0.004 0.920 ± 0.041 0.991 ± 0.005 0.982 ± 0.013 0.923 ± 0.054 0.967 ± 0.018 0.984 ± 0.005 0.915 ± 0.044 0.984 ± 0.007 0.939 ± 0.020 0.994 ± 0.003 0.993 ± 0.002
Styblinski-Tang 20 0.706 ± 0.061 0.669 ± 0.113 0.305 ± 0.198 0.607 ± 0.086 0.417 ± 0.122 0.279 ± 0.077 0.204 ± 0.130 0.524 ± 0.184 0.054 ± 0.074 0.639 ± 0.082 0.271 ± 0.262 0.665 ± 0.129 0.604 ± 0.088
Ackley 50 0.221 ± 0.293 0.146 ± 0.116 0.842 ± 0.010 0.622 ± 0.243 0.705 ± 0.042 0.457 ± 0.098 0.627 ± 0.053 0.739 ± 0.034 0.736 ± 0.020 0.727 ± 0.051 1.000 ± 0.000 0.683 ± 0.122 0.175 ± 0.022
Levy 50 0.976 ± 0.010 0.978 ± 0.012 0.943 ± 0.021 0.977 ± 0.012 0.955 ± 0.018 0.867 ± 0.013 0.952 ± 0.016 0.966 ± 0.025 0.933 ± 0.007 0.943 ± 0.017 0.987 ± 0.002 0.926 ± 0.041 0.793 ± 0.054
Powell 50 0.940 ± 0.036 0.978 ± 0.010 0.959 ± 0.025 0.976 ± 0.009 0.970 ± 0.014 0.929 ± 0.024 0.965 ± 0.014 0.958 ± 0.016 0.978 ± 0.007 0.964 ± 0.013 0.985 ± 0.004 0.957 ± 0.022 0.920 ± 0.039
Rastrigin 50 0.273 ± 0.156 0.505 ± 0.031 0.453 ± 0.040 0.473 ± 0.042 0.466 ± 0.016 0.445 ± 0.027 0.466 ± 0.073 0.418 ± 0.023 0.503 ± 0.047 0.468 ± 0.012 1.000 ± 0.000 0.423 ± 0.085 0.459 ± 0.070
Rosenbrock 50 0.976 ± 0.012 0.985 ± 0.003 0.988 ± 0.005 0.978 ± 0.011 0.981 ± 0.005 0.968 ± 0.016 0.974 ± 0.004 0.987 ± 0.003 0.984 ± 0.013 0.981 ± 0.003 0.979 ± 0.003 0.987 ± 0.003 0.968 ± 0.018
Styblinski-Tang 50 0.605 ± 0.067 0.693 ± 0.038 0.417 ± 0.163 0.536 ± 0.072 0.415 ± 0.055 0.332 ± 0.037 0.341 ± 0.082 0.716 ± 0.031 0.371 ± 0.040 0.690 ± 0.069 0.254 ± 0.220 0.720 ± 0.041 0.499 ± 0.073
Rover trajectory 60 0.448 ± 0.209 0.678 ± 0.029 0.708 ± 0.060 0.533 ± 0.066 0.657 ± 0.104 0.629 ± 0.040 0.626 ± 0.076 0.613 ± 0.070 0.665 ± 0.079 0.635 ± 0.074 0.265 ± 0.069 0.616 ± 0.043 0.764 ± 0.074
Ackley 100 0.310 ± 0.408 0.347 ± 0.452 0.864 ± 0.023 0.526 ± 0.335 0.536 ± 0.293 0.707 ± 0.086 0.696 ± 0.015 0.721 ± 0.080 0.850 ± 0.007 0.747 ± 0.071 0.007 ± 0.005 0.289 ± 0.081 0.110 ± 0.014
Emb. Hartmann 6 100 0.980 ± 0.009 0.988 ± 0.008 0.916 ± 0.101 0.982 ± 0.016 0.933 ± 0.057 0.914 ± 0.051 0.941 ± 0.035 0.915 ± 0.038 0.913 ± 0.116 0.922 ± 0.110 0.554 ± 0.315 0.949 ± 0.065 0.931 ± 0.084
Levy 100 0.890 ± 0.150 0.966 ± 0.024 0.943 ± 0.019 0.962 ± 0.012 0.942 ± 0.017 0.946 ± 0.013 0.952 ± 0.005 0.937 ± 0.029 0.964 ± 0.014 0.943 ± 0.030 0.310 ± 0.382 0.908 ± 0.056 0.692 ± 0.013
Powell 100 0.786 ± 0.051 0.929 ± 0.099 0.985 ± 0.004 0.985 ± 0.002 0.981 ± 0.009 0.981 ± 0.003 0.983 ± 0.004 0.978 ± 0.013 0.983 ± 0.008 0.963 ± 0.018 0.288 ± 0.165 0.967 ± 0.021 0.860 ± 0.027
Rastrigin 100 0.522 ± 0.027 0.367 ± 0.194 0.467 ± 0.027 0.481 ± 0.057 0.479 ± 0.007 0.469 ± 0.037 0.442 ± 0.021 0.442 ± 0.047 0.432 ± 0.020 0.493 ± 0.014 0.238 ± 0.426 0.674 ± 0.126 0.394 ± 0.022
Rosenbrock 100 0.810 ± 0.029 0.972 ± 0.012 0.976 ± 0.008 0.928 ± 0.119 0.978 ± 0.006 0.975 ± 0.008 0.977 ± 0.008 0.968 ± 0.012 0.985 ± 0.008 0.974 ± 0.003 0.270 ± 0.406 0.943 ± 0.058 0.857 ± 0.010
Styblinski-Tang 100 0.564 ± 0.034 0.470 ± 0.152 0.396 ± 0.079 0.432 ± 0.043 0.331 ± 0.061 0.309 ± 0.022 0.321 ± 0.027 0.542 ± 0.130 0.280 ± 0.017 0.591 ± 0.023 0.198 ± 0.273 0.593 ± 0.063 0.412 ± 0.034

Mean 0.776 0.793 0.751 0.779 0.762 0.697 0.714 0.768 0.618 0.788 0.692 0.788 0.750
Median 0.890 0.929 0.840 0.923 0.880 0.847 0.793 0.822 0.665 0.851 0.888 0.908 0.857
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Table A11: BO with random initialization on noise-free synthetic test problems. The relative batch
instantaneous regret of the last, exploitative batch is shown. Colors are normalized row-wise. Lower
means better. Results are means over five replicate runs.

Problem d meanBEEBO maxBEEBO q-UCB q-EI TS KB TuRBO

T ′=0.05 T ′=0.5 T ′=5.0 T ′=0.05 T ′=0.5 T ′=5.0
√
κ=0.1

√
κ=1.0

√
κ=10.0 - - - -

Ackley 2 0.268 ± 0.132 0.189 ± 0.049 0.334 ± 0.082 0.259 ± 0.187 0.221 ± 0.145 0.299 ± 0.151 1.011 ± 0.027 0.993 ± 0.030 0.994 ± 0.018 0.806 ± 0.209 0.624 ± 0.361 0.749 ± 0.266 0.145 ± 0.101
Levy 2 0.153 ± 0.024 0.130 ± 0.055 0.066 ± 0.059 0.111 ± 0.010 0.091 ± 0.034 0.109 ± 0.009 1.260 ± 0.454 1.195 ± 0.283 1.256 ± 0.263 1.219 ± 0.204 0.280 ± 0.401 0.088 ± 0.100 0.000 ± 0.000
Rastrigin 2 0.427 ± 0.019 0.600 ± 0.381 0.523 ± 0.228 0.306 ± 0.210 0.543 ± 0.073 0.491 ± 0.053 1.009 ± 0.061 0.991 ± 0.104 1.047 ± 0.058 0.808 ± 0.060 0.728 ± 0.196 0.851 ± 0.103 0.031 ± 0.063
Rosenbrock 2 0.001 ± 0.000 0.001 ± 0.000 0.002 ± 0.001 0.003 ± 0.002 0.002 ± 0.000 0.003 ± 0.003 0.895 ± 0.134 0.898 ± 0.131 0.917 ± 0.264 1.101 ± 0.303 0.002 ± 0.001 0.003 ± 0.004 0.000 ± 0.000
Styblinski-Tang 2 0.173 ± 0.007 0.170 ± 0.009 0.170 ± 0.008 0.169 ± 0.007 0.171 ± 0.008 0.170 ± 0.008 1.118 ± 0.087 1.046 ± 0.080 1.047 ± 0.097 0.751 ± 0.154 0.471 ± 0.591 0.169 ± 0.320 0.000 ± 0.000
Shekel 4 0.790 ± 0.049 0.635 ± 0.094 0.707 ± 0.047 0.757 ± 0.097 0.644 ± 0.229 0.727 ± 0.096 0.992 ± 0.006 0.989 ± 0.006 0.992 ± 0.004 0.959 ± 0.041 0.945 ± 0.033 1.001 ± 0.011 0.387 ± 0.223
Hartmann 6 0.052 ± 0.017 0.087 ± 0.030 0.096 ± 0.012 0.189 ± 0.119 0.085 ± 0.029 0.065 ± 0.029 0.959 ± 0.075 0.971 ± 0.017 0.851 ± 0.087 0.863 ± 0.067 0.356 ± 0.006 0.288 ± 0.171 0.028 ± 0.031
Cosine 8 0.060 ± 0.119 0.004 ± 0.006 0.304 ± 0.037 0.000 ± 0.000 0.015 ± 0.010 0.062 ± 0.033 0.987 ± 0.097 0.971 ± 0.071 0.966 ± 0.068 1.111 ± 0.214 0.436 ± 0.018 1.217 ± 0.099 0.080 ± 0.053
Ackley 10 0.447 ± 0.082 0.329 ± 0.074 0.250 ± 0.035 0.324 ± 0.037 0.321 ± 0.047 0.485 ± 0.075 0.936 ± 0.025 0.930 ± 0.021 0.949 ± 0.020 0.937 ± 0.038 0.983 ± 0.015 0.903 ± 0.260 0.299 ± 0.004
Levy 10 0.079 ± 0.068 0.025 ± 0.018 0.296 ± 0.067 0.037 ± 0.031 0.048 ± 0.032 0.093 ± 0.078 1.324 ± 0.110 0.979 ± 0.112 1.088 ± 0.175 0.737 ± 0.322 0.595 ± 0.100 0.552 ± 0.407 0.024 ± 0.011
Powell 10 0.019 ± 0.028 0.009 ± 0.001 0.051 ± 0.004 0.026 ± 0.012 0.052 ± 0.008 0.156 ± 0.056 1.045 ± 0.237 0.926 ± 0.175 1.248 ± 0.273 0.262 ± 0.173 0.144 ± 0.029 0.046 ± 0.038 0.003 ± 0.003
Rastrigin 10 0.625 ± 0.076 0.550 ± 0.082 0.599 ± 0.129 0.533 ± 0.133 0.524 ± 0.119 0.420 ± 0.151 0.911 ± 0.017 0.930 ± 0.018 0.921 ± 0.016 0.961 ± 0.070 0.763 ± 0.108 0.926 ± 0.100 0.355 ± 0.163
Rosenbrock 10 0.003 ± 0.002 0.004 ± 0.002 0.083 ± 0.008 0.016 ± 0.011 0.010 ± 0.005 0.065 ± 0.014 0.895 ± 0.170 0.803 ± 0.115 0.962 ± 0.127 0.044 ± 0.014 0.085 ± 0.011 0.004 ± 0.001 0.001 ± 0.000
Styblinski-Tang 10 0.200 ± 0.023 0.225 ± 0.042 0.571 ± 0.053 0.228 ± 0.028 0.333 ± 0.018 0.487 ± 0.068 1.236 ± 0.149 1.216 ± 0.053 1.184 ± 0.027 1.173 ± 0.326 0.815 ± 0.044 0.676 ± 0.113 0.170 ± 0.049
Robot Pushing 14 0.800 ± 0.177 0.797 ± 0.081 0.879 ± 0.082 0.970 ± 0.057 0.972 ± 0.057 0.986 ± 0.058 0.970 ± 0.026 0.795 ± 0.123 0.984 ± 0.031 0.892 ± 0.103 0.949 ± 0.043 0.673 ± 0.077 0.506 ± 0.070
Ackley 20 0.668 ± 0.127 0.261 ± 0.133 0.211 ± 0.050 0.219 ± 0.030 0.309 ± 0.078 0.607 ± 0.090 0.924 ± 0.019 0.931 ± 0.016 0.910 ± 0.007 0.959 ± 0.085 0.980 ± 0.002 0.912 ± 0.221 0.636 ± 0.111
Levy 20 0.078 ± 0.032 0.078 ± 0.078 0.117 ± 0.092 0.186 ± 0.157 0.114 ± 0.060 0.207 ± 0.052 0.924 ± 0.108 0.859 ± 0.093 1.151 ± 0.105 0.473 ± 0.078 0.743 ± 0.042 0.219 ± 0.086 0.093 ± 0.045
Powell 20 0.097 ± 0.068 0.006 ± 0.002 0.035 ± 0.023 0.082 ± 0.020 0.077 ± 0.008 0.118 ± 0.030 0.757 ± 0.147 0.690 ± 0.195 0.842 ± 0.134 0.086 ± 0.040 0.446 ± 0.142 0.020 ± 0.007 0.011 ± 0.006
Rastrigin 20 0.713 ± 0.083 0.614 ± 0.063 0.506 ± 0.090 0.618 ± 0.049 0.644 ± 0.077 0.562 ± 0.006 0.860 ± 0.048 0.833 ± 0.015 0.850 ± 0.022 0.923 ± 0.228 0.864 ± 0.018 0.725 ± 0.020 0.476 ± 0.102
Rosenbrock 20 0.038 ± 0.039 0.004 ± 0.002 0.029 ± 0.019 0.117 ± 0.064 0.055 ± 0.054 0.050 ± 0.016 0.645 ± 0.113 0.587 ± 0.109 0.978 ± 0.124 0.065 ± 0.022 0.394 ± 0.125 0.008 ± 0.004 0.005 ± 0.001
Styblinski-Tang 20 0.405 ± 0.163 0.357 ± 0.111 0.730 ± 0.069 0.396 ± 0.047 0.529 ± 0.030 0.560 ± 0.038 1.161 ± 0.102 1.093 ± 0.077 1.167 ± 0.034 1.193 ± 0.399 0.903 ± 0.037 0.723 ± 0.090 0.257 ± 0.059
Ackley 50 0.897 ± 0.052 0.859 ± 0.128 0.159 ± 0.010 0.402 ± 0.248 0.465 ± 0.246 0.538 ± 0.098 0.932 ± 0.036 0.957 ± 0.024 0.849 ± 0.024 0.863 ± 0.032 0.986 ± 0.001 0.360 ± 0.115 0.868 ± 0.009
Levy 50 0.039 ± 0.032 0.033 ± 0.041 0.043 ± 0.012 0.020 ± 0.007 0.048 ± 0.015 0.239 ± 0.080 0.667 ± 0.072 0.582 ± 0.135 0.883 ± 0.224 0.099 ± 0.019 0.873 ± 0.009 0.109 ± 0.026 0.227 ± 0.053
Powell 50 0.022 ± 0.010 0.016 ± 0.006 0.015 ± 0.008 0.025 ± 0.026 0.036 ± 0.035 0.076 ± 0.031 0.470 ± 0.158 0.533 ± 0.048 0.575 ± 0.194 0.046 ± 0.024 0.880 ± 0.034 0.017 ± 0.006 0.041 ± 0.015
Rastrigin 50 0.753 ± 0.083 0.601 ± 0.031 0.891 ± 0.420 0.587 ± 0.062 0.585 ± 0.055 0.579 ± 0.093 0.798 ± 0.052 0.820 ± 0.021 0.792 ± 0.028 0.644 ± 0.031 0.932 ± 0.003 0.769 ± 0.203 0.558 ± 0.042
Rosenbrock 50 0.016 ± 0.007 0.010 ± 0.003 0.007 ± 0.003 0.014 ± 0.006 0.035 ± 0.024 0.051 ± 0.021 0.656 ± 0.165 0.540 ± 0.085 0.698 ± 0.174 0.030 ± 0.006 0.794 ± 0.039 0.012 ± 0.003 0.057 ± 0.033
Styblinski-Tang 50 0.460 ± 0.223 1.063 ± 1.782 0.709 ± 0.130 0.449 ± 0.113 0.574 ± 0.097 0.721 ± 0.032 1.032 ± 0.109 1.134 ± 0.117 0.995 ± 0.045 0.613 ± 0.127 0.960 ± 0.012 0.436 ± 0.334 0.483 ± 0.059
Rover trajectory 60 0.475 ± 0.127 0.403 ± 0.115 0.511 ± 0.187 0.380 ± 0.083 0.485 ± 0.110 0.679 ± 0.139 0.684 ± 0.150 0.450 ± 0.145 0.473 ± 0.115 0.561 ± 0.060 0.923 ± 0.029 0.479 ± 0.160 0.186 ± 0.042
Ackley 100 0.684 ± 0.402 0.815 ± 0.360 0.136 ± 0.022 0.554 ± 0.291 0.476 ± 0.283 0.295 ± 0.082 0.952 ± 0.027 0.908 ± 0.057 0.883 ± 0.039 0.672 ± 0.129 0.997 ± 0.001 0.799 ± 0.159 0.904 ± 0.010
Emb. Hartmann 6 100 0.089 ± 0.057 0.039 ± 0.028 0.179 ± 0.142 0.140 ± 0.093 0.100 ± 0.051 0.194 ± 0.128 0.636 ± 0.095 0.843 ± 0.026 0.717 ± 0.197 0.562 ± 0.324 0.882 ± 0.019 0.118 ± 0.125 0.068 ± 0.036
Levy 100 0.089 ± 0.105 0.043 ± 0.034 0.044 ± 0.014 0.039 ± 0.012 0.173 ± 0.085 0.061 ± 0.031 0.629 ± 0.051 0.735 ± 0.134 0.624 ± 0.127 0.131 ± 0.111 0.980 ± 0.021 0.086 ± 0.037 0.300 ± 0.020
Powell 100 0.117 ± 0.020 0.038 ± 0.029 0.008 ± 0.002 0.010 ± 0.003 0.034 ± 0.040 0.011 ± 0.004 0.482 ± 0.066 0.549 ± 0.089 0.477 ± 0.067 0.031 ± 0.012 1.019 ± 0.069 0.021 ± 0.009 0.112 ± 0.017
Rastrigin 100 0.503 ± 0.074 0.584 ± 0.192 0.548 ± 0.029 0.474 ± 0.068 0.550 ± 0.075 0.554 ± 0.061 0.759 ± 0.021 0.825 ± 0.041 0.774 ± 0.031 0.628 ± 0.049 0.990 ± 0.007 0.833 ± 0.365 0.584 ± 0.009
Rosenbrock 100 0.119 ± 0.018 0.026 ± 0.010 0.015 ± 0.004 0.059 ± 0.071 0.061 ± 0.049 0.036 ± 0.019 0.415 ± 0.078 0.600 ± 0.100 0.502 ± 0.068 0.199 ± 0.102 0.982 ± 0.040 0.043 ± 0.037 0.141 ± 0.012
Styblinski-Tang 100 0.372 ± 0.034 0.448 ± 0.158 0.505 ± 0.074 0.547 ± 0.103 0.635 ± 0.145 0.774 ± 0.097 0.947 ± 0.064 1.211 ± 0.140 0.910 ± 0.048 0.429 ± 0.077 0.988 ± 0.009 0.349 ± 0.051 0.527 ± 0.035

Mean 0.307 0.287 0.295 0.264 0.286 0.329 0.882 0.866 0.899 0.624 0.734 0.434 0.245
Median 0.173 0.170 0.179 0.189 0.173 0.239 0.924 0.908 0.917 0.672 0.873 0.360 0.145

D.6 BO curves for all experiments in Table 2 and Table A1

Figure A4: Experiments on the Shekel, Hartmann, Cosine and embedded Hartmann test functions
with

√
κ = 0.1 for BEEBO and q-UCB.
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Figure A5: Experiments on the Shekel, Hartmann, Cosine and embedded Hartmann test functions
with

√
κ = 1.0 for BEEBO and q-UCB.

Figure A6: Experiments on the Shekel, Hartmann, Cosine and embedded Hartmann test functions
with

√
κ = 10.0 for BEEBO and q-UCB.
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Figure A7: Experiments on the Ackley test function with
√
κ = 0.1 for BEEBO and q−UCB.
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Figure A8: Experiments on the Ackley test function with
√
κ = 1.0 for BEEBO and q−UCB.

33



Figure A9: Experiments on the Ackley test function with
√
κ = 10.0 for BEEBO and q−UCB.
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Figure A10: Experiments on the Levy test function with
√
κ = 0.1 for BEEBO and q−UCB.
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Figure A11: Experiments on the Levy test function with
√
κ = 1.0 for BEEBO and q−UCB.
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Figure A12: Experiments on the Levy test function with
√
κ = 10.0 for BEEBO and q−UCB.
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Figure A13: Experiments on the Rastrigin test function with
√
κ = 0.1 for BEEBO and q-UCB.
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Figure A14: Experiments on the Rastrigin test function with
√
κ = 1.0 for BEEBO and q-UCB.
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Figure A15: Experiments on the Rastrigin test function with
√
κ = 10.0 for BEEBO and q-UCB.

40



Figure A16: Experiments on the Rosenbrock test function with
√
κ = 0.1 for BEEBO and q-UCB.

41



Figure A17: Experiments on the Rosenbrock test function with
√
κ = 1.0 for BEEBO and q-UCB.

42



Figure A18: Experiments on the Rosenbrock test function with
√
κ = 10.0 for BEEBO and q-UCB.
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Figure A19: Experiments on the Powell test function with
√
κ = 0.1 for BEEBO and q-UCB.

Figure A20: Experiments on the Powell test function with
√
κ = 1.0 for BEEBO and q-UCB.
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Figure A21: Experiments on the Powell test function with
√
κ = 10.0 for BEEBO and q-UCB.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: As claimed, we experimentally demonstrate a) the controllability of the
acquisition strategy, b) competitive performance on 33 test problems compared to q-UCB,
q−EI, Thompson sampling, GIBBON, TuRBO and Kriging Believer, and c) behaviour
under heteroskedastic noise.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We address limitations in our discussion section, highlighting computational
complexity constraints in exact GP inference as well as challenges under heteroskedastic
noise.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not make use of any theoretical results. All reported results are
based on empirical experiments. All underlying assumptions are standard in research on BO
with GPs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: As described in the methods section, we use standard BoTorch and GPyTorch
utilities for all our experiments, and provide extended details on the technical implementation
in the supplementary section. Our repository includes the full benchmarking setup with
appropriate run scripts and instructions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The repository includes the implementation of the proposed method as well
as the benchmarking setup with alternative methods. No additional data is required for
reproduction.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We follow GPyTorch and BoTorch for all hyperparameters pertaining to
GPs, and describe this accordingly. Our appendix includes additional details on method
hyperparameters to ensure reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: We include full BO curves with standard deviations over five replicates for all
quantitative experiments in the appendix. These detailed curves are referenced in the main
text at the appropriate place.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We list the used hardware and total GPU hours in the supplement and provide
example timings for experiment runtimes.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper does not make use of human participants or datasets. To the best of
our understanding, there are no potential harmful consequences and wider negative societal
impact expected from the proposed method.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper introduces a method for Bayesian optimization (BO). While BO has
widespread applications in the sciences and engineering, there is no direct societal impact
expected from this contribution.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not introduce any trained models or novel data.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]
Justification: We credit the GPyTorch and BoTorch packages that our codebase builds upon.
The packages are used as dependencies, and as such are not included directly as assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The implementation of BEEBO constitutes the only asset, which follows
BoTorch APIs and has a README file demonstrating its application when working in
BoTorch.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: None of the above are included in this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The presented paper does not involve any human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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