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Abstract

Bayesian optimization (BO) is an attractive machine learning framework for per-
forming sample-efficient global optimization of black-box functions. The optimiza-
tion process is guided by an acquisition function that selects points to acquire in
each round of BO. In batched BO, when multiple points are acquired in parallel,
commonly used acquisition functions are often high-dimensional and intractable,
leading to the use of sampling-based alternatives. We propose a statistical physics
inspired acquisition function for BO with Gaussian processes that can natively
handle batches. Batched Energy-Entropy acquisition for BO (BEEBO) enables
tight control of the explore-exploit trade-off of the optimization process and gen-
eralizes to heteroskedastic black-box problems. We demonstrate the applicability
of BEEBO on a range of problems, showing competitive performance to existing
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methods.

1 Introduction

Bayesian Optimization (BO) has since its in-
ception [1, 2] made a profound contribution to
the realm of global optimization of black-box
functions through the usage of Bayesian statis-
tics. For global optimization problems pursuing
T, = argmax,c y fuue(x), BO has surfaced as
a premier strategy for efficiently handling espe-
cially complex and costly unknown functions,
firue(x). While BO is traditionally formulated in
a single-point scenario, where individual points
are queried and results are observed sequentially,
there are situations where batched acquisition
is needed. Such situations arise when fi(2)
is expensive to evaluate in either time or cost,
but can be effectively evaluated in parallel by
dispatching multiple experiments, reducing the
overall optimization time. This is often the case
in e.g. drug discovery, materials design or hyper-
parameter tuning for deep models [3, 4, 5, 6, 7].

The realization that BO could be employed for
the training of deep neural networks, as sug-
gested by [3], sparked renewed research interest,
with advancements encompassing a variety of
areas, including the generalization to accommo-
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Figure 1: ¢-UCB does not allow for controlling its
explore-exploit trade-off with large batches. A GP
surrogate (background) was initialized with 100
random points of the Ackley function. g-UCB was
run with £ = 0.1 and s = 100, BEEBO with T"=
0.05 and T"=50. Batch size Q=100.
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date noisy inputs [8, 9], heteroskedastic noise [10, 11], multi-task problems [12], multi-fidelity [13],
high-dimensional input spaces [14], and parallel methods with batch queries [15, 16]. Generally,
these desired properties are addressed by customizing one of the two key components in BO, either
the surrogate model or the acquisition function. The surrogate model f approximates the black-box
function fi using the available data. In BO, the surrogate is formulated from a Bayesian perspective,
allowing us to quantify the model’s uncertainty when evaluating new points. Typically, the model
of choice is a Gaussian Process (GP) [17]. The acquisition function is responsible for guiding the
selection of new input point(s) to evaluate at each optimization step, utilizing the surrogate model to
identify promising regions in the input domain and exploring the unknown function further.

Any acquisition process needs to trade off exploration (reducing uncertainty to learn a better surrogate
model) against exploitation (selecting points with a high expected fiue(«) based on the current
surrogate). In this work, we are particularly interested in acquisition processes that make this trade-off
controllable using a hyperparameter. Controllability can be a desirable property if e.g. domain
knowledge relating to the difficulty of the optimization process and the quality of the surrogate
model is available, or if the strategy needs to be adjusted depending on future experimental budgets.
Similarly, it can be desirable to acquire multiple x with high fy,.(z) in a batch (as opposed to just
finding the optimum z,, with the remaining x being considered explorative). This is useful when
optima identified in BO can be subject to constraints that are unknown at optimization time, but
may render z, intractable [18]. Such constraints arise when the fi,e explored in BO is a necessary
simplification of the actual objective. Practical examples include e.g. the synthesizability of a material
at larger scale, when BO experiments are performed at lab scale; or the in vivo activity of a molecule
with BO experiments performed in vitro.

A wide range of batch mode acquisition functions has been proposed, with approaches often lever-
aging random sampling strategies or Monte Carlo (MC) integration, which can adversely affect
controllability for large batches (Figure 1). In contrast, we here introduce BEEBO (Batched Energy-
Entropy acquisition for BO), a statistical physics inspired acquisition function for BO with GP
surrogate models that natively generalizes to batched acquisition. BEEBO enables

* Parallel gradient-based optimization of the inputs, without requiring sampling or Monte
Carlo integrals.

» Tight control of the explore-exploit trade-off in batch mode using a single temperature
hyperparameter.

* Risk-averse BO under heteroskedastic noise.

We demonstrate the application of BEEBO on a wide range of test problems, and investigate its
behaviour under heteroskedastic noise.

2 Related works

Batch variants of traditional strategies Parallel acquisition in BO has seen a variety of approaches,
often starting from established single-point acquisition functions like probability of improvement
(PI), expected improvement (EI), knowledge gradient (KG) or upper confidence bound (UCB)
[2, 19, 20, 21, 22]. Reformulating these to batch mode with ) query points, we obtain g-PI, g-
El, and ¢g-UCB [23, 24]. While the single-point specifications provide an analytical form and
enable gradient-based optimization, batch expressions are more challenging and require different
optimization strategies, typically involving greedy algorithms [25] or deriving an integral expression
over multiple points.

For instance, in the popular EI acquisition function, a single point is selected by maximizing
the expression agy (z) = E[max (0, f (z) — f;)] = [max (0, f (z) — f;) P (f|z)df. Here f;
represents the best observed evaluation of fi,. so far. With a surrogate model in the form of a GP,
the acquisition function depends only on the predictive mean and variance functions, () and
C (z). Effectively, we need to evaluate the cumulative normal distribution, which quickly becomes
intractable for large batch sizes and approximating the gradient of the ¢-EI acquisition function
typically requires MC estimation [26, 27]. However, proper MC integration can be laborious and
is sensitive to both the dimension of the problem and the choice of batch size (). Specifically, MC
methods face the curse of dimensionality problem when applied to high-dimensional integrals, as
they require an exponentially increasing number of sample points to maintain accuracy, making them



computationally impractical for such tasks [28, 29]. Of particular interest is Wilson et al. [24], in
which they adopt the reparameterization trick [30, 31] on acquisition functions integrals, enabling
gradient based approaches to the optimization of PI, EI, and UCB. This demonstrates particular
usefulness in modest to higher dimensions.

While EI trades off exploration and exploitation, users do not have a direct control over the balance.
To alleviate this, Sobester et al. [32] proposed a weighted EI formulation. An alternative strategy
with an explicit explore-exploit trade-off is offered by the UCB acquisition function, aycg (z) =

w(x) + /K - /C(x), which directly expresses exploration and exploitation as two terms, traded off
by the parameter . As we are particularly interested in enabling this direct user control, we focus our
primary comparison on ¢-UCB in the main text, while a more extensive comparison with alternative
methods can be found in Appendix B, both theoretically and experimentally.

Greedy strategies As mentioned, a popular approach for leveraging single-point acquisition
functions is devising batch filling strategies that score candidate points sequentially. Kriging Believer
(KB) [33] uses EI to select points and iteratively updates the GP by fantasizing an observation with
the posterior mean. Likewise, GP-BUCB [34] uses fantasized observations to update /C(x) at each
step. Local penalization (LP) [35] introduces a penalization function that repulses selection away
from already selected points. Contal et al. [36] propose selecting a single point using UCB and
dedicating the remainder of the batch budget for exploration in a restricted region around the believed
optimum. GLASSES [37] treats batch selection as a multi-step lookahead problem to overcome the
myopia of only considering the immediate effect of selecting a point.

Entropy based strategies From an information theory perspective, BO can be interpreted as
seeking to reduce uncertainty over the location of optima of the unknown function. This has given
rise to entropy-based acquisition functions such as entropy search (ES) [38], predictive entropy search
(PES) [39] and max-value entropy search (MES) [13, 40, 41]. MES is distinct in that it seeks to
quantify the mutual information between the unknown fine(z.) and the observations y|D, rather
than the location of x.. General-purpose Information-Based Bayesian OptimizatioN (GIBBON)
[42] provides an extension of MES that enables application to batched acquisition as well as other
challenges such as multi-fidelity BO. GIBBON proposes a lower bound formulation for the intractable
batch MES criterion, which is then optimized using greedy selection. Despite being formulated to
handle a large degree of parallelism, Moss et al. [42] reported that GIBBON fails in practice for large
batches with Q > 50. Potentially, this behaviour is a consequence of the accuracy of the lower bound
approximation. A heuristic scaling of the batch diversity was proposed to improve performance with
large batches. GIBBON may also be interpreted as a determinantal point process (DPP) [4, 43]. In
Appendix B we provide a detailed discussion of the relationship of the BEEBO acquisition function
to GIBBON and DPPs. Note that while we will also make use of the term entropy in BEEBO, the
quantity is distinct from the ones leveraged by the aforementioned approaches in the sense that it
does not relate to an unknown optimum.

Thompson sampling Given the challenges of generalizing acquisition functions to batch mode,
Thompson sampling (TS), which was originally adopted from bandit problems [44, 45, 46, 47, 48], is
a popular alternative strategy for guiding batched BO. While being an attractive approach in general, it
has been demonstrated that default TS can become too exploitative, motivating the use of alternatives
such as Bayesian Quadrature [49], or advanced strategies on top of TS that ensure diversity [18].
Eriksson et al. [S0] demonstrate that overexploration also can be problematic in higher dimensions,
and alleviate this using local trust regions in TURBO. Maintaining such regions with high precision
discretization can be memory-expensive, as indicated by [51], who suggest using MCMC-BO with
adaptive local optimization to address this by transitioning a set of candidate points towards more
promising positions.

3 The BEEBO acquisition function

Assume fi,e : X — R is some real output associated with the input and a set of data be given
D = {(x;,y;)}Y, where y; € R represent some noisy observations of fiuu(7;), say

Yi = ftrue(xi) + € (D



with ¢; denoting the measurement noise. Let x = (21, ,2¢0) € X< represent a collection of test
points we wish to assign an acquisition value to. In keeping with the BO framework, we assume a
given posterior probability distribution over the surrogate function f evaluated at x,

f(x) ~ P(f| D,x) 2)

The lack of knowledge we have of the surrogate function at x is quantified by the differential entropy
H:

H(f|D,x) :—/P(f\D,x) n(P(£]D,x))df 3)

This entropy can be contrasted with the expected entropy of the surrogate function if ) observations
y = (y1,- -, yg) were acquired at x, i.e. if the training data D would be augmented with D’ (y) =

{(24,y)}&_; to form the joint data set Dy (y) = (D, D'(y)). We refer to this entropy as Hage:
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where P(y | D,x) represent the posterior predictive distribution at x. The expected information
gain, I(x), from acquiring observations at x is given by the expected reduction of entropy from this
process:

1(x) :H(f\D,X) —Haug(f\D,X) 5)

We propose to represent the explore component of the acquisition function, aggggo, by I(x). The
information gain I(x) is distinct from the quantities exploited by entropy search approaches, as it
quantifies global uncertainty reduction, rather than estimating the information over an unknown x..
The information gain is directly applicable to multivariate functions and to heteroskedastic settings
where 02 = 0%(x). Since large measurement uncertainties imply smaller information gain, aggggo
exhibits risk-averse behaviour [11] by automatically prioritizing regions of small uncertainties from
where more precise information of f, can be obtained, everything else being equal.

The exploit component of BEEBO relies on taking expectation values of a scalar function of the
random variable f(x), £ : RY — R, that summarizes the optimality properties of a given batch x.
Natural choices would be the mean or the maximum of f(x). Of particular interest is expressing the
optimality as a softmax-weighted sum over f(x), as this allows us to smoothly interpolate between
the two regimes:

E(x) = ~E[E(x)]- Q = —E

Q
Z softmax(ﬁf)qfq] -Q, (6)

g=1

where [ is the softmax inverse temperature. At 5 = 0, we recover the mean. We scale the expectation
with @ so that both I and £ scale linearly with increasing batch size. While the mean provides a
closed form expression for its expectation, this is not the case for the general softmax-weighted sum
of a multivariate normal. Using Taylor expansion, we introduce an approximation of the expectation
of the softmax-weighted sum that is fully differentiable and can be computed in closed form. A
detailed derivation is provided in Appendix A. At 5 = 0, all @) points contribute equally to F(x),
whereas at 8 > 0, points that do not compete for optimality are dynamically released. This effect
can be quantified as the effective number of points via the entropy of the softmax weights. In the
following, we will refer to the (exact) 8 = 0 limit as meanBEEBO, and the (approximated) general
case as maxBEEBO.

The BEEBO acquisition function then takes the form

aBEEBo(X) = —E(X) + T- I(X), (7)

where T sets the balance between exploitation (small 7") and exploration (large 7). As both E
and [ scale with the batch size (), a given choice of T" would set the explore-exploit balance in an
approximately (-independent manner. This acquisition function bears a strong similarity to the
definition of (negative) free energies in statistical physics, where F and I correspond to respectively
the thermodynamic energy and entropy of the system and 7" corresponds to the temperature.



3.1 BEEBO with Gaussian processes

Gaussian processes offer a particular convenient framework for BO, due to the availability of closed-
form expressions for the inference step [17]. Specifically

P(EID,x) = N(f|ux),C(x)

ux) = K(xxp) Mp' yp
C(x) = K(x,x)—K(x,xp) My K(xp,x)
Mp = K(xp,xp)+o?(xp) )
where N (- | 4, C') is the multivariate Gaussian distribution with mean y, and covariance C, xp and
yp are the - and y values of the acquired data, o (xp) = diag (of, S 012\,) is a diagonal matrix with

the measurement uncertainties in the diagonal and K (-, -) are matrices derived from the GP-kernel,
k(-,-),ie. K(x,x')ij = k(w;,2”;). Itis worth noting that C'(x) only depends on the input location of
the test points x and the data points x p with their corresponding measurement uncertainties, o2 (xp),
but not on the actual observations, y p. Consequently, the entropy of the posterior distribution

H(f|D,x) = %111(271’6) + %ln det(C(x)) ©)

is independent of yp as well, with In det denoting the log determinant. Similarly, the expected
entropy of f if observations at x were acquired, simply reads

1
Haug (f | D, x) = %III(QFG) + 3 In det(Chug (%)), (10)
where
Caug(x) = K(X, X) - K(X, Xaug) : Ma;gl : K(Xauga X)
Maug = K(Xauga Xaug) + o? (Xaug) 1D

and Xay, = Xp,

aug *

The BEEBO acquisition function is then given by
ageeso(x) = E[E(x)] - Q + T - I(x) (12)

where the expectation is either the mean, é Z?Zl liq, or the closed form approximation of the
softmax-weighted sum described in Appendix A, and

I(x) = %ln det(C(x)) — %ln det(Caug(x)). (13)

All operations needed to compute the ac-
quisition value agggpo(x) are analytical.
Using automatic differentiation, the batch Algorithm 1: meanBEEBO optimization
of points x can therefore be optimized with
gradient-based methods, as laid out for
meanBEEBO in Algorithm 1, with learn-
ing rate . In the pseudocode, GP denotes
a trained GP model object that holds the

Input: model GP, initial batch points x,
temperature 7'
repeat

Calculate 1(x), C(x) from Equation 8 using GP

training data and the kernel function. Using Ee- 222:1 Hq

the kernel’s learned amplitude A, we can GPayg < fantasize(GP, x) ) )

relate BEEBO’s T' parameter to the x of Calculate Cyy (x) from Equation 11 using GPaye
UCB. This allows us to configure BEEBO I < 11Indet (C(x)) — 4 Indet (Caug(x))

using a scaled temperature 7" that ensures a+ —E+Tx1

both methods have equal gradients at iso- x < x+7Va

surfaces, enabling the user to follow exist-  until converged

ing guidance and intuition from UCB to ~ Output: optimized batch points x

control the trade-off. A derivation is pro-
vided in Appendix B.1.



4 Experiments

Table 1: Overview of the test problems used in the
Test problems We benchmark acquisition experiments.
function performance on a range of maximiza-

tion test problems with varying dimensions (Ta- Function Dimension

ble 1) available in BoTorch [52]. Test problems Ackley 2, 10, 20, 50, 100

that are evaluated on multiple dimensions sup- Shekel 4

port specifying the respective arbitrary d. As Hartmann 6

a high-dimensional problem with low inherent Cosine 8

dimensionality, we embed the six-dimensional Rastrigin 2, 10, 20, 50, 100

Hartmann function in d = 100 [50, 53, 54]. We Rosenbrock 2,10, 20, 50, 100

additionally test on two robot control problems Styblinski-Tang 2, 10, 20, 50, 100

(robot arm pushing and rover trajectory plan- Powell 10,20, 50, 100
Embedded Hartmann 6 100

ning) in Appendix D.3 [55, 56].

On each test problem, we perform 10 rounds of

BO using ¢-UCB or BEEBO with a given explore-exploit parameter for direct comparison. We use
the scaled temperature 77 (B.1) to ensure that both methods operate at the same trade-off. In round 0,
we seed the surrogate GP with () random points that were drawn so that each point has a minimum
distance of 0.5 to the test problem’s true optimum. We perform ten replicate runs for each problem
and method, with replicate seeds controlled so that all methods start from the same () random points
in a replicate. As we evaluate performance in a fixed-round, fixed-() optimization scenario, we set
the explore hyperparameter to O in the last round (for maxBEEBO, we also set the softmax /3 to 0).
We use @ = 100 for all experiments, which is commonly understood to be a large batch size [50].
Additional results on small batch sizes (5, 10) are provided in Appendix D.2. All experiments use
BoTorch’s default utilities for acquisition function optimization and GPyTorch [57] GP training (C.1).

Heteroskedastic noise We investigate performance when optimizing under heteroskedastic noise
on the 2D Branin function with three global optima. To construct a heteroskedastic problem, we
specify noise so that the noise level is maximal at optima 2 and 3, decaying exponentially with
distance to any of the two noised optima (C.4). No noise maximum is added at optimum 1. Therefore,
while all three optima share the same fi,.(z) (Figure Al), only optimum 1 is favorable in terms of
heteroskedastic risk. We perform BO for ten rounds with 8 = 0.1 and ) = 10 using a heteroskedastic
GP that learns surrogate models for both fi () and o%(z). We report results over five replicate
runs.

Metrics We report the mean best observed objective value after 10 rounds over the five replicates.
As test problems have highly varying scales, we normalize the results on each test problem using
min-max normalization. Typically, the minimum of a maximization problem is not known explicitly.
We therefore set the minimum for normalization to the highest value observed among the random seed
points. The maximum is given by the fi.,c(2*) of the problem. The metric thus directly quantifies
how much progress has been made to the true optimum from the random starting configuration on a
0-1 scale.

As we are not only interested in identifying a single « with good fi.e(x), we additionally quantify
the overall quality of the final (exploitative) batch. We compute the batch instantaneous regret
R= Zq <Q Jirue (™) — fuue () Of the last, exploitative batch. To bring results on all test problems
to a similar scale, we divide it by the batch instantaneous regret of a batch of ) random points on each
problem. We refer to this metric as the relative batch instantaneous regret, Rre; = Ri—10/ Rrandom-

For BO under heteroskedastic noise, we wish to quantify the preference of a given method for
different optima. As optima share the same fie(x*), metrics operating on fi(x) are inherently
unsuitable, and preference needs to be evaluated on z directly. For each acquired point z;, we
compute the distances ||z; — || to the J individual optima. We report the mean distance to each
optimum over all points in a batch.



Table 2: Highest observed value after 10 rounds of BO with @) = 100. The best value at each x
is indicated in blue. BEEBO is configured with 7" = 1/2,/k. Full BO curves are provided in D.6,
confidence intervals and statistical tests in Tables A2, A3 and A4

Problem d | Jr=01 Ji=10 V=100
| meanBEEBO  maxBEEBO  ¢-UCB | meanBEEBO maxBEEBO ¢-UCB | meanBEEBO maxBEEBO  ¢-UCB
Ackley 2 | 0.993 0.982 0.973 0.985 0.980 0.967 0.975 0.988 0.988
Levy 2 1.000 1.000 1.000 0.999 1.000 1.000 0.999 0.998 0.998
Rastrigin 2 0.981 0.993 0.951 0.989 0.983 0.983 0.983 0.993 0.933
Rosenbrock 2 0.976 0.982 0.949 0.956 0.979 0.943 0.955 0.938 0.962
Styblinski-Tang 2 0.961 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999
Shekel 4 | 0.540 0.300 0.244 0.915 0.378 0.330 0.698 0.411 0.264
Hartmann 6 1.000 0.894 0.918 1.000 0.976 0.950 0.986 0.974 0.889
Cosine 8 1.000 0.999 0.934 0.999 0.972 0.924 0.619 0.895 0.621
Ackley 10 | 0915 0.819 0.800 0.908 0.736 0.772 0.822 0.546 0.513
Levy 10 | 0.989 0.966 0.904 0.966 0.953 0.904 0.966 0914 0.560
Powell 10 | 0.987 0.951 0.920 0.970 0.949 0.916 0.861 0.909 0.283
Rastrigin 10 | 0.463 0.558 0.420 0.536 0.573 0.522 0.595 0.590 0.311
Rosenbrock 10 | 0.994 0.991 0.966 0.991 0.986 0.971 0.904 0.975 0.645
Styblinski-Tang 10 | 0.837 0.822 0.309 0.835 0.638 0.492 0.289 0.229 0.049
Ackley 20 | 0.827 0.818 0.741 0.851 0.781 0.753 0.777 0.404 0.474
Levy 20 | 0.949 0.945 0.926 0.943 0.904 0.900 0.889 0.907 0.819
Powell 20 | 0.955 0.939 0.948 0.965 0.913 0913 0.872 0.915 0.845
Rastrigin 20 | 0.399 0.484 0.423 0.473 0.472 0.480 0.508 0.522 0.401
Rosenbrock 20 | 0.993 0.992 0.973 0.995 0.983 0.982 0.907 0.933 0.924
Styblinski-Tang 20 | 0.737 0.667 0.203 0.689 0.394 0.561 0.330 0.274 0.034
Ackley 50 | 0.235 0.623 0.638 0.342 0.594 0.759 0.823 0.465 0.730
Levy 50 | 0.940 0.971 0.948 0.965 0.958 0.951 0.943 0.879 0.941
Powell 50 | 0.954 0.975 0.970 0.982 0.969 0.961 0.950 0.938 0.980
Rastrigin 50 | 0322 0.472 0.431 0.476 0.470 0.397 0.432 0.439 0.481
Rosenbrock 50 | 0.971 0.976 0.968 0.984 0.981 0.986 0.983 0.962 0.981
Styblinski-Tang 50 | 0.584 0.509 0.312 0.675 0.342 0.694 0.393 0.325 0.356
Ackley 100 | 0.277 0.417 0.708 0.190 0.540 0.645 0.863 0.682 0.844
Emb. Hartmann 6 100 | 0.951 0.957 0.896 0.987 0.936 0913 0.928 0.907 0916
Levy 100 | 0.837 0.966 0.950 0.961 0.950 0.934 0.944 0.940 0.964
Powell 100 | 0.810 0.985 0.982 0.952 0.980 0.981 0.983 0.979 0.984
Rastrigin 100 | 0.497 0.441 0.446 0.401 0.455 0.442 0.459 0.455 0.443
Rosenbrock 100 | 0.822 0.953 0.972 0.971 0.976 0.969 0.980 0.970 0.978
Styblinski-Tang 100 | 0.537 0.423 0.308 0.474 0.353 0.532 0.401 0.296 0.278
Mean 0.795 0.811 0.758 0.828 0.790 0.801 0.788 0.744 0.678
Median 0.940 0.951 0.920 0.961 0.949 0.913 0.889 0.907 0.819
S Results

5.1 BO on test problems

We benchmark BEEBO against g-UCB at three rates of x. Overall, we find that the simpler mean-
BEEBO variant outperforms maxBEEBO in terms of mean performance on all but the lowest rate
of  (Table 2). As we consider the configuration with the lowest rate to be exploit-dominated, this
can be understood as a consequence of maxBEEBO effectively releasing non-contributing points for
further exploration, with the low explore rate seeming sufficient to induce the necessary diversity.

While results on individual test problems vary, meanBEEBO shows improved performance over
g-UCB especially in the medium dimension range up to 50. For d=100, we find mixed performance,
with meanBEEBO gradually becoming more competitive with increasing «. This is due to the fact
that with increasing dimensionality, more exploration is beneficial for learning a good surrogate
model before an actual BO process becomes effective. As we find that g-UCB inherently performs
more random-like sampling at large @, irrespective of x, it benefits in such situations.

On average over all 33 performed experiments, meanBEEBO improves upon ¢-UCB for large batches
at any of the three rates (Table A3). We additionally benchmarked BEEBO against other popular BO
strategies without explore-exploit hyperparameters. Interestingly, we found that the Kriging Believer
(KB) iterative heuristic [33] can perform very competitively for large batches when using LogEI [58]
as the acquisition function (Table A1), especially on the two robot control problems (Appendix D.3),
but can be slower to optimize than BEEBO (Table A9).

When evaluating R, in the ultimate round of BO, we find that BEEBO allows us to effectively
acquire a batch with high fin. (), highlighting the controllability of the acquisition function (Table 3).
The R, of g-UCB is only slightly better than the I of a random batch in many cases, even though the
explore component was explicitly set to 0. We note that this is not due to the surrogate function being
unsuitable - the results in Table 2 indicate that in most cases the location of fie(x*) is approximately



Table 3: Relative batch instantaneous regret R,..; in round 10 (x = 0) with Q = 100. The best value
at each « is indicated in blue. BEEBO is configured with 77 = 1/2,/k. Lower means better.

Problem d | Jr=0.1 VR=10 V=100
| meanBEEBO  maxBEEBO ¢-UCB | meanBEEBO maxBEEBO ¢-UCB | meanBEEBO maxBEEBO ¢-UCB

Ackley 2 0.292 0.259 1.006 0.268 0.245 0.999 0.257 0.165 1.002
Levy 2 0.134 0.114 1.236 0.092 0.102 1.046 0.102 0.111 1.114
Rastrigin 2 0.455 0.578 1.010 0.425 0.454 0.999 0.407 0.500 1.020
Rosenbrock 2 0.001 0.004 0.992 0.001 0.004 1.094 0.002 0.002 1.014
Styblinski-Tang 2 0.168 0.172 1.024 0.169 0.170 1.027 0.170 0.170 1.051
Shekel 4 | 0810 0.776 0.993 0.688 0.730 0.995 0.688 0.695 0.988
Hartmann 6 | 0.060 0.229 0.968 0.078 0.086 0.971 0.100 0.098 0.862
Cosine 8 0.045 0.001 0.953 0.001 0.016 0.975 0.222 0.061 0.922
Ackley 10 | 0.478 0.338 0.931 0.314 0.345 0.943 0.253 0.452 0.950
Levy 10 | 0.041 0.030 1.188 0.023 0.048 1.011 0.261 0.103 1.111
Powell 10 | 0.016 0.027 1.037 0.009 0.067 1.101 0.067 0.151 1.215
Rastrigin 10 | 0.629 0.563 0.920 0.523 0.541 0.907 0.567 0.402 0.905
Rosenbrock 10 | 0.002 0.013 0.906 0.004 0.015 0.770 0.074 0.052 0918
Styblinski-Tang 10 | 0.196 0.220 1.174 0.223 0.337 1.126 0.559 0.496 1.219
Ackley 20 | 0.629 0.219 0.945 0.282 0.292 0.950 0.226 0.586 0.917
Levy 20 | 0.128 0.241 0.839 0.063 0.113 0914 0.140 0.182 1.056
Powell 20 | 0.093 0.081 0.809 0.010 0.074 0.689 0.028 0.110 0.870
Rastrigin 20 | 0.686 0.600 0.864 0.610 0.635 0.838 0.541 0.555 0.852
Rosenbrock 20 | 0.047 0.105 0.591 0.004 0.048 0.578 0.036 0.051 0.903
Styblinski-Tang 20 | 0.426 0.398 1.113 0.378 0.504 1.107 0.691 0.578 1.177
Ackley 50 | 0.895 0.464 0.949 0.738 0.606 0.947 0.177 0.530 0.874
Levy 50 | 0.055 0.029 0.611 0.033 0.085 0.681 0.051 0.268 0.892
Powell 50 | 0.018 0.021 0.542 0.014 0.078 0.499 0.018 0.064 0.785
Rastrigin 50 | 0.793 0.573 0.813 0.653 0.592 0.810 0.795 0.585 0.768
Rosenbrock 50 | 0.016 0.021 0.539 0.049 0.031 0.520 0.010 0.048 0.594
Styblinski-Tang 50 | 0.463 0.478 1.012 0.676 0.574 1.196 0.681 0.727 0.981
Ackley 100 | 0.718 0.636 0.948 0.900 0.466 0.935 0.137 0.321 0.863
Emb. Hartmann 6 100 | 0.068 0.144 0.573 0.035 0.086 0.863 0.175 0.172 0.692
Levy 100 | 0.119 0.031 0.615 0.044 0.164 0.716 0.042 0.056 0.586
Powell 100 | 0.094 0.011 0.465 0.027 0.041 0.493 0.013 0.018 0.524
Rastrigin 100 | 0.506 0.501 0.759 0.604 0.557 0.832 0.540 0.544 0.780
Rosenbrock 100 | 0.114 0.044 0.518 0.027 0.048 0.589 0.014 0.031 0.507
Styblinski-Tang 100 | 0.389 0.522 0.924 0.503 0.582 1.203 0.562 0.742 0.930
Mean 0.291 0.256 0.872 0.257 0.265 0.889 0.261 0.292 0.904
Median 0.134 0.219 0.931 0.092 0.164 0.943 0.175 0.172 0917

known by round 10. Rather, we assume that this a consequence of the challenges of MC-based
optimization of the acquisition function at large Q.

5.2 BO under heteroskedastic noise

We compare performance of meanBEEBO and ¢g-UCB on the 3-optimum Branin function. Under
heteroskedastic noise, we find that BEEBO preferentially optimizes towards the low-noise optimum 1
at the expense of the noisy optima 2 and 3 (Figure 2) and is therefore risk-averse. In the homoskedastic
case, BEEBO does not exhibit this preference and optimizes for multiple optima. As expected,
g-UCB, which only uses the model posterior variance /C/(z) instead of quantifying the actual
information gain, does not display any preference for low-noise optima, showing similar behaviour
under heteroskedastic and homoskedastic noise and remaining risk-neutral.

6 Discussion

We introduce BEEBO, an acquisition function for BO with GPs that can be optimized analytically
and that scales natively to batched acquisition. By exploiting the independence of the information
gain I(x) on measurements y when using GP surrogates, BEEBO models the interdependence of
unknown points x in a batch and can optimize their positions jointly using gradient descent.

BEEBO enables full control of its explore-exploit trade-off using a hyperparameter 7' that directly
balances two terms, akin to UCB. Unlike in the reparametrization-based g-methods, BEEBO’s 7" has
predictable behaviour also at increasing batch sizes.

The numerical complexity of BEEBO is dominated by the need to compute the inverse of My, in
Equation 11, which in a plain implementation scales as O((N + @Q)?3). However, this can be reduced
to O(N?Q); specifically, the Cholesky decomposition of M,y can be expressed as ) rank-1 updates
of the pre-computed Cholesky decomposition of M p, where each update will have the complexity
of O(N?). The calculation of the energy, E, and the information gain, I, scales as O(N - Q) and
O(Q3), respectively, and are thus sub-dominant to the update needed for M_,}. For large N this
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Figure 2: Mean distances of acquired points to the different optima of the Branin function. Under
heteroskedastic noise, BEEBO is risk-averse and preferentially optimizes towards the low-noise
optimum 1. Under homoskedastic noise, there is no preference. g-UCB does not adapt its behaviour
to noise, remaining risk-neutral. The means and standard deviations over five replicates are shown.

approach may nevertheless become prohibitively slow. To overcome this limitation, methods for
scalable GPs and fast predictive covariances such as LOVE [59] can be considered. The LOVE
method allows a further reduction of the complexity of the Cholelsky update of M, to O(N -7 - Q)
[60], where r is the rank of the LOVE approximation for Mp, typically r < N.

As opposed to ¢-UCB, BEEBO can take heteroskedastic noise into account when computing the
information gain, and preferentially acquires more informative low-noise points. We note that when
the noise function o%(z) is unknown, and needs to be explored at the same time with fiye (), it is
critical that the initial random points sufficiently capture the noise landscape well enough for the
information gain component to be useful, as the uncertainty of the surrogate on o2(z) is not used.
This would require a fully Bayesian approach that integrates over the distribution of o?(z). The
problem does not arise if the heteroskedastic noise of an experiment is known beforehand by e.g.
instrument calibration. While not the focus of this work, we note that using the information gain
could also be beneficial in sequential single-sample BO on heteroskedastic problems.

7 Outlook

In our experiments, we have focused on maintaining consistent explore-exploit ratios throughout the
optimization rounds to ensure an equitable experimental comparison with g-UCB and demonstrate
the effect of the hyperparameter choice. However, a more dynamic approach involving variable
ratios could be more effective in real-world applications with a predetermined number of rounds
[61]. Adopting a fully Bayesian perspective, one could consider the temperature hyperparameter
T as a random variable. This opens up an intriguing avenue for BEEBO, where T could be drawn
from a prior distribution that e.g. varies across optimization rounds, depending on the specific
application. By tailoring this distribution, one could encourage a high level of exploration in the
initial rounds, gradually transitioning towards a more exploitation-focused approach towards the end.
In the presented experiments, we have implemented this as a strict constraint, maintaining a fixed T'
until the final round, at which point we shift to full exploitation, i.e., 7' = 0.

While not explored in this work, we note that the BEEBO expression could naturally be extended to
multi-objective optimization problems by capitalizing on GPs that handle vector-valued functions,
such as multi-task GPs [12, 62]. Through e.g. the usage of the intrinsic model of coregionalization,
we obtain a covariance function k, and thereby a covariance matrix C'(x), over all input-task pairs. As
the multi-task covariance matrix is jointly Gaussian, the expression of the information gain remains
unchanged and can be computed like in the single-task case. The energy F(x) becomes vector-valued,
providing an energy term for each of the tasks. This would allow for the introduction of task-specific



weights in the acquisition function. As the extension only affects the surrogate model, the scaling
remains cubic in the number of input-task observations.

Beyond GPs, BEEBO could be generalized to work with any probabilistic model. However, GPs
are unique in that H,,, is available in closed form and can be used to compute I (x) analytically,
without solving the integral over y in Equation 4. Other models may require approximations and
sampling-based approaches for computing the information gain.

Availability

A BoTorch implementation of BEEBO is available at
https://github.com/novonordisk-research/BEE-BO.
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A Approximating the expectation of the softmax weighted sum

A.1 Motivation

We are free to choose any energy function E in BEEBO, the only requirement being that we are able

to compute an expectation of E in order to obtain the scalar summary E = E[—E(f )]. Of particular
interest is the softmax weighted sum,

Q
E(f) = Zsoftmax(ﬂf)ifi, (AD)

i=1
where (3 is the softmax inverse temperature. The softmax weight vector w computed as

exp(Bf;)
S2 1 exp(Bf;) + exp(ByYmaz)

i — (A2)

where exp(fSyYmae) 18 an optional reference threshold value, as in expected improvement, which
we set to 0 if not used (8, is either simply 3 or a dynamically scaled value that ensures E(f) does
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not become 0, see Equation A28). The parameter /3 allows us to interpolate between two extreme
regimes,

Q
-1y forf — 0 (A3)
Q =1
E(f) = max(f) for — oo (A4)

In the first regime, all points of a batch equally contribute to the energy, whereas in the second regime
only the single point "responsible" for the maximum is controlling the energy. Note that for numerical
reasons, operating towards the 5 — oo limit is impractical, as it will lead to zero gradients for all but
one point, preventing optimization. We can set 3 = A~'/2, with A being the prior uncertainty scale
of the GP kernel. Since A represents the expected energy fluctuations for points far from data, this
weighting scheme will reflect a natural compromise between Equation A3 and Equation A4.

As opposed to the mean, in the general case, the expectation of the maximum of a ()-dimensional
multivariate normal is not available in closed form. To our best knowledge, this is also the case for the
softmax weighted sum. In the following, we derive a closed-form approximation of the expectation
of the softmax of Sf that can be used for gradient-based optimization.

A.2 Derivation

Consider the softmax denominator

Q
f) = Z exp(Bf;) + exp(ByYmax)- (A5)

j=1

We will Taylor expand In(d) to the second order, using

dln(d) 1 N

a7 = Pgexp(Bf) = pu (A6)

9?In(d 1 1
Srar = 0 (~ g o8+ £+ by exn(of)) (A7
= B*(widij — wiw;), (AB)

where 0;; is the Kronecker delta. So
2

In(d) ~ In(da) + Bw” - Af + B—AfT W - Af, (A9)

where a is the Taylor expansion point, dj, is d evaluated at a, Af = f — a, w is the ()-dimensional
vector w evaluated at a, and W is the Q x @ matrix W = diag(w) —ww? . Inserted into Equation A2
we have

2
w(f); ~ w; * exp(BAf; — pw’ - Af — %AfT W - Af) (A10)

With this approximation we can calculate the expectation value

Efu(f); » fi] = 2V 9O « fudf (A11)

(27) Q/2 exp(A
M(E) = BAS — pwT - AET - %AfT WAE (- ) O ()
(A12)
| , B ;
= C(l) - i(f - V(z))T : C(X)sofllmax : (f - V( ))7 (A13)
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Where ¢(?), v and C'(X)sofimax are defined as follows:
1

C(X)softmax = (C(X)_l + ﬁQW)i (A14)
b® —e® _w (A15)
v = C(sotiman - (86 + C() L i+ 52 - a) (A16)
1 B , .
D = ST O = BBO) 2 (A17)
B 1 L or ~1
- 5a -W—a—ip, C(x)" - p (A18)

and e(?) is the i’th basis vector with components egi) = ;5. We can avoid the explict use of the

precision matrix by rewriting the updated covariance matrix as
_ -1
C(X)sotmax = (C(x) 7"+ (I + B°C(x)- W) =U(x)-C(x),

where we have defined U (x) = (I + 8>C(x) - W) ~' The updated mean vectors can conveniently
be expressed as

V(Z) = O(X)softmax . (ﬂb(Z) + C(X)il "M + ﬂQW ’ a) (A19)
vl = 6C(X)soﬂmax -el®) + O(X)soﬂmax ’ (_6W + C(X)il pt /BQW ’ a) (A20)
V(Z) = BO X)softmax : e(l) + V/, (A2D)

where v/ is a constant vector for all (¢). Similarly

- 1
M = —Ba; + 5 32 (c(x)soﬂmax)i’i + Bv +¢ (A22)
/ T 1 T -1 / /82 T 1 T -1
d=pw' -a+ Pl - C(X) softmax * V - 5a -W-a—ﬁu C(x)" - (A23)

with ¢’ again being a constant for all (). The expectation of the softmax weighted summary is given
by

Q
E[E] = K « Z w; * exp(cV) * 1/7;(1) (A24)
i=1
o Vdet(C(x)~1) o . . L
where K = N /det(U(x)). The most natural choice for the expansion point is
a = p in which case v and ¢ reduces to

v = BC(X)softmax - (€ — W) + p (A25)

N B2, T j
0 = (e - W) - O () w) (A26)

A.3 Practical considerations

Linear algebra For numerical reasons, we avoid computing C(X)sofimax €xplicitly, and instead use
the U(x) - C(x) factorization to compute solutions with U (x) ™! = I + 82C(x) - W.

C (%) softmax - (e(i) - W) =U(x) - (C(X) el — C(x) - W) (A27)

Following GPyTorch practices, we make use of the LinearOperator package to exploit the structure
of U(x)~! as an AddedDiaglL inearOperator when solving. For determinants, we find that Linear-
Operator’s logdet implementation gives nondeterministic results, and we therefore perform a dense
cast before computing K using default Pytorch.

While the factorization is numerically advantageous, it is still limited with regards to 5. We find that
at 3 > 5, numerical errors prevent a reliable calculation of the expectation. In practice, A~/ lies in
a range that allows numerically accurate solutions.
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Softmax When y,,x grows much larger than the softmax input vector f - a situation that can arise
easily when initializing with random points for gradient-based optimization - the softmax weights w
can become numerically zero for all "real" points, thus leading to E'(x) = 0, and vanishing gradients.
As we always wish to preserve a minimal energy contribution from the real points, we parametrize the
inverse temperature applied to ymax, By, using a hyperparameter o that denotes the minimal fraction
of probability mass pertaining to real points. This parametrization resembles the LogEI version of the
expected improvement acquisition function [58] to address the problem of vanishing El-gradients.

Let N denote the softmax denominator excluding ymax, N = Z]Q:l exp(BAf;). We define

. l1-a
exp(fy AYmax) = min (aN, exp(ﬂAymax)> (A28)
We used o = 0.05 as a default in all our experiments.

A.4 Number of effective points

We can interpret the softmax as the number of effective points contributing to the energy of the batch.
The entropy H of the softmax is given by

Q
H(w)=—Y w;n(w), (A29)
=1

and the number of effective points, Dey, is exp(H (w)), so that

Q
Deg = exp (— Z w; ln(wi)> . (A30)
i=1

D is bounded by 1 (approaching the maximum) and ) (approaching the mean). Note that if we
include ymay in the softmax denominator, we add wy,, In(w,,, ) to H(w), and the resulting number
becomes bounded by 1 and @ + 1.

B Relationship to other acquisition strategies

In the following section, we will discuss how BEEBO is related to UCB, GIBBON, Determinantal
Point Processes (DPP), the Local Penalization heuristic and RAHBO. We will base our analysis on
meanBEEBO, as the softmax-mediated interdependency of points in maxBEEBO prevents a simple
interpretation of the objective in a single-point stepwise manner and does not allow for the same
direct analogies to other strategies.

B.1 Relationship of BEEBO T and UCB « hyperparameters

BEEBO bears some resemblance to the UCB acquisition function, which in the single particle mode,

Q@ = 1, reads

aycs(z) = p(z) + Vr\/C(2), (A31)
where the parameter x controls the balance between exploitation and exploration and p(z) and C'(x)
are respectively the mean and variance of the posterior distribution, P(f |, D), as before. We
note that aycp does not account for the uncertainty of the measurement at x, and therefore remains
risk-neutral under heteroskedastic noise [11]. To understand the relationship between BEEBO and
UCB, we will therefore limit ourselves to the homoskedastic case and furthermore assume that
measurement variances o2 are much smaller than the typical prior variance of the GP surrogate, A, of
f.eg. A~ N"'Tr(K),so0? < Aand M~! = (K + 0?)~! ~ K~!. In this limit, the variance
of f(x) after measurement (indexed at i = n, say) reduces to o2

Cla)= (K '+o2D)") = (KK+0I)'0%) ~o° (A32)

nn
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and the information gain becomes

1
I(z) ~ 3 In(C(x)) — log(o).
Consequently, the gradient of the two acquisition functions reads

NG

Vaycs(z) = Vu(zr)+ 27\/@ -VC(x)
VCLBEEB()(J?) = V,u(x) + %(x) . VC(QL‘)

. . . . . . . . . _ T
The two gradients will be identical at points = where the posterior uncertainties satisfy /C(z) = NGE
For comparison, we may desire equal gradients at iso-surfaces corresponding to a given fraction, v,

of the prior uncertainty scale v/A, by setting T" accordingly as 7' = v - v/A - \/k. In our experiments,
we use 1/ =z and configure BEEBO using a dimensionless 7" explore-exploit parameter, defined as

T = \F’ and set 7' = 1/k for a given benchmark experiment.

B.2 GIBBON

GIBBON [42] approximates the (intractable) General-purpose max-value Entropy Search acquisition
function, which quantifies the mutual information M1 (f%,.;y|D) of a batch of measurements y
and the unknown optimum f,.. It does so using a lower bound on the information gain and MC
estimation of the expectation over fi;.. It can be written as

aGBBON(X) = ln det(R Z Z]n (1 — W yi(m) + W])

2\M| 2 $(7i(m) $(7i(m))
1 A
agpon (x) = 5 Indet(R) + )  dampo (1), (A33)
where R is the correlation matrix with entries ;; = %, M is a set of samples for
x)ii C(X);

the max-value f., and p; is the correlation of y; and fie(;). ¢ and ¢ are the standard normal

cumulative distribution and probability density functions, and ;(m) = =&

The definition of BEEBO introduced in Equation 7, with the scalar summarization function set to the
expected mean, F(x) = ZZ 1 m(z;), gives

Q
apegso(x) = T * % (Indet (C(x)) — Indet (Cayg(x))) + ; w(x;). (A34)

From the second formulation of GIBBON, it becomes obvious that although being distinct in their
motivation and derivation, BEEBO and GIBBON implement acquisition functions with a similar
structure. Taking an information theoretic and multi-fidelity BO standpoint, GIBBON refers to this
trade-off as diversity against quality, whereas in BEEBO we follow the intuitions of UCB, and use
exploration and exploitation.

* Quality - Exploitation: GIBBON employs an MC estimate of the lower bound approximation
of the information gain provided by each point, whereas BEEBO directly summarizes the
optimality of all points in closed form, either as their mean or an approximated softmax
weighted sum.

* Diversity - Exploration: In GIBBON, the diversity derived from the differential entropy
H(f|D,x) is the entropy of the posterior correlation 1 ln det(R). In BEEBO, we em-
ploy the reduction of entropy, the information gain I(x). Under homoskedastic noise,

I(x) o Indet(C(x)). Since R(x) = diag(C(x))~"/>-C(x ) diag(C(x))~"/2, we have that
Indet(R) = Indet(C'(x)) — ZQ In(C(x)i;). Therefore, maximizing the log determinant
of R penalizes points that have high variance.
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Therefore, while GIBBON presents an attractive approximation of max-value Entropy Search for
batched acquisition, BEEBO is an alternative that avoids approximating a quality criterion using
MC. Moreover, GIBBON’s diversity criterion implicitly penalizes points that have high variance,
whereas BEEBO’s criterion maximizes the reduction of variance. We find that BEEBO is orders of
magnitudes faster to compute than GIBBON (Figure A3).

In the context of large batches () >> 10), a modification of GIBBON exists that is further similar
to BEEBO. Departing from the strict max-value entropy search derivation, a scaling factor Q2 is
introduced to counteract a growing dominance of the diversity term:

Q

1 .

QlscaledGIBBON (X) = 207 * Indet(R) + E Ames () (A35)
i=1

This scaling is motivated by the fact that R contains Q? elements. However, we note that R is
summarized by its log determinant, which scales linearly in Q: As the determinant is the product of
the eigenvalues, the log determinant is the sum of the log-eigenvalues. The number of eigenvalues
scales linearly with matrix size @), and so does the log determinant.

B.3 Determinantal Point Processes

A Determinantal Point Process [43] specifies a probability over a set of points, or a "configuration of
points" drawn from a ground set. Specifically, the probability of a set of ) points x is given by

P(x) o< det (Lyx) , (A36)

where Ly is a () x @) symmetric matrix. Kulesza et al. [43] provide a decomposition of the general
DPP kernel L that makes quality and diversity components explicit, so that

Lij = q(xi)q(xj)k(zi, 25), (A37)

with k being a R? x R? — RT similarity kernel, and ¢ being a unary R — R scalar quality function.
This framework is naturally amenable to batch BO, as we seek to select a collection of points that
trade off quality (optimality) and diversity. Note that both k and ¢ are distinct functions that need to
be specified by the user, leading to the practical complication that they must be chosen very carefully
so that their scales do not dominate each other, which limits the utility of this decomposition in
practice [42].

In the following, we show how BEEBO is equivalent to a DPP, and derive the necessary k& and q.
Again, we consider BEEBO

ageeBo(X) = —E(x) + T * I(x), (A38)

with the scalar summarization function set to F(x) = — 2?:1 f(z;). We will first focus on the
information gain term I(x), which we can rearrange as

I(x) = %m det(C(x)) — %m det (Cuug (x)) = %m det (C(x) - Cl(x)).  (A39)

aug

Our similarity kernel £ is therefore given by the entries of the matrix S = C(x) - Cye(x) ™, so that
k(x;,x;) = S;;. Note that due to the augmented covariance term, the implied % also depends on all
other currently selected points in x, and L is not a submatrix of an all-sample L. Therefore, BEEBO
does not implement a DPP under heteroskedastic noise. However, if we only consider homoskedastic
noise, BEEBO’s I(x) simplifies to the posterior entropy [63], and therefore S = C'(x). As C'(x) can
be accessed as a submatrix of an all-sample C, this permits a DPP.

Given the choice of E(f), we can rewrite BEEBO as
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Q
1
aBEEBO(X) = Indet (S) * T * 5 —+ Zl'u,z

Q
2 2
T* aeeBo(x) = Indet (S) + ;:1 7
2 . . 2
T" apegso(x) = Indet (S) + Indet (D)) with D = dlag(exp(f * L))

1 1 1 2 1
T * apgppo(X) = Indet (D2 - S - Df) Di% = exp(f/ii) = exp(fui)

(A40)

where L is a matrix with entries L;; = S;; exp(# * ;) exp(7 * p;). BEEBO therefore uses the
DPP quality function ¢(;) = exp( * u;), and, like proven previously for GIBBON, a batch x with
maximal agggpo corresponds to the MAP of a DPP.

B.4 Local penalization

Local penalization (LP) is a greedy batch selection strategy that given any arbitrary single-point
acquisition function, ensures diversity by applying a penalization function v (x, z") that downweights
the acquisition value of candidate locations x based on their proximity to already selected points. The
criterion for selecting x; is given by

i—1

x; = argmax a(x) H Y(x, ;). (A41)
j=1

Note that in this formulation, the product includes all previously selected points, not just the current
batch. The penalization function ¢/ may in principle be chosen freely. Gonzalez et al. [35] propose
exploiting the fact that fi,, is Lipschitz continuous in order to bound the position of the unknown
optimum and penalize accordingly. The Lipschitz constant L is inferred from the GP surrogate and
used to parametrize 1. In LP, acquisition function optimization proceeds iteratively. After an x; is
chosen, the corresponding penalizing multiplier is added to the objective before optimizing for the
next rj4q.

While BEEBO enables optimization to proceed in parallel, it is of course possible to also optimize
BEEBO greedily (under homoskedastic noise, I is submodular). In this case, it implements an LP
strategy where o(z) = pu(z). Rather than a product of individual R? x R? — R function evaluations,
the penalizer implied by BEEBO is the information gain I(x) : R?*¢ — R that we evaluate by
concatenating a candidate point to the already acquired x at each iteration. Like in GIBBON, this
constitutes an LP strategy that does not require estimation of any properties of fi,. beyond learning
the GP surrogate.

B.5 RAHBO

Risk-averse Heteroskedastic Bayesian Optimization (RAHBO) [11] is a UCB-derived single-point
acquisition function that avoids heteroskedastic risk, preferentially selecting points with low noise.
While it is not applicable to batched acquisition directly, we here compare it to single-sample BEEBO
to highlight different ways of addressing noise. Given a heteroskedastic surrogate model that learns
an additional GP for the noise, the variance proxy, RAHBO reads
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OéRAHBo(J’J) = UCBf(.I‘)—Oz * LCBvar(x)

aranBo(T) = ,Uf(x) + B *Uf(x)_a(,uvar(x) — Byar * Ovar(T)) ) (A42)
where 11y and oy are the posterior mean and variance of the surrogate model and 3y is the standard
UCB trade-off hyperparameter, yielding the standard upper confidence bound UCB¢. « is the chosen

risk tolerance, and LCB is the lower confidence bound of the variance GP with posterior mean [y,
and variance oy, traded off using [Sy,;.

At @ = 1, BEEBO can be expressed as

1 ]‘ au
ageeo = fif(z) + T = S In(op(z)) — T * 5 In(o’ *(x))

2
_ 1 oy(z)
QBEEBO = /J,f(l') + T % B In (U;Ug(l')> y (A43)

where the variance proxy at x is considered via the augmented posterior variance o;ug.

While RAHBO penalizes risk on an absolute scale, subject to o, BEEBO optimizes for high uncer-
tainty reduction, quantified as the log ratio of the variance before and after making measurements.

Moreover, RAHBO differentiates between known and unknown variance proxies, and uses the LCB,,
term to discount the predicted variance according to its uncertainty. In its closed-form analytical
expression, BEEBO does not permit for the uncertainty of the variance proxy to be taken into account,
being more similar to the known variance RAHBO

aranBo(T) = pif(w) + Bf * 0f(T) — Aftvar(T) (Ad4)

where [ty is a noise-free proxy. Either a sampling-based approach, or approximations to I (x) would
need to be introduced to handle variance proxy uncertainty in BEEBO.

C Implementation details

C.1 Acquisition function optimization

BEEBO was implemented for full compatibility with the BoTorch framework (version 0.9.4) [52]
as an AnalyticAcquistionFunction. Standard BoTorch utilities for initializing and training GPs,
initializing g-batches and performing gradient descent optimization of the acquisition function are
used. We trained GPyTorch (version 1.11) [57] GP models with KeOps [64] Matérn 5/2 kernels
(following BoTorch defaults with a separate length scale for each input dimension, and Gamma priors
on the length and output scales). Log determinants for the information gain were computed using
singular value decomposition for numerical stability.

GPyTorch provides a get_fantasy_model method that allows for the efficient augmentation of the
training data of a GP with a set of points, as done in BEEBO. However, we observed that GPy-
Torch’s implementation suffers from GPU memory leaks when used with automatic differentiation
enabled. We therefore instantiate augmented models explicitly, not making use of the (more efficient)
augmentation strategy.

All experiments were performed with double precision. SobolQMCNormalSampler was used for
acquisition functions making use of the reparametrization trick. Experiments were run on individual
Nvidia RTX 6000 and V100 GPUs. Five replicates for the benchmarking experiments required a total
of approx. 5,000 RTX 6000 GPU hours, with the majority of the run time dedicated to the GIBBON
baseline, rather than BEEBO itself (Figure A3, Table A9).

C.2 Benchmark BO methods

All methods were benchmarked in BoTorch. For ¢-EI, we used LogEI [58]. For TS, 10.000 base Sobol
samples were drawn and sampled with MaxPosteriorSampling using the Cholesky decomposition
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of the covariance matrix. GIBBON was optimized using sequential optimization following the
BoTorch tutorial. We additionally implemented a custom version of GIBBON that applies the Q2
scaling factor to the diversity term, as proposed in GIBBON’s supplementary material. We used
100,000 random discretized candidates for max-value sampling. In a few iterations, optimizing
GIBBON seemed challenging, with BoTorch reporting that no nonzero initialization candidate
could be identified. KB was optimized using a custom greedy optimization loop with fantasized
observations, using (single-sample) LogEI as the underlying acquisition function. TURBO-1 was
optimized following its BoTorch tutorial. None of the methods use a hyperparameter for controlling
their explore-exploit trade-off. The results are therefore based on 10 iterations at defaults.

C.3 Test problems

Test functions  All test functions were used in their BoTorch implementations. As done in previous
work, the embedded Hartmann function was created by appending all-0 dummy dimensions to the
original six dimensions [53, 54, 50].

Control problems We consider two control problems from previous work: A 14-dimensional
parameter tuning task for controlling robot arms pushing two objects to a target location [55], and
a 60-dimensional trajectory planning task for a rover navigating through a maze of obstacles [56].
Instead of converting the problem objectives into rewards as in the original work, we operate on the
actual minimization objectives directly (distance to target, navigation loss), and follow BoTorch’s
approach of simply inverting the objective in order to yield maximization problems. Both problems
were adapted from their available implementations in Wang et al. [56] to follow the BoTorch test
problem APL

C.4 Heteroskedastic noise

The (inverted) Branin function has three global optima f(z*) = —0.397887 at 2] =
(9.42478,2.475), x5 = (—m,12.275) and 2§ = (7,2.275). We define heteroskedastic noise so
that the variance is maximal at 25 and z3. The noise decays exponentially with the distance from any
of the two noised optima at a rate \.

0%(2) = 03, * exp(=A* min([lz — 232, [|lz — 23]2) (A45)
For our experiments, we set 02,,. = 100 and A = 0.05. As the surrogate function, we use a
HeteroskedasticSingleTaskGP provided in BoTorch. This model learns two GPs simultaneously,
one for the function f(z) and one for the (also unknown) variance function (). When querying
the oracle with a batch of points, noised observations of f(z) are provided together with the true o
at each point. The homoskedastic control experiment uses a SingleTaskGP with inferred noise level.
The homoskedastic noise is set to 02 = 77.5, which is the average noise level of the heteroskedastic
function over the whole domain.
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Figure Al: The Branin function with added heteroskedastic noise following Equation A45. 02, =

max
100, A = 0.05.

D Extended results
D.1 Results including additional baselines

Table Al: BO on noise-free synthetic test problems. The normalized highest observed value after
10 rounds of BO with g=100 is shown. Colors are normalized row-wise. The BEE-BO and ¢-UCB
columns are equivalent to Table 2. Higher means better. Results are means over five replicate runs.

Problem a ‘meanBEEBO ‘maxBEEBO 4-UCB ¢El TS KB GIBBON TuRBO
=05 T'=50 T'=005 T'=05 T'=50 VR=0.1 VR=10 =100 - - - default scaled -
Ackley 0985£0031 097550035 0982£0023 09500035 0988£0013 0973£0023 0967£0022 0988:£0011 0987 £0012 0.981 £ 0014 0951 £0027 0,951 +0.027
Levy 0999 £0.001 0999 £0001 10000000 10000000 0998 +£0.002 ' LOVO£0.000" 1.000+0.000 0.998 -+ 0.002 002 X 008 0993 £ 0.010
Rasirigin 10024 09890016 09830016 09930007 0983+0011 [0993:£0006° 0951 £0021 0983 +0015 094450038 0,944 = 0038
osenbrock 0956 -+ 0.071 0 [09820.032 097900270 0938 +0.123 0949+ 0,074 0943+0.129 0962 + 0,079 079 0,843 + 0301
Styblinski-Tang 0961 0072 10000000 1 .000 100040000 1.000%0.000 1.000%0.001 10000000 1.000=0.000 0999 +0.001 1000 = 0.000 X X X 00110999 = 0,001
Shekel 0,540 + 0242 X 296 0300+ 0.079 0. 230 041140222 0244 £0.116 0330 £0212 026440023 0515+0.253 % 076 0282 £0.076
Hartmann, 0894 £ 0073 09760045 0974£0042 0918-£0058 0950+ 0052 0889 +0.062 X 074 0887 = 0.074
Cosine 0.895 £ 0077 0.934 £ 0, X X X X X 071 0937£0.046 0937 £0.046
Ackley 082260034 08190024 0. 053 (05464 0.073 0.800+0.048 0. X ¥ 9 0,548 0100
Levy 096650032 096650023 0953£0015 091450045 0904+ 0.041 X 023 0.958 £ 0.008 0.889 £ 0049 0.881 £0075 0881 £0075
Povell 0861 £0.122 0951 £0.046 0949 £0.040 0909 £ 0.085 0920+ 0056 0. X 0.883 +0.057 07550204 0,834 +0.118
Rastrigin 463 +0.123 0,536 +0.157 059540066 0.558+0091 0.573+0.122 0,590 +0087 04200075 X 2 3 . 099 0,359+ 0.135 0210+ 0.158
Rosenbroc] 10 0.904 + 0.068 0986£0010 0975 0966+ 0033 0.971 + 0, X 005 0.870 0,050 0,974 0021 0,979 +0015
Styblinski-Tang 10 0289+ 0.155 0638 +0.107 030940190 0 0.430 +0.198 025540193 0,255 +0.193
Ackley 20 082740045 085140032 077740067 081840023 0781 %0035 0741 £0027 0753 0, 0.755 + 0050 0,299 £0.110
Levy 20 094940028 094340017 088940073 094540025 09040041 09070056 09260031 0. X X 095540024 0879 £0.097 0.746 + 0157
Powell 20095540028 0939£0020 0913:£0077 09150061 0948+ 0.031 X 0.912 + 0061
Rastrigin 20 X X 5 .043 04844 0.089 04720088 0522+ 0.074 0480 £ 0.061 . 0,397 £
Rosenbrock 20 09830013 09730014 0982 + 0,008 X X 09530044 0980 + 0016
Styblinski-Tang 20 65 03945009 02740055 0203+0.105 0561 +0.143 0332 +0.112
Ackley 50 82340, 062340264 059440218 046540103 06380041 0759 +0015 0730+ 0021 0.546 + 0,140
Levy 50 0.940+£0082 0 X X 018 1097140019 095840016 087940025 094840016 09510035 0941 0015 0. X 0,955 +0.016
Povell 50 0954 +0029 X 023 097540008 096940010 093840024 09700004 0961 0,015 [0IB0EO007 0. X 0,957 + 0,030
Rastrigin 50 X 0472:£0034  0470£0021 0439£0024 0431 £0039 0397 £0050 0481 + 0041 X 0.409 0,068
Rosenbrock 50 09710016 0976 0.008 0981 £ 0.005 0.968 + 0.005 0981 0012 X
Styblinski-Tang 50 X X 1161 0,509 0.064 | 0342 £ 0.090 0356 £ 0.079
Ackley 100 0277 +0.343 0417£0361 05400281 0,682 +0.093 0.645 £0.102 0.299 £0.120
Emb. Hartmann 6 100 | 0 X 0928£0076 09570079 09360068 0907+£0057 08960076 09130064 0916 +0.122 09120118
Levy 100 09500017 09400019 0950+ 0.008 0934 +0.035 X X 0.903+£0053 0763 +0283 0913 +0.182 0913 +0.182
Povell 10001 036 0952 = 0.066 0979 4+ 0.006 X 0,964 +0022 0,691 +0.115 0,685 +0.123 0,685 +0.123
100049740034 0401 +0.160 0441 £0.117 0455002 0455£0029 04460016 0442+ 0041
100 240075 0971 +0012 FOSBOEEON09N 0.953 +0.084 (097600097 0.970+0011 0972 £0006 0969 +0.016 X X X X .
100 | 05370045 0474£0.110 0401 £0.106 042340045 0353 +0055 (02960030 0308+0042 0532 0.109 v 02210054

Mean 0.795 0.788 0811 0790 0744 0758 0801 0734 0727
Median 0940 0889 0951 0949 0907 0920 0913 0931 0834
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Table A2: BO on noise-free synthetic test problems. The relative batch instantaneous regret of the
last, exploitative batch is shown. Colors are normalized row-wise. The BEEBO and ¢g-UCB columns
are equivalent to Table 3. Lower means better. Results are means over five replicate runs.

Problem a ‘meanBEEBO ‘maxBEEBO 4-UCB L s KB GIBBON TRBO
T'=005 =05 =50 =005 VR=01 V=10 V=100 - - default scaled -
Ackley 02920102 0268 £0.120 0259 £ 0.125 0498 £0203 | 0800 0,157 0821 £0.191
vy 0.134£0.055 1106+0.138 0280+ 0288 0184 +0.194 0.678 %0477
Rastrigin 045540053 042540147 040740335 0.578+0230 04540150 0500 0,055 08390115 06920180 0763 £0.169 0,600 %0223

Rosenbrock
Styblinski-Tang

Hartmann

Cosine.

Ackley

Levy

Povell

Rastrigin

Rosenbrock

Styblinski-Tang
ckley

Styblinski-Tang
Ackle

Emb. Hartmann 6
Lev

Powell
Rastrigin
Rosenbrock
Styblinski-Ts

ean
Median

0686+ 0.068
0.047 + 0031
0426 +0.187
0.895 +0.042

0718+ 0.340

0.119 0103
0.094 +0017

0001 0001 0.002 £ 0.001
0.169+0.008  0.170 £ 0.008
.688 £ 0.090  0.688 -+ 0.090

0222 4+ 0.063
0261 0067

0541 0094,
0.036 0026
0.691 + 0.165

0653 +0247
0049 +0.123

.676 = 1.257
0.900 + 0256

0.004 0002
0.172  0.006
0.776 + 0073
0229 +0.111

0241 +0.151
0081 0022
0.600 40044
0.105 + 0057

0636 +0313
0.144 +0.134

0.004 +0.002
0.170  0.009
0730 + 0057

0113 +0055
0074 + 0015
0635 +0.058
0048 + 0038

0031 +0019
0574 +0079
0466 + 0275

0.002 +0.001
0.170 + 0.008
0695 4 0.082

0.182 0062
0.110 4 0.024
0555 +0.044.
0051 +0013
0578 + 0074
0530 £0.102
0268 + 0071
0.064 +0.029

0.048 +0.021
0727 +0.031

0992 +0325
1.024 £ 0,095

0953 + 0066
0931 +0014
1188 £ 0.166
1037 +0.184
0920 +0.027
0.906 0109
1174 £0.136
0945 + 0030
0839 +0.109
0809 +0.117
0864 +0.034
0591 +0.171
1113 + 0,099
0949 +0033
0611 +0.105
0542 £0.149
0813+ 0030
0539 +0.175

0321 £0092 0948 £ 0.
0.086£0.089 0172+ E ).042
0.164 + 0.103 0.615 + 0.

0.041 +0.054 0.465 + 0.070

0557 + 0053

0544 + 0047

0759+ 0019
0518 0,100

: 039 0.031£0015
05824032 07420082 0924+ 0042

1094 £ 0337
1.027 £ 0,062

0975 0050
0943 +0015
1011 £ 0,083
1101 £0.156
0907 + 0.048
0770 + 0.098
1126 £ 0,077
0950 0020
0914 +0.148
0689 +0.117
0838 +0.042
0578 +0.147
1107 +0.121
0947 £0037
0681 + 0092
0499 +0.137
0810 + 0044
0520 +0.134
1196 +0.136
0935 +0.036

0716 £0.107
0493 + 0092
0832 £ 0.034
0.589 +0.127

120340188

1014 £0.194
1051 + 0,095

0922 + 0059
0950 +0.022
L111 £ 0081
1215 £0275
0905 0036
0918 + 0075
1219 £ 0,055
0917 £ 0012
1056 +0.121
0870 +0217
0852 +0.035
0903 +0.130
L177 £0.094
0874 +0.025
0892 + 0277

0.768 -+ 0.019
0594 +0.142
0981 0049
0.863 = 0,038

0586 + 0.107
0524 +0.130
0780 + 0,025
0507 +0.092
0930 + 0049

1215 £0314
0851 +0.155
0964 + 0032

L112£0.158
0.942 £ 0,070
0.741 £ 0,202
0232 %0093

0784 £0.116
0.060 0,018
0.924 = 0,100
0.842 £ 0,045
0.113 £ 0070
0,052 £ 0,033
0662 + 0,050
0033 £0010

0.004 +0.005

0.936 = 0.030

0.520 & 0,082
0.148 = 0.042

0.934 £ 0012
0801 +0.037
0.961 +0.018

087
093

0389
094

090
092

0.008 = 0.009
0,285 0413
0352 £ 0.194
1,069 £ 0283
0917 0230

10.986:£0001
0.881 + 0014 0,093 £ 0030

0.045 +0.052

0,678 =+ 0.290

1387 £ 1,054
0432 0568
0.782 = 0,060

0,196 % 0.125
0.162 0362
0716 +0.121
0031 +0022
0617 +0.178

+0.080

0.116 = 0208
0420 0,183
0713 20,144
0,127 +0205
0.855 0,179

0.66
071

0232 0043
0053 +0.028

0055 0027
0.902 = 0.009
0,098 = 0,094
0303 = 0028
0,104 +0013
0,584 0018

01330019
0.538 0027
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Table A3: Paired t-test p-values for the results of meanBEEBO in Table 2. The combined p-value
was computed using Fisher’s method. P-values smaller than 0.05 are indicated in bold.

| meanBEEBO T'=0.05 meanBEEBO T'=0.5 meanBEEBO T'=5.0

Problem d | q-UCB KB GIBBON GIBBON(s) TuRBO | g-UCB gEl TS KB GIBBON  GIBBON (s) TuRBO T KB GIBBON  GIBBON (s) TuRBO
Ackley 2 | 8E-03 9E-03  3E-03 IE-01 | IE-01  6E-0l 9E-0I 3E0I 8E-03 1E-02 IE+00 7E-01  8E-03
Levy 2 LE+00  6E-04 TE02 | TEO1  1E400 3EOI  1E+00 SE-04 SE-02 TEOL  1E+00  9E-04
Rastrigin 2 3E01  1E-02 9E-01 | 2E01  SEO  IE+00 7E-03 2E-03 4E-03
Rosenbrock 2 SE-01  G6E-03 3E02 | 3E01  9E01  SE-0I 6E-03 1E-01 9E-03
Styblinski-Tang 2 9E-01  9E-01 2E-05 | 3E-01  SE-01 IE-01 2E-03 SE-02 2E-03
ekel 4 4E-02  4E-04 9E-01 | 4E-06  4E-04  SE-10 1E-08 TE-09 2E-04
Hartmann 6 TE02  4E-05 1E-04 | 7E-03  7E-02  1E-06 4E-05 SE-04 1E-04
Cosine 8 1E-03  8E-04 6E-05 | 2E-05  1E-06  1E+00 9E-04 1E-03 1E+00
Ackley 10 3E-06  SE-09 SE-05 | 6E-05  2E-04  1E+00 5E-10 SE-07 4E-09
10 6E-03  SE-05 3E-03 | 1E-03  3E-03 1E-01 SE-04 SE-03 1E-04
Powell 10 3E-04  3E-03 IE-01 | 2E-03  9E-03  G6E-04 4E-03 2E-03 4E-02
Rastrigin 10 2E01  6E-02 IE+00 | 4E-01  6E-02  IE+00 SE-03 4E-05 SE-06
Rosenbrock 10 IE01  1E-03 3E01 | SE-03  3E-03  SE-06 4E-03 4E-03 1E+00
Styblinski-Tang 10 SE01  2E-09 3E03 | IE-05  1E-02  2E-04 3E-09 3E-06 2E-04
ckley 20 9E-03  4E-08 3E06 | 7E-05  1E-04  1E+00 6E-09 2E-07 2E-08
20 SE-01  2E-02 IE-01 | 1E-02  2E01  IE+00 3E-02 1E-03 4E-01
Powell 20 1E+00  2E-02 IE+00 | 2E-03  1E-02  6E-01 9E-03 SE-03 1E+00
Rastrigin 20 9E-01  TEO0I IE+00 | 6E-01  2E-01  IE+00 2E-02 2E-02 2E-03
Rosenbrock 20 1E+00  9E-03 3E01 | 4E-05  3E-04  1E-05 8E-03 6E-03 1E+00
Styblinski-Tang 20 26-03  3E-10 1E-04 | 2E-02  GE02  6E-05 3E-08 2E-05 SE-04
Ackley 50 1E+00  6E-01 4E-01 | IE+00  1E+00  1E+00 3E-01 GE-02 1E-09
Levy 50 TE01  3E-02 9E-05 | 2E-01  4E-02  1E+00 8E-06 2E-02 6E-06
Powell 50 6E-01  SE-01 1E-02 | 2E-04  3E-04  IE+00 2E-06 9E-05 SE-01
Rastrigin 50 1E+00  1E+00 IE+00 | SE-04  3E-0  IE+00 SE-02 1E-04 SE-01
Rosenbrock 50 LE+00  6E-01 2E02 | 9E0I  8E-03 3E-05 1E-02 2E-02 2E-02
Styblinski-Tang 50 1E+00  3E-07 3E03 | 9E01  IE01  4E-05 9E-10 3E-04 2E-03
Ackley 10 6E-01  SE-01 TE02 | 1E+00  IE+00  G6E-02 6E-01 TE-01 2E-05
Emb. Hartmann 6 100 IE-01  2E-05 3E01 | 2E-03  2E-02  1E-04 4E-05 SE-05 6E-05
Levy 100 9E-01  3E-01 6E-03 | 2E-02  2E-01  6E-06 3E-02 2E-01 4E-02
Powell 100 1E+00  3E-03 IE+00 | 9E-01  SE-01 2E-04 4E-07 7E-05 1E-05
Rastrigin 100 1E+00  SE-04 6E-05 | 8E-O1  9E-01 3E-01 2E-03 2E-02 3E-04
Rosenbrock 100 1E+00  1E+00 9E01 | 2E01  7EO1  2E-04 4E-01 2E-01 3E01
Styblinski-Tang 100 1E+00  4E-08 3E-06 | 9E-01  9E-01  9E-03 3E-05 3E-05 4E-04
Combined IE+00  6E-47 2E-18 | 1E-20  2E-12  7E-06 2E-63 3E-51 4E-44

Table A4:
computed

Paired t-test p-values for the results of maxBEEBO in Table 2. The combined p-value was

using Fisher’s method. P-values smaller than 0.05 are indicated in

bold.

maxBEEBO T"=0.05

maxBEEBO T'=0)

5

maxBEEBO 7"=5.0

Problem d | ¢UCB g¢El TS KB GIBBON GIBBON(s) TuRBO | ¢-UCB ¢EI TS KB GIBBON GIBBON (s) TuRBO KB GIBBON GIBBON (s) TuRBO
Ackley 2 | 2E01  7EOI  1E+00 SEOI  3E-03 2E-03 2E-01  7EO1 9E-01 SE-01  1E-02 SE-01 IE-01  4E-03
Lev; 2 | SE01  9E0I 3EO0I IE+00 7E-04  SE-02 3E-01  9E-01 2E-01 IE+00 SE-04 TE-02 IE+00  3E-03
Rastrigin 2 | 2E04  TEOI IE+00 SE-03 SE-03 2E-03 SE-01  IE+00 IE+00 2E-01  1E-02 9E-01 2E-02  6E-03
Rosenbrock 2 | BE02  SEOI  2E01 3E0I  6E-03 9E-02 2E01  6E-01 3E-01 4E-01  SE-03 4E-02 1E+00  1E-02
Styblinski-Tang 2 | 4E01  2E01  TE-4  IE400  2E-03 1E-02 SE-01  SE-01 2E-01 IE+00 2E-03 SE-06 9E-01  4E-03
Shekel 4 | IEOI  1E+00 2E-04 SE01  SE-04 3E01 3E01  9E-01 SE-03  SE-0  2E-02 1E+00 3E01  7E-03
Hartmann 6 | 9E0I  1E+00 2E-05 1E+00 4E-03 3E01 IEO1  SE-01 1E-05 SEOI 2E-04 2E-02 OE-01  2E-04
Cosine 8 | 6E-05 1E-06 1E+00 1E-03 SE-04 1E-03 1E-03  2E-05 1E+00 1E+00 4E-03 SE-04 IE+00  6E-01
Ackley 10 | 2E:01  2E-01  1E+00 2E-04 2E-08 1E-05 9E-01  IE+00 IE+00 7E-01  GE-08 9E-01 IE+00  1E-04
Levy 10 | SE-04  3E-03 O9E02 OE0 6E-04 SE-03 3E-03  4E-03  OE-01 IE+00 7E-04 1E+00 IE+00  1E-01
Powell 10 | 8E02  4E-02 1E-03 9E0I 2E-03 1E-03 4E-02  4E-02  2E-03 9E0I 3E-03 1E+00 IE+00  1E-02
Rastrigin 10 | 3E-04  1E-02  1E+00 3E-03  6E-04 9E-05 2E-01  2E03 IE+00 1E-04 1E-03 1E+00 4E-03  1E-04
Rosenbrock 10 | 1E-02  4E-03 G6E-06 1E+00 6E-03 6E-03 1E-02  3E-01 4E-06 1E+00 9E-03 1E+00 IE+00  4E-01
Styblinski-Tang 10 | 7E-06  SE-02 2E-04 1E+00 SE-10  4E-06 7E-03  9E-01 8E-03 IE+00 2E-07 6E-01 IE+00  9E-03
20 | 1E-04  6E-04 IE+00 O9E-03 1E-08  3E-07 1E-02  2E-02  IE: 9E-02  4E-08 2E-06 IE+00  6E-04
Levy 20 | IEO1  IE-01 IE+00 SE-01  6E-02 9E-04 3E01  IE#00  IE+00  IE+00 3E-01 SE-01 IE+00  2E-01
Powell 20 | 9E01  4E-01  IEH00  IEH00  GE-02 2E-02 SE01  9E-01 IE+00 1E+00 SE-01 1E+00 IE+00  4E-01
Rastrigin 20 | 5E-03  7E-02  IE+00 3E-02  1E-02 3E-03 6E-01  IE-O1 IE+00 1E-01  4E-02 9E-01 2E-02  1E-03
Rosenbrock 20 | SE-04  1E-02 1E-05 IE+00 SE-03 9E-03 4E-01  9EO0I 4E-06 1E+00 2E-02 1E+00 IE+00  9E-01
Styblinski-Tang 20 | SE-08  IE-0I ~ 9E-05 3E-01  2E-09 2E-06 IE+00  IE+00 1E-02  IE+00 4E-06 1E+00 IE+00  1E-05
Ackley 50 | 6E-01  9E-01 IE+00 2E-01 2E-02  9E-04 IE+00  IE+00 IE+00 3E-01  7E-04 4E-04 9E-01  SE-04
Levy 50 | 2E-02  2E-02  IE+00 8E-03 3E-06 1E-02 3E01  IEOl  IE+00 4E-01  8E-07 4E-07 IE+00  SE-01
Powell 50 | 4E-02  3E-02 IE+00 SE-02 2E-04  7E-04 SE-02  2E-01 IE+00 9E-02  G6E-03 SE-06 IE+00  1E+00
Rastrigin 50 | 1E-02  4E-01 1E+00 2E-02 4E-02 G6E-04 2E-04  SEO1 IE+00 1E-02  SE-02 2E-01 IE-01  7E-01
Rosenbrock 50 | 7E-03  9E-01 7E-01 IE+00 2E-01 TE-01 IE+00  2E-01 2E-02 SE-0I d4E-02 7E-04 IE+00  1E+00
Styblinski-Tang 50 | SE-05  IE+00 2E-03 1E+00 3E-07 SE-01 IE+00  IE+00 SE-02  IE+00 4E-05 1E+00 IE+00  6E-05
Ackle: 00 | IE+00  1E+00 3E-03 2E-01  6E-02 1E-01 9E-01  IE+00 9E-05 2E-02 1E-02 4E-04 SE-07  2E-04
Emb. Hartmann 6 100 | 3E-02  4E-02  7E-05 9E-02  2E-05 3E-05 3E01  IEO1  2E04 2E-01 2E-04 SE-01 GE-01  3E-04
Levy 100 | SE-03  7E-02  6E-06 1E-03 2E-02 2E-01 IOl 6E01  7E-06 1E-02 4E-02 1E-09 2E-02  4E-02
Powell 100 | 6E-02  GE-03 2E-04 9E-03 1E-05 2E-05 TE01  TE-02  2E-04 2E-02 1E-05 9E-09 3E-02  1E-05
Rastrigin 100 | 6E-01  SE-01 2E-01 IE+00 1E-02 4E-03 2E-01  IE+00 2E-01 IE+00 1E-03 3E-04 IE+00  2E-03
Rosenbrock 100 | 8E-01  SE-01 1E-04 2E-01  6E-01 4E-01 IE-01  2E-01 1E-04 1E-02 3E-0I 3E-08 4E-02  4E-01
Styblinski-Tang 100 | 3E-04  IE+00 6E-03 IE+00 2E-05 SE-06 IE+00  IE+00 4E-02 1E+00 SE-04 9E-01 IE+00  4E-03
Combined 1E-27  3E-04  1E+00 1E+00 G6E-69 1E-44 9E-02  IE+00 IE+00 1E+00 3E-51 3E-16 IE+00  8E-31
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D.2 Results for batch sizes 5 and 10

Table AS5: BO on noise-free synthetic test problems. The normalized highest observed value after 10
rounds of BO with g=5 is shown. Colors are normalized row-wise. Higher means better. Results are
means over ten replicate runs.

Problem d ‘meanBEEBO maxBEEBO 4-UCB ¢El TS KB GIBBON TuRBO
T'=005 T'=05 T'=50 T'=005 T'=05 T'=50 VR=0.1 VR=10 V=100 - - - default -

Ackley 2 0.865 0073 08490049 0793 = 0.096 0.785 % 0,084 05550312 08650063 079 +0091 0550 +0409

Levy 2 0.994 -+ 0.008 0.995 0,009 0996 +0.008 0992 +0.006 09124 0.128 [0.998£00061 0975+ 0018

Rasirigin 2 0875 0075 0.851 0095 0842+ 0.088 08390136 0871=0129 0701+0.163 0.875=0087 0.808 +0.096

Rosenbrock 2 09260224 0894+0314 089240314 0912 %0228 . 313 08720308 0,884+ 0312

Styblinski-Tang 2 0.897+0.106 06690284 0850 +0.16] 0. 167 08370227 0898 +0.168 X . 0866+ 0.108

hekel 4 01940071 0.167 %0052 . 053 0,142 0,085 0.175 +0.075

Hartmann 6 0.880 +0.097 0935 +0.046 0. 0795 +0.118 0792 +0.106 090540075 0916 +0.049

Cosine 8 0701 +0.093 . 079 0,663 %0051 0.698 +0.119 X 064 072240322 0. 085 0.685 = 0.084

Ackley 10 0272 0295 042540228 0290 +0.157 | 0.191 £ 0104 02284 0.117 0,348 + 0.451

Levy 10 X 086 08020115 083940081 0848 +0.127 0847 £0.111 08550119 0826 +0.155 08170097 08440077

Powell 10 09320045 0925+ 0048 09240028 | 079740258 0844 +0.146 0932 +0.040 07950153 0.898 +0.076

Rastrigin 10037740118 0331+0.133 0375 +0.101 035740094 0400 % 0.085 040040087 0365 +0.156

Rosenbrock 100967 +0030 X 020 09710015 0964 0022 0965 = 0.057 X 021 0,944 £ 0,043 0,962 & 0.041

Styblinski-Tang 10 055240131 JOI66E01761 0.394 +0.117 0400 +0.105

Ackley 20 01820173 014840086 0276 +0.112 0231£0208 0.186+:0092 0199 =0.141 0. 0.1720.147

Levy 20 057140155 0608 0175 06630118 0681 0.132 0.663 = 0.145 [JOFS0SE00681 0.665  0.112 0,660 = 0.148 0.567 % 0.158

Powell 20 086440062 0889+ 0061 087240075 08740053 0. . 08940060 0812+0.125 0882 +0.076 0.894 0049 0. 071 0.764 +0.134

Rastrigin 20 023740121 02560103 0 1127 02170120 02390119 | 0 . 0223 0.111 02570091 0225+ 0.111 0227 +0.125

Rosenbrock 20 092340012 09240026 0942 +0.024 X 0942+ 0026 0941 +0.036 093240030 0891 +0037

Styblinski-Tang 20 0401 = 0.085 0487 +0079 2 . 0371+0.09 [ 02580077 |

ckley E 0024 %0016 00130006 0013 + 0005 X 012 0,014 & 0.007 X X X .000 0,029+ 0.014 0,044 +0.010

Levy 50 041120145 03470119 0393+0.122 0363 £0.143 0. . 0374 £0.161 2 . 0450 0087

Powell 50 070840073 0732£0056 07160077 0.634£0098 0.694=0051 0. X 0.711 % 0,069

Rastrigin 5002064009 0209+0061 0.132+£0058 0.177£0060 0.190=0058 0. X 0.187 +0.058 3 X

Rosenbrock 50 071340083 0751£0077 0698 £0.117 06400114 0705=0067 0. X 0768 2 0,065 . 057 0.684 = 0,061

Styblinski-Tang 50 038450079 038240048 0351 +0.060 0368 40055 0. 124 0336+ 0057 . .054 0269+ 0.077

Ackley 100 00420013 0035=0016 0079+0021 0037+0011 0.060+0012  0.081£0021 0.048=0021 0051 %0022 0.069 = 0.021 0,028 +0.006

Emb. Hatmann 6 100 0.554 £ 0216 0.577 % 0,198 064540225 0561 0234 JOAISEEONOTN 0.649 £0.112  0.547 £0227  0.566 %0212 0678 0,163

Levy 100 052240069 05450053 059840053 0595+0050 0589 +0.101 0.680+£0082 0.511=0.101 0599 +0.064 06110092 0398 +0.075

Powell 100 0.660 %0071 06430103 [0810£0076 0657 +0063 0725 +0.057 06260186 0679+ 0085 0.673 0,089 3 X 0,654 +0.107

Rastrigin 100 025940046 02560058 030440032 0280+0052 029040052 0.323+£0028 0.263£0049 0290 +0.056 0304 0056 L . 0.188 %0039

Rosenbrock 100 061040085 0600009 0714+0058 0556+0.127 0617 £0.136  0748£0044 0528+ 0142 0652 %0091 06430077 0.552+0.102

Siyblinski-Tang 100 [OBSAEE0.065N0BS6EE00610 0331 +0.043 0332£0053 0318+0070 03210054 0267£0062 03310049 0324+0047 0303 +0037 0275 %0077

Mean 0514 0537 0553 0578 0.558 0525 0577 ¥ 0.500

Median 0554 0570 0611 0617 10679 0511 0652 ) 0.509

Table A6: BO on noise-free synthetic test problems. The normalized highest observed value after 10
rounds of BO with ¢g=10 is shown. Colors are normalized row-wise. Higher means better. Results are
means over ten replicate runs.

Problem d ‘meanBEEBO maxBEEBO q-UCB q-El TS KB GIBBON TuRBO
T'=005 T'= T'=50 T'=005 T'=05 VR=0.1 VR=10 VA=100 - - default -

Ackley 2 09130062 0861 +0.119 0875 0059 075540293 09090057 0.775+0082 0575 +0411
Levy 2 003 0,996+ 0,004 0,998 = 0.002 0. 09850013
Rasirigin 2 0911 +0.034 0. 043 0 % X 0540902+ 0070 0.726 0300
Rosenbrock 2
Styblinski-Tang. 2 0.941 + 0.065 X X
Shekel 4 02450073 0265009 0200 0054
Hartmann 6 J0.966£0.0467 0.949 -+ 0.046 0917 = 0.054 0.956 = 0.047
Cosine 8 072840100 0821£0.106 077540095 074740079 0756+ 0088 07630059 07850083 0. 082 0753 0058
Ackley 10 05050252 07180088 0525 %0251 05590078 0731 0,040 0642 +0.045
Levy 10083340093 0836 0,099 0828 +0.155 0. 039 08660039 0897 0062 0914 0,065
Povell 10 08980042 09330046 0906009 087740068 0927 +0052 09280055 0. 118 0940 0,043
Rastrigin 10 0397 +0.148 0.378 £ 0.101 _ 0348 £0.162 0325+ 0.159 0389 £0.147  0.418 £ 0.100 0.386 £ 0.075
Rosenbrock 10 098540011 04 014 0.978+0.009 09790013 09670023 09570032 0943 £0.042 0.976+0.017 09790012
Styblinski-Tang 10 04550134 (01820153 0.408 £0.140 0,597 £0.154 0624 +0.128

ckley 0.198 0290 030940233 022940080 0397 + 0,085 0.
Levy 20 07140091 0656=0.146 0.720 0,094 0.798 % 0,054 0.774 0067 X X 0,682 +0.103
Powell 20 0.889 + 0.098 0.899 +£0.061 0.890+0.072 0911 £0.041 0.897 +0.038 ). . 0914 £ 0.051 0.875+0.073  0.839 + 0.060
Rastrigin 20 024340101 0213£0.115 035240101 0278£0078 0323 %0082 032640080 033540079 0300+0066 03530074 033040095 0224 40,122
Rosenbrock 20 095240016 09730015 0961 0020 0975+0011 09450025 0. 020 0.979 0,006 0974 %0011 09730010 09640021 0914 0066
Styblinski-Tang 20 0381 40,111 0519 +0.120 034840072 0391 +0.080
Ackley 50 0,035 = 0,031 00380006 01530161 00320017 00930065 0065+ 0012
Levy 50 047340087 0578 £0.169 0463 +0.117 0490 +0.066 0403 £0.113 0541 +£0.150 0.647 £0.180 0439 £ 0.111 . . 05184+ 0.131  0.523 £ 0.082
Povell 50 075840073 0785+0059 0851£0037 07060090 07770084 075240102 08000148 0834 +0061 90 9 . 036 08430053 0766 +0.054
Rastrigin 50 0.164+0.042 0.173+£0040 0200+0.043 0.186 +0.035 0.172+0062 0.186 +0.088 0231 +£0.129 0.206 + 0.056 0.169 + 0.069
Rosenbrock 50 082240025 0834+0063 (09030034 0743£0055 0789 +0.085 0. 074 08920068 08750049 08930021 0787 +0.09
Styblinski-Tang 50 0.449£0.032 04540061 04340067 04440069 04270047 067 04550035 X 0426 0059
Ackley 100 00500022 0050 %0014 01800075 0,039 +0010 0044 0,020 0096 +0.042 0,066 +0.018
Emb. Hartmann 6 100 0.720 0,133 07320166 0745+0.186 0735+0.168 0,688 +0.251 X L
Levy 100 053240132 0677 £0066 0722+0.111 0.633+0.040 0.608 +£0.045 0.745+0.063 0595 +0.152 0.676 + 0.066 ). . 0.467 + 0.048
Powell 100069940102 07720063 0701 +0.114 0730 % 0.081 07170144 083340051 X X . X 0.741 +0.060
Rastrigin 100 02700043 03570062 035140032 0306+0029 0320+0065 03520035 0271£0075 03360037 % ! . X 0271 0,041
Rosenbrock 100 0701 0.113 0746 + 0058 067940072 0708 +0084 | 08300074 0668+ 0.093 0789 0060 X X X 0,614 +0.046
Siyblinski-Tang 100 040200410 03640021 03550047 0361 £0052 0347£0067 0315£0037 0.309=0031 0361 0047 0. 054 0.374 £ 0.046 0,305 +0.063
Mean 0.560 0625 0613 0633 0.605 0632 0.574
Median 0.626 0.684 0.701 0.730 0.735 0.688 0.789 142 0.614
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Table A7: BO on noise-free synthetic test problems. The relative batch instantaneous regret of the
last, exploitative batch with ¢g=5 is shown. Colors are normalized row-wise. Lower means better.

Results are means over ten replicate runs.

Problem

meanBEEBO

‘maxBEEBO

¢-UCB

¢El

TS

GIBBON

TuRBO

1'=0.05

17'=05

7'=50 1'=005

7'=05

1'=5.0

VR=01

VR=10

V=100

default

Ackley

Styblinski-Tang
Ackley
v

o
Styblinski-Tang
ekl

ley
Emb. Hartmann 6
Levy
Powell
Rastrigin
Rosenbrock
Styblinski-Tang
Mean
Median

0.288 + 0.220
0951 +0.343

046 £ 0.490
0.892 + 0,082

0781 +0.187
0.037 +0.019
0.694 0,669
0.989 0,013

0959 + 0,016
0430 +0.214
0.465 = 0.100
0231 40,064
0709 4 0,048
0323 + 0,064

0238 +0371
0819 & 0.520

0732 £ 0296
0325 + 0.185

0574 £ 0.508
0991 = 0.006
0.846 £ 0.139

061740278
0965 +0.016

0397 +0.052
0233 4 0.066

0706 £ 0.072
0328 + 0,052

+0.055

0583 +0.083
0.194 £ 0.055
0.871 +0.066
0236+ 0.110

97 + 0.264

0.867 4 0.083

0938 £ 0018

0.695 + 0,159

0.045 + 0.047

0.601 0,178

0711 £ 0.091

0.866 -+ 0.242

0807 +0.185 08340093 0.881 +0.095
0.075 = 0,059

0.989 + 0,004
0.637 4+ 0216
0.173 4 0.035

061240054 0.625+0.043 0615+ 0045

80 4 0.161

0836 % 0.101

0913 & 0.151
2.837 43999

0879 4 0.268
0906 +0.078

0.791 +0.130

0.988 -+ 0.188
3306 4+ 4.617

0.878 +0.156

0917 +0.178,
0957 4 0.016

0.838 £ 0207
0.626 + 0,535
0.768 & 0.268
1.373 +2.340

0454 0261
0784 £ 0.180
0434 0521
0.080 + 0.069
0754 £0.105
0058 = 0.053

0820 £0.142
0341 £0.103
0,058 + 0,025
0.898 + 0.140
0.043 £0.028

0.567 +0.154
0317 £0317
0900 = 0.085
0295 £ 0.197
0664 +0.179

0649 £ 0.058

0611
0634

0.631 +0.269

0.806 -+ 0.400
0.162 4 0.163

1 0.899£0.113
0,610+ 0.269

0.779 £ 0.702

0.672 £ 0.180
0337 £0.279
0.135 + 0,258
0755 +0.237
0,052 + 0,047

0.854 £ 0.125
0315 +0.139

0.603 £ 0.114
0.303

0.961 = 0.009
1
7

0.195 £
0.706 +

288 +0.327

.792 £ 0.
0211 +0.118
0724 %0222
0856+ 0.115
03454 0.131
0.111 40,028

0.446 4 1.091
0619 +0.177

0622 £ 0346
0219 £0232

0399 = 0.120
760 + 0.108
408 + 0.249

.729 £ 0.095
0.043 = 0,030
0475 + 0.190

0.588 £ 0.139
0294 0235
0.872 & 0.084
0.147 £ 0.089
0741 £0.128

Table A8: BO on noise-free synthetic test problems. The relative batch instantaneous regret of the
last, exploitative batch with g=10 is shown. Colors are normalized row-wise. Lower means better.

Results

are means over ten replicate runs.

Problem

meanBEEBO

maxBEEBO

4-UCB

Bl

TS

KB

GIBBON

TuRBO

7'=005

T'=05

=50 T'=005

T7'=05

7'=50

V=01

VR=10

V=100

default

Ackley

Levy

Rastrigin

Rosenbrock

Styblinski-Tang
kel

Styblinski-Tang
Ackley

Levy

Povell

Styblinski-Tang
Ackley
Emb. Hartmann 6

Powell
Rastrigin
Rosenbrock
Styblinski-Tang
Mean

Median

0.157 + 0,099
0631 +0.269

0.866 + 0,093
0.196 + 0.167

0.078 4 0.144
0739 +0.102

0.889 4+ 0.124
0.131 £ 0,030

0950 + 0,023
0265 +0.179
0.402 4 0.108,
0.189 0,063
0726 + 0,068
0227 40,076

0582 + 0.306

0.566  0.189
004

0523 0,135
0262 + 0.209

0858 =

0482 £0.119
0.147 £ 0,031

0.804 0,065
0.197 + 0,043

0.290 + 0353
0.827 £ 0078

0.489 £ 0.120

0.789 £ 0.045
0.159 £ 0.073

19
0208 +0.125

0662 +0.296
0.007 + 0,012

0

40259
0.871 0,039

0707 +0.123 0.833 + 0061 0.842 + 0.063

0.031 + 0.030
0679 +0.152
0961 40,011

0.177 + 0,076

0776 4 0.085
0249 40,103
0593 + 0,053

0843 £ 0.119

0.960 = 0.046

0.968 + 0,022
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0.749 £ 0.093
0.638 + 0,350
0.608 0,109
0471 £ 0,644

0.936 + 0.031

0.891 +0.102

0.719 % 0,042
0.155 0,115

0778 £ 0.141
0348 £ 0,134
0.082 + 0.039
0712+ 0035
0,036 + 0.008
0.628 + 0224

0516 + 0309
0269 + 0418
0.826 +0.133

0581
0.628

0622 4 0.333
0.407 0,453
0831 40,427
0116+ 0.228
0359 4+ 0.312

0347 4+ 0.157

0708 + 0.121
0.009 + 0,011
0.294 + 0,400

0,633+ 0,631
0.949 + 0,015

0442 £ 0327
0.791 + 0067

0431 £ 0394
0.126 + 0054
0.724 £ 0061
0.095 + 0039

0.804 + 0.821

0530 4 0,402
0.138 0,148

0871 0,062
0327 +0.102
0.098 + 0.057
0783 4 0.081
0.074 + 0,045
05234 0.131
0949 0,010
0.487 4 0,055
0218 + 0,062

0285+ 0,085
0.697 + 0,068
0959 4 0.007
0301 +0.120
0515 4+ 0.037
0226 4+ 0,039
0715 + 0,037
0366 4 0.047
0.677 4 0.041



D.3 Control problems

Robot pushing (d=14)
VK=0.1 VK =1.0 VK =10.0

o

5| —— meanBEEBO
—— maxBEEBO
4 —— qucs

Distance

—— TS
34 —— TRBO 3 3
— gl
24— K8 2 2
—— GIBBON (s)
1 1 1
0 2 4 6 8 10 0 2 4 6 8 10
Round Round
Rover trajectory (d=60)
VK=10
14 1 14

Figure A2: Experiments on the 14D robot arm pushing and 60D rover trajectory planning control
problems. 10 replicates each. GIBBON (s) refers to the scaled larged-batch variant of GIBBON.

D.4 Run time

meanBEEBO T'=0.05
meanBEEBO T'=0.5
meanBEEBO T'=5.0
maxBEEBO T'=0.05
maxBEEBO T'=0.5
maxBEEBO T'=5.0
g-UCB vk=0.1
q-UCB Vk=1.0
q-UCB Vk=10.0
g-El

TS

KB

GIBBON (default)
GIBBON (scaled)

0 25 50 75 100 125 150 175 200
Time (minutes)

Figure A3: Example run times for the 10-round BO experiment on the 6D Hartmann problem with

@=100. Error bars are over 5 replicate runs. Run times vary depending on the test problem, with
GIBBON appearing especially sensitive, becoming e.g. 10x slower on the 50D Ackley problem.
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Table A9: Total run times for five replicates of the experiments presented in Table A1l. We sum over
all test problems.

Method Configuration Total time [h]

meanBEEBO 7" = 0.05 66.12
meanBEEBO 7' =0.5 47.08
meanBEEBO 7' =5.0 37.13
maxBEEBO T = 0.05 54.85
T
T

maxBEEBO "'=0.5 44.20
maxBEEBO "' =5.0 47.63
q-UCB =0.1 3.33
q-UCB 1.0 3.70
q-UCB 10.0 4.41
q-EIl 24.33
TS 6.56
KB 223.78
GIBBON default 3380.48
GIBBON scaled 1055.93

D.5 Results with random initialization in round 0

Table A10: BO with random initialization on noise-free synthetic test problems. The normalized
highest observed value after 10 rounds of BO with g=100 is shown. Colors are normalized row-wise.
Higher means better. Results are means over five replicate runs.

Problem d meanBEEBO maxBEEBO ¢-UCB q-El TS KB TuRBO

05 =05 7'=5.0 1'=0.05 T'=05 0 /R=0.1 VR=10 VA=100 - - - -
Ackley 09710041 09880006 0985+0012 0977 +0.029 0912+ 0.069 0904 %0059 0968 +0019 0957 +0.056 0928 +0076 0972 +0.027
Levy w— 0.995 = 0.005 _w 0.985 = 0.010 0994+ 0.004 0993 & 0.004 0992 4 0.017
Rastrigin 08380190 0674+0433 0836+0.138 07840350 0.756=0356 08470199 0540+0359 0675 + 0250 0,800+ 0447 0691 0299
Rosenbrock 0.605 £ 0395 0.525+0496 0.705 + 0.413 0.678 +0.394 04750452 0469 + 0485 0.728 +0.304 0.753 + 0423
Styblinski-Tang 09980002 09990002 0999 +0.002 0998 £ 0,001 0,999 - 0,002 099300081 0999 0001
Shekel 0390+ 0353 0476 £0.274 0388 +£ 0.316 0.376 = 0.308  0.266 +0.073  0.530 £ 0.350
Hartmann 0955+ 0,063 0989 +0.024  0992+0010 0,960 + 0,052 0.919 % 0,057 0991 0020 0.965 0,045
Cosine 0968 £0.023 0871 +£0.057 0.906 +0.079  0.903 £ 0.050 0.787 £ 0.118 0.912 + 0.066
Ackley 0.904 £ 0,039 0820 £0037 0816+0037 0742 £ 0,052 0.790 £ 0,015 0.776 + 0.038 0.782 0036 0.789 £ 0023 0.784 + 0,026
Levy 0.957 £0.028 0.930 £0.034 0956 £ 0.026 0926 +0.024 0919 £0.022 = 0.866 £ 0.036 0.920 £ 0.064  0.942+0.026  0.949 £ 0.041 941 £ 0.072
Powell 067240387 0923+0.109 0900+0.103 0702+ 0398 0886+ 0061 0822+ 0.161 08510191 0833 +0.169 0939 + 0,058
Rastrigin 0.570 £0.091  0.526 +0.087 0.516 +0.140  0.642 £ 0.083 0394 +£0.143  0.564 + 0.152 0.441 + 0.065 0.394 +0.088  0.672 + 0.165
Rosenbrock 0.865 + 0.068 0.986 £ 0.007 0966 + 0.037 0.965+0.043  0.952 +0.019 0975 +£ 0017  0.820 & 0.029
Styblinski-Tang 0.643 £ 0.124 0.584 +0.177 0.619 = 0.093  0.399 + 0.163 0.654 + 0.085
Robot Pushing 0350 £0.121 0377 £0.124 0560 £0.172  0.425 +0.107 0.395+0.131 0424 +£0.154  0.522 £0.170 .379 £ 0.093  0.417 = 0.160 0.518 +0.149
Ackley 084350016 085740028 0789 +0.048 08190030 0.788 & 0.040 0706+ 0,063 0.775 = 0,039 0.740 % 0,054 0.763 + 0,048
Levy 0.936 £ 0.035 0.939+0.019 0.89 +0.044 0953 +£0027 0901 £0.046 0911 £0.038 0928 +£0.016 0929 +0.029 0.921 +0.024 0.956 £ 0.013  0.925 + 0.041
Povell 0.947 0,036 0936+ 0019 088020100 0908 +0076 0946+ 0.007 0,928 + 0,050 0.926 % 0.047 0.957 % 0,036
Rastrigin 0.514 +0.059 0480 £0.077 0491 £ 0.087 0450 +0.115  0.463 + 0.069 0.451 +0.053 z X 0.523 + 0.064
Rosenbrock 0.982 £ 0013 0.967 £ 0.018 0,984 = 0.005 0.984 & 0,007
Styblinski-Tang 0.607 +£0.086 0417 £0.122 0279 £ 0.077 0.524 +0.184 0.639 + 0.082 ). ).
Ackley 062240243 0705+0042 0457 +0098 06270053 0739%0034 073640020 0727 + 0051 0.683 +0.122
Levy 0.955 £0.018 0867 £0.013 0952 +£0.016 0.966+0.025 0.933£0.007 0.943 £0.017 0.926 + 0.041
Powell 09760009 09700014 | 0929£0024 | 0.965 0014 0958+ 0,016 09780007 0964 + 0013 0957 0022
Rastrigin 0473 £0.042 0466 £ 0.016 0445 +£0.027 0466 +0.073 0418 £0.023 0.503 £0.047 0468 +0.012 0.423 + 0.085
Rosenbrock 0978 +£0.011  0.981 + 0.005 0.974 4 0.004 0984 +0.013  0.981 + 0.003
Styblinski-Tang 3 0536+ 0.072 0415 +0.055 0.371 £ 0.040
Rover trajectory 0.678 £ 0.029 0.533 4 0.066 X ). 613 +£0.070  0.665 + 0.079  0.635 + 0.074 0.616 £ 0.043
Ackley 0.347 £ 0.452 0.526 %0335 0. 1293 0.707 % 0,086 0. 015 0.721 0080 108500007 0.747 + 0.071 0289 % 0,081
Emb. Hartmann 6 . X 0914 +0.051  0.94] X 0.915 +0.038 13 +0.116 ). 0.949 £ 0.065 0.931 +0.084
Levy 0.890 = 0.150 . 017 0.946 + 0,013 0.937 % 0,029 ! 0.908 £ 0,056~ 0.692 % 0,013
Powell 0.786 £ 0.051  0.929 + 0.099 . X 0.981 + 0.003 _ 0.978 +0.013 X 0.967 +£0.021  0.860 + 0.027
Rasrigin 052240027 036740194 0467 +0.027 0481+ 0057 0. 007 0.469 & 0,037 0442 40,021 .43 =+ 0. ! 0.394 0,022
Rosenbrock 0.810£0.029 0.972+0.012 0976 £0.008 0928 +0.119 0.975 +£0.008 0.977 £0.008 0.968 £ 0.012 . X 0.857 £ 0.010
Styblinski-Tang (0564500347 0470 +0.152 0396+ 0079 0432+ 0.043 0309% 0022 0321 + 0027 0412 £ 0,034

Mean 0776 0751 0779 0762 0.697 0714 0768 0692 0750
Median 0890 0840 10923 0880 0847 0.793 0822 0851 0888 0857
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Table A11: BO with random initialization on noise-free synthetic test problems. The relative batch
instantaneous regret of the last, exploitative batch is shown. Colors are normalized row-wise. Lower
means better. Results are means over five replicate runs.

Problem d ‘meanBEEBO maxBEEBO 4-UCB ¢El TS KB TuRBO
T'=0.05 T'=05 T7'=5.0 T'=0.05 T'=05 T'=5.0 VR=0.1 V=10 VR=10.0 - - - -

Ackley 0268 +0.132 03340082 025940187 02210145 0299+ 0.151 0624 + 0,361

Lev) 0153 £0024  0.130+0055 100660059 0.111+0010 0091 %0034 0.109 +0.009 0280 +0.401 0,088 +0.100

Rastrigin 0427 £0019  0.60040381 0523 +0.228 0543 £0073 0491 40,053 0.728 +0.196

Rosenbrock 000240001 0,003 40002 0002+ 0000 0.003 % 0.003 0002 £ 0,001 0.003 %0004

Styblinski-Tang
Shekel
Hartmann
Cosine

Ackley

Levy

Powell
Rastrigin
Rosenbrock.
Styblinski-Tang
Robot Pushing.
Ackley

Levy

Powell
Rastrigin
Rosenbrock
Styblinski-Tang
Ackle

Levy

Powell
Rastrigin
Rosenbrock
Styblinski-Tang

Rover trajectory

Ackley

Emb. Hartmann 6

Lev:
Powell
Rastrigin
Rosenbrock
Styblinski-Tang

10.001 £0000 0,001 £0.000
01730007 017040009 0170 £0.008  0.169 % 0.007

0.790 = 0.049  0.635 £ 0.094 0.707 £ 0.047  0.757 & 0.097
0.189 +0.119

0.171 0,008
0.644 + 0.229

0.170 £
0.727 +

0.008
0.096

0.485 + 0.075

0.052 + 0.008
0.524 +0.119

0.800 = 0.177 0.879 + 0.082

0.668 £ 0.127

0.797 £ 0.081

0.186 & 0.157
0,082 + 0.020
0.618 £ 0.049
0.117 + 0.064

0.097 £ 0.068
0.713 + 0.083
0.038 £ 0.039 0.029 £ 0.019

0.730 =+ 0.069

0.035 + 0.024
0.574 + 0.097
0.485 +0.110
0.476 + 0.283

0.709 + 0.130
0.475 £0.127 0.511 +0.187

0.684 £ 0.402

0403 £0.115
0.815 + 0.360

0.380 £+ 0.083
0.554 4 0.291
0.140 + 0.093
0.089 +0.105
0.117 £ 0.020  0.038 + 0.029
0.584 +0.192

0.077 £ 0.008
0.644 £ 0.077
0,055 + 0.054
0.529 + 0.030

0.051 £
0721 +

0.173 £ 0.085
0.034 £ 0.040
0.550 £ 0.075

0.021
0.032

0.759 £ 0.021

Mean
Median

0.795 £ 0.123

D.6 BO curves for all experiments in Table 2 and Table A1
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Best objective value

Best objective value

Shekel (d=4)

meanBEEBO
maxBEEBO
g-UCB

Ts

q-El

KB

GIBBON
GIBBON (s)
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8 10
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Round

%

0.737 +0.322
0.262 £ 0.173

0.044 £ 0.014

| 0.892+0.103 |

0.473 = 0.078
0.086 £ 0.040
0.065 £ 0.022

0.849 +£0.024  0.863 £ 0.032
0.099 +0.019
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0.030 £ 0.006
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0.561 = 0.060
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0.725 + 0.020
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Figure A4: Experiments on the Shekel, Hartmann, Cosine and embedded Hartmann test functions
with v/k = 0.1 for BEEBO and ¢-UCB.
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Figure AS: Experiments on the Shekel, Hartmann, Cosine and embedded Hartmann test functions
with /k = 1.0 for BEEBO and ¢-UCB.
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Figure A6: Experiments on the Shekel, Hartmann, Cosine and embedded Hartmann test functions
with \/k = 10.0 for BEEBO and ¢-UCB.
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Figure A7: Experiments on the Ackley test function with y/k = 0.1 for BEEBO and ¢q—UCB.
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Figure A8: Experiments on the Ackley test function with y/k = 1.0 for BEEBO and ¢—UCB.
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Figure A9: Experiments on the Ackley test function with v/ = 10.0 for BEEBO and ¢—UCB.
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Figure A10: Experiments on the Levy test function with /s = 0.1 for BEEBO and ¢—UCB.
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Figure A11: Experiments on the Levy test function with /s = 1.0 for BEEBO and ¢—UCB.
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Figure A12: Experiments on the Levy test function with \/x = 10.0 for BEEBO and ¢—UCB.
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Figure A13: Experiments on the Rastrigin test function with v/x = 0.1 for BEEBO and ¢-UCB.
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Figure A14: Experiments on the Rastrigin test function with v/x = 1.0 for BEEBO and ¢-UCB.
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Figure A15: Experiments on the Rastrigin test function with v/ = 10.0 for BEEBO and ¢-UCB.
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Figure A16: Experiments on the Rosenbrock test function with y/x = 0.1 for BEEBO and ¢-UCB.
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Figure A17: Experiments on the Rosenbrock test function with y/x = 1.0 for BEEBO and ¢-UCB.
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Figure A18: Experiments on the Rosenbrock test function with \/x = 10.0 for BEEBO and ¢-UCB.
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Figure A19: Experiments on the Powell test function with /k = 0.1 for BEEBO and ¢-UCB.
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Figure A20: Experiments on the Powell test function with v/ = 1.0 for BEEBO and ¢-UCB.
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Figure A21: Experiments on the Powell test function with v/ = 10.0 for BEEBO and ¢-UCB.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: As claimed, we experimentally demonstrate a) the controllability of the
acquisition strategy, b) competitive performance on 33 test problems compared to g-UCB,
q—EI, Thompson sampling, GIBBON, TuRBO and Kriging Believer, and c) behaviour
under heteroskedastic noise.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We address limitations in our discussion section, highlighting computational
complexity constraints in exact GP inference as well as challenges under heteroskedastic
noise.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not make use of any theoretical results. All reported results are
based on empirical experiments. All underlying assumptions are standard in research on BO
with GPs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: As described in the methods section, we use standard BoTorch and GPyTorch
utilities for all our experiments, and provide extended details on the technical implementation
in the supplementary section. Our repository includes the full benchmarking setup with
appropriate run scripts and instructions.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

47



(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The repository includes the implementation of the proposed method as well
as the benchmarking setup with alternative methods. No additional data is required for
reproduction.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We follow GPyTorch and BoTorch for all hyperparameters pertaining to
GPs, and describe this accordingly. Our appendix includes additional details on method
hyperparameters to ensure reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: We include full BO curves with standard deviations over five replicates for all
quantitative experiments in the appendix. These detailed curves are referenced in the main
text at the appropriate place.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We list the used hardware and total GPU hours in the supplement and provide
example timings for experiment runtimes.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper does not make use of human participants or datasets. To the best of
our understanding, there are no potential harmful consequences and wider negative societal
impact expected from the proposed method.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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10.

11.

12.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper introduces a method for Bayesian optimization (BO). While BO has
widespread applications in the sciences and engineering, there is no direct societal impact
expected from this contribution.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not introduce any trained models or novel data.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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13.

14.

15.

Answer: [Yes]

Justification: We credit the GPyTorch and BoTorch packages that our codebase builds upon.
The packages are used as dependencies, and as such are not included directly as assets.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The implementation of BEEBO constitutes the only asset, which follows
BoTorch APIs and has a README file demonstrating its application when working in
BoTorch.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: None of the above are included in this paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The presented paper does not involve any human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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