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Abstract

PDEs optimal control (PDEOC) problems aim to optimize the performance
of physical systems constrained by partial differential equations (PDEs) to
achieve desired characteristics. Such problems frequently appear in scien-
tific discoveries and are of huge engineering importance. Physics-informed
neural networks (PINNs) are recently proposed to solve PDEOC problems,
but it may fail to balance the different competing loss terms in such prob-
lems. Our work proposes PDE-GAN, a novel approach that puts PINNs
in the framework of generative adversarial networks (GANs) “learn the
loss function” to address the trade-off between the different competing
loss terms effectively. We conducted detailed and comprehensive exper-
iments to compare PDEs-GANs with vanilla PINNs in solving four typ-
ical and representative PDEOC problems, namely, (1) boundary control
on Laplace Equation, (2) time-dependent distributed control on Inviscous
Burgers’ Equation, (3) initial value control on Burgers’ Equation with Vis-
cosity, and (4) time-space-dependent distributed control on Burgers’ Equa-
tion with Viscosity. Strong numerical evidence supports the PDE-GAN
that it achieves the the best control performance and shortest computation
time without the need of line search which is necessary for vanilla PINNs.

1 Introduction

In physics, partial differential equations (PDEs) hold significant scientific and engineering
importance. Controlling the behavior of systems constrained by PDEs is crucial for many
engineering and scientific disciplines (Chakrabarty & Hanson, 2005). PDEs optimal control
(PDEOC) problems aim to optimize the performance of physical systems governed by PDEs
to achieve desired characteristics (Lions, 1971). The standard mathematical expression of
the PDEOC problem is as follows.
Consider a physical system defined over a domain Ω ⊂ Rd, governed by the following PDEs
and cost objectives.

min
u∈U,c∈Y

J (u, c), subject to1b, 1c, 1d (1a)

F [u(x, t), cv(x, t)] = 0, x ∈ Ω, t ∈ [0, T ], (1b)
B[u(x, t), cb(x, t)] = 0, x ∈ ∂Ω, t ∈ [0, T ], (1c)
I[u(x, 0), c0(x)] = 0, x ∈ Ω, t = T. (1d)

Here, x and t denote the spatial and temporal variables. J (u, c) represents the cost objec-
tive to be minimized and c = (cv, cb, c0), which correspond to distributed control, boundary
control, and initial value control, respectively. The terms F , B and I represent the con-
straints that the system state u and the optimal control c must satisfy, which encompass
the PDE residual, as well as the boundary and initial conditions. U and Y denote the
appropriate spaces where u and c belong to.
So far, various methods have been developed to solve PDEOC problems. Recently, deep
learning-based solving methods using PINNs (Physics-Informed Neural Networks) have
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gained widespread attention. Raissi et al. (2019) introduced the concept of PINNs in 2017,
which fundamentally transformed the traditional and uninterpretable approach of training
neural networks solely based on large amounts of observational data like a black-box. In the
framework of PINNs, the system state u(x, t) is represented by a surrogate model uθu(x, t)
in the form of a fully-connected neural network, where θu denotes the set of trainable pa-
rameters of the network. For prescribed control variables c = (cv, cb, c0), the network
parameters θu are trained by minimizing the loss function (2a).

L(θu) = LF (uθu , cv) + LB(uθu , cb) + LI(uθu , c0), (2a)

LF (uθu , cv) =
1

Nf

Nf∑
i=1

∣∣∣F [uθu(x
f
i , t

f
i ), cv]

∣∣∣2 , (2b)

LB(uθu , cb) =
1

Nb

Nb∑
i=1

∣∣B[uθu(x
b
i , t

b
i ), cb]

∣∣2 , (2c)

LI(uθu , c0) =
1

N0

N0∑
i=1

∣∣I[uθu(x
0
i , 0), c0]

∣∣2 , (2d)

where {(xf
i , t

f
i )}

Nf

i=1, {(xb
i , t

b
i )}

Nb
i=1, {(x0

i , 0)}
N0
i=1 each represent an arbitrary number of train-

ing points over which to enforce the PDE residual (1b), boundary conditions (1c), and initial
condition (1d), respectively. In addition, LF , LB and LI are referred to as the PDE loss,
boundary loss, and initial value loss, respectively.
Recently, Mowlavi & Nabi (2023) investigated ways to utilize PINNs to solve PDEOC prob-
lems. In their works, they used distributed control as an example (c = cv) to illustrate
how to extend PINNs to solve optimal control problems. They introduced a second fully-
connected neural network cθc(x, t) to find the optimal control function c. PINNs are learnt
by enforcing the governing equations at the points in the domain and its boundary. The core
idea is to incorporate the cost objective (J ) into the loss (2a) to construct the augmented
loss function (3). Boundary and initial value control are similar to the above.

L(θu, θc) = LF (uθu , cθc) + LB(uθu) + LI(uθu) + ωLJ (uθu , cθc), (3)
LJ (uθu , cθc) = J (uθu , cθc), (4)

where LJ (uθu , cθc) is denoted as Cost loss, ω denote the cost objective weight and the
subscripts on u and c indicate the dependence to neural network parameters θu and θc.
Their works address the trade-off between the different competing loss terms in PDEOC
problems through line search on the cost objective weights (ω). The vanilla PINNs make
use of a two-step line search method to identify the optimal weight w. In details, the two-
step method trains a separate pair of solution and control networks for each weight, and
then predict their corresponding final states. Such final states will be compared with the
analytical solution, and the w attaining the least error is then chosen. In other words, such
method searches for the optimal weight w exhaustively. One of the obvious drawbacks is
thus its heavy cost of computation time. Also, such line search method serves only as a
heuristic, lacking strong theoretical support, which makes further analysis in robustness and
stability challenging. Therefore, it is imperative to develop an effective strategy to handle
PDEs constraints for solving PDEOC problems.
To address this theoretical gap, we put PINNs in the framework of Generative Adversarial
Networks (GANs) (Goodfellow et al., 2020) to solve PDEOC problems in a fully unsuper-
vised manner. Inspired by Zeng et al. (2022), we adaptively modify the entire loss function
throughout the training process, rather than just changing the weights of the loss terms,
to improve the accuracy of the solution. Our PDE-GAN uses the discriminator network
to optimize the generator’s loss function, eliminating the need for predefined weights and
offering greater flexibility compared to line search methods.
Our contributions in this work are summarized as follows:

• We propose a novel approach for solving PDEs optimal control problems, namely,
PDEs-GANs, which is capable of ”learning the loss function” in the learning process.
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• Our method, PDEs-GANs, is the first to incorporate PINNs into the framework
of GANs to solve PDEs optimal control problems, with the benefit of balancing
different competing loss terms much more efficiently and effectively.

• Our method, PDEs-GANs, can provide more accurate solutions in less computation
time than vanilla PINNs, as demonstrated in our numerical experiments on optimal
control problems of Laplace equation and Burgers’ equation.

The remainder of this paper is structured as follows. Section 2 introduces related work on
solving PDEOC problems. Section 3 presents our method PDE-GAN for solving PDEOC
problems. Section 4 describes our empirical studies and then discusses the effectiveness of
our method compared to hard-constrained line search method and Soft-PINNs line search
method. Section 5 concludes our findings.

2 Related work

Various methods have been developed for solving PDEOC problems, which can be mainly
divided into traditional numerical method and deep-learning based approaches.
The adjoint method (Herzog & Kunisch, 2010), as one of the traditional approaches for
solving PDEOC problems, has been successfully applied to optics and photonics (Bayati
et al., 2020; Molesky et al., 2018; Pestourie et al., 2018), fluid dynamics (Borrvall & Peters-
son, 2003; Duan et al., 2016), and solid mechanics (Bendsoe & Sigmund, 2013; Sigmund &
Maute, 2013). It is based on Lagrange’s famous 1853 paper (Lagrange, 1853), which laid
the foundation for Lagrange multipliers and adjoint-based sensitivity analysis. This method
involves iteratively computing the gradient of the cost objective with respect to optimal
control solutions until stopping conditions are met. It works by solving a second adjoint
PDEs equation in addition to the original control equation.
Although the adjoint method is a powerful tool for solving PDEOC problems, it has sig-
nificant drawbacks. First, deriving the adjoint PDEs equations for simple optimal control
problems with complex PDEs is a challenging task. Moreover, the adjoint method relies on
finite element or finite difference methods, and its computational cost increases quadrati-
cally to cubically with the mesh size. Therefore, solving PDEOC problems with large search
spaces and mesh sizes becomes extremely expensive and may even become intractable, which
is known as the curse of dimensionality.
To resolve those problems, various deep-learning based methods have been developed for
solving PDEOC problems. Some of these are supervised, such as Lu et al. (2019), where the
authors use DeepONet to replace finite element methods. They use DeepONet to directly
learn the mapping from optimal control solutions to PDEs solutions and further replace
network constraints with PDEs networks. However, these methods require pre-training a
large operator network, which is both complex and inefficient. Moreover, if the optimal
solution lies outside the training distribution, performance may degrade (Lanthaler et al.,
2022).
To improve training accuracy, Demo et al. (2023) utilized physical information in various
ways. They used physical information as enhanced input (additional features) and as a
guide for constructing neural network architectures. This approach accelerated the training
process and improved the accuracy of parameter predictions. However, it remains to be
verified which type of physical information is most suitable for use as enhanced input.
There is also an unsupervised neural network approach. For example, as we mentioned
before, Mowlavi & Nabi (2023) proposed using a single PINN to solve PDEOC problems.
This method introduces a trade-off between the cost objective and different competing loss
terms, which is crucial for performance (Nandwani et al., 2019).
To resolve the trade-off between the different loss terms, Hao et al. (2022) formulated the
PDEOC problem as a bi-level loop problem. They used implicit function theorem (IFT)
differentiation to compute the hypergradient of the control parameters θ in the outer loop.
In the inner loop, they fine-tuned the PINN using only the PDEs loss.
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Although the bi-level method splits different competing loss terms, it creates an extra prob-
lem about the computation of hypergradient, the accuracy of which largely depends on
the specific numerical methods applied. Therefore, applying the bi-level methods do not
solve the trade-off problem directly but actually transform it to another pair of problems in
solving hypergradient and PINN solution at the same time.

3 PDE-GAN

In this section, we introduce our method, PDE-GAN, which integrates PINNs into the GAN
framework. Through the generative-adversarial interplay between the generator network and
the discriminator network, the loss function is continuously optimized to learn the weights
between the cost objective and the different competing loss terms in PDEOC problems.

3.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) (Goodfellow et al., 2020) are generative mod-
els that use two neural networks to induce a generative distribution p(x) of the data by
formulating the inference problem as a two-player, zero-sum game.
The generative model first samples a latent random variable z ∼ N (0, 1), which is used
as input into the generator G (e.g., a neural network). A discriminator D is trained to
classify whether its input was sampled from the generator (i.e., “generated data”) or from
a reference data set (i.e., “real data”).
Informally, the process of training GANs proceeds by optimizing a minimax objective over
the generator and discriminator such that the generator attempts to trick the discriminator
to classify “generated data” samples as “real data”. Formally, one optimizes

min
G

max
D

V (D,G) = min
G

max
D

(
Ex∼pdata(x)[lnD(x)] + Ez∼pz(z)[1− lnD(G(z))]

)
,

where x ∼ pdata(x) denotes samples from the empirical data distribution, and pz ∼ N (0, 1)
samples in latent space. In practice, the optimization alternates between gradient ascent
and descent steps for D and G respectively.

3.2 Hard-Constrained Physics-Informed Neural Networks

In the Introduction, we presented the construction method of the loss function for solving
PDEOC problems based on soft-constrained PINNs (Equations (3) and (4)). During the
optimization process, the four loss terms—PDE residual condition, boundary condition,
initial condition, and cost objective—compete for gradients, making the training results
highly dependent on the choice of weights ω.
To mitigate this issue, another PINNs-based method employs function transformations or
neural network numerical embeddings to explicitly enforce the initial and boundary con-
ditions on the surrogate system state neural network model uθu(x, t). This reformulation
reduces the four loss terms to just the PDE residual term and the cost objective term,
significantly improving the performance of solving PDEOC problems.
Clearly, adjusting the weight relationship between two loss terms is more effective than
adjusting four terms. To ensure the exact satisfaction of initial and boundary conditions,
various methods can be employed. For instance, the neural network output uθu(x, t) can
be modified to meet the initial condition u(x, t)|t=t0 := u0 (Lagaris et al., 1998). Ones can
apply the re-parameterization :

ûθu(x, t) = u0 + tuθu(x, t), (5)

which exactly satisfies the initial condition. Flamant et al. (2020) proposed an augmented
re-parameterization

ûθu(x, t) = Φ(uθu(x, t)) = u0 + (1− e−(t−t0))uθu(x, t), (6)
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that further improved training convergence. Intuitively, equation (6) adjusts the output
of the neural network uθu(x, t) to be exactly u0 when t = t0, and decays this constraint
exponentially in t.
Therefore, the core idea of this method is to incorporate these reparameterized states ûθu
into the augmented loss function 3 to construct a new augmented loss function (7):

L(ûθu , cθc) = LF (ûθu , cθc) + ωLJ (ûθu , cθc) (7a)

=
1

Nf

Nf∑
i=1

∣∣∣F [ûθu(x
f
i , t

f
i ), cθc ]

∣∣∣2 + ωJ (ûθu , cθc) (7b)

It can be seen that, unlike the loss function under equation (3), the loss term in equation
(7) contains only two components, as the knowledge of the boundary and initial conditions
has already been embedded in the state ûθu .
For PINNs with re-parameterization, such PINNs are called hard-constrained PINNs, as
those initial and boundary conditions are imposed by definition. On the other hand, for
PINNs without re-parameterization, just like those in the original definition in the Related
work 2, they are called soft-constrained PINNs, since their initial and boundary condi-
tions are imposed as a loss function ‘softly’. From here onwards, for simplicity, we use
the abbreviation ‘Hard-PINNs’ to represent hard-constrained PINNs. Likewise, we will use
‘Soft-PINNs’ to represent soft-constrained PINNs.

3.3 Our Method: PDE-GAN

In this section, we will introduce how to integrate PINNs into the framework of GANs to
solve PDEOC problems. Our method, PDE-GAN, innovatively combines the framework of
GANs from Section 3.1 with the hard-constrained PINNs from Section 3.2. It adjusts the
relationship between the PDE residual term and the cost objective term in solving PDEOC
problems through the GANs framework. Unlike the line search method, which manually
adjusts the weight ω to linearly balance the relationship between the two loss terms, the
PDE-GAN method introduces two continuously updating discriminator networks that can
nonlinearly adjust the relationship between the two loss terms in real time.
In previous sections, we denoted the system state with hard-constrained as ûθu and the
control function as cθc . To make the explanation clear, we will now use the classical notations
from GANs. Hereafter, we use the generator symbols Gu(x, t, θu) (Gu) and Gc(x, t, θc) (Gc)
to represent ûθu and cθc , respectively, i.e.,

Gu(x, t, θu) := ûθu(x, t) = Φ(uθu(x, t)), (8a)
Gc(x, t, θc) := cθc(x, t). (8b)

Then define the “generated data” and “real data” in GANs. According to Equation (1),
LHS

(i)
u denote the PDE residual value at the nodes {(xi, ti)}

Nf

i=1. LHSc represents the
cost objective value associated with the form of the optimal control problem (bolza and
Lagrange-type problems). We set RHS

(i)
u = a and RHSc = b, which implies that we aim

for the value of LHS
(i)
u and LHSc to approach the target value a, b as closely as possible

during the update process of the trainable neural network parameters θu and θc (Generally,
a, b are set to zero, with their values depending on the specific problem.). The specific
representations are as follows:

LHS(i)
u := F [Gu(x

(i), t(i), θu), Gc(x
(i), t(i), θc)], (9a)

LHSc := J [Gu(x, t, θu), Gc(x, t, θc)], (9b)
RHS(i)

u := a, (9c)
RHSc := b. (9d)

We use the symbol Du(y1, αu) (Du) to denote the discriminator network monitoring the
PDE residual term, where y1 represents the LHS

(i)
u or RHS

(i)
u , and αu denotes its trainable

5
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Figure 1: Schematic representation of PDE-GAN. We pass the input points (x(i), t(i)) to
two neural networks uθu and cθc . Next, we analytically adjust uθu using Φ to enforce
hard constraint conditions (e.g., boundary and initial conditions), resulting in the generator
networks Gu and Gc. Automatic differentiation is applied to construct LHS

(i)
u from the

PDE residual F . Subsequently, LHS
(i)
u and RHS

(i)
u are passed to the discriminator Du,

which is trained to evaluate whether LHS
(i)
u is sufficiently close to RHS

(i)
u . After updating

Du, it provides new loss gradients to the generator for the PDE residual part (“forward”).
Additionally, automatic differentiation is applied to construct LHSc from the cost objective
J . Then, LHSc and RHSc are passed to the discriminator Dc, which plays a similar role to
Du. After updating Dc, it provides new loss gradients to the generator for the cost objective
part (“backward”).

parameters. Similarly, Dc(y2, αc) (Dc) represents the discriminator network monitoring the
cost objective term, where y2 is the LHSc or RHSc, and αc denotes its trainable parameters.
We update the trainable parameters of the generators Gu and Gc and the discriminators
Du and Dc according to the Binary Cross-Entropy loss 10, 11 and 12. Note that we perform
stochastic gradient ascent for Gu and Gc (gradient steps ∝ gGu,Gc

), and stochastic gradient
descent for Du and Dc (gradient steps ∝ −gDu

,−gDc
).

gGu,Gc = −∇θu,θc

[
1

Nf

Nf∑
i=1

ln
(
1−Du

(
LHSu

(i)
))

︸ ︷︷ ︸
forward

+ ln (1−Dc (LHSc))︸ ︷︷ ︸
backward

]
, (10)

gDu
= −∇αu

1

Nf

Nf∑
i=1

[
ln
(
1−Du

(
LHSu

(i)
))

+ lnDu

(
RHSu

(i)
)]

, (11)

gDc = −∇αc

[
ln (1−Dc (LHSc)) + lnDc (RHSc)

]
. (12)

The Equation (10) can be divided into two parts: we refer to the loss function representing
the PDE residual part (The first part) as the “forward” loss and the loss function represent-
ing the cost objective part (The second part) as the “backward” loss. It can be seen that the
gradients of LHS

(i)
u and LHSc change with the variations of the discriminators Du and Dc.

These changes adaptively adjust the gradient weights (for each node and cost objective),

6
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which can be viewed as adjusting the relationship between the residuals at all training nodes
and the cost objective at the node level. In contrast, in the Hard-PINNs method, the loss
function (Equation (7)) keeps the ratio between the residuals and the cost objective for each
training point fixed as [1/Nf : 1/Nf : · · · : 1/Nf : ω], which is one of the reasons for the
superior performance of our method. At the same time, our method continuously adjusts
the relationship between the PDE residual and the cost objective in a nonlinear manner
(Introduced by Du and Dc) within the GANs framework, providing greater flexibility. For
complex problems (such as multi-scale phenomena), the optimization needs of different loss
terms may change during training. Linear weights cannot adapt to this dynamic change in
real-time, which may lead to some loss terms being over-optimized while others are neglected.
The nonlinear approach (based on GAN-based adversarial learning) can dynamically adjust
the optimization direction according to the current error distribution or the importance of
the loss terms.
In line with the GANs training termination signal, we define G1, D1, G2 and D2 as follows:

G1 := − 1

Nf

Nf∑
i=1

ln
(
1−Du

(
LHSu

(i)
))

, (13)

D1 := −1

2

1

Nf

Nf∑
i=1

[
ln
(
1−Du

(
LHSu

(i)
))

+ lnDu

(
RHSu

(i)
)]

, (14)

G2 := − ln
(
1−Dc

(
LHSc

(j)
))

, (15)

D2 := −1

2

[
ln
(
1−Dc

(
LHSc

(j)
))

+ lnDc

(
RHSc

(j)
)]

. (16)

According to the description of the PDE-GAN method above, when the training is successful
and the LHS

(i)
u representing the PDE residual (F) at node {x(i), t(i)} is sufficiently small,

the discriminator Du finds it difficult to distinguish between the RHS
(i)
u and LHS

(i)
u . At

this point, the output values of both Du(LHS
(i)
u ) and Du(RHS

(i)
u ) approach 0.5. The

equations represented by G1 and D1 are equal. Therefore, in the subsequent PDE optimal
control problems, we determine the success of the training based on whether G1, D1, G2
and D2 all converge to ln(2). This serves as our criterion for determining whether the
PDE-GAN method has been successfully trained. Training on Gu and Du stops when the
absolute difference between G1 and D1 is smaller than bound1 for a consecutive period of
Ns epochs; likewise for Gc and Dc with G2 and D2.
During the training process of the aforementioned GAN, we adopted the Two Time-Scale
Update Rule method (Heusel et al., 2017) and Spectral Normalization (Miyato et al., 2018)
method to make the GANs training more stable. To improve the sensitivity of GANs to
hyperparameters under the Adam optimizer, we introduced Instance Noise (Arjovsky &
Chintala, 2017) and Residual Monitoring (Bullwinkel et al., 2022). We provide a schematic
representation of PDE-GAN in Figure 1 and detail the training steps in Algorithm 1.

Our Advantages: We shall emphasize that our proposed method does not require any line
search (particular way of hyperparameter tuning), unlike the vanilla PINNs, which heavily
depend on its two-step line search method to find the optimal weight (ω). Therefore, our
method is much more lightweight and efficient, especially in terms of shorter computation
time, the evidence of which we will further demonstrate in the section of Experiment 4.

7
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Algorithm 1 PDE-GAN
Input: Partial differential equation F , Boundary condition B, Initial condition I, Opti-
mization objectives J , generators Gu(·, ·; θu) and Gc(·, ·; θc), discriminators Du(·;αu) and
Dc(·;αc), grid (x(i), t(i)) of Nf points, re-parameterization function Φ, total iterations N ,
stop signal bound Ns, Gu and Gc iterations N1, Du iterations N2, Dc iterations N3(without
selecting iteration counts for the generators and discriminators, i.e., N1, N2, N3=1), Boundu,
Boundc.
Parameter: Learning rates ηGu

, ηGc
, ηDu

, ηDc
, Adam optimizer parameters βG1

u
, βG2

u
, βG1

c
,

βG2
c
, βD1

u
, βD2

u
, βD1

c
, βD2

c
.

Output: Gu, Gc

Su = 0 and Sc = 0
for k = 1 to N do
for i = 1 to Nf do
Forward pass uθu = uθu(x

(i), t(i)), cθc = cθc(x
(i), t(i))

Analytic re-parameterization Gu := ûθu = Φ(uθu),
Compute LHS

(i)
u (Equation 9a)

Set RHS
(i)
u = a

end for
Compute LHSc (Equation 9b)
Set RHSc = b
Compute gradients gGu , gGc , gDu , gDc (Equation 10, 11 and 12)
for K1 = 1 to N1 do
Update generator Gu

θu ← Adam(θu, ηGu , gGu , βG1
u
, βG2

u
)

Update generator Gc

θc ← Adam(θc, ηGc
, gGc

, βG1
c
, βG2

c
)

end for
for K2 = 1 to N2 do
Update discriminator Du

αu ← Adam(αu,−ηDu
, gDu

, βD1
u
, βD2

u
)

end for
for K3 = 1 to N3 do
Update discriminator Dc

αc ← Adam(αc,−ηDc , gDc , βD1
c
, βD2

c
)

end for
if | G1 - D1 | <= Bound1 then
Su = Su + 1

else if then
Su = 0

end if
if | G2 - D2 | <= Bound2 then
Sc = Sc + 1

else if then
Sc = 0

end if
if Su >= Ns and Sc >= Ns then
Break

end if
end for
return Gu, Gc
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4 Experiments

4.1 Experimental Setup and Evaluation Protocol

Benchmark Problems: We select several classic PDEOC problems, including both linear
and nonlinear problems, as well as optimal control problems for boundary, spatio-temporal
domain, and time-domain distributed equations. It is worth noting that, to verify the
effectiveness of our method, we attempted the control function and cost objective in differ-
ent scenarios: on the same boundary (Laplace problem), on opposite boundaries (Viscous
Burgers initial value control problem), in the spatio-temporal domain (Viscous Burgers dis-
tributed control problem), and in the time-domain (Inviscid Burgers equation). On the four
optimal problems, we test and compare the performance of (1) Soft-PINNs, (2) Hard-PINNs
and (3) PDE-GAN respectively. More details of problems are listed in Appendix A.
(1) Laplace’ Equation. The optimal boundary control problem of the Laplace equation is
widely applied in various engineering and scientific fields, particularly in heat conduction,
fluid mechanics, acoustics, and material design.
(2) Inviscid Burgers’ Equation. The time-dependent distributed control problem for the
inviscid Burgers’ equation refers to adjusting control inputs over a given time interval to
ensure that the system’s state reaches a desired target in both time and space. Such prob-
lems are commonly used in the optimal control of dynamic systems and are relevant to fields
such as fluid dynamics, traffic flow, and meteorological models.
(3) Viscous Burgers’ Equation (Initial value control). The initial value control problem for
the viscous Burgers’ equation also has wide applications in fluid mechanics, traffic flow, me-
teorological simulation, and other fields. By optimizing and adjusting the system’s initial
state, it is possible to effectively control the subsequent evolution of the system to achieve
desired physical or engineering goals.
(4) Viscous Burgers’ Equation (Distributed control). The space-time-dependent distributed
control problem for the viscous Burgers’ Equation primarily involves adjusting the system
in both time and space by optimizing control inputs to achieve effective control of fluid
dynamic behavior.

Hyperparameters and Evaluation Protocols: For above problems, we construct the gener-
ator networks (Gu,Gc) and discriminator networks (Du,Dc) using four multi-layer percep-
trons (MLPs). We train these networks with the Adam optimizer (Diederik, 2014), where
the learning rate decreases proportionally to the steps number by a factor of β. Since our top
priority is on finding the optimal control for the problems, we apply high-precision numerical
methods (Forward Euler Method, Finite Element Method and Spectral Method) to evaluate
the trained optimal control cθ directly. The uθ will not be evaluated as it is only a side
product of our training process. The cost objective (J ) obtained from numerical methods
serves as our evaluation metric. In Soft-PINNs and Hard-PINNs, we simulated all results
with weights ranging from 1e-03 to 1e11 (large cross-domain). In Appendix B, a comparative
analysis of the three methods in different numerical experiments is presented. Additional
details and method-specific hyperparameters (weights, neural network structures, learning
rate, decay steps, decay rate, Adam optimizer parameters, activation function, and training
termination criterias) are reported in Appendix C. The experiments are run on a single
NVIDIA GeForce 4060 Ti GPU.

4.2 Main Results

The results of the four PDEOC problems are presented in Table 1. The data in the table
represents the cost objective (J ) of three methods for different problems. A smaller value
indicates better control performance. We bolden the best results of the four PDEOC prob-
lems. From the table, it can be seen that in all PDEOC problems, PDE-GAN achieved the
lowest J than Soft-PINNs and Hard-PINNs without requiring line search.

Laplace: In the Laplace problem, the J value calculated by Soft-PINNs (1.01) is signifi-
cantly larger than that of Hard-PINNs (7.57e-05) and PDE-GAN (1.13e-05). This indicates
that when Soft-PINNs struggle to solve the problem, PDE-GAN can indeed enhance control
performance. Experimental results demonstrate that hard-constraints help PINN to reduce
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Table 1: PDEOC Problems Cost Objective

Cost Objective (J ) Laplace Invis-Burgers Vis-Burgers (Ini) Vis-Burgers (Dis)
PINN-Soft 1.01 7.74e-04 7.31e-05 2.43e-03
PINN-Hard 7.57e-05 1.04e-07 6.62e-06 1.54e-03
Ours (PDE-GAN) 1.13e-05 5.94e-09 2.32e-06 1.25e-03

Table 2: PDEOC Problems Running Time (Minute)

Time (min) Laplace Invis-Burgers Vis-Burgers (Ini) Vis-Burgers (Dis)
Mean Total Mean Total Mean Total Mean Total

PINN-Soft 2.9 43.7 1.0 15.3 3.5 52.7 1.62 24.3
PINN-Hard 3.6 54.6 1.5 23.3 4.2 63.15 1.7 25.4

Ours (PDE-GAN) 8.0 5.1 4.1 3.3

its J by around 4 orders of magnitude, while our method further reduces J by 7 times.
Overall, our method achieves a J value that is about 5 orders of magnitude lower than that
of the Soft-PINNs.

Invis-Burgers: In the Invis-Burgers problem, the J value calculated by Soft-PINNs (7.74e-
04) is still significantly larger than that of Hard-PINNs (1.04e-07) and PDE-GAN (5.94e-
09). Experimental results demonstrate that hard constraints can reduce the J of PINN by
around 4 orders of magnitude, while our method further reduces J by 18 times. Overall, our
method achieves a J value that is 5 orders of magnitude lower than that of the Soft-PINNs.

Vis-Burgers (Ini): In the Vis-Burgers initial value control problem, the J calculated by
Hard-PINNs (6.62e-06) is reduced by 10 times compared to Soft-PINNs (7.31e-05). Our
method further reduces the J value by 3 times. Overall, PDE-GAN (2.32e-06) achieves a
J value that is 30 times lower than that of Soft-PINNs.

Vis-Burgers (Dis): In the Vis-Burgers distributed control problem, although the cost ob-
jectives obtained by the three methods are quite similar, PDE-GAN (1.25e-03) can directly
find the distributed control that minimizes the J without the need for line search. This sig-
nificantly saves computation time, further demonstrating the advantages of our method in
both accuracy and efficiency. In the next section, we will demonstrate that the PDE-GAN
method does not require line search by comparing the training times of the three methods
across different problems, which can greatly save computation time and improve solution
efficiency.

4.3 Running Time analysis

Table 2 presents the total training time for Soft-PINNs, Hard-PINNs, and our method,
along with the mean training time under a single weight setting. Although the training time
for PINN methods is shorter with a single weight, the line search process requires repeated
experiments with multiple weights (from 1e-03 to 1e11), leading to increased complexity and
time consumption. In contrast, our method does not require line search and can find a better
optimal control than both Soft-PINNs and Hard-PINNs more quickly and conveniently with
just a single round of adversarial training.

5 Conclusion

This paper introduces PDE-GAN, a novel deep learning method for solving PDEs optimal
control problems. By embedding the PINN structure into the GAN framework, we use two
additional discriminator networks to adaptively adjust the loss function, allowing for the
adjustment of weights between different competing loss terms. Compared to Soft-PINNs
and Hard-PINNs, PDE-GAN can find the optimal control without the need for cumbersome
line search, offering a more flexible structure, higher efficiency, and greater accuracy.
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