
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IMPROVING DISCRETE DIFFUSION WITH SCHEDULE-
CONDITIONING

Anonymous authors
Paper under double-blind review

ABSTRACT
Discrete diffusion models, like continuous diffusion models, generate high-quality
sequence data by gradually undoing noise applied to datapoints via a Markov pro-
cess. Gradual generation in theory comes with many conceptual benefits; for
example, inductive biases can be incorporated into the noising Markov process.
In practice however, the best performing discrete diffusion model is consistently
masking, which does not denoise gradually. Here we explain the performance of
masking diffusion by noting that it makes use of a fundamental difference between
continuous and discrete Markov processes: discrete Markov processes evolve by
discontinuous jumps at a fixed rate and, unlike other discrete diffusion models,
masking diffusion builds in the known distribution of jump times and only learns
where to jump to. We show that we can similarly bake in the known distribution
of jump times into any discrete diffusion model; despite their simplicity, our new
models – schedule-conditioned diffusion (SCUD) – generalize classical discrete
diffusion and masking diffusion. By applying SCUD to models with noising pro-
cesses that incorporate inductive biases on images, text, and protein data, we build
diffusion models that outperform masking.

1 INTRODUCTION

Discrete diffusion models are state of the art models for conditional generation of discrete sequences.
In biological sequence design, for example, they allow one to generate sequence flexibly conditioned
on protein structure (Luo et al., 2022), DNA function (Sarkar et al., 2024), protein family (Alamdari
et al., 2023), and other properties (Gruver et al., 2023; Nisonoff et al., 2024). They are also nearing
state-of-the-art generation on language data (Sahoo et al., 2024). To define a diffusion model, one
proposes a “forward” process by which data is gradually transformed token-by-token into noise and
then learns a “backward” transformation that turns noise into data by optimizing an ELBO. In prin-
ciple, the quality of the learned model should benefit from a forward process that captures structure
in the data distribution. For example, works have suggested forward processes that are more likely to
transform tokens into similar tokens – therefore the noising process is more “gradual” (Austin et al.,
2021; Alamdari et al., 2023) ; as well as “state-dependent” processes that transform certain tokens
more quickly than others (Shi et al., 2024). Surprisingly, these methods are all outperformed by
“masking diffusion” which has the simplest possible forward process – one transforms each token
into a masking token at a uniform rate (Austin et al., 2021; Alamdari et al., 2023; Shi et al., 2024).

Here we propose that this is because masking diffusion benefits from a parameterization that forces
the distribution of corruption / transition events, the “transition schedule”, in the backward process
to match the distribution in the forward process. We use this insight to build models that unlock the
benefits of structured and state-dependent processes in practice. First in Sec. 3 we provide a new
decomposition of the ELBO that includes a term describing the mismatch in the distribution of the
schedules of the forward and backward processes. Then in Sec. 4 we describe how to efficiently train
models that build in the transition schedule (Fig. 1) to set this term to 0. We call our models schedule
conditioned diffusion (SCUD). In Sec. 5 we show that when SCUD is applied to discrete diffusion
with a uniform forward process, the result is masking diffusion, explaining its superior performance.
Finally in Sec. 7 we unlock the potential of structured and state-dependent discrete diffusion by
building SCUD versions of these methods and see that they finally beat masking diffusion (Fig 2).
We release our code at https://anonymous.4open.science/r/SCUD-3844/.

2 BACKGROUND

Our goal is to model data from a distribution p(x0) where x0 is a sequence of discrete elements that
belong to a set of size B. First we consider the one-dimension case and consider sequences later.

1

https://anonymous.4open.science/r/SCUD-3844/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: SCUD builds in when to transition
from the forward process, and only learns
where to transition.

Figure 2: Conditioning on the transition
schedule results in a better fit to CIFAR10.
As γ → 1, more information about the schedule
is incorporated into the model. Models are fit on
CIFAR10 with B = 128 states. We show mean
and standard deviation over 3 replicates. Details
are in App. D.

Discrete diffusion In diffusion, we start with a distribution that is easy to sample from, q(x1); we
then learn a parameterized Markov process from time 1 to time 0 that evolves samples from q(x1)
to a distribution qθ(x0) that is approximately p(x0). To learn a Markov process that evolves q(x1)
to p(x0), we first pick a simple Markov process that approximately evolves samples from p(x0) to
q(x1) from time 0 to 1; then we try to match the trajectories from the parameterized Markov process
qθ((xt)t∈[0,1]) that evolves “backward” from time 1 to 0 to those of the simple process p((xt)t∈[0,1])
that evolve “forward” from time 0 to 1 (Campbell et al., 2022). We do so by maximizing the evidence
lower bound (ELBO)

Ep(x0) log qθ(x0) ≥Ep(x0)Ep((xt)t∈[0,1]|x0) log
qθ((xt)t∈[0,1])

p((xt)t∈[0,1]|x0)

=Ep((xt)t∈[0,1]) log
qθ((xt)t∈[0,1]|x1)

p((xt)t∈[0,1]|x0, x1)
+ Ep(x1,x0) log

q(x1)

p(x1|x0)
.

(1)

This ELBO is maximized when the distribution of forward and backward trajectories match. The
second term of the right hand side measures if the forward process indeed evolves samples x0 ∼
p(x0) to q(x1). The first term measures how well the forward and backward trajectories match.

Discrete Markov processes and infinitesimal generators To define a diffusion model, we need
to define a simple Markov process to generate p((xt)t∈[0,1]) and we need to parameterize the back-
ward Markov process Fortunately, discrete Markov processes are much easier to define than their
continuous counterparts. Every time-homogeneous discrete Markov process is fully described by a
B×B matrix that describes the “flow” of a particle at each instant in time known as the infinitesimal
generator L. In particular, Lb,b′ describes the rate at which state b transitions to state b′; the diagonal
of L describes the rate of transitions out of b: Lb,b = −

∑
b′ ̸=b Lb,b′ . Therefore, to simulate from a

Markov process described by L, starting at xt, one simulates the time at which xt would transition
to each other state ∆tb ∼ Exp(Lxt,b) for b ̸= xt; then one transitions xt according to the first transi-
tion sampled: it take ∆t = minb ∆tb time to transition and xt transitions to xt+∆t = argminb∆tb.
By a property of exponential distributions, the transition time is distributed according to the value
on the diagonal of L: ∆t ∼ Exp(

∑
b ̸=x0

Lx0,b) = Exp(−Lx0,x0
). This procedure is known as the

Gillespie algorithm (Gillespie, 1977).

Picking the forward process Two popular choices for the forward process are the uniform and
masking processes. The uniform process has a constant rate of transitioning to any state (Lb,b′ =
1/(B − 1) if b ̸= b′ and Lb,b = −1) and the masking distribution has a constant rate of transition
to a masking state ∅ (for b ̸= ∅, Lb,b′ = 0 if b ̸= b′ ̸= ∅, Lb,∅ = 1, Lb,b = −1, and L∅,∅ = 0).
Both of these processes are simple to simulate – simply sample ∆t ∼ Exp(1) and then transition
to a uniformly random state or to ∅. There are also other processes that bake in inductive biases for
text, images, and proteins (Austin et al., 2021; Alamdari et al., 2023).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(a) D3PM (uniform forward process) on UniRef50. (b) τLDR (Gaussian forward process) on CIFAR10.

Figure 3: State of the art discrete diffusion models have backwards processes which do not
match the forward process in when they transition. We plot the transition rate of the backward
process minus that of the forward process. We discuss details in App. D.

For typical Markov processes, information about the starting state x0 becomes lost as t gets larger
and p(xt) gets closer to a stationary distribution p(x∞). This distribution is a natural choice for
q(x1) as long as p(x1|x0) is close to converging to the stationary distribution.

In practice, p(x1|x0) is usually not near p(x∞), so we modulate the speed of the process by a rate βt

at time t – at the instant t we simulate from the process βtL. Simulating this modulated process for
time t is equivalent to simulating the original process for time

∫ t

0
βsds. By choosing βt to become

large as t→ 1, we can be sure p(x1|x0) ≈ p(x∞) = q(x1).

Parameterizing the backward distribution The backward Markov process is usually defined in
terms of a parameterized, time-dependent, infinitesimal generator Lθ,t. The first term of Eqn. 1 is
usually written as an integral in time Et∼Unif(0,1)L(Lθ,t, t), for some L which intuitively measures
how well the Lθ,t describes the “flow” of the reversal of p((xt)t) at instant t (Campbell et al., 2022;
Luo et al., 2022).

3 LEARNING WHEN AND WHERE TO TRANSITION

To fit a discrete diffusion model, the backward process should match the forward in both when it
transitions and where it transitions to. One should expect that learning where to transition is hard;
on the other hand, since the distribution of when to transition is simple and known a priori in many
cases, one should expect learning when to transition should be trivial. We see however in Fig. 3 that
this is not necessarily true – state of the art published diffusion models have detectable differences
in the transition rates of their forward and backward processes.

Unlike previously derived forms of the ELBO which are written as an integral of the discrepancy of
the flow at each moment t, with some algebra, we break up the ELBO into discrepancy of when and
where to transition. Define the “transition schedule”, S = {t1, t2, . . . , tM}, as the set of times at
which xt transitions.

Proposition 3.1. (Proof in Prop A.1 in the Appendix) The expression in Eqn. 1 is equal to the
expression in Eqn 2 for some constant C.

Ep((xt)t) log
qθ((xt)t|x1, S)

p((xt)t|x0, x1, S)
−KL(p(S)||qθ(S))−Ep(S,x0)KL(p(x1|S, x0)||qθ(x1|S))+C. (2)

The first term represents the difference in log likelihoods between qθ and p when the transitions are
known – it measures if the forward and backward processes match where they transition to. The
second term measures if the forward and backward processes match when they transition. The third
term, like the second term of Eqn. 1 intuitively measures if p(x1|x0) has converged to p(x∞).

To build diffusion models that better fit their objective, we therefore would like to incorporate knowl-
edge of p(S) into the model. Eqn 2 is suggestive of how to do this: set q(S) = p(S) so that the
second term becomes 0 and then learn where to transition by optimizing the first term. We call this
procedure “schedule conditioning” (Fig. 1) and in Sec. 4 we describe how to perform it in practice.

Unlike diffusion models with the uniform forward process, diffusion models with the masking for-
ward process are parameterized so that the distribution of times at which tokens are masked matches
the distribution of times at which they are unmasked – these models know when to transition. In
practice they have been observed to outperform uniform diffusion models. In Sec. 5 we will prove

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

that applying our methods in Sec. 4 gives exactly masking distribution, explaining their superior
performance. By schedule conditioning other processes with more appropriate inductive biases, we
also improve on masking diffusion (Fig 2).

4 SCHEDULED CONDITIONED DIFFUSION (SCUD)
In this section, motivated by Eqn. 2, we describe how to incorporate information about when to
transition into a discrete diffusion model. Ideally we could set q(S) = p(S); however, in general, L
may not have constant transition rates at each state, in which case S may be correlated with x0 and
p(S) may be a complex distribution. Instead of looking directly at transitions then, we introduce
latent “events” which will act as transitions did above – they occur with constant rate and often result
in transitions; in some cases we discuss below, they will coincide exactly with transitions. S will
describe the schedule of these events and this is what we’ll condition on.

In Sec. 4.1 we will describe models that condition on these event schedules, SCUD. Next in Sec. 4.2
we will write the loss in a form that is easy to train on high dimensional data. Finally in Sec. 4.3 we
will describe how to parameterize and sample from SCUD.

4.1 CONDITIONING ON EVENT SCHEDULES

Markov processes with event schedules To sample from a uniform forward process starting at
xt, we sampled a transition time according to a rate that was independent of the current state, ∆t ∼
Exp(1), and then sampled xt+∆t with uniform probability. Consider more generally the discrete
Markov process on xt such that we sample an “event” ∆t ∼ Exp(r), and then sample xt+∆t ∼
Categorical(Kxt,·) where Kxt,· is a matrix whose rows are normalized distributions; note in this
case xt may be equal to xt+∆t. By appealing to the formal definition of L, the next proposition tells
us that this process has infinitesimal generator that flows according to the rate r ×K, with a −I to
describe the flow out of x.
Proposition 4.1. (Proof in Prop A.2 in the Appendix) The infinitesimal generator of this process is
L = r(K − I) where I is the identity matrix. In particular, any Markov process with L can be
simulated in the above way by picking an r ≥ maxb−Lb,b and setting K = L/r + I .

We note there are many choices of r that allow one to write the same Markov process in this way
and we will evaluate different choices in Sec. 5.

Reversing the process conditioned on the event schedule Call p((xt)t) the distribution of paths
that start at p(x0) and evolve according to the above Markov process. The next proposition uses a
bit of algebra to suggest that we can simulate from p((xt)t) “backwards” by 1) sampling the ending
point x1 ∼ p(x1), 2) sampling the event schedule {t1, t2, . . . , tM} ∼ p(S), and then 3) going
backwards, sampling where the particle came from at the m-th event.
Proposition 4.2. (Proof in Prop A.3 in the Appendix) Call the event schedule S = {t1, t2, . . . , tM}
and t0 = 0. Call st the number of events up to time t, so stm = m.

p((xt)t, S) = p(S)p(x1)

M∏
m=1

p(xtm−1
|xtm , stm). (3)

We now aim to model this backwards process.

SCUD: schedule conditioned discrete diffusion models As suggested in Sec 3, we wish to build
a discrete diffusion model qθ by setting q(x1) = p(x∞) and q(S) = p(S). Prop. 4.2 suggests
parameterizing q so that, at each event, it predicts the previous state xtm−1

given 1) the current
state xtm and 2) the number of events that have occurred so far st. We call such a model a SCUD
(schedule conditioned diffusion) model. With some algebra, in analogy with Eqn. 2 we get a closed
form objective.
Proposition 4.3. (Proof in Prop A.4 in the Appendix) Calling the event schedule S =
{t1, t2, . . . , tM} and t0 = 0,

Ep(x0) log qθ(x0) ≥Ep((xt)t,S,x0)

M∑
m=1

KL(p(xtm−1
|xtm , x0, stm)||qθ(xtm−1

|xtm , stm))

− Ep(S,x0)KL(p(x1|s1, x0)||p(x∞)).

(4)

This objective is minimized when qθ(xtm−1 |xtm , stm) = p(xtm−1 |xtm , stm).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The first term is from the first term of Eqn 2 and teaches qθ where to go at each event. The second
term of Eqn 2 vanishes and the third term becomes the third term of Eqn 4, which should be small
if p(x1) converges to p(x∞). By Prop. 4.2 then, as the objective in Eqn. 4 is minimized, qθ((xt)t)
approaches p((xt)t).

Computing the objective The ELBO in Eqn. 4 is straightforward to compute. To calculate the
first term, we note, writing each state as a one-hot vector,

p(xtm−1
|xtm , x0, st) =

p(xtm−1 |x0, st)p(xtm |xtm−1 , st)

p(xtm |x0, S)
=

xT
0 K

st−1xtm−1
xT
tm−1

Kxtm

xT
0 K

stxtm

. (5)

To calculate the second, we note p(x∞) can be derived as the left eigenvector of L that corresponds
to the eigenvalue 0 (as it does not change under flow from L) and p(x1|s1, x0) = xT

0 K
s1x1.

4.2 HIGH DIMENSIONAL DATA

For high dimensional discrete data such as images, language, and biological sequences, it is common
to choose processes L that act on each dimension independently. Say our data is D dimensional with
dimensions x1

0, . . . , x
D
0 with each xd

0 a discrete object in a set of size B. We extend SCUD to this
case by simulating D parallel schedules for each dimension S1, . . . , SD ∼ p(S); here st becomes a
D-dimensional vector.

Parameterizing qθ For a time t, if sdt > 0, define pr(xd
t) as the state at the last event in dimen-

sion d and pr(xt) the previous state at each dimension; i.e. if the event schedule at dimension d is
Sd = {td1, . . . , tdm} and t ∈ [tdm, tdm+1), then pr(xd

t) = xd
tdm−1

. Our formula for reversing p((xt)t)

in Prop. 4.2 remains the same, but in App. B.2 we show p(pr(xt)|xt, st) factorizes. Thus we param-
eterize our predictor qθ(pr(xt)|xt, st) so it also factorizes as

∏D
d=1 qθ(pr(x

d
t)|xt, st). Thus we get

an objective as in Eqn 4 but with a sum over D in front.

Efficient loss We could technically use our objective in Eqn. 4 by taking empirical estimates of
the expectation and the sum over events. In this case however, each empirical sample corresponds
to one event which effects a single dimension d, so it only checks the prediction qθ(pr(x

d
t)|xt, st).

The loss of other diffusion models, written as Et∼Unif(0,1)Ext∼p(xt|x0)

∑D
d=1 L

d(Lθ, xt, t|x0,L),
allow one to sample t and then check the predictions of qθ(pr(xd

t)|xt, st) at that time for every d in
parallel. To write our objective in a similar form, we sample t ∼ Unif(0, 1) and then add a weight
sdt × βt/

∫ t

0
βsds representing how likely an event is to occur at the instant t:

Proposition 4.4. (SCUD loss) (Proof in Prop. A.6 in the Appendix) The first term of Eqn. 4 is

−Et∼Unif(0,1)Ep(xt,x0,S)
βt∫ t

0
βsds

∑
d

sdtKL(p(pr(xd
t)|xd

t , s
d
t , x

d
0)||qθ(pr(xd

t)|xt, st)). (6)

We can approximate this objective by empirical estimates of all of the expectations and optimize
with minibatch gradient descent. For a single evaluation of qθ we can predict pr(xd

t) for each
dimension d in parallel and check whether it matches the forward process along every dimension.
The algorithm for calculating an estimate of the ELBO for a x0 is summarized in App. B.1.

4.3 SCHEDULE CONDITIONING IN PRACTICE

Parameterization qθ must predict, for each dimension, p(pr(xd
t)|xt, st), which is an expectation

over the posterior of xd
0 given xtand S:∑

xd
0

p(pr(xd
t)|xd

t , s
d
t , x

d
0)p(x

d
0|xt, S) =

∑
xd
0

p(xd
t |pr(xd

t))p(pr(x
d
t)|sdt , xd

0)
p(xd

0|xt, st)

p(xd
t |sdt , xd

0)
.

In App. B.2 we show that the fraction on the right hand side is proportional to p(xd
0|x−d

t , s−d
t) where

x−d
t and s−d

t are xt and st without dimension d. Other discrete diffusion methods parameterize their
qθ to predict analogues of this quantity – Austin et al. (2021) predicted a similar quantity rather than

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

directly predicting p(xd
0|xt, S), and predicting p(xd

0|x−d
t , s−d

t) is identical to predicting p(xd
0|xt, S)

when xd
t is masked. Predicting this quantity has the benefit that we do not need to learn what xd

t
tells us about xd

0; it is rather baked into our prediction. We parameterize our qθ similarly.

Thus, to predict qθ(pr(xd
t)|xt, S) we input xt and st into a neural network that outputs a vector of

probabilities x̃0,θ and set

qθ(pr(x
d
t)|xt, st) =

∑
b

p(xd
t |pr(xd

t))p(pr(x
d
t)|sdt , xd

0 = b)x̃0,θ,b = Kxd
t ◦Ksdt−1,T x̃0,θ. (7)

Note we do not explicitly forbid x̃0,θ from using xd
t , s

d
t to predict xd

0.

Sampling To sample, in principle we could take x1 ∼ p(x∞), S ∼ p(S), and then iteratively
reverse each event in S in order using our predictions of qθ(pr(x

d
t)|xt, st). For data with many

dimensions however, S could contain tens of thousands of events, requiring many evaluations of
x̃0,θ. Instead, like Campbell et al. (2022) and Zhao et al. (2024), we reverse many events at once.
In particular we use an analogue of a k-Gillespie procedure (Zhao et al., 2024) – we pick k events
to reverse and reverse them with a single evaluation of x̃0,θ. We describe the particulars of which
transitions to reverse and how to many transitions at once in App. B.3.

Choosing the rate βt Our choice of βt describes how we compress the forward process running
from time 0 to

∫ 1

0
βsds into the interval [0, 1]. It controls what times we sample when training the

objective Eqn. 6 and
∫ 1

0
βsds controls the convergence of p(x1) to p(x∞). Austin et al. (2021)

suggest picking βt so that the mutual information between x0 and xt decreases linearly to ϵ on the
interval [0, 1]. For SCUD models, we pick βt so that the same is true when conditioning on the
schedule: EstMI(x0, xt|st) decreases linearly on the interval [0, 1]. We discuss details in App. B.4.

5 SCHEDULE CONDITIONING TO CONDITION ON TRANSITIONS

To incorporate information about transitions into qθ, we wish to condition on the schedule. We
described how conditioning on “events” in the previous section allow us to incorporate this structure.
However not every event corresponds to a transition. The amount of information about the transitions
that we bake into our model depends on the diagonal of K – the probabilities of no transition at an
event. In turn the diagonal of K will depend on our choice of the rate of events r. For a fixed L, we
can choose any rate r ≥ r∗ = maxb−Lb,b. Let’s parameterize our choices of rate with a parameter
γ: let r = γ−1r∗. When γ is 1, the rate of events is as slow as possible; when γ → 0, the rate of
events goes to∞.

γ controls the diagonal of K and therefore how much we condition on the schedule. We can write
K = γL/r∗ + I; the larger γ is, the smaller the diagonal of K. When L is “normalized” so that
every entry on the diagonal is the same, γ = 1 coincides with K with zero diagonal; in this case,
every event is a transition and we’ve fully conditioned on the transition schedule. On the other hand,
as γ → 0, the diagonals of K get closer to 1, so that almost no events result in a transition.

We now show that when L is uniform and γ = 1 − 1/D, that is, we nearly fully condition on the
schedule, our process is equivalent to masking diffusion. On the other hand, as γ → 0, we learn a
backwards process while baking in no information about transitions; we show this recovers classical
discrete diffusion exactly.

5.1 CONNECTION TO MASKING DIFFUSION

Say γ = 1 − 1/B and L is uniform: Lb,b′ is 1/B when b ̸= b′. For this choice, K is a matrix
which has 1/B at every position. If a token is corrupted at least once by K then it is distributed
uniformly; it tell us nothing about x0 so it is as if that token is “masked”. When we condition on the
event schedule, st will tell us exactly which positions are masked when sdt > 0. By integrating out
st conditioned on the mask, we get exactly the masking diffusion objective (Shi et al., 2024).
Proposition 5.1. (Proof in Prop. A.7 in the Appendix) Call the masking indicator md

t = sdt > 0.
x̃0,θ(xt, st) only depends on st through mt. Defining αt = exp(−

∫ t

0
βsds), the objective Eqn. 6 is

Et∼Unif(0,1)Ep(mt)Ep(xt|x0,mt)
βtαt

1− αt

∑
d

xT
0 log x̃0,θ(xt,mt)

d.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The mask mt is distributed according to md
t ∼ Bern(1− αt).

In App. B.4 we also show that our choice for rate βt discussed in Sec. 4.3 for this SCUD process is
linear (in the sense αt = 1− t), just as for the masking process as discussed in (Austin et al., 2021).

5.2 CONNECTION TO CLASSICAL DISCRETE DIFFUSION

As γ → 0, each event represents an infinitesimal change in xt. As well, the number of events up
to time t, st, grows larger but fluctuates less and less; inputting st into qθ(pr(x

d
t)|xt, st) becomes

approximately identical to inputting the time t into qθ. Therefore, as γ → 0, qθ predicts the infinites-
imal change at time t: the infinitesimal generator. This is exactly the objective of classical discrete
diffusion. The next proposition shows that when we take the limit γ → 0 we recover exactly the loss
from SEDD (Luo et al., 2022) which is also equivalent to that from τLDR (Campbell et al., 2022).
Proposition 5.2. (Proof in Prop. A.8 in the Appendix) Define the score function estimator as in
SEDD (Luo et al., 2022)1

s̃(xt, t)
d
θ,b =

qθ(x
d
t = b|x−d

t)

qθ(xd
t |x−d

t)
:=

Ex̃0,θ(xt,st)p(x
d
t = b|xd

0)

Ex̃0,θ(xt,st)p(x
d
t |xd

0)
.

Suppressing the dependence of s̃θ on xt, t, as γ → 0 the objective in Eqn. 6 converges to

−Et∼Unif(0,1)Ep(x0,xt)βt

∑
d

∑
b̸=xd

t

Lb,xd
t

(
s̃dθ,b −

p(xd
t = b|xd

0)

p(xd
t |xd

0)
log s̃dθ,b − g

(
p(xd

t = b|xd
0)

p(xd
t |xd

0)

))
where g(x) = x(log x− 1).

In App. B.4 we also show that our choice for rate βt discussed in Sec. 4.3 approaches the rate
function for classical discrete diffusion as γ → 0.

6 RELATED WORK

Diffusion generative models are state of the art for images and other continuous data (Ho et al.,
2020; Dhariwal & Nichol, 2021; Peebles & Xie, 2022), but have so far lagged behind autoregressive
models on discrete sequence data like text. Inspired by its success on continuous modalities, a
number of works have attempted to extend diffusion to discrete domains. D3PM (Austin et al.,
2021), for example, adapts Ho et al. (2020)’s continuous framework and extends early work by
Hoogeboom et al. (2021) by introducing a family of categorical noise processes based on structured
discrete transition matrices. Our method takes inspiration from the diverse noise processes explored
in D3PM but is ultimately more flexible, as our formalism can use any L which converges to a
stationary distribution and does not require doubly stochastic matrices.

To allow for more flexible sampling and principled model development, a number of methods
have extended diffusion from discrete time to continuous time. For example, τLDR (Campbell
et al., 2022) intro a continuous-time Markov chain formulation and a corresponding continuous-
time ELBO. In related work, SEDD (Lou et al., 2023) introduced score-matching loss for discrete
spaces, intended to parallel score-matching for continuous spaces (Song & Ermon, 2019), which
allows flexible continuous time sampling. These models differ primarily in how they are parame-
terized and how they estimate the ELBO objective. SCUD on the other hand is more flexible as it
only requires that one can calculate matrix vector products with K, or equivalently L. Recently,
many works have chosen to focus purely on masking state diffusion, proposed weighted losses that
have pushed compression metrics closer and closer to numbers obtained from autoregressive models
(Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2024). While SCUD is closely related to recent work
in continuous-time discrete diffusion, we find that schedule conditioning allows structured noise
processes to improve performance and thereby leads to non-masking diffusion with state-of-the-art
performance.

In the realm of sampling, Chen et al. (2023) also considered an accelerated procedure for simple
diffusion models in which the transition schedule is sample sampled first followed by the transi-
tions conditioned on the schedule, which shares similar motivations with SCUD. SCUD, however,
describes how to build in this information into training a model.

1recall x̃d
0,θ(xt, st) is trained to fit p(xd

0|x−d
t , s−d

t).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Lastly, inspired by flow-matching developments in image modeling, many authors have begun to
propose flow-matching frameworks for discrete data. Campbell et al. (2024b) for instance propose a
flow-matching framework that accommodates joint modeling of discrete and continuous modalities,
enabling applications in protein design. Similarly, Gat et al. (2024) presents a general framework
for learning probability paths on discrete sequences and trains large-scale models on text datasets.
Unlike papers on discrete flow matching, we still employ a diffusion framework and use an ELBO
loss, but it’s possible that our investigation of schedule conditioning or structured forward processes
could yield insights that are also useful for score matching, as many of the underlying modeling
methods are shared.

7 RESULTS

We show that by incorporating information about transitions, SCUD better fits the forward process.
We first demonstrate the results of Sec. 5 that SCUD with a uniform forward process interpolates
between uniform and masking discrete diffusion. We next show that applying SCUD to state of
the art classical discrete diffusion models without schedule conditioning improves their likelihoods
on images, text, and protein data. Finally, by building SCUD with forward processes that build in
inductive biases, we also show scale that we can improve over SCUD uniform which is similar to
masking (Sec. 5.1), thereby unlocking the potential of structured discrete diffusion. Throughout this
section, SCUD refers to γ = 1.

The structured forward processes we build for each modality will be inspired by those from Austin
et al. (2021). However Austin et al. (2021) used processes in discretized time that are not equivalent
to and continuous time Markov process; thus we describe new structured processes for continuous
time in terms of L or K.

In all cases we try to make only minor modifications to the architecture and training parameters
from previous models so that differences in scores are due to schedule conditioning. We employed
a few strategies so that moving from classical discrete diffusion to SCUD did not add substantial
computational overhead, summarized in App. D.5. Other experimental details are in App. D.

7.1 CONNECTION TO OTHER MODELS

Here we show that by incorporating information about the distribution of transitions into a discrete
diffusion model, one gets better fits to the forward process.

We fit models to CIFAR10 where each pixel takes a value from 1 to B = 128. In Fig. 2 we see
that on this dataset discrete diffusion with a uniform forward process is outperformed by masking
diffusion. We see that sweeping γ between 0.1 and 1, SCUD with the uniform forward process
interpolates the performance of the two models as predicted above.

Next we build a structured forward process that builds in the inductive bias that similar pixel values
describe similar colors – we set Li,j = exp(−200

(
i−j
B

)2
), similar to the discrete-time Gaussian

forward process in Austin et al. (2021). We see that a discrete diffusion model with this forward
process slightly outperforms masking distribution. We next build SCUD models with this forward
process; we see that these models better fit their objective as we incorporate more information about
transitions – γ → 1. These models outperform models that have structured forward processes
(Gaussian) or those that just condition on the transition schedule (masking) without doing the other.

7.2 IMAGES

Here we build models on CIFAR10 with B = 256 and compare to state of the art diffusion mod-
els. We use the architecture from (Kingma et al., 2021) as in discrete diffusion models MD4 (Shi
et al., 2024) and similar to that in D3PM (Austin et al., 2021) and τLDR Campbell et al. (2022). To
incorporate st into our function, we replace additive layers that inject t into every layer with FiLM
(Perez et al., 2017) layers that incorporate st into every layer. We also use the logistic parameteri-
zation from Salimans et al. (2017) also used in D3PM, which interprets the output of the model as
the parameters of a discretized logistic distribution over pixel values, so that similar pixel intensities
have similar probabilities.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Method Forward process Training samples BPD
D3PM Uniform 1.9× 108 5.08
D3PM Gaussian 1.9× 108 3.44
τLDR Gaussian 2.6× 108 3.59
MD4 Masking 2.6× 108 2.78
Classical Gaussian 6.4× 107 2.94
Masking Masking 6.4× 107 2.90
SCUD Gaussian 6.4× 107 2.86

Table 1: Schedule conditioning improves model fit on images. We compare to other discrete dif-
fusion models and report model fit in bits per dimension on CIFAR10. Models labelled “Gaussian”
implement numerically different forward processes that are united in a Gaussianity assumption.

Figure 4: Samples from SCUD Gaussian trained on CIFAR10.

In Table 1 we compare SCUD with discrete diffusion models D3PM (Austin et al., 2021),
τLDR (Campbell et al., 2022), and MD4 (Shi et al., 2024) as well as our implementations of classi-
cal discrete diffusion models. We see that applying SCUD to model the Gaussian forward processes
substantially improves likelihood with a fraction of the compute. Among previous discrete diffu-
sion models, masking diffusion is the most performant despite not incorporating inductive biases.
When controlled for compute in our baselines, SCUD beats masking. This suggests that masking
beats Gaussian diffusion in classical models because the benefit of schedule conditioning outweighs
the benefit of incorporating inductive biases. By both incorporating inductive biases and schedule
condition, SCUD unlocks the potential of Gaussian discrete diffusion on images.

Fig. 4 shows samples from SCUD Gaussian. The samples from SCUD resemble real objects much
more than those from autoregressive models PixelCNN++ (Salimans et al., 2017) and PixelSNAIL
(Chen et al., 2017) which have state of the art likelihoods. However they do not contain clear
objects like those from D3PM (Austin et al., 2021) or τLDR (Campbell et al., 2022); MD4 did not
show or evaluate images. The quality of samples from those models are known to depend heavily
on modelling choices, such as modifications of the objective, choice of βt, and training time; and
sampling procedure, such as the inclusion of corrector steps or how to denoise many dimensions at
once. Here we focus on achieving low likelihoods and leave the task of translating a better fit into
higher quality images to future work.

7.3 LANGUAGE

Here we build models on the one billion words dataset with a B = 30522 vocabulary size. To
improve over masking diffusion, we want to build in inductive biases about which vocabulary tokens
are more similar. However, it is not trivial to efficiently simulate a process over 30 thousand states.
To do so, we define a sparse 10-nearest neighbour graph over the most frequent 2000 states, which
make up 95% of tokens in the data. Our forward process diffuses along this graph with some
probability or transitions approximately uniformly with some small probability; the less frequently
used 25 thousand states always transition uniformly. We discuss the details in App C.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Method Forward process Training tokens Perplexity
SEDD Uniform 3.3× 1010 40.25
SEDD Masking 3.3× 1010 32.79
MDLM Masking 3.3× 1010 27.04
SCUD Uniform 1.1× 1010 37.82
SCUD Nearest Neighbour 1.1× 1010 37.63

Table 2: Schedule conditioning improves model fit on language. We compare to other discrete
diffusion models on LM1B.

Method Forward process Training tokens Perplexity
D3PM Uniform > 3× 1011 18.82
D3PM BLOSUM > 3× 1011 17.16
D3PM Masking > 3× 1011 14.61
Classical BLOSUM 8× 109 15.39
Masking Masking 8× 109 15.56
SCUD BLOSUM 8× 109 15.29

Table 3: Schedule conditioning improves model fit on proteins. We implement and compare to
the small architecture from (Alamdari et al., 2023) on UniRef50.

SCUD allows one to flexibly incorporate a forward process by only requiring one to define K and
take powers to evaluate likelihoods. Classical discrete diffusion models such as SEDD on the other
hand require closed form p(xt|x0) which requires a matrix exponential to evaluate. While in some
cases the matrix exponential is easy to evaluate, that is not the case for our forward process. This
also means that we could not compare to classical diffusion on this structured classical diffusion.

In Tab. 2 we compare SEDD (Luo et al., 2022) and MDLM (Sahoo et al., 2024) to SCUD and an
ablation without structure, SCUD uniform. As expected, among previous models, masking beats
uniform; in (Austin et al., 2021) it was noted that masking also beats discrete diffusion with a
nearest neighbour structure on this dataset2. We see again that applying SCUD to uniform diffusion
improves its fit to the data with a fraction of the compute. We also again see that unlike previous
discrete diffusion models, when we add structure to the forward process, we improve our fit.

7.4 PROTEINS

Here we train models on the UniRef50 protein dataset with architectures from (Alamdari et al.,
2023). As in (Alamdari et al., 2023) we build a forward process using the BLOSUM matrix; this
matrix describes the rates of mutations between amino acids seen in nature. We describe the details
of our process in App C; we note B = 31 = 20 canonical amino acids + 11 special tokens.

In Tab. 3 we compare SCUD BLOSUM with the small D3PM models from (Alamdari et al., 2023)
as well as our implementations of classical discrete diffusion models. We see again that applying
SCUD to uniform and BLOSUM diffusion substantially improves the model fit given a fraction
of the compute budget. In classical discrete diffusion, masking strongly outperforms BLOSUM
diffusion. We see the opposite for SCUD, where by both schedule conditioning and incorporat-
ing inductive biases, SCUD BLOSUM outperforms masking, and thereby unlocks the potential of
BLOSUM diffusion.

8 CONCLUSION

The choice of forward process is critical to the definition of a discrete diffusion model. Yet previ-
ous results have shown very strong performance from the simplest forward process – the masking
process. SCUD offers an explanation for the superior performance of masking diffusion – it incor-
porates information about the transition schedule. By incorporating this information into models
with other forward processes, SCUD allows us to build models that build in inductive biases and
outperform masking.

2These models achieved much worse perplexity values than the models in Tab. 2 but are not directly com-
parable due to a different choice of tokenizer

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

9 REPRODUCIBILITY

We include code to train, evaluate, and sample from SCUD models in our code release. We include
implementations for the exact architectures used in our experiments. The training and evaluation
details for experiments we ran on images, language and proteins were described by previous papers
and again in our appendix.

REFERENCES

Sarah Alamdari, Nitya Thakkar, Rianne van den Berg, Alex Xijie Lu, Nicolo Fusi, Ava Pardis
Amini, and Kevin K Yang. Protein generation with evolutionary diffusion: sequence is all you
need. bioRxiv, September 2023.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Adv. Neural Inf. Process. Syst., 34:17981–
17993, 2021.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Tom Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. In Advances in
Neural Information Processing Systems, October 2022.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
In Proceedings of the 41st International Conference on Machine Learning. arXiv, 2024a.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
arXiv preprint arXiv:2402.04997, 2024b.

Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter Abbeel. PixelSNAIL: An improved au-
toregressive generative model. In 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 864–872. PMLR, December 2017.

Zixiang Chen, Huizhuo Yuan, Yongqian Li, Yiwen Kou, Junkai Zhang, and Quanquan Gu. Fast
sampling via de-randomization for discrete diffusion models. arXiv preprint arXiv:2312.09193,
2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. arXiv [cs.CL], October 2018.

Prafulla Dhariwal and Alex Nichol. Diffusion models beat GANs on image synthesis. Adv. Neural
Inf. Process. Syst., abs/2105.05233, May 2021.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
Yaron Lipman. Discrete flow matching. arXiv preprint arXiv:2407.15595, 2024.

Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81
(25):2340–2361, December 1977.

Nate Gruver, Samuel Don Stanton, Nathan C Frey, Tim G J Rudner, Isidro Hotzel, Julien Lafrance-
Vanasse, Arvind Rajpal, Kyunghyun Cho, and Andrew Gordon Wilson. Protein design with
guided discrete diffusion. In Thirty-seventh Conference on Neural Information Processing Sys-
tems, November 2023.

S Henikoff and J G Henikoff. Amino acid substitution matrices from protein blocks. Proc. Natl.
Acad. Sci. U. S. A., 89(22):10915–10919, November 1992.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. Advances in Neural Information
Processing Systems, 34:12454–12465, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Diederik P Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. In
35th Conference on Neural Information Processing Systems, July 2021.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. In 41 st International Conference on Machine Learning, October 2023.

Shitong Luo, Yufeng Su, Xingang Peng, Sheng Wang, Jian Peng, and Jianzhu Ma. Antigen-specific
antibody design and optimization with diffusion-based generative models for protein structures.
bioRxiv, July 2022.

Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guidance
for discrete state-space diffusion and flow models. arXiv [cs.LG], June 2024.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan
Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data.
arXiv preprint arXiv:2406.03736, 2024.

William Peebles and Saining Xie. Scalable diffusion models with transformers. arXiv [cs.CV],
December 2022.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. FiLM: Visual
reasoning with a general conditioning layer. arXiv [cs.CV], September 2017.

Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T
Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. arXiv preprint arXiv:2406.07524, 2024.

Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. PixelCNN++: Improving the
PixelCNN with discretized logistic mixture likelihood and other modifications. arXiv [cs.LG],
January 2017.

Anirban Sarkar, Ziqi Tang, Chris Zhao, and Peter K Koo. Designing DNA with tunable regulatory
activity using discrete diffusion. bioRxiv, pp. 2024.05.23.595630, May 2024.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and gener-
alized masked diffusion for discrete data. arXiv [cs.LG], June 2024.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yixiu Zhao, Jiaxin Shi, Lester Mackey, and Scott Linderman. Informed correctors for discrete
diffusion models. arXiv [cs.LG], July 2024.

A PROOFS OF RESULTS

Proposition A.1. (Proof of Prop 3.1) The expression in Eqn. 1 is equal to the expression in Eqn 2
for some constant C.

Proof. S is a deterministic function of (xt)t so we can write the first term of Eqn. 1 as

Ep((xt)t∈[0,1]|x0) log
qθ((xt)t∈[0,1]|x1)

p((xt)t∈[0,1]|x0, x1)
=Ep((xt)t∈[0,1]|x0) log

qθ((xt)t∈[0,1], S|x1)

p((xt)t∈[0,1], S|x0, x1)

=Ep((xt)t∈[0,1]|x0) log
qθ((xt)t∈[0,1]|x1, S)

p((xt)t∈[0,1]|x0, x1, S)
.

+ Ep(S,x1|x0) log
qθ(S|x1)

p(S|x0, x1)
.

(8)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

We can combine the second term of this equation with the second term of Eqn. 1 to get

Ep(S,x1|x0) log
qθ(S|x1)

p(S|x0, x1)
+ Ep(x1|x0) log

q(x1)

p(x1|x0)

=Ep(S|x0) log
qθ(S)

p(S|x0)
+ Ep(S,x1|x0) log

qθ(x1|S)
p(x1|x0, S)

=Ep(S|x0) log
qθ(S)

p(S)
+ Ep(S|x0) log

p(S)

p(S|x0)
− Ep(S|x0)KL(p(x1|x0, S)|qθ(x1|S)).

(9)
The first term is −KL(p(S)||qθ(S)) and the second does not depend on q. This completes the
proof.

Proposition A.2. (Proof of Prop 4.1) The infinitesimal generator of this process is L = r(K − I)
where I is the identity matrix. In particular, any Markov process with L can be simulated in the
above way by picking an r ≥ maxb−Lb,b and setting K = L/r + I .

Proof. The process is described is clearly Markov. By the formal definition of L, for b′ ̸= b,

Lb,b′ = lim
t→0

1

t
p(xt = b′|x0 = b)

= lim
t→0

1

t
(p(an event occurs before t)× p(the event transitions to b′) + o(t))

= lim
t→0

1

t
(1− e−rt)Kb,b′ = rKb,b′ .

(10)

Then, since the rows of K sum to 1,

Lb,b = −
∑
b′ ̸=b

Lb,b′ = −r
∑
b′ ̸=b

Kb,b′ = −r(1−Kb,b).

The second statement follows from rearranging the first. The requirement that r ≥ maxb−Lb,b

comes from the fact that all entries in K must be non-negative and Kb,b = Lb,b/r + 1.

Proposition A.3. (Proof of Prop 4.2 in the Appendix) Call the event schedule S = {t1, t2, . . . , tM}
and t0 = 0. Call st the number of events up to time t, so stm = m.

p((xt)t, S) = p(S)p(x1)

M∏
m=1

p(xtm−1 |xtm , stm). (11)

Proof.
p((xt)t, S) =p(S)p(x1)p(xt0:M |x1, S)

=p(S)p(x1)

M∏
m=1

p(xtm−1 |xtm:M
, S).

By the Markov property, p(xtm−1
|xtm:M

, S) = p(xtm−1
|xtm , S). Finally, p(xtm−1

|xtm , S) ∝
p(xtm |xtm−1

, S)p(xtm−1
|S) = p(xtm |xtm−1

)p(xtm−1
|stm−1

) only depends on S through stm−1
,

or equivalently, stm = 1 + stm−1
.

Proposition A.4. (Proof of Prop. 4.3) Calling the event schedule S = {t1, t2, . . . , tM} and t0 = 0.

Ep(x0) log qθ(x0) ≥− Ep((xt)t,S,x0)

M∑
m=1

KL(p(xtm−1
|xtm , x0, stm)||qθ(xtm−1

|xtm , stm))

− Ep(S,x0)KL(p(x1|s1, x0)||p(x∞)).

(12)

This objective is minimized when qθ(xtm−1 |xtm , stm) = p(xtm−1 |xtm , stm).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Proof. Just as with the classical ELBO, we can write

Ep(x0) log q(x0) ≥Ep(x0,S)Ep((xt)t∈[0,1],S|x0) log
qθ((xt)t∈[0,1], S)

p((xt)t∈[0,1], S|x0)
. (13)

Then we can break it up as in Prop. A.1 to get

Ep(x0) log q(x0) ≥Ep((xt)t) log
qθ((xt)t|x1, S)

p((xt)t|x0, x1, S)
−KL(p(S)||q(S))

Ep(S|x0) log
p(S)

p(S|x0)
− Ep(S,x0)KL(p(x1|S, x0)||qθ(x1|S)).

(14)

By our definition of the event schedule and q(S), the second and third term on the right are 0. For
the fourth term, clearly p(x1|x0, S) = p(x1|x0, s1).

By our definition of qθ,

qθ((xt)t|x1, S) =

M∏
m=1

q(xtm−1 |xtm , stm).

As in teh proof of Prop. A.3, we can write

p((xt)t|x0, x1, S) =

M∏
m=1

p(xtm−1
|x0, x1, S, xtm:M

) =

M∏
m=1

p(xtm−1
|x0, stm , xtm)

where the last equality follows by the Markov property. Thus the first term is
M∑

m=1

log
q(xtm−1 |xtm , stm)

p(xtm−1 |x0, stm , xtm)
= −

M∑
m=1

KL(p(xtm−1 |x0, stm , xtm)||q(xtm−1 |xtm , stm)).

Proposition A.5. (Proof of Prop B.1) p(xt|xt, x0, st) factorizes as
∏D

d=1 p(pr(x
d
t)|xd

t , x
d
0, s

d
t) and,

when marginalizing over x0, each dimension of xtm−1
is independent:

p(pr(xt)|xt, st) =

D∏
d=1

p(pr(xd
t)|xt, st).

Proof.

p(pr(xt)|xt, x0, st) =
p(pr(xd

t)|x0, st)p(xt|pr(xd
t))

p(xt|x0, st)
=

D∏
d=1

p(pr(xd
t)|xd

0, s
d
t)p(x

d
t |pr(xd

t))

p(xd
t |xd

0, st)

which equals
∏D

d=1 p(pr(x
d
t)|xd

t , x
d
0, s

d
t). The second claim follows from integrating the later ex-

pression.

Proposition A.6. (Proof of Prop. 4.4) Define, if sdt > 0, pr(xd
t) as the state at the last event in

dimension d. Then the first term of Eqn. 4 is

−Et∼Unif(0,1)Ep(xt,x0,S)
βt∫ t

0
βsds

∑
d

sdtKL(p(pr(xd
t)|xd

t , s
d
t , x

d
0)||qθ(pr(xd

t)|xt, st)). (15)

Proof. Call Sd = {td1, . . . , tdMd}. The first term of Eqn. 4 can be written as

−Ep((xt)t,S,x0)

D∑
d=1

Md∑
m=1

KL(pr(xd
tdm

)|xd
tdm

, xd
0, s

d
tdm

)||qθ(pr(xd
tdm

)|xtdm
, stdm)).

The term in the sum can be written as L(st, xt, x0, d) so we can write

Ep((xt)t,S,x0)

D∑
d=1

∑
t∈Sd

L(st, xt, x0, d) =

D∑
d=1

Ep(Sd)

∑
t∈Sd

Ep(x0)p(S−d)p(xt|x0,st)L(st, xt, x0, d).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Call the function after
∑

t∈Sd equal to C(t, sdt) so we can write the loss as Ep(Sd)

∑
t∈Sd C(t, sdt).

We now investigate the measure Ep(Sd)

∑
t∈Sd . First note that Ep(Sd)

∑
t∈Sd is clearly abso-

lutely continuous in t with respect to the Lebesgue measure so this expression can be written as
Et∼Unif(0,1)

∑
sdt

f(t, sdt)C(t, sdt) for some function f . By the Lebesgue differentiation theorem,
almost everywhere,

f(t′, s) = lim
ϵ→0

Ep(Sd)

∑
t∈Sd

1(t ∈ [t′ − ϵ, t′], sdt′ = s)/ϵ

=p(sdt′ = s) lim
ϵ→0

E
[
events in [t′ − ϵ, t′]|sdt′ = s

]
/ϵ.

(16)

The distribution of events on an interval [0, t] is a Poisson process with density µ(s) = rβs;we can
simulate this by drawing st ∼ Pois(

∫ t

0
βsds) and then distributing the sdt events with probability

according to µ/µ([0, t]). Therefore, conditioned on s events occurring on [0, t′], the density of
events occurring at [t′ − ϵ, t′] is µ(t′)/µ([0, t′]), that is, the expectation in Eqn. 16 is

s events× µ(t′)

µ([0, t′])
mass = s

βt′∫ t′

0
βsds

.

Subbing this into the previous equation completes the proof.

Proposition A.7. (Proof of Prop. 5.1) Defining αt = exp(−
∫ t

0
βsds), the objective in Eqn. 6 is

Et∼Unif(0,1)Ep(mt)Ep(xt|x0,mt)
βtαt

1− αt

∑
d

xT
0 log x̃0,θ(xt,mt)

d.

Proof. If sdt > 1 then pr(xd
t) is corrupted so p(pr(xd

t)|xd
t , s

d
t , x

d
0) is a uniform categorical and

doesn’t depend on x0; therefore, by our parameterization of qθ, we have that the KL term in the loss
Eqn 6 is non-zero if and only if sdt = 1. As well, when sdt = 1, p(pr(xd

t)|xd
t , s

d
t = 1, xd

0) = δx0
. In

this case we can write the loss as

Et∼Unif(0,1)
βt∫

s<t
βsds

Ep(S)Ep(xt|S,x0)

∑
d

1(sdt = 1)xT
0 log x̃0,θ(xt, st)

d.

Finally note that when x̃0,θ(xt, st) predicts x0, st is only useful in telling the model which tokens
are corrupted. If we call mt = st > 0 an indicator of which tokens have been corrupted, then we
can parameterize our prediction as x̃0,θ(xt,mt).

Note p(xt|x0, S) = p(xt|x0,mt), so

Ep(S)Ep(xt|S,x0)

∑
d

1(sdt = 1)xT
0 log x̃0,θ(xt,mt)

d =

Ep(m)Ep(xt|mt,x0)

∑
d

p(sdt = 1|md
t)x

T
0 log x̃0,θ(xt,mt)

d.
(17)

st ∼ Pois(
∫ t

0
βsds) so p(sdt = 1|md

t) = 0 if md
t = 0 and

p(sdt = 1|md
t) = p(sdt = 1|sdt ≥ 1) =

∫ t

0
βsds αt

1− αt
.

Proposition A.8. (Proof of Prop. 5.2) As γ → 0 the objective in Eqn. 6 converges to

−Et∼Unif(0,1)Ep(x0,xt)βt

∑
d

∑
b̸=xd

t

Lb,xd
t

(
s̃dθ,b −

p(xd
t = b|xd

0)

p(xd
t |xd

0)
log s̃dθ,b − g

(
p(xd

t = b|xd
0)

p(xd
t |xd

0)

))
where g(x) = x(log x− 1).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof. Note st ∼ Pois(r∗
∫ t

0
βsds/γ), so, as γ → 0, stγ converges to r∗

∫ t

0
βsds.

As γ → 0,

Kst = (I + γL/r∗)st = exp(γstL/r∗) + o(γ)→ exp

(∫ t

0

βsdsL
)

= Qt,

where Qt is the matrix where Qt,b,b′ = p(xt = b′|x0 = b).

qθ(pr(x
d
t)|xt, st) =

Kγx
d
t ◦Kst−1

γ x̃0,θ

xd,T
t Kst

γ x̃0,θ

=
Kγx

d
t ◦K−1

γ Qtx̃0,θ

xd,T
t Qtx̃0,θ

+ o(γ)

=xt +Kxd
t ◦ s̃dθ − xd

t ◦Ks̃dθ + o(γ)

=xt + γ
(
Lxd

t ◦ s̃dθ − xd
t ◦ Ls̃dθ

)
+ o(γ).

(18)

The expression for p(pr(xd
t)|xd

t , x
d
0, s

d
t) is identical replacing x̃0,θ with x0. Thus

−KL(p(pr(xd
t)|xd

t , s
d
t , x

d
0)||qθ(pr(xd

t)|xt, st))

=
∑
b ̸=xd

t

γLb,xd
t

p(xd
t = b|xd

0)

p(xd
t |xd

0)
log

s̃dθ,b
p(xd

t = b|xd
0)/p(x

d
t |xd

0)

+ (1−O(γ)) log
1 + γ

(
Lxd

t ,x
d
t
− xd

tLs̃dθ
)

1 + γ
(
Lxd

t ,x
d
t
− xd

tL(p(xd
t = b|xd

0)/p(x
d
t |xd

0))b

) + o(γ)

=γ

∑
b̸=xd

t

Lb,xd
t

(
s̃dθ,b −

p(xd
t = b|xd

0)

p(xd
t |xd

0)
log s̃dθ,b − g

(
p(xd

t = b|xd
0)

p(xd
t |xd

0)

))+ o(γ).

(19)

Multiplying this by sdt , we get γsdt →
∫ t

0
βsds.

B DETAILS OF METHOD

Here we describe how we sample and pick βt for SCUD as described in Sec. 4.3.

B.1 ALGORITHM FOR ESTIMATING ELBO

We calculate p(x∞) from an spectral decomposition of K, or, if K is very large, using power
iteration.

B.2 PARAMETERIZATION

First we show that p(pr(xd
t)|x0, st, xt) factorizes across its dimensions.

Proposition B.1. (Proof in Prop A.5 in the Appendix) p(xt|xt, x0, st) factorizes as∏D
d=1 p(pr(x

d
t)|xd

t , x
d
0, s

d
t) and, when marginalizing over x0, each dimension of xtm−1

is indepen-
dent:

p(pr(xt)|xt, st) =

D∏
d=1

p(pr(xd
t)|xt, st).

Recall this allows us to parameterize qθ(pr(xt)|xt, st) so it also factorizes as∏D
d=1 qθ(pr(x

d
t)|xt, st).

We parameterize qθ(pr(x
d
t)|xt, st) to predict

p(xd
0|xt, st)

p(xd
t |xd

0, s
d
t)

=
p(xd

t , s
d
t |xd

0, x
−d
t , s−d

t)

p(xd
t |xd

0, s
d
t)p(x

d
t , s

d
t)

p(xd
0|x−d

t , s−d
t) =

p(xd
t |xd

0, x
−d
t , st)p(s

d
t)

p(xd
t |xd

0, s
d
t)p(x

d
t , s

d
t)

p(xd
0|x−d

t , s−d
t).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 1 Unbiased estimate of the SCUD ELBO (Eqn. 4) using Prop. 4.4

Input: x0

S ∼ p(S)
t ∼ Unif(0, 1)
// Sample xt

for d = 1, . . . , D do
xd
t ∼ Categorical(Ksdt xd

0)
end for
// Denoise one event of each dimension of xt

Predict x̃0,θ(xt, st)
for d = 1, . . . , D do

Calculate qθ(pr(x
d
t)|xd

t , s
d
t) ▷ use Eqn. 7

Calculate p(pr(xd
t)|xd

t , s
d
t , x

d
0) ▷ use Eqn. 5

Calculate p(xd
1|sd1, xd

0) = Categorical(Ksd1xd
0).

end for
Return:

−
D∑

d=1

(
sdtβt∫ t

0
βsds

KL(p(pr(xd
t)|xd

t , s
d
t , x

d
0)||qθ(pr(xd

t)|xd
t , s

d
t)) + KL(p(xd

1|sd1, xd
0)||p(x∞))

)
.

Now note p(xd
t |xd

0, x
−d
t , st) = p(xd

t |xd
0, st) and p(sdt)/p(x

d
t |sdt) does not depend on xd

0. Thus we
aim to predict a quantity proportional to p(xd

0|x−d
t , s−d

t); we call our prediction x̃0,θ(xt, st), which
we plug into Eqn. 7 and then normalize.

B.3 SAMPLING

To sample a point x0 ∼ q(x0) we first sample the noised sample x1 ∼ q(x1) = p(x∞) and the
number of events in each dimension S ∼ q(S) = p(S). We now sample given a budget of C
evaluations of x̃0,θ. Every step we denoise the last ⌈s1/C⌉ events that have yet to be denoised. To
denoise we can use Eqn. 7. In the case that we denoise k ≥ 1 events for a dimension d at once, we
can use the fact that

p(prk(xd
t)|xt, st) =

∑
xd
0

p(prk(xd
t)|xd

t , s
d
t , x

d
0)p(x

d
0|xt, S)

=
∑
xd
0

p(xd
t |prk(xd

t))p(pr
k(xd

t)|sdt , xd
0)

p(xd
0|xt, st)

p(xd
t |sdt , xd

0)
.

We can write

p(xd
t |prk(xd

t)) = prk(xd
t)

TKkxd
t

p(prk(xd
t)|sdt , xd

0) = xd,T
0 Ksdt−kprk(xd

t)

And we can approximate the fraction with x̃0,θ just as in Eqn. 7. Thus we define

qθ(pr
k(xd

t)|xt, st) = Kkxd
t ◦Ksdt−k,T x̃0,θ. (20)

The total procedure is summarized in Alg. 2.

B.4 CHOOSING THE RATE

Mutual information rate functions To choose the rate function βt, Austin et al. (2021) calculated
the frequency of tokens in the training data p0(b) and then calculated the joint distribution of x0 and
a particle which has evolved according to L for time τ along one dimension –

p(x0 = b, xτ = b′) = p0(b)(e
τL)b,b′ .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 2 Efficient sampling from SCUD

Input: function evaluation budget C.
// Sample x1, s1
for d = 1, . . . , D do

xd ∼ p(x∞)

sd ∼ p(s1) = Pois(
∫ 1

0
βsds)

end for
L← ⌈

∑D
d=1 s

d/C⌉ ▷ Number of events to denoise per step
for c = 1, . . . , C do

// Decide which positions to denoise in this step
k ← 0⃗
for ℓ = 1, . . . , L do

if
∑D

d=1(s
d − kd) > 0 then ▷ If there are remaining events to reverse...

d ∼ Categorical
(

s−k∑D
d=1(s

d−kd)

)
▷ ...sample uniformly from remaining events in s.

kd ← kd + 1
end if

end for
// Denoise kd steps at each dimension d
Predict x̃0,θ(x, s)
for d = 1, . . . , D do

xd ∼ qθ(pr
kd

(xd)|x, s) ▷ use Eqn. 20
sd ← sd − kd

end for
end for
Return: x

They calculate the mutual information function MI(τ) of this joint distribution; the mutual infor-
mation is normalized so MI(0) = 1. They then pick βt so that evolving in the modulated process
linearly decreases the mutual information from 1 to ϵ on the interval [0, 1], i.e. MI(

∫ t

0
βsds) =

1− (1− ϵ)t. For clarity, we’ll set MI(
∫ t

0
βsds) = 1− t and look at the interval [0, 1− ϵ] below.

Implementation in continuous time The process in (Austin et al., 2021) has discrete time, so
the integral over β is a sum and each βt can be pre-calculated before training begins. When we
implement continuous time discrete diffusion, we use a Newton root finder to calculate

∫ t

0
βsds =

MI−1(1−t) and the implicit function theorem to calculate βt =
d
dt

∫ t

0
βsds = 1/

(
d
dtMI(

∫ t

0
βsds)

)
.

Schedules for SCUD For SCUD, we instead calculate the joint distribution between x0 and the
particle after m events, xtm , along one dimension –

p(x0 = b, xtm = b′) = p0(b)(K
m)b,b′ .

Calling the mutual information between these variables MIm we choose βt so that EstMIst = 1− t

where st ∼ Pois(r∗
∫ t

0
βsds/γ). Again we calculate these values using a Newton root finder and

the implicit function theorem.

Connection to classical discrete diffusion With this choice, note as γ → 0, for any τ

MIr∗τ/γ = MI(p0(b)((I + γL/r∗)r
∗τ/γ)b,b′)→ MI(p0(b)(e

τL)b,b′) = MI(τ).

Therefore, EstMIst → MI(
∫ t

0
βsds), so

∫ t

0
βsds converges to the same value as in classical discrete

diffusion.

Connection to masking discrete diffusion In this case, xtm is uniform independent of x0 for all
m ≥ 1 Therefore, MIm = 0 for all m ≥ 1 and EstMIst = e−

∫ t
0
βsds = αt. Therefore, αt = 1− t.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C STRUCTURED PROCESSES

In this section we will describe the structured continuous time Markov processes we used in Sec. 7.
Our processes are inspired by those from Austin et al. (2021) and Alamdari et al. (2023); however
those works framed the process in discrete time in such a way that they are not related to any contin-
uous time Markov model, requiring us to design new processes. Note also that those works modified
their processes to ensure that the transition matrix at every time-point was doubly stochastic; this
was so that all transition matrices would have the same stationary distribution – a uniform distribu-
tion. In our case, we are free to pick any L that converges to a stationary distribution, even if it is
not uniform.

C.1 GAUSSIAN PROCESS FOR IMAGES

To include the bias that two pixel values i ̸= j are similar if (i − j)2 is small, we set Li,j =

exp(−200 (i−j)2

B) the value 200 was chosen as it gave the best results in small scale experiments.
We then set Li,i = −

∑
j ̸=i Li,j .

C.2 NEAREST NEIGHBOUR PROCESS FOR LANGUAGE

Our vocabulary in the language result was approximately 30’000 tokens from the Bert-base-uncased
tokenizer (Devlin et al., 2018). It is prohibitively expensive to compute a 30′000 × 30′000 matrix
K to take matrix vector products during training. Instead, we pick a sparse K built using the
embeddings from Devlin et al. (2018); for the most frequent 1000 words (which make up 95%
of tokens seen in the data) i, j we computed their similarity as vTi vj where vi is the normalized
embedding of word i. For each word we found the 10 nearest neighbours; we noticed restricting to
the top 1000 words resulted in nearest enighbours which were much more semantically similar. We
next set, for nearest neighbours,

L̃i,j = exp(vTi vj/0.3).

We next normalized L̃ so that the diagonal is 1 – this ensures that every word has an identical
transition rate, avoiding the case where a word never transitions because it has no nearby neighbours.

We noticed that it often took a long time for particles to reach a stationary distribution with this
process, so we added occasional transitions across the nearest neighbour graph; we called p the nor-
malized frequencies of the top 1000 words in the data and define the uniform transition infinitesimal
generator

Lunif = 1⊗ p− I,

where 1 is the vector of all 1’s; this transitions tokens to a random token based on the final token’s
frequency in the data. We combine our two processes by defining

L = L̃+ 0.4× Lunif

and normalizing so that the smallest value on the diagonal was −1. We do not store this matrix
explicitly, and only perform matrix operations with sparse matrix products and multiplication with
1 or p.

For tokens outside of the most frequent 1000, we transition using Lunif .

C.3 BLOSUM PROCESS FOR PROTEIN

BLOSUM is a matrix that can be describes how often different amino acids are seen in the same
position in related protein families (Henikoff & Henikoff, 1992). The i, j entry of the matrix is

Bi,j = 2 log
Pij

PiPj

where Pij is the probability of two related proteins having amino acids i, j at the same position, and
Pi is the marginal probability. We build a stochastic process to emulate drawing a related protein,
so we set

Ki,j = exp(Bi,j/2)× Pj = Pj|i.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 5: BLOSUM process K.

There are other letters in our vocabulary for non-canonical amino acids and padding; for i not one
of the canonical 20 amino acids, we set Ki,j = Pj , so all transitions an only occur to a canonical
amino acid. Finally we set L = K − I (Fig. 5).

D EXPERIMENTAL DETAILS

In all cases we trained models on 2 A100 GPUs on an academic cluster.

D.1 TRANSITION RATES IN FIG. 3

For τLDR we downloaded the CIFAR10 model from https://github.com/andrew-cr/
tauLDR. We simulated 2000000 forward trajectories using samples from CIFAR10 and 100 back-
ward samples using the τ leaping code with 2048 steps. For forward samples x we calculated rates
−Lx,x and for backward samples we calculated rates−Lθ,x,x. We then averaged forward and back-
ward rates at each timestep. We finally average with a sliding window of size 9.

For D3PM we download the 640M uniform model from https://github.com/microsoft/
evodiff. We were able to calculate the forward rates analytically. As above, we simulated 100
backward samples and at each time step we calculated the probability of a transition; we multiplied
this probability by 1/∆t to get a rate. We averaged as above.

D.2 IMAGES

We use an architecture inspired by Kingma et al. (2021) like in MD4 (Shi et al., 2024) with a slight
modification to incorporate st. The architecture first embeds x0 like in Shi et al. (2024) and then
puts it through a UNet with 32 layers and no up- or down-sampling. At every layer of the UNet, a
feed forward layer is applied to a sinusoidal embedding of the time t and the output is added to the
channels at every pixel – ax position i, j, activations ai,j at updated

ai,j ← FFθ(emb(t)) + ai,j .

Instead each activation is updated using a FiLM layer using the number of events up to time t.

ai,j ← FF1,θ(emb(si,jt)) + FF2,θ(emb(si,jt)) ◦ ai,j .
The feed forward layers are shared across every position i, j. We used the same training parameters
as in Shi et al. (2024); we trained each of our large models for 2 days and each of our models from
Fig. 2 took between 1.5 and 2 hours.

We use K = 2048 function evaluations to generate images. The results of Fig. 2 used a batch size
of 16 and the same architecture but with an 8 layer UNet – masking and classical models used FiLM
layers with t instead of st.

20

https://github.com/andrew-cr/tauLDR
https://github.com/andrew-cr/tauLDR
https://github.com/microsoft/evodiff
https://github.com/microsoft/evodiff

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D.3 LANGUAGE AND PROTEIN

We use the diffusion transformer architecture (Peebles & Xie, 2022) as in SEDD (Luo et al., 2022).
This architecture has FiLM layers to add t at each layer; as above, we replace t with st. We use the
training settings as in SEDD (Luo et al., 2022), accumulating to match their batch size of 512. We
trained our models for 2 days each.

D.4 PROTEIN

We use the small CARP architecture from (Alamdari et al., 2023). The original architecture added
as embedding of t at the first layer. We add FiLM layers for st at every layer as described above.
We train and test on the March 2020 release of Uniprot2020 released by Alamdari et al. (2023). We
use a batch size of 128 protein up to size 1024 as in Alamdari et al. (2023), randomly truncating
proteins over that size. We trained each model for 2 days.

D.5 COMPUTATIONAL COMPLEXITY

In terms of computational complexity, the major differences between SCUD and classical discrete
diffusion are (A) replacing operations of L with operations of K, and (B) replacing the time t in the
argument of x̃0,θ with the number of transitions S. We discuss how (B) does not result in a large
increase of computational complexity below, and note that (A) does not change the computational
complexity except when the number of tokens B is large, when it actually enables strategies that
reduce complexity.

(A) Matrix computations To calculate our loss, Eqn. 6, in Eqn. 6 we see that we only need to take
matrix vector products with K; the analogous quantity in classical discrete diffusion requires matrix
exponentiation exp(tL) (Luo et al., 2022). When B is small, both these calculations have negligible
complexity and can be calculated similarly quickly by precomputing an eigen-decomposition of
K or L. But when B is large, as in the language modeling case, these calculations become very
expensive; Luo et al., 2022 settled for very simple L, masking and uniform, such that exp(tL) can
be easily analytically calculated; SCUD is able to build in a richer forward process by picking a
sparse + low rank K so that matrix vector products are very fast.

In terms of big-O notation, when an eigendecomposition is precomputed, (exp(tL)x̃d
0)

D
d=1 and

(Ksdt x̃d
0)

D
d=1 each cost Θ(DB2) for two dense matrix multiplies and a scaling by the exponen-

tiation or power of the eigenvalues. When Ksdt is a sparse matrix with O(rB) entries or has a
rank of r, calculating (Ksdt x̃d

0)
D
d=1 is O(DBrmaxd(s

d
t)); in our language case, B is large while

maxd(s
d
t) ≈ 30 and we pick r ≈ 20 resulting in a large speedup.

(B) Computations with S Indeed, the place that SCUD adds some overhead to calculations is in
replacing the arguments of x̃0,θ(xt, ·): the time over which x0 has been corrupted, t, a scalar, is
replaced with the number of corruptions of each token S, a D-dimensional object. The overhead of
this operation is dependent on the architecture of x̃0,θ. We picked x̃0,θ so that no parameters were
added by replacing t with S, and such that the computational and memory overhead caused by this
replacement were negligible compared to the operations and memory spent on operations on the
D-dimensional xt. Above we used previous architectures modified so that each operation on t was
also applied to each dimension of S. As well, for the architectures we chose, whenever a function of
t was added or multiplied to a set of activations, say at layer ℓ, hℓ,θ, the activations had a dimension
D, so we could perform the same operation with element-wise addition or multiplication with S, i.e.

hd
ℓ+1,θ = f1,θ(t)h

d
ℓ,θ + f2,θ(t) was replaced with hd

ℓ+1,θ = f1,θ(s
d
t)h

d
ℓ,θ + f2,θ(s

d
t).

Thus, adapting x̃0,θ for SCUD in this way adds no extra parameters. The overhead of this change
is that every call to fθ is replaced by D calls, D-times the activations fθ(s

d
t) must be stored, and

D-times more gradients must be calculated for fθ(sdt). fθ is however a set of linear functions and
activations. The operations on the corrupted data xt involve convolutions and attention, which have
much larger memory and computational costs. In big-O notation, the cost of calculating x̃0,θ(xt, t)
and x̃0,θ(xt, S) are therefore identical – at worst, the constant in front of the largest term changes.
Therefore, in our experiments, we ran all models for roughly equal time with the same batch sizes
and did not observe any substantial difference in computation.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

E EXTENDING FLOW MATCHING TO SCUD

Here we follow the exposition of Campbell et al. (2024a) to derive flow matching models that are
conditioned on schedule. In App. E.1 we derive schedule conditioned flow matching (SCUM) in
generality. In App. E.2 we describe how SCUD is an instance of SCUM and show how by training
a SCUD model, one can sample from a large class of SCUM models. Finally in App. E.3 we derive
an example class of SCUM models. The conclusion is that schedule conditioning can be extended
to the flow matching case just as classical discrete diffusion can.

E.1 SCHEDULE CONDITIONED FLOW MATCHING (SCUM)

We consider discrete objects in a set of size B and in this quick exposition leave out the multi-
dimensional case as an easy extension of the logic of SCUD or Campbell et al. (2024a). In flow
matching, we wish to approximately sample from a target p(x0) (this is called x1 in Campbell et al.
(2024a)). In regular flow matching, we define distributions of samples noised for time t: p(xt|x1)
(Eqn. 6 of Campbell et al. (2024a)). To condition on the schedule, we instead define distributions
of samples that have been noised by s events from x1: p(xs|x0). We assume p(xs|x1) is close to
an easy to sample from distribution p(x∞) when s has large entries. In particular, for s with large
entries, the marginal p(xs) ≈ p(x∞); Now we want to denoise events to get p(xs−1) and ultimately
p(x0) (Eqn. 5 of Campbell et al. (2024a)).

To do so, we first choose how to denoise elements in p(xs|x0). Say Ks|x0
is a stochastic matrix such

that sampling p(xs|x0) then xs−1 ∼ Categorical(KT
s,d|x0

xd
s) gives a sample from p(xs−1|x0). The

next result is the analogous result of Prop. 3.1 of Campbell et al. (2024a): given a sample from the
marginal, xs ∼ p(xs) we can denoise an event in dimension d by averaging over x0|xs and using
Ks|x0

.

Proposition E.1. Define Ks;xs,· = Ep(x0|xs)Ks|x0;xs,·. Then sampling xs ∼ p(xs) and xs−1 ∼
Categorical(Ks;xs,·) gives a sample from p(xs−1).

Proof.
Ep(xs)Ep(x|xs)Ks|x0;xs,xs−1

=
∑
x0

p(x0)
(
Ep(xs|x0)Ks|x0;xs,xs−1

)
=
∑
x0

p(x0)p(xs−1|x)

=p(xs−1).

Given this result, we can define schedule conditioned flow matching models (SCUM). First we
approximate p(x0|xs) with a neural network x̃0,θ(xs, s); next we sample from p(x∞) which is
≈ p(xs) for some large s, and then iteratively denoise by approximating Ks;xs,· (Alg. 3).

Algorithm 3 Sampling from SCUM in analogy to Alg. 1 in Campbell et al. (2024a)

s← large number
xs ∼ p(x∞) ≈ p(xs)
while s > 0 do

Ks;xs,· ← Ex̃0,θ(xs,s)Ks|x0;xs,·
xs−1 ∼ Categorical(Ks;xs,·)
s← s− 1

end while
Return: x0

To train x̃0,θ(xs, s) we can just minimize the cross entropy

Es∼Unif(1,2,...,large number),p(x0),p(xs|x0)x
T
0 log x̃0,θ(xs, s).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

We could alternatively use a different distribution for s, such as a Poisson. Note that p(xs|x0) does
not depend on the particular choice of Ks|x0

, so we can train x̃0,θ(xs, s) once and then decide the
best Ks|x0

for sampling at test time.

E.2 SCUD IS SCUM

We now show that for a particular choice of Ks|x0
, the simulated trajectories of SCUM are that of

SCUD as in Appendix H of Campbell et al. (2024a). Next we discuss how, given a trained SCUD
model we can sample from a wide variety of SCUM models.

Define a Markov process that noises datapoints x0 with an infinitesimal generator L with rate func-
tion βt. Say we have a data point x0 that’s been noised s > 0 times and define Ks|x0;xs,· =
p(pr(xs)|xs, x0, s) as in Eqn. 5. Then

Ks;xs,· =Ep(x0|xs)Ks|x0;xs,·

=Ep(x0|xs,s)p(pr(xs)|xs, x0, s)

=p(pr(xs)|xs, s)

which is exactly the distribution we approximate to denoise an event in SCUD (Alg. 2). There-
fore SCUD is just SCUM with a particular choice of Ks|x0

, with “large number” in Alg. 3 set to
Pois(

∫ t

0
βsds).

Furthermore, SCUD trains a x̃0,θ(xs, s) to predict x0 given xs, s
3. Campbell et al. (2024a) suggests

that an advantage of flow matching is that one can train x̃0,θ once and then decide on the best
infinitesimal generator at test time; we can do the same by training x̃0,θ with the SCUD objective
and then changing Ks|x0

at test time.

E.3 EXAMPLES OF SCUM

Say we have built a SCUD model with transition matrix K. The canonical choice for Ks|x0
above

is

Ks|x0;xs,xs−1
= xT

s−1Kxs
xT
0 K

s−1xs−1

xT
0 K

sxs
.

We now describe a family of Ks|x0
that can be alternatively used to sample from p(x0).

First note that for SCUD, p(xs|x0) = Ks,Tx0. Therefore Ks|x0
can be any matrix with

KT
x|x0

Ks,Tx0 = Ks−1,Tx0 and positive entries with rows that add to 1. Campbell et al. (2024a)
suggested picking the process to minimally move mass from position with too much in Ks−1,Tx0

to those with too little in Ks,Tx0 (R∗ in Prop. 3.2 in Campbell et al. (2024a)); we can do that with
the choice

K∗
s|x0;xs,y

=
ReLU(yTKs−1,Tx0 − yTKs,Tx0)∑
z ReLU(zTKs−1,Tx0 − zTKs,Tx0)

× ReLU(xT
s K

s,Tx0 − xT
s K

s−1,Tx0)

for xs ̸= y, which moves mass from xs with too much mass to y with too little in proportion to how
much mass they need.

To augment this “most efficient” choice Campbell et al. (2024a) describe a method to add stochastic-
ity to Ks|x0

. They do so by introducing an infinitesimal generator that obeys details balance; we do
the same. Say LDB

s|x0
keeps the distribution p(xs|x0) stationary, say by satisfying detailed balance.

Then we can add more noise to Ks|x0;xs,y by defining Kη
s|x0

= eηL
DB

K∗
s|x0

since

KT
x|x0

Ks,Tx0 = K∗
s|x0

eηL
DB

Ks,Tx0 = K∗
s|x0

Ks,Tx0 = Ks−1,Tx0.

By varying η, Campbell et al. (2024a) optimized samples for stochasticity against likelihood.
3In the high dimensional case, unlike our exposition of SCUM, SCUD trains x̃0,θ(xs, s) to approximate, for

each dimension d, p(xd
0|x−d

s , s) rather than p(xd
0|xs, s) (Sec. 4.3). However any prediction of p(xd

0|x−d
s , s)

can be transformed into a prediction of p(xd
0|xs, s) via the identity p(xd

0|xs, s) ∝ p(xd
s |sd, xd

0)p(x
d
0|xs, s)

which doesn’t depend on the specific choice of Ks|x0
– the difference is just a matter of parameterization.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

In conclusion, just as one can do with classical discrete diffusion models, after training a SCUD
model, one can optimize a stochasticity parameter η to get desirable samples.

24

	Introduction
	Background
	Learning when and where to transition
	Scheduled conditioned diffusion (SCUD)
	Conditioning on event schedules
	High dimensional data
	Schedule conditioning in practice

	Schedule conditioning to condition on transitions
	Connection to masking diffusion
	Connection to classical discrete diffusion

	Related work
	Results
	Connection to other models
	Images
	Language
	Proteins

	Conclusion
	Reproducibility
	Proofs of results
	Details of method
	Algorithm for estimating ELBO
	Parameterization
	Sampling
	Choosing the rate

	Structured processes
	Gaussian process for images
	Nearest neighbour process for language
	BLOSUM process for protein

	Experimental details
	Transition rates in Fig. 3
	Images
	Language and protein
	Protein
	Computational complexity

	Extending flow matching to SCUD
	Schedule conditioned flow matching (SCUM)
	SCUD is SCUM
	Examples of SCUM

