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ABSTRACT

Reinforcement Learning (RL) agents are capable of solving a wide variety of
tasks, but are prone to produce unsafe behaviour. Constrained Markov Decision
Processes (CMDPs) are a popular framework for incorporating safety constraints.
However, common solution methods often compromise reward maximization by
being overly conservative or by allowing unsafe behaviour during training. We
propose Constrained Trust Region Policy Optimization (C-TRPO), a novel ap-
proach that modifies the geometry of the policy space based on the safety con-
straints, yielding trust regions composed exclusively of safe policies and ensur-
ing constraint satisfaction throughout training. We theoretically study the con-
vergence and update properties of C-TRPO and highlight connections to TRPO,
Natural Policy Gradient (NPG), and Constrained Policy Optimization (CPO). We
demonstrate experimentally that C-TRPO significantly reduces constraint viola-
tions while achieving competitive return compared to state-of-the-art algorithms.

1 INTRODUCTION

Reinforcement Learning (RL) has emerged as a highly successful paradigm in machine learning for
solving sequential decision and control problems, with policy gradient (PG) algorithms as a popular
approach (Williams, 1992; Sutton et al., 1999; Konda & Tsitsiklis, 1999). Policy gradients are es-
pecially appealing for high-dimensional continuous control because they can be easily extended to
function approximation. Due to their flexibility and generality, there has been significant progress
in enhancing PGs to work robustly with deep neural network-based approaches. Variants of natural
policy gradient methods such as Trust Region Policy Optimization (TRPO) and Proximal Policy
Optimization (PPO) are among the most widely used general-purpose reinforcement learning algo-
rithms (Schulman et al., 2017a;b).

While flexibility makes PGs popular among practitioners, it comes at a cost: the policy can explore
any behavior during training, posing significant risks in real-world applications. Many methods have
been proposed to improve the safety of policy gradients, often based on the Constrained Markov
Decision Process (CMDP) framework. However, existing methods either struggle to minimize con-
straint violations during training or severely limit the agent’s performance.

This work introduces a simple strategy to enhance constraint satisfaction in trust-region-based safe
policy gradient approaches without compromising performance. We propose a novel family of pol-
icy divergences, inspired by barrier function methods in optimization and safe control, that modify
the policy geometry to ensure that the trust regions consist only of safe policies.

This approach is motivated by the observation that TRPO and related methods base their trust region
on the state-average Kullback-Leibler (KL) divergence. It can be derived as the Bregman divergence
induced by the negative conditional entropy on the space of state-action occupancies, as shown by
Neu et al. (2017). The main insight of the present work is that safer trust regions can be derived by
altering this function to incorporate the cost constraints. The resulting divergence is skewed away
from the constraint surface, which is achieved by augmenting the negative conditional entropy by
another convex barrier-like function. Manipulating the policy divergence in this way allows us to
obtain a provably safe trust region-based policy optimization algorithm that retains most of TRPO’s
mechanisms and guarantees, simplifying existing methods, while achieving competitive returns with
less constraint violations throughout training.
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Related work Classic solution methods for CMDPs rely on linear programming techniques, see
Altman (1999). However, they struggle to scale, making them unsuitable for high-dimensional
or continuous control problems. While there are numerous approaches to CMDPs, we focus on
model-free, direct policy optimization methods. Model-based approaches, like those popularized by
Berkenkamp et al. (2017), are attractive due to their strict safety guarantees, but require the learning
of a model, which is not always feasible.

Lagrangian methods are a widely adopted approach, where the optimization problem is reformu-
lated as a weighted objective that balances rewards and penalties for constraint violations. This is
often motivated by Lagrangian duality, where the penalty coefficient is interpreted as the dual vari-
able. Learning the coefficient with stochastic gradient descent presents a popular baseline (Achiam
et al., 2017; Ray et al., 2019; Chow et al., 2019; Stooke et al., 2020). However, a naively tuned
Lagrange multiplier may not work well in practice due to oscillations and overshoot. To address
this issue, Stooke et al. (2020) apply PID control to tune the dual variable during training, which
achieves less oscillations around the constraint and faster convergence to a feasible policy. While
Lagrangian approaches are becoming increasingly popular, it is not entirely clear how to update the
dual variables during training, see Sohrabi et al. (2024).

Penalty methods such as IPO (Liu et al., 2020) and P3O (Zhang et al., 2022) propose weighted
penalty-based policy optimization objectives based on practical considerations. The penalties are
weighted against the reward objective where the penalty coefficient is a hyper-parameter. This sim-
plifies the Lagrangian approach since the penalty coefficients don’t have to be optimized during
training, which results in improved stability. More recently, the approach to use (smoothed) log-
barriers (Usmanova et al., 2024; Zhang et al., 2024a; Dey et al., 2024) became more popular, which
keeps the algorithm simple due to the penalty approach, but can offer certain constraint satisfac-
tion guarantees, see e.g. Ni & Kamgarpour (2024). However, working with an explicit penalty
produces suboptimal policies w.r.t the original constrained MDP and thus introduces an additional
error, which has to be controlled; see for example Geist et al. (2019); Müller & Cayci (2024) for
treatments of the regularization error in the unconstrained case, and Liu et al. (2020) for an exam-
ple of an optimization gap in safe policy optimization. In contrast, changing the trust regions and
therefore the problem geometry does not change the objective function and the set of optimizers and
therefore does not introduce an additional error.

Trust region methods are closely related to our approach, particularly Constrained Policy Optimiza-
tion (CPO; Achiam et al. (2017)), which extends TRPO by restricting updates to the intersection of
the trust region and the safe policy set, which ensures safety during training. While CPO provides
constraint satisfaction guarantees, it tends to oscillate around the constraint boundary with high over-
shoot as it only prevents the policy updates of TRPO from leaving the safe policy set. To address
constraint satisfaction, Projection-based CPO (PCPO; Yang et al. (2020)) projects updates onto the
safe policy space between updates, improving stability but further hindering reward maximization.
Building on PCPO, Zhang et al. (2020) replace second-order updates with a computationally ef-
ficient first-order approach, and Yang et al. (2022) further refine these methods with a different
projection approach, which achieves improved performance bounds by incorporating Generalized
Advantage Estimation (GAE; Schulman et al. (2018)).

Rethinking safe trust region methods We adopt a trust region approach that constructs trust
regions exclusively within the safe policy set, eliminating the need for projections or constrained
optimization in the inner loop. Trust region methods retain TRPO’s update guarantees for both
reward and constraints but often underperform compared to barrier penalty methods. To address this,
we replace the state-average KL-divergence with policy divergences that act as barrier functions,
see Figure 1. This modification encourages updates of the resulting trust region method to move
more parallel to the constraint surfaces rather than directly toward and thereby improves constraint
satisfaction, simplifies optimization, and achieves competitive returns by maintaining policies within
the safe set for longer, see also Figure 6 in the Appendix.

Contributions We summarize our contributions as follows:

• In Section 3, we introduce a modified policy divergence such that every trust region con-
sists of only safe policies. We introduce an idealized TRPO update based on the modified
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Figure 1: Illustration of policy divergences (dashed) close to the constraint (red). a) TRPO (dotted
for reference) and CPO. b) C-TRPO’s divergence depends on the hyper-parameter β, which mod-
ulates the strength of the barrier towards the constraint surface. For β ↘ 0 we obtain an update
equivalent to CPO, and more conservative updates for larger values (β = 2). The plots were gen-
erated with the toy MDP in Figure 2. c) Shown are the quadratic approximations of the divergence
in parameter space, which is obtained by mapping the policy onto its occupancy measure, where a
safe geometry can be defined using standard tools from convex optimization (safe region in white).

divergence, a tractable optimization algorithm for deep function approximation (C-TRPO),
and a corresponding natural gradient method (C-NPG).

• We provide an efficient implementation of the proposed approximate C-TRPO method, see
Section 3.2, which comes with a minimal overhead compared to TRPO (up to the estimation
of the expected cost) and no overhead compared to CPO. We demonstrate experimentally
that C-TRPO yields competitive returns with smaller constraint violations compared to
common safe policy optimization algorithms, see Section 5.

• In Section 4, we introduce C-TRPO’s improvement guarantees and contrast to TRPO and
CPO. Further, we show that the C-NPG method is the continuous time limit of C-TRPO and
provides global convergence guarantees towards the optimal safe policy; this is in contrast
to penalization or barrier methods, which introduce a bias

2 BACKGROUND

We consider the infinite-horizon discounted constrained Markov decision process (CMDP) and
refer the reader to Altman (1999) for a general treatment. The CMDP is given by the tu-
ple (S,A, P, r, µ, γ, C), where S and A are the finite state-space and action-space respectively
and we refer to Appendix B.3 for a discussion of continuous state and action spaces. Further,
P : S × A → ∆S is the transition kernel, r : S × A → R is the reward function, µ ∈ ∆S is
the initial state distribution at time t = 0, and γ ∈ [0, 1) is the discount factor. The space ∆S is the
set of categorical distributions over S. Further, define the constraint set C = {(ci, bi)}mi=1, where
ci : S ×A → R are the cost functions and bi ∈ R are the cost thresholds.

An agent interacts with the CMDP by selecting a policy π ∈ Π from the set of all Markov policies,
i.e. an element from the Cartesian product of |S| probability simplicies onA. Given such a policy π,
the value functions V π

r , V π
ci : S → R, action-value functions Qπ

r , Q
π
ci : S × A → R, and advantage

functions Aπ
r , A

π
c : S ×A → R associated with the reward r and the i-th cost ci are defined as

V π
f (s) := (1− γ)Eπ

[ ∞∑
t=0

γtf(st, at)
∣∣∣s0 = s

]
,

where the function f is either r or ci, and the expectations are taken over trajectories of the Markov
process, meaning with respect to the initial distribution s0 ∼ µ, the policy at ∼ π(·|st) and the state
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transition st+1 ∼ P (·|st, at). Analogously, we set

Qπ
f (s, a) := (1− γ)Eπ

[ ∞∑
t=0

γtf(st, at)
∣∣∣s0 = s, a0 = a

]
and Aπ

f (s, a) := Qπ
f (s, a)− V π

f (s).

The goal is to solve the following constrained optimization problem

maximizeπ∈Π V π
r (µ) subject to V π

ci (µ) ≤ bi for all i = 1, . . . ,m, (1)

where V π
f (µ) are the expected values under the initial state distribution V π

f (µ) := Es∼µ[V
π
f (s)].

We will also write V π
f = V π

f (µ), and omit the explicit dependence on µ for convenience, and we
write Vf (π) when we want to emphasize its dependence on π. We denote the set of safe policies by
Πsafe =

⋂m
i=1{π : Vci(π) ≤ bi} and always assume that it is nontrivial.

The Dual Linear Program for CMDPs Any stationary policy π induces a discounted state-action
(occupancy) measure dπ ∈ ∆S×A, indicating the relative frequencies of visiting a state-action pair,
discounted by how far the event lies in the future. This probability measure is defined as

dπ(s, a) := (1− γ)

∞∑
t=0

γtPπ(st = s)π(a|s), (2)

where Pπ(st = s) is the probability of observing the environment in state s at time t given the agent
follows policy π. For finite MDPs, it is well-known that maximizing the expected discounted return
can be expressed as the linear program

maximized r⊤d subject to d ∈ D ,

where D is the set of feasible state-action measures, which form a polytope (Kallenberg, 1994).
Analogously to an MDP, the discounted cost CMDP can be expressed as the linear program

maximized r⊤d subject to d ∈ Dsafe, (3)

where Dsafe =
⋂m

i=1

{
d : c⊤i d ≤ bi

}
∩D is the safe occupancy set, see Figure 4 in Appendix A.

Information Geometry of Policy Optimization Among the most successful policy optimization
schemes are natural policy gradient (NPG) methods or variants thereof, such as trust-region and
proximal policy optimization (TRPO and PPO, respectively). These methods assume a convex ge-
ometry and corresponding Bregman divergences in the state-action polytope, see Neu et al. (2017);
Müller & Montúfar (2023) for more detailed discussions. A general trust region update is defined as

πk+1 ∈ argmax
π∈Π

Aπk
r (π) sbj. to DΦ(dπk

||dπ) ≤ δ, (4)

where DΦ : D ×D → R is the Bregman divergence induced by a convex Φ: int(D)→ R, and

Aπk
r (π) = Es,a∼dπk

[
π(a|s)
πk(a|s)

Aπk
r (s, a)

]
, (5)

is called the policy advantage or surrogate advantage. We can interpret A as a surrogate optimiza-
tion objective for the expected return. In particular, for a parameterized policy πθ, it holds that
∇θAr,πθk

(πθ)|θ=θk = ∇θVr(θk), see Kakade & Langford (2002); Schulman et al. (2017a).

TRPO and the original NPG assume the same policy geometry (Kakade, 2001; Schulman et al.,
2017a), since they employ an identical Bregman divergence

DK(dπ1 ||dπ2) :=
∑
s,a

dπ1(s, a) log
π1(a|s)
π2(a|s)

=
∑
s

dπ1(s)DKL(π1(·|s)||π2(·|s)).

We refer to Appendix A for details on Bregman divergences. We call DK the Kakade divergence and
informally write DK(π1, π2) := DK(dπ1

, dπ2
). This divergence can be shown to be the Bregman

divergence induced by the negative conditional entropy

ΦK(dπ) :=
∑
s,a

dπ(s, a) log π(a|s), (6)

4
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see Neu et al. (2017). It is well known that with a parameterized policy πθ, a linear approximation
of A and a quadratic approximation of the Bregman divergence DK at θk, one obtains the natural
policy gradient step given by

θk+1 = θk + ϵkGK(θk)
+∇θVr(πθk), (7)

where GK(θ)
+ denotes a pseudo-inverse of the generalized Fisher-information matrix of the policy

with entries given by GK(θ)ij = ∂θidθ∇2ΦK(dθ)∂θjdθ, see Schulman et al. (2017a); Müller &
Montúfar (2023) and Appendix A for more detailed discussions.

3 A SAFE GEOMETRY FOR CONSTRAINED MDPS

To prevent the policy iterates from violating the constraints during optimization, we construct policy
divergences for which the trust regions are contained in the safe policy set.

3.1 SAFE TRUST REGIONS

A Bregman divergence is induced by a mirror function that dictates the behavior of the divergence,
see A. Take for example the mirror function for TRPO and NPG in Equation (6). The divergence is
defined when both policies are in the interior of D , and as either one of the policies approaches the
boundary of the state-action polytope, the divergence approaches infinity. Hence, TRPO and NPG
don’t allow their policy iterates to become entirely deterministic during optimization. Since the
behavior of a Bregman divergences is dictated by the shape of its mirror function, we first construct
a family of safe mirror functions, that induce policy divergences that are finite only in the safe
occupancy set Dsafe instead of the entire state-action polytope D . Safe policy divergences, in turn,
let us derive safe trust region and natural policy gradient methods.

To this end, we consider mirror functions of the form

ΦC(d) := ΦK(d) +

m∑
i=1

βiϕ(bi − c⊤i d), (8)

where ΦK is the conditional entropy defined in Equation (6), and ϕ : R>0 → R is a convex function
with ϕ′(x) → +∞ for x ↘ 0. This ensures that ΦC : int(Dsafe) → R is strictly convex and
has infinite curvature at the cost surface bi − c⊤i d = 0, which means ∥∇ΦC(dk)∥ → +∞, when
bi− c⊤i dk ↘ 0. Possible candidates for ϕ are ϕ(x) = − log(x) and ϕ(x) = x log(x) corresponding
to a logarithmic barrier and entropy, respectively.

The Bregman divergence induced by ΦC is given by

DC(d1||d2) = DK(d1||d2) +
m∑
i=1

βiDϕi
(d1||d2), (9)

where

Dϕi(d1||d2) =ϕ(bi − Vci(π1))− ϕ(bi − Vci(π2)) + ϕ′(bi − Vci(π2))(Vci(π1)− Vci(π2)). (10)

The corresponding trust-region scheme is given by

πk+1 ∈ argmax
π∈Π

Aπk
r (π) sbj. to DC(dπk

||dπ) ≤ δ, (11)

where Ar is defined in Equation (5). Note the constraint is only satisfied if d1, d2 ∈ int(Dsafe) and
the divergence approaches +∞ as d2 approaches the boundary of the safe set. Thus, the trust region
{d ∈ D : DC(dk||d) ≤ δ} is contained in the set of safe occupancy measures for any finite δ.
Analogously to the case of unconstrained TRPO the corresponding natural policy gradient scheme
is given by

θk+1 = θk + ϵkGC(θk)
+∇Vr(θk), (12)

where GC(θ)
+ denotes an arbitrary pseudo-inverse of GC(θ)ij = ∂θid

⊤
θ ∇2ΦC(dθ)∂θjdθ.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.2 CONSTRAINED TRUST REGION POLICY OPTIMIZATION

If we could solve the optimization problem in Equation (11) exactly, we would obtain a provably
safe trust region policy optimization method with zero constraint violations, as long as we start with
a safe policy. However, the exact trust region update Equation (11) cannot be computed. Firstly, the
divergence depends on expected cost values, which we can only estimate. The resulting estimation
errors of the divergence might cause the policy iterates to leave the safe set, in which case the
divergence becomes ill-defined. Finally, the divergence also depends on the expected cost value of
the proposal policy, which is not available during the updates. To address these issues, we propose
an update based on a surrogate divergence, similar to how surrogate objectives are used in policy
optimization. We propose the following update, which we call Constrained TRPO (C-TRPO).

πk+1 = argmax
π∈Π

Aπk
r (π) sbj. to D̄C(π||πk) ≤ δ. (13)

Here, D̄C is the surrogate divergence, defined below. Algorithm 1 shows the implementation of
C-TRPO, which performs a constrained trust region update if the current policy is safe or a recovery
step that minimizes the cost if the policy is unsafe. For the trust region update, we follow a similar
implementation to the original TRPO, estimating the divergence, using a linear approximation of
the surrogate objective, and a quadratic approximation of the trust region.

Algorithm 1 Constrained TRPO (C-TRPO); differences from TRPO in blue

1: Input: Initial policy π0 ∈ Πθ, safety parameter β > 0, recovery parameter 0 < bH ≤ b
2: for k = 0, 1, 2, . . . do
3: Sample a set of trajectories following πk = πθk
4: if πk ∈ ΠH

safe then
5: A← Ar; D ← D̄C = D̄KL + βD̄Φ {Constrained trust region update}
6: else
7: A← −Ac; D ← D̄KL {Recovery}
8: end if
9: Compute πk+1 using TRPO with A as advantage estimate and with D as policy divergence.

10: end for

Surrogate Divergence To aid in clarity, we focus on the case with a single constraint, but the
results are easily extended to multiple constraints by summation of the individual constraint terms.
In practice, the exact constrained KL-Divergence DC cannot be evaluated, because it depends on
the cost-return of the optimized policy Vc(π). However, we can approximate it locally around the
policy of the k-th iteration, πk, using a surrogate divergence. This surrogate can be expressed as a
function of the policy cost advantage

Aπk
c (π) = Edπk

[
π(a|s)
πk(a|s)

Aπk
c (s, a)

]
, (14)

which approximates Vc(π) − V πk
c up to first order in the policy parameters (Kakade & Langford,

2002; Schulman et al., 2017a; Achiam et al., 2017). Assume πk ∈ Πsafe and define the constraint
margin δb = b − V πk

c , which is positive if πk ∈ ΠSAFE. Further, define the surrogate divergence
D̄C(π||πk) = D̄KL(π||πk) + βD̄ϕ(π||πk), where

D̄KL(π||πk) =
∑
s∈S

dπk
(s)DKL(π||πk) (15)

and

D̄ϕ(πθ||πθk) =

{
ϕ(δb − Aπk

c (π))− ϕ(δb) + ϕ′(δb)Aπk
c (π), if δb − Aπk

c ∈ dom(ϕ)

∞ otherwise .
(16)

The surrogate D̄ϕ is closely related to the Bregman divergence Dϕ. They are equivalent up to the
substitution Vc(π) − Vc(πk) → Aπk

c (π), see Appendix B.1. The surrogate can be estimated from
samples of the MDP. In the practical implementation, we estimate δb, and the policy cost advantage
from trajectory samples using GAE-λ estimates Schulman et al. (2018). The consequences of the
substitution in the surrogate will be discussed in Section 4.

6
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Recovery with Hysteresis The iterate may still leave the safe policy set Πsafe, either due to ap-
proximation errors of the divergence, or because we started outside the safe set. In this case, we
perform a recovery step, where we only minimize the cost with TRPO as by Achiam et al. (2017).
In tasks where the policy starts in the unsafe set, C-TRPO can get stuck at the cost surface. This is
easily mitigated by including a hysteresis condition for returning to the safe set. If πk−1 is the previ-
ous policy, then πk ∈ ΠH

safe with ΠH
safe = {πθ ∈ Πθ and Vc(πθ) ≤ bH} where bH = b if πk−1 ∈ ΠH

safe
and a user-specified fraction of b otherwise.

Computational Complexity The C-TRPO implementation adds no computational overhead com-
pared to CPO, since D̄ϕ is just a function of the cost advantage estimate, and is simply added to the
divergence of TRPO. Compared to TRPO, the cost value function must be approximated.

3.3 CONSTRAINED NATURAL POLICY GRADIENT

Practically, the C-TRPO optimization problem in Equation (13) is solved like traditional TRPO: the
objective is approximated linearly, and the constraint is approximated quadratically in the policy
parameters using automatic differentiation and the conjugate gradients algorithm. This leads to the
policy parameter update

θk+1 = θk + αi

√
2δ

g⊤k H
−1
k gk

·H−1
k gk, (17)

where

gk = ∇θAθk
c (πθ)|θ=θk and Hk = H̄C(θk) = ∇2

θD̄C(πθ||πθk)|θ=θk (18)

are finite sample estimates, and H−1g is approximated using conjugate gradients. The αi ∈ [0, 1]
are the coefficients for backtracking line search, which ensures D̄C(πθ||πθk) ≤ δ.

We show in Appendix B.2.3 that the Hessian

∇2
θD̄C(θ||θ̂)|θ=θ̂ = GK(θk) + βϕ′′(b− V θ̂

c (θ))∇θV
θ̂
c (θ)

⊤∇θV
θ̂
c (θ),

is equivalent to the Gramian GC(θk) of the natural gradient update in Equation (19). We call the
resulting policy gradient

θk+1 = θk + ϵkH̄C(θk)
+∇Vr(θk), (19)

the Constrained NPG (C-NPG). In particular, this shows that the C-TRPO update can be interpreted
as a natural policy gradient step with an adaptive step size, see Appendix A. We emphasize that the
idealized safe trust region update in Equation (11) and the C-TRPO update of Equation (13) agree
up to second order in the policy parameters. This justifies the surrogate divergence in C-TRPO and
motivates the discussion of the C-NPG flow in Section 4.2. We show in Theorem 5 that int(Dsafe)
is invariant under the dynamics of the C-NPG. This implies that if the trust region radius δ is small,
and the advantage estimation is accurate enough, the iterates under C-TRPO never leave the safe set.

4 ANALYSIS

Here, we provide a theoretical analysis of the updates of C-TRPO and study the convergence prop-
erties of the time-continuous version of C-NPG. All proofs are deferred to the Appendix C.

4.1 PROPERTIES OF THE C-TRPO UPDATE

The practical C-TRPO algorithm is implemented using the surrogate divergence introduced in Equa-
tion (13), which is identical to the theoretical divergence DC introduced in Equation (11) up to a
mismatch between the policy advantage and the performance difference. The motivation for substi-
tuting the policy cost advantage for the performance difference is their equivalence up to first order
and that we can estimate the advantage from samples of dπ . Similar to CPO, we can guarantee an
almost improvement of the return (Achiam et al., 2017), despite the new divergence.
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Proposition 1 (C-TRPO reward update). Set ϵr = maxs |Ea∼πk+1
Aπk

r (s, a)|. The expected reward
of a policy updated with C-TRPO is bounded from below by

Vr(πk+1) ≥ Vr(πk)−
√
2δγϵr
1− γ

. (20)

Constraint violation, however, behaves slightly differently for the two algorithms. To see this, we es-
tablish a more concrete relation between C-TRPO and CPO. As β ↘ 0, the solution to Equation (13)
approaches the constraint surface in the worst case, and we recover CPO, see Figure 1.
Proposition 2. The approximate C-TRPO update approaches the CPO update in the limit as β ↘ 0.

Intuitively, solving the C-TRPO problem with successively smaller values of β, would be similar to
solving CPO with the interior point method using D̄ϕ(·||πk) as the barrier function.

Further, C-TRPO is more conservative than CPO for any β > 0 and as β → +∞ the updated is
maximally constrained in the cost-increasing direction. This is formalized as follows.
Proposition 3 (C-TRPO worst-case constraint violation). Consider Ψ: [0, δb) → [0,∞) defined
by Ψ(x) = ϕ(δb − x) − ϕ(δb) − ϕ′(δb) · x such that Dϕ(π||πk) = Ψ(Aπk

c (π)). Further, set
ϵc = maxs |Ea∼πk+1

Aπk
c (s, a)|, and choose a strictly convex ϕ. The worst-case constraint violation

for C-TRPO is

Vc(πk+1) ≤ Vc(πk) + Ψ−1(δ/β) +

√
2δγϵc
1− γ

. (21)

Further, it holds that limβ→+∞ Ψ−1(δ/β) = 0 and Ψ−1(δ/β) < b− Vc(πk) for all β ∈ (0,∞).

This result is analogous to the worst-case constraint violation for CPO (Achiam et al., 2017, Propo-
sition 2), except that it depends on the choice of β and is tighter than the corresponding guarantee
for CPO, because Ψ−1(δ/β) < b− Vc(πk) for all β ∈ (0,∞).

4.2 INVARIANCE AND CONVERGENCE OF CONSTRAINED NATURAL POLICY GRADIENTS

It is well known that TRPO is equivalent to a natural policy gradient method with an adaptive step
size, see also Appendix A. We study the time-continuous limit of C-TRPO and guarantee safety
during training and global convergence. In the context of constrained TRPO in Equation (11), we
study the natural policy gradient flow

∂tθt = GC(θt)
+∇Vr(θt), (22)

where GC(θ)
+ denotes a pseudo-inverse of GC(θ)ij = ∂θid

⊤
θ ∇2ΦC(dθ)∂θjdθ and θ 7→ πθ is a dif-

ferentiable policy parametrization. Moreover, we assume that θ 7→ πθ is regular, that it is surjective
and the Jacobian is of maximal rank everywhere. This assumption implies overparametrization but
is satisfied for common models like tabular softmax, tabular escort, or expressive log-linear policy
parameterizations (Agarwal et al., 2021a; Mei et al., 2020a; Müller & Montúfar, 2023).

We denote the set of safe parameters by Θsafe := {θ ∈ Rp : πθ ∈ Πsafe}, which is non-convex in
general and say that Θsafe is invariant under Equation (22) if θ0 ∈ Θsafe implies θt ∈ Θsafe for all t.
Invariance is associated with safe control during optimization and is typically achieved via control
barrier function methods (Ames et al., 2017; Cheng et al., 2019). We study the evolution of the
state-action distributions dt = dπθt as this allows us to employ the linear programming formulation
of CMPDs and we obtain the following convergence guarantees.
Theorem 4 (Safety during training). Assume that ϕ : R>0 → R satisfies ϕ′(x) → +∞ for x ↘ 0
and consider a regular policy parameterization. Then the set ΘC is invariant under Equation (22).

A visualization of policies obtained by C-NPG for different safe initializations and varying choices
of β is shown in Figure 2 for a toy MDP. We see that for even small choices of β the trajectories
don’t cross the constraint surface and the updates become more conservative for larger choices of β.
Theorem 5. Assume that ϕ′(x) → +∞ for x ↘ 0, set V ⋆

r,C := maxπ∈Πsafe
Vr(π) and denote the

set of optimal constrained policies by Π⋆
safe = {π ∈ Πsafe : Vr(π) = V ⋆

r,C}, consider a regular
policy parametrization and let (θt)t≥0 solve Equation (22). It holds that Vr(πθt)→ V ⋆

r,C and

lim
t→+∞

πt = π⋆
safe = argmin{DC(π

⋆, π0) : π
⋆ ∈ Π⋆

safe}. (23)
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C-NPG (β = 10−4) C-NPG (β = 10−2) C-NPG (β = 1)NPG

π(a1|s1) π(a1|s1)π(a1|s1)π(a1|s1)

π
(a

1
|s

2
)

Figure 2: Shown is the policy set Π ∼= [0, 1]2 for an MDP with two states and two actions with
a heatmap of the reward Vr; the constraint surface is shown in black with the safe policies below;
optimization trajectories are shown for 10 safe initialization and for β = 0, 10−4, 10−2, 1.

In case of multiple optimal policies, Equation (23) identifies the optimal policy of the CMDP that
the natural policy gradient method converges to as the projection of the initial policy π0 to the set of
optimal safe policies Π⋆

safe with respect to the constrained divergence DC. In particular, this implies
that the limiting policy π⋆

safe satisfies as few constraints with equality as required to be optimal. To
see this, note that Π⋆

safe forms a face of Dsafe and that Bregman projections lie at the interior of
faces (Müller et al., 2024, Lemma A.2) and hence satisfy as few linear constraints as required.

5 COMPUTATIONAL EXPERIMENTS

Setup and main results We benchmark C-TRPO against 9 common safe policy optimization al-
gorithms (CPO Achiam et al. (2017), PCPO Yang et al. (2020), CPPO-PID Stooke et al. (2020),
PPO-Lag and TRPO-Lag Achiam et al. (2017); Ray et al. (2019), FOCOPS Zhang et al. (2020),
CUP Yang et al. (2022), IPO Liu et al. (2020) and P3O Zhang et al. (2022)) on 8 tasks (4 Naviga-
tion and 4 Locomotion) from the Safety Gymnasium (Ji et al., 2023) benchmark. The locomotion
tasks reward distance traveled, while penalizing high velocities, and the navigation tasks reward
goal reaching and penalize certain unsafe states. For the C-TRPO implementation we fix the con-
vex generator ϕ(x) = x log(x), motivated by its superior performance in our experiments, see
Appendix B.2.1, and bH = 0.8b and β = 1 across all experiments.1 We train each algorithm for
10 million environment steps and evaluate on 10 runs after training, see Table 1 in Appendix D.
Furthermore, each algorithm is trained with 5 seeds, and the cost regret is monitored throughout
training for every run. To get a better sense of the safety of the algorithms during training, we take
an online learning perspective and include as a metric the cumulative cost violation (Efroni et al.,
2020; Müller et al., 2024)

CUMCOST+(K, c) :=

K−1∑
k=0

[V πk
c − b]+ , (24)

where [x]+ = max{0, x}, and K is the number of the training iterations.

We observe that C-TRPO is competitive with the leading algorithms of the benchmark in terms of
expected return (CPO, TRPO-Lagrangian), see Figure 3. Furthermore, it achieves notably lower cost
regret throughout training than the high-return algorithms, even comparable to the more conservative
PCPO algorithm. In Figure 3, we visualize the interquartile mean (IQM) of normalized scores across
training for expected returns of reward and cost and for the cost regret, including their stratified
bootstrap confidence intervals (Agarwal et al., 2021b).

Discussion For completeness, we also report environment-wise sample efficiency curves and eval-
uation performances in Appendix D.3. Our experiments reveal that the algorithm’s performance is
closely tied to the accuracy of divergence estimation, which hinges on the precise estimation of the
cost advantage and value functions. The safety parameter β modulates the stringency with which

1Code available at: (will be released after double-blind review)
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Figure 3: Comparison of safe policy optimization algorithms based on the Inter Quartile Mean
across 5 seeds and 8 tasks. From left to right: episode return of the reward (PPO normalized),
episode return of the cost (threshold normalized), and cumulative cost violation (CPO normalized).

C-TRPO satisfies the constraint, and can do so without limiting the expected return on most envi-
ronments at least for β ≤ 1, see Figure 7. For higher values, the expected return starts to degrade,
partly due to D̄ϕ being relatively noisy compared to D̄KL and thus we recommend the choice β = 1.

Further, we observe that constraint satisfaction is stable across different choices of cost threshold b,
see Figure 8, and that in most environments, constraint violations seem to reduce as the algorithm
converges, meaning that the regret flattens over time. This behavior suggests that the divergence esti-
mation becomes increasingly accurate over time, potentially allowing C-TRPO to achieve sublinear
regret. However, we leave regret analysis of the finite sample regime for future research.

We attribute the improved constraint satisfaction compared to CPO to a slowdown and reduction
in the frequency of oscillations around the cost threshold, which mitigates overshoot behaviors that
could otherwise violate constraints. The modified gradient preconditioner appears to deflect the pa-
rameter trajectory away from the constraint, see Figure 2. This effect may also be partially attributed
to the hysteresis-based recovery mechanism, which helps smooth updates by leading the iterate away
from the boundary of the safe set. Employing a hysteresis fraction 0 < bH < b might also be ben-
eficial because C-TRPO’s divergence estimates tend to be more reliable for strictly safe policies.
The effect of the choice of bH is shown in Figure 10 in the appendix. Finally, we present ablations
in Appendix D.2, which support our claims that both components—the modified trust region and
hysteresis—are effective in reducing safety violations.

6 CONCLUSION AND OUTLOOK

In this paper, we introduced C-TRPO and C-NPG, two novel methods for solving Constrained
Markov Decision Processes (CMDPs). C-TRPO can be viewed as an extension or relaxation of
Constrained Policy Optimization (CPO), from which a natural policy gradient method, C-NPG, is
derived. C-TRPO represents a significant step toward safe, model-free reinforcement learning by
integrating constraint handling directly into the geometry of the policy space. Meanwhile, C-NPG
provides a provably safe natural policy gradient method for CMDPs, offering a foundational ap-
proach to direct policy optimization in constrained settings—similar to how NPG is a cornerstone in
the theory of policy gradients for unconstrained MDPs. However, there are several limitations to ad-
dress. First, the divergence estimation remains challenging, and we did not investigate the properties
of the finite sample estimates of the divergence. In addition, the CMDP framework may be some-
what limited in modeling safe exploration and control. Because CMDPs constrain the average cost
return, it can be difficult to model trajectory-wise or state-wise safety constraints. Several promising
directions for future research remain open. One avenue is to combine these methods with model-
based policy optimization to improve cost return estimates, or with policy mirror descent to improve
computational efficiency, see e.g. Tomar et al. (2022). Additionally, integrating the proposed di-
vergence with other safe policy optimization algorithms that utilize trust regions, e.g. PCPO, could
lead to stronger performance guarantees.

Overall, the proposed algorithms, C-TRPO and C-NPG, present a step forward in general-purpose
CMDP algorithms and move us closer to deploying RL in high-stakes, real-world applications.
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Johannes Müller, Semih Çaycı, and Guido Montúfar. Fisher-rao gradient flows of linear programs
and state-action natural policy gradients. arXiv preprint arXiv:2403.19448, 2024.

Adrian Müller, Pragnya Alatur, Volkan Cevher, Giorgia Ramponi, and Niao He. Truly no-regret
learning in constrained mdps, 2024. URL https://arxiv.org/abs/2402.15776.
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A EXTENDED BACKGROUND

We consider the infinite-horizon discounted Markov decision process (MDP), given by the tuple
(S,A, P, r, µ, γ). Here, S and A are the finite state-space and action-space respectively. Here, we
make the restriction to finite MDPs as this simplifies the presentation. For a discussion of continuous
state and action spaces, we refer to Appendix B.3. Further, P : S×A → ∆S is the transition kernel,
r : S × A → R is the reward function, µ ∈ ∆S is the initial state distribution at time t = 0, and
γ ∈ [0, 1) is the discount factor. The space ∆S is the set of categorical distributions over S.

The Reinforcement Learning (RL) protocol is usually described as follows: At time t = 0, an initial
state s0 is drawn from µ. At each integer time-step t, the agent chooses an action according to it’s
(stochastic) behavior policy at ∼ π(·|st). A reward rt = r(st, at) is given to the agent, and a new
state st+1 ∼ P (·|st, at) is sampled from the environment. Given a policy π, the value function
V π
r : S → R, action-value function Qπ

r : S × A → R, and advantage function Aπ
r : S × A → R

associated with the reward r are defined as

V π
r (s) := (1− γ)Eπ

[ ∞∑
t=0

γtr(st, at)
∣∣∣s0 = s

]
,

Qπ
r (s, a) := (1− γ)Eπ

[ ∞∑
t=0

γtr(st, at)
∣∣∣s0 = s, a0 = a

]
and Aπ

r (s, a) := Qπ
r (s, a)− V π

r (s).

where and the expectations are taken over trajectories of the Markov process resulting from starting
at s and following policy π. The goal is to

maximizeπ∈Π V π
r (µ) (25)

where V π
r (µ) is the expected value under the initial state distribution V π

r (µ) := Es∼µ[V
π
r (s)]. We

will also write V π
r = V π

r (µ), and omit the explicit dependence on µ for convenience, and we write
Vr(π) when we want to emphasize its dependence on π.

The Dual Linear Program for MDPs Any stationary policy π induces a discounted state-action
(occupancy) measure dπ ∈ ∆S×A, indicating the relative frequencies of visiting a state-action pair,
discounted by how far the visitation lies in the future. It is a probability measure defined as

dπ(s, a) := (1− γ)

∞∑
t=0

γtPπ(st = s)π(a|s), (26)

where Pπ(st = s) is the probability of observing the environment in state s at time t given the agent
follows policy π. For finite MDPs, it is well-known that maximizing the expected discounted return
can be expressed as the linear program

max
d

r⊤d subject to d ∈ D , (27)

where D is the set of feasible state-action measures Feinberg & Shwartz (2012). This set is also
known as the state-action polytope, defined by

D =
{
d ∈ RS×A

≥0 : ℓs(d) = 0 for all s ∈ S
}
,

where the linear constraints ℓs(d) are given by the Bellman flow equations

ℓs(d) = d(s)− γ
∑
s′,a′

d(s′, a′)P (s|s′, a′)− (1− γ)µ(s),

where d(s) =
∑

a d(s, a) denotes the state-marginal of d. For any state-action measure d we obtain
the associated policy via conditioning, meaning

π(a|s) := d(s, a)∑
a′ d(s, a′)

(28)

in case this is well-defined. This provides a one-to-one correspondence between policies and the
state-action distributions under the following assumption.
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r(s, a)

c(s, a)
𝒟safe

d*safe

Figure 4: The dual linear program for a CMDP of two states and two actions.

Assumption 6 (Exploration). For any policy π ∈ ∆S
A we have dπ(s) > 0 for all s ∈ S.

This assumption is standard in linear programming approaches and policy gradient methods where
it is necessary for global convergence Kallenberg (1994); Mei et al. (2020b). Note that d ∈ ∂D if
and only if d(s, a) = 0 for some s, a and hence the boundary of D is given by

∂D =
{
dπ : π(a|s) = 0 for some s ∈ S, a ∈ A

}
.

Constrained Markov Decision Processes Where MDPs aim to maximize the return, constrained
MDPs (CMDPs) aim to maximize the return subject to a number of costs not exceeding certain
thresholds. For a general treatment of CMDPs, we refer the reader to Altman (1999). An important
application of CMDPs is in safety-critical reinforcement learning where the costs incorporate safety
constraints. An infinite-horizon discounted CMDP is defined by the tuple (S,A, P, r, µ, γ, C), con-
sisting of the standard elements of an MDP and an additional constraint set C = {(ci, bi)}mi=1, where
ci : S ×A → R are the cost functions and bi ∈ R are the cost thresholds.

In addition to the value functions and the advantage functions of the reward that are defined for the
MDP, we define the same quantities Vci , Qci , and Aci w.r.t the ith cost ci, simply by replacing r
with ci. The objective is to maximize the discounted return, as before, but we restrict the space of
policies to the safe policy set

Πsafe =

m⋂
i=1

{
π : Vci(π) ≤ bi

}
, (29)

where

V π
ci (µ) := Es∼µ[V

π
ci (s)]. (30)

is the expected discounted cumulative cost associated with the cost function ci. Like the MDP, the
discounted cost CMPD can be expressed as the linear program

max
d

r⊤d sbj. to d ∈ Dsafe, (31)

where

Dsafe =

m⋂
i=1

{
d ∈ RS×A : c⊤i d ≤ bi

}
∩D (32)

is the safe occupancy set, see Figure 4.

Bregman divergences Here, we give a short introduction to the concept of Bregman divergences,
which is required for the formulation of trust region methods. For this, we consider a convex subset
of Euclidean space C ⊆ Rd with a non-empty interior int(C) and a strictly convex function ϕ : C →
R which we assume to be differentiable on the interior int(C). Then, the Bregman divergence
induced by ϕ is given by

Dϕ(x||y) := ϕ(x)− ϕ(y)−∇ϕ(y)⊤(x− y), (33)
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which is well defined for x ∈ C, y ∈ int(C). Intuitively, the Bregman divergence measures the
difference between ϕ and its linearization at y. The strict convexity of ϕ ensures that Dϕ(x||y) ≥ 0
and Dϕ(x||y) = 0 if and only if x = y. Therefore, Bregman divergences are commonly interpreted
as a generalized measure for the distance between points, however, it is important to notice that it
is not generally symmetric. An important example is the Euclidean distance Dϕ(x||y) = ∥x− y∥22
which arises from the choice ϕ(x) := ∥x∥22. Another important Bregman divergence is the Kullback-
Leibler (KL) divergence

DKL(p||q) :=
d∑

i=1

pi log
pi
qi
−

d∑
i=1

pi +

d∑
i=1

qi, (34)

where we use the common convention 0 log 0
0
:= 0. Then, the KL divergence is defined for p ∈ Rd

≥0

and q ∈ Rd
≥0 which is absolutely continuous with respect to p, meaning that pi = 0 implies qi = 0.

Note that if both p and q are probability vectors, meaning that
∑

i pi =
∑

i qi = 1, we obtain

DKL(p||q) :=
d∑

i=1

pi log
pi
qi
. (35)

Information Geometry of Policy Optimization Among the most successful policy optimization
schemes are natural policy gradient (NPG) methods or variants thereof like trust-region and proximal
policy optimization (TRPO and PPO, respectively). These methods assume a convex geometry and
corresponding Bregman divergences in the state-action polytope, where we refer to Neu et al. (2017);
Müller & Montúfar (2023) for a more detailed discussion.

In general, a trust region update is defined as

πk+1 ∈ argmax
π∈Π

Aπk
r (π) sbj. to DΦ(dπk

||dπ) ≤ δ, (36)

where DΦ : D × D → R is a Bregman divergence induced by a suitably convex function
Φ: int(D)→ R. The functional

Aπk
r (π) = Es∼dπk

,a∼πθ(·|s)
[
Aπk

r (s, a)
]
, (37)

as introduced in (Kakade & Langford, 2002), is called the policy advantage. As a loss function,
it is also known as the surrogate advantage (Schulman et al., 2017a), since we can interpret A as
a surrogate optimization objective of the return. In particular, it holds for a parameterized policy
πθ, that ∇θA

πθk
r (πθ)|θ=θk = ∇θVr(θk), see Kakade & Langford (2002); Schulman et al. (2017a).

TRPO and the original NPG assume the same geometry (Kakade, 2001; Schulman et al., 2017a),
since they employ an identical Bregman divergence

DK(dπ1
||dπ2

) :=
∑
s,a

dπ1
(s, a) log

π1(a|s)
π2(a|s)

=
∑
s

dπ1
(s)DKL(π1(·|s)||π2(·|s)).

We refer to DK as the Kakade divergence and informally write DK(π1, π2) := DK(dπ1
, dπ2

). This
divergence can be shown to be the Bregman divergence induced by the negative conditional entropy

ΦK(dπ) :=
∑
s,a

dπ(s, a) log π(a|s), (38)

see Neu et al. (2017). It is well known that with a parameterized policy πθ, a linear approximation
of A and a quadratic approximation of the Bregman divergence DK at θ, one obtains the natural
policy gradient step given by

θk+1 = θk + ϵkGK(θk)
+∇R(θk), (39)

where GK(θ)
+ denotes a pseudo-inverse of the Gramian matrix with entries equal to the state-

averaged Fisher-information matrix of the policy

GK(θ)ij := Es∼dπθ

[∑
a

∂θiπθ(a|s)∂θjπθ(a|s)
πθ(a|s)

]
(40)

= Edπθ
[∂θi log πθ(a|s)∂θj log πθ(a|s)], (41)
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where we refer to Schulman et al. (2017a) for a more detailed discussion.

Consider a convex potential Φ: D → R or Φ: Dsafe → R and the TRPO update

θk+1 ∈ argmaxAπθk
r (πθ) sbj. to DΦ(dθk ||dθ) ≤ ϵ. (42)

In practice, one uses a linear approximation of Aπθk
r (πθ) and a quadratic approximation of DΦ to

compute the TRPO update. This gives the following approximation of TRPO

θk+1 ∈ argmax
θ

∇θAθk
r (θ)|θ=θk · (θ − θk) sbj. to ∥θ − θk∥2G(θk)

≤ ϵ, (43)

where

G(θ)ij = ∂θid
⊤
θ ∇2Φ(dθ)∂θjdθ. (44)

Note that by the policy gradient theorem, it holds that

∇θAθk
r (θ)|θ=θk = ∇Vr(θk). (45)

Thus, the approximate TRPO update is equivalent to

θk+1 = θk + ϵkG(θk)
+∇Vr(θ), (46)

where

ϵk =

√
ϵ

∥G(θk)+∇Vr(θk)∥G(θk)
. (47)

Hence, the approximation TRPO update corresponds to a natural policy gradient update with an
adaptively chosen step size.

B DETAILS ON THE SAFE GEOMETRY FOR CMDPS

B.1 SAFE TRUST REGIONS

The safe mirror function for a single constraint is given by

ΦC(d) := ΦK(d) +

m∑
i=1

β ϕ(b− c⊤d), (48)

and the resulting Bregman divergence

DC(d1||d2) = ΦC(d1)− ΦC(d2)− ⟨∇ΦC(d2), d1 − d2⟩. (49)

is a linear operator in Φ, hence

DΦ(d)+βϕ(b−c⊤d)(d1||d2) = DΦK(d1||d2) + βDϕ(d1||d2), (50)

where

Dϕ(d1||d2) = ϕ(b− c⊤d1)− ϕ(b− c⊤d2)− ⟨∇ϕ(b− c⊤d2), d1 − d2⟩ (51)

= ϕ(b− c⊤d1)− ϕ(b− c⊤d2)− ϕ′(b− c⊤d2)(c
⊤d1 − c⊤d2). (52)

= ϕ(b− Vc(π))− ϕ(b− Vc(πk)) + ϕ′(b− Vc(πk))(Vc(π)− Vc(πk)). (53)

The last expression can be interpreted as the one-dimensional Bregman divergence Dϕ(b −
Vc(π)||b − Vc(πk)), which is a (strictly) convex function in Vc(π) for fixed πk if ϕ is (strictly)
convex.

B.2 DETAILS ON C-TRPO

B.2.1 SURROGATE DIVERGENCE

In practice, the exact constrained KL-Divergence DC cannot be evaluated, because it depends on
the cost-return of the optimized policy Vc(π). Therefore, we use the surrogate divergence

D̄ϕ(πθ||πθk) = ϕ(b− V πk
c − Aπk

c (π))− ϕ(b− V πk
c ) + ϕ′(b− V πk

c )Aπk
c (π) (54)
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is obtained by the substitution Vc(π)− V πk
c → Aπk

c (π) in Dϕ.

When we center this divergence around policy πk and keep this policy fixed, it becomes a function
of the policy cost advantage.

D̄ϕ(πθ||πθk) = ϕ(b− V πk
c − Aπk

c (π))− ϕ(b− V πk
c ) + ϕ′(b− V πk

c )Aπk
c (π)

= ϕ(δb − Aπk
c (π))− ϕ(δb) + ϕ′(δb)Aπk

c (π)

= Ψ(Aπk
c ).

Note that D̄ϕ(πθ||πθk) = Ψ(Aπk
c (π)), where Ψ(x) = ϕ(δb − x)− ϕ(δb)− ϕ′(δb) · x is a (strictly)

convex function if ϕ is (strictly) convex, since it is equivalent to the one-dimensional Bregman
divergence Dϕ(δb − x||δb) on the domain of ϕ(b− x), see Figure 5.

0 δb
Cost Advantage

0

1

2

D
Φ
/
β

φ = − log(x)

φ = x log(x)

Figure 5: The surrogate Constrained KL-Divergence as a function of the policy cost advantage.

Example 7. The function ϕ(x) = x log(x) induces the divergence

D̄ϕ(πθ||πθk) = Aπk
c (πθ)− (δb − Aπk

c (πθ)) log

(
δb

δb − Aπk
c (πθ))

)
. (55)

B.2.2 ESTIMATION

In the practical implementation, the expected KL-divergence between the policy of the previous
iteration, πk, and the proposal policy π is estimated from state samples si by running πk in the
environment

∑
s

dπk
(s)DKL(π(·|s)||πk(·|s)) ≈ 1/N

N−1∑
i=0

DKL(π(·|si)||πk(·|si)) (56)

where DKL can be computed in closed form for Gaussian policies, where N is the batch size.

For the constraint term, we estimate δb from trajectory samples, as well as the policy cost advantage

Aπk
c (π) ≈ Â =

1

N

N−1∑
i=0

π(ai|si)
πk(ai|si)

Âπk
i (57)

where Âπk
i is the GAE-λ estimate of the advantage function (Schulman et al., 2018). For any suitable

ϕ, the resulting divergence estimate is

D̂ϕ = ϕ(δb − Â)− ϕ(δb)− ϕ′(δb)Â (58)

and for the specific choice ϕ(x) = x log(x)

D̂ϕ = Â− (δb − Â) log
(

δb

δb − Â

)
. (59)
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B.2.3 DETAILS ON C-NPG

In showin that TRPO with quadratic approximation agrees with a natural gradient step, see Ap-
pendix A, we have used that ∇θAθk

r (θ)|θ=θk = ∇Vr(θk), which holds although Ar is only a proxy
of Vr. We now provide a similar property for the quadratic approximation of the surrogate diver-
gences D̄C.

Proposition 8. For any parameter θ with πθ ∈ Πsafe it holds that

∇2
θD̄ϕ(θ||θ̂)|θ=θ̂ = ∇2

θDϕ(θ||θ̂)|θ=θ̂ (60)

and hence

∇2
θD̄KL(θ||θ̂)|θ=θ̂ + β∇2

θD̄ϕ(θ||θ̂)|θ=θ̂ = GC(θ̂) (61)

where GC(θ) denotes the Gramian matrix of C-NPG with entries

GC(θ)ij = ∂θid
⊤
θ ∇2ΦC(θ)∂θjdθ. (62)

Proof. Let H̄KL(θ) = ∇2
θD̄KL(θ||θ̂)|θ=θ̂ and H̄ϕ(θ) = ∇2

θD̄ϕ(θ||θ̂)|θ=θ̂. One can show that
H̄KL = GK(θ) (Schulman et al., 2017a). Further, we have

H̄ϕ(θ) = ∇θAπk
c (θ)⊤Ψ′′(Aπk

c (θ))∇θAπk
c (θ) + Ψ′(Aπk

c (θ))⊤∇2
θAπk

c (θ)

a)
= ∇θAπk

c (θ)⊤Ψ′′(Aπk
c (θ))∇θAπk

c (θ)

b)
= ∇θAπk

c (θ)⊤ϕ′′(b− V πk
c (θ))∇θAπk

c (θ)

= ∇θV
πk
c (θ)⊤ϕ′′(b− V πk

c (θ))∇θV
πk
c (θ),

where a) follows from Ψ′(Aπk
c (θ)) = 0 since Ψ(0) = 0, Ψ ≥ 0 and Aθ̂

c(θ)|θ=θ̂ = 0. Further, b)
follows because Ψ′′(x)|x=0 = ϕ′′(δb). Thus, H̄ϕ is equivalent to the Gramian

GC(θ)ij := ∂θid
⊤
θ ∇2ΦC(θ)∂θjdθ (63)

= GK(θ)ij + βϕ′′(b− c⊤k dθ)∂θid
⊤
θ cc

⊤∂θidθ (64)

= H̄KL + β∇θVc(θ)
⊤ϕ′′(b− Vc(θ))∇θVc(θ), (65)

= H̄KL + βH̄ϕ. (66)

Again, for multiple constraints, the statement follows analogously.

In particular, this shows that the C-TRPO update can be interpreted as a natural policy gradient step
with an adaptive step size and that the updates with DC and D̄C are equivalent if we use a quadratic
approximation for both, justifying D̄C as a surrogate for DC.

B.3 BEYOND FINITE MDPS

For the sake of simplicity and as this is required for our theoretical analysis, we have introduced
C-TRPO only for finite MDPs. However, C-TRPO can also be used for problems with continuous
state and action spaces as we discuss here. In this case, the state-action and state distributions are
defined as

dπ(S ×A) := (1− γ)

∞∑
t=0

γtPπ(st ∈ S, at ∈ A) and

dπ(S) := (1− γ)

∞∑
t=0

γtPπ(st ∈ S)

for every measurable subsets A ⊆ A and S ⊆ S. Further, the Kakade divergence is then given by

DK(d
π1 ||dπ2) := Es∼dπ1

[
DKL(π1(·|s)||π2(·|s))

]
, (67)
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which is well defined if π1(·|s) is absolutely continuous with respect to π2(·|s) for dπ1 almost all
s ∈ S. The Bregman divergence that C-TRPO is builds on is – just as in the finite case – given by

DC(d1||d2) = DK(d1||d2) +
m∑
i=1

βiDϕi
(d1||d2), (68)

where

Dϕi
(d1||d2) =ϕ(bi − Vci(π1))− ϕ(bi − Vci(π2)) + ϕ′(bi − Vci(π2))(Vci(π1)− Vci(π2)). (69)

Like in the finite case, the policy advantage is defined as

Aπk
r (π) = Es,a∼dπk

[
π(a|s)
πk(a|s)

Aπk
r (s, a)

]
, (70)

where Aπ
r (s, a) = Qπ(s, a)−V π(s) denotes the advantage function, which is defined analoguously

to the finite case. Now, the plain trust region update is given b y

θk+1 ∈ argmax
θ

Aπk
r (π) sbj. to DC(dπk

||dπ) ≤ δ. (71)

Just like in the finite case, we use a surrogate divergence D̄C and obtain the formulation of C-TRPO

πk+1 = argmax
π∈Π

Aπk
r (π) sbj. to D̄C(π||πk) ≤ δ. (72)

Here, the differences to DC are that we use use samples from the state distribution dπk and use a
surrogate for the cost advantage to estimate the divergence Dπi as described in Section 3.2. Fur-
ther, we use a parametric policy model πθ and a linear approximation of Aπk as well as quadratic
approximation of D̄C(π||πk) for our practical implementation.

Expression for Gaussian policies We test C-TRPO in various control tasks and hence, where
we use Gaussian policies. More precisely, the state and action space consist of Euclidean spaces
S = Rds and A = Rda . Then, we consider a policy network µθ : S → A, which predicts the
mean action and assume parameterized but state independent diagonal Gaussian noise, meaning that
πθ(·|s) = N (µθ(s),Σθ), where Σθ is diagonal. Consequently, we can use a closed-form expression
for the KL divergence as

DKL(πθ1(·|s)||πθ2(·|s)) =
1

2

(
tr
(
Σ−1

θ2
Σθ1

)
− da + ∥µθ1(s)− µθ2(s)∥2Σ−1

θ2

+ ln

(
detΣθ2

detΣθ1

))
,

see Zhang et al. (2024b).

C PROOFS OF SECTION 4

C.1 PROOFS OF SECTION 4.1

Our theoretical analysis of C-TRPO is built on the following bounds on the performance difference
of two policies.
Theorem 9 (Performance Difference, Achiam et al. (2017)). For any function f(s, a), the following
bounds hold

Vf (π1)− Vf (π2) ⋚ Aπ2

f (π1)±
2γϵf

(1− γ)

√
1

2
Es∼dπ2

DKL(π1(·|s)||π2(·|s)) (73)

where ϵf = maxs |Ea∼π1
Aπ2

f (s, a)|.

Theorem 9 can be interpreted as a bound on the error incurred by replacing the difference in returns
Vf (π1)− Vf (π) of any state-action function by its policy advantage Aπ2

f (π1).

Proposition 1 (C-TRPO reward update). Set ϵr = maxs |Ea∼πk+1
Aπk

r (s, a)|. The expected reward
of a policy updated with C-TRPO is bounded from below by

Vr(πk+1) ≥ Vr(πk)−
√
2δγϵr
1− γ

. (20)
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Proof. It follows from the lower bound in Theorem 9 that

Vr(πk+1)− Vr(πk) ≥ Aπk
r (πk+1)−

γϵr
(1− γ)

√
2D̄C(πk+1||πk) (74)

where we choose f = r. The bound holds because D̄ϕ ≥ 0, and thus D̄C ≥ EDKL. Further,
δ ≥ DC and Aπk

r (πk+1) ≥ 0 by the update equation, which concludes the proof. See Appendix C.3
for a more detailed discussion.

Proposition 2. The approximate C-TRPO update approaches the CPO update in the limit as β ↘ 0.

Proof. Let us fix a strictly safe policy π0 ∈ int(Πsafe). In both cases, we approximate the expected
cost of a policy using Vc(π) ≈ Vc(π0) + Aπ0

c (π), which is off by the advantage mismatch term in
Theorem 1. Hence, we maximize the surrogate of the expected value Aπ0

r (π) over the regions

PCPO := {π ∈ Π : D̄K(π, π0) ≤ δ, Vc(π0) + Aπ0
c (π) ≤ b}

in the case of CPO, and

Pβ := {π ∈ Π : D̄C(π, π0) ≤ δ},
with C-TRPO for some β > 0. Note that

D̄C(π, π0) = D̄K(π, π0) + βΨ(Aπ0
c (π)), (75)

and Ψ: (−∞, δb) → (0,+∞) and Ψ(t) → +∞ for t ↗ δb, where δb = b − Vc(π0). Denote the
corresponding updates by π̂CPO and the C-TRPO update by π̂β . Note that we have Pβ ⊆ Pβ′ ⊆
PCPO for β ≥ β′. Further, we have⋃

β>0

Pβ = {π ∈ P : DK(π, π0) < δ, Vc(π0) + Aπ0
c (π) < b}.

Hence, the trust regions Pβ grow for β ↘ 0 and fill the interior of the trust region PCPO.

Remark 10. Intuitively, one could repeatedly solve the C-TRPO problem with successively smaller
values of β, which would be similar to solving CPO with the interior point method using Ψ as the
barrier function.
Proposition 3 (C-TRPO worst-case constraint violation). Consider Ψ: [0, δb) → [0,∞) defined
by Ψ(x) = ϕ(δb − x) − ϕ(δb) − ϕ′(δb) · x such that Dϕ(π||πk) = Ψ(Aπk

c (π)). Further, set
ϵc = maxs |Ea∼πk+1

Aπk
c (s, a)|, and choose a strictly convex ϕ. The worst-case constraint violation

for C-TRPO is

Vc(πk+1) ≤ Vc(πk) + Ψ−1(δ/β) +

√
2δγϵc
1− γ

. (21)

Further, it holds that limβ→+∞ Ψ−1(δ/β) = 0 and Ψ−1(δ/β) < b− Vc(πk) for all β ∈ (0,∞).

Proof. Setting f = c in the upper bound from Theorem 9, and replacing EDKL with δ as in Propo-
sition 1 results in

Vc(πk+1) ≤ Vc(πk) + Aπk
c (πk+1) +

√
2δγϵc
1− γ

. (76)

Recall that D̄C = D̄K + βD̄ϕ and that D̄ϕ(πk+1||πk) = Ψ(Aπk
c (πk+1)), where Ψ(x) = ϕ(δb −

x)− ϕ(δb)− ϕ′(δb) · x. By the definition of the update it holds that

Ψ(Aπk
c (πk+1)) < δ/β. (77)

Since we are only interested in upper bounding the worst case, we can focus on Aπk
c (πk+1) > 0, so

we restrict Ψ: [0, δb) → [0,∞). Further, for strictly convex ϕ, Ψ is strictly convex and increasing
with increasing inverse. It follows that

Aπk
c (πk+1) < Ψ−1(δ/β), (78)

with Ψ−1 : [0,∞)→ [0, δb). Because Ψ−1 is an increasing function of β on [0,∞) with maximum
at δb = b − Vc(πk), it holds that Ψ−1(β/δ) < b − Vc(πk) for any β > 0, which concludes the
proof.
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C.2 DETAILS ON THE RESULTS IN SECTION 4.2

Recall that we study the natural policy gradient flow

∂tθt = GC(θt)
+∇Vr(θt), (79)

where GC(θ)
+ denotes a pseudo-inverse of GC(θ) with entries

GC(θ)ij := ∂θid
⊤
θ ∇2ΦC(dθ)∂θjdθ = GK(θ)ij +

∑
k

βkϕ
′′(bk − c⊤k dθ)∂θid

⊤
θ ckc

⊤
k ∂θidθ. (80)

and θ 7→ πθ is a differentiable policy parametrization.

Moreover, we assume that θ 7→ πθ is regular, that it is surjective and the Jacobian is of maximal rank
everywhere. This assumption implies overparametrization but is satisfied for common models like
tabular softmax, tabular escort, or expressive log-linear policy parameterizations (Agarwal et al.,
2021a; Mei et al., 2020a; Müller & Montúfar, 2023).

We denote the set of safe parameters by Θsafe := {θ ∈ Rp : πθ ∈ Πsafe}, which is non-convex in
general and say that Θsafe is invariant under Equation (22) if θ0 ∈ Θsafe implies θt ∈ Θsafe for all t.
Invariance is associated with safe control during optimization and is typically achieved via control
barrier function methods (Ames et al., 2017; Cheng et al., 2019). We study the evolution of the
state-action distributions dt = dπθt as this allows us to employ the linear programming formulation
of CMPDs and we obtain the following convergence guarantees.
Theorem 4 (Safety during training). Assume that ϕ : R>0 → R satisfies ϕ′(x) → +∞ for x ↘ 0
and consider a regular policy parameterization. Then the set ΘC is invariant under Equation (22).

Proof. Consider a solution (θt)t>0 of Equation (79). As the mapping π 7→ dπ is a diffeomor-
phism (Müller & Montúfar, 2023) the parameterization Θsafe → Dsafe, θ 7→ dπθ is surjective and
has a Jacobian of maximal rank everywhere. As GC(θ)ij = ∂θidθ∇ΦC∂θidθ this implies that the
state-action distributions dt = dπθt solve the Hessian gradient flow with Legendre-type function
ΦC and the linear objective d 7→ r⊤d, see Amari (2016); van Oostrum et al. (2023); Müller &
Montúfar (2023) for a more detailed discussion. It suffices to study the gradient flow in the space of
state-action distributions dt. It is easily checked that ΦC is a Legendre-type function for the convex
domain DC, meaning that it satisfies ∥∇Φ(dn)∥ → +∞ for dn → d ∈ ∂Dsafe. Since the objective
is linear, it follows from the general theory of Hessian gradient flows of convex programs that the
flow is well posed, see Alvarez et al. (2004); Müller & Montúfar (2023).

Theorem 5. Assume that ϕ′(x) → +∞ for x ↘ 0, set V ⋆
r,C := maxπ∈Πsafe

Vr(π) and denote the
set of optimal constrained policies by Π⋆

safe = {π ∈ Πsafe : Vr(π) = V ⋆
r,C}, consider a regular

policy parametrization and let (θt)t≥0 solve Equation (22). It holds that Vr(πθt)→ V ⋆
r,C and

lim
t→+∞

πt = π⋆
safe = argmin{DC(π

⋆, π0) : π
⋆ ∈ Π⋆

safe}. (23)

Proof. Just like in the proof of Theorem 5 we see that dt = dπθt solves the Hessian gradient flow
with respect to the Legendre type function ΦC. Now the claims regarding convergence and the
identification of the limit limt→+∞ πθt follows from the general theory of Hessian gradient flows,
see Alvarez et al. (2004); Müller et al. (2024).

C.3 PERFORMANCE IMPROVEMENT BOUNDS AND CHOICE OF DIVERGENCE

In a series of works (Kakade & Langford, 2002; Pirotta et al., 2013; Schulman et al., 2017a; Achiam
et al., 2017), the following bound on policy performance difference between two policies has been
established.

Vf (π
′)− Vf (π) ⋚ Aπ′

f (π)± 2γϵf
(1− γ)

Es∼dπ
DTV(π

′||π)(s) (81)

where DTV is the Total Variation Distance. Furthermore, by Pinsker’s inequality, we have that

DTV(π
′||π) ≤

√
1

2
DKL(π′||π), (82)
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Figure 6: Pictorial illustration of conceptual and practical differences between CPO and C-TRPO.
The local approximation of C-TRPO’s trust region results in a single quadratic constraint, which is
compressed in the direction of the closest cost surface, depending on the hyper-parameter β (blue
dashed lines on the right). This is in contrast to CPO, where the local approximation of the update
results in a quadratic constraint which is not affected by the cost, and a linear constraint which only
takes effect upon contact with the cost surface. Intuitively, this results in a smoother optimization
path for C-TRPO that remains on the interior of the safe policy space for longer.

and by Jensen’s inequality

Es∼dπDTV(π
′||π)(s) ≤

√
1

2
Es∼dπDKL(π′||π)(s), (83)

It follows that we can not only substitute the KL-divergence into the bound but any divergence

DΦ(d
′
π||dπ) ≥ Es∼dπ

DKL(π
′||π)(s) (84)

can be substituted, and still retains TRPO’s and CPO’s update guarantees.

C.4 COMPARISON WITH CPO

In the approximate case of C-TRPO and CPO, where the reward is approximated linearly, and the
trust region quadratically, the constraints differ in that C-TRPO’s constraint is

(θ − θk)(H̄KL(θ) + βH̄ϕ(θ))(θ − θk) < δ

whereas CPO’s is

(θ − θk)H̄KL(θ)(θ − θk) < δ and V θk
c + (∇θAθk

c (θ))⊤(θ − θk) ≤ b.

Figure 6 illustrates the differences between CPO and C-TRPO.

D ADDITIONAL EXPERIMENTS

D.1 EFFECTS OF THE HYPER-PARAMETERS

To better understand the effects of the two hyperparameters β and bH, we observe how they change
the training dynamics through the example of the AntVelocity environment.

The safety parameter β modulates the stringency with which C-TRPO satisfies the constraint, with-
out limiting the expected return for values up to β = 1, see Figure 7. For higher values, the expected
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return starts to degrade, partly due to D̄ϕ being relatively noisy compared to D̄KL and thus we
recommend the choice β = 1.

Further, we observe that constraint satisfaction is stable across different choices of cost threshold b,
see Figure 8, and that in most environments, constraint violations seem to reduce as the algorithm
converges, meaning that the regret flattens over time. This behavior suggests that the divergence esti-
mation becomes increasingly accurate over time, potentially allowing C-TRPO to achieve sublinear
regret. However, we leave regret analysis of the finite sample regime for future research.

Finally, employing a hysteresis fraction 0 < bH < b seems beneficial, possible because it leads the
iterate away from the boundary of the safe set, and because divergence estimates tend to be more
reliable for strictly safe policies. The effect of the choice of bH is visualized in Figure 10.
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Figure 7: Changing β influences the degree of safety.
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Figure 8: The constraint satisfaction is robust to changing the cost limit.
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Figure 9: In difficult environments, e.g. those that start off in the unsafe policy set, it seems to be
beneficial to set a fraction of the cost limit for hysteresis.
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D.2 ABLATION STUDY: CPO VS. C-TRPO

We conduct an ablation study to rule out that our improvements of C-TRPO over CPO are only due
to hysteresis. For this, we run both CPO and C-TRPO with and without hysteresis with the same
hysteresis parameter as in our other experiments. We see that the hysteresis improves safety for both
algorithm. Further, we find that the hysteresis slightly reduces the return of C-TRPO. Overall, we
clearly see that C-TRPO itself is much safer compared to CPO as even C-TRPO without hysteresis
achieves lower cost regret compared to CPO with hysteresis.
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Figure 10: Ablation study on the core components of C-TRPO: Safe trust region (C-TRPO no hyst.)
and recovery with hysteresis (CPO hyst.). Evaluation is based on the Inter Quartile Mean (IQM)
normalized scores across 5 seeds and 8 tasks. From left to right: episode return of the reward (PPO
normalized), episode return of the cost (threshold normalized), and cumulative cost violation (CPO
normalized).
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D.3 PERFORMANCE ON INDIVIDUAL ENVIRONMENTS

Here, we compare C-TRPO to CPO and PCPO as representative baselines on all individual environ-
ments in terms of their sample efficiency curves.
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Figure 11: C-TRPO vs. CPO and PCPO in the locomotion environments.
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Figure 12: C-TRPO vs. CPO and PCPO in the navigation environments.
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Table 1: Average evaluation performance per task across 10 evaluation runs and 5 seeds each. We
highlight the best performance with respect to the average return Vr in bold, and underline the
lowest average cost Vc. Note that the table only contains information about the final evaluation
performance, not about cost violations during training.

C-TRPO C-TRPO-HYST CPO CPO-HYST

Vr Vc Vr Vc Vr Vc Vr Vc

AntVelocity 2810.1 ± 45.2 7.9 ± 7.6 2786.5 ± 75.8 9.0 ± 8.2 2569.7 ± 61.4 5.7 ± 4.9 2629.3 ± 142.9 16.8 ± 30.6
HalfCheetahVelocity 2316.6 ± 223.9 8.9 ± 6.9 2340.8 ± 220.3 14.6 ± 10.1 1990.1 ± 191.2 20.8 ± 19.9 1921.5 ± 230.5 13.4 ± 11.0
HumanoidVelocity 4837.7 ± 745.7 3.1 ± 3.9 5367.1 ± 292.3 11.0 ± 19.0 5654.3 ± 67.5 0.0 ± 0.0 5583.4 ± 124.3 0.5 ± 1.0
HopperVelocity 1361.2 ± 463.7 12.6 ± 12.5 1358.8 ± 469.6 13.6 ± 15.0 1432.0 ± 40.5 0.4 ± 0.8 1416.8 ± 99.5 3.0 ± 3.0
CarButton1 -1.6 ± 1.9 59.1 ± 29.2 -1.1 ± 1.9 45.0 ± 6.7 -1.4 ± 1.1 78.3 ± 54.5 -3.4 ± 4.3 38.3 ± 34.3
PointGoal1 13.3 ± 4.2 32.9 ± 6.0 10.0 ± 2.0 23.7 ± 9.4 12.6 ± 2.9 22.5 ± 5.9 15.3 ± 6.4 18.0 ± 14.2
RacecarCircle1 8.3 ± 7.0 35.1 ± 25.4 6.9 ± 7.2 15.9 ± 15.8 8.3 ± 7.9 35.6 ± 14.5 9.1 ± 6.0 27.6 ± 19.6
PointPush1 0.0 ± 0.5 21.5 ± 14.2 0.8 ± 0.6 17.1 ± 18.3 0.3 ± 0.3 71.7 ± 59.8 0.8 ± 0.4 9.6 ± 11.0

PCPO FOCOPS CUP P3O

Vr Vc Vr Vc Vr Vc Vr Vc

AntVelocity 2064.1 ± 119.0 53.3 ± 47.1 2374.1 ± 249.5 194.5 ± 50.6 1853.7 ± 322.1 26.7 ± 33.8 1475.5 ± 160.2 2.8 ± 3.7
HalfCheetahVelocity 1424.5 ± 130.4 66.3 ± 11.6 2216.0 ± 137.7 6.2 ± 10.9 2511.0 ± 146.8 35.1 ± 64.0 2120.0 ± 218.1 7.9 ± 12.6
HumanoidVelocity 585.2 ± 27.7 0.0 ± 0.0 1304.4 ± 681.6 16.8 ± 23.5 1406.4 ± 403.5 3.0 ± 2.5 709.1 ± 181.2 0.6 ± 0.7
HopperVelocity 798.4 ± 407.9 11.7 ± 13.1 1478.3 ± 105.8 22.2 ± 44.0 1538.4 ± 83.7 44.3 ± 72.6 1504.6 ± 98.4 4.0 ± 7.9
CarButton1 -2.0 ± 3.2 81.7 ± 43.2 -6.9 ± 6.8 26.1 ± 26.6 1.3 ± 2.9 60.1 ± 67.3 -0.6 ± 0.6 39.1 ± 29.0
PointGoal1 12.2 ± 2.4 28.7 ± 10.3 17.8 ± 3.9 53.0 ± 23.9 17.6 ± 7.4 39.7 ± 17.7 3.1 ± 1.2 32.6 ± 17.8
RacecarCircle1 6.7 ± 5.2 22.1 ± 16.3 5.6 ± 5.0 14.8 ± 27.8 17.1 ± 6.2 26.6 ± 22.6 2.1 ± 1.0 52.6 ± 36.4
PointPush1 0.4 ± 0.5 26.8 ± 41.3 0.3 ± 0.4 33.2 ± 51.1 0.4 ± 0.2 12.9 ± 10.7 0.2 ± 0.4 4.7 ± 6.2

IPO CPPO-PID TRPO-LAG PPO-LAG

Vr Vc Vr Vc Vr Vc Vr Vc

AntVelocity 1690.4 ± 322.3 7.5 ± 7.1 1793.2 ± 248.0 18.7 ± 22.9 2894.4 ± 124.8 14.6 ± 8.0 1840.1 ± 263.7 19.7 ± 24.9
HalfCheetahVelocity 2053.3 ± 204.8 36.1 ± 57.5 2338.2 ± 196.9 6.4 ± 8.1 2449.4 ± 213.6 14.6 ± 12.0 2360.2 ± 209.0 2.8 ± 5.1
HumanoidVelocity 2685.0 ± 1357.3 10.6 ± 9.4 4280.2 ± 1288.6 4.3 ± 3.6 5696.6 ± 90.5 0.0 ± 0.0 4192.4 ± 1108.5 6.4 ± 6.2
HopperVelocity 1224.0 ± 424.0 4.6 ± 6.0 1490.7 ± 121.0 2.8 ± 5.5 500.4 ± 434.5 19.6 ± 15.1 100.3 ± 26.9 4.2 ± 7.5
CarButton1 -0.3 ± 1.0 31.1 ± 17.3 -2.0 ± 1.8 18.6 ± 7.7 -9.4 ± 5.9 29.4 ± 21.2 2.4 ± 1.0 113.8 ± 53.1
PointGoal1 2.0 ± 1.1 30.8 ± 13.6 1.6 ± 2.0 46.3 ± 39.3 25.0 ± 0.5 44.6 ± 6.8 18.9 ± 2.2 49.7 ± 20.1
RacecarCircle1 0.9 ± 0.1 42.0 ± 30.2 1.0 ± 0.2 35.4 ± 31.5 24.8 ± 3.3 5.6 ± 2.4 9.7 ± 4.1 3.6 ± 2.5
PointPush1 0.4 ± 0.6 25.0 ± 32.1 0.2 ± 0.2 30.5 ± 16.6 0.6 ± 0.6 2.1 ± 1.9 0.4 ± 0.3 24.9 ± 12.1
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