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ABSTRACT

Reinforcement Learning (RL) agents are capable of solving a wide variety of
tasks, but are prone to produce unsafe behaviour. Constrained Markov Decision
Processes (CMDPs) are a popular framework for incorporating safety constraints.
However, common solution methods often compromise reward maximization by
being overly conservative or by allowing unsafe behaviour during training. We
propose Constrained Trust Region Policy Optimization (C-TRPO), a novel ap-
proach that modifies the geometry of the policy space based on the safety con-
straints, yielding trust regions composed exclusively of safe policies and ensur-
ing constraint satisfaction throughout training. We theoretically study the con-
vergence and update properties of C-TRPO and highlight connections to TRPO,
Natural Policy Gradient (NPG), and Constrained Policy Optimization (CPO). We
demonstrate experimentally that C-TRPO significantly reduces constraint viola-
tions while achieving competitive return compared to state-of-the-art algorithms.

1 INTRODUCTION

Reinforcement Learning (RL) has emerged as a highly successful paradigm in machine learning for
solving sequential decision and control problems, with policy gradient (PG) algorithms as a popular
approach (Williams|, [1992; [Sutton et al.l [1999; Konda & Tsitsiklis, [1999). Policy gradients are es-
pecially appealing for high-dimensional continuous control because they can be easily extended to
function approximation. Due to their flexibility and generality, there has been significant progress
in enhancing PGs to work robustly with deep neural network-based approaches. Variants of natural
policy gradient methods such as Trust Region Policy Optimization (TRPO) and Proximal Policy
Optimization (PPO) are among the most widely used general-purpose reinforcement learning algo-
rithms (Schulman et al., [2017ajb).

While flexibility makes PGs popular among practitioners, it comes at a cost: the policy can explore
any behavior during training, posing significant risks in real-world applications. Many methods have
been proposed to improve the safety of policy gradients, often based on the Constrained Markov
Decision Process (CMDP) framework. However, existing methods either struggle to minimize con-
straint violations during training or severely limit the agent’s performance.

This work introduces a simple strategy to enhance constraint satisfaction in trust-region-based safe
policy gradient approaches without compromising performance. We propose a novel family of pol-
icy divergences, inspired by barrier function methods in optimization and safe control, that modify
the policy geometry to ensure that the trust regions consist only of safe policies.

This approach is motivated by the observation that TRPO and related methods base their trust region
on the state-average Kullback-Leibler (KL) divergence. It can be derived as the Bregman divergence
induced by the negative conditional entropy on the space of state-action occupancies, as shown by
Neu et al.[(2017). The main insight of the present work is that safer trust regions can be derived by
altering this function to incorporate the cost constraints. The resulting divergence is skewed away
from the constraint surface, which is achieved by augmenting the negative conditional entropy by
another convex barrier-like function. Manipulating the policy divergence in this way allows us to
obtain a provably safe trust region-based policy optimization algorithm that retains most of TRPO’s
mechanisms and guarantees, simplifying existing methods, while achieving competitive returns with
less constraint violations throughout training.
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Related work Classic solution methods for CMDPs rely on linear programming techniques, see
(1999). However, they struggle to scale, making them unsuitable for high-dimensional
or continuous control problems. While there are numerous approaches to CMDPs, we focus on
model-free, direct policy optimization methods. Model-based approaches, like those popularized by
[Berkenkamp et al|(2017)), are attractive due to their strict safety guarantees, but require the learning
of a model, which is not always feasible.

Lagrangian methods are a widely adopted approach, where the optimization problem is reformu-
lated as a weighted objective that balances rewards and penalties for constraint violations. This is
often motivated by Lagrangian duality, where the penalty coefficient is interpreted as the dual vari-
able. Learning the coefficient with stochastic gradient descent presents a popular baseline
et al, 2017} [Ray et all 2019; [Chow et all, 2019} [Stooke et all, 2020). However, a naively tuned
Lagrange multiplier may not work well in practice due to oscillations and overshoot. To address
this issue, [Stooke et al.| (2020) apply PID control to tune the dual variable during training, which
achieves less oscillations around the constraint and faster convergence to a feasible policy. While
Lagrangian approaches are becoming increasingly popular, it is not entirely clear how to update the

dual variables during training, see [Sohrabi et al. (2024).
Penalty methods such as IPO (Liu et all [2020) and P30 (Zhang et all [2022)) propose weighted

penalty-based policy optimization objectives based on practical considerations. The penalties are
weighted against the reward objective where the penalty coefficient is a hyper-parameter. This sim-
plifies the Lagrangian approach since the penalty coefficients don’t have to be optimized during
training, which results in improved stability. More recently, the approach to use (smoothed) log-
barriers (Usmanova et al.} 2024} [Zhang et al, 20244} Dey et al.} 2024) became more popular, which
keeps the algorithm simple due to the penalty approach, but can offer certain constraint satisfac-
tion guarantees, see e.g. N1 & Kamgarpour (2024). However, working with an explicit penalty
produces suboptimal policies w.r.t the original constrained MDP and thus introduces an additional
error, which has to be controlled; see for example |Geist et al.| (2019); Miiller & Cayci (2024) for
treatments of the regularization error in the unconstrained case, and [Liu et al.| (2020) for an exam-
ple of an optimization gap in safe policy optimization. In contrast, changing the trust regions and
therefore the problem geometry does not change the objective function and the set of optimizers and
therefore does not introduce an additional error.

Trust region methods are closely related to our approach, particularly Constrained Policy Optimiza-
tion (CPO;|Achiam et al.| (2017)), which extends TRPO by restricting updates to the intersection of
the trust region and the safe policy set, which ensures safety during training. While CPO provides
constraint satisfaction guarantees, it tends to oscillate around the constraint boundary with high over-
shoot as it only prevents the policy updates of TRPO from leaving the safe policy set. To address
constraint satisfaction, Projection-based CPO (PCPO; (2020)) projects updates onto the
safe policy space between updates, improving stability but further hindering reward maximization.
Building on PCPO, [Zhang et al.| (2020) replace second-order updates with a computationally ef-
ficient first-order approach, and [Yang et al| (2022) further refine these methods with a different
projection approach, which achieves improved performance bounds by incorporating Generalized

Advantage Estimation (GAE; Schulman et al.| (2018))).

Rethinking safe trust region methods We adopt a trust region approach that constructs trust
regions exclusively within the safe policy set, eliminating the need for projections or constrained
optimization in the inner loop. Trust region methods retain TRPO’s update guarantees for both
reward and constraints but often underperform compared to barrier penalty methods. To address this,
we replace the state-average KL-divergence with policy divergences that act as barrier functions,
see Figure [T} This modification encourages updates of the resulting trust region method to move
more parallel to the constraint surfaces rather than directly toward and thereby improves constraint
satisfaction, simplifies optimization, and achieves competitive returns by maintaining policies within
the safe set for longer, see also Figure[f]in the Appendix.

Contributions We summarize our contributions as follows:

* In Section [3] we introduce a modified policy divergence such that every trust region con-
sists of only safe policies. We introduce an idealized TRPO update based on the modified
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Figure 1: Ilustration of policy divergences (dashed) close to the constraint (red). a) TRPO (dotted
for reference) and CPO. b) C-TRPO’s divergence depends on the hyper-parameter [, which mod-
ulates the strength of the barrier towards the constraint surface. For 8 Y\, 0 we obtain an update
equivalent to CPO, and more conservative updates for larger values (3 = 2). The plots were gen-
erated with the toy MDP in Figure[2] ¢) Shown are the quadratic approximations of the divergence
in parameter space, which is obtained by mapping the policy onto its occupancy measure, where a
safe geometry can be defined using standard tools from convex optimization (safe region in white).

divergence, a tractable optimization algorithm for deep function approximation (C-TRPO),
and a corresponding natural gradient method (C-NPG).

* We provide an efficient implementation of the proposed approximate C-TRPO method, see
Section[3.2] which comes with a minimal overhead compared to TRPO (up to the estimation
of the expected cost) and no overhead compared to CPO. We demonstrate experimentally
that C-TRPO yields competitive returns with smaller constraint violations compared to
common safe policy optimization algorithms, see Section 3]

* In Section ] we introduce C-TRPO’s improvement guarantees and contrast to TRPO and
CPO. Further, we show that the C-NPG method is the continuous time limit of C-TRPO and
provides global convergence guarantees towards the optimal safe policy; this is in contrast
to penalization or barrier methods, which introduce a bias

2 BACKGROUND

We consider the infinite-horizon discounted constrained Markov decision process (CMDP) and
refer the reader to |Altman| (1999) for a general treatment. The CMDP is given by the tu-
ple (S, A, P,r,u,~,C), where S and A are the finite state-space and action-space respectively
and we refer to Appendix for a discussion of continuous state and action spaces. Further,
P: S8 x A — Ag is the transition kernel, 7: S x A — R is the reward function, u € Ag is
the initial state distribution at time ¢t = 0, and «y € [0, 1) is the discount factor. The space A is the
set of categorical distributions over S. Further, define the constraint set C = {(c;, b;) }1*, where
¢;: S x A — R are the cost functions and b; € R are the cost thresholds.

An agent interacts with the CMDP by selecting a policy 7 € II from the set of all Markov policies,
i.e. an element from the Cartesian product of |S| probability simplicies on .A. Given such a policy T,
the value functions V;7, V™ : § — R, action-value functions Q7, Q7. : S x A — R, and advantage
functions AT, AT: S x A — R associated with the reward r and the i-th cost ¢; are defined as

S f(serai)|so = ] ,
t=0

where the function f is either r or ¢;, and the expectations are taken over trajectories of the Markov
process, meaning with respect to the initial distribution sg ~ p, the policy a; ~ 7(+|s;) and the state

Vi(s) = (1 =) Ex
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transition s;41 ~ P(-|s¢, a;). Analogously, we set

Qf(s,a) = (1-7)E

thf(st,at)‘so =s,a9 = a] and A% (s,a) = Q%(s,a) — V(s).

t=0

The goal is to solve the following constrained optimization problem
maximizercyr V," (1) subjectto VI (u) <b; foralli=1,...,m, ()
where V(1) are the expected values under the initial state distribution V7 (1) = Es, [VF (s)].

We will also write V7 = V[ (1), and omit the explicit dependence on p for convenience, and we

write V() when we want to emphasize its dependence on 7. We denote the set of safe policies by
Hgate = iy {7 : Vi, (m) < b;} and always assume that it is nontrivial.

The Dual Linear Program for CMDPs Any stationary policy 7 induces a discounted state-action
(occupancy) measure d, € Agx 4, indicating the relative frequencies of visiting a state-action pair,
discounted by how far the event lies in the future. This probability measure is defined as

dr(s,a) nytIP’ st = s)m(als), 2)

where P, (s; = s) is the probability of observing the environment in state s at time ¢ given the agent
follows policy 7. For finite MDPs, it is well-known that maximizing the expected discounted return
can be expressed as the linear program

maximizeg 7' d subjecttod € 9,

where Z is the set of feasible state-action measures, which form a polytope (Kallenberg, |1994).
Analogously to an MDP, the discounted cost CMDP can be expressed as the linear program

maximizeg r'd  subject to d € Duae, 3)

where Zsate = (iey {d teld < bi} N 2 is the safe occupancy set, see Figurein Appendix

Information Geometry of Policy Optimization Among the most successful policy optimization
schemes are natural policy gradient (NPG) methods or variants thereof, such as trust-region and
proximal policy optimization (TRPO and PPO, respectively). These methods assume a convex ge-
ometry and corresponding Bregman divergences in the state-action polytope, see Neu et al.| (2017);
Miiller & Montufar| (2023) for more detailed discussions. A general trust region update is defined as

Trt1 € argmax AT*(m)  sbj. to Dg(dx, ||dr) <0, 4)
well

where Do : 7 X 9 — R is the Bregman divergence induced by a convex ®: int(Z) — R, and

7(als)
ATF(m) = Eg gm0 ATk (s,a)], 5
r (m) S, arvdy 7Tk(a|8) (s, a) 4)
is called the policy advantage or surrogate advantage. We can interpret A as a surrogate optimiza-

tion objective for the expected return. In particular, for a parameterized policy 7y, it holds that
VoA z,, (T0)lo=0, = VoV:(0k), see Kakade & Langford (2002); Schulman et al./(2017a).

TRPO and the original NPG assume the same policy geometry (Kakadel 2001} [Schulman et al.,
2017a)), since they employ an identical Bregman divergence

milals
(@) = 3 )l 1(als) = 3t () Dra (19 o)

71'2 a|

We refer to Appendix [A]for details on Bregman divergences. We call Dy the Kakade divergence and
informally write Dk (71, 72) = Dk(dx,,dr,). This divergence can be shown to be the Bregman
divergence induced by the negative conditional entropy

dr) =Zdﬂ(s,a) log 7(als), (6)



Under review as a conference paper at ICLR 2025

see Neu et al.| (2017). It is well known that with a parameterized policy 7, a linear approximation
of A and a quadratic approximation of the Bregman divergence Dk at 6}, one obtains the natural
policy gradient step given by

Ok+1 = Ok + G (0k) T Vo Vi (7o), @)

where G (0)" denotes a pseudo-inverse of the generalized Fisher-information matrix of the policy
with entries given by Gk (0);; = O, dgVQCIJK(dg)@gj dp, see |Schulman et al.| (2017a); Miiller &
Montifar (2023)) and Appendix [A]for more detailed discussions.

3 A SAFE GEOMETRY FOR CONSTRAINED MDPS

To prevent the policy iterates from violating the constraints during optimization, we construct policy
divergences for which the trust regions are contained in the safe policy set.

3.1 SAFE TRUST REGIONS

A Bregman divergence is induced by a mirror function that dictates the behavior of the divergence,
see[A] Take for example the mirror function for TRPO and NPG in Equation (§). The divergence is
defined when both policies are in the interior of &, and as either one of the policies approaches the
boundary of the state-action polytope, the divergence approaches infinity. Hence, TRPO and NPG
don’t allow their policy iterates to become entirely deterministic during optimization. ~ Since the
behavior of a Bregman divergences is dictated by the shape of its mirror function, we first construct
a family of safe mirror functions, that induce policy divergences that are finite only in the safe
occupancy set Zsate instead of the entire state-action polytope Z. Safe policy divergences, in turn,
let us derive safe trust region and natural policy gradient methods.

To this end, we consider mirror functions of the form
Oc(d) = P (d) + > _ Big(b; — ¢/ d), (8)
i=1

where ® is the conditional entropy defined in Equation (), and ¢: R¢ — R is a convex function
with ¢'(x) — oo for N\, 0. This ensures that ®¢: int(Psur) — R is strictly convex and
has infinite curvature at the cost surface b; — ¢, d = 0, which means |[V®¢(dy)|| — +oo, when
b; — ¢ di, \, 0. Possible candidates for ¢ are ¢(x) = —log(z) and ¢(x) = xlog(z) corresponding
to a logarithmic barrier and entropy, respectively.

The Bregman divergence induced by ®¢ is given by

Dc(ds||d2) = Dx(da||d2) + > BiDyg, (da|ldz), 9)

i=1
where

Dy, (di||d2) = d(bi — Ve, (m1)) — d(bi — Ve, (m2)) + &' (b — Ve, (m2)) (Ve (m1) — Ve, (m2)). (10)

The corresponding trust-region scheme is given by

i1 € argmax AT*(m)  sbj. to Da(dnq, ||dr) <6, (11
mell

where A,. is defined in Equation . Note the constraint is only satisfied if dy, ds € int(Zsg) and
the divergence approaches +oo as ds approaches the boundary of the safe set. Thus, the trust region
{d € Z : Dc(di]ld) < ¢} is contained in the set of safe occupancy measures for any finite d.
Analogously to the case of unconstrained TRPO the corresponding natural policy gradient scheme
is given by

Ok+1 = Ok + G (0x) TV V,(0k), (12)

where G¢(0)* denotes an arbitrary pseudo-inverse of G¢(6);; = 0, dgVQ@c(dg)ng dyg.
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3.2 CONSTRAINED TRUST REGION POLICY OPTIMIZATION

If we could solve the optimization problem in Equation (1) exactly, we would obtain a provably
safe trust region policy optimization method with zero constraint violations, as long as we start with
a safe policy. However, the exact trust region update Equation (TT)) cannot be computed. Firstly, the
divergence depends on expected cost values, which we can only estimate. The resulting estimation
errors of the divergence might cause the policy iterates to leave the safe set, in which case the
divergence becomes ill-defined. Finally, the divergence also depends on the expected cost value of
the proposal policy, which is not available during the updates. To address these issues, we propose
an update based on a surrogate divergence, similar to how surrogate objectives are used in policy
optimization. We propose the following update, which we call Constrained TRPO (C-TRPO).

The1 = argmax A™ (m)  sbj. to Dg(n||my) < 6. (13)
mell
Here, D¢ is the surrogate divergence, defined below. Algorithm (1| shows the implementation of
C-TRPO, which performs a constrained trust region update if the current policy is safe or a recovery
step that minimizes the cost if the policy is unsafe. For the trust region update, we follow a similar
implementation to the original TRPO, estimating the divergence, using a linear approximation of
the surrogate objective, and a quadratic approximation of the trust region.

Algorithm 1 Constrained TRPO (C-TRPO); differences from TRPO in blue

1: Imput: Initial policy 7wy € Ily, safety parameter 5 > 0, recovery parameter 0 < by < b

2: fork=0,1,2,...do

3 Sample a set of trajectories following 7, = 7,

4 if T, € HSafc then

5 A< A,; D <+ D¢ = Dxy, + BDg {Constrained trust region update }

6: else B

7 A+ —A.; D + Dgy, {Recovery}

8 end if

9 Compute 7,1 using TRPO with A as advantage estimate and with D as policy divergence.
10: end for

Surrogate Divergence To aid in clarity, we focus on the case with a single constraint, but the
results are easily extended to multiple constraints by summation of the individual constraint terms.
In practice, the exact constrained KL-Divergence D¢ cannot be evaluated, because it depends on
the cost-return of the optimized policy V.(7). However, we can approximate it locally around the
policy of the k-th iteration, 7, using a surrogate divergence. This surrogate can be expressed as a
function of the policy cost advantage

AT () = Eq,, V(‘”S) Aﬂk(s,a)} , (14)

mr(als)

which approximates V(7)) — V.™* up to first order in the policy parameters (Kakade & Langford,
2002; |[Schulman et al.l [2017a; |Achiam et al.| [2017). Assume 73 € Ilga5 and define the constraint
margin 6, = b — V”k which is positive if 7 € Ilszpe. Further, define the surrogate divergence
Do (nlim,) = Dxw(wl[mx) + Dy (] |my). where

DKL Tl'Hﬂ'k Zdﬂ-k DKL 7T||7Tk) (15)
SES

and

Dy (mol|me, ) = {¢(5b — ATR(T)) — B(8p) + ¢’ (0p) AT (1), if 6, — AT+ € dom(g)

16
00 otherwise . (16)

The surrogate Dy is closely related to the Bregman divergence Dy. They are equivalent up to the
substitution V,(7) — V.(mr) — AZ*(m), see Appendix The surrogate can be estimated from
samples of the MDP. In the practical implementation, we estimate d;,, and the policy cost advantage
from trajectory samples using GAE-\ estimates Schulman et al.| (2018). The consequences of the
substitution in the surrogate will be discussed in Section 4]
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Recovery with Hysteresis The iterate may still leave the safe policy set IIg,¢., either due to ap-
proximation errors of the divergence, or because we started outside the safe set. In this case, we
perform a recovery step, where we only minimize the cost with TRPO as by [Achiam et al.| (2017).
In tasks where the policy starts in the unsafe set, C-TRPO can get stuck at the cost surface. This is
easily mitigated by including a hysteresis condition for returning to the safe set. If 75 _1 is the previ-
ous policy, then 7y, € IIH. with I} = {my € IIy and V. (7g) < by} where by = bif m_q € I,
and a user-specified fraction of b otherwise.

Computational Complexity The C-TRPO implementation adds no computational overhead com-
pared to CPO, since D, is just a function of the cost advantage estimate, and is simply added to the
divergence of TRPO. Compared to TRPO, the cost value function must be approximated.

3.3 CONSTRAINED NATURAL POLICY GRADIENT
Practically, the C-TRPO optimization problem in Equation (T3)) is solved like traditional TRPO: the

objective is approximated linearly, and the constraint is approximated quadratically in the policy
parameters using automatic differentiation and the conjugate gradients algorithm. This leads to the

policy parameter update
; 20
Opir = O +a'y | ———— - H; g, a7
g 12— H k ! gk F

gk = VoAl*(m9)lo=s, and Hy = Hc(0)) = V3Dc (o7, )|o=0, (18)

where

are finite sample estimates, and H ~'g is approximated using conjugate gradients. The o' € [0, 1]
are the coefficients for backtracking line search, which ensures D¢ (mg||mg, ) < 0.

We show in Appendix [B.2.3]that the Hessian
V3 D(6]16)]4—g = Gic(6x) + 80" (b — VI (0)) VoV (6) VoV (6).

is equivalent to the Gramian G¢(0y) of the natural gradient update in Equation . We call the
resulting policy gradient

Op+1 = O + ex Ho(01) TV Vi (0), (19)

the Constrained NPG (C-NPG). In particular, this shows that the C-TRPO update can be interpreted
as a natural policy gradient step with an adaptive step size, see Appendix[A] We emphasize that the
idealized safe trust region update in Equation (IT)) and the C-TRPO update of Equation (I3) agree
up to second order in the policy parameters. This justifies the surrogate divergence in C-TRPO and
motivates the discussion of the C-NPG flow in Section We show in Theorem [5| that int( Zs,¢)
is invariant under the dynamics of the C-NPG. This implies that if the trust region radius § is small,
and the advantage estimation is accurate enough, the iterates under C-TRPO never leave the safe set.

4 ANALYSIS

Here, we provide a theoretical analysis of the updates of C-TRPO and study the convergence prop-
erties of the time-continuous version of C-NPG. All proofs are deferred to the Appendix [C]

4.1 PROPERTIES OF THE C-TRPO UPDATE

The practical C-TRPO algorithm is implemented using the surrogate divergence introduced in Equa-
tion (T3), which is identical to the theoretical divergence D¢ introduced in Equation (IT)) up to a
mismatch between the policy advantage and the performance difference. The motivation for substi-
tuting the policy cost advantage for the performance difference is their equivalence up to first order
and that we can estimate the advantage from samples of d;. Similar to CPO, we can guarantee an
almost improvement of the return (Achiam et al., 2017), despite the new divergence.
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Proposition 1 (C-TRPO reward update). Set €, = max, [Eqr,,, AT*(s,a)|. The expected reward
of a policy updated with C-TRPO is bounded from below by

V20e,
1—n

Vi(mht1) > Vi(me) — (20)

Constraint violation, however, behaves slightly differently for the two algorithms. To see this, we es-
tablish a more concrete relation between C-TRPO and CPO. As 3 ™\ 0, the solution to Equation
approaches the constraint surface in the worst case, and we recover CPO, see Figure[I]

Proposition 2. The approximate C-TRPO update approaches the CPO update in the limit as 5\ 0.

Intuitively, solving the C-TRPO problem with successively smaller values of 3, would be similar to
solving CPO with the interior point method using D (+||7)) as the barrier function.

Further, C-TRPO is more conservative than CPO for any § > 0 and as § — +o0 the updated is
maximally constrained in the cost-increasing direction. This is formalized as follows.

Proposition 3 (C-TRPO worst-case constraint violation). Consider V: [0,8,) — [0, 00) defined
by U(z) = ¢(0p — x) — ¢(0p) — ¢'(0p) - @ such that Dy(w||mi) = W(AZ*(m)). Further, set
€. = max; |E ATk (s,a)|, and choose a strictly convex ¢. The worst-case constraint violation

for C-TRPOis
_ V20ve,
Velmesn) < Velme) + 071 (6/8) + =0

Further; it holds that limp_, oo ¥W1(6/8) = 0 and V=1(§/8) < b — V(i) for all B € (0, 00).

2n

This result is analogous to the worst-case constraint violation for CPO (Achiam et al., 2017 Propo-
sition 2), except that it depends on the choice of 3 and is tighter than the corresponding guarantee
for CPO, because ¥~1(§/8) < b — V() forall 3 € (0, 00).

4.2 INVARIANCE AND CONVERGENCE OF CONSTRAINED NATURAL POLICY GRADIENTS

It is well known that TRPO is equivalent to a natural policy gradient method with an adaptive step
size, see also Appendix [A] We study the time-continuous limit of C-TRPO and guarantee safety
during training and global convergence. In the context of constrained TRPO in Equation (IIJ), we
study the natural policy gradient flow

0,0, = Go(6:) T VIV, (6:), (22)

where G ()™ denotes a pseudo-inverse of G¢(6);; = O, dGTV2<I>c(d9)89j dg and 0 — 7y is a dif-
ferentiable policy parametrization. Moreover, we assume that 6 — 7y is regular, that it is surjective
and the Jacobian is of maximal rank everywhere. This assumption implies overparametrization but
is satisfied for common models like tabular softmax, tabular escort, or expressive log-linear policy
parameterizations (Agarwal et al.| 2021a}; | Mei et al., 2020a} Miiller & Montufar, [2023).

We denote the set of safe parameters by Ogate = {0 € R? : my € Ilgaz0 }, which is non-convex in
general and say that Og,¢, is invariant under Equation if 6y € Ogate implies 0; € Ogyte for all ¢.
Invariance is associated with safe control during optimization and is typically achieved via control
barrier function methods (Ames et al., 2017 |Cheng et al., [2019). We study the evolution of the
state-action distributions d; = d”°: as this allows us to employ the linear programming formulation
of CMPDs and we obtain the following convergence guarantees.

Theorem 4 (Safety during training). Assume that ¢: R~o — R satisfies ¢'(x) — +oo for x 0
and consider a regular policy parameterization. Then the set ©¢ is invariant under Equation (22).

A visualization of policies obtained by C-NPG for different safe initializations and varying choices
of (3 is shown in Figure [2] for a toy MDP. We see that for even small choices of /3 the trajectories

don’t cross the constraint surface and the updates become more conservative for larger choices of 3.
Theorem 5. Assume that ¢'(x) — +oo for x N\, 0, set V) = maxyer,,. Vr(m) and denote the
set of optimal constrained policies by 117, = {7 € Usate : V,(7) = V' }, consider a regular

policy parametrization and let (0;) >0 solve Equation (22). It holds that V,.(mp,) — V' and

lim m = 7wl = argmin{D¢e(7*, 7o) : 7* € IS¢} (23)
t——+o00
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CNPG(B—IO 4 CNPG(ﬁ—lO 2) CNPG(B_l)
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m(a1|s1) m(a1|s1) m(a1|s1) m(a1ls1)

m(a1]s2)

Figure 2: Shown is the policy set IT = [0,1]? for an MDP with two states and two actions with
a heatmap of the reward V/.; the constraint surface is shown in black with the safe policies below;
optimization trajectories are shown for 10 safe initialization and for 3 = 0,107%,1072, 1.

In case of multiple optimal policies, Equation (23) identifies the optimal policy of the CMDP that
the natural policy gradient method converges to as the projection of the initial policy 7y to the set of
optimal safe policies Hsafc with respect to the constrained divergence D¢. In particular, this implies
that the limiting policy 7}, ;. satisfies as few constraints with equality as required to be optimal. To
see this, note that IT* . forms a face of P, and that Bregman projections lie at the interior of

afe
faces (Miiller et al.} 5024 Lemma A.2) and hence satisfy as few linear constraints as required.

5 COMPUTATIONAL EXPERIMENTS

Setup and main results We benchmark C-TRPO against 9 common safe policy optimization al-
gorithms (CPO |Achiam et al.| (2017), PCPO |Yang et al.| (2020), CPPO-PID |Stooke et al.| (2020),
PPO-Lag and TRPO-Lag |Achiam et al.| (2017); |Ray et al.| (2019), FOCOPS |Zhang et al.| (2020),
CUP [Yang et al.|(2022), IPO [Liu et al.|(2020) and P30 |Zhang et al.| (2022)) on 8 tasks (4 Naviga-
tion and 4 Locomotion) from the Safety Gymnasium (Ji et al., 2023) benchmark. The locomotion
tasks reward distance traveled, while penalizing high velocities, and the navigation tasks reward
goal reaching and penalize certain unsafe states. For the C-TRPO implementation we fix the con-
vex generator ¢(x) = zlog(z), motivated by its superior performance in our experiments, see
Appendix and by = 0.8b and 8 = 1 across all experiments We train each algorithm for
10 million environment steps and evaluate on 10 runs after training, see Table [T] in Appendix
Furthermore, each algorithm is trained with 5 seeds, and the cost regret is monitored throughout
training for every run. To get a better sense of the safety of the algorithms during training, we take
an online learning perspective and include as a metric the cumulative cost violation (Efroni et al.,
2020; Miiller et al., [2024)

K—-1
CUMCOST (K, c) = Y [V™* —b]
k=0

Iy (24)

where [z], = max{0,z}, and K is the number of the training iterations.

We observe that C-TRPO is competitive with the leading algorithms of the benchmark in terms of
expected return (CPO, TRPO-Lagrangian), see Figure[3] Furthermore, it achieves notably lower cost
regret throughout training than the high-return algorithms, even comparable to the more conservative
PCPO algorithm. In Figure[3] we visualize the interquartile mean (IQM) of normalized scores across
training for expected returns of reward and cost and for the cost regret, including their stratified
bootstrap confidence intervals (Agarwal et al., 2021b).

Discussion For completeness, we also report environment-wise sample efficiency curves and eval-
uation performances in Appendix [D.3] Our experiments reveal that the algorithm’s performance is
closely tied to the accuracy of divergence estimation, which hinges on the precise estimation of the
cost advantage and value functions. The safety parameter 5 modulates the stringency with which

'Code available at: (will be released after double-blind review)
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Figure 3: Comparison of safe policy optimization algorithms based on the Inter Quartile Mean
across 5 seeds and 8 tasks. From left to right: episode return of the reward (PPO normalized),
episode return of the cost (threshold normalized), and cumulative cost violation (CPO normalized).

C-TRPO satisfies the constraint, and can do so without limiting the expected return on most envi-
ronments at least for 5 < 1, see Figure[/| For higher values, the expected return starts to degrade,
partly due to Dy being relatively noisy compared to Dxy, and thus we recommend the choice 8 = 1.

Further, we observe that constraint satisfaction is stable across different choices of cost threshold b,
see Figure @ and that in most environments, constraint violations seem to reduce as the algorithm
converges, meaning that the regret flattens over time. This behavior suggests that the divergence esti-
mation becomes increasingly accurate over time, potentially allowing C-TRPO to achieve sublinear
regret. However, we leave regret analysis of the finite sample regime for future research.

We attribute the improved constraint satisfaction compared to CPO to a slowdown and reduction
in the frequency of oscillations around the cost threshold, which mitigates overshoot behaviors that
could otherwise violate constraints. The modified gradient preconditioner appears to deflect the pa-
rameter trajectory away from the constraint, see Figure[2] This effect may also be partially attributed
to the hysteresis-based recovery mechanism, which helps smooth updates by leading the iterate away
from the boundary of the safe set. Employing a hysteresis fraction 0 < by < b might also be ben-
eficial because C-TRPO’s divergence estimates tend to be more reliable for strictly safe policies.
The effect of the choice of by is shown in Figure[T0]in the appendix. Finally, we present ablations
in Appendix [D.2] which support our claims that both components—the modified trust region and
hysteresis—are effective in reducing safety violations.

6 CONCLUSION AND OUTLOOK

In this paper, we introduced C-TRPO and C-NPG, two novel methods for solving Constrained
Markov Decision Processes (CMDPs). C-TRPO can be viewed as an extension or relaxation of
Constrained Policy Optimization (CPO), from which a natural policy gradient method, C-NPG, is
derived. C-TRPO represents a significant step toward safe, model-free reinforcement learning by
integrating constraint handling directly into the geometry of the policy space. Meanwhile, C-NPG
provides a provably safe natural policy gradient method for CMDPs, offering a foundational ap-
proach to direct policy optimization in constrained settings—similar to how NPG is a cornerstone in
the theory of policy gradients for unconstrained MDPs. However, there are several limitations to ad-
dress. First, the divergence estimation remains challenging, and we did not investigate the properties
of the finite sample estimates of the divergence. In addition, the CMDP framework may be some-
what limited in modeling safe exploration and control. Because CMDPs constrain the average cost
return, it can be difficult to model trajectory-wise or state-wise safety constraints. Several promising
directions for future research remain open. One avenue is to combine these methods with model-
based policy optimization to improve cost return estimates, or with policy mirror descent to improve
computational efficiency, see e.g. [Tomar et al.| (2022). Additionally, integrating the proposed di-
vergence with other safe policy optimization algorithms that utilize trust regions, e.g. PCPO, could
lead to stronger performance guarantees.

Overall, the proposed algorithms, C-TRPO and C-NPG, present a step forward in general-purpose
CMDP algorithms and move us closer to deploying RL in high-stakes, real-world applications.
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A EXTENDED BACKGROUND

We consider the infinite-horizon discounted Markov decision process (MDP), given by the tuple
(S, A, P,r, 7). Here, S and A are the finite state-space and action-space respectively. Here, we
make the restriction to finite MDPs as this simplifies the presentation. For a discussion of continuous
state and action spaces, we refer to Appendix Further, P: S x A — Ag is the transition kernel,
r: 8§ x A — R is the reward function, ;1 € Ag is the initial state distribution at time ¢ = 0, and
v € [0,1) is the discount factor. The space Ag is the set of categorical distributions over S.

The Reinforcement Learning (RL) protocol is usually described as follows: At time ¢ = 0, an initial
state sg is drawn from p. At each integer time-step ¢, the agent chooses an action according to it’s
(stochastic) behavior policy a; ~ m(-|s¢). A reward r; = r(s¢, ay) is given to the agent, and a new
state s;+1 ~ P(:|s¢, at) is sampled from the environment. Given a policy 7, the value function
V7§ — R, action-value function Q7 : S x A — R, and advantage function A7: S x A — R
associated with the reward r are defined as

V7 (s) = (1 —7)Eq

oo
Z“YtT(Stvat)‘So = 5] )
t=0

oo
Qr(s,a) = (1—v)E, Zwtr(st, at)‘so =s,a0 =a| and A7 (s,a) = QI (s,a) — V[ (s).
t=0
where and the expectations are taken over trajectories of the Markov process resulting from starting

at s and following policy 7. The goal is to

maximize,ery V,™ (1) (25)

where V() is the expected value under the initial state distribution V™ (1) == Es [V, (s)]. We
will also write V,™ = V™ (u), and omit the explicit dependence on p for convenience, and we write
V,.(w) when we want to emphasize its dependence on 7.

The Dual Linear Program for MDPs Any stationary policy 7 induces a discounted state-action
(occupancy) measure d, € Agx 4, indicating the relative frequencies of visiting a state-action pair,
discounted by how far the visitation lies in the future. It is a probability measure defined as

dr(s,a) = (1 —7) thﬂbﬁ(st = s)m(als), (26)
t=0

where P (s; = s) is the probability of observing the environment in state s at time ¢ given the agent
follows policy 7. For finite MDPs, it is well-known that maximizing the expected discounted return
can be expressed as the linear program

max r’d subjecttod € 2, (27)

where Z is the set of feasible state-action measures [Feinberg & Shwartz] (2012). This set is also
known as the state-action polytope, defined by

9 = {de RS;A: £,(d) = O forall s € 5},
where the linear constraints £5(d) are given by the Bellman flow equations
(s(d) = d(s) =7 Y_ d(s',a')P(s]s',a") = (1 = 7)n(s),

where d(s) = ), d(s, a) denotes the state-marginal of d. For any state-action measure d we obtain
the associated policy via conditioning, meaning

_ d(s,a)
m(als) = 7Za/ (s, (28)

in case this is well-defined. This provides a one-to-one correspondence between policies and the
state-action distributions under the following assumption.
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Figure 4: The dual linear program for a CMDP of two states and two actions.

Assumption 6 (Exploration). For any policy 7 € Ai we have d.(s) > O0forall s € S.

This assumption is standard in linear programming approaches and policy gradient methods where
it is necessary for global convergence [Kallenberg (1994)); Mei et al.| (2020b)). Note that d € 9D if
and only if d(s, a) = 0 for some s, a and hence the boundary of D is given by

09 = {dTr : w(als) = 0 for some s € S,a € A}.

Constrained Markov Decision Processes Where MDPs aim to maximize the return, constrained
MDPs (CMDPs) aim to maximize the return subject to a number of costs not exceeding certain
thresholds. For a general treatment of CMDPs, we refer the reader to|Altman| (1999). An important
application of CMDPs is in safety-critical reinforcement learning where the costs incorporate safety
constraints. An infinite-horizon discounted CMDP is defined by the tuple (S, A, P, r, u,,C), con-
sisting of the standard elements of an MDP and an additional constraint set C = {(¢;, b;) }™,, where
c;: 8§ x A — R are the cost functions and b; € R are the cost thresholds.

In addition to the value functions and the advantage functions of the reward that are defined for the
MDP, we define the same quantities V.., Q.,, and A., w.r.t the ith cost ¢;, simply by replacing r
with ¢;. The objective is to maximize the discounted return, as before, but we restrict the space of
policies to the safe policy set

m

Moo = () {7+ Veu(m) < 04}, 29)

i=1
where

VI () 1= Bomy [V (5)) (30)
is the expected discounted cumulative cost associated with the cost function ¢;. Like the MDP, the
discounted cost CMPD can be expressed as the linear program

max r'd sbj.tod € Dyate, (31)

where .
Do = ﬂ{deRSXA:cdegbi}ﬂ@ (32)
i=1
is the safe occupancy set, see Figure ]

Bregman divergences Here, we give a short introduction to the concept of Bregman divergences,
which is required for the formulation of trust region methods. For this, we consider a convex subset
of Euclidean space C' C R? with a non-empty interior int(C') and a strictly convex function ¢: C' —
R which we assume to be differentiable on the interior int(C'). Then, the Bregman divergence
induced by ¢ is given by

Dy(zl|ly) = ¢(z) — d(y) — Vo(y) " (z — ), (33)
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which is well defined for x € C,y € int(C). Intuitively, the Bregman divergence measures the
difference between ¢ and its linearization at y. The strict convexity of ¢ ensures that Dy (x|]y) > 0
and Dy(z||y) = 0 if and only if = y. Therefore, Bregman divergences are commonly interpreted
as a generalized measure for the distance between points, however, it is important to notice that it
is not generally symmetric. An important example is the Euclidean distance Dy(z||y) = ||z — y||3

which arises from the choice ¢(x) := ||z||3. Another important Bregman divergence is the Kullback-
Leibler (KL) divergence

Dxw(pllg) : sz log = sz + Z% (34)

where we use the common convention 0 log 2 g = 0. Then, the KL divergence is defined for p € R‘io
and q € Rio which is absolutely continuous with respect to p, meaning that p; = 0 implies ¢; = 0.
Note that if both p and ¢ are probability vectors, meaning that ), p; = > . ¢; = 1, we obtain

Dxw(pllg) : sz logf (39)

Information Geometry of Policy Optimization Among the most successful policy optimization
schemes are natural policy gradient (NPG) methods or variants thereof like trust-region and proximal
policy optimization (TRPO and PPO, respectively). These methods assume a convex geometry and
corresponding Bregman divergences in the state-action polytope, where we refer toNeu et al.[(2017));
Miiller & Montutar| (2023)) for a more detailed discussion.

In general, a trust region update is defined as
Trt1 € argmax AT*(m)  sbj. to Dg(dx,||dr) <6, (36)
mell

where Dg: 92 x 2 — R is a Bregman divergence induced by a suitably convex function
®: int(Z) — R. The functional

ATH(m) = Egnd,, amro(-1s) [AT (5, 0)], 37)

as introduced in (Kakade & Langford} 2002), is called the policy advantage. As a loss function,
it is also known as the surrogate advantage (Schulman et al., [2017a), since we can interpret A as
a surrogate optimization objective of the return. In particular, it holds for a parameterized policy
g, that VoA, " (m9)|o=0, = VoV (0)), see Kakade & Langford| (2002); [Schulman et al.|(2017a).
TRPO and the original NPG assume the same geometry (Kakadel 2001} |Schulman et al., 2017a),
since they employ an identical Bregman divergence

(dmy||dr,) = de s, a)

We refer to Dk as the Kakade divergence and informally write Dx (71, 72) == Dx/(d,, dr,). This
divergence can be shown to be the Bregman divergence induced by the negative conditional entropy

)= Zdﬂ(&a) log 7(als), (38)

de ) Dk (mi(:|s)][m2(:]s))-

see Neu et al.| (2017). It is well known that with a parameterized policy g, a linear approximation
of A and a quadratic approximation of the Bregman divergence Dk at 6, one obtains the natural
policy gradient step given by

9k+1 =0 + ekGK(Qk)+VR(6‘k), 39)

where Gk (0)" denotes a pseudo-inverse of the Gramian matrix with entries equal to the state-
averaged Fisher-information matrix of the policy

0, mg(als)0y,mo(als)
Za: o(als)

=Eq,, [0p, log g (a|s)0p, log ma(als)], 41)

GK (9)” = ]Eswdﬁe (40)
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where we refer to[Schulman et al.|(2017a) for a more detailed discussion.
Consider a convex potential ®: 2 — R or ¢: Ps,5o — R and the TRPO update
Or41 € argmax A, (mg)  sbj. to Dg(dg, ||dg) < €. (42)

In practice, one uses a linear approximation of AR (mg) and a quadratic approximation of Dg to
compute the TRPO update. This gives the following approximation of TRPO

9k+1 S argénaxVQAf’“ (9)|9:9,c . (0 — Hk) Sbj. to ||9 — ek”é(@k) S €, (43)
where
G(0):; = 99, dg V>®(dp) Dy, do. (44)
Note that by the policy gradient theorem, it holds that
VoA (0)9=0, = VVi(6k). (45)
Thus, the approximate TRPO update is equivalent to
Ok+1 = 0k + ekG(Hk)+VVT(0), (46)
where
ve (47)

€L — .
IGO0 TV 00 o)

Hence, the approximation TRPO update corresponds to a natural policy gradient update with an
adaptively chosen step size.

B DETAILS ON THE SAFE GEOMETRY FOR CMDPs

B.1 SAFE TRUST REGIONS

The safe mirror function for a single constraint is given by

Do(d) = Px(d)+ > _Bo(b—c'd), (48)

i=1

and the resulting Bregman divergence

D¢(dq]|de) = ®c(dy) — Pc(da) — (VP (da),d; — da). 49)
is a linear operator in ®, hence
Daay+ppv—cTay(di]|d2) = Doy (di[d2) + BDg(dx|dz), (50)
where
Dy(dyl|d2) = ¢p(b—c"dy) — d(b—c'dy) — (Vo(b—c'dy), dy — d) (51)
=pb—c'd)—db—c"dy) —¢'(b—c"dy)(cdy —c'dy). (52)
= ¢(b—Ve(m)) — (b — Ve(mr)) + ¢/ (b — Ve(mp)) (Ve(m) — Ve(mr)). (53)

The last expression can be interpreted as the one-dimensional Bregman divergence Dy (b —
Vo(m)||b — Ve(mk)), which is a (strictly) convex function in V() for fixed 7y if ¢ is (strictly)
convex.

B.2 DETAILS ON C-TRPO
B.2.1 SURROGATE DIVERGENCE

In practice, the exact constrained KL-Divergence D¢ cannot be evaluated, because it depends on
the cost-return of the optimized policy V.(7). Therefore, we use the surrogate divergence

Dy(mgllme, ) = (b — VI — A7 () — ¢(b — V™) + ¢/ (b — VI*)AT () (54)
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is obtained by the substitution V() — V* — AT*(7) in Dy.

When we center this divergence around policy 7 and keep this policy fixed, it becomes a function
of the policy cost advantage.

Dy(mollmo,) = ¢(b — VI — AZH(m)) — (b — V) + ¢/ (b — VI*)AT ()

= ¢(0y — AT(7)) — ¢(0p) + ¢' (0p)AT* (1)
= U(AZ").

Note that Dy (mg||mg, ) = W(AT (7)), where U(z) = (6, — ) — ¢(8p) — ¢'(8p) - x is a (strictly)
convex function if ¢ is (strictly) convex, since it is equivalent to the one-dimensional Bregman
divergence Dy (0, — x]03) on the domain of ¢ (b — ), see Figure 5|

Cost Advantage

Figure 5: The surrogate Constrained KL-Divergence as a function of the policy cost advantage.

Example 7. The function ¢(z) = x log(z) induces the divergence

Daralma,) = A7 (ma) — 5~ 42+ (ra) g (52— ). 55)

B.2.2 ESTIMATION

In the practical implementation, the expected KL-divergence between the policy of the previous
iteration, 7, and the proposal policy 7 is estimated from state samples s; by running 7 in the
environment
N-1
> dm () Dir(m (- [9)||mi(-]s)) = 1/N Y~ D (w(-Jsi)llma(-si) (56)
s =0
where Dxr, can be computed in closed form for Gaussian policies, where N is the batch size.

For the constraint term, we estimate J;, from trajectory samples, as well as the policy cost advantage

N—-1
. 1 s
AT*(m) ~ A = mlails)

C

- AT 57
N P m(ails;) " (57)

where fl?’“ is the GAE-\ estimate of the advantage function (Schulman et al.,|2018). For any suitable
¢, the resulting divergence estimate is

Dy = ¢(d — A) — ¢(5) — ¢ () A (58)

and for the specific choice ¢(x) = zlog(x)

b¢=A—(5b—A)log<5 5%). (59)

b —
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B.2.3 DETAILS ON C-NPG

In showin that TRPO with quadratic approximation agrees with a natural gradient step, see Ap-
pendix@ we have used that VA% (0)[g—p, = VV,.(6},), which holds although A, is only a proxy
of V.. We now provide a similar property for the quadratic approximation of the surrogate diver-
gences Dc.

Proposition 8. For any parameter 0 with mg € lgase it holds that
VD (0110)|g—s = V5D (0]10)|5—s (60)
and hence
Vi Dxu(0110)]5—p + BV D4 (6]10)],_g = Go(6) 61)
where G¢(0) denotes the Gramian matrix of C-NPG with entries
Gc(0)i5 = 9o, dg V2@ (0)0y, dy. (62)
Proof. Let Hgp(0) = VgDKL(0||é)|9:é and Hy(0) = V3D¢(9Hé)|9:é. One can show that
Hyr = Gk(0) (Schulman et al.,[2017a). Further, we have
Hy(0) = VoATH(0)TW" (AT (0)) VAT (0) + W' (AT (0)) T VZAT ()
D VoATH(0) U (AT (0))VoAT(6)
= ngW 0)"¢" (b — V”k( )) VAT (0)
= VoV (0)"¢" (b= VI*(0)) VeV (0),

where a) follows from U'(A7+(0)) = 0 since ¥(0) = 0, ¥ > 0 and A§(9)|0:é = 0. Further, b)
follows because U (x)|,—0 = ¢”(8). Thus, Hy is equivalent to the Gramian

Ge(0)i; = 0g,dg V> ®c(0)0p, do (63)

= G (0)ij + B¢ (b — cx dg)Do,dy cc' Dp,dp (64)

= Hyr, + BVoVo(0) ¢ (b — Vo(6)) VoV (6), (65)

= Hyg1, + BHy. (66)

Again, for multiple constraints, the statement follows analogously. O

In particular, this shows that the C-TRPO update can be interpreted as a natural policy gradient step
with an adaptive step size and that the updates with D¢ and D¢ are equivalent if we use a quadratic
approximation for both, justifying D¢ as a surrogate for Dc.

B.3 BEYOND FINITE MDPs

For the sake of simplicity and as this is required for our theoretical analysis, we have introduced
C-TRPO only for finite MDPs. However, C-TRPO can also be used for problems with continuous
state and action spaces as we discuss here. In this case, the state-action and state distributions are
defined as

de (S x A) = ny[?’ (st € S,a; € A) and
t=0

dr(S) = (1=7) Y ' Pr(s; € 5)

for every measurable subsets A C A and S C S. Further, the Kakade divergence is then given by
Dy (d™|d™) == Egwami [Dx(m(-]s)]|m2(:]s))], (67)

19



Under review as a conference paper at ICLR 2025

which is well defined if 7 (+|s) is absolutely continuous with respect to m2(-|s) for d™ almost all
s € S§. The Bregman divergence that C-TRPO is builds on is — just as in the finite case — given by

De(ds||dy) = D (di|d2) + Y BiDg, (di||d2), (68)

i=1
where

Dy, (di||dz2) = ¢(bi — Ve, (1)) — ¢(bi — Ve, (m2)) + &' (b — Ve, (m2)) (Ve (1) — Ve, (m2)). (69)
Like in the finite case, the policy advantage is defined as

m(als)

AT (1) = Eu g, { A“k=<s,a>} 7 (70)

mr(als) "

where AT (s,a) = Q7 (s,a) — V™ (s) denotes the advantage function, which is defined analoguously
to the finite case. Now, the plain trust region update is given b y

Orpt1 € argmax AT* ()  sbj. to De(dy, ||dr) < 6. (71)
0
Just like in the finite case, we use a surrogate divergence D¢ and obtain the formulation of C-TRPO
The1 = argmax A™ (m)  sbj. to Dg(n||my) < 6. (72)
mell

Here, the differences to D¢ are that we use use samples from the state distribution d™* and use a
surrogate for the cost advantage to estimate the divergence D, as described in Section @ Fur-
ther, we use a parametric policy model 74 and a linear approximation of A™* as well as quadratic
approximation of D¢ (7||my) for our practical implementation.

Expression for Gaussian policies We test C-TRPO in various control tasks and hence, where
we use Gaussian policies. More precisely, the state and action space consist of Euclidean spaces
S = R% and A = R%. Then, we consider a policy network p5: S — A, which predicts the
mean action and assume parameterized but state independent diagonal Gaussian noise, meaning that
mo(+|s) = N(uo(s), Xg), where Xy is diagonal. Consequently, we can use a closed-form expression
for the KL divergence as

1 det X
D (o, (19l 1)) = 5 (e (5575) = ot o () = o 9 410 (S ) ).

2 det Xg,
see Zhang et al.[(2024b)).

C PROOFS OF SECTION [4]

C.1 PROOFS OF SECTION (1]

Our theoretical analysis of C-TRPO is built on the following bounds on the performance difference
of two policies.

Theorem 9 (Performance Difference, Achiam et al[(2017)). For any function f (s, a), the following
bounds hold

< pmo 2ve 1
Vi(m) = Vi(ma) S AR (m) = (17_];) \/ZIESNC{,r2 Dxr(mi(]s)||m2(¢]s)) (73)

where €y = max [Eqr, AT (s, a)l.
Theorem 9] can be interpreted as a bound on the error incurred by replacing the difference in returns
Vi(m1) — V() of any state-action function by its policy advantage A% (71 ).

Proposition 1 (C-TRPO reward update). Set ¢, = max, [Eqr,,, A7 (s, a)|. The expected reward
of a policy updated with C-TRPO is bounded from below by

V267e,

Ve(misr) 2 Ve(me) = —— -

(20)
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Proof. Tt follows from the lower bound in Theorem 9] that

Va(mets) = Valme) 2 AT (1usr) = 7= 5y 2De(miralm) (74)

where we choose f = r. The bound holds because D¢ > 0, and thus Dc > EDxy,. Further,
d > D¢ and AT*(m41) > 0 by the update equation, which concludes the proof. See Appendix
for a more detailed discussion. L]

Proposition 2. The approximate C-TRPO update approaches the CPO update in the limit as 3 ™\, 0.
Proof. Let us fix a strictly safe policy mg € int(Ilgp ). In both cases, we approximate the expected

cost of a policy using V,(m) =~ V.(m) + AZ°(7), which is off by the advantage mismatch term in
Theorem |1} Hence, we maximize the surrogate of the expected value AT° (1) over the regions

Pepo = {7 € I : Dk(m,m0) < 6, Veo(mo) + AT0(7) < b}
in the case of CPO, and
Ps == {n €Il : Dc(m,m) < §},
with C-TRPO for some /3 > 0. Note that
D¢ (7, mo) = D (7, m0) + BY(AT (7)), (75)

and ¥: (—o0,d) — (0,400) and ¥(t) — +oo fort &, where §, = b — V,(m). Denote the
corresponding updates by 7cpo and the C-TRPO update by 73. Note that we have Pg C Pz C
Pcpo for 3 > 3. Further, we have

| Ps = {r € P: Dx(m,m) < 6, V(o) + AT () < b}.

B>0
Hence, the trust regions Pg grow for 3 ™\, 0 and fill the interior of the trust region Fcpo. O
Remark 10. Intuitively, one could repeatedly solve the C-TRPO problem with successively smaller

values of 3, which would be similar to solving CPO with the interior point method using ¥ as the
barrier function.

Proposition 3 (C-TRPO worst-case constraint violation). Consider ¥: [0,0,) — [0, 00) defined
by ¥(z) = ¢(6p — x) — ¢(0) — &' (0p) - x such that Dy(w||m,) = U(AT*(w)). Further, set
€. = maxg |Eqon, i ATk (s,a)|, and choose a strictly convex ¢. The worst-case constraint violation
for C-TRPO is

V267e,

Ve(migr) < Ve(me) +87H(3/B) + <— S

Further, it holds that limp_, oo W=1(6/8) = 0 and ¥=1(6/B8) < b — V() for all B € (0,00).

21

Proof. Setting f = ¢ in the upper bound from Theorem 9] and replacing EDx;, with 6 as in Propo-
sition[T]results in
V25ve,

1—v
Recall that Do = Dk + Dy and that Dy (mpi1||ms) = W(AT* (1)), where ¥(x) = ¢(6) —
x) — ¢(8) — ¢' () - x. By the definition of the update it holds that

U(ATF(Trq1)) < 6/B. )

Ve(mi1) < Ve(me) + AZH (Tri1) +

(76)

Since we are only interested in upper bounding the worst case, we can focus on AT+ (7g41) > 0, so
we restrict ¥: [0, ) — [0, 00). Further, for strictly convex ¢, ¥ is strictly convex and increasing
with increasing inverse. It follows that

AT (mq1) < UTH(S/B), (78)

with U~1: [0, 00) — [0, ;). Because W1 is an increasing function of 3 on [0, c0) with maximum
at &, = b — V.(m), it holds that W=1(3/8) < b — V.(m,) for any B > 0, which concludes the
proof. O
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C.2 DETAILS ON THE RESULTS IN SECTION[4.2]

Recall that we study the natural policy gradient flow
00 = Go(0:)TVV,(0y), (79)

where G¢(0)* denotes a pseudo-inverse of G¢(6) with entries

Gc(e)ij = 8@idgv2q)c(d9)agj d@ = GK(G)ij + Zﬁk¢//(bk - ngg)agidgckcgagidg. (80)
k

and 0 — 7y is a differentiable policy parametrization.

Moreover, we assume that 6§ — 7y is regular, that it is surjective and the Jacobian is of maximal rank
everywhere. This assumption implies overparametrization but is satisfied for common models like
tabular softmax, tabular escort, or expressive log-linear policy parameterizations (Agarwal et al.,
2021a; Mei et al.l [2020a; [Miiller & Montuatar, [2023)).

We denote the set of safe parameters by Ogafo = {6 € RP : my € Igag}, which is non-convex in
general and say that Og,¢, is invariant under Equation if 0y € Ogate implies 0; € O,y for all £.
Invariance is associated with safe control during optimization and is typically achieved via control
barrier function methods (Ames et al., 2017; (Cheng et al., 2019). We study the evolution of the
state-action distributions d; = d™* as this allows us to employ the linear programming formulation
of CMPDs and we obtain the following convergence guarantees.

Theorem 4 (Safety during training). Assume that ¢: Rsg — R satisfies ¢'(x) — +oo for x \, 0
and consider a regular policy parameterization. Then the set ©¢ is invariant under Equation @22).

Proof. Consider a solution (0;);~o of Equation . As the mapping 7 — d” is a diffeomor-
phism (Miiller & Montufar, [2023)) the parameterization Ogate — Diate, 0 — d™° is surjective and
has a Jacobian of maximal rank everywhere. As G¢(6);; = 0p,dgV P 0p,dg this implies that the
state-action distributions d; = d™®t solve the Hessian gradient flow with Legendre-type function
®¢ and the linear objective d +— rTd, see |Amari| (2016); ivan Oostrum et al.| (2023); Miiller &
Montufar (2023) for a more detailed discussion. It suffices to study the gradient flow in the space of
state-action distributions d;. It is easily checked that ®¢ is a Legendre-type function for the convex
domain Z¢, meaning that it satisfies [|[V®(d,,)|| = 4oc for d,, — d € 0%Dsate. Since the objective
is linear, it follows from the general theory of Hessian gradient flows of convex programs that the

flow is well posed, see|Alvarez et al.|(2004); |[Miiller & Montufar| (2023). O
Theorem 5. Assume that ¢'(z) — +oo for x (0, set V*¢ = maXqemn,,, Vr(7) and denote the
set of optimal constrained policies by 1T, = {m € Ilgpe : Vo(m) = r*,c}’ consider a regular

policy parametrization and let (6;).>¢ solve Equation . It holds that V,.(mg,) — V' and

lim 7w = 7wy = argmin{Dc(7*, 7o) : 7 € I} }- (23)

£+ o0 safe safe

Proof. Just like in the proof of Theorem [5| we see that d; = d™+ solves the Hessian gradient flow
with respect to the Legendre type function ®c. Now the claims regarding convergence and the
identification of the limit lim;_, | », mg, follows from the general theory of Hessian gradient flows,
see |Alvarez et al.|(2004); Miiller et al.| (2024]). O

C.3 PERFORMANCE IMPROVEMENT BOUNDS AND CHOICE OF DIVERGENCE

In a series of works (Kakade & Langford, |[2002; |Pirotta et al., 2013} Schulman et al.}|2017a;|Achiam
et al., 2017), the following bound on policy performance difference between two policies has been
established. 5
’ €
V(') = Vy(m) £ A7 (1) & 5B, Drv( () 81)

where D+ is the Total Variation Distance. Furthermore, by Pinsker’s inequality, we have that

1
Drv(r|lm) </ 5 Dxr (x| [m), (82)
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Figure 6: Pictorial illustration of conceptual and practical differences between CPO and C-TRPO.
The local approximation of C-TRPO’s trust region results in a single quadratic constraint, which is
compressed in the direction of the closest cost surface, depending on the hyper-parameter 3 (blue
dashed lines on the right). This is in contrast to CPO, where the local approximation of the update
results in a quadratic constraint which is not affected by the cost, and a linear constraint which only
takes effect upon contact with the cost surface. Intuitively, this results in a smoother optimization
path for C-TRPO that remains on the interior of the safe policy space for longer.

and by Jensen’s inequality

1
Es~a, Drv(n'||m)(s) < \/2E5~d”DKL(W’||7T)(S)7 (83)
It follows that we can not only substitute the KL-divergence into the bound but any divergence
Do (dyldr) > Esa, Dxr (7’| |7)(s) (84)

can be substituted, and still retains TRPO’s and CPO’s update guarantees.

C.4 COMPARISON WITH CPO

In the approximate case of C-TRPO and CPO, where the reward is approximated linearly, and the
trust region quadratically, the constraints differ in that C-TRPO’s constraint is

(0 — 61 (Hyr,(0) + BH4(0))(0 — 0x) < &
whereas CPO’s is
(0 — 0)Hxr,(0)(0 — ;) < 6 and V2% + (VA% (0))T (0 — 6;) <.

Figure[6]illustrates the differences between CPO and C-TRPO.

D ADDITIONAL EXPERIMENTS

D.1 EFFECTS OF THE HYPER-PARAMETERS

To better understand the effects of the two hyperparameters 5 and by, we observe how they change
the training dynamics through the example of the AntVelocity environment.

The safety parameter 5 modulates the stringency with which C-TRPO satisfies the constraint, with-
out limiting the expected return for values up to 8 = 1, see Figure[7} For higher values, the expected
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return starts to degrade, partly due to D¢ being relatively noisy compared to Dy, and thus we
recommend the choice § = 1.

Further, we observe that constraint satisfaction is stable across different choices of cost threshold b,
see Figure[8] and that in most environments, constraint violations seem to reduce as the algorithm
converges, meaning that the regret flattens over time. This behavior suggests that the divergence esti-
mation becomes increasingly accurate over time, potentially allowing C-TRPO to achieve sublinear
regret. However, we leave regret analysis of the finite sample regime for future research.

Finally, employing a hysteresis fraction 0 < by < b seems beneficial, possible because it leads the
iterate away from the boundary of the safe set, and because divergence estimates tend to be more
reliable for strictly safe policies. The effect of the choice of by is visualized in Figure[T0]
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Figure 7: Changing 3 influences the degree of safety.
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Figure 8: The constraint satisfaction is robust to changing the cost limit.
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Figure 9: In difficult environments, e.g. those that start off in the unsafe policy set, it seems to be
beneficial to set a fraction of the cost limit for hysteresis.
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D.2 ABLATION STUDY: CPO vs. C-TRPO

We conduct an ablation study to rule out that our improvements of C-TRPO over CPO are only due
to hysteresis. For this, we run both CPO and C-TRPO with and without hysteresis with the same
hysteresis parameter as in our other experiments. We see that the hysteresis improves safety for both
algorithm. Further, we find that the hysteresis slightly reduces the return of C-TRPO. Overall, we
clearly see that C-TRPO itself is much safer compared to CPO as even C-TRPO without hysteresis

achieves lower cost regret compared to CPO with hysteresis.
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Figure 10: Ablation study on the core components of C-TRPO: Safe trust region (C-TRPO no hyst.)
and recovery with hysteresis (CPO hyst.). Evaluation is based on the Inter Quartile Mean (IQM)
normalized scores across 5 seeds and 8 tasks. From left to right: episode return of the reward (PPO
normalized), episode return of the cost (threshold normalized), and cumulative cost violation (CPO

normalized).
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D.3 PERFORMANCE ON INDIVIDUAL ENVIRONMENTS

Here, we compare C-TRPO to CPO and PCPO as representative baselines on all individual environ-
ments in terms of their sample efficiency curves.
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Figure 11: C-TRPO vs. CPO and PCPO in the locomotion environments.
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Figure 12: C-TRPO vs. CPO and PCPO in the navigation environments.
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Table 1: Average evaluation performance per task across 10 evaluation runs and 5 seeds each. We
highlight the best performance with respect to the average return V;. in bold, and underline the
lowest average cost V.. Note that the table only contains information about the final evaluation
performance, not about cost violations during training.

C-TRPO C-TRPO-HYST CPO CPO-HYST
Vi Ve Vi Ve Vi Ve vy Ve
AntVelocity 2810.1 £45.2 79+76  2786.5+758 90+82  2569.7+61.4 57+49 262931429 168306
HalfCheetahVelocity ~ 2316.6 +223.9 89+69 23408+2203  146+10.1  1990.1+1912 208+199 1921.5£230.5 134%11.0
HumanoidVelocity ~ 4837.7 +745.7 31£39  5367.1£2923  11.0£19.0  5654.3£675 00+00 55834+ 1243 05+1.0
HopperVelocity 1361244637 126+125 13588+469.6 136150  1432.0+405 04+08  14168%99.5 30%3.0
CarButtonl S16£19  59.1£29.2 %19 450%67 14+ 783545 34+43 383343
PointGoall 133£42 32960 100220 237494 12629  225%59 153£64 18.0+14.2
RacecarCirclel 83+70 35.1%254 69+72 159%158 83279 356%145 9.1£60 27.6%19.6
PointPush1 00£05 215%142 08+0.6 17.1+183 03+03 71.7£59.8 08+04 96%11.0
PCPO FOCOPS cup P30
Vi Ve Vi Ve Vi Ve Vi Ve
AntVelocity 206411190 53.3+47.1 2374122495 1945506 1853.7+322.1 267+338 14755+ 1602 28437
HalfCheetahVelocity 14245+ 1304  663+11.6 22160+ 137.7 62+109 2511.0£1468 351640 21200+218.1  79%126
HumanoidVelocity 585.2+27.7 00+00 130446816  168+235  1406.4+403.5 30£25  709.1+181.2 0.6+0.7
Hopper Velocity 7984+407.9 117131 14783+1058 2224440 15384 +837 443£726  1504.6+98.4 4079
CarButtonl 20£32 817432 69+68  26.1£266 13£29  60.1£673 0.6£06  39.1£29.0
PointGoall 12224 287103 178439  53.0%23.9 17674 397177 31+12  326+178
RacecarCirclel 67+52 221+163 56+£50 148278 171262 26.6+226 21+10  52.6+364
PointPushl 04+05 268+413 03+04  332%51.1 04+02 129%107 02+0.4 4762
PO CPPO-PID TRPO-LAG PPO-LAG
Vi Ve vy Ve vy Ve Vi Ve
AntVelocity 16904 £3223  7.5+7.0 1793222480 187£229 2894.4+1248 14680  1840.1£263.7  19.7£249
HalfCheetahVelocity ~ 205332048 36.1£57.5 233821969  64+81 244942136 146%120  2360.2%209.0 28%5.1
HumanoidVelocity 26850+ 13573  10.6+9.4 4280.2+1288.6  43%3.6 56966905  00+00 41924%11085 64%6.2
HopperVelocity 12240 +£4240  46+60  1490.7+121.0  28%55  5004+4345 19.6%15.1 100.3 +26.9 42+75
CarButtonl 03£10 311%173 20+18 18677 94+59 294%212 24£1.0 1138531
PointGoall 20£1.1 308%136 1620 463£393 25005 446%68 189+22  49.7%20.1
RacecarCirclel 09+0.1 420£302 10£02 354%315 24833  56%24 9.7+4.1 3625
PointPush1 04+06 250+32.1 02+02 305166 06£06 2119 04+03 249% 121
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