
Accepted as a contributed talk at NeurIPS 2021 Deep RL Workshop

HYAR: ADDRESSING DISCRETE-CONTINUOUS
ACTION REINFORCEMENT LEARNING VIA HYBRID
ACTION REPRESENTATION

Boyan Li1∗ , Hongyao Tang1∗, Yan Zheng1† , Jianye Hao1†, Pengyi Li1, Zhen Wang3,
Zhaopeng Meng1, Li Wang1

1College of Intelligence and Computing, Tianjin University
2Northwestern Polytechnical University

ABSTRACT

Discrete-continuous hybrid action space is a natural setting in many practical
problems, such as robot control and game AI. However, most previous Reinforce-
ment Learning (RL) works only demonstrate the success in controlling with either
discrete or continuous action space, while seldom take into account the hybrid
action space. One naive way to address hybrid action RL is to convert the hybrid
action space into a unified homogeneous action space by discretization or con-
tinualization, so that conventional RL algorithms can be applied. However, this
ignores the underlying structure of hybrid action space and also induces the scala-
bility issue and additional approximation difficulties, thus leading to degenerated
results. In this paper, we propose Hybrid Action Representation (HyAR) to learn
a compact and decodable latent representation space for the original hybrid action
space. HyAR constructs the latent space and embeds the dependence between
discrete action and continuous parameter via an embedding table and conditional
Variantional Auto-Encoder (VAE). To further improve the effectiveness, the action
representation is trained to be semantically smooth through unsupervised environ-
mental dynamics prediction. Finally, the agent then learns its policy with con-
ventional DRL algorithms in the learned representation space and interacts with
the environment by decoding the hybrid action embeddings to the original action
space. We evaluate HyAR in a variety of environments with discrete-continuous
action space. The results demonstrate the superiority of HyAR when compared
with previous baselines, especially for high-dimensional action spaces.

1 INTRODUCTION

Deep Reinforcement learning (DRL) has recently shown a great success in a variety of decision-
making problems that involve controls with either discrete actions, such as Go (Silver et al., 2016)
and Atari (Mnih et al., 2015), or continuous actions, such as robot control (Schulman et al., 2015;
Lillicrap et al., 2015). However, in contrast to these two kinds of homogeneous action space, many
real-world scenarios requires more complex controls with discrete-continuous hybrid action space,
e.g., Robot soccer (Masson et al., 2016) and Real Time Strategic games (Xiong et al., 2018). For
example, in robot soccer, the agent not only needs to choose whether to shoot or pass the ball (i.e.,
discrete actions) but also the associated angle and force (i.e., continuous parameters). Such a hybrid
action is also called parameterized action in some previous works (Hausknecht & Stone, 2016; Fu
et al., 2019). Unfortunately, most conventional RL algorithms cannot deal with such a heterogeneous
action space directly, thus preventing the application of RL in these kinds of practical problems.

To deal with hybrid action space, the most straightforward approach is to convert the heterogeneous
space into a homogeneous one through discretization or continualization. However, it is apparent
that discretizing continuous parameter space suffers from the scalability issue due to the exponen-
tially exploring number of discretized actions; while casting all discrete actions into a continuous

∗Equal contribution.
†Corresponding authors: Yan Zheng (yanzheng@tju.edu.cn) and Jianye Hao (jianye.hao@tju.edu.cn).

1

Accepted as a contributed talk at NeurIPS 2021 Deep RL Workshop

dimension produces a piecewise-function action subspace, resulting in additional difficulties in ap-
proximation and generalization. To overcome these problems, a few recent works propose specific
policy structures to learn DRL policies over the original hybrid action space directly. Parameterized
Action DDPG (PADDPG) (Hausknecht & Stone, 2016) makes use of a DDPG (Lillicrap et al., 2015)
structure where the actor is modified to output a unified continuous vector as the concatenation of
values for all discrete actions and all corresponding continuous parameters. By contrast, Hybrid PPO
(HPPO) (Fan et al., 2019) uses multiple policy heads consisting of one for discrete actions and the
others for corresponding continuous parameter of each discrete action separately. These methods
are convenient to implement and are demonstrated to effective in simple environments with low-
dimensional hybrid action space. However, PADDPG and HPPO neglect the dependence between
discrete and continuous components of hybrid actions, thus can be problematic since the dependence
is vital to identifying the optimal hybrid actions in general. Besides, the modeling of all continuous
parameter dimensions all the time introduces redundancy in computation and policy learning, and
may also have the scalability issue when the hybrid action space becomes high-dimensional.

Latent
Space

Env

Latent
Action

Latent Policy Decode

Original Hybrid
Action

Discrete Continuous

State Reward

Figure 1: An overview of HyAR. Agent learns a latent
policy in the latent representation space of discrete-
continuous actions. The selected latent action is then
decoded into the original space so as to interact with
the environment.

To model the dependence, Parameterized
DQN (PDQN) (Xiong et al., 2018) pro-
poses a hybrid structure of DQN (Mnih
et al., 2015) and DDPG. The discrete pol-
icy is represented by a DQN which ad-
ditionally takes as input all the continu-
ous parameters output by the DDPG actor;
while the DQN also serves as the critic of
DDPG. Due to the DDPG actor’s model-
ing of all parameters, PDQN also have the
redundancy and potential scalablity issue.
In an upside-down way, Hierarchical Hy-
brid Q-Network (HHQN) (Fu et al., 2019)
models the dependent hybrid-action pol-
icy with a two-level hierarchical structure.
The high level is for the discrete policy and
the selected discrete action serves as the
condition (in analogy to subgoal) which
the low-level continuous policy conditions on. This can be viewed as a special two-agent cooperative
game where the high level and low level learn to coordinate at the optimal hybrid actions. Although
the hierarchical structure seems to be natural, it suffers from the high-level non-stationarity caused
by off-policy learning dynamics (Wang et al., 2020), i.e., a discrete action can no longer induce
the same transition in historical experiences due to the change of the low-level policy. In contrast,
PADDPG, HPPO and PDQN are stationary in this sense since they all learn an overall value func-
tion and policy thanks to their special structures, which is analogous to learning a joint policy in the
two-agent game. All the above works focus on policy learning over original hybrid action space.
As summarized in Table 1, none of them is able to offer three desired properties, i.e., scalability,
stationarity and action dependence, at the same time.

In this paper, we propose a novel framework for hybrid action RL, called Hybrid
Action Representation (HyAR), to achieve all three properties in Table 1. A concep-
tual overview of HyAR is shown in Fig. 1. The main idea is to construct a uni-
fied and decodable representation space for original discrete-continuous hybrid actions,
among which the agent learns a latent policy. Then, the selected latent action is de-
coded back to the original hybrid action space so as to interact with the environment.

Algorithm Scalability Stationarity Dependence Latent

PADDPG % ! % %

HPPO % ! % %

PDQN % ! ! %

HHQN ! % ! %

HyAR (Ours) ! ! ! !

Table 1: A comparison on algorithmic properties of ex-
isting methods for discrete-continous hybrid action RL.

HyAR is inspired by recent advances in
Representation Learning in DRL. Action
representation learning has shown the po-
tentials in boosting learning performance
(Whitney et al., 2020), reducing large dis-
crete action space (Chandak et al., 2019),
improving generalization in offline RL
(Zhou et al., 2020) and so on. Different
from these works, to the best knowledge,
we are the first to propose representation
learning for discrete-continuous hybrid ac-

2

Accepted as a contributed talk at NeurIPS 2021 Deep RL Workshop

tions, which consist of heterogeneous and dependent action components. In HyAR, we maintain a
continuous vector for each discrete action in a learnable embedding table; then a conditional Varia-
tional Auto-encoder (VAE) (Kingma & Welling, 2014) that conditions on the state and the embed-
ding of discrete action is used to construct the latent representation space for the associated continu-
ous parameters. Different from HHQN, the conditional VAE models and embeds the the dependence
in an implicit fashion. The learned representation space are compact and thus scalable, while also
provides convenient decoding by nearest-neighbor lookup of the embedding table and the VAE de-
coder. Moreover, we utilize the unsupervised environmental dynamics to learn dynamics predictive
hybrid action representation. Such a representation space can be semantically smooth, i.e., hybrid
action representations that are close in the space have similar influence on environmental dynamics,
thus benefits hybrid action RL in the representation space. With the constructed action representa-
tion space, we use TD3 algorithm (Fujimoto et al., 2018)for the latent policy learning. To ensure
the effectiveness, we further propose two mechanisms: latent space constraint and representation
shift correction to deal with unreliable latent representations and outdated off-policy action repre-
sentation experiences respectively. In our experiments, we evaluate HyAR in a few representative
environments with hybrid action space, as well as several new and more challenging benchmarks.

Our main contributions are summarized below:

• We propose a novel and generic framework for discrete-continuous hybrid action RL by
leveraging representation learning of hybrid action space for the first time.

• We propose an unsupervised method of learning a compact and decodable representation
space for discrete-continuous hybrid actions, along with two mechanisms to improve the
effectiveness of latent policy learning.

• Our algorithm consistently outperforms prior algorithms in representative hybrid-action
benchmarks, especially demonstrating significant superiority when the hybrid action space
becomes larger.1

2 PRELIMINARIES

Markov Decision Process Consider a standard Markov Decision Process (MDP)
〈S,A,P,R, γ, T 〉, defined with a state set S, an action setA, transition functionP : S×A×S → R,
reward function R : S × A → R, discounted factor γ ∈ [0, 1) and horizon T . The agent interacts
with the MDP by performing its policy π : S → A. The objective of an RL agent is to optimize
its policy to maximize the expected discounted cumulative reward J(π) = Eπ[

∑T
t=0 γ

trt], where
s0 ∼ ρ0 (s0) the initial state distribution, at ∼ π (st), st+1 ∼ P (st+1 | st, at) and rt = R (st, at).
The state-action value function Qπ is defined as Qπ(s, a) = Eπ

[∑T
t=0 γ

trt | s0 = s, a0 = a
]
.

Parameterized Action MDP In this paper, we focus on a Parameterized Action Markov Decision
Process (PAMDP) 〈S,H,P,R, γ, T 〉 (Masson et al., 2016). PAMDP is an extension of stardard
MDP with a discrete-continuous hybrid action spaceH defined as:

H = {(k, xk) | xk ∈ Xk for all k ∈ K} , (1)

where K = {1, · · · ,K} is the discrete action set, Xk is the corresponding continuous parameter
set for each k ∈ K. We call any pair of k, xk as a hybrid action and also call H as hybrid action
space for short in this paper. In turn, we have state transition function P : S ×H× S → R, reward
functionR : S ×H → R, agent’s policy π : S → H and hybrid-action value function Qπ(s, k, xk).

Conventional RL algorithms are not compatible with hybrid action spaceH. Typical policy represen-
tations such as Multinomial distribution or Gaussian distribution can not model the heterogeneous
components among the hybrid action. Implicit policies derived by action value functions, often
adopted in value-based algorithms, also fail due to intractable maximization over infinite hybrid ac-
tions. In addition, there exists the dependence between discrete actions and continuous parameters,
as a discrete action k determines the valid parameter space Xk associated with it. In other words,
the same parameter paired with different discrete actions can be significantly different in semantics.
This indicate that in principle an optimal hybrid-action policy can not determine the continuous
parameters beforehand the discrete action is selected.

1Codes are provided in the supplementary material.

3

Accepted as a contributed talk at NeurIPS 2021 Deep RL Workshop

Reinforcement Learning with Hybrid Action Representation Hybrid Action Representation Model

DecoderEncoder

�, �, ��, ��, ��, �, �′

Po
lic

y

EnvironmentEmbedding Table
Original Actions

��

Latent Actions
Representation Decoding

Autoencoder
(��)

(��)

(��)

(�)
discrete

continuous continuous

discrete

Policy Training

Representation Training

（for continuous parameters)

(for discrete actions)

�, �, ��, ��, ��, �, �′

� look up

⊗ ⊗

��

σ�

��

��,��

�� DE

Embedding Table

s��,�

��

 : Multi-layer Perceptron (MLP)
⨂ : Element-wise product operation

Figure 2: Illustrations of: (left) the framework DRL with HyAR; and (right) overall workflow of
hybrid action representation model, consisting of an action embedding table and a conditional VAE.

3 HYBRID ACTION REPRESENTATION (HYAR)

As mentioned in previous sections, it is non-trivial for an RL agent to learn with discrete-continuous
hybrid action space efficiently due to the heterogeneity and action dependence. Naive solutions by
converting the hybrid action space into either a discrete or a continuous action space can result in
degenerated performance due to the scalability issue and additional approximation difficulty. Previ-
ous efforts concentrate on proposing specific policy structures (Hausknecht & Stone, 2016; Fu et al.,
2019) that are feasible to learn hybrid-action policies directly over original hybrid action space.
However, these methods fail in providing the three desired properties: scalability, stationarity and
action dependence simultaneously (See Tab. 1).

Inspired by recent advances in Representation Learning for RL (Whitney et al., 2020; Chandak
et al., 2019), we propose Hybrid Action Representation (HyAR), a novel framework that converts
the original hybrid-action policy learning into a continuous policy learning problem among the la-
tent action representation space. The intuition behind HyAR is that discrete action and continuous
parameter are heterogeneous in their original representations but they jointly influence the environ-
ment; thus we can assume that hybrid actions lie on a homogeneous manifold that is closely related
to environmental dynamics semantics. In the following, we introduce an unsupervised approach of
constructing a compact and decodable latent representation space to approximate such a manifold.

3.1 DEPENDENCE-AWARE ENCODING AND DECODING

A desired latent representation space for hybrid actions should take the dependence between the
two heterogeneous components into account. Moreover, we need the representation space to be
decodable, i.e., the latent actions selected by a latent policy can be mapped back to the original
hybrid actions so as to interact with the environment. To this end, we propose dependence-aware
encoding and decoding of hybrid action. The overall workflow is depicted in the right of Fig. 2. We
establish an embedding table Eζ ∈ RK×d1 with learnable parameter ζ to represent the K discrete
actions, where each row eζ,k (with k being the row index) is a d1-dimensional continuous vector
for the discrete action k. Then, we use a conditional Variational Auto-Encoder (VAE) (Kingma
& Welling, 2014) to construct the latent representation space for the continuous parameters. In
specific, for a hybrid action k, xk and a state s, the encoder qφ(z | xk, s, eζ,k) parameterized by φ
takes s and the embedding eζ,k as condition, and maps xk into the latent variable z ∈ Rd2 . With the
same condition, the decoder pψ(x̃k | z, s, eζ,k) parameterized by ψ then reconstructs the continuous
parameter x̃k from z. In principle, the conditional VAE can be trained by maximizing the variational
lower bound (Kingma & Welling, 2014).

More concretely, we adopt a Gaussian latent distribution N (µx, σx) for qφ(z | xk, s, eζ,k) where
µx, σx are the mean and standard deviation outputted by the encoder. For any latent variable z ∼
N (µx, σx), the decoder decodes it deterministicly, i.e., x̃k = pψ(z, s, eζ,k). With a buffer of states
and hybrid actions, we train the embedding tableE and the conditional VAE together by minimizing
the loss function LVAE below:

LVAE(φ, ψ,E) = Es,k,xk

[
‖xk − x̃k‖22 +DKL

(
qφ(· | xk, s, eζ,k)‖N (0, I)

)]
, (2)

where the first term is the L2-norm square reconstruction error and the second term is the Kullback-
Leibler divergence DKL between the variational posterior of latent representation z and the standard
Gaussian prior. Note x̃k is differentiable with respect to ψ and E.

4

Accepted as a contributed talk at NeurIPS 2021 Deep RL Workshop

The embedding table and conditional VAE jointly construct a compact and decodable hybrid action
representation space (∈ Rd1+d2) for hybrid actions. We highlight that this is often much smaller
than the joint action space RK+

∑
k |Xk| considered in previous works (e.g., PADDPG, PDQN and

HPPO), especially whenK or
∑
k |Xk| is large. In this sense, HyAR is expected to be more scalable

when compared in Tab. 1. Moreover, the conditional VAE embeds the dependence of continuous
parameter on corresponding discrete action in the latent space; and allows to avoid the redundancy
of outputting all continuous parameters at any time (i.e., R

∑
k |Xk|). This resembles the conditional

structure adopted by HHQN while HyAR is free of the non-stationary issue thanks to learning a
single policy in the hybrid representation space.

For any latent variables ẑk ∈ Rd1 and ẑx ∈ Rd2 , they can be decoded into hybrid action k̂, x̂k conve-
niently by nearest-neighbor lookup of the embedding table along with the VAE decoder. Formally,
we summarize the encoding and decoding process below:

Encoding: eζ,k, zk ∼ qφ(· | xk, s, eζ,k) for s, k, xk

Decoding: k̂ = gE(ẑk) = arg mink∈K ‖eζ,k − ẑk‖2, x̂k = pψ(ẑx, s, eζ,k̂) for s, ẑk, ẑx
(3)

3.2 DYNAMICS PREDICTIVE REPRESENTATION

In the above, we introduce how to construct a compact and decodable latent representation space for
original hybrid actions. However, the representation space learned by pure reconstruction of VAE
may be pathological in the sense that it is not discriminative to how hybrid actions have different
influence on the environment, similarly studied in (Grosnit et al., 2021). Therefore, such a represen-
tation space may be ineffective when involved in the learning of a RL policy and value functions,
as these functions highly depends on the knowledge of environmental dynamics. To this end, we
make full use of environmental dynamics and propose a unsupervised learning loss based on state
dynamics prediction to further refine the hybrid action representation.

Intuitively, the dynamics predictive representation learned is semantically smooth. In other words,
hybrid action representations that are closer in the space reflects similar influence on environmental
dynamics of their corresponding original hybrid actions. Therefore, in principle such a representa-
tion space can be superior in the approximation and generalization of RL policy and value functions,
than that learned purely from VAE reconstruction. The benefits of dynamics predictive representa-
tion are also demonstrated in (Whitney et al., 2020) (Schwarzer et al., 2020).

As shown in the right of Fig. 2, HyAR adopts a subnetwork that cascaded after the main body of the
conditional VAE decoder to produce the prediction of the state residual of transition dynamics. For
any transition sample (s, k, xk, s

′), the state residual is denoted by δs,s′ = s′− s. With some abuse,
the prediction δ̃s,s′ is produced as follows, which completes Eq. 3:

Prediction: δ̃s,s′ = pψ(ẑx, s, eζ,k̂) for s, ẑk, ẑx (4)

Then we minimize the L2-norm square prediction error:

LDyn(φ, ψ,E) = Es,k,xk,s′

[
‖δ̃s,s′ − δs,s′‖22

]
. (5)

Our cascaded structure is inspired by (Azabou et al., 2021). The reason behind this is that dynamics
prediction could be more complex than continuous action reconstruction, thus usual parallel heads
for both reconstruction and state residual prediction followed by the same latent features may have
interference in optimizing individual objectives and hinder the learning of the shared representation.

So far, we derive the ultimate training loss for hybrid action representation as follows:
LHyAR(φ, ψ,E) = LVAE(φ, ψ,E) + βLDyn(φ, ψ,E), (6)

where β is a hyper-parameter that weights the dynamics predictive representation loss. Note that
the ultimate loss depends on reward-agnostic data of environmental dynamics, which is dense and
usually more convenient to obtain.

4 DRL WITH HYBRID ACTION REPRESENTATION

In previous section, we introduce the construction of a compact, decodable and semantically smooth
hybrid action representation space. As the conceptual overview in Fig. 1, the next thing is to learn a

5

Accepted as a contributed talk at NeurIPS 2021 Deep RL Workshop

Algorithm 1: HyAR-TD3
1 Initialize actor πω and critic networks Qθ1 , Qθ2 with random parameters ω, θ1, θ2

2 Initialize discrete action embedding table Eζ and conditional VAE qφ, pψ with random parameters ζ, φ, ψ
3 Prepare replay buffer D
4 repeat Stage 1
5 Update ζ and φ, ψ using samples in D . see Eq. 6
6 until reaching maximum warm-up training times;
7 repeat Stage 2
8 for t← 1 to T do
9 // select latent actions in representation space

10 ẑk, ẑx = πω(s) + εe, with εe ∼ N (0, σ)
11 // decode into original hybrid actions
12 k̂ = gE(ẑk), x̂k = pψ(ẑx, s, eζ,k̂) . see Eq. 3
13 Execute (k̂, x̂k), observe rt and new state s′

14 Store {s, k̂, x̂k, ẑk, ẑx, r, s′} in D
15 Sample a mini-batch of N experience from D
16 Update Qθ1 , Qθ2 . see Eq. 7
17 Update πω with policy gradient . see Eq. 8

18 repeat
19 Update ζ and φ, ψ using samples in D . see Eq. 6
20 until reaching maximum representation training times;
21 until reaching maximum total environment steps;

latent RL policy in the representation space. In principle, our framework is algorithm-agnostic and
any RL algorithms for continuous control can be used for implementation. In this paper, we adopt
model-free DRL algorithm TD3 (Fujimoto et al., 2018) for demonstration. Though there remains
the chance to build a world model based on hybrid action representation, we leave the study on
model-based RL with HyAR for future work.

TD3 is popular deterministic-policy Actor-Critic algorithm which is widely demonstrated to be ef-
fective in continuous control. As illustrated in the left of Fig. 2, with the learned hybrid action
representation space, the actor network parameterizes a latent policy πω with parameter ω that out-
puts the latent action vector, i.e., ẑk, ẑx = πω(s) where ẑk ∈ Rd1 , ẑx ∈ Rd2 . The latent action can
be decoded according to Eq. 3 and obtain the corresponding hybrid action k̂, x̂k. The double critic
networks Qθ1 , Qθ2 take as input the latent action to approximate hybrid-action value function Qπω ,
i.e.,Qθi=1,2

(s, ẑk, ẑx) ≈ Qπω (s, k̂, x̂k). With a buffer of collected transition sample (s, ẑk, ẑx, r, s
′),

the critics are trained by Clipped Double Q-Learning, with the loss function below for i = 1, 2:

LCDQ(θi) = Es,ẑk,ẑx,r,s′
[
(y −Qθi(s, ẑk, ẑx))

2
]
, where y = r + γ min

j=1,2
Qθ̄j (s′, πω̄(s′)) , (7)

where θ̄j=1,2, ω̄ are the target network parameters. The actor (latent policy) is updated with Deter-
ministic Policy Gradient (Silver et al., 2014) as follows:

∇ωJ(ω) = Es
[
∇πω(s)Qθ1(s, πω(s))∇ωπω(s)

]
. (8)

Algorithm 1 describes the pseudo-code of HyAR-TD3, containing two major stages: 1 warm-up
stage and 2 training stage. In the warm-up stage, the hybrid action representation models are
pre-trained using a prepared replay buffer D (line 4-6). The parameters the embedding table and
conditional VAE is updated by minimizing the VAE and dynamics prediction loss. Note that the
proposed algorithm has no requirement on how the buffer D is prepared and here we simply use
a random policy for the environment interaction and data generation by default. In the learning
stage, given a environment state, the latent policy outputs a latent action perturbed by a Gaussian
exploration noise, with some abuse of notions ẑk, ẑx (line 10). The latent action is decoded into
original hybrid action so as to interact with the environment, after which the collected transition
sample is stored in the replay buffer (line 12-14). Then, the latent policy learning is preformed
using the data sampled from D (line 15-17). It is worth noting that the action representation model
is updated concurrently in the training stage to make continual adjustment to the change of data
distribution (line 19-21).

6

Accepted as a contributed talk at NeurIPS 2021 Deep RL Workshop

Latent Space

Outlier

Boundary
(a) Representation unreliability (b) Representation shift

Before After

Figure 3: Illustrations of representation unreliability and
representation shift. Dots denote the hybrid action repre-
sentations selected by policy (red) and known by encoder
(blue). The gray line forms a area, among which represen-
tations can be well decoded and estimated.

One significant distinction of DRL
with HyAR described above compared
with conventional DRL is that, the
hybrid action representation space is
learned from finite samples that are
drawn from a moving data distribu-
tion. The induced unreliability and
shift of learned representations can
severely cripple the performance of
learned latent policy if they are not
carefully handled. Hence, we pro-
pose two mechanisms to deal with the
above two considerations as detailed
below.

Latent Space Constraint (LSC) As the latent representation space is constructed by finite hybrid
action samples, some areas in the latent space can be highly unreliable in decoding as well as Q-
value estimation. Similar evidences are also founded in (Zhou et al., 2020; Notin et al., 2021). In
Fig. 3(a), the latent action representations inside the boundary can be well decoded and estimated the
values, while the outliers cannot. Once the latent policy outputs outliers, which can be common in
the early learning stage, the unreliability can quickly deteriorate the policy and lead to bad results.
Therefore, we propose to constrain the action representation space of the latent policy inside a
reasonable area adaptively. In specific, we re-scale each dimension of the output of latent policy
(i.e., [−1, 1]d1+d2 by tanh activation) to a bounded range [blower, bupper]. For a number of s, k, xk
collected previously, the bounds blower, bupper are obtained by calculating the c-percentage central
range where c ∈ [0, 100]. We empirically demonstrate the importance of LSC. See more details in
Appendix A & C.3.

Representation Shift Correction (RSC) As in Algorithm 1, the hybrid action representation
space is continuously optimized along with RL process. Thus, the representation distribution of
original hybrid actions in the latent space can shift after a certain learning interval (Igl et al., 2020).
Fig. 3(b) illustrates the shift (denoted by different shapes). This negatively influences the value
function learning since the outdated latent action representation no longer reflects the same transi-
tion at present. To handle this, we propose a representation relabeling mechanism. In specific, for
each mini-batch training in Eq.7, we check the semantic validity of hybrid action representations in
current representation space and relabel the invalid ones with the latest representations. In this way,
the policy learning is always performed on latest representations, so that the issue of representation
shift can be alleviate. Empirically evaluations demonstrate the superiority of relabeling techniques
in achieving a better performance with a lower variance. See more details in Appendix A & C.3.

5 EXPERIMENTS

We evaluate HyAR in various hybrid action environments against representative prior algorithms.
Then, a detailed ablation study is conducted to verify the contribution of each component in HyAR.
Moreover, we provide visual analysis for better understandings of HyAR.

5.1 EXPERIMENT SETUPS

Benchmarks Fig. 4 visualizes the evaluation benchmarks, including the Platform and Goal from
(Masson et al., 2016), Catch Point from (Fan et al., 2019), and a newly designed Hard Move specific
to the evaluation in larger hybrid action space. We also build a complex version of Goal, called
Hard Goal. All benchmarks have hybrid actions and require the agent to select reasonable actions
to complete the task. See complete description of benchmarks in Appendix B.1.

Baselines Four state-of-the-art approaches are selected as baselines: HPPO (Fan et al., 2019),
PDQN (Xiong et al., 2018), PADDPG (Hausknecht & Stone, 2016), HHQN (Fu et al., 2019). In
addition, for a comprehensive study, we extend the baselines which consists of DDPG to their TD3
variants, denoted by PDQN-TD3, PATD3, HHQN-TD3. Last, we use HyAR-DDPG and HyAR-
TD3 to denote our implementations of DRL with HyAR based on DDPG and TD3. For a fair

7

Accepted as a contributed talk at NeurIPS 2021 Deep RL Workshop

Target area

agent

�� actuators
 to choose

（d）Hard Move（a）Platform （b）Goal

Valid catch distance

Target point

Current action: move

agent

（c）Catch Point

Figure 4: Benchmarks with discrete-continuous actions: (a) the agent selects a discrete action (run,
hop, leap) and the corresponding continuous parameter (horizontal displacement) to reach the goal;
(b) The agent selects a discrete strategy (move, shoot) and the continuous 2-D coordinate to score;
(c) The agent selects a discrete action (move, catch) and the continuous parameter (direction) to grab
the target point; (d) The agent has n equally spaced actuators. It can choose whether each actuator
should be on or off (thus 2n combination in total) and determine the corresponding continuous
parameter for each actuator (moving distance) to reach the target area.

ENV
HPPO PADDPG PDQN HHQN HyAR-DDPG PATD3 PDQN-TD3 HHQN-TD3 HyAR-TD3

PPO-based DDPG-based TD3-based
Goal 0.0 ± 0.0 0.05 ± 0.10 0.70 ± 0.07 0.0±0.0 0.53±0.02 0.0±0.0 0.71±0.10 0.0±0.0 0.78±0.03

Hard Goal 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0±0.0 0.30±0.08 0.44±0.05 0.06±0.07 0.01±0.01 0.60±0.07
Platform 0.80 ± 0.02 0.36 ± 0.06 0.93 ± 0.05 0.46±0.25 0.87±0.06 0.94±0.10 0.93±0.03 0.62±0.23 0.98±0.01

Catch Point 0.69 ± 0.09 0.82 ± 0.06 0.77 ± 0.07 0.31±0.06 0.89±0.01 0.82±0.10 0.89±0.07 0.27±0.05 0.90±0.03
Hard Move (n = 4) 0.09 ± 0.02 0.03 ± 0.01 0.69 ± 0.07 0.39±0.14 0.91±0.03 0.66±0.13 0.85±0.10 0.52±0.17 0.93±0.02
Hard Move (n = 6) 0.05 ± 0.01 0.04 ± 0.01 0.41 ± 0.05 0.32±0.17 0.91±0.04 0.04±0.02 0.74±0.08 0.29±0.13 0.92±0.04
Hard Move (n = 8) 0.04 ± 0.01 0.06 ± 0.03 0.04 ± 0.01 0.05±0.02 0.85±0.06 0.06±0.02 0.05±0.01 0.05±0.02 0.89±0.03

Hard Move (n = 10) 0.05 ± 0.01 0.04 ± 0.01 0.06 ± 0.02 0.04±0.01 0.82±0.06 0.07±0.02 0.05±0.02 0.05±0.02 0.75±0.05

Table 2: Comparisons of the baselines regarding the average performance at the end of training
process with the corresponding standard deviation. Values in bold indicate the best average results
using 5 runs.

comparison, the network architecture (i.e., DDPG and TD3) used in associated baselines are the
same. For all experiments, we give each baseline the same training budget. For our algorithms, we
use a random strategy to interact with the environment for 5000 episodes during the warm-up stage.
For each experiment, we run 5 trials and report the average results. Complete details of setups are
provided in Appendix B.

5.2 PERFORMANCE EVALUATION

To conduct a comprehensive comparison, all baselines implemented based on either DDPG or TD3
are reported. To counteract implementation bias, codes of PADDPG, PDQN, and HHQN are directly
adopted from prior works. Comparisons in terms of the averaged results are summarized in Tab. 2,
where bold numbers indicate the best result. Overall, we have the following findings.

HyAR-TD3 and HyAR-DDPG show the better results and lower variance than the others. Moreover,
the advantage of HyAR is more obvious in environments in larger hybrid action space (e.g., Hard
Goal & Hard Move). Taking Hard Move for example, as the action space grows exponentially, the
performance of HyAR is steady and barely degrades, while the others deteriorate rapidly. Similar
results can be found in goal and Hard Goal environments. This is due to the superiority of HyAR of
utilizing the hybrid action representation space, among which the latent policy can be learned based
on compact semantics. These results not only reveal the effectiveness of HyAR in achieving better
performance, but also the scalability and generalization.

In almost all environments, HyAR outperforms other baselines for both the DDPG-based and TD3-
based cases. The exceptions are in Goal and Platform environments, where PDQN performs slightly
better than HyAR-DDPG. We hypothesize that this is because the hybrid action space of these two
environments is relatively small. For such environments, the learned latent action space could be
sparse and noisy, which in turn degrades the performance. One evidence is that the conservative
(underestimation) nature in TD3 could compensate and alleviates this issue, achieving significant
improvements (HyAR-TD3 v.s. HyAR-DDPG). Fig. 5 renders the learning curves, where HyAR-
TD3 outperforms other baselines in both the final performance and learning speed across all environ-
ments. Similar results are observed in DDPG-based comparisons and can be found in Appendix C.1.
In addition, HyAR-TD3 shows good generalization across environments, while the others more or
less fail in some environments (e.g., HPPO, PATD3, and HHQN-TD3 fail in Fig. 5(a) and PDQN-

8

Accepted as a contributed talk at NeurIPS 2021 Deep RL Workshop

(a) Goal (b) Hard Goal (c) Platform (d) Catch Point

(e) Hard Move (n=4) (f) Hard Move (n=6) (g) Hard Move (n=8) (h) Hard Move (n=10)

A
v

er
ag

e
E

p
is

o
d

ic
 R

ew
ar

d

HPPO PDQN-TD3 PATD3 HHQN-TD3 HyAR-TD3 (Ours)

Figure 5: Comparisons of algorithms on different environments. The x- and y-axis denote the
environment steps (×105) and averaged episodic reward over recent 100 episodes. The curve and
shade denote the mean and a standard deviation over 5 runs.

TD3 fails in Fig. 5(b)). Moreover, when environments become complex (Fig. 5(e-h)), HyAR-TD3
still achieves steady and better performance, particularly demonstrating the effectiveness of HyAR
in high-dimensional hybrid action space.

5.3 ABLATION STUDY AND VISUAL ANALYSIS

We further evaluate the contribution of the major components in HyAR: the two mechanisms for
latent policy learning, i.e., latent space constraint (LSC) and representation shift correction (RSC),
and the dynamics predictive representation loss. We briefly conclude our results as follows. For
LSC, properly constraining the output space of the latent policy is critical to performance; otherwise,
both loose and conservative constraints dramatically lead to performance degradation. RSC and
dynamics predictive representation loss show similar efficacy: they improve both learning speed
and convergence results, additionally with a lower variance. Such superiority is more significant in
the environment when hybrid actions are more semantically different (e.g., Goal). We also conduct
ablation studies on other factors along with hyperparameter analysis. See complete details and
ablation results in Appendix C.2 & C.3.

t-SNE

100

50

0

50

100

(a) Goal

t-SNE

100

50

0

50

100

(b) Hard Move (n = 8)

Figure 6: 2D t-SNE visualizations of learned representation
for original hybrid actions, colored by 1D t-SNE of the cor-
responding environmental impact.

Finally, we adopt t-SNE (Maaten &
Hinton, 2008) to visualize the learned
hybrid action representations, i.e.,
(zk, zx), in a 2D plane. We color
each action based on its impact on
the environment i.e., δs,s′ . As shown
in Fig. 6, we observe that actions
with a similar impact on the environ-
ment are relatively closer in the latent
space. This demonstrates the dynam-
ics predictive representation loss is
helpful for deriving an environment-
awareness representation for further
improving the learning performance,
efficacy, and stability (see results in Appendix C.2 & C.4)

6 CONCLUSION

In this paper, we propose Hybrid Action Representation (HyAR) for DRL agents to efficiently learn
with discrete-continuous hybrid action space. HyAR use an unsupervised method to derive a com-
pact and decodable representation space for discrete-continuous hybrid actions. HyAR can be easily
extended with modern DRL methods to leverage additional advantages. Our experiments demon-
strate the superiority of HyAR regarding performance, learning speed and robustness in most hybrid
action environment, especially in high-dimensional action spaces.

9

Accepted as a contributed talk at NeurIPS 2021 Deep RL Workshop

ACKNOWLEDGEMENT

The work is supported by the National Natural Science Foundation of China (Grant No. 62106172).

REFERENCES

M. Azabou, M. G. Azar, R. Liu, C. H. Lin, E. C. Johnson, K. B. Nair, M. D., K. B. Hengen, W. G.
Roncal, M. V., and E. Dyer. Mine your own view: Self-supervised learning through across-sample
prediction. CoRR, abs/2102.10106, 2021.

Y. Chandak, G. Theocharous, J. Kostas, S. M. Jordan, and P. S. Thomas. Learning action represen-
tations for reinforcement learning. In ICML, volume 97, pp. 941–950, 2019.

Z. Fan, R. Su, W. Zhang, and Y. Yu. Hybrid actor-critic reinforcement learning in parameterized
action space. IJCAI, pages2279-2285, 2019.

H. Fu, H. Tang, J. Hao, Z. Lei, Y. Chen, and C. Fan. Deep multi-agent reinforcement learning with
discrete-continuous hybrid action spaces. IJCAI, pages2329-2335, 2019.

S. Fujimoto, H. v. Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In ICML, volume 80, pp. 1582–1591, 2018.

A. Grosnit, R. Tutunov, A. Maraval, R. Griffiths, A. Cowen-Rivers, L. Yang, L. Zhu, W. Lyu,
Z. Chen, J. Wang, J. Peters, and H. Bou-Ammar. High-dimensional bayesian optimisation with
variational autoencoders and deep metric learning. CoRR, abs/2106.03609, 2021.

M. Hausknecht and P. Stone. Deep reinforcement learning in parameterized action space. ICLR,
2016.

M. Igl, G. Farquhar, J. Luketina, W. Boehmer, and S. Whiteson. The impact of non-stationarity on
generalisation in deep reinforcement learning. CoRR, abs/2006.05826, 2020.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR, 2014.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Contin-
uous control with deep reinforcement learning. In ICLR, 2015.

L. V. D. Maaten and G. E. Hinton. Visualizing data using t-sne. Journal of Machine Learning
Research, 9:2579–2605, 2008.

W. Masson, P. Ranchod, and G. D. Konidaris. Reinforcement learning with parameterized actions.
In AAAI, pp. 1934–1940, 2016.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. A.
Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep reinforce-
ment learning. Nature, 518(7540):529–533, 2015.

P. Notin, J. M. Hernández-Lobato, and Y. Gal. Improving black-box optimization in VAE latent
space using decoder uncertainty. CoRR, abs/2107.00096, 2021.

J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and P. Moritz. Trust region policy optimization. In
ICML, pp. 1889–1897, 2015.

J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel. High-dimensional continuous control
using generalized advantage estimation. In ICLR, 2016.

M. Schwarzer, A. Anand, R. Goel, R. D. Hjelm, A. C. Courville, and P. Bachman. Data-efficient
reinforcement learning with momentum predictive representations. CoRR, abs/2007.05929, 2020.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. A. Riedmiller. Deterministic policy
gradient algorithms. In ICML, pp. 387–395, 2014.

10

Accepted as a contributed talk at NeurIPS 2021 Deep RL Workshop

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of
go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

H. Tang, Z. Meng, G. Chen, P. Chen, C. Chen, Y. Yang, L. Zhang, W. Liu, and J. Hao. Foresee then
evaluate: Decomposing value estimation with latent future prediction. In AAAI, pp. 9834–9842,
2021.

R. Wang, R. Yu, B. An, and Z. Rabinovich. I2hrl: Interactive influence-based hierarchical reinforce-
ment learning. In IJCAI, pp. 3131–3138, 2020.

W. F. Whitney, R. Agarwal, K. Cho, and A. Gupta. Dynamics-aware embeddings. In ICLR, 2020.

J. Xiong, Q. Wang, Z. Yang, P. Sun, L. Han, Y. Zheng, H. Fu, T. Zhang, J. Liu, and H. Liu.
Parametrized deep q-networks learning: Reinforcement learning with discrete-continuous hybrid
action space. CoRR, abs/1810.06394, 2018.

W. Zhou, S. Bajracharya, and D. Held. PLAS: latent action space for offline reinforcement learning.
CoRR, abs/2011.07213, 2020.

11

Accepted as a contributed talk at NeurIPS 2021 Deep RL Workshop

A DETAILED FOR LATENT SPACE CONSTRAINT (LSC) AND
REPRESENTATION SHIFT CORRECTION(RSC)

Latent Space Constraint (LSC) As we can see in Fig. 3(a), the latent action representations inside
the boundary can be well decoded and estimated the values, while the outliers cannot. Therefore, the
most critical problem for latent space constraint (LSC) is to find a reasonable latent space boundary.
Simply re-scale policy’s outputs in a fixed bounded area [−b, b] could lose some important infor-
mation and make the latent space unstable (Zhou et al., 2020; Notin et al., 2021) . We propose a
mechanism to constrain the action representation space of the latent policy inside a reasonable area
adaptively. In specific, we re-scale each dimension of the output of latent policy (i.e., [−1, 1]d1+d2

by tanh activation) to a bounded range [blower, bupper]. At intervals (actually concurrent with the up-
dates of the hybrid action representation models), we first sampleM transitions s, k, xk from buffer,
then we obtain the corresponding latent action representations with current representation models.
In this way, we will get M different latent variable values in each dimension. We sort the latent
variable of each dimension and calculate the c-percentage central range, i.e., let the c

2 quantile and
1− c

2 quantile of the range to be blower and bupper of the current latent variable. We called c as latent
select range where c ∈ [0, 100]. With the decrease of c, the constrained latent action representation
space becomes smaller. The experiment on the value of latent select range c is in Appendix C.3.

Representation Shift Correction (RSC) Since the hybrid action representation space is continu-
ously optimized along with the RL learning, the representation distribution of original hybrid actions
in the latent space can shift after a certain learning interval (Igl et al., 2020). Fig. 3(b) visualizes
the shifting (denoted by different shapes). This negatively influences the value function learning
since the outdated latent action representation no longer reflects the same transition at present. To
handle this, we propose a representation relabeling mechanism. In specific, we feed the batch of
stored original hybrid actions to our representation models to obtain the latest latent representations,
for each mini-batch training in Eq.7. For latent discrete action ẑk, if it can not be mapped to the
corresponding original action k in the latest embedding table, we will relabel ẑk through looking
up the table with stored original discrete action k̂, i.e., ẑk ← eζ,k̂ + N (0, 0.1). The purpose of
adding noise N (0, 0.1) is to ensure the diversity of the relabeled action representations, For latent
continuous action ẑx, we first obtain δ̃s,s′ through the latest decoder pψ(ẑx, s, eζ,k̂). Then we verify

if ‖δ̃s,s′ − δs,s′‖22 > δ0 (threshold value δ0 = is set to be 4 ∗ L̂Dyn, where L̂Dyn is the moving empir-
ical loss), i.e., the case that indicates that the historical representations has no longer semantically
consistent (with respect to environmental dynamics) under current representation models. Then ẑx
will be relabeled by the latest latent representations zk ∼ qφ(· | x̂k, s, eζ,k). In this way, the policy
learning is always performed on latest representations, so that the issue of representation distribution
shift can be effectively alleviated. The experiment on relabeling techniques is in Appendix C.3.

B EXPERIMENTAL DETAILS

B.1 SETUPS

Our codes are implemented with Python 3.7.9 and Torch 1.7.1. All experiments were run on a
single NVIDIA GeForce GTX 2080Ti GPU. Each single training trial ranges from 4 hours to 10
hours, depending on the algorithms and environments. For more details of our code can refer to the
HyAR.zip in the supplementary results.

Benchmark Environments We conduct our experiments on several hybrid action environments and
detailed experiment description is below.

• Platform (Masson et al., 2016): The agent need to reach the final goal while avoiding the
enemy or falling into the gap. The agent need to select the discrete action (run, hop, leap)
and determine the corresponding continuous action (horizontal displacement) simultane-
ously to complete the task. The horizon of an episode is 20.

• Goal (Masson et al., 2016): The agent shoots the ball into the gate to win. Three types
of hybrid actions are available to the agent including kick-to(x,y), shoot-goal-left(h), shoot-
goal-right(h). The continuous action parameters position (x, y) and position (h) along the
goal line are quit different. Furthermore, We built a complex version of the goal environ-

12

Accepted as a contributed talk at NeurIPS 2021 Deep RL Workshop

Layer Actor Network (π(s)) Critic Network (Q(s, a) or V (s))

Fully Connected (state dim, 256) (state dim + RK+
∑

k |Xk|, 256) or
(state dim + R

∑
k |Xk| , 256) or (state dim, 256)

Activation ReLU ReLU

Fully Connected (256, 256) (256, 256)
Activation ReLU ReLU

Fully Connected (256, RK) and (256, R
∑

k |Xk|) (256, 1)
or (256, R

∑
k |Xk|) or (256, RK)

Activation tanh None

Table 3: Network structures for the actor network and the critic network (Q-network or V -network).

ment, called Hard Goal. We redefined the shot-goal action and split it into ten parameter-
ized actions by dividing the goal line equidistantly. The continuous action parameters of
each shot action will be mapped to a region in the goal line. The horizon of an episode is
50.

• Catch Point (Fan et al., 2019): The agent should catch the target point (orange) in limited
opportunity (10 chances). There are two hybrid actions move and catch. Move is param-
eterized by a continuous action value which is a directional variable and catch is to try to
catch the target point. The horizon of an episode is 20.

• Hard Move (designed by us): The agent needs to control n equally spaced actuators to
reach target area (orange). Agent can choose whether each actuator should be on or off.
Thus, the size of the action set is exponential in the number of actuators that is 2n. Each
actuator controls the moving distance in its own direction. n controls the scale of the action
space. As n increases, the dimension of the action will increase. The horizon of an episode
is 25.

B.2 NETWORK STRUCTURE

Our PATD3 is implemented with reference to github.com/sfujim/TD3
(TD3 source-code). PADDPG and PDQN are implemented with reference to
https://github.com/cycraig/MP-DQN. For a fair comparison, all the baseline methods
have the same network structure (except for the specific components to each algorithm) as our
HyAR-TD3 implementation. For PDQN, PADDPG, we introduce a Passthrough Layer (Masson
et al., 2016) to the actor networks to initialise their action-parameter policies to the same linear
combination of state variables. HPPO paper does not provide open source-code and thus we
implemented it by ourselves according to the guidance provided in their paper. For HPPO, the
discrete actor and continuous actor do not share parameters (better than share parameters in our
experiments).

As shown in Tab.3, we use a two-layer feed-forward neural network of 256 and 256 hidden units
with ReLU activation (except for the output layer) for the actor network for all algorithms. For
PADDPG, PDQN and HHQN, the critic denotes the Q-network. For HPPO, the critic denotes the
V -network. Some algorithms (PATD3, PADDPG, HHQN) output two heads at the last layer of the
actor network, one for discrete action and another for continuous action parameters.

The structure of HyAR is shown in Tab.4. We introduced element-wise product operation (Tang
et al., 2021) and cascaded head structure (Azabou et al., 2021) to our HyAR model. More details
about their effects are in Appendix C.3.

B.3 HYPERPARAMETER

For all our experiments, we use the raw state and reward from the environment and no normalization
or scaling are used. No regularization is used for the actor and the critic in all algorithms. An
exploration noise sampled from N(0, 0.1) (Fujimoto et al., 2018) is added to all baseline methods
when select action. The discounted factor is 0.99 and we use Adam Optimizer (Kingma & Ba,
2015) for all algorithms. Tab. 5 shows the common hyperparamters of algorithms used in all our
experiments.

13

Accepted as a contributed talk at NeurIPS 2021 Deep RL Workshop

Model Component Layer (Name) Structure

Discrete Action Embedding Table Eζ Parameterized Table (Rd1 , RK)

Conditional Encoder Network Fully Connected (encoding) (RXk , 256)
qφ (z | xk, s, eζ,k) Fully Connected (condition) (state dim + Rd1 , 256)

Element-wise Product ReLU (encoding) · ReLU(condition)
Fully Connected (256, 256)

Activation ReLU
Fully Connected (mean) (256, Rd2)

Activation None
Fully Connected (log std) (256, Rd2)

Activation None

Conditional Decoder & Prediction Network Fully Connected (latent) (Rd2 , 256)
pψ(xk, δ̃s,s′ | z, s, eζ,k) Fully Connected (condition) (state dim + Rd1 , 256)

Element-wise Product ReLU(decoding) · ReLU(condition)
Fully Connected (256, 256)

Activation ReLU
Fully Connected (reconstruction) (256, RXk)

Activation None
Fully Connected (256, 256)

Activation ReLU
Fully Connected (prediction) (256, state dim)

Activation None

Table 4: Network structures for the hybrid action representation (HyAR) including, the discrete
action embedding table and the conditional VAE.

Hyperparameter HPPO PADDPG PDQN HHQN PATD3 PDQN-TD3 HHQN-TD3 HyAR-DDPG HyAR-TD3

Actor Learning Rate 1·10−4 1·10−4 1·10−4 1·10−4 3·10−4 3·10−4 3·10−4 1·10−4 3·10−4

Critic Learning Rate 1·10−3 1·10−3 1·10−3 1·10−3 3·10−4 3·10−4 3·10−4 1·10−3 3·10−4

Representation Model Learning Rate - - - - - - - 1·10−4 1·10−4

Discount Factor 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Optimizer Adam Adam Adam Adam Adam Adam Adam Adam Adam

Target Update Rate - 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3

Tau Actor - 1·10−3 1·10−3 1·10−3 5·10−3 5·10−3 5·10−3 1·10−3 5·10−3

Tau Critic - 1·10−2 1·10−2 1·10−2 5·10−3 5·10−3 5·10−3 5·10−3 5·10−3

Exploration Policy N (0, 0.1) N (0, 0.1) N (0, 0.1) N (0, 0.1) N (0, 0.1) N (0, 0.1) N (0, 0.1) N (0, 0.1) N (0, 0.1)
Batch Size 128 128 128 128 128 128 128 128 128
Buffer Size 105 105 105 105 105 105 105 105 105

Actor Epoch 2 - - - - - - - -
Critic Epoch 10 - - - - - - - -

Table 5: A comparison of common hyperparameter choices of algorithms.We use ‘-’ to denote the
‘not applicable’ situation.

B.4 ADDITIONAL IMPLEMENTATION DETAILS

Training setup: For PPO, the actor network and the critic network are updated every 2 and 10
episodes respectively for all environment. The clip range of PPO algorithm is set to 0.2 and we use
GAE (Schulman et al., 2016) for stable policy gradient. For DDPG-based, the actor network and the
critic network is updated every 1 environment step. For TD3-based, the critic network is updated
every 1 environment step and the actor network is updated every 2 environment step.

The discrete action embedding table is initialized randomly by drawing each dimension from the
uniform distribution U(−1, 1) before representation pre-training. The latent action dim (discrete or
continuous latent action) default value is 6. We set the KL weight in representation loss LVAE as 0.5
and dynamics predictive representation loss weight β as 10 (default). More details about dynamics
predictive representation loss weight are in Appendix C.2.

For the warm-up stage, we run 5000 episodes (please refer to Tab. 6 for the corresponding environ-
ment steps in different environments) for experience collection and then pre-train the representation
model (discrete action embedding table and conditional VAE) for 5000 batches with batch size 64,
after which we start the training of the latent policy. The representation models (the embedding table
and conditional VAE) are trained every 10 episodes 1 batches with batch size 64 for the rest of RL
training.

14

Accepted as a contributed talk at NeurIPS 2021 Deep RL Workshop

Algorithm 2: HyAR-DDPG
1 Initialize actor πω and critic networks Qθ with random parameters ω, θ, and the corresponding target

network parameters ω̄, θ̄
2 Initialize discrete action embedding table Eζ and conditional VAE qφ, pψ with random parameters ζ, φ, ψ
3 Prepare replay buffer D repeat Stage 1
4 Update ζ and φ, ψ using samples in D . see Eq. 6
5 until reaching maximum warm-up steps;
6 repeat Stage 2
7 for t← 1 to T do
8 // select latent actions in representation space
9 ẑk, ẑx = πω(s) + εe, with εe ∼ N (0, σ)

10 // decode into original hybrid actions
11 k̂ = gE(ẑk), x̂k = pψ(ẑx, s, eζ,k̂) . see Eq. 3
12 Execute (k̂, x̂k), observe rt and new state s′

13 Store {s, k̂, x̂k, ẑk, ẑx, r, s′} in D
14 Sample a mini-batch B of N experience from D
15 Update critic by minimizing empirical loss L̂Q(θ) = N−1∑

B (y −Qθ(s, ẑk, ẑx))2, where
y = r + γQθ̄ (s′, πω̄(s′))

16 Update actor by the deterministic policy gradient
17 ∇ωJ(ω) = N−1∑

s∈B
[
∇πω(s)Qθ(s, πω(s))∇ωπω(s)

]
.

18 repeat
19 Update ζ and φ, ψ using samples in D . see Eq. 6
20 until reaching maximum representation training steps;
21 until reaching maximum training steps;

Environment Number of Warm-up Env. Steps Number of Total
original new Env. Steps

Goal 20000 (0.067|0.78) 5000 (0.017|0.75) 300000

Hard Goal 20000 (0.067|0.60) 5000 (0.017|0.55) 300000

Platform 10000 (0.05|0.98) 5000 (0.025|0.96) 200000

Catch Point 100000 (0.1|0.90) 20000 (0.02|0.82) 1000000

Hard Move (n=4) 100000 (0.1|0.93) 20000 (0.02|0.91) 1000000

Hard Move (n=6) 100000 (0.1|0.92) 20000 (0.02|0.92) 1000000

Hard Move (n=8) 100000 (0.1|0.89) 20000 (0.02|0.83) 1000000

Hard Move (n=10) 100000 (0.1|0.75) 20000 (0.02|0.70) 1000000

Table 6: The exact number of samples used in warm-up stage training in different environments.
The column of ‘original’ denotes what is done in our experiments; the column of ‘new’ denotes ad-
ditional experiments we conduct with fewer warm-up samples (and proportionally fewer warm-up
training). For each entry x(y|z), x is the number of samples (environment steps), y denotes the per-
centage number of warm-up environment steps

number of total environment steps during the training process , and z denotes the corresponding performance
of HyAR-TD3 as evaluated in Tab. 2. Conclusion: The numbers of warm-up environment steps are
about 5%−10% of the total environment steps in our original experiments. The number of warm-
up environment steps can be further reduced by at most 80% off (thus leading to < 3% of the total
environment steps) while comparable performance of our algorithm remains.

B.5 DDPG-BASED HYAR ALGORITHM

Additionally, we implemented HyAR with DDPG (Lillicrap et al., 2015), called HyAR-DDPG. The
pseudo-code of complete algorithm is shown in Algorithm 2. Results of DDPG-based experimental
comparisons can be found in Appendix C.1.

15

Accepted as a contributed talk at NeurIPS 2021 Deep RL Workshop

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e5)

0.0

0.2

0.4

0.6

0.8

Av
g

Ep
iso

de
 R

ew
ar

d
HPPO
PDQN
PADDPG
HHQN
HyAR-DDPG

(a) Goal

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e5)

25

20

15

10

5

0

5

10

15

Av
g

Ep
iso

de
 R

ew
ar

d

HPPO
PDQN
PADDPG
HHQN
HyAR-DDPG

(b) Hard Goal

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps (1e5)

0.0

0.2

0.4

0.6

0.8

1.0

Av
g

Ep
iso

de
 R

ew
ar

d

HPPO
PDQN
PADDPG
HHQN
HyAR-DDPG

(c) Platform

0 2 4 6 8 10
Time Steps (1e5)

30

20

10

0

10

Av
g

Ep
iso

de
 R

ew
ar

d

HPPO
PDQN
PADDPG
HHQN
HyAR-DDPG

(d) Catch Point

0 2 4 6 8 10
Time Steps (1e5)

80

60

40

20

0

Av
g

Ep
iso

de
 R

ew
ar

d

HPPO
PDQN
PADDPG
HHQN
HyAR-DDPG

(e) Hard Move (n = 4)

0 2 4 6 8 10
Time Steps (1e5)

40

30

20

10

0

10

Av
g

Ep
iso

de
 R

ew
ar

d

HPPO
PDQN
PADDPG
HHQN
HyAR-DDPG

(f) Hard Move (n = 6)

0 2 4 6 8 10
Time Steps (1e5)

60

50

40

30

20

10

0

Av
g

Ep
iso

de
 R

ew
ar

d

HPPO
PDQN
PADDPG
HHQN
HyAR-DDPG

(g) Hard Move (n = 8)

0 2 4 6 8 10
Time Steps (1e5)

50

40

30

20

10

0

Av
g

Ep
iso

de
 R

ew
ar

d

HPPO
PDQN
PADDPG
HHQN
HyAR-DDPG

(h) Hard Move (n = 10)

Figure 7: DDPG-based comparisons of related baselines on different environments. The x- and y-
axis denote the environment steps (×105) and averaged reward over the recent 100 episodes. The
results are averaged using 5 runs, while the solid line and shaded represent the mean value and a
standard deviation, respectively.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e5)

10

0

10

20

30

40

Av
g

Ep
iso

de
 R

ew
ar

d

HyAR-TD3 (with dynamic prediction)
HyAR-TD3 (without dynamic prediction)

(a) Goal

0 2 4 6 8 10
Time Steps (1e5)

50

40

30

20

10

0

10

Av
g

Ep
iso

de
 R

ew
ar

d

HyAR-TD3 (with dynamic prediction)
HyAR-TD3 (without dynamic prediction)

(b) Hard Move (n = 8)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e5)

20

10

0

10

20

30

40

Av
g

Ep
iso

de
 R

ew
ar

d
Beta = 0
Beta = 0.1
Beta = 1
Beta = 5
Beta = 10
Beta = 20

(c) Goal

Figure 8: Learning curves for variants of dynamics predictive representation for HyAR. (a) and (b)
show the comparison between HyAR-TD3 with and without dynamics prediction auxiliary loss; (c)
shows the effects of the balancing weight β in Eq.6. The results are averaged using 5 runs, while the
solid line and shaded represent the mean value and a standard deviation respectively.

C COMPLETE LEARNING CURVES AND ADDITIONAL EXPERIMENTS

C.1 LEARNING CURVES FOR DDPG-BASED COMPARISONS

Fig. 7 visualizes the learning curves of DDPG-based comparisons, where HyAR-DDPG outperforms
other baselines in both the final performance and learning speed in most environments. Besides the
learning speed, HyAR-DDPG also achieves the best generalization as HyAR-TD3 across different
environments. When the environments become complex (shown in Fig. 7(e-h)), HyAR-DDPG still
achieves steady and better performance than the others, particularly demonstrating the effectiveness
and generalization of HyAR in high-dimensional hybrid action spaces.

C.2 LEARNING CURVES FOR THE DYNAMICS PREDICTIVE REPRESENTATION

Fig. 8 shows the learning curves of HyAR-TD3 with dynamics predictive representation loss
(Fig. 8(a-b)) and the influence of dynamics predictive representation loss weight β on algorithm
performance (Fig. 8(c)). We can easily find that the representation learned by dynamics predictive
representation loss is better than without dynamics predictive representation loss. For the weight β
of dynamics predictive representation loss, we search the candidate set {0.1, 1, 5, 10, 20}. The re-
sults show that the performance of the algorithm will gradually improve with the increase of weight
β, reaches the best when β = 10 and then goes down as further increase of β. We can conclude that
the dynamics predictive representation loss is helpful for deriving an environment-awareness repre-

16

Accepted as a contributed talk at NeurIPS 2021 Deep RL Workshop

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e5)

10

0

10

20

30

40

Av
g

Ep
iso

de
 R

ew
ar

d
Unfixed HyAR
Fixed HyAR

(a) Goal

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps (1e5)

10

0

10

20

30

Av
g

Ep
iso

de
 R

ew
ar

d

Unfixed HyAR
Fixed HyAR

(b) Hard Goal

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps (1e5)

0.2

0.4

0.6

0.8

1.0

Av
g

Ep
iso

de
 R

ew
ar

d

Unfixed HyAR
Fixed HyAR

(c) Platform

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps (1e5)

40

30

20

10

0

10

Av
g

Ep
iso

de
 R

ew
ar

d

Unfixed HyAR
Fixed HyAR

(d) Catch Point

0 2 4 6 8 10
Time Steps (1e5)

50

40

30

20

10

0

10

Av
g

Ep
iso

de
 R

ew
ar

d

Unfixed HyAR
Fixed HyAR

(e) Hard Move(n=8)

Figure 9: Comparison between HyAR-TD3 (denoted by Unfixed HyAR) and HyAR-TD3 with fixed
hybrid action representation space trained in warm-up stage (denoted by Fixed HyAR) in different
environments. The x- and y-axis denote the environment steps and average episode reward over
recent 100 episodes. The results are averaged using 5 runs, while the solid line and shaded represent
the mean value and a standard deviation respectively. Conclusion: Unfixed HyAR outperforms
Fixed HyAR across all the environments; while Fixed HyAR performs very poorly in Goal and
Hard Goal. We conjecture that in these environments, random policy is quite limited in collecting
effective and meaning hybrid actions in these environments thus the learned fixed representation
space is not able to support the emergence of effective latent policy.

sentation for further improving the learning performance, efficacy, and stability. More experiments
on representation visualization are in Appendix C.4.

We conduct additional experiments to compare HyAR-TD3 and HyAR-TD3 with fixed hybrid action
representation space trained in the warm-up stage in the environments Platform, Goal, Hard Goal,
Catch Point and Hard Move (n = 8). The results are provided in Fig. 9, demonstrating the necessity
of subsequent training of the representation trained in the warm-up stage.

C.3 LEARNING CURVES AND TABLE FOR THE RESULTS IN ABLATION STUDY

As briefly discussed in Sec. 5.3, we conduct detailed ablation experiments on the key components
of the algorithm, including:

• element-wise product (Tang et al., 2021) (v.s. concat) operation;
• cascaded head (Azabou et al., 2021) (v.s. parallel head) structure;
• latent select range c ∈ {80, 90, 96, 100}, for the latent space constraint (LSC) mechanism;
• action representation relabeling, corresponding to representation shift correction (RSC);
• latent action dim d1 = d2 ∈ {3, 6, 12};

Fig. 10 shows the learning curves of HyAR-TD3 and its variants for ablation studies, corresponding
to the results in Tab. 7.

First, we can observe that element-wise product achieves better performance than concatenation
(Fig. 10(a,e)). As similarly discovered in (Tang et al., 2021), we hypothesize that the explicit re-
lation between the condition and representation imposed by element wise product forces the con-
ditional VAE to learn more effective hidden features. Second, the significance of cascaded head is

17

Accepted as a contributed talk at NeurIPS 2021 Deep RL Workshop

Operation Structure Result

Elem.-Wise Prod. Concat. Cascaded Parallel Latent Select Range c Latent Action Dim Relabeling Dynamics Predictive Results (Goal) Results (Hard Move)

X X 96% 6 X X 0.78 ± 0.03 0.89 ± 0.03

X X 96% 6 X X 0.66± 0.10 0.83± 0.04

X X 96% 6 X X 0.71 ± 0.04 0.80± 0.13

X X 96% 6 X 0.66 ± 0.07 0.83± 0.08

X X 100% 6 X X 0.62 ± 0.11 0.78± 0.13
X X 90% 6 X X 0.61 ± 0.04 0.78± 0.08
X X 80% 6 X X 0.08 ± 0.17 0.56± 0.12

X X 96% 3 X X 0.59 ± 0.09 0.58± 0.16
X X 96% 12 X X 0.65 ± 0.09 0.90 ± 0.04
X X 96% 6 X 0.55 ± 0.15 0.84 ± 0.05

Table 7: Ablation of our algorithm across each contribution in Goal and Hard Move (n = 8).
Results are average success rates at the end of training process over 5 runs. ± corresponds to a
standard deviation. The corresponding episode reward learning curves are shown in Fig. 10.

demonstrated by its superior performance over parallel head (Fig. 10(a,e)) which means cascaded
head can better output two different features. Third, representation relabeling shows an apparent
improvement (Fig. 10(b,f)) which show that representation shift leads to data invalidation in the
experience buffer which will affect RL training. Fourth, a reasonable latent select range plays an
important role in algorithm learning (Fig. 10(c,g)). Only constrain the action representation space
of the latent policy inside a reasonable area (both large and small will fail), can the algorithm learn
effectively and reliably. These experimental results supports our analysis above.

We also analyse the influence of latent action dim d1, d2 for RL (Fig. 10(d,h)). In the low-
dimensional hybrid action environment, we should choose a moderate value (e.g., 6). While for
high-dimensional environment, larger value may be better (e.g., 12). The insight behind is that the
proper dimensionality of latent action representation may be comparable (or more compact) to the
dimensionality of state (ranging from 4 to 17 dimensions in different environments in our exper-
iments). This is because the latent action representation should reflect the semantics of original
hybrid action, i.e., the state residual.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e5)

20

10

0

10

20

30

40

Av
g

Ep
iso

de
 R

ew
ar

d

HyAR-TD3
HyAR-TD3 (Concat)
HyAR-TD3 (Parallel)

(a) Operator and Structure

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e5)

10

0

10

20

30

40

Av
g

Ep
iso

de
 R

ew
ar

d

HyAR-TD3
HyAR-TD3 (No relabel)

(b) Representation relabeling

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e5)

20

10

0

10

20

30

40

Av
g

Ep
iso

de
 R

ew
ar

d

HyAR-TD3 (select range = 96%)
HyAR-TD3 (select range = 100%)
HyAR-TD3 (select range = 90%)
HyAR-TD3 (select range = 80%)

(c) Latent select range

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps (1e5)

20

10

0

10

20

30

40

Av
g

Ep
iso

de
 R

ew
ar

d

HyAR-TD3 (latent dim = 6)
HyAR-TD3 (latent dim = 3)
HyAR-TD3 (latent dim = 12)

(d) Latent action dim

0 2 4 6 8 10
Time Steps (1e5)

50

40

30

20

10

0

10

Av
g

Ep
iso

de
 R

ew
ar

d

HyAR-TD3
HyAR-TD3 (Concat)
HyAR-TD3 (Parallel)

(e) Operator and Structure

0 2 4 6 8 10
Time Steps (1e5)

50

40

30

20

10

0

10

Av
g

Ep
iso

de
 R

ew
ar

d

HyAR-TD3
HyAR-TD3 (No relabel)

(f) Representation relabeling

0 2 4 6 8 10
Time Steps (1e5)

50

40

30

20

10

0

10

Av
g

Ep
iso

de
 R

ew
ar

d

HyAR-TD3 (select range = 96%)
HyAR-TD3 (select range = 100%)
HyAR-TD3 (select range = 90%)
HyAR-TD3 (select range = 80%)

(g) Latent select range

0 2 4 6 8 10
Time Steps (1e5)

50

40

30

20

10

0

10

Av
g

Ep
iso

de
 R

ew
ar

d

HyAR-TD3 (latent dim = 6)
HyAR-TD3 (latent dim = 3)
HyAR-TD3 (latent dim = 12)

(h) Latent action dim

Figure 10: Learning curves of ablation studies for HyAR (i.e., element-wise + cascaded head +
representation relabeling + latent select range = 96% + latent action dim = 6) corresponding to
Tab. 7. From top to bottom is Goal and Hard move (n = 8) environment. The shaded region denotes
standard deviation of average evaluation over 5 trials.

C.4 REPRESENTATION VISUAL ANALYSIS

In order to further analyze the hybrid action representation, we visualize the learned hybrid action
representations. Fig. 11 and Fig. 12 shows the t-SNE visualization for HyAR in Goal and Hard
Move (n = 8) environment.

18

Accepted as a contributed talk at NeurIPS 2021 Deep RL Workshop

As we can see from Fig. 11, we adopt t-SNE to cluster the latent continuous actions, i.e., (zx),
outputted by the latent policy, and color each action based on latent discrete actions i.e., (zk). We
can conclude that latent continuous actions can be clustered by latent discrete actions, but there are
multiple modes in the global range. Our dependence-aware representation model makes good use
of this relationship that the choice of continuous action parameters is depend on discrete actions.

For the dynamics predictive representation loss, we adopt t-SNE to cluster the latent actions, i.e.,
(zk, zx), outputted by the latent policy, and color each action based on its impact on the environment
(i.e., δs,s′). As shown in Fig. 12, we observe that actions with a similar impact on the environment
are relatively closer in the latent space. This demonstrates the dynamics predictive representation
loss is helpful for deriving an environment-awareness representation for further improving the learn-
ing performance, efficacy, and stability.

t-SNE

100

50

0

50

100

(a) Goal

t-SNE

100

50

0

50

100

(b) Hard Move (n = 8)

Figure 11: t-SNE visualization diagram of continuous action embedding zx, color coded by discrete
action embedding zk. The continuous actions related to the same discrete actions are mapped to the
similar regions of the representation space.

t-SNE

100

50

0

50

100

(a) Goal

t-SNE

100

50

0

50

100

(b) Hard Move (n = 8)

Figure 12: t-SNE visualization diagram of hybrid action embedding pair (zk, zx), color coded by
δs,s′ . The hybrid actions with a similar impact on the environment are relatively closer in the latent
space.

19

	Introduction
	Preliminaries
	Hybrid Action Representation (HyAR)
	Dependence-aware Encoding and Decoding
	Dynamics Predictive Representation

	DRL with Hybrid Action Representation
	Experiments
	Experiment setups
	Performance Evaluation
	Ablation Study and Visual Analysis

	Conclusion
	Detailed for Latent Space Constraint (LSC) and Representation Shift Correction(RSC)
	Experimental Details
	Setups
	Network Structure
	Hyperparameter
	Additional Implementation Details
	DDPG-based HyAR algorithm

	 Complete Learning Curves and Additional Experiments
	Learning Curves for DDPG-based Comparisons
	Learning Curves for the Dynamics Predictive Representation
	Learning Curves and Table for the Results in Ablation Study
	Representation Visual Analysis

