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Abstract

Open-world semi-supervised classification is a001
problem where unlabeled samples come from002
both seen and unseen classes. Existing methods003
mainly regularize the representation space of004
all unlabeled samples and solely rely on clus-005
tering methods to identify the new classes. We006
introduce this task in the text domain and ar-007
gue that class-indicative words may exist in the008
unlabeled samples, offering a unique opportu-009
nity that can help discover the unseen classes.010
To this end, we propose a novel method OW-011
Class that jointly performs class name predic-012
tion and document clustering, mutually enhanc-013
ing each other in an iterative manner. Specifi-014
cally, we first construct an overestimated num-015
ber of classes through clustering. Then, we016
extract a list of class-indicative words from017
the clusters and use them to identify similar018
clusters and nominate class names. These re-019
fined class names further guide us to adjust the020
document representations, and from here, the021
iterative loop follows along. We conduct ex-022
periments on four popular text classification023
datasets by setting the most infrequent half of024
classes as unseen, which emphasizes the imbal-025
anced and emerging nature of real-world sce-026
narios. Results demonstrate the power of OW-027
Class in both classifying the unlabeled samples028
and identifying the names of unseen classes.029

1 Introduction030

Recent advances in neural networks have achieved031

state-of-the-art performance in many close-world032

classification problems where all test samples share033

the same set of classes as in the training set (Le-034

Cun et al., 2015; Silver et al., 2016; Esteva et al.,035

2017; Devlin et al., 2019). Whereas classical semi-036

supervised learning settings reduce human efforts037

by only requiring a subset of examples to be labeled038

in the dataset (Zhu, 2005; Lee et al., 2013; Kingma039

et al., 2014; Goldberger and Ben-Reuven, 2017a),040

making sure these labeled examples have covered041

all the classes in the dataset is never a trivial effort, 042

especially in the dynamic and emerging real world 043

that is typically open and with limited supervision. 044

Open-world semi-supervised learning (Cao et al., 045

2021) is a setting where the labeled training exam- 046

ples only come from a subset of all classes. This 047

subset of classes is called seen classes and the 048

rest classes are called unseen classes. An open- 049

world semi-supervised method shall learn the se- 050

mantics of the labeled training samples from the 051

seen classes and generalize the semantics to the 052

unlabeled test set, which contains samples from 053

both seen and unseen classes. Successful solutions 054

to this problem can lift the requirement that the 055

labeled examples have to cover all the classes in 056

the dataset, thus saving tremendous human effort. 057

In this paper, we study open-world semi- 058

supervised classification in the text domain, which 059

none of the existing text classification methods can 060

handle. Whereas the existing method (Cao et al., 061

2021) can be extended from images to documents, 062

text classification has its uniqueness because the 063

text is composed of words, some of which reflect 064

the semantics of the classes, giving another kind 065

of supervision signals (Tao et al., 2018; Mekala 066

and Shang, 2020; Wang et al., 2021b). These 067

class-indicative words, upon successfully detected, 068

can help discover the unseen classes. As a con- 069

crete example, if the underlying unseen class is 070

sports, class-indicative words such as football and 071

Olympics can help identify sports-related docu- 072

ments. 073

We thus propose a novel framework OW-Class, 074

which leverages this naturally shared connection 075

among documents, class-indicative words, and 076

class names. It brings up the potential to extend the 077

representation learning and clustering by iteratively 078

refining the clusters of documents and the names 079

of the classes, through class-indicative words. 080

Figure 1 illustrates the general idea of OW-Class. 081

Specifically, we first make an overestimation of the 082
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Figure 1: An overview of OW-Class framework. Given the corpus and a part of labels, we first estimate document
representations and construct the initial clusters. And then, we perform an iterative cluster refinement to remove
redundant clusters. At the end of each iteration, we will update the document representations and recluster them.

number of classes and construct initial clusters of083

documents. Then, we employ an iterative process084

to refine the clusters and their names. To label085

clusters with names, we learn a classifier that can086

identify class-indicative words. The classifier is087

trained by the given seen-class supervision. When088

there is redundancy among these clusters, the same089

class-indicative words for the clusters will overlap,090

in which case we know one cluster is redundant.091

To re-estimate clusters with class names, we esti-092

mate class representations with the help of class-093

indicative words and tailor a document representa-094

tion learning guided by class names to re-construct095

the clusters. We repeat this iterative process till the096

number of classes no longer decreases.097

Extensive experiments on four popular datasets098

have shown the strong performance of OW-Class.099

For example, on the NYT dataset, OW-Class can100

outperform the best-compared methods by 15.39%.101

It is worth mentioning that we specifically design102

challenging experiments by setting the most infre-103

quent half of classes as unseen, which emphasizes104

the unbalanced and emerging nature of real-world105

scenarios. Further tests show that OW-Class is ro-106

bust to (extremely) imbalanced data distributions.107

Moreover, the class names our method detects are108

highly related to and sometimes even the same as109

the ground truth class names.110

To the best of our knowledge, this is the first111

work for open-world semi-supervised text classifi-112

cation. Our contributions are as follows.113

• We identify the unique opportunity of leverag-114

ing class names and class-indicative words for115

unseen class discovery.116

• We propose a novel method OW-Class that117

jointly performs class name prediction and docu-118

ment clustering in a mutually improving manner.119

• Extensive experiments demonstrate that OW-120

Class outperforms the previous benchmark in121

various manners. Ablation studies also verify the122

necessity of the components in OW-Class.123

Reproducibility. We will release the code and 124

datasets on Github1. 125

2 Preliminaries 126

In this section, we formally define the problem 127

of open-world semi-supervised text classification. 128

And then, we brief on some preliminaries about 129

CGExpan and X-Class, two crucial building blocks 130

that we will use in our method. 131

Problem Formulation. In an open-world setting, 132

there exists a not fully known set of classes C, 133

which follow the same hyper-concept and have 134

the same granularity and a set of documents D. 135

Each document can be uniquely assigned to a class. 136

An open-world semi-supervised model can observe 137

partial information of C. In this work, we assume 138

that partial information is given as a labeled dataset 139

Ds = {xi, yi}ni=1, yi ∈ Cs, where Cs ⊂ C. The 140

goal of the model is to classify the remainder of 141

the dataset, Du = D\Ds, where some of the la- 142

bels in Cu = C\Cs is completely unknown to the 143

model. Therefore, the model needs to discover the 144

number of them, the names of them, and finally the 145

attribution of documents to them. 146

CGExpan. Entity set expansion aims to expand 147

a set of seed keywords (e.g., United Sates, China) 148

to new keywords (e.g., Japan) following the same 149

hyper-concept (i.e., Country). Leveraging this tech- 150

nique, we can expand the seen class names to more 151

potential class names, helping to capture the se- 152

mantics of unseen classes. However, traditional 153

methods typically give duplicated and semantically- 154

shifted entities even at the top of the rank list. In 155

our method, we employ CGExpan (Zhang et al., 156

2020), one of the current state-of-the-art methods 157

for set expansion. CGExpan selects automatically 158

generated hyper-concept words by probing a pre- 159

trained language model (e.g., BERT), and further 160

ranks all possible words guided by selected hyper- 161

1https://github.com/anonymous
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concept. In our work, we utilize CGExpan to find162

semantically related words to the user-given class163

names as candidates for the class-indicative words.164

This is because CGExpan, or any set expansion165

methods, tends to propose a superset of the true166

underlying class names, including many too fine-167

grained names for classes. Our method resolves168

this problem by training a classifier that can iden-169

tify class-indicative words, which is an important170

reason why we need some labeled user supervision.171

X-Class. X-Class is an extremely weakly super-172

vised text classification method that works without173

any supervision of labeled documents and only re-174

lies on the class names (Wang et al., 2021b). It175

proposes a framework that first learns class rep-176

resentations from class names and then estimates177

class-oriented document representations. It also178

integrates clustering to refine the class boundaries179

for each class. While X-Class showed promising180

performance in close-world classification settings181

with minimal supervision, it cannot work in open-182

world settings. We use X-Class to identify clusters183

from class names, however, in our use case, the184

class names might be noisy and contain more fine-185

grained or similar names. We note that the original186

version of X-Class fails to solve this, because of the187

unstable class representation in its very first step.188

We propose a stable class representation estimation189

that can work in such a noisy case, by leveraging190

(a portion of) the class-indicative words again.191

3 Our OW-Class Method192

In this section, we first present the overall design193

of OW-Class (Figure 1) and then discuss its two194

key components: (1) Clusters → Class names and195

(2) Class names → Clusters.196

3.1 Overall Design197

Similar to previous work on open-world classifi-198

cation (Cao et al., 2021), our method OW-Class199

also first gives an initial overestimation of classes,200

thereby transforming the problem into reducing201

extra classes and assigning documents to the re-202

maining. However, different from works in the203

image domain, we rely on the names of the classes204

to cohesively group similar documents. And as205

we will demonstrate later, these class names along206

with class-indicative words will aid in refining the207

clusters, allowing our method to propose a very208

accurate number of classes in the end.209

Following above, OW-Class breaks the open-210

world class identification and document classifi- 211

cation into two sub-problems: (1) the removal of 212

similar clusters and identification of a set of similar- 213

granularity class names when given (possibly too) 214

fine-grained clusters of documents, and (2) the clus- 215

tering of documents when given a list of (partially 216

correct) class names. 217

The first problem is challenging, because the ini- 218

tial clusters are noisy and possibly too fine-grained 219

compared with the seen class names (leading to 220

duplicates). We heavily leverage the concept of 221

class-indicative words, words that are semantically 222

related to the clusters, to identify and eliminate 223

clusters that are too similar. The class-indicative 224

words are obtained by ranking high-potential words 225

according to their similarity to the corresponding 226

clusters, where the similarity is estimated through a 227

trained compact network with user-provided super- 228

vision. The class-indicative words are also used to 229

suggest the class name for the remaining clusters. 230

The second problem is also not easy as we need 231

to cluster documents given partially correct class 232

names. While there are existing extremely weak su- 233

pervision works that can classify documents given 234

class names (Aharoni and Goldberg, 2020; Meng 235

et al., 2020; Wang et al., 2021b), they focus on a 236

perfectly given list of class names, and as we show 237

in our ablations, do not perform well when the 238

class names have redundancy. We show here the 239

power of (a part of) class-indicative words that are 240

used to solve the first problem. They can be inte- 241

grated with an existing extremely weak supervision 242

method X-Class (Wang et al., 2021b) to stabilize 243

the clustering2. 244

We propose to integrate the solutions to these 245

two sub-problems together, so we can refine the 246

class names and clusters interleavingly, enjoying 247

the mutual enhancement loop. This loop naturally 248

stops when we don’t see any redundant clusters. 249

The pseudo-code of the algorithm is summarized 250

in Algorithm 1. And more subtle implementation 251

details can also be found in Appendix B. 252

3.2 Clusters → Class Names 253

Figure 2 shows an overview of this subsection. 254

Proposing High-potential Words. The first step 255

to constructing the class-indicative words is to limit 256

the possible such words to consider. We consider 257

words of two types: (1) words in the same semantic 258

2We do not differentiate the naming of clustering and clas-
sification too much here, since it is a noisy setting.
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(1) Proposing High-potential Words (2) Indicativeness Ranking (3) Removal of Redundant Clusters
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Figure 2: An overview of Cluster → Class Names.

class as the given class names, and (2) words that259

are statistically representative in the clusters. For260

the semantically related words Wsem, we employ261

CGExpan (Zhang et al., 2020), a set expansion262

method designed to propose semantically and gran-263

ularly similar words. For the statistically outstand-264

ing words Wstat := Wstat
i , 1 ≤ i ≤ C, where C265

is the size of the clusters in the current iteration,266

we follow Mekala and Shang (2020) to find these267

words within each cluster (details in Appendix B).268

Indicativeness Ranking. To quantitatively eval-269

uate how similar any two classes are, we need to270

rank the high-potential words for each cluster and271

compare the similarity of their most representative272

words. Here, we utilize the user-given class names273

and labels as supervision signals to train a classifier274

to determine the relevance of a high-potential word275

to a cluster.276

Specifically, we construct features for a high-277

potential word to a cluster based on the representa-278

tion similarity 3 of the word to the cluster’s statisti-279

cally outstanding words Wstat
i . The labeled docu-280

ments are virtually clustered and used as positive281

signals since we know the user-given class names.282

The negative signals are deemed through a heuristic283

based on the most dissimilar high-potential word284

to the current cluster name. We train a Multilayer285

Perceptron (MLP) binary classifier on the features286

and signals, and assign a classification probability287

score to each high-potential word and cluster pair288

p(w, i), w ∈ Wsem ∪Wstat, 1 ≤ i ≤ C.289

We also propose a post-processing step to re-290

move generic words from the ranking. We follow291

previous work (Jones, 1972) and design a penalty292

coefficient µ(w, i) based on inter-class statistics293

(details in Appendix B). The final indicativeness294

ranking is based on the product of two scores:295

I(w, i) = p(w, i)× µ(w, i).296

3See Appendix B for the exact definition of similarity.

Removal of Redundant Clusters. We finally dis- 297

cuss how we remove the clusters that have too 298

similar meanings on the granularity of given class 299

names. In simple terms, we pick the top class- 300

indicative words as the representative set of words 301

Si for a cluster i, and remove clusters that have 302

non-empty intersections in the sets. By removal, 303

we do not mean to remove the data points, rather 304

that we do not consider the cluster when determin- 305

ing the final list of class names. We need to address 306

two details, first the size of the set and second the 307

cluster to be removed when two have intersections. 308

The size of this set for a cluster i is related to the 309

quality of the class-indicative words, which we esti- 310

mate by two factors: (1) T , the number of iterations 311

passed which reflects the overall improvement of 312

classification; (2) Q, the ratio of the indicativeness 313

score I(·, i) between the highest and lowest in the 314

set, an intra-cluster restriction to prevent the se- 315

lection of low-quality class-indicative words. For 316

each cluster, we add the class-indicative words to 317

the representative set Si one by one, until either 318

|Si| = T or Q < β. β is a hyper-parameter that 319

controls the looseness of class-indicative words in 320

the set. 321

When two sets Si and Sj have overlapped, we 322

would like to retain the cluster that contains more 323

coherent documents since we believe it means 324

the cluster is more robust and therefore the class- 325

indicative words are of higher quality. We intro- 326

duce the representation similarity ηi to denote how 327

coherent a cluster i is, 328

ηi =
1

|Ri|
∑
r∈Ri

cos
(
r,Ri

)
, (1) 329

where Ri is the list of all documents’ representa- 330

tions in cluster i4, and Ri is the average representa- 331

4In the iterative framework, we know the document repre-
sentation from the sub-problem of obtaining clusters.
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tion of the list. When overlap happens, we remove332

the cluster that has lower coherence η.333

Finally, after the removal of all redundant clus-334

ters, we re-estimate the indicativeness ranking for335

the remaining clusters to eliminate the effect of336

redundant clusters and preserve the word with the337

top score as the final class name for each cluster.338

3.3 Class Names → Clusters339

While this sub-problem resembles extremely weak340

supervision for text classification5, we note that341

the noise brought by imperfect class names can342

be detrimental to traditional methods (Wang et al.,343

2021b; Meng et al., 2020). We demonstrate that344

it is possible to adapt a traditional method X-345

Class (Wang et al., 2021b) with the statistically346

outstanding words Wstat
i to a noisy scenario.347

Importantly, the divergence of X-Class stems348

from its very first step, which involves estimating349

a class representation based on each class name.350

The estimation relies on the assumption of mutual351

similarity and granularity, which is not the case352

in our scenario. We will use the class-indicative353

words to stably estimate class representations, and354

then apply them for X-Class. It is possible that355

our stable class representation estimation can help356

other text classification methods, and we leave that357

to future research.358

Class Representation Estimation Based on Class359

Name. We slightly diverge to discuss how X-Class360

estimates the class representation as we are going to361

use part of it as a subroutine. Specifically, given a362

class name w, they find its synonyms list Kw by the363

similarity of representations. Then they estimate364

the class representations xw by computing an av-365

erage of representations of words in Kw, weighted366

by the inverse rank of similarities.367

xw =

∑Kw
i=1

1
i · sKw,i∑Kw
i=1

1
i

.368

Back to our method, we consider the list of class-369

indicative words for a cluster i. We first initialize a370

representation rw of all words w in Wstat
i through371

the class representation estimation method in X-372

Class. The byproduct of that process is a list of373

synonyms Kw for each word w ∈ Wstat
i . We374

use this list to find the relatedness of a word w in375

Wstat
i , as defined by376

hw = |Kw ∩Wstat
i |.377

5Also known as text classification with class names only.

Then, we perform a weighted average of rw based 378

on the relatedness to obtain the class representation: 379

yi =

∑
w hw · rw∑

w hw
. 380

We use this stable class representation as input to 381

X-Class and obtain the clusters. The byproduct of 382

X-Class is document representations that we will 383

use in the next iteration of class name nominations. 384

4 Experiments 385

4.1 Datasets 386

We evaluate OW-Class on four popular datasets 387

of different textual sources, including three news 388

article datasets 20News (Lang, 1995), NYT (Meng 389

et al., 2018) and AGNews (Zhang et al., 2015), 390

and a large ontology categorization dataset DB- 391

pedia (Zhang et al., 2015) based on 14 ontology 392

classes in DBpedia. Table 1 contains the detailed 393

statistics of the four datasets. 394

Table 1: An overview of our datasets. The imbalance
factor refers to the ratio of sample sizes between the
most frequent class and least frequent one in the dataset.

20News NYT AGNews DBpedia

# of Classes 5 5 4 14
# of Documents 17,871 13,081 120,000 560,000

Imbalance 2.02 16.65 1.0 1.0

Sentiment analysis is also popular in text classifi- 395

cation. However, many explored sentiment analysis 396

settings with weak supervision are on the coarse- 397

grained setting (Wang et al., 2021b; Meng et al., 398

2020) with 2 classes (positive and negative), which 399

is not practical for open-world class detection. 400

4.2 Compared Methods 401

We compare our method with ORCA. ORCA (Cao 402

et al., 2021), originally proposed for the image 403

domain, is a general method for open-world semi- 404

supervised classification. It utilizes an uncertainty 405

adaptive margin to reduce the learning gap between 406

seen and unseen classes. To transfer ORCA to the 407

text domain, we concatenate the original classifier 408

with BERT. 409

We also propose two strong baselines. BERT is 410

known to capture the domain information of a doc- 411

ument well (Aharoni and Goldberg, 2020; Wang 412

et al., 2021a). So we design BERT+GMM, which 413

utilizes the CLS token representations after fine- 414

tuning on the partially given dataset to fit a GMM 415

for all classes. CGExpan+X-Class takes the high- 416

quality class names from CGExpan and employs 417
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Table 2: Evaluations of compared methods and OW-Class. The mean macro-F1 scores over three runs are reported.

Method Additional
Input

20News NYT AGNews DBpedia
All Seen Unseen All Seen Unseen All Seen Unseen All Seen Unseen

ORCA None 19.63 49.07 0 28.23 61.32 18.52 23.13 46.27 0 98.93 99.52 98.33
OW-Class 79.87 90.24 72.96 91.13 90.34 91.59 87.07 84.11 90.04 93.88 96.30 91.46

ORCA (Our estimation)

Number
of classes

76.49 87.50 69.16 44.41 67.70 28.89 84.20 88.49 81.01 80.08 99.23 60.94
BERT+GMM (Our estimation) 57.14 71.63 47.49 58.83 76.24 47.22 63.54 67.91 59.16 82.05 96.18 67.93

CGExpan+X-Class (Our estimation) 74.43 80.07 70.66 71.89 89.10 60.42 78.33 81.34 75.35 83.93 93.22 74.63
ORCA (Oracle) 63.45 88.69 46.64 27.82 39.22 20.21 90.96 88.07 93.85 98.93 99.52 98.33

BERT+GMM (Oracle) 39.08 57.95 26.66 46.09 71.01 29.47 47.68 61.88 33.48 75.39 97.11 53.67
CGExpan+X-Class (Oracle) 67.58 78.12 60.56 75.74 87.20 68.09 83.00 79.72 86.27 67.46 88.77 46.15

X-Class on top of the class names (details in Ap-418

pendix B).419

4.3 Experimental Settings420

For the basic experiments, we split the classes into421

half seen and half unseen. Among the seen classes,422

half of the documents contain labels and the rest423

are unlabeled (Figure 3).424

raw texts and their (unknown) oracle labels

computer sports politics religion

computer sports

seen classes and labeled dataset unlabeled dataset

Hidden Oracle

Given Training Data

Figure 3: Schematic diagram of the corpus split. Only
a certain proportion of samples in popular classes are
provided as training labels.

Since all compared methods (except our OW-425

Class) require knowing the total number of classes,426

we test them in three ways.427

• Oracle: Ground truth number of classes is given.428

• Our Estimation: We give OW-Class’s final pre-429

diction of classes to the baselines.430

• Estimation in ORCA: ORCA also introduces a431

method (Han et al., 2019) to estimate the number432

of classes, so we test ORCA under this estima-433

tion. Since further experiments show this method434

doesn’t work in most our datasets, we do not test435

other baselines with its estimation.436

Evaluation. Since the final number of classes pro-437

duced by a method may not be equal to the ground438

truth, a mapping from the prediction to the actual439

classes is required. We first do a maximum match-440

ing between the predicted classes and the ground441

truth classes to ensure that each ground truth class442

corresponds to at least one class in our results. In443

the case when the number of predicted classes is444

less than the ground truth, we create virtual classes445

with no documents inside. Then, each remaining446

predicted class is assigned to the ground truth class447

Low Medium High
imbalance degree

75
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95

100

m
ac
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ORCA (Oracle)
OW-Class

Figure 4: Overall performance of ORCA and OW-Class
on different imbalance degrees.

that shares the largest overlap. After applying the 448

mapping, we use the F1 scores as the metric on clas- 449

sification performance for both seen and unseen 450

classes (we show macro-F1 scores in this section 451

and micro-F1 scores can be found in Appendix D). 452

4.4 Experimental Results 453

OW-Class Performance. We assess the open- 454

world semi-supervised performance of OW-Class 455

versus other baselines. Table 2 contains detailed 456

comparisons. Specifically, OW-Class outperforms 457

the two baselines BERT+GMM and CGExpan+X- 458

Class across all four datasets for both seen and 459

unseen classes, even though they are given the or- 460

acle number of classes as input. This strength- 461

ens the need for our iterative refinement process 462

since merely applying fine-tuning or X-Class does 463

not bring as good performance as ours. Moreover, 464

while the general method ORCA performs well 465

on DBpedia, its performance is exceptionally poor 466

on the other three datasets as it fails to detect the 467

number of classes anywhere close to the correct 468

number. Even when the correct number is given as 469

input to ORCA, OW-Class still outperforms it sig- 470

nificantly in 20News and NYT, with only a small 471

performance margin on AGNews and DBpedia. 472

Imbalance Tolerance. As a generic solution, 473

ORCA with the ground truth number of classes out- 474

performs OW-Class on the two balanced datasets, 475

AGNews and DBpedia, while underperforming on 476
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Table 3: Ablation study of OW-Class. The mean macro-F1 scores over three runs are reported.

Method 20News NYT AGNews DBpedia
All Seen Unseen All Seen Unseen All Seen Unseen All Seen Unseen

OW-Class 79.87 90.24 72.96 91.13 90.34 91.59 87.07 84.11 90.04 93.88 96.30 91.46
OW-Class-noIter 64.90 84.29 51.98 67.84 85.48 56.09 75.20 77.89 72.51 92.59 96.88 88.29
OW-Class-oneIter 79.68 90.37 72.55 89.84 89.47 90.08 84.95 82.25 87.64 95.39 97.50 93.28

OW-Class-X 75.18 84.03 69.22 85.29 88.22 83.33 88.48 84.82 92.14 90.72 95.04 86.40

the two other imbalanced datasets. To gain further477

insights, we conduct experiments on the tolerance478

of imbalance for OW-Class and ORCA. As shown479

in Table 4, we construct three imbalanced DBpe-480

dia datasets with different degrees of imbalance.481

This is achieved through removing the number of482

samples in each class by a linearly increasing ra-483

tio ∆. For example, when ∆ = 5%, the classes484

have 100%, 95%, 90%, . . . of its original docu-485

ments. We choose the ordering of classes randomly486

but fixed across the Low, Medium and High ex-487

periments, and by design, the classes with a larger488

number of documents are seen classes.489

Table 4: An overview of the imbalanced DBpedia
datasets with 14 classes.

Low Medium High

∆ 3% 4% 5%
# of Documents 450,800 41,44,00 378,000

Imbalance 1.64 2.08 2.86

Figure 4 shows the result of OW-Class and490

ORCA on the three datasets. ORCA is sensitive to491

imbalanced classes. Its overall performance drops492

more than 20% as the data distribution get more493

imbalanced, while OW-Class is rather stable. This494

experiment shows that OW-Class is more robust495

to imbalanced classes of text datasets which are496

common in the real world (e.g., the imbalance ratio497

of NYT collected from NYT news is 16.65).498

Effect of Multiple Iterations. We further explore499

how the iterations of nomination and classification500

in Sec. 3.2 and 3.3 influence the performance. OW-501

Class’s performance without iterative refinement is502

labeled as OW-Class-noIter. As shown in Table 3,503

it performs better than naive baseline BERT+GMM504

by more than 7.76%. Though the initial clusters are505

good, the unseen part is still up to 35.50% lower506

than OW-Class on NYT, indicating the iteration im-507

proves the performance for unseen classes. After508

one iteration, the performance of OW-Class-oneIter509

almost converges among all the datasets to OW-510

Class’s best scores and even beats OW-Class on511

DBpedia. We believe the first iteration is the most512

critical one in our method. As shown in Table 5, the513

first iteration can remove the majority of redundant514

classes. The subsequent iterations further detect re-515

Table 5: Predictions of the number of classes. The
average numbers over three runs are reported.

Method 20News NYT AGNews DBpedia

Ground Truth 5 5 4 14
ORCA’s baseline 2.0 3.0 2.0 14.0

OW-Class-noIter (initial guess) 10 15 10 35
OW-Class-oneIter 7.7 10.3 7.0 28.0

OW-Class 7.3 9.3 6.0 20.3

Table 6: Examples of the class nomination.

Dataset Ground Truth OW-Class

20News science encryption, electronics, orbit
NYT business economy

AGNews sports game
DBpedia artist painter, singer

maining redundancy but lead to little performance 516

improvement. 517

Effect of Improved X-Class. In Sec. 3.3, we intro- 518

duce class-indicative words into X-Class to assist 519

in stable class representation computation. We ver- 520

ify how the improved X-Class contributes to the 521

overall performance. OW-Class-X directly utilizes 522

the class names as the input of the original X-Class 523

for clustering. As shown in Table 3, except for 524

AGNews, the overall performance of OW-Class-X 525

drops over 3.16% on the other three datasets. For 526

unseen classes, this drop can reach 8.26% in NYT. 527

One possible reason for the drop is the classifica- 528

tion result of the original X-Class highly dependent 529

on the class names. The results get poor if the 530

chosen names are not accurate enough. 531

Prediction of the Number of Classes. OW-Class 532

starts with an initial guess on the number of classes 533

(details in Appendix C) and removes redundant 534

ones iteratively. The number of the remaining 535

classes is its prediction of the total number of 536

classes. As shown in Table 5, after the first itera- 537

tion, the number of redundant classes drops from 538

33% to 60%. OW-Class’s final predicted number of 539

classes is around 1.5 times larger than the ground 540

truth, but the estimation turns out to be reasonable 541

as shown in Table 6 (details in Appendix D). In 542

fact, OW-Class overestimates because its predicted 543

classes are the fine-grained version of the ground 544

truth classes. For example, DBpedia’s artist class 545

can be split into painter and singer. As a baseline, 546

ORCA can estimate the number of classes. Though 547

its estimation is accurate on 14-classes DBpedia, 548
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Table 7: Study of Hyper-parameters Sensitivity.

Parameter Tested value Relative Performance Change
NYT DBpedia

|Wsem| 20, 25, 30, 35, 40 -4.93% ∼ +1.46% 0%
|Wstat

i | 40, 50, 60, 70 -3.65% ∼ 0% -3.26% ∼ +0.36%
β 0.55, 0.6, 0.65, 0.7 0% -0.72% ∼ +0.13%

the predictions on the other datasets are almost the549

same as the number of seen classes. This shows it550

requires enough seen classes to ensure its accuracy.551

Hyper-parameter Sensitivity. OW-Class has three552

hyper-parameters: |Wsem|, |Wstat
i |, and β, and553

we show their default values in Appendix B. To554

further explore the stability and robustness of OW-555

Class, we conduct a hyper-parameter sensitivity556

study on two datasets: NYT and DBpedia, to study557

how fluctuations in hyper-parameters influence the558

performance of our method. The experiment is559

conducted on a fixed random seed (42). We present560

results on the range of relative performance change561

in different values of hyper-parameters compared562

to default settings. As shown in Table 7, These563

performance changes are within a reasonable range.564

Our method does not need to fine-tune these hyper-565

parameters.566

Additional results on imbalance tolerance and567

ablation study are reported in Appendix D.568

5 Related Work569

Open-world Learning. Traditional open-world570

recognition methods (Bendale and Boult, 2015;571

Rudd et al., 2017; Boult et al., 2019) aim to in-572

crementally extend the set of seen classes with573

new unseen classes. These methods require hu-574

man involvement to label new classes. Recently,575

ORCA (Cao et al., 2021) defined open-world semi-576

supervised classification in the image domain and577

proposed a general solution which utilized unla-578

beled data in the learning stage and did not require579

any human effort. However, this method’s perfor-580

mance is not robust enough for the imbalanced data581

in the text domain. In contrast, our work is applica-582

ble for infrequent classes and exploits the fact that583

the input is words which are class-indicative.584

Extremely Weak Supervision in NLP. Aharoni585

and Goldberg (2020) showed that the average of586

BERT token representations can preserve docu-587

ments’ domain information. X-Class (Wang et al.,588

2021b) followed this idea to propose the extremely589

weak supervision setting where text classification590

only relies on the name of the class as supervi-591

sion. However, such methods can not transfer to592

open-world classification naively as they cannot593

detect unseen classes. Our method leverages such 594

extremely weak supervision methods as a subrou- 595

tine to help the clustering of documents. But im- 596

portantly, we note that such methods cannot be 597

applied straightforwardly as they also are sensitive 598

to noise and too similar classes. We show that our 599

general idea of using class-indicative words can fur- 600

ther help an extremely weak supervision method to 601

obtain stable performance. 602

Joint Clustering with Downstream Tasks. To 603

some sense, our method leverages partly an 604

idea called joint clustering, which some recent 605

works (Caron et al., 2018; Asano et al., 2020) in the 606

image domain achieved high performance through 607

jointly performing clustering and image classifi- 608

cation. Their main idea is to utilize clustering to 609

extract the hidden information of image represen- 610

tations and generate pseudo-labels, which in turn 611

provide supervision for classification training and 612

ultimately guide the co-improvement of representa- 613

tion and clustering. However, the crucial difference 614

is that their methods already know the predefined 615

classes and highly depend on strong assumptions 616

like all classes share the same size to obtain excel- 617

lent performance. Conversely, OW-Class utilizes 618

the general idea of joint clustering in an open-world 619

setting where the classes may be too fine-grained 620

and noisy. We address these unique challenges via 621

the class-indicative words we propose and show 622

that our methodology can not only estimate the pre- 623

cise number of classes but also tolerate imbalanced 624

data distribution. 625

6 Conclusions and Future Work 626

In this paper, we introduce the open-world semi- 627

supervised classification task in the text domain, 628

identify the key challenges and unique opportuni- 629

ties, and then propose OW-Class which can achieve 630

quite decent performance. OW-Class starts with 631

an overestimated number of classes and constructs 632

an iterative refinement framework that jointly per- 633

forms class nomination and document clustering, 634

leading to iterative mutual enhancement. Exten- 635

sive experiments demonstrate the effectiveness and 636

stability of OW-Class. In the future, we plan to 637

extend the open-world setting to many other NLP 638

tasks. We also believe that open-world text clas- 639

sification can be conducted with even less human 640

effort, for example, by only requiring user-provided 641

seed words or class names for those seen classes. 642
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7 Ethical Considerations643

In this paper, we propose an approach to the text644

classification problem, a fundamental task in natu-645

ral language processing to efficiently classify docu-646

ments such as news reports. We conducted experi-647

ments on four publicly available and widely used648

datasets and did not observe any risky classifica-649

tion information, so we believe that our approach650

is entirely ethically flawless and will not harm vul-651

nerable groups.652
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A Limitations799

As an initial attempt in open-world semi-supervised800

text classification, our method and evaluation met-801

ric still have the following limitations.802

A.1 Theoretical Guarantees803

We are aware that we made quite a few design804

choices without a solid theoretical guarantee. For805

example, there might be different choices of simi-806

larity functions for our MLP features or a different807

number of statistically representative words to ex-808

tract.809

Nevertheless, as a pioneering work in open-810

world text classification, our goal is to design a811

working algorithm and promote the power of class-812

indicative words. In addition, in order to make sure813

that our method is stable and robust under our set-814

ting, we also conducted extensive hyper-parameter815

sensitivity studies.816

A.2 Evaluation Criteria817

As shown in Sec. 4.4, experimental analysis indi-818

cates that OW-Class produces some fine-grained819

classes, which would not show up on our purity-820

based evaluation metric. In an extremal If there821

is no penalty for generating too many subclasses,822

dividing all documents into individual classes can823

be a shortcut to a perfect score. However, we also824

note that the problem of the deficit of a perfect met-825

ric stems from finding a good metric for clustering,826

which has been studied for a long time without a827

universal solution. Although it is impossible to828

completely avoid some differences in the metric829

evaluation, we tried our best to mitigate the differ-830

ences and conduct a fair comparison.831

First, the criterion for evaluation is the most rea-832

sonable one we could find. We investigated ORCA833

and other related work including clustering and834

topic modeling and did not find a metric that bal-835

ances the number of predicted classes and the purity836

of predicted classes. Finding an appropriate metric837

for this task is a separate research problem.838

Also, since the bias of the metric is caused by the839

potentially different numbers of predicted classes840

in different methods, we paid attention to this num-841

ber. In a large portion of our main experiments, the842

comparisons are all based on the same number of843

classes, either provided by ground truth or by our844

method (Table 2). With such a controlled number845

of classes, we believe the evaluation is fair and reli-846

able. We can see from the predicted class names in847

Sec. 4.4 and Appendix D that the additional classes 848

our method identified are meaningful and distinct 849

from existing classes in datasets, demonstrating the 850

importance of discovering new classes. 851

B Implementation Details 852

B.1 Algorithm 853

We summarize our iterative refinement framework 854

in Algorithm 1. 855

Algorithm 1 Iterative Refinement Framework
Input: clusters C, document representations R

1: while there are still redundant clusters do
2: Find class-indicative words W
3: for each cluster Ci in C do
4: Train MLP and rank W
5: Select possible names Si from W
6: Compute cluster coherence ηi (Eq. 1)
7: for each pair Si,Sj do
8: if Si ∩ Sj ̸= ∅ and ηi ≤ ηj then
9: Remove Ci

10: Re-estimate class names S
11: update R,C based on S

B.2 Implementation Details of OW-Class 856

In our experiments, we fine-tune the pre-trained 857

BERT-base-uncased model provided in Hugging- 858

face’s Transformers library (Wolf et al., 2019). 859

In each iteration, we use 25 times the number 860

of seen classes as |Wsem|. For each cluster, we 861

fix |Wstat
i | = 50 to get sufficient statistically out- 862

standing words.In class nomination, the quality 863

ratio threshold is β = 0.6. The analysis of hyper- 864

parameter sensitivity is shown in Sec. 4.4. 865

Initial Clusters. The iterative refinement frame- 866

work should start with a reasonable (over-) esti- 867

mation of initial clusters based on the initial class 868

names. We first make a bold guess (refer to Ap- 869

pendix C) on the number of classes as previous 870

work (Cao et al., 2021) did. The guess can be sev- 871

eral times larger than the actual number of classes. 872

Afterwards, we utilize CGExpan to propose a large 873

number of possible class names, so as to cover the 874

semantics of all possible classes. We take the static 875

representations of these names as the initial class 876

representations. Then, we use these class represen- 877

tations as input to X-Class and obtain the document 878

representations. We fine-tune a BERT (Devlin et al., 879

2019) classifier with the given labeled documents. 880

The CLS token representation after fine-tuning is 881
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concatenated with the X-Class representation for882

each document to form the initial document rep-883

resentations we use. We then run a GMM (Duda884

et al., 1973) on these representations to identify885

the clusters, where the number of clusters is our886

overestimation.887

Details of MLP Features. To construct the MLP888

features, we first follow Wang et al. (2021b) and ob-889

tain static representation sw for each word w in the890

input corpus, by averaging BERT’s contextualized891

representations of all its appearances:892

sw =

∑
w′=w tw′∑
w′=w 1

,893

where w′ are occurrences of the word in the corpus894

and tw′ is its contextualized word representation.895

This static representation is used as an anchor to896

measure the semantic similarity between words.897

Then we define quality features for a high-potential898

word to a cluster as the mean and variance of Eu-899

clidean distance and cosine similarity of static rep-900

resentations between them.901

Statistical Metric. In Sec. 3.2, we follow Mekala902

and Shang (2020) to find statistically outstanding903

words within cluster i:904

scorei(w) =
si(w)

sizei
·tanh

(
ti(w)

sizei

)
·log

(
sizeall
sall(w)

)
,905

where ti(w) is the number of occurrences of the906

word w in documents belonging to cluster i, si(w)907

indicates how many documents in cluster i con-908

tain the word w while sizei indicates how many909

documents are in cluster i.910

In the measurement, the first term tells how in-911

dicative a word is to a cluster, the second term912

measures how frequent this word is, and the third913

is a normalization based on the inverse document914

frequency.915

Penalty Coefficient. In Sec. 3.2, we use a penalty916

coefficient to punish the words that are too generic917

to be semantically meaningful. In this section, we918

give our definition of the penalty coefficient µ(w, i)919

for each candidate class name w in cluster i,920

µ(w, i) = log

(
Med{rankj(w) | 1 ≤ j ≤ C}

1 + ranki(w)

)
,921

where ranki(w) is the absolute rank number of922

w in cluster i based on MLP’s prediction and923

Med{S} is the median value of the set S.924

The main idea of this formula is to obtain a co-925

efficient to penalize those generic words (e.g., life,926

which might rank high in most clusters) from being 927

selected as class names. The numerator of the frac- 928

tion shows how the word behaves across all clusters 929

while the denominator shows how it behaves in a 930

specific cluster. The median rank of a generic word 931

will be very close to the specific rank. Note that 932

we allow one word as the class name of several 933

clusters because of the initial overestimation, but if 934

a word ranks high in more than half of the clusters, 935

it is considered a generic word that must be filtered. 936

Such penalization and normalization are similar 937

to the inverse document frequency term in Infor- 938

mation Retrieval. Therefore, we follow the design 939

and choose to divide the two values and take the 940

logarithm. Similar to the inverse document fre- 941

quency, this penalty coefficient lowers the chance 942

of selecting a generic word but will not harm proper 943

words. 944

Iterative Framework. The iterative framework is 945

solving the aforementioned two sub-problems one 946

by one, obtaining class names from clusters and 947

clusters from class names. The first sub-problem 948

entails removing redundant clusters and the natu- 949

ral stopping criteria for the iteration is when no 950

clusters are removed. 951

Final Text Classifier. The iteration ends with the 952

determined number of classes and document dis- 953

tribution. The clusters in the final iteration pro- 954

vide high-quality pseudo labels for the unlabeled 955

dataset. Following many previous works in (ex- 956

tremely) weak supervision (Meng et al., 2018; 957

Mekala and Shang, 2020; Meng et al., 2020; Wang 958

et al., 2021b), we train a classifier based on given 959

labels and these pseudo labels to generalize such 960

knowledge to new documents. This is a typical 961

noisy training task (Angluin and Laird, 1988; Gold- 962

berger and Ben-Reuven, 2017b). The clusters in 963

Sec. 3.3 are obtained through GMM (Duda et al., 964

1973) following X-Class, and the final text classi- 965

fier is trained on a selected dataset that has high 966

posterior probability in the final GMM. Experi- 967

ments in Appendix D show the usefulness of this 968

extra classifier. 969

B.3 Implementation Details of baselines 970

For ORCA, We migrate its method to the text do- 971

main by using BERT to obtain the feature represen- 972

tations. For CGExpan + X-Class, We first expand 973

a large number of class names via CGExpan and 974

employs X-Class to give each document a class- 975

oriented representation. Then, we train a GMM 976
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and take the class name closest to the center of977

each cluster as the final name of the correspond-978

ing cluster. Finally we use these names to get the979

classification result by X-Class.980

B.4 Computational Budget981

All experiments are conducted using a 32-Core Pro-982

cessor and a single RTX A6000 GPU. The expected983

running time of OW-class is less than one hour,984

for a dataset with a sample size of 10,000 (e.g.,985

20News, NYT). A larger dataset may require more986

time; for DBpedia (a massive dataset with 560,000987

samples), 10 hours is expected. Note, however, that988

ORCA cannot provide same-condition results in a989

single day.990

C Initial Guessed Number of Classes991

In initial clustering, OW-Class makes a bold guess992

on the number of classes at the initial stage. We993

treat this guessed number of classes as a hyper-994

parameter. Here we give our default scheme. We995

choose 5 times the number of seen classes as the996

estimation of total classes and also plus a imbalance997

factor P of the labeled dataset as compensation998

for GMM, since we assume that all classes will999

split into clusters of almost equal size in the initial1000

clustering. That is,1001

P =
∑
c∈Cs

⌊
NUM(c)

minc∈Cs NUM(c)
− 1

⌋
,1002

where NUM(c) is the number of labeled texts in1003

class c. In a (almost) balanced dataset, P = 0. But1004

for NYT (extremely imbalanced) in our setting, we1005

have P = 5.1006

We further test OW-Class with different initial1007

estimations. Figure 5 shows that when the initial1008

number of classes is in a reasonable range, OW-1009

Class can deliver a steady result that can outper-1010

form baselines in most instances. And its perfor-1011

mance can get even better with more initial clusters.1012

But OW-Class may suffer a significant performance1013

drop when the initial class is too small (especially1014

for extreme imbalanced datasets like NYT).1015

D Additional Results1016

Effect of Extra Classifier. To verify the effec-1017

tiveness of the extra classifier (see details in Ap-1018

pendix B) after the iterative refinement, we design1019

OW-Class-GMM which obtains the labels from the1020

GMM in the last iteration. The improvement of1021

OW-Class over OW-Class-GMM in Table 8 shows 1022

the usefulness of the classifier training. 1023

Imbalance Tolerance. We further show the per- 1024

formance of ORCA and OW-Class on imbalanced 1025

DBpedia for both seen and unseen classes. 1026

As shown in Figure 6, ORCA’s performance 1027

drops more than 40% on unseen classes, demon- 1028

strating its intolerance to imbalanced data distribu- 1029

tions. 1030

Micro-F1 Scores. Tables 9 and 10 show the micro- 1031

F1 scores of experiments in Sec. 4.4. 1032

Examples of Class Nomination. We addition- 1033

ally show the full list of the class nomination 1034

in Table 11. Our class names are highly re- 1035

lated to ground truth class names and human- 1036

understandable. 1037
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Figure 5: Sensitivity on the Initial Guessed Number of Classes for 20News, NYT and AGNews. The mean macro-F1

scores over three runs are reported. OW-Class is slow on DBpedia, therefore not reported.
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Figure 6: Performance of ORCA and OW-Class on different imbalance degrees.

Table 8: Effectiveness Study of Extra Classifier. The mean macro-F1 scores over three runs are reported.

Method 20News NYT AGNews DBpedia
All Seen Unseen All Seen Unseen All Seen Unseen All Seen Unseen

OW-Class 79.87 90.24 72.96 91.13 90.34 91.59 87.07 84.11 90.04 93.88 96.30 91.46
OW-Class-GMM 77.27 88.77 69.62 90.38 89.98 90.65 86.82 83.50 90.13 93.43 96.05 90.80

Table 9: Evaluations of compared methods and OW-Class. The mean micro-F1 scores over three runs are reported.

Method Additional
Input

20News NYT AGNews DBpedia
All Seen Unseen All Seen Unseen All Seen Unseen All Seen Unseen

ORCA None 32.57 48.97 0 63.82 79.36 18.52 30.82 46.27 0 98.93 99.52 98.33
OW-Class 78.36 89.65 72.04 94.63 96.46 91.28 87.91 84.08 90.09 93.01 95.72 91.58

ORCA (Our estimation)

Number
of classes

75.80 87.17 69.66 68.12 84.20 38.38 83.89 88.31 81.56 79.59 99.22 69.70
BERT+GMM (Our estimation) 52.38 69.94 41.77 75.49 89.89 51.34 61.84 67.75 59.17 77.24 96.25 68.20

CGExpan+X-Class (Our estimation) 72.87 81.59 68.76 85.47 96.41 66.84 78.52 81.33 77.07 84.90 92.97 76.65
ORCA (Oracle) 63.04 88.29 49.82 32.91 40.67 22.08 91.88 88.08 93.88 98.93 99.52 98.33

BERT+GMM (Oracle) 42.55 56.71 29.97 66.02 80.74 36.06 48.46 61.86 33.30 75.39 97.08 54.34
CGExpan+X-Class (Oracle) 67.10 79.09 61.09 85.54 93.45 73.26 84.22 79.72 86.55 70.78 89.23 52.41

Table 10: Ablation study of OW-Class. The mean micro-F1 scores over three runs are reported.

Method 20News NYT AGNews DBpedia
All Seen Unseen All Seen Unseen All Seen Unseen All Seen Unseen

OW-Class 78.36 89.65 72.04 94.63 96.46 91.28 87.91 84.08 90.09 93.01 95.72 91.58
OW-Class-noIter 63.95 83.96 53.93 81.27 94.59 58.87 74.49 77.89 72.84 91.28 96.61 88.51
OW-Class-oneIter 78.18 89.84 71.77 93.77 96.25 89.30 85.76 82.35 87.50 94.74 96.90 93.50

OW-Class-X 74.25 82.79 68.96 91.63 95.57 83.80 89.57 84.79 92.21 91.11 93.77 88.04
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Table 11: Examples of the class nomination.

Dataset Ground Truth OW-Class

20News

science encryption, electronics, orbit
religion Christianity
computer computer
politics history
sports sports, baseball

NYT

sport sport, tennis, quarterback
business economy
science scientist
art theater

politics politics

AGNews

politics executive, Iraq
sports game

technology technology
business business

DBpedia

athlete footballer, Olympics
artist painter, singer
company company
school school
politics politician

transportation aircraft, locomotive
building church, bridge
river river
village village
animal animal, snail
plant plant
album album
book book
film film
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