OW-Class: Open-world Semi-supervised Text Classification

Anonymous ACL submission

Abstract

Open-world semi-supervised classification is a
problem where unlabeled samples come from
both seen and unseen classes. Existing methods
mainly regularize the representation space of
all unlabeled samples and solely rely on clus-
tering methods to identify the new classes. We
introduce this task in the text domain and ar-
gue that class-indicative words may exist in the
unlabeled samples, offering a unique opportu-
nity that can help discover the unseen classes.
To this end, we propose a novel method OW-
Class that jointly performs class name predic-
tion and document clustering, mutually enhanc-
ing each other in an iterative manner. Specifi-
cally, we first construct an overestimated num-
ber of classes through clustering. Then, we
extract a list of class-indicative words from
the clusters and use them to identify similar
clusters and nominate class names. These re-
fined class names further guide us to adjust the
document representations, and from here, the
iterative loop follows along. We conduct ex-
periments on four popular text classification
datasets by setting the most infrequent half of
classes as unseen, which emphasizes the imbal-
anced and emerging nature of real-world sce-
narios. Results demonstrate the power of OW-
Class in both classifying the unlabeled samples
and identifying the names of unseen classes.

1 Introduction

Recent advances in neural networks have achieved
state-of-the-art performance in many close-world
classification problems where all test samples share
the same set of classes as in the training set (Le-
Cun et al., 2015; Silver et al., 2016; Esteva et al.,
2017; Devlin et al., 2019). Whereas classical semi-
supervised learning settings reduce human efforts
by only requiring a subset of examples to be labeled
in the dataset (Zhu, 2005; Lee et al., 2013; Kingma
et al., 2014; Goldberger and Ben-Reuven, 2017a),
making sure these labeled examples have covered

all the classes in the dataset is never a trivial effort,
especially in the dynamic and emerging real world
that is typically open and with limited supervision.

Open-world semi-supervised learning (Cao et al.,
2021) is a setting where the labeled training exam-
ples only come from a subset of all classes. This
subset of classes is called seen classes and the
rest classes are called unseen classes. An open-
world semi-supervised method shall learn the se-
mantics of the labeled training samples from the
seen classes and generalize the semantics to the
unlabeled test set, which contains samples from
both seen and unseen classes. Successful solutions
to this problem can lift the requirement that the
labeled examples have to cover all the classes in
the dataset, thus saving tremendous human effort.

In this paper, we study open-world semi-
supervised classification in the text domain, which
none of the existing text classification methods can
handle. Whereas the existing method (Cao et al.,
2021) can be extended from images to documents,
text classification has its uniqueness because the
text is composed of words, some of which reflect
the semantics of the classes, giving another kind
of supervision signals (Tao et al., 2018; Mekala
and Shang, 2020; Wang et al., 2021b). These
class-indicative words, upon successfully detected,
can help discover the unseen classes. As a con-
crete example, if the underlying unseen class is
sports, class-indicative words such as football and
Olympics can help identify sports-related docu-
ments.

We thus propose a novel framework OW-Class,
which leverages this naturally shared connection
among documents, class-indicative words, and
class names. It brings up the potential to extend the
representation learning and clustering by iteratively
refining the clusters of documents and the names
of the classes, through class-indicative words.

Figure 1 illustrates the general idea of OW-Class.
Specifically, we first make an overestimation of the
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Figure 1: An overview of OW-Class framework. Given the corpus and a part of labels, we first estimate document
representations and construct the initial clusters. And then, we perform an iterative cluster refinement to remove
redundant clusters. At the end of each iteration, we will update the document representations and recluster them.

number of classes and construct initial clusters of
documents. Then, we employ an iterative process
to refine the clusters and their names. To label
clusters with names, we learn a classifier that can
identify class-indicative words. The classifier is
trained by the given seen-class supervision. When
there is redundancy among these clusters, the same
class-indicative words for the clusters will overlap,
in which case we know one cluster is redundant.
To re-estimate clusters with class names, we esti-
mate class representations with the help of class-
indicative words and tailor a document representa-
tion learning guided by class names to re-construct
the clusters. We repeat this iterative process till the
number of classes no longer decreases.

Extensive experiments on four popular datasets
have shown the strong performance of OW-Class.
For example, on the NYT dataset, OW-Class can
outperform the best-compared methods by 15.39%.
It is worth mentioning that we specifically design
challenging experiments by setting the most infre-
quent half of classes as unseen, which emphasizes
the unbalanced and emerging nature of real-world
scenarios. Further tests show that OW-Class is ro-
bust to (extremely) imbalanced data distributions.
Moreover, the class names our method detects are
highly related to and sometimes even the same as
the ground truth class names.

To the best of our knowledge, this is the first
work for open-world semi-supervised text classifi-
cation. Our contributions are as follows.

* We identify the unique opportunity of leverag-
ing class names and class-indicative words for
unseen class discovery.

* We propose a novel method OW-Class that
jointly performs class name prediction and docu-
ment clustering in a mutually improving manner.

» Extensive experiments demonstrate that OW-
Class outperforms the previous benchmark in
various manners. Ablation studies also verify the
necessity of the components in OW-Class.

Reproducibility. We will release the code and
datasets on Github'.

2 Preliminaries

In this section, we formally define the problem
of open-world semi-supervised text classification.
And then, we brief on some preliminaries about
CGExpan and X-Class, two crucial building blocks
that we will use in our method.

Problem Formulation. In an open-world setting,
there exists a not fully known set of classes C,
which follow the same hyper-concept and have
the same granularity and a set of documents D.
Each document can be uniquely assigned to a class.
An open-world semi-supervised model can observe
partial information of C. In this work, we assume
that partial information is given as a labeled dataset
Ds = {x;,yi}1,vi € Cs, where C; C C. The
goal of the model is to classify the remainder of
the dataset, D,, = D\D,, where some of the la-
bels in C,, = C\Cs is completely unknown to the
model. Therefore, the model needs to discover the
number of them, the names of them, and finally the
attribution of documents to them.

CGExpan. Entity set expansion aims to expand
a set of seed keywords (e.g., United Sates, China)
to new keywords (e.g., Japan) following the same
hyper-concept (i.e., Country). Leveraging this tech-
nique, we can expand the seen class names to more
potential class names, helping to capture the se-
mantics of unseen classes. However, traditional
methods typically give duplicated and semantically-
shifted entities even at the top of the rank list. In
our method, we employ CGExpan (Zhang et al.,
2020), one of the current state-of-the-art methods
for set expansion. CGExpan selects automatically
generated hyper-concept words by probing a pre-
trained language model (e.g., BERT), and further
ranks all possible words guided by selected hyper-
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concept. In our work, we utilize CGExpan to find
semantically related words to the user-given class
names as candidates for the class-indicative words.
This is because CGExpan, or any set expansion
methods, tends to propose a superset of the true
underlying class names, including many too fine-
grained names for classes. Our method resolves
this problem by training a classifier that can iden-
tify class-indicative words, which is an important
reason why we need some labeled user supervision.
X-Class. X-Class is an extremely weakly super-
vised text classification method that works without
any supervision of labeled documents and only re-
lies on the class names (Wang et al., 2021b). It
proposes a framework that first learns class rep-
resentations from class names and then estimates
class-oriented document representations. It also
integrates clustering to refine the class boundaries
for each class. While X-Class showed promising
performance in close-world classification settings
with minimal supervision, it cannot work in open-
world settings. We use X-Class to identify clusters
from class names, however, in our use case, the
class names might be noisy and contain more fine-
grained or similar names. We note that the original
version of X-Class fails to solve this, because of the
unstable class representation in its very first step.
We propose a stable class representation estimation
that can work in such a noisy case, by leveraging
(a portion of) the class-indicative words again.

3  Our OW-Class Method

In this section, we first present the overall design
of OW-Class (Figure 1) and then discuss its two
key components: (1) Clusters — Class names and
(2) Class names — Clusters.

3.1 Overall Design

Similar to previous work on open-world classifi-
cation (Cao et al., 2021), our method OW-Class
also first gives an initial overestimation of classes,
thereby transforming the problem into reducing
extra classes and assigning documents to the re-
maining. However, different from works in the
image domain, we rely on the names of the classes
to cohesively group similar documents. And as
we will demonstrate later, these class names along
with class-indicative words will aid in refining the
clusters, allowing our method to propose a very
accurate number of classes in the end.

Following above, OW-Class breaks the open-

world class identification and document classifi-
cation into two sub-problems: (1) the removal of
similar clusters and identification of a set of similar-
granularity class names when given (possibly too)
fine-grained clusters of documents, and (2) the clus-
tering of documents when given a list of (partially
correct) class names.

The first problem is challenging, because the ini-
tial clusters are noisy and possibly too fine-grained
compared with the seen class names (leading to
duplicates). We heavily leverage the concept of
class-indicative words, words that are semantically
related to the clusters, to identify and eliminate
clusters that are too similar. The class-indicative
words are obtained by ranking high-potential words
according to their similarity to the corresponding
clusters, where the similarity is estimated through a
trained compact network with user-provided super-
vision. The class-indicative words are also used to
suggest the class name for the remaining clusters.

The second problem is also not easy as we need
to cluster documents given partially correct class
names. While there are existing extremely weak su-
pervision works that can classify documents given
class names (Aharoni and Goldberg, 2020; Meng
et al., 2020; Wang et al., 2021b), they focus on a
perfectly given list of class names, and as we show
in our ablations, do not perform well when the
class names have redundancy. We show here the
power of (a part of) class-indicative words that are
used to solve the first problem. They can be inte-
grated with an existing extremely weak supervision
method X-Class (Wang et al., 2021b) to stabilize
the clustering?.

We propose to integrate the solutions to these
two sub-problems together, so we can refine the
class names and clusters interleavingly, enjoying
the mutual enhancement loop. This loop naturally
stops when we don’t see any redundant clusters.

The pseudo-code of the algorithm is summarized
in Algorithm 1. And more subtle implementation
details can also be found in Appendix B.

3.2 Clusters — Class Names

Figure 2 shows an overview of this subsection.

Proposing High-potential Words. The first step
to constructing the class-indicative words is to limit
the possible such words to consider. We consider
words of two types: (1) words in the same semantic

2We do not differentiate the naming of clustering and clas-
sification too much here, since it is a noisy setting.
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Figure 2: An overview of Cluster — Class Names.

class as the given class names, and (2) words that
are statistically representative in the clusters. For
the semantically related words W*¢™, we employ
CGExpan (Zhang et al., 2020), a set expansion
method designed to propose semantically and gran-
ularly similar words. For the statistically outstand-
ing words Wt .= Wetat '] < 4 < C, where C
is the size of the clusters in the current iteration,
we follow Mekala and Shang (2020) to find these
words within each cluster (details in Appendix B).
Indicativeness Ranking. To quantitatively eval-
uate how similar any two classes are, we need to
rank the high-potential words for each cluster and
compare the similarity of their most representative
words. Here, we utilize the user-given class names
and labels as supervision signals to train a classifier
to determine the relevance of a high-potential word
to a cluster.

Specifically, we construct features for a high-
potential word to a cluster based on the representa-
tion similarity 3 of the word to the cluster’s statisti-
cally outstanding words W', The labeled docu-
ments are virtually clustered and used as positive
signals since we know the user-given class names.
The negative signals are deemed through a heuristic
based on the most dissimilar high-potential word
to the current cluster name. We train a Multilayer
Perceptron (MLP) binary classifier on the features
and signals, and assign a classification probability
score to each high-potential word and cluster pair
p(w,i),w € W g Wstat 1 <4 < (.

We also propose a post-processing step to re-
move generic words from the ranking. We follow
previous work (Jones, 1972) and design a penalty
coefficient p(w, i) based on inter-class statistics
(details in Appendix B). The final indicativeness
ranking is based on the product of two scores:

I(w,i) = p(w,i) x p(w,).

3See Appendix B for the exact definition of similarity.

Removal of Redundant Clusters. We finally dis-
cuss how we remove the clusters that have too
similar meanings on the granularity of given class
names. In simple terms, we pick the top class-
indicative words as the representative set of words
S, for a cluster i, and remove clusters that have
non-empty intersections in the sets. By removal,
we do not mean to remove the data points, rather
that we do not consider the cluster when determin-
ing the final list of class names. We need to address
two details, first the size of the set and second the
cluster to be removed when two have intersections.

The size of this set for a cluster ¢ is related to the
quality of the class-indicative words, which we esti-
mate by two factors: (1) 7', the number of iterations
passed which reflects the overall improvement of
classification; (2) (), the ratio of the indicativeness
score I (-, 1) between the highest and lowest in the
set, an intra-cluster restriction to prevent the se-
lection of low-quality class-indicative words. For
each cluster, we add the class-indicative words to
the representative set S; one by one, until either
ISi| = T or @ < B. [ is a hyper-parameter that
controls the looseness of class-indicative words in
the set.

When two sets S; and S; have overlapped, we
would like to retain the cluster that contains more
coherent documents since we believe it means
the cluster is more robust and therefore the class-
indicative words are of higher quality. We intro-
duce the representation similarity 7; to denote how
coherent a cluster 1 is,

)]

where R; is the list of all documents’ representa-
tions in cluster i*, and R;; is the average representa-

*In the iterative framework, we know the document repre-
sentation from the sub-problem of obtaining clusters.



tion of the list. When overlap happens, we remove
the cluster that has lower coherence 7.

Finally, after the removal of all redundant clus-
ters, we re-estimate the indicativeness ranking for
the remaining clusters to eliminate the effect of
redundant clusters and preserve the word with the
top score as the final class name for each cluster.

3.3 Class Names — Clusters

While this sub-problem resembles extremely weak
supervision for text classification’, we note that
the noise brought by imperfect class names can
be detrimental to traditional methods (Wang et al.,
2021b; Meng et al., 2020). We demonstrate that
it is possible to adapt a traditional method X-
Class (Wang et al., 2021b) with the statistically
outstanding words W' to a noisy scenario.
Importantly, the divergence of X-Class stems
from its very first step, which involves estimating
a class representation based on each class name.
The estimation relies on the assumption of mutual
similarity and granularity, which is not the case
in our scenario. We will use the class-indicative
words to stably estimate class representations, and
then apply them for X-Class. It is possible that
our stable class representation estimation can help
other text classification methods, and we leave that
to future research.
Class Representation Estimation Based on Class
Name. We slightly diverge to discuss how X-Class
estimates the class representation as we are going to
use part of it as a subroutine. Specifically, given a
class name w, they find its synonyms list /C,, by the
similarity of representations. Then they estimate
the class representations x,, by computing an av-
erage of representations of words in KC,,, weighted
by the inverse rank of similarities.

K.
> ity % '8

’Cw,i
ZICw 1
=1 3

Back to our method, we consider the list of class-
indicative words for a cluster <. We first initialize a
representation r,, of all words w in W% through
the class representation estimation method in X-
Class. The byproduct of that process is a list of
synonyms KC,, for each word w € W5t We
use this list to find the relatedness of a word w in
Witat as defined by

Xw =

ho = Ko N W),

3 Also known as text classification with class names only.

Then, we perform a weighted average of r,, based
on the relatedness to obtain the class representation:

hy * Ty
yi= Ll Tw :
Zw hw

We use this stable class representation as input to
X-Class and obtain the clusters. The byproduct of
X-Class is document representations that we will
use in the next iteration of class name nominations.

4 Experiments

4.1 Datasets

We evaluate OW-Class on four popular datasets
of different textual sources, including three news
article datasets 20News (Lang, 1995), NYT (Meng
et al., 2018) and AGNews (Zhang et al., 2015),
and a large ontology categorization dataset DB-
pedia (Zhang et al., 2015) based on 14 ontology
classes in DBpedia. Table 1 contains the detailed
statistics of the four datasets.

Table 1: An overview of our datasets. The imbalance
factor refers to the ratio of sample sizes between the
most frequent class and least frequent one in the dataset.

20News NYT AGNews  DBpedia
# of Classes 5 5 4 14
# of Documents 17,871 13,081 120,000 560,000
Imbalance 2.02 16.65 1.0 1.0

Sentiment analysis is also popular in text classifi-
cation. However, many explored sentiment analysis
settings with weak supervision are on the coarse-
grained setting (Wang et al., 2021b; Meng et al.,
2020) with 2 classes (positive and negative), which
is not practical for open-world class detection.

4.2 Compared Methods

We compare our method with ORCA. ORCA (Cao
et al., 2021), originally proposed for the image
domain, is a general method for open-world semi-
supervised classification. It utilizes an uncertainty
adaptive margin to reduce the learning gap between
seen and unseen classes. To transfer ORCA to the
text domain, we concatenate the original classifier
with BERT.

We also propose two strong baselines. BERT is
known to capture the domain information of a doc-
ument well (Aharoni and Goldberg, 2020; Wang
et al., 2021a). So we design BERT+GMM, which
utilizes the CLS token representations after fine-
tuning on the partially given dataset to fit a GMM
for all classes. CGExpan+X-Class takes the high-
quality class names from CGExpan and employs



Table 2: Evaluations of compared methods and OW-Class. The mean macro-F; scores over three runs are reported.

Method Additional 20News NYT AGNews DBpedia
Input All Seen  Unseen All Seen  Unseen All Seen  Unseen All Seen  Unseen
ORCA None 19.63  49.07 0 2823 6132 1852  23.13  46.27 0 98.93 99.52 9833
OW-Class 7987 9024 7296 9113 90.34 91.59 87.07 84.11 90.04 9388 9630 91.46
ORCA (Our estimation) 76.49 8750 69.16 4441 6770 28.89 8420 8849  81.01  80.08 9923  60.94
BERT+GMM (Our estimation) 57.14 71.63 4749 5883 7624 4722 6354 6791 59.16 82.05 96.18  67.93
CGExpan+X-Class (Our estimation) ~ Number 74.43 80.07  70.66 7189 89.10 6042 7833 8134 7535 8393 9322 74.63
ORCA (Oracle) of classes 63.45 88.69  46.64 27.82 3922 2021 9096 88.07 93.85 9893 9952 9833
BERT+GMM (Oracle) 39.08 5795 2666 46.09 71.01 2947 47.68 61.88 3348 7539 97.11  53.67
CGExpan+X-Class (Oracle) 6758 7812 6056 7574 8720  68.09 83.00 79.72 8627 6746 8877  46.15
X-Class on top of the class names (details in Ap- 100

pendix B).

4.3 Experimental Settings

For the basic experiments, we split the classes into
half seen and half unseen. Among the seen classes,
half of the documents contain labels and the rest
are unlabeled (Figure 3).

Hidden Oracle
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raw texts and their (unknown) oracle labels

ik
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Given Training Data
computer  sports

seen classes and labeled dataset

Figure 3: Schematic diagram of the corpus split. Only
a certain proportion of samples in popular classes are
provided as training labels.

Since all compared methods (except our OW-
Class) require knowing the total number of classes,
we test them in three ways.

* Oracle: Ground truth number of classes is given.

* Our Estimation: We give OW-Class’s final pre-
diction of classes to the baselines.

» Estimation in ORCA: ORCA also introduces a
method (Han et al., 2019) to estimate the number
of classes, so we test ORCA under this estima-
tion. Since further experiments show this method
doesn’t work in most our datasets, we do not test
other baselines with its estimation.

Evaluation. Since the final number of classes pro-

duced by a method may not be equal to the ground

truth, a mapping from the prediction to the actual
classes is required. We first do a maximum match-
ing between the predicted classes and the ground
truth classes to ensure that each ground truth class
corresponds to at least one class in our results. In
the case when the number of predicted classes is
less than the ground truth, we create virtual classes
with no documents inside. Then, each remaining
predicted class is assigned to the ground truth class
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Figure 4: Overall performance of ORCA and OW-Class
on different imbalance degrees.

Low

that shares the largest overlap. After applying the
mapping, we use the Fy scores as the metric on clas-
sification performance for both seen and unseen
classes (we show macro-F; scores in this section
and micro-F; scores can be found in Appendix D).

4.4 Experimental Results

OW-Class Performance. We assess the open-
world semi-supervised performance of OW-Class
versus other baselines. Table 2 contains detailed
comparisons. Specifically, OW-Class outperforms
the two baselines BERT+GMM and CGExpan+X-
Class across all four datasets for both seen and
unseen classes, even though they are given the or-
acle number of classes as input. This strength-
ens the need for our iterative refinement process
since merely applying fine-tuning or X-Class does
not bring as good performance as ours. Moreover,
while the general method ORCA performs well
on DBpedia, its performance is exceptionally poor
on the other three datasets as it fails to detect the
number of classes anywhere close to the correct
number. Even when the correct number is given as
input to ORCA, OW-Class still outperforms it sig-
nificantly in 20News and NYT, with only a small
performance margin on AGNews and DBpedia.

Imbalance Tolerance. As a generic solution,
ORCA with the ground truth number of classes out-
performs OW-Class on the two balanced datasets,
AGNews and DBpedia, while underperforming on



Table 3: Ablation study of OW-Class. The mean macro-F; scores over three runs are reported.

Method 20News NYT AGNews DBpedia
All Seen Unseen  All Seen Unseen  All Seen  Unseen All Seen  Unseen
OW-Class 79.87 9024 7296 9113 9034  91.59  87.07 8411  90.04 93.88 9630  91.46
OW-Class-nolter ~ 64.90 8429 5198  67.84 8548 5609 7520 77.89 7251 9259 96.88  88.29
OW-Class-onelter ~ 79.68 9037 7255 89.84 89.47  90.08 8495 8225 8764 9539 9750 93.28
OW-Class-X  75.18 8403 6922 8529 8822 8333 8848 84.82 9214 9072 9504  86.40
the two other imbalanced datasets. To gain further Table 5: Predictions of the number of classes. The
insights, we conduct experiments on the tolerance ~ AVerage numbers over three runs are reported.
of imbalance for OW-Class and ORCA. As shown Method 20News NYT AGNews DBpedia
: : Ground Truth 5 5 4 14
in Table 4, we construct three imbalanced DBpe- ORC A baseline 50 30 50 140
dia datasets with different degrees of imbalance. OW-Class-nolter (initial guess) 10 15 10 35
L. ) . OW-Class-onelter 7.7 10.3 7.0 28.0
This is achieved through removing the number of OW-Class 73 93 6.0 203

samples in each class by a linearly increasing ra-
tio A. For example, when A = 5%, the classes
have 100%, 95%, 90%, ... of its original docu-
ments. We choose the ordering of classes randomly
but fixed across the Low, Medium and High ex-
periments, and by design, the classes with a larger
number of documents are seen classes.

Table 4: An overview of the imbalanced DBpedia
datasets with 14 classes.

Low Medium High
A 3% 4% 5%
#of Documents 450,800  41,44,00 378,000
Imbalance 1.64 2.08 2.86

Figure 4 shows the result of OW-Class and
ORCA on the three datasets. ORCA is sensitive to
imbalanced classes. Its overall performance drops
more than 20% as the data distribution get more
imbalanced, while OW-Class is rather stable. This
experiment shows that OW-Class is more robust
to imbalanced classes of text datasets which are
common in the real world (e.g., the imbalance ratio
of NYT collected from NYT news is 16.65).
Effect of Multiple Iterations. We further explore
how the iterations of nomination and classification
in Sec. 3.2 and 3.3 influence the performance. OW-
Class’s performance without iterative refinement is
labeled as OW-Class-nolter. As shown in Table 3,
it performs better than naive baseline BERT+GMM
by more than 7.76%. Though the initial clusters are
good, the unseen part is still up to 35.50% lower
than OW-Class on NYT, indicating the iteration im-
proves the performance for unseen classes. After
one iteration, the performance of OW-Class-onelter
almost converges among all the datasets to OW-
Class’s best scores and even beats OW-Class on
DBpedia. We believe the first iteration is the most
critical one in our method. As shown in Table 5, the
first iteration can remove the majority of redundant
classes. The subsequent iterations further detect re-

Table 6: Examples of the class nomination.

Dataset Ground Truth OW-Class

20News science encryption, electronics, orbit
NYT business economy

AGNews sports game

DBpedia artist painter, singer

maining redundancy but lead to little performance
improvement.

Effect of Improved X-Class. In Sec. 3.3, we intro-
duce class-indicative words into X-Class to assist
in stable class representation computation. We ver-
ify how the improved X-Class contributes to the
overall performance. OW-Class-X directly utilizes
the class names as the input of the original X-Class
for clustering. As shown in Table 3, except for
AGNews, the overall performance of OW-Class-X
drops over 3.16% on the other three datasets. For
unseen classes, this drop can reach 8.26% in NYT.
One possible reason for the drop is the classifica-
tion result of the original X-Class highly dependent
on the class names. The results get poor if the
chosen names are not accurate enough.
Prediction of the Number of Classes. OW-Class
starts with an initial guess on the number of classes
(details in Appendix C) and removes redundant
ones iteratively. The number of the remaining
classes is its prediction of the total number of
classes. As shown in Table 5, after the first itera-
tion, the number of redundant classes drops from
33% to 60%. OW-Class’s final predicted number of
classes is around 1.5 times larger than the ground
truth, but the estimation turns out to be reasonable
as shown in Table 6 (details in Appendix D). In
fact, OW-Class overestimates because its predicted
classes are the fine-grained version of the ground
truth classes. For example, DBpedia’s artist class
can be split into painter and singer. As a baseline,
ORCA can estimate the number of classes. Though
its estimation is accurate on 14-classes DBpedia,



Table 7: Study of Hyper-parameters Sensitivity.

Relative Performance Change

Parameter Tested value

NYT DBpedia
[Weem| 20,25,30,35,40  -4.93% ~ +1.46% 0%
[Wstet| 40, 50, 60, 70 -3.65% ~ 0% -3.26% ~ +0.36%
B8 0.55, 0.6, 0.65, 0.7 0% -0.72% ~ +0.13%

the predictions on the other datasets are almost the
same as the number of seen classes. This shows it
requires enough seen classes to ensure its accuracy.
Hyper-parameter Sensitivity. OW-Class has three
hyper-parameters: |W*™|, |[W$| and 3, and
we show their default values in Appendix B. To
further explore the stability and robustness of OW-
Class, we conduct a hyper-parameter sensitivity
study on two datasets: NYT and DBpedia, to study
how fluctuations in hyper-parameters influence the
performance of our method. The experiment is
conducted on a fixed random seed (42). We present
results on the range of relative performance change
in different values of hyper-parameters compared
to default settings. As shown in Table 7, These
performance changes are within a reasonable range.
Our method does not need to fine-tune these hyper-
parameters.

Additional results on imbalance tolerance and
ablation study are reported in Appendix D.

5 Related Work

Open-world Learning. Traditional open-world
recognition methods (Bendale and Boult, 2015;
Rudd et al., 2017; Boult et al., 2019) aim to in-
crementally extend the set of seen classes with
new unseen classes. These methods require hu-
man involvement to label new classes. Recently,
ORCA (Cao et al., 2021) defined open-world semi-
supervised classification in the image domain and
proposed a general solution which utilized unla-
beled data in the learning stage and did not require
any human effort. However, this method’s perfor-
mance is not robust enough for the imbalanced data
in the text domain. In contrast, our work is applica-
ble for infrequent classes and exploits the fact that
the input is words which are class-indicative.

Extremely Weak Supervision in NLP. Aharoni
and Goldberg (2020) showed that the average of
BERT token representations can preserve docu-
ments’ domain information. X-Class (Wang et al.,
2021b) followed this idea to propose the extremely
weak supervision setting where text classification
only relies on the name of the class as supervi-
sion. However, such methods can not transfer to
open-world classification naively as they cannot

detect unseen classes. Our method leverages such
extremely weak supervision methods as a subrou-
tine to help the clustering of documents. But im-
portantly, we note that such methods cannot be
applied straightforwardly as they also are sensitive
to noise and too similar classes. We show that our
general idea of using class-indicative words can fur-
ther help an extremely weak supervision method to
obtain stable performance.

Joint Clustering with Downstream Tasks. To
some sense, our method leverages partly an
idea called joint clustering, which some recent
works (Caron et al., 2018; Asano et al., 2020) in the
image domain achieved high performance through
jointly performing clustering and image classifi-
cation. Their main idea is to utilize clustering to
extract the hidden information of image represen-
tations and generate pseudo-labels, which in turn
provide supervision for classification training and
ultimately guide the co-improvement of representa-
tion and clustering. However, the crucial difference
is that their methods already know the predefined
classes and highly depend on strong assumptions
like all classes share the same size to obtain excel-
lent performance. Conversely, OW-Class utilizes
the general idea of joint clustering in an open-world
setting where the classes may be too fine-grained
and noisy. We address these unique challenges via
the class-indicative words we propose and show
that our methodology can not only estimate the pre-
cise number of classes but also tolerate imbalanced
data distribution.

6 Conclusions and Future Work

In this paper, we introduce the open-world semi-
supervised classification task in the text domain,
identify the key challenges and unique opportuni-
ties, and then propose OW-Class which can achieve
quite decent performance. OW-Class starts with
an overestimated number of classes and constructs
an iterative refinement framework that jointly per-
forms class nomination and document clustering,
leading to iterative mutual enhancement. Exten-
sive experiments demonstrate the effectiveness and
stability of OW-Class. In the future, we plan to
extend the open-world setting to many other NLP
tasks. We also believe that open-world text clas-
sification can be conducted with even less human
effort, for example, by only requiring user-provided
seed words or class names for those seen classes.



7 Ethical Considerations

In this paper, we propose an approach to the text
classification problem, a fundamental task in natu-
ral language processing to efficiently classify docu-
ments such as news reports. We conducted experi-
ments on four publicly available and widely used
datasets and did not observe any risky classifica-
tion information, so we believe that our approach
is entirely ethically flawless and will not harm vul-
nerable groups.
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A Limitations

As an initial attempt in open-world semi-supervised
text classification, our method and evaluation met-
ric still have the following limitations.

A.1 Theoretical Guarantees

We are aware that we made quite a few design
choices without a solid theoretical guarantee. For
example, there might be different choices of simi-
larity functions for our MLP features or a different
number of statistically representative words to ex-
tract.

Nevertheless, as a pioneering work in open-
world text classification, our goal is to design a
working algorithm and promote the power of class-
indicative words. In addition, in order to make sure
that our method is stable and robust under our set-
ting, we also conducted extensive hyper-parameter
sensitivity studies.

A.2 Evaluation Criteria

As shown in Sec. 4.4, experimental analysis indi-
cates that OW-Class produces some fine-grained
classes, which would not show up on our purity-
based evaluation metric. In an extremal If there
is no penalty for generating too many subclasses,
dividing all documents into individual classes can
be a shortcut to a perfect score. However, we also
note that the problem of the deficit of a perfect met-
ric stems from finding a good metric for clustering,
which has been studied for a long time without a
universal solution. Although it is impossible to
completely avoid some differences in the metric
evaluation, we tried our best to mitigate the differ-
ences and conduct a fair comparison.

First, the criterion for evaluation is the most rea-
sonable one we could find. We investigated ORCA
and other related work including clustering and
topic modeling and did not find a metric that bal-
ances the number of predicted classes and the purity
of predicted classes. Finding an appropriate metric
for this task is a separate research problem.

Also, since the bias of the metric is caused by the
potentially different numbers of predicted classes
in different methods, we paid attention to this num-
ber. In a large portion of our main experiments, the
comparisons are all based on the same number of
classes, either provided by ground truth or by our
method (Table 2). With such a controlled number
of classes, we believe the evaluation is fair and reli-
able. We can see from the predicted class names in
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Sec. 4.4 and Appendix D that the additional classes
our method identified are meaningful and distinct
from existing classes in datasets, demonstrating the
importance of discovering new classes.

B Implementation Details

B.1 Algorithm

We summarize our iterative refinement framework
in Algorithm 1.

Algorithm 1 Iterative Refinement Framework

Input: clusters C, document representations R
1: while there are still redundant clusters do
Find class-indicative words W
for each cluster C; in C do
Train MLP and rank W
Select possible names S; from W
Compute cluster coherence 7; (Eq. 1)
for each pair S;, S; do
ifS;NS; # () and n; < 7n; then
Remove C;

N A A

Re-estimate class names S
update R, C based on S

B.2 Implementation Details of OW-Class

In our experiments, we fine-tune the pre-trained
BERT-base-uncased model provided in Hugging-
face’s Transformers library (Wolf et al., 2019).
In each iteration, we use 25 times the number
of seen classes as |[W?*™|. For each cluster, we
fix [W#| = 50 to get sufficient statistically out-
standing words.In class nomination, the quality
ratio threshold is 8 = 0.6. The analysis of hyper-
parameter sensitivity is shown in Sec. 4.4.
Initial Clusters. The iterative refinement frame-
work should start with a reasonable (over-) esti-
mation of initial clusters based on the initial class
names. We first make a bold guess (refer to Ap-
pendix C) on the number of classes as previous
work (Cao et al., 2021) did. The guess can be sev-
eral times larger than the actual number of classes.
Afterwards, we utilize CGExpan to propose a large
number of possible class names, so as to cover the
semantics of all possible classes. We take the static
representations of these names as the initial class
representations. Then, we use these class represen-
tations as input to X-Class and obtain the document
representations. We fine-tune a BERT (Devlin et al.,
2019) classifier with the given labeled documents.
The CLS token representation after fine-tuning is



concatenated with the X-Class representation for
each document to form the initial document rep-
resentations we use. We then run a GMM (Duda
et al., 1973) on these representations to identify
the clusters, where the number of clusters is our
overestimation.

Details of MLP Features. To construct the MLP
features, we first follow Wang et al. (2021b) and ob-
tain static representation s,, for each word w in the
input corpus, by averaging BERT’s contextualized
representations of all its appearances:

Sw = Zw’:w tw' 7
Zw’ =w 1

where w’ are occurrences of the word in the corpus
and t, is its contextualized word representation.
This static representation is used as an anchor to
measure the semantic similarity between words.
Then we define quality features for a high-potential
word to a cluster as the mean and variance of Eu-
clidean distance and cosine similarity of static rep-
resentations between them.

Statistical Metric. In Sec. 3.2, we follow Mekala
and Shang (2020) to find statistically outstanding
words within cluster 7:

Jos

.o

size;
where ¢;(w) is the number of occurrences of the
word w in documents belonging to cluster i, s;(w)
indicates how many documents in cluster ¢ con-
tain the word w while size; indicates how many
documents are in cluster .

In the measurement, the first term tells how in-
dicative a word is to a cluster, the second term
measures how frequent this word is, and the third
is a normalization based on the inverse document
frequency.

Penalty Coefficient. In Sec. 3.2, we use a penalty
coefficient to punish the words that are too generic
to be semantically meaningful. In this section, we
give our definition of the penalty coefficient p(w, 7)
for each candidate class name w in cluster 4,

)

where rank;(w) is the absolute rank number of
w in cluster ¢ based on MLP’s prediction and
Med{S?} is the median value of the set S.

The main idea of this formula is to obtain a co-
efficient to penalize those generic words (e.g., life,

ti(w)

size;

s1zeq]

score;(w) = sun(w)
a

Med{rankj(w)|1<j<C}
1+ rank;(w)

p(w, 1) = log (

)
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which might rank high in most clusters) from being
selected as class names. The numerator of the frac-
tion shows how the word behaves across all clusters
while the denominator shows how it behaves in a
specific cluster. The median rank of a generic word
will be very close to the specific rank. Note that
we allow one word as the class name of several
clusters because of the initial overestimation, but if
a word ranks high in more than half of the clusters,
it is considered a generic word that must be filtered.
Such penalization and normalization are similar
to the inverse document frequency term in Infor-
mation Retrieval. Therefore, we follow the design
and choose to divide the two values and take the
logarithm. Similar to the inverse document fre-
quency, this penalty coefficient lowers the chance
of selecting a generic word but will not harm proper
words.
Iterative Framework. The iterative framework is
solving the aforementioned two sub-problems one
by one, obtaining class names from clusters and
clusters from class names. The first sub-problem
entails removing redundant clusters and the natu-
ral stopping criteria for the iteration is when no
clusters are removed.
Final Text Classifier. The iteration ends with the
determined number of classes and document dis-
tribution. The clusters in the final iteration pro-
vide high-quality pseudo labels for the unlabeled
dataset. Following many previous works in (ex-
tremely) weak supervision (Meng et al., 2018;
Mekala and Shang, 2020; Meng et al., 2020; Wang
et al., 2021b), we train a classifier based on given
labels and these pseudo labels to generalize such
knowledge to new documents. This is a typical
noisy training task (Angluin and Laird, 1988; Gold-
berger and Ben-Reuven, 2017b). The clusters in
Sec. 3.3 are obtained through GMM (Duda et al.,
1973) following X-Class, and the final text classi-
fier is trained on a selected dataset that has high
posterior probability in the final GMM. Experi-
ments in Appendix D show the usefulness of this
extra classifier.

B.3 Implementation Details of baselines

For ORCA, We migrate its method to the text do-
main by using BERT to obtain the feature represen-
tations. For CGExpan + X-Class, We first expand
a large number of class names via CGExpan and
employs X-Class to give each document a class-
oriented representation. Then, we train a GMM



and take the class name closest to the center of
each cluster as the final name of the correspond-
ing cluster. Finally we use these names to get the
classification result by X-Class.

B.4 Computational Budget

All experiments are conducted using a 32-Core Pro-
cessor and a single RTX A6000 GPU. The expected
running time of OW-class is less than one hour,
for a dataset with a sample size of 10,000 (e.g.,
20News, NYT). A larger dataset may require more
time; for DBpedia (a massive dataset with 560,000
samples), 10 hours is expected. Note, however, that
ORCA cannot provide same-condition results in a
single day.

C Initial Guessed Number of Classes

In initial clustering, OW-Class makes a bold guess
on the number of classes at the initial stage. We
treat this guessed number of classes as a hyper-
parameter. Here we give our default scheme. We
choose 5 times the number of seen classes as the
estimation of total classes and also plus a imbalance
factor P of the labeled dataset as compensation
for GMM, since we assume that all classes will
split into clusters of almost equal size in the initial
clustering. That is,
_ 1J ,

P=>" {
c€Cs

where NU M (c) is the number of labeled texts in

class c. In a (almost) balanced dataset, P = 0. But

for NYT (extremely imbalanced) in our setting, we

have P = 5.

We further test OW-Class with different initial
estimations. Figure 5 shows that when the initial
number of classes is in a reasonable range, OW-
Class can deliver a steady result that can outper-
form baselines in most instances. And its perfor-
mance can get even better with more initial clusters.
But OW-Class may suffer a significant performance
drop when the initial class is too small (especially
for extreme imbalanced datasets like NYT).

NUM(e)
mincec, NUM (c)

D Additional Results

Effect of Extra Classifier. To verify the effec-
tiveness of the extra classifier (see details in Ap-
pendix B) after the iterative refinement, we design
OW-Class-GMM which obtains the labels from the
GMM in the last iteration. The improvement of
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OW-Class over OW-Class-GMM in Table 8 shows
the usefulness of the classifier training.
Imbalance Tolerance. We further show the per-
formance of ORCA and OW-Class on imbalanced
DBpedia for both seen and unseen classes.

As shown in Figure 6, ORCA’s performance
drops more than 40% on unseen classes, demon-
strating its intolerance to imbalanced data distribu-
tions.

Micro-F; Scores. Tables 9 and 10 show the micro-
F1 scores of experiments in Sec. 4.4.

Examples of Class Nomination. We addition-
ally show the full list of the class nomination
in Table 11. Our class names are highly re-
lated to ground truth class names and human-
understandable.
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Figure 5: Sensitivity on the Initial Guessed Number of Classes for 20News, NYT and AGNews. The mean macro-F
scores over three runs are reported. OW-Class is slow on DBpedia, therefore not reported.
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Figure 6: Performance of ORCA and OW-Class on different imbalance degrees.

Table 8: Effectiveness Study of Extra Classifier. The mean macro-F; scores over three runs are reported.

Method 20News NYT AGNews DBpedia
All Seen  Unseen All Seen  Unseen All Seen  Unseen All Seen  Unseen
OW-Class 79.87 90.24 72.96 91.13 90.34 91.59 87.07 84.11 90.04 93.88  96.30 91.46
OW-Class-GMM  77.27 88.77 69.62 90.38  89.98 90.65 86.82  83.50 90.13 93.43 96.05 90.80

Table 9: Evaluations of compared methods and OW-Class. The mean micro-F; scores over three runs are reported.

Method Additional 20News NYT AGNews DBpedia
Input All Seen  Unseen All Seen  Unseen  All Seen Unseen  All Seen  Unseen

ORCA None 32,57 4897 0 63.82 7936 1852  30.82 46.27 0 98.93 99.52 9833
OW-Class 7836 89.65 72.04 94.63 9646 9128 8791 8408 90.09 93.01 9572 91.58
ORCA (Our estimation) 75.80 87.17  69.66  68.12 8420 3838 8389 8831 8156 79.59 99.22  69.70
BERT+GMM (Our estimation) 5238  69.94 4177 7549 89.89 5134 6184 6775 59.17 7724 9625  68.20
CGExpan+X-Class (Our estimation) ~ Number ~ 72.87 81.59  68.76 8547 9641  66.84 7852 8133  77.07 8490 9297  76.65
ORCA (Oracle) of classes 63.04 8829  49.82 3291 40.67 22.08 91.88 88.08 93.88 9893 99.52  98.33
BERT+GMM (Oracle) 4255 5671 2997  66.02 80.74  36.06 4846 61.86 3330 7539 97.08 54.34
CGExpan+X-Class (Oracle) 67.10 79.09 61.09 8554 9345 7326 8422 7972 8655 70.78 8923 5241

Table 10: Ablation study of OW-Class. The mean micro-F; scores over three runs are reported.
Method 20News NYT AGNews DBpedia
All Seen Unseen  All Seen Unseen  All Seen Unseen  All Seen  Unseen
OW-Class 78.36  89.65 72.04 94.63  96.46 91.28 8791 84.08 90.09 93.01 95.72 91.58
OW-Class-nolter ~ 63.95 83.96 53.93 81.27 94.59 58.87 7449  77.89 72.84 91.28 96.61 88.51
OW-Class-onelter 78.18  89.84 71.77 93.77  96.25 89.30 85.76  82.35 87.50 94.74  96.90 93.50
OW-Class-X 7425 8279 68.96 91.63 9557 83.80 89.57 84.79 92.21 91.11 93.77 88.04
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Table 11: Examples of the class nomination.

Dataset Ground Truth OW-Class
science encryption, electronics, orbit
religion Christianity

20News computer computer
politics history

sports sports, baseball
sport sport, tennis, quarterback
business economy
NYT science scientist
art theater
politics politics
politics executive, Iraqg
sports game

AGNews technology technology
business business
athlete footballer, Olympics

artist painter, singer
company company
school school
politics politician
transportation aircraft, locomotive
DBpedia bu;lding church, bridge
river river
village village
animal animal, snail
plant plant
album album
book book
film film
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