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ABSTRACT

Fair machine learning methods seek to train models that balance model perfor-
mance across demographic subgroups defined over sensitive attributes like race
and gender. Although sensitive attributes are typically assumed to be known dur-
ing training, they may not be available in practice due to privacy and other logis-
tical concerns. Recent work has sought to train fair models without sensitive at-
tributes on training data. However, these methods need extensive hyper-parameter
tuning to achieve good results, and hence assume that sensitive attributes are
known on validation data. However, this assumption too might not be practical.
Here, we propose Antigone, a framework to train fair classifiers without access
to sensitive attributes on either training or validation data. Instead, we generate
pseudo sensitive attributes on the validation data by training a biased classifier
and using the classifier’s incorrectly (correctly) labeled examples as proxies for
minority (majority) groups. Since fairness metrics like demographic parity, equal
opportunity and subgroup accuracy can be estimated to within a proportionality
constant even with noisy sensitive attribute information, we show theoretically
and empirically that these proxy labels can be used to maximize fairness under
average accuracy constraints. Key to our results is a principled approach to select
the hyper-parameters of the biased classifier in a completely unsupervised fashion
(meaning without access to ground truth sensitive attributes) that minimizes the
gap between fairness estimated using noisy versus ground-truth sensitive labels.

1 INTRODUCTION

Deep neural networks have achieved state-of-the-art accuracy on many tasks including face recog-
nition (Buolamwini & Gebru, 2018; Grother et al., 2010; Ngan & Grother, 2015), autonomous
driving (Zhang et al., 2021; Chitta et al., 2021), medical image diagnosis (Litjens et al., 2017; Chep-
lygina et al., 2019), etc. But, prior work (Hovy & Søgaard, 2015; Oren et al., 2019; Hashimoto et al.,
2018a) has found that state-of-the-art networks exhibit unintended biases towards specific popula-
tion groups, especially harming minority groups. Seminal work by Buolamwini & Gebru (2018)
demonstrated, for instance, that commercial face recognition systems had lower accuracy on darker
skinned women than other groups. A body of work has sought to design fair machine learning al-
gorithms that account for a model’s performance on a per-group basis (Prost et al., 2019; Sagawa*
et al., 2020; Liu et al., 2021; Sohoni et al., 2020).

Much of the prior work assume that demographic attributes like gender and race on which we
seek to train a fair model, which we refer to as sensitive attributes, are available on training and
validation data Sagawa* et al. (2020); Prost et al. (2019). However, there is a growing body of
literature (Veale & Binns, 2017; Holstein et al., 2019) highlighting many real-world settings in
which sensitive attributes may not be available. This is for multiple reasons. For example, the
data subject may abstain from providing sensitive information to eschew potential discrimination
in future (Markos et al., 2017). In other settings, the attributes on which the model discriminates
might not even be known (Citron & Pasquale, 2014; Pasquale, 2015). For instance, in algorithmic
hiring decisions, Köchling & Wehner (2020) highlight that bias and discrimination are recognized
only after making real world decisions on applicants due to unknown attributes on which the model
discriminates during training. Consequently, a large American e-commerce company had to cease
using algorithmic tools for hiring purposes as it was unintentionally discriminating female appli-
cants (Dastin, 2018).
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Recent work seeks to train fair classifiers without access to sensitive attributes on the training set (Liu
et al., 2021; Creager et al., 2021; Nam et al., 2020; Hashimoto et al., 2018a). The common theme
across these methods is to up-weight misclassified examples either by splitting the training stage into
two separate stages Liu et al. (2021) (identify mis-classified examples in stage 1 and upweight in
stage 2) or by alternating between these stages across training epochs Nam et al. (2020) (identifying
misclassified examples in one epoch and upweighting in the next). However, Liu et al. (2021)
has shown that these methods are highly sensitive to choice of hyper-parameters; the up-weighting
factor, for example, can have a large impact on the resulting model’s fairness. Some methods,
therefore, tune hyper-parameters assuming access to sensitive information on the validation dataset.
In fact, without this information, Liu et al. (2021) observed that these methods sometimes do worse
than using standard ERM. But, sensitive information on the validation dataset may not be available
for the same reasons they are hard to acquire on training data.

In this paper, we propose Antigone, a simple, principled approach that enables hyper-parameter
tuning for fairness without access to sensitive attributes on validation data. Antigone can be used to
tune hyper-parameters for any prior method, for instance, JTT (Liu et al., 2021), LfF (Nam et al.,
2020), CVaR DRO (Hashimoto et al., 2018a), that trains fair models without sensitive attributes on
training data, and for several fairness metrics including demographic parity, equal opportunity and
worst sub-group accuracy. We note that these prior methods also address the problem of spurious
correlations (Sagawa et al., 2020; Wang & Culotta, 2021) and their impact on accuracy. As such,
Antigone can also be used to address spurious correlations, but we focus on fairness in this paper.

Antigone builds on the same intuition as in prior work: mis-classified examples of a classifier trained
with standard empirical risk serves as an effective proxy for minority groups. Accordingly, Antigone
trains a biased classifier as a noisy sensitive attributes labeller on the validation data, labelling cor-
rectly and incorrectly classified examples as majority and minority groups, respectively. But this
raises a key question: how do we select the hyper-parameters of the noisy labeler?

Intuitively, to maximize utility of the noisily labelled validation set, we seek to maximize the frac-
tion of minority (majority) samples in the incorrect (correct) sets. Since this cannot be measured
directly, Antigone instead maximizes the distance between the data distributions of the two sets,
which we measure using the Euclidean distance between the means (EDM) of the two distribu-
tions. We provide theoretical justification for our choice under the mutually contaminated (MC)
noise model (Scott et al., 2013) that assumes that a fraction of majority (minority) group labels are
contaminated with labels from minority (majority) group. Lamy et al. (2019) et al. show that com-
mon fairness metrics can be estimated up to a proportionality constant under the MC model. We
show that Antigone’s EDM criteria maximizes this proportionality constant, thus providing the most
reliable estimates of fairness.

We evaluate Antigone in conjunction with JTT Liu et al. (2021) on the CelebA, Waterbirds and Adult
datasets which are commonly used in fairness literature. We compare Antigone with baselines that
assume ground-truth knowledge of sensitive attributes and standard ERM on demographic parity,
equal opportunity, and worst subgroup accuracy. Antigone significantly closes the fairness gap
between standard ERM training and fairness with ground truth sensitive attributes. Compared with
GEORGE that estimates majority/minority group labels by clustering the activations of an ERM
model, Antigone produces more accurate labels and results in improved fairness. Ablation studies
demonstrate the effectiveness of Antigone’s EDM based hyper-parameter tuning.

2 PROPOSED METHODOLOGY
We now describe Antigone, starting with the problem formulation (Section 2.1) followed by a de-
scription of the Antigone algorithm (Section 2.2).

2.1 PROBLEM SETUP

Consider a data distribution over set D = X × A × Y , the product of input data (X ), sensitive
attributes (A) and target labels (Y) triplets. We are given a training set Dtr = {xtr

i , atri , ytri }Ntr

i=1

with N tr training samples, and a validation set Dval = {xval
i , avali , yvali }Nval

i=1 with Nval validation
samples. We will assume binary sensitive attributes (A ∈ {0, 1}) and target labels (Y ∈ {0, 1}). We
note that for now Antigone is limited to binary sensitive attributes, but can be extended to multiple
target labels.

2



Under review as a conference paper at ICLR 2023

We seek to train a machine learning model, say a deep neural network (DNN), which can be repre-
sented as a parameterized function fθ : X → Y ∈ {0, 1}, where θ ∈ Θ are the trainable parameters,
e.g., DNN weights and biases. Standard fairness unaware empirical risk minimization (ERM) opti-
mizes over trainable parameters θ to minimize average loss LERM :

LERM = − 1

N tr

N∑
i=1

l(xtr
i , ytri ), (1)

on Dtr, where l(xi, yi) is the binary cross-entropy loss.

Optimized model parameters θ∗ are obtained by invoking a training algorithm, for instance stochas-
tic gradient descent (SGD), on the training dataset and model, i.e., θ∗,γ = MERM (Dtr, fθ, γ),
where γ ∈ Γ are hyper-parameters of the training algorithm including learning rate, training epochs
etc. Hyper-parameters are tuned by evaluating models fθ∗,γ for all γ ∈ Γ on Dval and picking the
best model. More sophisticated algorithms like Bayesian optimization can also be used.

Since standard ERM models suffer from unintended biases in their predictions, fair ML algorithms
seek instead to optimize metrics that explicitly account for the performance on demographic sub-
groups. We review three commonly used metrics below:

• Demographic parity (DP): DP requires the model’s outcomes to be independent of sensi-
tive attribute. In practice, we seek to minimize the demographic parity gap:

∆DP
θ = P[f”[fθ(X) = 1|A = 1]− P[fθ(X) = 1|A = 0]). (2)

Equal opportunity (EO): EO aims to equalize only the model’s true positive rates across
sensitive attributes. In practice, we seek to minimize

∆EO
θ = P[fθ(X) = 1|A = 1, Y = 1]− P[fθ(X) = 1|A = 0, Y = 1]. (3)

• Worst-group accuracy (WGA): WGA seeks to maximize the minimum accuracy over all
sub-groups over sensitive attributes and target labels.That is, we seek to maximize:

WGAθ = min
a∈{0,1},y∈{0,1}

P[f(x) = y|A = a, Y = y]. (4)

In all three settings, we seek to train models that optimize fairness under a constraint on average
accuracy. For example, for equal opportunity, we seek θ∗ = argminθ∈Θ ∆EO

θ such that P[fθ(x) =
Y ] ≥ Acc, where Acc is a user specified constraint. With access to sensitive attributes, the fairness
metric (and average accuracy) can be evaluated on the validation set. The challenge here is that
sensitive attributes are unavailable.

2.2 ANTIGONE ALGORITHM

We now describe the Antigone algorithm which consists of three main steps. In step 1, we train
multiple intentionally biased ERM models that each provide pseudo sensitive attribute labels on
validation data. We view each model as a noisy sensitive attribute labeller on the validation set. In
step 2, we use the proposed EDM metric to pick a noisy labeller from step 1 with the least noise.
Finally, in step 3, we use the labelled validation set from step 2 to tune the hyper-parameters of
methods like JTT that train fair classifiers without sensitive attributes on training data.

Step 1: Generating sensitive attribute labels on validation set. In step 1, we use the training
dataset and standard ERM training to obtain a set of classifiers, θ∗,γ = MERM (Dtr, fθ, γ), each
corresponding to a different value of training hyper-parameters γ ∈ Γ. As we discuss in Section 2.1,
these include learning rate, weight decay and number of training epochs. Each classifier is used to
generate pseudo sensitive attribute labels on the validation set by assigning correctly (incorrectly)
classified examples to the majority (minority) groups. That is, each classifier yields a validation set

Dval,γ = {xval
i , aval,γi , yvali }N

val

i=1 ∀γ ∈ Γ (5)
where:

aval,γi =

{
1, if fθ∗,γ (xval

i ) = yvali

0, otherwise.
(6)

From these noisily labelled validation sets, we now seek to pick the one whose pseudo sensitive
attribute labels match most closely with true (but unknown) sensitive attributes. That is, we seek to
pick the hyper-parameters corresponding to the “best” noisy labeller.
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Step 2: Picking the best noisy labeller. The noisy labellers in Step 1 partition inputs in the
validation set into two sets containing correctly and incorrectly classified inputs. These serve as
proxies for majority and minority groups, respectively. Specifically, let the correct set (or noisily
labeled set of majority examples) be Xval,γ

A=1,noisy = {xval
i : aval,γi = 1} and the incorrect set (or

noisily labeled set of minority examples) be Xval,γ
A=0,noisy = {xval

i : aval,γi = 0}.

To estimate fairness accurately, we would like our noisy labeler to be biased, i.e., to place all majority
(minority) group inputs in the correct (incorrect) set. In the absence of true sensitive attribute labels,
we can measure bias using the distance between the data distributions in the correct and incorrect
sets. In Antigone, we pick the simplest distance metric between two distributions, i.e., the Euclidean
distance between their means (EDM). Formally,

EDMγ = ∥µ(Xval,γ
A=1,noisy)− µ(Xval,γ

A=0,noisy)∥2 (7)

where µ(.) represents the empirical mean of a dataset. In Section 2.3 we theoretically justify this
choice. We pick γ∗ = argmaxγ∈Γ EDMγ . Note that in practice we pick two different noisy
labellers corresponding to target labels Y = {0, 1}.

Step 3: Training a fair model. Step 2 yields Dval,γ∗
, a validation dataset with (estimated) sen-

sitive attribute labels. We can provide Dval,γ∗
as an input to any method that trains fair models

without access to sensitive attributes on training data, but requires a validation set with sensitive
attribute labels to tune its own hyper-parameters. In our experimental results, we use Dval,γ∗

to
tune the hyper-parameters of JTT (Liu et al., 2021) and GEORGE (Sohoni et al., 2020). We note
that GEORGE proposes its own method to obtain sensitive attributes labels on validation data, but
replacing it with Antigone improves on GEORGE’s performance.

2.3 ANALYZING ANTIGONE UNDER MC NOISE

Prior work Lamy et al. (2019) has modeled noisy sensitive attributes using the mutually contami-
nated (MC) noise model Scott et al. (2013). Here, it is assumed that we have access to noisy datasets,
DA=0,noisy and DA=1,noisy , corresponding to minority and majority groups, respectively, that are
mixtures of their ground-truth datasets D0 and D1. Specifically,

DA=1,noisy = (1− α)DA=1 + αDA=0

DA=0,noisy = βDA=1 + (1− β)DA=0

(8)

where α and β are noise parameters. Note that strictly speaking Equation 8 should refer to the prob-
ability distributions of the respective datasets, but we will abuse this notation to refer to the datasets
themselves. As such Equation 8 says that fraction α of the noisy majority group, DA=1,noisy ,
is contaminated with data from the minority group, and fraction β of the noisy minority group,
DA=0,noisy , is contaminated with data from the majority group. An extension of this model as-
sumes that the noise parameters are target label dependent, i,e., (α0,β0) for Y = 0 and (α1,β1) for
Y = 1.

Note that the MC model assumes that noisy datasets are constructed by sampling independently
from the ground-truth distributions. While this is not strictly true in our case since the noise in
our sensitive attribute labels might be instance dependent, the MC model can still shed light on the
design of Antigone.

Proposition 1. (Lamy et al., 2019) Under the MC noise model in Equation 8, demographic parity
and equal opportunity gaps measured on the noisy datsets are proportional to the true DP and EO
gaps. Mathematically:

∆DP (DA=0,noisy ∪DA=1,noisy) = (1− α− β)∆DP (DA=0 ∪DA=1), (9)

and
∆EO(DA=0,noisy ∪DA=1,noisy) = (1− α1 − β1)∆

EO(DA=0 ∪DA=1). (10)

From Equation 9 and Equation 10, we can conclude that under the MC noise model, the DP and
EO gaps can be equivalently minimized using noisy sensitive attribute labels, assuming independent
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Figure 1: Figure illustrates the schematic of Antigone generating pseudo sensitive attributes on
CelebA validation data by training a biased classifier and using the classifier’s incorrectly (correctly)
labeled examples as proxies for minority (majority) groups.

contamination and infinite validation data samples. In practice, these assumptions do not hold,
however, and therefore we seek to maximize the proportionality constant 1−α−β (or 1−α1−β1)
to minimize the gap between the true and estimated fairness values.

Lemma 1. Assume XA=0,noisy and XA=1,noisy correspond to the input data of noisy datasets
in the MC model. Then, maximizing the EDM between the XA=0,noisy and XA=1,noisy , i.e.,
∥µ(XA=0,noisy)− µ(XA=1,noisy)∥2 maximizes 1− α− β.

Proof. From Equation 8, we can see that ∥µ(XA=0,noisy) − µ(XA=1,noisy)∥2 = (1 − α −
β)2∥µ(XA=0) − µ(XA=1)∥2. Here ∥µ(XA=0) − µ(XA=1)∥2 is the EDM between the ground
truth majority and minority data and is therefore a constant. Hence, maximizing EDM between
XA=0,noisy and XA=1,noisy maximizes 1− α− β.

In practice, we separately maximize EDM for target labels Y = {0, 1} and hence maximize both
1 − α0 − β0 and 1 − α1 − β1. We note that our theoretical justification motivates the use of EDM
for DP and EO fairness. While not exact, minimizing α + β using EDM as a proxy is still helpful
for WGA because it reduces contamination and, empirically, provides more reliable estimates for
sub-group accuracy.

3 EXPERIMENTAL SETUP
We empirically evaluate Antigone on the CelebA, Waterbirds and UCI Adult datasets which have
been extensively studied in fairness literature. In this section, we present the details about Antigone’s
implementation, evaluation and network architecture used for these three datasets. To begin, we note
Antigone can be deployed in conjunction with any method that trains fair classifiers without sensitive
attributes on training data. We evaluate Antigone with one such state-of-the-art method, JTT (Liu
et al., 2021). We begin by briefly describing how Antigone is deployed in conjunction with JTT.

JTT+Antigone: JTT operates in two stages. In the first stage, a biased model is trained using
T epochs of standard ERM training to identify the incorrectly classified training examples. In the
second stage, the misclassified examples are upsampled λ times and the model is trained again to
completion with standard ERM. The hyperparameters of stage 1 and stage 2 classifiers, including
early stopping epoch T and upsampling factor λ, are jointly tuned using a validation dataset with
ground-truth sensitive attribute labels. We replace the ground-truth validation dataset with noisy
sensitive attributes obtained from Antigone.

3.1 CELEBA DATASET

Dataset details: CelebA (Liu et al., 2015) is an image dataset, consisting of 202,599 celebrity face
images annotated with 40 attributes including gender, hair colour, age, smiling, etc. The task is to
predict hair color, which is either blond Y = 1 or non-blond Y = 0 and the sensitive attribute is
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gender A = {Men,Women}. The dataset is split into training, validation and test sets with 162770,
19867 and 19962 images, respectively. Only 15% of individuals in the dataset are blond, and only
6% of blond individuals are men. Consequently, the baseline ERM model under-performs on the
blond men.

Hyper-parameter settings: In all our experiments using CelebA dataset, we fine-tune a pre-
trained ResNet50 architecture for a total of 50 epochs using SGD optimizer and a batch size
of 128. We tune Antigone and JTT over three pairs of learning rates and weight decays,
(1e− 04, 1e− 04), (1e− 04, 1e− 02), (1e− 05, 1e− 01), which are also the values used in JTT.
For Antigone, we also explore early stopping at any of the 50 training epochs. Antigone’s
hyper-parameters are tuned using the EDM approach. For JTT, we explore over T ∈
{1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50} and λ ∈ {20, 50, 100} as reported in their paper. JTT’s
hyper-parameters are tuned using the validation dataset produced by Antigone. We report results for
DP, EO and WGA fairness metrics. In each case, we seek to optimize fairness while constraining
average accuracy to ranges {[90, 91), [91, 92), [92, 93), [93, 94), [94, 95)}.

3.2 WATERBIRDS DATASET

Dataset details: Waterbirds is a synthetically generated dataset, containing 11,788 images of water
and land birds overlaid on top of either water or land backgrounds (Sagawa* et al., 2020). The
task is to predict the bird type, which is either a waterbird Y = 1 or a landbird Y = 0 and the
sensitive attribute is the background A = {Water background,Land background}. The dataset is
split into training, validation and test sets with 4795, 1199 and 5794 images, respectively. While the
validation and test sets are balanced within each target class, the training set contains a majority of
waterbirds (landbirds) in water (land) backgrounds and a minority of waterbirds (landbirds) on land
(water) backgrounds. Thus, the baseline ERM model under-performs on the minority group.

Hyper-parameter settings: In all our experiments using Waterbirds dataset, we train a pre-
trained ResNet50 architecture for a total of 300 epoch using the SGD optimizer and a batch
size of 64. We tune Antigone and JTT over three pairs of learning rates and weight decays,
(1e− 03, 1e− 04), (1e− 04, 1e− 01), (1e− 05, 1.0), which are also the values used in JTT. For
JTT, we explore over T ∈ {25, 40, 50, 60, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300} and
λ ∈ {20, 50, 100} as reported in their paper. In each case, we seek to optimize fairness while
constraining average accuracy to ranges {[94, 94.5), [94.5, 95), [95, 95.5), [95.5, 96), [96, 96.5)}.

3.3 BASELINES FOR COMPARISONS

We evaluate JTT+Antigone against several baselines.

Standard ERM: A naive baseline is a standard ERM model that only seeks to maximize average
accuracy and does not consider fairness. We train standard ERM models using the same network
architectures and training hyper-parameters used for Antigone + JTT as reported above.

JTT + Ground-truth sensitive attributes: An upper bound for JTT+Antigone is a JTT model
trained with ground-truth sensitive attributes on validation data, i.e., the overall approach used in
JTT. For this, we used the reference implementations provided by JTT.

GEORGE Sohoni et al. (2020): GEORGE is a competing approach to Antigone that does not
assume access to sensitive attributes on either training or validation data. GEORGE operates in two
stages: In stage 1, an ERM model is trained until completion on the ground-truth target labels. The
activation in the penultimate layer of the ERM model are clustered into k clusters to generate pseudo
sensitive attributes on both the training and validation datasets. These pseudo sensitive attributes are
used to train and tune the hyper-parameters of a Group DRO model Sagawa* et al. (2020).

For a fair comparison with GEORGE, we replace its stage 1 with Antigone, and use the resulting
pseudo sensitive attribute labels to tune the hyper-parameters of a Group DRO model Sagawa* et al.
(2020). We refer to this approach as GEORGE+Antigone.

4 EXPERIMENTAL RESULTS
We now discuss the results of our empirical evaluations. We begin by analyzing the quality of
sensitive attribute labels produced by Antigone and evaluate JTT/GEORGE+Antigone.
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(a) Dataset Details (b) EDM and noise parameters on Waterbirds

Figure 2: Figure (a) illustrates CelebA and Waterbirds datasets along with fraction of each sub-group
examples in their respective training dataset. Figure (b) shows Euclidean Distance between Means
(EDM) and noise parameters (α1, β1 and 1 − α1 − β1) for the positive target class of Waterbirds
dataset. The noise parameters are unknown in practice. Blue dot indicates the model that we pick to
generate pseudo sensitive attributes, while black star indicates the model that maximizes 1−α1−β1.

Table 1: F1 Scores and Accuracy of the pseudo
sensitive attribute labels generated by Antigone (w/o
EDM), GEORGE, GEORGE with k = 2 clusters
and Antigone (w/ EDM) on CelebA and Waterbirds
datasets. Bold indicates higher F1 Scores/Accuracy
across different methods. For CelebA, BM, BW, NBW
and NBM refer to Blond Men, Blond Women, Non-
blond Women and Non-blond Men, respectively. For
Waterbirds, WL, WW, LW and LL refer to waterbirds
landbkgd, waterbirds waterbkgd, landbirds waterbkgd
and landbirds landbkgd, respectively.

Antigone GEORGE GEORGE Antigone
(w/o EDM) (k = 2) (w/ EDM)

CelebA (F1 Scores)

BM 0.28 ± 0.01 0.13 ± 0.02 0.12 ± 0.01 0.35 ± 0.04
BW 0.95 ± 0.01 0.43 ± 0.04 0.51 ± 0.02 0.96 ± 0.00

NBW 0.22 ± 0.02 0.42 ± 0.01 0.6 ± 0.01 0.22 ± 0.01
NBM 0.67 ± 0.01 0.4 ± 0.02 0.31 ± 0.01 0.68 ± 0.01
Acc. 0.59 ± 0.01 0.33 ± 0.01 0.48 ± 0.00 0.60 ± 0.00

Waterbirds (F1 Scores)

WL 0.41 ± 0.02 0.43 ± 0.02 0.52 ± 0.01 0.76 ± 0.03
WW 0.72 ± 0.00 0.36 ± 0.02 0.43 ± 0.02 0.83 ± 0.01
LW 0.58 ± 0.02 0.44 ± 0.03 0.55 ± 0.03 0.78 ± 0.04
LL 0.76 ± 0.01 0.34 ± 0.02 0.55 ± 0.03 0.84 ± 0.02

Acc. 0.68 ± 0.01 0.30 ± 0.02 0.53 ± 0.03 0.81 ± 0.02

Quality of Antigone’s sensitive attribute
labels: Antigone seeks to generate ac-
curate sensitive attribute labels on vali-
dation data based on the EDM criterion
(Lemma 1). In Figure 2(b), we empiri-
cally validate Lemma 1 by plotting EDM
and noise parameters α1 (contamination in
minority group labels), β1 (contamination
in minority group labels) and 1− α1 − β1

(proportionality constant between true and
estimated fairness) on Waterbirds dataset
(similar plot for CelebA dataset is in Ap-
pendix Figure 3). As per Lemma 1, EDM
allows us to maximize 1−α1−β1 since it
is ideally proportional to this value. From
the figure, we observe that in both cases
the EDM metric indeed captures the trend
in 1− α1 − β1, enabling early stopping at
an epoch that minimizes contamination.

The early stopping points based on EDM
and oracular knowledge of 1−α1−β1 are
shown in a blue dot and star, respectively.
For Waterbirds these are very close.

Next, we evaluate the F1 scores of
Antigone’s noisy sensitive attributes for all
four subgroups in the CelebA and Water-
birds datasets. In Table 1 we compare Antigone’s F1 Score to GEORGE with the baseline number
of clusters and GEORGE with k = 2 clusters. Across CelebA and Waterbirds datasets and all
four subgroups, we find that Antigone outperforms GEORGE except for one sub-group in CelebA
dataset. In the Appendix Table 4, we also include precision and recall values and reach similar con-
clusion. Additionally, we note that the pseudo label generated by Antigone are 1.25 and 1.5 times
more accurate than GEORGE’s pseudo labels on CelebA and Waterbirds datasets, respectively.

To understand the benefits of the proposed EDM metric, we implement a version of Antigone but
tune hyper-parameters using standard ERM. We refer to this as Antigone (w/o EDM) and find in
Table 1 that Antigone with EDM outperforms the version without EDM. We later report on the
fairness achieved by these different versions.
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Table 2: (Avg. Accuracy, Fairness) on test data for different validation accuracy thresholds on the
CelebA dataset. Lower DP and EO gaps are better. Higher WGA is better.

Val. Thresh. Method DP Gap EO Gap Worst-group Acc.

[94, 95) Antigone + JTT (94.6, 15.0) ± (0.2, 0.7) (94.7, 30.1) ± (0.2, 3.2) (94.4, 59) ± (0.2, 4.7)
Ground-Truth + JTT (94.7, 14.9) ± (0.2, 0.6) (94.5, 30.4) ± (0.2, 2.3) (94.3, 62.1) ± (0.3, 3.2)

[93, 94) Antigone + JTT (93.7, 13.1) ± (0.2, 0.7) (93.6, 26.4) ± (0.4, 5.0) (93.4, 62.6) ± (0.2, 7.0)
Ground-Truth + JTT (93.6, 13.1) ± (0.1, 0.6) (93.6, 22.7) ± (0.3, 2.7) (93.4, 67.9) ± (0.1, 1.9)

[92, 93) Antigone + JTT (92.7, 11.1) ± (0.2, 0.5) (92.3, 20.2) ± (0.2, 3.4) (92.7, 68.1) ± (0.4, 3.7)
Ground-Truth + JTT (92.7, 11.2) ± (0.3, 0.5) (92.7, 16.9) ± (0.4, 2.9) (92.7, 72.5) ± (0.2, 1.3)

[91, 92) Antigone + JTT (91.7, 9.6) ± (0.1, 0.5) (91.5, 16.3) ± (0.3, 3.4) (91.3, 63.2) ± (0.3, 2.6)
Ground-Truth + JTT (91.8, 9.7) ± (0.2, 0.5) (91.8, 10.1) ± (0.3, 4.1) (91.8, 77.3) ± (0.1, 2.4)

[90, 91) Antigone + JTT (91.0, 8.3) ± (0.2, 0.4) (90.9, 13.1) ± (0.1, 3.6) (90.9, 63.1) ± (0.5, 4.4)
Ground-Truth + JTT (91.0, 8.4) ± (0.2, 0.4) (90.7, 6.8) ± (0.4, 3.7) (91.4, 78.6) ± (0.2, 2.0)

ERM (95.8, 18.6) ± (0.0, 0.3) (95.8, 46.4) ± (0.0, 2.2) (95.8, 38.7) ± (0.0, 2.8)

Antigone + JTT: Next, in Table 2, compare the test accuracy and fairness achieved by Antigone
with JTT (Antigone + JTT) versus a baseline ERM model and with JTT using ground-truth sensitive
attributes (Ground-Truth+JTT). As expected, baseline ERM yields unfair outcomes on all three
fairness metrics: DP, EO and WGA. We observe that Antigone + JTT improves fairness over the
baseline ERM model and closes the gap with Ground-Truth+JTT.

On DP, Antigone + JTT is very close to Ground-Truth + JTT results. Antigone + JTT substantially
improve upon the EO Gap achieved by standard ERM. Antigone + JTT improves WGA from 38.7%
using standard ERM to 68.1% at the expense of 3% accuracy drop. Ground-Truth + JTT improves
WGA further up to 78.6% but with a larger average accuracy drop. Antigone + JTT achieves highest
fairness for relatively high average accuracy values, although one would expect fairness to reduce
with higher average accuracy. We believe this in part due to the noise in sensitive attribute labels
that Antigone generates. Data for Adults (shown in the Appendix Table 8) and Waterbirds (shown
in the Appendix Table 6) have the same trends.

Table 3: Performance of GEORGE using Antigone’s noisy valida-
tion data compared with GEORGE by itself. We observe that on
CelebA and Waterbirds dataset, GEORGE + Antigone out-performs
GEORGE, even if GEORGE assumes knowledge of number of clus-
ters (k = 2) in its clustering step. We show errors for over five runs.

CelebA Waterbirds

Method Avg Acc WGA Avg Acc WGA

ERM 95.7 ± 0.1 34.5 ± 3.1 95.9 ± 0.2 29.7 ± 1.6

GEORGE 93.6 ± 0.3 60.4 ± 2.3 95.5 ± 0.7 50.0 ± 5.8
Antigone + GEORGE 93.3 ± 0.3 62.1 ± 1.2 96.0 ± 0.2 57.4 ± 6.6

GEORGE (k=2) 94.6 ± 0.1 62.6 ± 2.1 95.0 ± 0.8 46.7 ± 11.7
Antigone + GEORGE (k=2) 94.2 ± 0.3 65.3 ± 2.9 95.8 ± 0.6 54.4 ± 7.1

Comparison with
GEORGE: Like Antigone,
GEORGE also generates
pseudo-sensitive attributes
on validation data, but
as we noted in Table 1,
Antigone’s labels are more
accurate and have higher
F1 scores for different
sub-groups. We now
compare the fairness in
terms of WGA achieved by
GEORGE versus Antigone
+GEORGE in which we
use Antigone’s labeled validation data to tune GEORGE’s training algorithm. Antigone + GEORGE
is more fair than GEORGE alone on CelebA and Waterbirds (Table 3). On CelebA, Antigone
+ GEORGE has a small drop in average accuracy compared to GEORGE, while on Waterbirds,
both average accuracy and fairness are better. In interpreting the errors on Waterbirds dataset, we
should note that Antigone + GEORGE’s WGA is atleast 8.4% higher than GEORGE’s in each
one of our multiple runs, except in one run where GEORGE has 1% higher WGA compared to
Antigone + GEORGE, whereas on CelebA, Antigone + GEORGE’s WGA was equal to or better
than GEORGE’s in each one of our multiple runs. Similar trend holds for Antigone + GEORGE
(k = 2) and GEORGE (k = 2).

Impact of EDM metric on fairness: We already noted in Table 1 Antigone with the proposed
EDM metric produces higher quality sensitive attribute labels compared to a version of Antigone
that picks hyper-parameters using standard ERM. We evaluated these two approaches using JTT’s
training algorithm and find that Antigone with EDM results in a 5.7% increase in WGA and a small
0.06% increase in average accuracy.
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5 RELATED WORKS

Several works have observed that standard ERM training algorithms can achieve state-of-the-art
accuracy on many tasks, but unintentionally make biased predictions for different sensitive attributes
failing to meet the fairness objectives (Hovy & Søgaard, 2015; Oren et al., 2019; Hashimoto et al.,
2018a; Buolamwini & Gebru, 2018).

Fairness objectives can be broadly categorized into two types: individual fairness and group fair-
ness. Individual fairness (Dwork et al., 2012; Kusner et al., 2017) requires similar individual to be
treated similarly. Whereas, group fairness Prost et al. (2019); Quadrianto et al. (2019); Hardt et al.
(2016) requires the groups of individuals divided based on a sensitive attribute like race, gender,
etc., be treated equally. In this paper, we focus on the popular group fairness notions that include
Demographic Parity, Equal Opportunity and Worst-group performance.

Methods that seek to achieve group fairness are three types: pre-processing, in-processing and post-
processing algorithms. Pre-processing (Quadrianto et al., 2019; Ryu et al., 2018) methods focus
on curating the dataset that includes removal of sensitive information or balancing the datasets.
In-processing methods (Hashimoto et al., 2018b; Agarwal et al., 2018; Zafar et al., 2019; Lahoti
et al., 2020; Prost et al., 2019; Liu et al., 2021; Sohoni et al., 2020) alter the training mechanism by
using adding fairness constrains to the loss function or by training an adversarial framework to make
predictions independent of sensitive attributes Zhang et al. (2018). Post-processing methods (Hardt
et al., 2016; Wang et al., 2020; Savani et al., 2020) alter the outputs, for e.g. use different threshold
for different sensitive attributes. In this work, we focus on in-processing algorithms.

Prior in-processing algorithms, including the ones referenced above, assume access to sensitive
attributes on the training data and validation dataset. Recent work sought to train fair model without
training data annotations Liu et al. (2021); Nam et al. (2020); Hashimoto et al. (2018a); Creager
et al. (2021) but, except for GEORGE Sohoni et al. (2020), require sensitive attributes on validation
dataset to tune the hyperparameters. Like GEORGE, we seek to train fair classification models
without ground-truth sensitive information on either training or validation dataset.

Antigone is different from GEORGE in three ways: (1) Unlike GEORGE, we account for the model
prediction and the ground-truth target label to generate pseudo-sensitive attributes. (2) The hyper-
parameters of the clustering step in GEORGE are fixed from literature and not specifically tuned for
each dataset. In this paper, we propose a more principled approach to tune the model’s hyperparam-
eters in an unsupervised fashion to obtain noisy sensitive features. And finally, (3) GEORGE only
focuses on worst-group accuracy, whereas Antigone can be adapted to different notions of fairness.

A related body of work develops post-processing methods to improve fairness without access to
sensitive attributes but assuming a small set of labelled data for auditing Kim et al. (2019). One
could use Antigone to create this auditing dataset, albeit with noise. Evaluating Antigone with these
post-processing methods is an important avenue for future work.

6 CONCLUSION

In this paper, we propose Antigone, a method to enable hyper-parameter tuning for fair ML models
without access to sensitive attributes on training or validation sets. Antigone generates high-quality
pseudo-sensitive attribute labels on validation data by training a family of biased classifiers using
standard ERM and using correctly (incorrectly) classified examples as proxies for majority (minor-
ity) group membership. We propose a novel EDM metric based approach to pick the most biased
model from this family and provide theoretical justification for this choice using the MC noise
model. The resulting validation dataset with pseudo sensitive attribute labels can then be used to
tune the hyper-parameters of a fair training algorithm like JTT or GEORGE. We show that Antigone
produces the highest precision sensitive attributes compared to the state-of-art. Future work will also
seek to address the variance in fairness metrics (Mozannar et al., 2020) introduced by finite sam-
ple size under the MC noise model, extend Antigone to multiple-sensitive attributes, inter-sectional
fairness and active learning of sensitive attributes.

AVAILABILITY

Code with README.txt file is available at: https://anonymous.4open.science/r/
fairness_without_demographics-3BD0/README.md
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A APPENDIX

A.1 UCI ADULT DATASET

Dataset details: Adult dataset (Dua & Graff, 2017) is used to predict if an individual’s annual
income is ≤ 50K (Y = 0) or > 50K (Y = 1) based on several continuous and categorical attributes
like the individual’s education level, age, gender, occupation, etc. The sensitive attribute is gender
A = {Men,Women} Zemel et al. (2013). The dataset consists of 45,000 instances and is split into
training, validation and test sets with 21112, 9049 and 15060 instances, respectively.

Hyper-parameter settings: In all our experiments using Adult dataset, we train a multi-layer
neural network with one hidden layer consisting of 64 neurons. We train for a total of 100
epochs using the SGD optimizer and a batch size of 256. We tune Antigone and JTT by per-
forming grid search over learning rates ∈ {1e − 03, 1e − 04, 1e − 05} and weight decays
∈ {1e−01, 1e−03}. For JTT, we explore over T ∈ {1, 2, 5, 10, 15, 20, 30, 35, 40, 45, 50, 65, 80, 95}
and λ ∈ {5, 10, 20}. In each case, we seek to optimize fairness while constraining average accuracy
to ranges {[82, 82.5), [81.5, 82), [81, 81.5), [80.5, 81), [80, 80.5)}.

A.2 QUALITY OF ANTIGONE’S SENSITIVE ATTRIBUTE LABELS

Figure 3: Euclidean Distance between Means (EDM) and noise parameters α1, β1 and and 1−α1−
β1 for the positive target class of CelebA dataset. The noise parameters are unknown in practice.
Blue dot indicates the model that we pick to generate pseudo sensitive attributes, while black star
indicates the model that maximizes 1− α1 − β1.
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Table 4: We tabulate the precision, recall, F1-score of the noisy validation groups generated from
ERM model, GEORGE, GEORGE with number of clusters = 2 and Antigone. We observe that
Antigone has higher precision and F1 scores across different noisy groups on CelebA and Water-
birds, respectively.

Antigone GEORGE GEORGE Antigone
(w/o EDM) (k = 2) (w/ EDM)

CelebA (Precision, Recall, F1 Scores)

Blond Men 0.26, 0.31, 0.28 0.09, 0.32, 0.13 0.06, 0.70, 0.12 0.36, 0.34, 0.35
(0.02, 0.03, 0.01) (0.01, 0.09, 0.02) (0.01, 0.05, 0.01) (0.05, 0.04, 0.04)

Blond Women 0.95, 0.94, 0.95 0.94, 0.28, 0.43 0.95, 0.35, 0.51 0.96, 0.96, 0.96
(0.01, 0.01, 0.01) (0.01, 0.04, 0.04) (0.00, 0.02, 0.02) (0.0, 0.0, 0.0)

Non-blond Women 0.82, 0.13, 0.22 0.51, 0.36, 0.42 0.5, 0.76, 0.6 0.86, 0.13, 0.22
(0.01, 0.01, 0.02) (0.00, 0.01, 0.01) (0.00, 0.01, 0.01) (0.01, 0.01, 0.01)

Non-blond Men 0.52, 0.97, 0.67 0.53, 0.33, 0.40 0.47, 0.23, 0.31 0.52, 0.98, 0.68
(0.00, 0.00, 0.01) (0.01, 0.02, 0.02) (0.01, 0.01, 0.01) (0.0, 0.0, 0.0)

CelebA Accuracy 0.59 ± 0.01 0.33 ± 0.01 0.48 ± 0.00 0.60 ± 0.00

Waterbirds (Precision, Recall, F1 Scores)

Waterbirds Landbkgd 0.94, 0.26, 0.41 0.56, 0.34, 0.43 0.48, 0.57, 0.52 0.96, 0.63, 0.76
(0.01, 0.02, 0.02) (0.03, 0.02, 0.02) (0.01, 0.01, 0.01) (0.01, 0.04, 0.03)

Waterbirds Waterbkgd 0.57, 0.98, 0.72 0.55, 0.27, 0.36 0.48, 0.39, 0.43 0.73, 0.97, 0.83
(0.01, 0.00, 0.00) (0.07, 0.03, 0.02) (0.02, 0.02, 0.02) (0.02, 0.01, 0.01)

Landbirds Waterbkgd 0.96, 0.42, 0.58 0.57, 0.36, 0.44 0.55, 0.55, 0.55 0.97, 0.65, 0.78
(0.00, 0.03, 0.02) (0.04, 0.03, 0.03) (0.03, 0.03, 0.03) (0.00, 0.05, 0.04)

Landbirds Landbkgd 0.63, 0.98, 0.76 0.55, 0.24, 0.34 0.55, 0.56, 0.55 0.74, 0.98, 0.84
(0.01, 0.00, 0.01) (0.04, 0.04, 0.02) (0.03, 0.04, 0.03) (0.03, 0.00, 0.02)

Waterbirds Accuracy 0.68 ± 0.01 0.30 ± 0.02 0.53 ± 0.03 0.81 ± 0.02

Table 5: We tabulate the precision, recall, F1-score, accuracy of the noisy validation groups gen-
erated by varying the fraction of minority group examples in each class of CelebA dataset. We
observe that Antigone has higher precision, recall, F1 score and accuracy if the imbalance is more
in the training dataset.

Fraction Minority 5% 20% 35% 50%
Precision, Recall, F1 Score

Blond Men (Minority) 0.57, 0.40, 0.47 0.81, 0.17, 0.29 0.67, 0.15, 0.24 0.75, 0.14, 0.24
Blond Women (Majority) 0.97, 0.98, 0.98 0.83, 0.99, 0.90 0.68, 0.96, 0.79 0.53, 0.95, 0.68

1− α1 − β1 0.54 0.64 0.35 0.28
Blond Acc. 0.95 0.83 0.68 0.55

Non-blond Women (Minority) 0.45, 0.26, 0.33 0.59, 0.17, 0.26 0.63, 0.18, 0.28 0.63, 0.16, 0.26
Non-blond Men (Majority) 0.96, 0.98, 0.97 0.82, 0.97, 0.89 0.68, 0.94, 0.79 0.52, 0.91, 0.66

1− α0 − β0 0.41 0.41 0.31 0.15
Non-blond Acc. 0.94 0.81 0.67 0.54

Overall Acc. 0.95 0.81 0.67 0.54
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A.3 ANTIGONE + JTT

Table 6: We report the (Test Average Accuracy, Test Fairness Metric) for different validation ac-
curacy thresholds on Waterbirds dataset. We observe that Antigone + JTT (our noisy sensitive
attributes) improves fairness over baseline ERM model and closes the gap with Ground-Truth +
JTT (ground-truth sensitive attributes).

Val. Thresh. Method DP Gap EO Gap Worst-group

[96, 96.5) Antigone + JTT (95.8, 3.9) ± (0.4, 0.4) (96.2, 10.7) ± (0.3, 7.1) (96.3, 83.0) ± (0.4, 1.3)
Ground-Truth + JTT (95.8, 3.9) ± (0.4, 0.4) (96.0, 7.1) ± (0.3, 1.4) (96.3, 83.0) ± (0.4, 1.3)

[95.5, 96) Antigone + JTT (95.4, 2.8) ± (0.1, 0.1) (96.0, 7.5) ± (0.2, 1.5) (96.3, 83.2) ± (0.3, 0.6)
Ground-Truth + JTT (95.4, 2.9) ± (0.4, 1.1) (95.6, 6.0) ± (0.3, 2.1) (96.1, 83.5) ± (0.5, 0.8)

[95, 95.5) Antigone + JTT (94.5, 1.5) ± (0.6, 0.6) (94.7, 4.2) ± (0.9, 3.1) (94.7, 85.9) ± (0.9, 1.4)
Ground-Truth + JTT (94.4, 1.7) ± (0.7, 0.7) (94.3, 1.1) ± (0.5, 0.6) (95.1, 86.8) ± (0.6, 1.1)

[94.5, 95) Antigone + JTT (94.2, 0.4) ± (0.4, 0.4) (93.8, 2.0) ± (0.5, 1.4) (94.2, 86.7) ± (0.8, 1.8)
Ground-Truth + JTT (93.6, 0.6) ± (0.5, 0.5) (93.8, 2.0) ± (0.5, 1.4) (94.1, 88.2) ± (0.6, 0.7)

[94.0, 94.5) Antigone + JTT (93.0, 1.5) ± (0.6, 0.3) (93.6, 4.8) ± (1.2, 3.0) (93.7, 87.9) ± (0.5, 1.4)
Ground-Truth + JTT (93.1, 1.5) ± (0.3, 0.4) (93.2, 4.0) ± (1.0, 2.1) (93.8, 88.1) ± (0.7, 1.1)

ERM (97.3, 21.3) ± (0.2, 1.1) (97.3, 35.0) ± (0.2, 3.4) (97.3, 59.1) ± (0.2, 3.8)

Table 7: Antigone + JTT vs Ideal MC Model + JTT (Avg. Accuracy, Fairness) comparison on test
data for different validation accuracy thresholds on the CelebA dataset. Lower DP and EO gaps are
better. Higher WGA is better.

DP Gap EO Gap WGA

>=94 and <95 Antigone + JTT (94.9, 14.7) (94.6, 33.7) (94.5, 61.7)
Ideal MC + JTT (94.9, 14.7) (94.4, 34.1) (94.4, 58.3)

>=93 and <94 Antigone + JTT (93.7, 12.2) (93.9, 30.3) (93.3, 60.0)
Ideal MC + JTT (93.7, 12.2) (93.5, 26.3) (93.7, 65.0)

>=92 and <93 Antigone + JTT (93.1, 12.1) (92.4, 22.9) (92.9, 65.6)
Ideal MC + JTT (93.1, 12.1) (93.0, 22.7) (93.2, 69.4)

>=91 and <92 Antigone + JTT (91.9, 9.3) (91.1, 13.9) (91.1, 66.7)
Ideal MC + JTT (91.9, 9.3) (92.2, 19.1) (91.8, 73.9)

>=90 and <91 Antigone + JTT (91.1, 7.9) (91.1, 13.9) (91.1, 66.7)
Ideal MC + JTT (90.9, 8) (90.4, 18.9) (91.4, 72.2)
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Table 8: (Avg. Accuracy, Fairness) on test data for different validation accuracy thresholds on the
UCI Adult dataset. Lower DP and EO gaps are better. Higher WGA is better.

Val. Thresh. Method DP Gap EO Gap Worst-group Acc.

[82, 82.5) Antigone + JTT (81.9, 11.7) (81.9, 0) (81.7, 54.6)
Ground-Truth + JTT (81.8, 11.9) (81.4, 3.3) (81.7, 54.6)

[81.5, 82) Antigone + JTT (81.5, 9.3) (81.5, 1.9) (81.0, 56.0)
Ground-Truth + JTT (81.5, 9.3) (81.1, 4.0) (81.0, 56.0)

[81, 81.5) Antigone + JTT (80.8, 7.1) (80.9, 0.9) (81.0, 57.1)
Ground-Truth + JTT (80.8, 7.1) (81.0, 2.4) (81.0, 57.1)

[80.5, 81) Antigone + JTT (80.4, 7.2) (80.1, 1.9) (80.4, 58.2)
Ground-Truth + JTT (79.8, 5.1) (80.5, 5.0) (80.5, 58.0)

[80, 80.5) Antigone + JTT (79.7, 5.4) (79.7, 1.4) (80.4, 58.0)
Ground-Truth + JTT (79.5, 3.9) (80.4, 4.2) (80.4, 58.0)

ERM (84.8, 53.8) (84.8, 10.6) (84.8, 52.4)
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