
Active Domain Knowledge Acquisition with $100 Budget: Enhancing
LLMs via Cost-Efficient, Expert-Involved Interaction in Sensitive Domains

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have demon-001
strated an impressive level of general knowl-002
edge. However, they often struggle in highly003
specialized and cost-sensitive domains such as004
drug discovery and rare disease research due005
to the lack of expert knowledge. In this paper,006
we propose a novel framework (PU-ADKA) de-007
signed to efficiently enhance domain-specific008
LLMs by actively engaging domain experts009
within a fixed budget. Unlike traditional fine-010
tuning approaches, PU-ADKA selectively iden-011
tifies and queries the most appropriate expert012
from a team, taking into account each expert’s013
availability, knowledge boundaries, and consul-014
tation costs. We train PU-ADKA using simula-015
tions on PubMed data and validate it through016
both controlled expert interactions and real-017
world deployment with a drug development018
team, demonstrating its effectiveness in enhanc-019
ing LLM performance in specialized domains020
under strict budget constraints. In addition to021
outlining our methodological innovations and022
experimental results, we introduce a new bench-023
mark dataset, CKAD, for cost-effective LLM024
domain knowledge acquisition to foster further025
research in this challenging area1.026

1 Introduction027

Recent advancements in large language models028

(LLMs) have led to impressive performance gains029

across a wide range of tasks (Naveed et al., 2023;030

Pal et al., 2024; Yao et al., 2025). However, these031

gains are not uniformly observed across all do-032

mains. In highly specialized and cost-sensitive033

fields, such as drug discovery and rare disease ex-034

ploration, the acquisition of domain knowledge035

remains a challenge. Traditional approaches like036

Reinforcement Learning from Human Feedback037

(RLHF) (Ouyang et al., 2022; Kaufmann et al.,038

2023) have demonstrated value in general settings,039

1Code and data are included in the submitted supplemen-
tary files and will be publicly released after the review process.

Figure 1: Domain LLM Knowledge Acquisition via
Cost-Efficient, Expert-Involved Interaction. The dia-
gram depicts how PU-ADKA selectively engages do-
main experts with varying expertise and costs to acquire
knowledge efficiently within a limited budget.

yet they struggle in contexts where expert knowl- 040

edge is extremely expensive and sparse. This sce- 041

nario is particularly pronounced in domains where 042

domain expertise is fragmented among profession- 043

als with diverse competencies and availability con- 044

straints (Szymanski et al., 2025; Dhar, 2024). Con- 045

sequently, there is a pressing need for novel ap- 046

proaches that can efficiently integrate domain ex- 047

pert feedback into LLMs while operating under 048

tight budgetary and expert availability restrictions. 049

To respond to this demand, we propose Posi- 050

tive Unlabeled Active Domain Knowledge Acquisi- 051

tion (PU-ADKA), which is designed to selectively 052

engage with domain experts and acquire targeted 053

feedback that can significantly enhance the per- 054

formance of LLMs in specialized fields. Unlike 055

conventional fine-tuning methods that passively in- 056

corporate affordable human feedback (Zhang et al., 057

2023), PU-ADKA actively queries the most appro- 058

priate expert from a team given each member’s 059

computational profile. The model can elaborately 060

consider factors such as the candidate expert’s 061

knowledge boundary, cost of consultation, and ex- 062

pert availability, thereby optimizing the knowledge 063

acquisition process within a fixed budget (e.g., total 064

$100). The model training process leveraged newly 065
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released PubMed publications (PubMed, 2024),066

legacy architectures of LLMs and innovative sim-067

ulations of expert-domain knowledge interactions.068

Through an intelligent knowledge selection process069

and cost-aware querying mechanism, PU-ADKA070

bridges the gap between the limited availability071

of expert input and the high demand for domain-072

specific information.073

Figure 1 illustrates the concept behind the pro-074

posed PU-ADKA. In this case, a domain LLM075

acknowledges gaps in its knowledge related to top-076

ics like mRNA vaccines, CAT-T, and adenocarci-077

noma (to support a cancer drug development team)078

(Patel et al., 2025). Instead of relying on static, pre-079

existing datasets, PU-ADKA selectively engages080

with domain experts to acquire precise knowledge081

within a limited budget. The model evaluates the082

expertise, cost, and availability of different special-083

ists, including PI, lead, senior, and junior scholars,084

to optimize knowledge acquisition. For example, in085

the image, the LLM selectively queries Dr. Jean for086

insights on mRNA vaccines at a cost of $7, while087

consulting Mary, a different expert, about CAT-T088

for $4, ensuring cost-effective expert engagement.089

This dynamic querying mechanism allows the LLM090

to refine its domain knowledge efficiently, making091

it particularly useful in critical domains like drug092

discovery and rare disease research, where expert093

knowledge is both sparse and expensive.094

Our contributions in this paper are threefold and095

can be summarized as follows:096

• We propose PU-ADKA, a cost-aware frame-097

work that strategically selects and queries domain098

experts by considering their availability, knowledge099

scope, and consultation cost, in order to enhance100

LLM performance under limited expert access and101

fixed budget constraints.102

• We introduce the Cost-effective Knowledge103

Acquisition Dataset (CKAD), a new benchmark104

for LLM domain knowledge acquisition, to foster105

further research in the area of domain-specific LLM106

enhancement.107

• We empirically validate the effectiveness of108

PU-ADKA through both simulation evaluation and109

a real-world cancer drug development study. The110

latter experiment involves a drug development team111

in which five experts with diverse backgrounds112

participate. The results show that PU-ADKA is113

promising in enhancing domain LLMs within a114

fixed budgetary restriction.115

2 Related Work 116

2.1 Human Feedback Integration in 117

Domain-Specific LLMs 118

Domain-specific adaptation of LLMs has been 119

advanced significantly by techniques such as 120

domain-adaptive pretraining (DAPT) (Gururangan 121

et al., 2020) and various biomedical LLMs like 122

BioMedLM (Bolton et al., 2024), ClinicalBLIP (Ji 123

et al., 2024), and BioGPT (Luo et al., 2022). These 124

methods effectively utilize large domain-specific 125

corpora (e.g., PubMed) to incorporate static knowl- 126

edge. However, they often fall short in capturing 127

the dynamic insights from domain experts, cru- 128

cial for rapidly evolving areas like drug discovery. 129

RLHF(Ouyang et al., 2022) aims to align general 130

LLMs with human preferences but typically de- 131

pends on more homogeneous and less costly an- 132

notators, limiting its effectiveness in specialized 133

domains where expert feedback is sparse and ex- 134

pensive. Attempts like ExpertQA (Malaviya et al., 135

2023) simulate multi-expert interactions but over- 136

look practical constraints like budget limitations 137

and asynchronous availability of experts. Our ap- 138

proach, PU-ADKA, overcomes these shortcomings 139

by redefining expert knowledge acquisition as a 140

budget-constrained optimization task, engaging ex- 141

perts based on their knowledge, cost, and availabil- 142

ity, thereby transitioning from static data-driven 143

adaptation to expert-guided learning. 144

2.2 Budget-Constrained Active Learning with 145

Multi-Expert Collaboration 146

Traditional active learning models primarily focus 147

on maximizing sample information through uncer- 148

tainty (Gal et al., 2017; Kim et al., 2021; Wang 149

et al., 2024) or diversity (Chakraborty et al., 2015; 150

Parvaneh et al., 2022; Citovsky et al., 2021), often 151

neglecting the varying costs associated with ex- 152

pert annotations, particularly in complex fields like 153

biomedicine. Cost-sensitive approaches (Huang 154

et al., 2017; Henkel et al., 2023; Li et al., 2022) 155

attempt to address this by optimizing for lower- 156

cost annotators but fail to differentiate between 157

the varied expertise levels necessary for accurately 158

labeling complex cases. Unlike these methods, PU- 159

ADKA integrates active learning with strategic ex- 160

pert collaboration, emphasizing both data sample 161

selection based on the potential to update the model 162

and efficient engagement of experts, balancing cost 163

against their competency and availability. 164
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3 Methodology165

3.1 Problem Definition166

Given a fixed annotation budget B, an unlabeled167

question pool Dtr = {qi}|Dtr|
i=1 , and a team of do-168

main experts E = {ej}|E|j=1, our goal is to select169

an optimal set of (qi, ej) pairs to acquire expert-170

labeled data for finetuning a large language model171

θ, maximizing finetuning performance on a target172

test set Dte = {pm}|Dte|
m=1.173

Formally, we define an allocation function f :174

Dtr → E that assigns each selected question qi to175

an expert ej , ensuring that the total annotation cost176

remains within the budget B. The optimization177

objective is:178

S∗ = argmax
S⊆Dtr×E

F(θS ,Dte)

s.t.,
∑

(qi,ej)∈S

c(qi, ej) ≤ B,
179

where, S∗ denotes the optimal set of (qi, ej) pairs180

that maximizes the performance metric F(θS ,Dte)181

of the fine-tuned model θS on the target test set.182

The term c(qi, ej) represents the annotation cost183

incurred when expert ej annotates question qi.184

Table 1: Notations.

Notation Description
B Total annotation budget available.
Dtr Unlabeled question pool for training.
Dte Target test set for evaluation.
qi The i-th question in the unlabeled pool.
ej The j-th domain expert.
f Allocation function assigning questions to experts.
θ Base language model.
θS Fine-tuned model using selected question-expert pairs S.
S Selected set of question–expert pairs for annotation.
c(qi, ej) Cost for expert ej to label question qi.
xp
k Positive question–expert pair used in PU learning.

xu
k Unlabeled question–expert pair used in PU learning.

πp Prior probability of a positive sample in PU learning.
g Expert-wise attention network.
l(·, ·) Surrogate loss function (e.g., zero-one loss).
Γt
j Number of times expert ej has been selected up to time t.

wt
j Sampling weight of expert ej at time t.

rt Reward at time step t in multi-agent RL.
ϕi Diversity score for question qi.
d(Ei

q, E
z
q ) Distance between question embeddings i and z.

Zi Expert-wise representation of question qi.

3.2 Simulation Environment Construction185

To facilitate our study, we introduce a novel bench-186

mark dataset, CKAD, designed to simulate biomed-187

ical expert consultations and domain knowledge188

acquisition for LLMs. This dataset is constructed189

by strategically leveraging PubMed articles pub-190

lished after the knowledge cutoff date of the base191

model, ensuring that the selected content represents192

genuinely novel information. To further isolate new 193

knowledge from prior model capabilities, we imple- 194

ment a temporal knowledge separation mechanism 195

that enforces strict chronological boundaries be- 196

tween the base model’s existing knowledge and the 197

newly acquired domain content. This is achieved 198

through three key components detailed below: 199

Predated Base Model Selection: We employ 200

Llama2-7B (Touvron et al., 2023) as our predated 201

base model, chosen for its knowledge limitations 202

to information available up to early 2023, prior 203

to our target corpus. This temporal separation en- 204

sures a controlled setting for evaluating knowledge 205

acquisition. 206

Dataset Curation: We construct CKAD from 207

2024 PubMed Central (PMC) (PubMed, 2024), ex- 208

tracting question-answer (QA) pairs using GPT- 209

4o-2024-08-06 (OpenAI, 2024). For each paper, 210

five mechanism-focused QA pairs are generated 211

using prompting2 and manually validated. To es- 212

tablish a well-isolated environment for assessing 213

knowledge acquisition, we filter out QA pairs that 214

can be answered by the base model. This process 215

results in a final dataset of 48,219 QA pairs (the 216

base model cannot correctly answer) representing 217

post-2023 knowledge. To assess the quality of our 218

dataset, we conduct a human evaluation on 100 219

randomly sampled QA pairs. Two PhD researchers 220

with biomedical backgrounds independently scored 221

each QA pair on a 1–5 scale3. The average score is 222

3.85, and Cohen’s Kappa (McHugh, 2012) between 223

the evaluators is 0.73, reflecting high data quality 224

and strong human agreement. 225

Expert Simulation. To simulate realistic an- 226

notation constraints, we construct a binary expert 227

capability matrix A ∈ RQ×N , where Aji = 1 in- 228

dicates that expert ej is assumed to be capable of 229

annotating question qi, and 0 otherwise. This ma- 230

trix is used to restrict which expert–question pairs 231

are considered valid during simulation. Without 232

such a constraint, every expert would be able to 233

annotate every question, leading to minimal vari- 234

ation in annotation quality across experts—even 235

for questions unrelated to their domain expertise. 236

To construct A, we use GPT-4o-2024-08-06 to ana- 237

lyze each expert’s publications and determine their 238

capacity to annotate specific questions. The top 239

20 authors ranked by publication count are used 240

as proxy experts. Each expert is assigned a per- 241

2The detail of question-answer extraction prompt is pro-
vided in Appendix C.

3Quality scoring form is depicted in the Appendix I
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Figure 2: Illustration of our proposed PU-ADKA framework. Given an unlabeled question pool and a team of
experts with varying expertise and cost, the question-expert PU learning network identifies the experts that can
annotate specific questions based on limited positive examples. A multi-agent reinforcement learning module then
selects which questions to annotate and assigns them to appropriate experts under a fixed budget. This process
enables efficient acquisition of domain-specific knowledge for the base LLM through expert-in-the-loop supervision.

question annotation rate, determined proportionally242

by the cumulative impact factor of their publica-243

tions (Clarivate, 2025).244

3.3 Positive Unlabeled Active Domain245

Knowledge Acquisition246

In this section, we present our Positive-Unlabeled247

Active Domain Knowledge Acquisition (PU-248

ADKA) framework, which selectively engages do-249

main experts to acquire targeted feedback for im-250

proving LLM performance in specialized domains.251

PU-ADKA comprises two components: (1) Ques-252

tion–Expert Matching, formulated as a Positive-253

Unlabeled (PU) learning problem to model expert254

suitability; and (2) Multi-Agent Reinforcement255

Learning, which selects question–expert pairs un-256

der budget constraints. We elaborate on each com-257

ponent below.258

3.3.1 Expert Allocation with Positive259

Unlabeled Learning260

Motivation. A key challenge in modeling ex-261

pert–question suitability lies in the absence of ex-262

plicit supervision: we can identify which expert263

authored the source publication from which a ques-264

tion is derived, and thus assume they are qualified265

to answer it; however, we cannot assume that all266

other experts are unqualified. This makes standard267

binary classification infeasible. To address this, we268

frame the question-expert matching task as a Pos-269

itive–Unlabeled (PU) learning problem. Given a270

question–expert pair (qi, ej), we label it as positive271

if qi originates from a publication authored by ej .272

If qi does not come from ej’s paper, we do not273

treat (qi, ej) as a negative pair—instead, it remains 274

unlabeled, since the expert may still be qualified. 275

For example, a scholar specializing in cancer NK 276

cells may be able to answer a sepsis-related ques- 277

tion involving extracellular vesicles, even without 278

directly publishing in the sepsis domain. 279

Model Training. We use LLM-based text rep- 280

resentations, leveraging a pretrained Llama2-7B 281

model to encode questions Ei
q and experts Ej

e , with 282

embeddings taken from the last hidden layer. Par- 283

ticularly, an expert’s embedding is obtained by av- 284

eraging the representations of their publications. 285

To train our PU model to estimate expert knowl- 286

edge boundary, we employ an expert-wise attention 287

mechanism4 g and training with the non-negative 288

PU risk estimator (Kiryo et al., 2017), which is 289

defined as follows: 290

Riskpu(g) =
πp

np

np∑
i=1

l(g(xp
k),+1)+

max(0,
1

nu

nu∑
i=1

l(g(xu
k),−1)−

πp

np

np∑
i=1

l(g(xp
k),−1)),

(1) 291

where πp denotes positive class prior (πp = 0.1 292

in our dataset), l(·, ·) is the surrogate loss of zero- 293

one loss (Du Plessis et al., 2015), np represents the 294

number of labeled positive instances, nu represents 295

the number of unlabeled instances, xpk and xuk de- 296

note question-expert pairs in the labeled positive 297

set and the unlabeled set, respectively. 298

4The attention network is detailed in Appendix D
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3.3.2 Domain Knowledge Acquisition via299

Multi-Agent Reinforcement Learning300

The PU learning module is designed to estimate301

how well each expert aligns with a given question.302

This section builds on these estimates to select ex-303

pert–question pairs for annotation under budget304

constraints, aiming to maximize domain knowl-305

edge acquisition.306

Motivation. Effective knowledge acquisition307

requires selecting questions that are not only in-308

formative individually, but also complementary as309

a set. This necessitates modeling dependencies310

among questions—two high-value questions may311

become redundant when answered together. For312

example, questions about extracellular vesicles in313

different disease contexts may overlap in the knowl-314

edge they elicit. Single-agent or greedy methods315

typically overlook such redundancy, leading to in-316

efficient use of limited annotation budgets. To ad-317

dress this, we formulate the question selection as a318

multi-agent reinforcement learning (RL) problem,319

where each agent selects a question–expert pair320

while coordinating through shared rewards. This321

enables the model to account for inter-question de-322

pendencies and optimize the utility of the selected323

set.324

Multi-Agent RL State. The environment state325

is represented by a combination of features that326

capture both task-related and budgetary aspects:327

(1). The question–expert matching score g(qi, ej)328

is derived from the trained PU learning model and329

measures the suitability of assigning question qi330

to expert ej . (2). The remaining budget Bt indi-331

cates the available annotation budget at time step t.332

(3). The expert sampling weight wt
j quantifies the333

likelihood of selecting each expert ej , defined as:334

wt
j =

Bt

c(qi, ej)
× (1− αΓt

j), (2)335

where α is a decay factor, and Γt
j denotes the num-336

ber of times expert ej has been selected up to time337

step t. This formulation encourages diversity in ex-338

pert selection to enhance overall information gain339

while ensuring balanced workload distribution.340

Multi-Agent Competition. Different from341

previous studies, our framework allows multiple342

agents within the same model to simultaneously343

seek (qi, ej) pairs, enabling different experts to344

compete for answering the same question. Leverag-345

ing our PU-based question-expert matching model,346

each question qi is associated with a ranked list347

of potential experts. As a result, multiple experts 348

e1, e2, . . . , eh may select the same question qi. In 349

such cases, qi should be assigned to the expert with 350

the highest matching score based on our PU match- 351

ing network. To enforce this competitive selection, 352

we introduce a competition function: 353

Compete(qi | e1, e2, . . . , eh) = ev,

s.t. ev = argmax
ej

g(qi, ej),
(3) 354

where g(qi, ej) represents the PU-based matching 355

score between question qi and expert ej , ensuring 356

that the most suitable expert is selected. For experts 357

who lose the competition for a given question in the 358

current iteration, the corresponding agents will then 359

select alternative pairs and re-enter the competition 360

process. This recursive procedure continues until 361

all agents in the current state have been assigned 362

unique questions. 363

Multi-Agent Cooperation. To effectively 364

encourage collaborative decision-making among 365

agents and optimize knowledge acquisition under 366

a fixed annotation budget, we define the reward 367

function as: 368

rt =
∆Ft ×

∑
qi∈St

ϕi∑
(qi,ej)∈St

c(qi, ej)
, (4) 369

where ∆Ft denotes the improvement in model per- 370

formance on the validation set after incorporating 371

newly labeled data at step t, and the denominator 372

represents the total annotation cost (Gao and Saar- 373

Tsechansky, 2020; Huang et al., 2017; Golazizian 374

et al., 2024). The diversity term ϕi measures the 375

distinctiveness of each selected question and is de- 376

fined as: 377

ϕi = min
qz∈St

d(Ei
q, E

z
q ), (5) 378

where St denotes the current labeled question set, 379

and d(·, ·) is the Euclidean distance function. A 380

larger ϕi value indicates that the selected question 381

is more diverse relative to past selections, thereby 382

enhancing knowledge coverage and reducing re- 383

dundancy. 384

Model Training. To stabilize learning, we em- 385

ploy a Double DQN architecture (Wang et al., 386

2020). The temporal-difference (TD) target Yt is 387

computed as: 388

Yt = rt+γQ(st+1, argmax
ut+1

Q(st+1, ut+1; Ωt); Ω
′
t),

(6) 389
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where st+1 denotes the next state, γ is the discount390

factor, Q(s, u; θ) is the action-value function, Ωt391

and Ω′
t represent parameters of the policy and tar-392

get network, respectively. To enhance generaliza-393

tion, we employ bootstrap sampling by selecting394

a random subset of experts (e.g. five per iteration)395

during the training stage. This strategy prevents396

overfitting to a specific set of experts, ensuring that397

the learned policy remains robust across diverse398

labeling scenarios.399

4 Experiments400

4.1 Experimental Setup401

As described in Section 3.2, we use the PubMed402

dataset for sepsis and cancer NK research from403

2024 and adopt Llama2-7B as the base architec-404

ture. The experimental setup for our PU-ADKA405

model utilizes Llama2-7B with a sampling tem-406

perature of 1.0, a nucleus sampling top_p value of407

0.9, and a maximum token length of 4,096. The408

question and expert document encoders use the last409

hidden layer of Llama2-7B. For fine-tuning, we410

apply LoRA (Hu et al., 2021) to improve training411

efficiency for large-scale models. The LoRA con-412

figuration includes a rank of 16, an alpha of 128,413

and a dropout rate of 0.1. Training involves learn-414

ing LoRA matrices for all attention mechanisms415

in each configuration. The models are optimized416

using the AdamW optimizer with a learning rate417

of 2 × 10−5. Each configuration undergoes three418

trials with different random seeds.419

In the multi-agent reinforcement learning frame-420

work, we employ the Double DQN (Wang et al.,421

2020) architecture. The default number of agents422

is 10, with five experts selected per iteration. In423

each iteration, experts are ranked based on the sum424

of their papers’ impact factors (Clarivate, 2025),425

and their unit prices are assigned accordingly as426

[$0.5, $0.4, $0.3, $0.2, $0.1] per labeled question.427

The total annotation budget is set to $100. All im-428

plementations are conducted with Pytorch(Paszke429

et al., 2017), PEFT(Mangrulkar et al., 2022) and430

Transformers(Wolf et al., 2020) on a computation431

node configured with a 64-core CPU and four432

80GB H100 GPUs.433

4.2 Baselines434

To ensure a comprehensive evaluation, our experi-435

ment includes a variety of baseline methodologies436

that encompass both question selection and expert437

allocation strategies. The comparison provides in-438

sights into the effectiveness of different active learn- 439

ing frameworks applied to LLMs. Below we detail 440

the question selection used in baselines: 441

RAND - Questions are selected randomly, provid- 442

ing a baseline for minimal strategic intervention in 443

data selection. 444

DEITA - Liu et al. (2023) evaluates data across 445

complexity, quality, and diversity using pretrained 446

complexity scorer5 and quality scorer 6 to score 447

each unlabeled questions. 448

CHERRY - Li et al. (2023a) applies the 449

Instruction-Following Difficulty (IFD) metric to 450

assess question quality autonomously. 451

NUGGETS - Li et al. (2023b) assesses the rele- 452

vance of questions by considering each as a single 453

instance in one-shot learning contexts. 454

LESS - Xia et al. (2024) calculates the influence 455

of questions on the validation set to prioritize data 456

that may yield the most significant insights during 457

finetuning. 458

ROSE - Wu et al. (2024) utilizes gradient similar- 459

ity to evaluate the potential contribution of each 460

question to the model’s performance. 461

For expert allocation, we implement the follow- 462

ing methods: 463

Random - Experts are assigned randomly to ques- 464

tions. 465

Cost-Greedy - This method always selects the least 466

expensive expert available, optimizing for cost effi- 467

ciency. 468

Match-Greedy - Matches questions to experts 469

based on the highest embedding similarity between 470

them, facilitating a more informed allocation. 471

Each baseline represents a specific combination 472

of question selection and expert allocation methods, 473

providing a meaningful benchmark against which 474

our proposed approach can be evaluated. 475

4.3 Evaluation Benchmarks and Metrics. 476

To ensure a clean evaluation of knowledge acqui- 477

sition, our CKAD dataset consists of general dis- 478

ease mechanism question-answer pairs7 that can- 479

not be answered by base LLM (Llama2-7B) ini- 480

tially (i.e., the initial answerable rate is 0). Dur- 481

ing the simulation training stage, we employ two 482

advanced models, GPT-4o-2024-08-06 (OpenAI, 483

2024) and GPT-4-Turbo (Achiam et al., 2023), as 484

5https://huggingface.co/hkust-nlp/deita-complexity-
scorer

6https://huggingface.co/hkust-nlp/deita-complexity-
scorer

7Dataset statistics are provided in Appendix A.
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Table 2: Overall performance comparison on CKAD dataset. The best result is highlighted in bold, and the
second-best is underlined.

Expert
Allocation

Question
Selection

GPT-4o-2024-08-06 GPT-4-Turbo GPT-4o-2024-08-06 GPT-4-Turbo Avg.Length

WR (%) WR (%) LC_WR (%) LC_WR (%) -

Random RAND 4.7 (0.4) 6.7 (0.8) 20.3 (0.9) 20.4 (0.8) 2220
DEITA 9.6 (0.3) 7.9 (0.1) 21.0 (0.9) 22.1 (0.8) 2212
CHERRY 7.8 (0.1) 8.3 (0.2) 20.4 (0.9) 21.5 (0.9) 2221
NUGGETS 10.4 (0.1) 10.7 (0.4) 21.0 (0.8) 20.4 (0.8) 2204
LESS 7.9 (0.2) 7.9 (0.2) 22.0 (1.0) 24.0 (1.1) 2212
ROSE 8.1 (0.4) 10.0 (0.2) 21.5 (1.0) 22.7 (1.0) 2194

Cost-Greedy RAND 6.2 (0.4) 6.7 (0.8) 20.4 (0.9) 20.5 (0.9) 2207
DEITA 14.2 (0.8) 11.7 (0.2) 20.9 (1.0) 20.9 (0.9) 2246
CHERRY 11.7 (0.3) 10.0 (0.4) 23.4 (0.9) 22.1 (1.1) 2236
NUGGETS 7.9 (0.4) 8.7 (0.4) 21.5 (0.9) 20.4 (0.9) 2182
LESS 12.1 (0.4) 9.6 (0.4) 22.1 (0.8) 21.2 (1.0) 2218
ROSE 8.3 (0.8) 9.7 (0.2) 20.4 (0.9) 22.7 (1.0) 2174

Match-Greedy RAND 6.7 (0.8) 7.9 (0.4) 20.9 (1.0) 19.9 (0.8) 2204
DEITA 10.0 (0.3) 9.2 (0.8) 21.2 (1.0) 22.3 (0.9) 2214
CHERRY 7.5 (0.0) 9.2 (0.2) 21.0 (0.9) 23.3 (1.1) 2173
NUGGETS 9.5 (0.3) 11.6 (0.2) 22.1 (1.0) 21.6 (0.9) 2182
LESS 12.1 (0.4) 10.4 (0.2) 23.5 (1.0) 22.5 (1.0) 2252
ROSE 9.2 (0.1) 10.9 (0.4) 22.5 (0.9) 21.9 (1.0) 2229

Ours PU-ADKA 18.2 (0.6) 16.7 (0.4) 25.6 (1.0) 26.5 (0.9) 1781

judge models. The evaluation metrics include: Win485

Rate (WR), which measures the percentage of in-486

stances where the judge LLM determines that the487

model-generated answer adequately captures the488

core meaning of the golden answer; and Length-489

Controlled Win Rate (LC_WR) (Dubois et al.,490

2024a), a variant of WR that filters out samples491

with large answer length discrepancies between the492

model output and the golden answer, helping to493

control for verbosity bias during evaluation.494

Additionally, following (Wang et al., 2023), we495

conduct human-involved experiments to validate496

the effectiveness of our method. The expert team497

consists of three sepsis specialists and two cancer498

specialists, representing different levels of exper-499

tise. Among them, one expert is a medical doctor,500

and the remaining four are PhD students8.501

4.4 Experimental Results502

Our experimental results are detailed in Table 2,503

where we compare the performance of our method,504

PU-ADKA, against various baseline strategies. PU-505

ADKA consistently outperforms all baselines in506

terms of knowledge acquisition across different507

judging models. Specifically, with the GPT-40-508

2024-08-06 model as judge, PU-ADKA achieves509

a WR of 18.2% and an LC_WR of 25.65%. When510

8Detailed information about the human experts is provided
in Ethics Statement.

evaluated by the GPT-4-Turbo model, it records a 511

WR of 16.7% and an LC_WR of 26.57%. These re- 512

sults exceed those of the next best baseline, DEITA 513

under the Cost-Greedy strategy, by margins of 4% 514

and 5% in WR, and 2.1% and 3.2% in LC_WR, re- 515

spectively, under the two judging conditions. Note- 516

ably, LESS performs stable when under both Cost- 517

Greedy and Match-Greedy settings, the GPT-4o- 518

2024-08-06 and GPT-4-Turbo judge the WR at 519

12.1% and 10% in both settings. Furthermore, 520

the minimal baseline performance under fully ran- 521

dom conditions, with WR of 4.7% and 6.7%, high- 522

lights the baseline challenge and emphasizes the 523

robustness of our method against less strategic ap- 524

proaches.

Table 3: Human-involved results judged by GPT-4-
Turbo.

WR (%) LC_WR (%)

Random (Random) 7.5 (0.7) 20.3 (0.8)

LESS (Random) 9.2 (0.5) 20.5(0.9)

LESS (Cost-Greedy) 11.4 (0.6) 21.0 (1.0)

LESS (Match-Greedy) 12.5 (0.7) 21.2 (0.8)

PU-ADKA 15.2 (0.8) 24.3 (0.9)

525

4.5 Human Involved Validation 526

To further substantiate the robustness of our 527

method, PU-ADKA, we implement it within a pro- 528
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fessional biomedical team of experts under a simu-529

lated budget constraint of $100 per game. The cost530

of human experts is varied, reflecting their respec-531

tive professional knowledge in the domain, with532

unit prices set at [$0.5, $0.2, $0.1, $0.1, $0.1] per533

labeled question. We assess the performance in534

terms of WR and LC_WR using GPT-4-Turbo as535

the judge under various settings: fully random, and536

LESS for question selection combined with each537

of the three expert allocation strategies (Random,538

Cost-Greedy, and Match-Greedy). The detailed539

results are presented in Table 3.
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Figure 3: Performance comparison under different bud-
gets ($) evaluated by GPT-4-Turbo

Table 4: Ablation results on CKAD dataset with ✓
indicating the enabling of the corresponding module.
Evaluation performed by GPT-4-Turbo.

Variant PU MA WR (%) LC_WR (%)
I ✓ 13.3 (0.7) 23.2 (1.1)

II ✓ 14.2 (0.6) 23.0 (1.0)

PU-ADKA ✓ ✓ 16.7 (0.4) 26.5 (0.9)

540
The results reveal that PU-ADKA notably541

surpasses the most competitive baseline, LESS542

(Match-Greedy), by margins of 2.7% and 3.1% in543

WR and LC_WR, respectively. This enhancement544

in performance in a practical setting underscores545

the effectiveness of our method, particularly in sce-546

narios constrained by budget. This real-world ap-547

plication not only validates the utility of PU-ADKA548

but also establishes it as a formidable approach in549

the domain of budget-limited active learning.550

4.6 Ablation Study551

4.6.1 Validating the Utility of Each Module552

To thoroughly assess the contributions of each com-553

ponent within PU-ADKA, specifically the multi-554

agent (MA) framework and the positive-unlabeled555

(PU) learning approach, we perform a series of 556

ablation studies. These studies are conducted on 557

the QA dataset, with GPT-4-Turbo serving as the 558

judge. We explore two key variants: 559

Variant I - Utilizes unsupervised embedding-based 560

similarity measures in place of the PU learning 561

model to understand the impact of the PU approach 562

on the overall performance. 563

Variant II - Operates under a single-agent setup to 564

evaluate the effectiveness of our multi-agent con- 565

figuration. 566

The results, detailed in Table 4, highlight the 567

integral role each module plays in the success of 568

PU-ADKA. The comparison with Variant I under- 569

scores the superiority of our PU-based question- 570

expert matching technique. Similarly, when con- 571

trasted with the single-agent model of Variant II, 572

our multi-agent method demonstrates its enhanced 573

capability in expert allocation strategy, confirming 574

the benefits of our comprehensive framework in 575

active learning scenarios. 576

4.6.2 Performance under Different Budgets 577

Following (Hacohen et al., 2022; Li et al., 2022), 578

we evaluate the performance of our model, PU- 579

ADKA, against various baseline methods under 580

differing budget scenarios, as depicted in Figure 3. 581

The results indicate that our method achieves con- 582

sistently robust outcomes across all tested budget 583

levels compared to the baselines. Notably, at a bud- 584

get of $100, PU-ADKA significantly outperforms 585

the next best approach, LESS (Match-Greedy). Be- 586

yond this budget point, the rate of knowledge acqui- 587

sition stabilizes, showing no substantial further in- 588

creases. This observation suggests that our method 589

is particularly effective at rapidly acquiring knowl- 590

edge within constrained budget settings, demon- 591

strating a distinct advantage over competing meth- 592

ods in efficiently utilizing available resources. 593

5 Conclusion and Future Work 594

We propose PU-ADKA, a cost-aware active learn- 595

ing framework that enhances LLMs by selectively 596

engaging domain experts based on their expertise, 597

availability, and annotation cost. PU-ADKA im- 598

proves budget efficiency and LLM performance, 599

as validated through simulations and real-world 600

biomedical tasks. The release of the CKAD dataset 601

supports further research on domain-specific LLM 602

tuning. In future work, we plan to explore alter- 603

native backbone models and extend PU-ADKA to 604

specialized domains beyond biomedical domain. 605
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Limitations606

• Scalability with Increasing Data and Experts. As607

the number of unlabeled data points and available608

experts grows, the scale of PU-ADKA changes sig-609

nificantly. Larger datasets require more efficient610

selection strategies, while an increasing pool of611

experts introduces greater complexity in allocation612

and coordination. Future research should explore613

more scalable solutions to maintain efficiency as614

the system scales to real-world, large-scale applica-615

tions.616

• Impact of Number of Agents and Computational617

Constraints. The number of agents directly affects618

the system’s performance and computational de-619

mands. While PU-ADKA operates within a multi-620

agent framework, we do not extensively experiment621

with varying agent numbers due to the high com-622

putational cost associated with training and coordi-623

nation. Additionally, we do not explore different624

batch sizes or report computational efficiency un-625

der varying agent settings. Future work should626

investigate the trade-offs between agent scalability,627

computational efficiency, and performance opti-628

mization.629

• Generalizability to Other Domains. While this630

study primarily focuses on biomedical expert in-631

teractions, other high-cost domains such as law632

and finance face similar challenges. Expanding633

PU-ADKA to these fields and evaluating its adapt-634

ability to different datasets and model architectures635

will be essential for broader applicability.636

• Backbone Diversity and Model Size. We adopt637

LLaMA2-7B as the fixed backbone to ensure con-638

sistent evaluation. However, this limits the explo-639

ration of PU-ADKA’s effectiveness across other640

model families and sizes. Future work should in-641

vestigate its adaptability to diverse architectures,642

including larger models, instruction-tuned variants,643

and domain-specific LLMs.644

Ethics Statement645

All human annotation work in this study is con-646

ducted by domain experts in an external biomedical647

research group. Importantly, none of the experts648

are listed as co-authors of this paper. The process is649

coordinated by a biomedical Principal Investigator650

(PI), who is a co-author, but does not participate in651

any annotation work directly. The experts include652

one medical doctor and four PhD-level biomedi-653

cal researchers, and they are blind to the study’s654

hypotheses, model design, and experiments.655

All annotation work is performed during the ex- 656

perts’ regular paid working hours as part of their 657

institutional responsibilities, and no additional com- 658

pensation is provided. To simulate annotation cost 659

in our experiments, we adopt a relative cost scheme 660

based on typical salary ratios across seniority levels 661

(e.g., doctor : senior PhD : junior PhD = 5 : 2 : 1), 662

without disclosing any actual salary details. All 663

experts agree that their annotations will be used in 664

this study and released alongside the dataset. The 665

content they annotate is derived entirely from pub- 666

licly available biomedical literature and contains 667

no personal or sensitive information. Accordingly, 668

no additional ethics board review is required under 669

the ACL Ethics Policy. 670
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A Dataset Statistics898

In this section, we present key statistics of the899

CKAD dataset in Table 5, which includes ques-900

tion–answer pairs generated from PubMed 2024 ar-901

ticles focused on Sepsis and Cancer NK cell mech-902

anisms.

Table 5: Statistics of CKAD dataset.

Disease Type Cancer_NK and Sepsis
#Train 38,575
#Dev 4,722
#Test 4,722

#Avg. Tokens in Question 12
#Avg. Tokens in Answer 29

903

B Generated Question-Answer Examples904

from PubMed Publications905

Cancer QA Example from PubMed
Question:

What role does MHC-I play in modulat-
ing NK cell activity against tumor cells?

Answer:

MHC-I molecules on tumor cells can en-
gage with inhibitory receptors on natural killer
(NK) cells, such as KIRs and NKG2A, reducing
NK cell activation and cytotoxic activity against
the tumor.

906

Sepsis QA Example from PubMed
Question:

How does anti-thrombin administration in-
fluence the risk of bleeding complications in
sepsis patients?

Answer:

Anti-thrombin administration can increase
the risk of bleeding complications by enhancing
anticoagulant activity, which may impair the
body’s ability to form necessary clots and
maintain hemostasis.

907

C Prompts908

In this section, we present the detailed prompts909

used for generating Question-Answer data and the910

specific prompts employed for model evaluation911

across all experiments. For evaluation, we slightly912

rephrase the final prompt instruction—asking the913

model to choose between output a or b—to sim-914

plify post-processing and ensure compatibility with915

the AlpacaEval (Dubois et al., 2024b) evaluation916

package. This modification does not affect the917

evaluation result, which remains to judge whether 918

output b correctly reflects the meaning of output 919

a. Notably, this evaluation does not simply reflect 920

the judge model’s general preference between two 921

answers but specifically assesses whether the tar- 922

get model’s answer adequately captures the core 923

meaning of the golden answer. 924

C.1 QA Extraction 925

PubMed Paper Question-Answer Generation
<|im_start|>system
You are an expert in extracting specific and
relevant question-answer pairs from scientific
papers. Your task is to generate five QA pairs
based on the unique mechanisms or processes
described in the provided paper. Focus on
extracting detailed mechanisms or processes,
avoiding generic or summarization-style ques-
tions.

Guidelines:
1. The questions must specifically target
mechanisms, processes, or detailed explanations
provided in the paper. Focus on "how" or "why"
certain processes or mechanisms work according
to the paper.
2. Avoid generic or summarization-style
questions, such as broad overviews or general
statements about findings.
3. Each question should be clear, concise, and
specific, addressing a mechanism, interaction,
or process described in the paper.
4. The answers must directly explain the mech-
anism or process, based on specific information
from the paper, and be precise and to the point.

Examples:
- Question 1: How does cytokine IL-15 regulate
the activation of natural killer cells in the
study?
Answer: Cytokine IL-15 regulates natural
killer cell activation by binding to its receptor,
triggering a signaling cascade that enhances
proliferation and cytotoxic activity.
- Question 2: What mechanism underlies the
feedback loop described for natural killer cell
regulation?
Answer: The feedback loop involves cytokine
signaling that stimulates metabolic reprogram-
ming in natural killer cells, which in turn
amplifies cytokine production.

<|im_end|>
<|im_start|>user

Below is the content of the paper:
<Insert the paper’s abstract, introduction, and
methodology here.>
Your task is to generate five QA pairs based on
the unique mechanisms or processes described
in the provided paper. Focus on extracting
detailed mechanisms or processes, avoiding
generic or summarization-style questions. The
response format should be:
<Question: The generated question>
<Answer: The generated answer>
The generated five QA pairs are:

<|im_end|>

926
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C.2 Judge Prompt927

Evaluation Prompt
<|im_start|>system
You are a teacher assessing whether a Output
(b) correctly covers the core meaning of a
Output (a) for a given Question. The Output
(b) must fully address the question, just as the
Output (a) does. Follow these rules strictly:
## Scoring Criteria

1. **Semantic Match**: - The Output
(b) must **precisely match** the meaning of
the Output (a) without significant divergence. -
Output (b) must address the Question in the
same way as the Output (a).
2. **Supplementary Information**: - Addi-
tional details are allowed **only if they do not
conflict** with the Output (a). - Output (b)
must not contain any contradictions, factual
errors, or misleading information.

## Evaluation Process

1. **Key Point Extraction**: - Extract
core facts, entities, and logical relationships
from the Output (b). - Compare these with
the Output (a). - Identify missing points,
contradictory statements, or factual errors. -
Output (b) must address the Question in the
same way as the Output (a).
<|im_end|>
<|im_start|>user
I require an assessment of whether Output (b)
correctly conveys the core meaning of Output
(a). I’ll provide you with a question and two
model outputs. Your task is to evaluate and
return either Output (a) or Output (b), based
on the scoring criteria.

## Question

{
“question”: ““{Question}””

}

## Model Outputs

Here are the unordered outputs from the
models. Each output is associated with a
specific model, identified by a unique model
identifier.

{
{

“model_identifier”: “m”,
“output”: ““{Output (a)}””

},
{

“model_identifier”: “M”,
“output”: ““{Output (b)}””

}
}

## What’s your evaluation, Output (a)
or Output (b)?

<|im_end|>

928

D Expert-Wise Attention 929

Given a question embedding Ei
q and expert em- 930

beddings Ej
e , we define the expert-wise attention 931

mechanism as follows: 932

eij = σ
(
W ·

[
Ei

q, E
j
e

]
+ b

)
(7) 933

αij =
exp

(
σ
(
W ·

[
Ei

q, E
j
e

]
+ b

))∑
k∈Ee

exp
(
σ
(
W ·

[
Ei

q, Ek
e

]
+ b

)) (8) 934

Zi =
∑
k∈Ee

αijE
k
e (9) 935

where σ denotes the ReLU activation function, 936

and [., .] represents embedding concatenation. Fur- 937

thermore, we concatenate expert-wise question rep- 938

resentation Zi with each expert embedding Ej
e and 939

pass it through an MLP Υ to obtain the output 940

probability: 941

P
(
Ei

q, E
j
e

)
= Υ

([
Zi, E

j
e

])
(10) 942

E Overall Comparison of Question 943

Selection Methods 944

Table 6 summarizes the average performance of dif- 945

ferent question selection methods across all expert 946

allocation strategies. PU-ADKA shows superior re- 947

sults on both WR and LC_WR metrics, with LESS 948

ranking second in overall effectiveness. We there- 949

fore use LESS as the default question selection 950

method for baselines in our ablation studies.

Table 6: Average performance of different question se-
lection methods across three expert allocation strategies.

Method WR.Avg (%) LC_WR.Avg (%) Overall.Avg (%)

RAND 6.48 20.40 13.44
DEITA 10.43 21.40 15.92
CHERRY 9.08 21.95 15.52
NUGGETS 9.80 21.17 15.49
LESS 10.00 22.55 16.27
ROSE 9.37 21.95 15.66
PU-ADKA 17.45 26.05 21.75

951

F Comparison with Fully Annotated 952

Upper Bound 953

To understand the upper performance bound achiev- 954

able without cost constraints, we compare PU- 955

ADKA against a setting where all training data are 956

fully annotated (FULL). As expected, FULL yields 957

the highest scores in Table 7, serving as an empiri- 958

cal upper bound. However, PU-ADKA approaches 959
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Table 7: Performance comparison under fixed-budget and fully annotated settings. The FULL setting denotes that
all available data are exhaustively annotated without any budget constraints, serving as an empirical upper bound.

Expert
Allocation

Question
Selection

GPT-4o-2024-08-06 GPT-4-Turbo GPT-4o-2024-08-06 GPT-4-Turbo Avg.Length

WR (%) WR (%) LC_WR (%) LC_WR (%) -

- FULL 22.1 (0.7) 19.3 (0.9) 27.8 (1.0) 28.1 (0.8) 1752

Random LESS 7.9 (0.2) 7.9 (0.2) 22.0 (1.0) 24.0 (1.1) 2212
Cost-Greedy 12.1 (0.4) 9.6 (0.4) 22.1 (0.8) 21.2 (1.0) 2218
Match-Greedy 12.1 (0.4) 10.4 (0.2) 23.5 (1.0) 22.5 (1.0) 2252

Ours PU-ADKA 18.2 (0.6) 16.7 (0.4) 25.6 (1.0) 26.5 (0.9) 1781

Table 8: Performance comparison between different encoders used for question representation within PU-ADKA
framework.

Encoder GPT-4o-2024-08-06 GPT-4-Turbo GPT-4o-2024-08-06 GPT-4-Turbo Avg.Length

WR (%) WR (%) LC_WR (%) LC_WR (%) -

BERT-base 16.3 (0.9) 12.9 (0.7) 24.0 (1.0) 25.4 (1.2) 1967

Llama2-7B (ours) 18.2 (0.6) 16.7 (0.4) 25.6 (1.0) 26.5 (0.9) 1781

Table 9: Number of annotated QA pairs and evalua-
tion results under different expert allocation strategies
(questions selected by LESS; judged by GPT-4o-2024-
08-06).

Method Annotated QA Pairs WR (%) LC-WR (%)

Random 312 7.9 22.0
Cost-Greedy 1000 12.1 22.1
Match-Greedy 508 12.1 23.5
Ours (PU-ADKA) 632 18.2 25.6

this upper limit while operating under a strict $100960

budget—substantially outperforming all baselines961

in both WR and LC_WR scores. This highlights962

the effectiveness of PU-ADKA in achieving strong963

domain adaptation with fewer annotations.964

G Effect of Encoder Architecture on965

Performance966

To assess the impact of the encoder architecture967

on our framework, we compare a standard BERT-968

base (Devlin et al., 2019) model with our default969

Llama2-7B encoder. Results in Table 8 show that970

Llama2-7B consistently outperforms BERT-base971

encoder across all evaluation metrics.972

H Annotation Quantity under Budget973

Constraints974

Table 9 shows that although the Cost-Greedy strat-975

egy yields the largest number of annotated QA976

pairs, it does not achieve the best performance. In977

contrast, PU-ADKA achieves a balance between978

annotation quantity and quality: it produces more979

Table 10: Data Quality Scoring Form

Score Description
1 Incorrect or irrelevant.
2 Partially correct, key issues.
3 Correct and main point covered.
4 Correct with minor omissions.
5 Fully correct and complete.

annotations than Random and Match-Greedy strate- 980

gies and achieves the highest WR and LC_WR 981

scores. This demonstrates PU-ADKA’s effective- 982

ness in utilizing limited budgets to acquire high- 983

quality supervision. 984

I Data Quality Scoring Form 985

The quality of each QA pair is scored on a 1–5 scale 986

based on the correctness and completeness of its 987

biomedical mechanistic explanation. The scoring 988

rubric is shown in Table 10. 989

J Discussion 990

We adopt the base Llama2-7B model rather than an 991

instruction-tuned variant to ensure a controlled set- 992

ting where observed improvements are attributable 993

solely to our expert-interaction framework, with- 994

out influence from pretrained instruction-following 995

capabilities. Besides, GPT-4o-2024-08-06 is used 996

to generate QA pairs based on the factual content 997

of 2024 PubMed articles. This generation process 998

is independent of any model comparison or evalua- 999

tion. To mitigate potential bias from using a single 1000

evaluation model, we also include GPT-4-Turbo as 1001

a second judge model. 1002

14


