
Published as a conference paper at ICLR 2024

AUTOVP: AN AUTOMATED VISUAL PROMPTING
FRAMEWORK AND BENCHMARK

Hsi-Ai Tsao1*, Lei Hsiung2*, Pin-Yu Chen3, Sijia Liu4, Tsung-Yi Ho5

1 National Tsing Hua University, 2 Dartmouth College, 3 IBM Research
4 Michigan State University, 5 The Chinese University of Hong Kong
* Equal contribution

ABSTRACT

Visual prompting (VP) is an emerging parameter-efficient fine-tuning approach
to adapting pre-trained vision models to solve various downstream image-
classification tasks. However, there has hitherto been little systematic study of the
design space of VP and no clear benchmark for evaluating its performance. To
bridge this gap, we propose AutoVP, an end-to-end expandable framework for au-
tomating VP design choices, along with 12 downstream image-classification tasks
that can serve as a holistic VP-performance benchmark. Our design space covers
1) the joint optimization of the prompts; 2) the selection of pre-trained models,
including image classifiers and text-image encoders; and 3) model output mapping
strategies, including nonparametric and trainable label mapping. Our extensive
experimental results show that AutoVP outperforms the best-known current VP
methods by a substantial margin, having up to 6.7% improvement in accuracy; and
attains a maximum performance increase of 27.5% compared to linear-probing (LP)
baseline. AutoVP thus makes a two-fold contribution: serving both as an efficient
tool for hyperparameter tuning on VP design choices, and as a comprehensive
benchmark that can reasonably be expected to accelerate VP’s development. The
source code is available at https://github.com/IBM/AutoVP.

1 INTRODUCTION

Originating in the domain of natural language processing, prompting (Gao et al., 2021; Lester
et al., 2021; Shi et al., 2023) has gained considerable popularity as a parameter-efficient fine-tuning
approach for adapting pre-trained models to downstream tasks. Prompting’s methodology has recently
been extended to the field of computer vision, where it is termed visual prompting (VP) (Bahng et al.,
2022). In its simplest form, VP can be perceived as an in-domain model-reprogramming technique
(Chen, 2022). More specifically, it adjusts the inputs and outputs of a pre-trained vision model to
address downstream image-classification tasks, without having to make any changes to the weights or
architecture of the source model’s pre-trained backbone. As such, it stands in contrast to conventional
transfer-learning methods that involve complete fine-tuning, LP (i.e., involving modifications of the
trainable linear layer in the penultimate layer’s output), or zero-shot learning (Radford et al., 2021).
For instance, as illustrated in Figure 1, VP adds a universal trainable data frame to the target samples
at the model-input stage, and then employs a mapping function – which can be either explicitly
defined or implicitly learned – to associate the source and target labels at the output stage.

While VP exhibits tremendous potential, there are two critical challenges that limit its research
and development. The first is absence of a systematic VP framework. That is, VP design choices,
such as prompts’ sizes and shapes, source models, and label-mapping (LM) strategies, have thus
far only been studied separately, generally for the purpose of delineating their distinct roles in
enhancing downstream task accuracy. Ideally, such a systematic framework would automatically
search for the best configurations for performance optimization. For example, Bahng et al. (2022)
have demonstrated that changing the padding size of visual prompts can yield around 15% variation
in final accuracy. It has also been observed that VP is better at augmenting large text-image models,
such as CLIP (Radford et al., 2021), than pure vision models like ResNet50 (He et al., 2016). In a
study by Chen et al. (2023b), iterative label mapping (ILM) during training achieved accuracy up to

1

https://github.com/IBM/AutoVP

Published as a conference paper at ICLR 2024

Trainable Modules Frozen Modules

Target Domain Data

Resizing Scale

Input Scaling

×1.5

<latexit sha1_base64="DzOEafyX+2U11otl96x8wn/+xEY=">AAAB63icbVBNSwMxEJ2tX7V+VT16CZaCp7IrtnoRCl48VrAf0C4lm2bb0CS7JFmhLP0LXjwo4tU/5M1/Y7bdg7Y+GHi8N8PMvCDmTBvX/XYKG5tb2zvF3dLe/sHhUfn4pKOjRBHaJhGPVC/AmnImadsww2kvVhSLgNNuML3L/O4TVZpF8tHMYuoLPJYsZASbTIpvvcawXHFr7gJonXg5qUCO1rD8NRhFJBFUGsKx1n3PjY2fYmUY4XReGiSaxphM8Zj2LZVYUO2ni1vnqGqVEQojZUsatFB/T6RYaD0Tge0U2Ez0qpeJ/3n9xIQ3fspknBgqyXJRmHBkIpQ9jkZMUWL4zBJMFLO3IjLBChNj4ynZELzVl9dJ57LmNWr1h6tKs5rHUYQzOIcL8OAamnAPLWgDgQk8wyu8OcJ5cd6dj2VrwclnTuEPnM8fPfuNow==</latexit>

p = 16

×0.5

<latexit sha1_base64="CUWZlfAmsSmuAUxBWyCBJVZL4lM=">AAAB63icbVBNSwMxEJ2tX7V+VT16CZaCp7IrVnsRCl48VrAf0C4lm2bb0CS7JFmhLP0LXjwo4tU/5M1/Y7bdg7Y+GHi8N8PMvCDmTBvX/XYKG5tb2zvF3dLe/sHhUfn4pKOjRBHaJhGPVC/AmnImadsww2kvVhSLgNNuML3L/O4TVZpF8tHMYuoLPJYsZASbTIpvG+6wXHFr7gJonXg5qUCO1rD8NRhFJBFUGsKx1n3PjY2fYmUY4XReGiSaxphM8Zj2LZVYUO2ni1vnqGqVEQojZUsatFB/T6RYaD0Tge0U2Ez0qpeJ/3n9xIQNP2UyTgyVZLkoTDgyEcoeRyOmKDF8ZgkmitlbEZlghYmx8ZRsCN7qy+ukc1nzrmv1h6tKs5rHUYQzOIcL8OAGmnAPLWgDgQk8wyu8OcJ5cd6dj2VrwclnTuEPnM8fP4aNpA==</latexit>

p = 80

<latexit sha1_base64="4ujG+/Dre/z5Qj1yCwKzwGbKOIk=">AAAB/HicjVDLSsNAFJ3UV62vaJduhhbBVUnE17LgxmUF2wptKJPpJB06mQkzN0oI9VfcuFDErR/izr9x+lioKHjgwuGce7mHE6aCG/C8D6e0tLyyulZer2xsbm3vuLt7HaMyTVmbKqH0TUgME1yyNnAQ7CbVjCShYN1wfDH1u7dMG67kNeQpCxISSx5xSsBKA7faF0rGgkWgeTwCorW6G7h1v+HNgP8mdbRAa+C+94eKZgmTQAUxpud7KQQF0cCpYJNKPzMsJXRMYtazVJKEmaCYhZ/gA6sMcaS0HQl4pn69KEhiTJ6EdjMhMDI/van4m9fLIDoPCi7TDJik80dRJjAoPG0CD7lmFERuCaGa26yYjogmFGxflf+V0Dlq+KeNk6vjerO2qKOM9lENHSIfnaEmukQt1EYU5egBPaFn5955dF6c1/lqyVncVNE3OG+fp3CVVg==</latexit> !
<latexit sha1_base64="hw4U7Dzy6O6APwsJCH80wKq9N+U=">AAAB6HicjVDLSgNBEOyNrxhfUY9ehgTBU9gVX8eAF48JmAckS5id9CZjZmeXmVkhLPkCLx4U8eonefNvnE1yUFGwoKGo6qa7K0gE18Z1P5zCyura+kZxs7S1vbO7V94/aOs4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcp37nXtUmsfy1kwT9CM6kjzkjBorNZNBuerV3DnI36QKSzQG5ff+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ/NDZ+TYKkMSxsqWNGSufp3IaKT1NApsZ0TNWP/0cvE3r5ea8MrPuExSg5ItFoWpICYm+ddkyBUyI6aWUKa4vZWwMVWUGZtN6X8htE9r3kXtvHlWrVeWcRThCCpwAh5cQh1uoAEtYIDwAE/w7Nw5j86L87poLTjLmUP4BuftE9gejOE=</latexit>

p

×1.0

<latexit sha1_base64="aJ8iryt/Jj2jLyGIsXoVkmFJHR0=">AAAB63icbVBNSwMxEJ2tX7V+VT16CZaCp7IrVXsRCl48VrAf0C4lm2bb0CS7JFmhLP0LXjwo4tU/5M1/Y7bdg7Y+GHi8N8PMvCDmTBvX/XYKG5tb2zvF3dLe/sHhUfn4pKOjRBHaJhGPVC/AmnImadsww2kvVhSLgNNuML3L/O4TVZpF8tHMYuoLPJYsZASbTIpv641hueLW3AXQOvFyUoEcrWH5azCKSCKoNIRjrfueGxs/xcowwum8NEg0jTGZ4jHtWyqxoNpPF7fOUdUqIxRGypY0aKH+nkix0HomAtspsJnoVS8T//P6iQkbfspknBgqyXJRmHBkIpQ9jkZMUWL4zBJMFLO3IjLBChNj4ynZELzVl9dJ57LmXdeuHuqVZjWPowhncA4X4MENNOEeWtAGAhN4hld4c4Tz4rw7H8vWgpPPnMIfOJ8/RZKNqA==</latexit>

p = 48

<latexit sha1_base64="cM/rumSpCu+g4QZX3Y4y3HEuCRk=">AAAB/HicjVDLSsNAFJ34rPUVLbhxM1gEVyURX8uCG5cV7APaUCbTSTp0MhNmbpQQ6q+4caGIWz/EnX/j9LFQUfDAhcM593IPJ0wFN+B5H87C4tLyympprby+sbm17e7stozKNGVNqoTSnZAYJrhkTeAgWCfVjCShYO1wdDnx27dMG67kDeQpCxISSx5xSsBKfbfSE0rGgkWgeTwEorW667tVv+ZNgf8mVTRHo+++9waKZgmTQAUxput7KQQF0cCpYONyLzMsJXREYta1VJKEmaCYhh/jQ6sMcKS0HQl4qn69KEhiTJ6EdjMhMDQ/vYn4m9fNILoICi7TDJiks0dRJjAoPGkCD7hmFERuCaGa26yYDokmFGxf5f+V0Dqu+We10+uTan1vXkcJ7aMDdIR8dI7q6Ao1UBNRlKMH9ISenXvn0XlxXmerC878poK+wXn7BKPUlUo=</latexit> !
<latexit sha1_base64="HXeCByObsdJgRRhCjP7CVd3fjvk=">AAAB6HicjVDLSgNBEOyNrxhfUY96GAyCp7Arvo4BLx4TMA9IljA76U3GzM4uM7NCWPIFXjwo4tVP8ubfONnkoKJgQUNR1U13V5AIro3rfjiFpeWV1bXiemljc2t7p7y719Jxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Hrmt+9RaR7LWzNJ0I/oUPKQM2qs1Ej65YpXdXOQv0kFFqj3y++9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz/JDp+TYKgMSxsqWNCRXv05kNNJ6EgW2M6JmpH96M/E3r5ua8MrPuExSg5LNF4WpICYms6/JgCtkRkwsoUxxeythI6ooMzab0v9CaJ1WvYvqeeOsUjtcxFGEAziCE/DgEmpwA3VoAgOEB3iCZ+fOeXRenNd5a8FZzOzDNzhvn9ZQjNs=</latexit>

p

Visual Prompt Pre-trained Classifier

ResNet18

ResNeXt101-IG

Swin Transformer

CLIP

self-defined

Output Label Mapping (LM)

IterMap FullyMap FreqMap SemanticMap

Source labels Target labels Trainable LM Nonparametric LM

EuroSAT
CIFAR10

Flowers102
SVHN Pets

GTSRB ISIC
CIFAR100

UCF101 DTD
Food101

FMoW

A
cc

ur
ac

y
(%

)

93.0 87.8 85.4 83.7 82.7 81.5

67.4 63.7
55.9 54.8 54.1

30.2

85.2

65.5

27.9

75.2
65.4

52.0
57.5

24.8 23.9

35.3

14.8 14.8

AutoVP

ILM-VP

Figure 1: Overview and key highlights of AutoVP. The main components of AutoVP are: Input
Scaling, which offers three initial input scale options: ×0.5, ×1.0, and ×1.5; Visual Prompt, which
pads the prompts to the scaled input image; Pre-trained Classifier, allowing users (or AutoVP) to
select from four pre-trained models: ResNet18 (He et al., 2016), ResNeXt101-IG (Mahajan et al.,
2018), Swin-T (Liu et al., 2021), and CLIP (Radford et al., 2021); and Output Label Mapping,
offering four label mapping options: Iterative Mapping (IterMap), Frequency Mapping (FreqMap),
Semantic Mapping (SemanticMap), and Fully Connected Layer Mapping (FullyMap). Bottom panel:
Given a fixed ImageNet-pre-trained classifier (ResNet18), AutoVP outperforms the state-of-the-art
(ILM-VP in Chen et al. (2023b)) on all 12 different downstream image-classification tasks.

13.7% better than fixed label mapping strategies. The second critical challenge is lack of a unified
performance benchmark: the existing literature evaluates the performance of proposed VP methods
in an ad hoc manner, by reporting on arbitrarily selected downstream datasets, making comparisons
across different methods difficult at best.

To bridge this gap, this paper proposes AutoVP, a solution addressing both these challenges via 1)
its automated, extendable framework for joint optimization of a) input-image scaling (i.e., prompt
size), b) visual prompts, c) source model selection, and d) output label-mapping strategies; and 2) its
provision of a unified benchmark consisting of 12 diverse image-classification tasks with quantifiable
content-similarity relative to the dataset (e.g., ImageNet) used for source model pre-training.

As shown in Figure 1, the first component (i.e., input scaling) of AutoVP determines the optimal ratio
between the sizes of prompts and the original images. The second, visual prompts, serve as trainable
parameters, and undergo iterative updates during the backpropagation phase. The pre-trained model
extracts pertinent features and renders predictions within the source domain; and finally, output
label mapping establishes a connection between the label spaces of the source and target domains,
facilitating accurate predictions in the downstream domain. The modularity of AutoVP allows for the
seamless integration and easy extension of various designs for these four components.

Table 1 compares AutoVP against prior VP proposals and the other two baselines proposed to date:
LP and text-prompt (TP)-based zero-shot inference. As the table shows, AutoVP is the only such
framework that considers the broad range of settings that can affect VP performance. Moreover,
thanks to such settings’ collective optimization, AutoVP’s configuration amounts to a breakthrough
in average accuracy across 12 distinct downstream tasks. For instance, with CLIP as the pre-trained
model (see Table 2), AutoVP’s average accuracy is 4.6% higher than CLIP-VP’s (Bahng et al., 2022)
and 2.1% higher than ILM-VP’s (Chen et al., 2023b). AutoVP also surpasses LP’s accuracy by 0.7%
on average, suggesting that it is a competitive alternative to LP in terms of transfer learning.

We summarize the main contributions as follows:

• AutoVP is the first end-to-end VP framework that simultaneously takes account of the design of
input scale, visual prompts, pre-trained model selection, and output LM strategies. This modular
approach to automating VP gives its users flexibility for VP engineering, as well as a straightforward,
comprehensive performance benchmark based on 12 downstream image-classification datasets.

2

Published as a conference paper at ICLR 2024

Table 1: Comparison of AutoVP with other baselines, including Linear Probing, CLIP zero-shot
inference with text prompts (i.e. CLIP-TP in Radford et al. (2021)), CLIP-VP (Bahng et al., 2022),
and ILM-VP (Chen et al., 2023b). The average accuracy is evaluated over 12 downstream tasks (see
Section 4). For detailed information about the setting configurations, please refer to Section 3.

Method
Pre-trained
Classifier

Prompt Size
Output

Transformation
Output Mapping

Number
Average

Accuracy (%)

Linear Probing CLIP —
Modified Last

Classification Layer
— 79.86

CLIP-TP CLIP — Fixed Text Prompt 1 49.54

CLIP-VP CLIP 30 Fixed Text Prompt 1 76.01

ILM-VP
ResNet18

CLIP
48
30

IterMap 1
45.19
78.45

AutoVP
(Ours)

ResNet18
ResNeXt101-IG

Swin-T
CLIP

Trainable

IterMap
FullyMap
FreqMap

SemanticMap

1/5/10 81.02

• The proposed hyper-parameter tuning process is capable of identifying optimal configurations
tailored to individual downstream datasets. In addition, its novel components – e.g., automated
input scaling (Section 3) and weight initialization (Section 4.2) – augment VP’s overall efficacy
significantly, as compared to state-of-the-art VP methods, LP, and zero-shot baselines (see Table 1).

• This paper represents the first step in a comprehensive exploration of optimal configurations across
varied conditions (e.g., fixing a source model or an output-mapping strategy), and presents an
analysis of domain similarity’s impact on VP performance for each downstream dataset.

• This paper highlights AutoVP’s superior performance over LP in data-limited settings (Figure 2)
and its better out-of-distribution robustness than LP (Figure 4).

2 BACKGROUND AND RELATED WORK

Background of Visual Prompts. Traditionally, to derive task-specific machine-learning models,
researchers have to train or update all model parameters. But, amid the advancement of powerful foun-
dation models, model fine-tuning and training from scratch have both become time-consuming and
parameter-inefficient approaches, usually requiring large amounts of training data and storage space.
To this end, VP, also known as in-domain model reprogramming, has emerged as an effective means of
obtaining machine-learning models for various domain-specific tasks (Chen, 2022). A well-developed
pre-trained model from a source domain can be directly used for performing tasks in the target domain
with little transformation of the target data. For example, we can use an ImageNet pre-trained model
to classify medical images without modifying any of its parameters (Tsai et al., 2020). On the other
hand, VP, along with temperature scaling, can also be used as a post-processing calibration method
to align model confidence and accuracy (Tang et al., 2022; Hsiung et al., 2023). As compared to
traditional approaches such as transfer learning, model fine-tuning, and training from scratch, VP
is a low-complexity and model-agnostic strategy; and it is especially suitable for low-data domains.

The Design of Visual Prompts. A VP framework can generally be divided into two trainable
modules, one for input transformation and the other for output transformation. These are respectively
placed at the input and output ends of a pre-trained model. In the case of input transformation,
previous literature has proposed various ways to generate and place visual prompts. One of the most
popular such approaches is to pad a frame around the target task image and then fill it with trainable
additive-input perturbation (prompts) (Tsai et al., 2020; Chen et al., 2023b; Elsayed et al., 2019;
Bahng et al., 2022; Wu et al., 2022; Oh et al., 2023). Next, since the output logits of the source
pre-trained model are still in the source domain, further output transformation (e.g., LM) is required
to obtain the target-domain logits. One naive way of achieving this is randomly mapping (RandMap)
m source labels onto the target labels. Tsai et al. (2020) found that frequency-based LM (FreqMap),
which constructs its LM from the source-label prediction distribution of the target-domain data,
can further improve the accuracy of downstream tasks. However, Chen et al. (2023b) argued that
FreqMap lacks interpretability and that its interaction with VP is difficult to measure. To address that

3

Published as a conference paper at ICLR 2024

problem, the authors proposed iterative LM (IterMap), a transformation of FreqMap that enables it to
concurrently design LM and visual prompts. Yang et al. (2023), meanwhile, proposed a semantics-
based LM approach that aligns source and target classes that have similar semantic meanings. And
Liao et al. (2023) utilized a prototypical verbalizer to map a mask token to downstream labels, thus
providing a different perspective on LM. In this paper, we follow a similar design to Bahng et al.
(2022), in which visual prompts are placed around images for input transformations, and there are
four mapping methods for output transformations. Further details will be presented in Section 3.

Non-universal Visual Prompts. Instead of utilizing universal input prompts, some researchers
have focused on designing input-aware prompting models (Zhou et al., 2022a;b). For instance,
Chen et al. (2023a) generated class-wise visual prompts to improve model robustness. Similarly,
to address accuracy drops caused by low-voltage-induced bit errors, Sun et al. (2023) proposed an
input-aware add-on module to generate a robust prompt; and Loedeman et al. (2022) proposed the
Prompt Generation Network (PGN), which generates visual prompt token vectors based on input
images, allowing for more adaptive and context-aware prompting.

Although input prompting is commonly applied directly to the target image, researchers have also
developed other prompting methods, such as convolutional visual prompt (Tsai et al., 2023), which
learns prompting parameters in a small convolutional structure through self-supervision tasks without
knowledge of ground truths, and visual prompt tuning (Jia et al., 2022; Sohn et al., 2023), which
learns prompting parameters at intermediate layers of a source model. In this paper, we focus on a
pixel-level VP approach using a task-specific prompting model for each image-classification task.
As such, our approach closely resembles real-world scenarios in which a pre-trained source model
remains unmodified, and external variations are not introduced internally.

3 AUTOVP FRAMEWORK

Following the system overview of AutoVP in Figure 1, we present its four main components (Input
Scaling, Visual Prompt, Pre-trained Classifier, and Output Label Mapping) and its hyper-parameter
tuning feature, which enables the joint optimization of these components. Our framework can be
extended to support user-defined configurations.

Input Scaling. In our implementation of AutoVP, we choose frame-shape prompts as the default
prompting template. Hence, the visual prompt sizes p represent the width of the frame, and its actual
number of parameters is 2cp(h+ w − 2p), where c, w, and h are color channels, width and height
respectively. Although the input image size is determined by the source model, when fine-tuning
to a downstream dataset from a source model, there is design freedom to resize the target images
and use the remaining space for visual prompts. For instance, if the source model takes images
with size 224× 224 as input, one can scale the target image size to 128× 128, resulting in the final
visual prompt of size p = (224− 128)/2 = 48. It was shown in Bahng et al. (2022) and Wu et al.
(2022) that the prompt size (p) plays a key role in VP performance. To automate the process of
optimizing image resizing scale, we design a gradient-based optimization algorithm to implement
the input scaling module, which is implemented using kornia.geometry.transform() from
the Kornia library (Riba et al., 2020). The transform() function integrates a range of geometric
transformations for 2D images into deep learning, including differentiable image scaling. In addition
to image resizing, the prompt size p will also scale up or down to fill the remaining space. Furthermore,
to facilitate the optimization of image resizing and avoid bad local minima, we set the default image
size to 128 along with three initial scales: 0.5, 1.0, and 1.5 to optimize, and the corresponding prompt
sizes p are 80, 48, and 16 respectively. Consequently, the input scaling module allows AutoVP to
obtain the optimal image resizing scale and prompt size (p).

Visual Prompt. For the visual prompt module, AutoVP adds universal pixel-level prompts around
all (resized) input images. Let xt ∈ RNt denote the target (flattened) input image (of Nt-dimension),
x̃t ∈ RNs be the prompted image, which fits the input dimension (Ns) of the pre-trained source model
fθs (θs denotes its weights), δ ∈ RNs be a trainable universal perturbation, andMp ∈ {0, 1}Ns be a
binary mask of prompt size p, indicating the prompting area. Hence, the prompted image x̃t can be
formulated as:

x̃t = P(xt) = InputScalingp(xt) +Mp ⊙ σ(δ)︸ ︷︷ ︸
Prompts

. (1)

4

Published as a conference paper at ICLR 2024

The prompts are initialized as 0 and formally defined asMp⊙ σ(δ), where σ is the Sigmoid function
that maps the input to a value between 0 and 1 (the scaled input pixel value range), ensuring it has the
same numerical range as the input image. We then update δ using gradient descent.

Pre-trained Classifier. After applying the prompts to the resized image through the preceding
stages, the prompted image is subsequently fed into the pre-trained model, which serves as a feature
extractor to generate predictions in the source domain. We include four representative pre-trained
models in our AutoVP framework: ResNet18 (He et al., 2016), ResNeXt101-IG (Mahajan et al.,
2018), Swin-T (Liu et al., 2021), and a vision-language multi-modal model, CLIP (Radford et al.,
2021) with the ViT-B/32 vision encoder backbone. Note that in AutoVP, the weights of the pre-trained
classifiers are frozen and kept unchanged. The details of the models are provided in Appendix A.1.

Output Label Mapping. The pre-trained models predict target data to source labels, while the
last mile for VP is to map predictions on the source labels to target classes. As illustrated in Figure
1, AutoVP provides four types of output mapping, and they can be generally categorized into two
groups. (i) nonparametric label mapping: frequency mapping (FreqMap) and semantic mapping
(SemanticMap), which are defined during the initialization of VP training and remain unchanged
throughout the training process; and (ii) trainable label mapping: iterative label mapping (IterMap)
and fully connected layer mapping (FullyMap). These two methods dynamically adjust the mapping
based on the prompted images. In the following, we provide the overview of our four output mapping
approaches, please refer to Appendix A.2 for more details.

• Frequency Mapping (FreqMap) is proposed by Tsai et al. (2020). It utilizes the source-label
prediction distribution of the target-domain data to map each target class to the top-m most frequent
source classes. Let Ys = {0, · · · ,Ks−1} and Yt = {0, · · · ,Kt−1} be the set of source and target
labels, where Ks/Kt are the numbers of source/target classes. Consider X̃t collects all prompted
images of label yt in target domain Dt, i.e. X̃t = {x̃ti = P(xti)|(yti = yt), (xti , yti) ∈ Dt}, then
when m = 1, the mapping of yt can be defined as:

yt ← y∗s = arg max
ys∈Ys

(
∑
x̃t∈X̃t

Pred(fθs(x̃t), ys)),

Pred(fθs(x̃t), ys) =

{
1, if ys = argmax fθs(x̃t)

0, otherwise
.

(2)

The objective of FreqMap is to map the target label yt to the source label y∗s , which is the most
frequent label that fθs classified X̃t as. If a source class is selected as the most frequently predicted
class for multiple target classes, it will be assigned to the target class that has the highest count of
predictions. The general many-to-one frequency mapping algorithm is provided in Algorithm 1 in
the Appendix A.2. Moreover, random label mapping (RandMap) can be viewed as a special case of
FreqMap by randomly assigning a subset of source labels to a target label.

• Iterative Mapping (IterMap, or ILM) is proposed by Chen et al. (2023b), which is an iterative
approach for updating FreqMap. IterMap performs the frequency mapping at the beginning of each
training epoch to obtain a new mapping distribution that aligns with the updated prompts.

• Semantic Mapping (SemanticMap) follows the works from Yang et al. (2023) and Yen et al.
(2021). We utilize the text encoder of CLIP to generate the embeddings of the names of the source
and target classes. Subsequently, we map the source-target pairs based on the highest cosine
similarity score between their respective embeddings. Hence, SemanticMap can be utilized in any
of the three vision pre-trained models (ResNet18, Swin-T, and ResNeXt101-IG) by establishing
mappings between the target classes and semantically similar classes from ImageNet-1K. However,
SemanticMap is not applicable for CLIP, as it does not have an explicit set of source domain classes.

• Fully Connected Layer Mapping (FullyMap) uses a linear layer to map the source output logits
to target classes (Arif et al., 2023). FullyMap can be represented as Lt = w · Ls + b, where Ls
is the output logits from the source pre-trained model, w and b are the weight and bias vector of
the linear layer, and Lt is the output of the linear layer which also serves as the final output logits
of the VP model.

End-to-end Hyper-parameter Tuning. AutoVP’s overall tuning procedure is depicted in Appendix
A.3. Given its flexibility and modularity, its users must consider numerous settings (n = 222),

5

Published as a conference paper at ICLR 2024

Table 2: Comparison of VP testing accuracy (%) using CLIP as a pre-trained model on 12 datasets;
the optimal tuning settings of AutoVP and the final prompts sizes p are also provided. In the AutoVP
setting field, the notation “Mapping-m” represents mapping m source classes to each target class.

Dataset AutoVP Setting AutoVP ILM-VP CLIP-VP LP

SVHN (Netzer et al., 2011) FullyMap, p = 51 92.9 ± 0.2 91.2 88.4 65.4

CIFAR10 (Krizhevsky & Hinton, 2009) IterMap-1, p = 23 95.2 ± 0.0 94.4 94.2 95.0

Flowers102 (Nilsback & Zisserman, 2008) FullyMap, p = 16 90.4 ± 0.6 83.7 70.3 96.9

Food101 (Bossard et al., 2014) FreqMap-1, p = 16 82.3 ± 0.1 79.1 78.9 84.6

UCF101 (Soomro et al., 2012) FullyMap, p = 16 73.1 ± 0.6 70.6 66.1 83.3

OxfordIIITPet (Parkhi et al., 2012) FreqMap-10, p = 16 88.2 ± 0.2 85.0 85.0 89.2

CIFAR100 (Krizhevsky & Hinton, 2009) FullyMap, p = 31 77.9 ± 0.6 73.9 75.3 80.0

EuroSAT (Helber et al., 2019) FullyMap, p = 16 96.8 ± 0.2 96.9 96.4 95.3

DTD (Cimpoi et al., 2014) FullyMap, p = 17 62.5 ± 0.3 63.9 57.1 74.6

ISIC (Codella et al., 2019; Tschandl et al., 2018) IterMap-1, p = 16 74.0 ± 1.0 73.3 75.1 71.9

FMoW (Christie et al., 2018) FullyMap, p = 16 40.8 ± 0.8 36.8 32.9 36.3

GTSRB (Houben et al., 2013) FullyMap, p = 80 93.1 ± 0.2 92.6 92.4 85.8

Average Accuracy 80.6 78.5 76.0 79.9

including how big the initial input image should be, whether to use a trainable resizing module,
which pre-trained classifiers to adopt, what output-mapping method to implement, and the number of
source labels to map for each target label. To speed up the tuning operation and save computational
resources, we use Ray Tune (Liaw et al., 2018) along with an early-stop strategy for terminating
poor trails. In our experiments, we employed grid searches to test all configurations. An ASHA
scheduler (Li et al., 2018) was used to retain the top-n tasks, and we continued training them while
stopping the remaining tasks early. We established experimentally that n = 2 top tasks were enough
to obtain the optimal setting. When the few-epoch tuning process (training 2-5 epochs with each
setting) is complete, we select the setting having the highest testing accuracy and conduct complete
training using that setting. By using hyper-parameter tuning, AutoVP can efficiently find the best
configuration of VP and lead to significant accuracy improvement in downstream tasks.

4 EXPERIMENTS

Experimental Setup. We evaluated the performance of AutoVP on 12 downstream datasets (CI-
FAR10, CIFAR100, ISIC, SVHN, GTSRB, Flowers102, DTD, Food101, EuroSAT, OxfordIIITPet,
UCF101, and FMoW), which are common datasets when measuring transfer learning generalization.
Detailed descriptions of these datasets are given in Appendix B.1. We repeated each AutoVP experi-
ment in triplicate, utilizing a learning rate of 40 with the SGD optimizer for CLIP, and a learning
rate of 0.001 with the Adam optimizer for the other pre-trained models. The results of the baselines
(CLIP-VP (Bahng et al., 2022) and ILM-VP (Chen et al., 2023b)) were extracted from the reported
accuracies in their respective papers (please refer to Appendix B.2 for more details). Our experiments
were performed on NVIDIA GeForce RTX 3090 and are implemented with PyTorch.

4.1 EXPERIMENTAL RESULTS

Comparison of AutoVP and Prior Work. To ensure that our comparison of AutoVP against previ-
ously proposed VP approaches was fair, we fixed its source model but relaxed its other hyperparameter
tunings. The results of using CLIP as the source model are presented in Table 2, along with the
optimal settings arrived at. We compared AutoVP against LP and two state-of-the-art VP baselines,
CLIP-VP and ILM-VP, whose configurations can also be found in Table 1. With the optimal configu-
ration chosen via the tuning process, AutoVP outperformed these other approaches by up to 6.7% on
nine of the 12 target datasets. Additionally, AutoVP surpassed the LP baseline on half those datasets,
by a maximum of 27.5% in the case of SVHN. AutoVP also obtained the best average accuracy.

We observed that AutoVP employed FullyMap as the output transformation on most datasets. We
speculate that this might have been because the linear layer has more parameters and thus allows the
achievement of better results. Also, when AutoVP selected initial image scales, it had a tendency to

6

Published as a conference paper at ICLR 2024

1 10 25 50 100 (%)
Percentage of Data Usage

13.1

2.7
0.8 1.8 1.0

57.4

70.8
74.0

77.3
80.9

44.3

68.0

73.1
75.6

79.9

Data Scalability on 12 Datasets

AutoVP Top-1 Acc.

LP Acc.

Acc. Gain (AutoVP−LP)

Figure 2: Data Scalability. The chart presents
the average accuracy of AutoVP and LP across
the 12 datasets with varying data percentages:
100%, 50%, 25%, 10%, and 1%. The green bar
represents the accuracy gains achieved by Au-
toVP compared to Linear Probing (LP).

ResNet18 ResNext101-IG Swin-T CLIP
The Pre-trained Model of AutoVP

20

40

60

80

100

A
cc

ur
ac

y
(%

)

78.8
87.3
90.4

Hyper-parameter Tuning Result (on Flowers102)

Full Training (w/o WI)

Full Training (w/ WI)

FullyMap w/ WI

SemanticMap

FreqMap

IterMap

FullyMap

Figure 3: The Tuning Result on Flowers102
Dataset. The color bars represent the accuracy
tuning for 3 to 5 epochs (with ASHA early-stop
optimization). Points illustrate the test accu-
racy achieved for the best settings given the pre-
trained model and mapping method.

scale up those images with relatively small prompt sizes. This allowed the VP model to allocate more
attention to the image itself, leading to improved overall performance. As shown in Figure 1, when
ResNet18 was used as the source model, AutoVP outperformed ILM-VP by 24.8% on average. More
experimental results under this setting are provided in Appendix C.1.

AutoVP with Source Model Selection. We also allowed AutoVP to search the optimal source
model for downstream tasks. The optimal settings selected by AutoVP, and a comparison of experi-
mental results can be found in Appendix C.1. Our experimental results show that Swin-T was the
pre-trained model most frequently chosen by AutoVP as most suitable, i.e., in the cases of eight
of the 12 datasets. On average, this choice resulted in 0.43% better accuracy than when CLIP was
utilized as the fixed pre-trained backbone. On the DTD and Flowers102 datasets, however, Swin-T’s
performance was better than CLIP’s by much more: i.e., 6.80% and 3.08%, respectively. These
findings highlight how multiple pre-trained models can be leveraged to enhance performance across a
diverse range of datasets.

Data Scalability. To understand how AutoVP would perform in a data-limited regime, we gradually
and uniformly reduced the amount of training data to 50%, then 25%, then 10%, and finally 1% of each
training dataset’s original size. The experimental results in Figure 2 indicate that AutoVP consistently
outperformed LP across all 12 datasets, and that its relative performance was especially high in the
two scenarios with the lowest data volumes, i.e., 10% and 1% data usage. The dataset-specific results
can be found in Figure C.1 (within Appendix C.2).

4.2 ABLATION STUDIES OF AUTOVP

We designed a range of model architectures as testbeds for examining the performance of AutoVP’s
various components. Our comparisons of these VP architectures included 1) the utilization of a
weight-initialization strategy with FullyMap, 2) the inclusion vs. exclusion of the CLIP text encoder,
3) the presence vs. absence of visual prompts, and 4) the frequency analysis of the learned VP.

Weight Initialization of FullyMap with CLIP. When CLIP was used as the pre-trained model, the
FullyMap output transformation exhibited significantly inferior performance to FreqMap and IterMap
(Figure 3). This is because FreqMap and IterMap can leverage CLIP’s zero-shot property with the
semantic meanings of the labels, whereas the fully connected layer needs to learn the mapping from a
random state. As a result, FullyMap tends to perform poorly in the hyper-parameter tuning process,
yet may achieve higher accuracy after completing 200 epochs of training. In Figure 3, for example,
AutoVP suggests that the optimal output transformation for Flowers102 with CLIP is IterMap; but in
reality, FullyMap achieves better performance after training for 200 epochs (87.3%, as against 78.8%
for IterMap).

7

Published as a conference paper at ICLR 2024

CIFAR10 CIFAR10-C

T
es

ti
ng

 A
cc

ur
ac

y
(%

)
95.2

82.2

94.1

79.0

94.1

78.6

92.9

76.2

Using CLIP as the Pre-trained

AutoVP

ILM-VP

CLIP-VP

LP

Figure 4: Models Robustness with
CLIP. The comparison of accuracy
drop on the CIFAR10-C dataset across
AutoVP, ILM-VP, CLIP-VP and LP.

0.8 0.6 0.4 0.2
Confidence Score

20

0

20

40

60

A
cc

ur
ac

y
G

ai
n

(%
)

OxfordIIITPet
FMoW

CIFAR10

Food101
UCF101

DTD
EuroSAT

ISIC

GTSRB

SVHN

(a) AutoVP−LP

CIFAR100

Flowers102

0.8 0.6 0.4 0.2
Confidence Score

20

0

20

40

60

OxfordIIITPet
CIFAR100

CIFAR10

Food101
UCF101

Flowers102

DTD

FMoW

EuroSAT

ISIC
GTSRB

SVHN

(b) AutoVP−Non-VP

0

20

40

60

80

100

C
LI

P
Z

er
o-

Sh
ot

 A
cc

ur
ac

y
(%

)

Figure 5: Accuracy Gains with CLIP. The right side
of the chart indicates a higher out-of-distribution (OOD)
extent, accompanied by larger gain values. Conversely, the
left side shows lower gain values.

To address the bottleneck in hyperparameter tuning caused by FullyMap, we introduced weight initial-
ization (WI). This allows FullyMap to initialize with a more informative mapping based on the seman-
tic meaning of the class names. As mentioned in Section 3, AutoVP’s FullyMap consists of a linear
layer, which can be characterized as Lt = w ·Ls+b where the weight w is a Kt by KtT real matrix, Kt
denotes the number of target classes, and T is the number of templates used in the CLIP text encoder.
The weight initialization is to assign the diagonal of w to be 1, and the rest of it is set to 0, resulting in
w = (IKt |0), where IKt is an identity matrix of size Kt, and 0 is a Kt×Kt(T−1) zero matrix, indicat-
ing the connection between each target class class_name and its corresponding text prompts (“This
is a photo of a [class_name]”). In Figure A.1 (within Appendix A.2), we represent this concept vi-
sually. As shown in Figure 3, our experimental results demonstrate that when utilizing CLIP as the pre-
trained model, FullyMap with proper WI (hatched bar) can also outperform other mapping approaches.

Impact of the Non-inclusion of Text Encoder in CLIP. When replicating the experimental setting
as shown in Table 2 and establishing a direct connection between the fully connected output mapping
layer and the CLIP image encoder without incorporating the text encoder, there was a substantial
decrease in average accuracy: to 69.0% (see Figure E.1, Appendix E.1). Dataset-specific accuracy
drops were particularly prominent in Flowers102, Food101, and OxfordIIITPet. These outcomes
suggest that label semantics play a crucial role in those datasets.

The Impact of Visual Prompts. We also investigated the effects on the overall performance of
removing the module of visual prompts from the AutoVP pipeline while retaining the pre-trained
model and output-mapping modules. When the ResNet18 model was used, leaving the visual prompts
in yielded better performance than omitting them in just three out of 12 cases: i.e., the SVHN,
GTSRB, and ISIC datasets (Figure C.3 (b), Appendix C.3). For the remaining datasets, the inclusion
of visual prompts actually led to a decline in performance. This suggests that when a relatively small
source model is used for VP, a significant improvement in accuracy of the sort reported in Table C.1
can primarily be attributed to fully connected layer mapping, and visual prompts may be perceived
as noise. On the other hand, when the CLIP model was used, most of the datasets had positive gain
values (Figure 5 (b)), indicating improved performance, when visual prompts were included. This
suggests that CLIP is more suitable for VP tasks than ResNet18 is.

Frequency Analysis of the Learned Visual Prompts. In Appendix D.1, we also conducted an
analysis from a frequency perspective (Brigham, 1988) to study the generalization of visual prompt
patterns. The results highlighted the effectiveness of prompting with CLIP, harnessing low-frequency
features that generalize to the target domain.

5 DISCUSSIONS

Tuning Selection. AutoVP provides joint optimization of its multiple configurations and selects
different parameters according to its target tasks. In terms of output label mapping, FullyMap exhibits
superior performance in vision models, but IterMap or FreqMap appear to enhance the performance of
text-image models like CLIP. In this context, weight initialization with FullyMap plays an important
role in CLIP, making this option one of the more frequently chosen output-mapping strategies (Table
2). We also observed that novel designs exploiting larger image scales and mapping a larger number

8

Published as a conference paper at ICLR 2024

of source classes tended to yield enhanced performance. More information on selection preferences
during hyperparameter tuning can be found in Appendix D.3.

AutoVP Robustness. We trained AutoVP on CIFAR10 and evaluated its robustness on the corrupted
dataset CIFAR10-C, which consists of 18 types of filters or noise. As shown in Figure 4, AutoVP
maintained greater robustness than ILM-VP, CLIP-VP, and LP. Its loss of accuracy was relatively
small: suggesting that AutoVP exhibits a lower degree of overfitting to the training data and possesses
a higher ability to resist the impact of noise than the other baselines do.

Performance Evaluation on ID/OOD Downstream Tasks. We evaluate the out-of-distribution
(OOD) extent of each dataset relative to the pre-trained CLIP by considering the average confidence
score (Guo et al., 2017) and the CLIP zero-shot inference. The accuracy gains achieved through
VP (Figure 5) were computed as the difference in accuracy between AutoVP and LP or non-VP
approaches (i.e. visual prompts were removed and output mapping retained). We observed that the
datasets that were more in-distribution (ID), with higher confidence scores and higher zero-shot
accuracy, exhibited smaller accuracy gains from VP. Conversely, datasets that were more OOD,
characterized by lower confidence scores and lower zero-shot accuracy, had their accuracy improved
more through AutoVP.

We also evaluated accuracy gains with ResNet18 pre-trained on ImageNet-1K (Russakovsky et al.,
2015) (Figure C.3, Appendix C.3) and, to assess domain differences between ImageNet-1K and other
downstream datasets, we calculated the FID score (Heusel et al., 2017). The results were consistent
with the cases using CLIP. In conclusion, AutoVP is suitable for datasets that exhibit more OOD
characteristics than the source domain dataset.

6 LIMITATIONS

This work is subject to some limitations. First, our optimization process did not include certain hyper-
parameters, notably learning rate and weight decay. This omission stemmed from our primary focus
on identifying the best configurations for VP training, and because including such hyperparameters
would have greatly increased execution workload. In addition, when it comes to choosing the best
pre-trained model to fine-tune on the target dataset, You et al. (2021) also argued that, in general, the
sophisticated fine-tuning techniques (e.g., regularization) would not change the ranking of pre-trained
models in downstream tasks. Nonetheless, we conducted supplementary tuning experiments encom-
passing various learning rates and weight decays, the results of which can be found in Table E.3
(within Appendix E.3). In practice, we suggest enabling the tuning of learning rates, weight decay,
and other model-specific parameters after the initial hyperparameter tuning phase of AutoVP. The
tuning of fundamental hyperparameters could potentially be accelerated with recent advancements
in utilizing generalization metrics to identify optimal hyperparameter configurations (Zhou et al.,
2023a;b), a subject to be explored in future research.

Another limitation pertains to the scope of AutoVP, which is oriented toward classification tasks.
However, we have extended its application to segmentation and detection tasks, as detailed in
Appendix E.2. Furthermore, recent studies have demonstrated the success of visual prompts in
generative tasks (Ramesh et al., 2021; 2022; Liu & Chilton, 2022; Bar et al., 2022; Sohn et al., 2023).
Nevertheless, expanding support for generative tasks will require accommodation of their distinctive
requirements, e.g., via the integration of a suitable pre-trained generative model, such as GANs
(Goodfellow et al., 2014), VAEs (Kingma & Welling, 2013), or diffusion models (Ho et al., 2020),
along with tailored prompt design. Certainly, our results imply that there are many avenues for VP
research that merit further exploration.

7 CONCLUSION

This paper has introduced AutoVP, an end-to-end framework that automatically selects the optimal
VP configuration for a downstream dataset. AutoVP demonstrates superior performance over other
state-of-the-art VP methods and transfers learning baselines in both standard and sample-reduced
fine-tuning settings. This research has also yielded important insights into optimal VP configurations,
the effects of downstream data characteristics on VP, and how robustness against image corruption
might be improved. In short, we believe AutoVP is an efficient and expandable tool, and perhaps more
importantly, a useful benchmark that will accelerate the development of VP research and technology.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

The research described in this paper was conducted in the JC STEM Lab of Intelligent Design
Automation, which is funded by The Hong Kong Jockey Club Charities Trust.

REFERENCES

Huzaifa Arif, Alex Gittens, and Pin-Yu Chen. Reprogrammable-FL: Improving utility-privacy
tradeoff in federated learning via model reprogramming. In First IEEE Conference on Secure and
Trustworthy Machine Learning, 2023.

Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and Phillip Isola. Exploring visual prompts
for adapting large-scale models. arXiv preprint arXiv:2203.17274, 1(3):4, 2022.

Amir Bar, Yossi Gandelsman, Trevor Darrell, Amir Globerson, and Alexei Efros. Visual prompting
via image inpainting. Advances in Neural Information Processing Systems, 35:25005–25017, 2022.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative compo-
nents with random forests. In European Conference on Computer Vision, 2014.

E Oran Brigham. The fast Fourier transform and its applications. Prentice-Hall, Inc., 1988.

Aochuan Chen, Peter Lorenz, Yuguang Yao, Pin-Yu Chen, and Sijia Liu. Visual prompting for
adversarial robustness. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 1–5. IEEE, 2023a.

Aochuan Chen, Yuguang Yao, Pin-Yu Chen, Yihua Zhang, and Sijia Liu. Understanding and
improving visual prompting: A label-mapping perspective. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 19133–19143, June 2023b.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017.

Pin-Yu Chen. Model reprogramming: Resource-efficient cross-domain machine learning. arXiv
preprint arXiv:2202.10629, 2022.

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Benchmark
and state of the art. Proceedings of the IEEE, 105(10):1865–1883, 2017.

Gordon Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. Functional map of the world. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. Describing textures in the wild. In
Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014.

Noel Codella, Veronica Rotemberg, Philipp Tschandl, M Emre Celebi, Stephen Dusza, David
Gutman, Brian Helba, Aadi Kalloo, Konstantinos Liopyris, Michael Marchetti, et al. Skin lesion
analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging
collaboration (isic). arXiv preprint arXiv:1902.03368, 2019.

Gamaleldin F. Elsayed, Ian Goodfellow, and Jascha Sohl-Dickstein. Adversarial reprogramming of
neural networks. In International Conference on Learning Representations, 2019.

Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes challenge: A retrospective. International journal of
computer vision, 111:98–136, 2015.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Association for Computational Linguistics (ACL), 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

10

Published as a conference paper at ICLR 2024

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pp. 1321–1330. PMLR, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 2019.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian Igel. Detection
of traffic signs in real-world images: The german traffic sign detection benchmark. In The 2013
International Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2013.

Lei Hsiung, Yung-Chen Tang, Pin-Yu Chen, and Tsung-Yi Ho. NCTV: Neural Clamping Toolkit and
Visualization for Neural Network Calibration. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37 (13), pp. 16446–16448, Sep. 2023.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In European Conference on Computer Vision, pp. 709–727.
Springer, 2022.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
2901–2910, 2017.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision workshops,
pp. 554–561, 2013.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, Toronto, Ontario, 2009.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 3045–3059, Online and Punta Cana, Dominican Republic, 11 2021. Association
for Computational Linguistics.

Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Moritz Hardt, Benjamin Recht,
and Ameet Talwalkar. Massively parallel hyperparameter tuning. arXiv preprint arXiv:1810.05934,
5, 2018.

Ning Liao, Bowen Shi, Min Cao, Xiaopeng Zhang, Qi Tian, and Junchi Yan. Rethinking visual
prompt learning as masked visual token modeling. arXiv preprint arXiv:2303.04998, 2023.

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and Ion Stoica. Tune:
A research platform for distributed model selection and training. arXiv preprint arXiv:1807.05118,
2018.

Vivian Liu and Lydia B Chilton. Design guidelines for prompt engineering text-to-image generative
models. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, pp.
1–23, 2022.

11

Published as a conference paper at ICLR 2024

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Jochem Loedeman, Maarten C Stol, Tengda Han, and Yuki M Asano. Prompt generation networks
for efficient adaptation of frozen vision transformers. arXiv preprint arXiv:2210.06466, 2022.

Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li,
Ashwin Bharambe, and Laurens Van Der Maaten. Exploring the limits of weakly supervised
pretraining. In Proceedings of the European conference on computer vision (ECCV), pp. 181–196,
2018.

Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey
Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, et al. Simple
open-vocabulary object detection. In European Conference on Computer Vision, pp. 728–755.
Springer, 2022.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

M-E. Nilsback and A. Zisserman. Automated flower classification over a large number of classes. In
Proceedings of the Indian Conference on Computer Vision, Graphics and Image Processing, Dec
2008.

Changdae Oh, Hyeji Hwang, Hee-young Lee, YongTaek Lim, Geunyoung Jung, Jiyoung Jung, Hosik
Choi, and Kyungwoo Song. Blackvip: Black-box visual prompting for robust transfer learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 24224–24235, June 2023.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine
Learning, pp. 8821–8831. PMLR, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

E. Riba, D. Mishkin, D. Ponsa, E. Rublee, and G. Bradski. Kornia: an open source differentiable
computer vision library for pytorch. In Winter Conference on Applications of Computer Vision,
2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015.

Fobo Shi, Peijun Qing, Dong Yang, Nan Wang, Youbo Lei, Haonan Lu, and Xiaodong Lin.
Prompt space optimizing few-shot reasoning success with large language models. arXiv preprint
arXiv:2306.03799, 2023.

Kihyuk Sohn, Huiwen Chang, José Lezama, Luisa Polania, Han Zhang, Yuan Hao, Irfan Essa, and
Lu Jiang. Visual prompt tuning for generative transfer learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 19840–19851, 2023.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

12

Published as a conference paper at ICLR 2024

Hao-Lun Sun, Lei Hsiung, Nandhini Chandramoorthy, Pin-Yu Chen, and Tsung-Yi Ho. NeuralFuse:
Learning to Recover the Accuracy of Access-Limited Neural Network Inference in Low-Voltage
Regimes. arXiv preprint arXiv:2306.16869, 2023.

Yung-Chen Tang, Pin-Yu Chen, and Tsung-Yi Ho. Neural clamping: Joint input perturbation and
temperature scaling for neural network calibration. arXiv preprint arXiv:2209.11604, 2022.

Yun-Yun Tsai, Pin-Yu Chen, and Tsung-Yi Ho. Transfer learning without knowing: Reprogramming
black-box machine learning models with scarce data and limited resources. In Proceedings of
the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 9614–9624. PMLR, 13–18 Jul 2020.

Yun-Yun Tsai, Chengzhi Mao, and Junfeng Yang. Convolutional visual prompt for robust visual
perception. In Advances in Neural Information Processing Systems, volume 36, pp. 27897–27921.
Curran Associates, Inc., 2023.

Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The ham10000 dataset, a large collection of
multi-source dermatoscopic images of common pigmented skin lesions. Scientific data, 5(1):1–9,
2018.

Junyang Wu, Xianhang Li, Chen Wei, Huiyu Wang, Alan Yuille, Yuyin Zhou, and Cihang Xie.
Unleashing the power of visual prompting at the pixel level. arXiv preprint arXiv:2212.10556,
2022.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In 2010 IEEE computer society conference on
computer vision and pattern recognition, pp. 3485–3492. IEEE, 2010.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1492–1500, 2017.

Ziqing Yang, Zeyang Sha, Michael Backes, and Yang Zhang. From visual prompt learning to
zero-shot transfer: Mapping is all you need. arXiv preprint arXiv:2303.05266, 2023.

Hao Yen, Pin-Jui Ku, Chao-Han Huck Yang, Hu Hu, Sabato Marco Siniscalchi, Pin-Yu Chen, and
Yu Tsao. Neural model reprogramming with similarity based mapping for low-resource spoken
command classification. arXiv preprint arXiv:2110.03894, 2021.

Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng Long. LogME: Practical assessment of
pre-trained models for transfer learning. In International Conference on Machine Learning, pp.
12133–12143. PMLR, 2021.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
vision-language models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16816–16825, 2022a.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 130(9):2337–2348, 2022b.

Yefan Zhou, Tianyu Pang, Keqin Liu, Charles H. Martin, Michael W. Mahoney, and Yaoqing Yang.
Temperature balancing, layer-wise weight analysis, and neural network training. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023a.

Yefan Zhou, Yaoqing Yang, Arin Chang, and Michael W. Mahoney. A three-regime model of network
pruning. In Proceedings of the 40th International Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pp. 42790–42809, 2023b.

13

Published as a conference paper at ICLR 2024

APPENDIX

A Implementation Details of AutoVP 15
A.1 Pre-trained Classifier Details . 15
A.2 Output Label Mappings of AutoVP . 15
A.3 AutoVP Tuning Process . 17

B Datasets and Baselines 18
B.1 The Twelve Downstream Datasets . 18
B.2 Baselines Details . 18

C Additional Experiments with AutoVP 19
C.1 Fixed Pre-trained Model vs. Auto Pre-trained Model Selection 19
C.2 Data Scalability . 20
C.3 Downstream Dataset Analysis (ID/OOD vs. Accuracy Gain) 21

D Analysis of AutoVP Results 22
D.1 Prompts in Frequency Domain . 22
D.2 Output Mapping Analysis . 23
D.3 The Preferences in Hyper-Parameter Tuning Selection 24

E Ablation Studies 24
E.1 The Impact of Text Encoder in CLIP . 24
E.2 Visual Prompting in Segmentation and Detection Tasks 25
E.3 Exploring Additional Tuning Axes . 27
E.4 Improved ILM-VP with Tuning Configuration 27
E.5 Comparison of AutoVP and BlackVIP . 28

F Performance and Resource Utilization 28
F.1 Comparison of AutoVP, Linear Probing, and Full Fine-Tuning 28
F.2 Computing Resources . 29

14

Published as a conference paper at ICLR 2024

A IMPLEMENTATION DETAILS OF AUTOVP

A.1 PRE-TRAINED CLASSIFIER DETAILS

Our AutoVP framework includes four pre-trained models: ResNet18 (He et al., 2016), ResNeXt101-
IG (Mahajan et al., 2018), Swin-T (Liu et al., 2021), and CLIP (Radford et al., 2021). Both ResNet18
and Swin-T models were trained on the ImageNet-1K (Russakovsky et al., 2015) dataset, while
ResNeXt101-IG was pre-trained on a large collection of Instagram photos. Additionally, CLIP was
trained on a dataset consisting of 400 million pairs of images and corresponding text from the internet.

In the structural differences, the first three models are single-modality vision models. ResNet18 is
a typical and relatively small convolutional neural network with residual blocks. ResNeXt101-IG
is a deeper residual network that incorporates cardinality, which refers to the size of the set of
transformations (Xie et al., 2017). Swin-T is a vision transformer that operates by dividing the input
image into patches and processing them using the transformer architecture. The last model, CLIP, is a
vision-language multi-modal model that calculates the cosine similarity between image embeddings
and label text embeddings. The prediction is to select the class with the highest similarity score to
the embedding of the input image. The prediction flow is illustrated in Eq. 3, where the input image
is denoted as x, and Kt represents the size of the predictable class set. The token vector of the i-th
class label text, obtained from a tokenizer, is denoted as ClsTki. CLIP utilizes the Image-Encoder()
and Text-Encoder() components to extract features from images and text. The resulting image and
text embeddings are represented as xemb and tembi , respectively. The cosine similarity between any
pair of (image, text) embeddings can be computed, and the class with the highest cosine similarity is
considered as the predicted class ypred.

xemb = Image-Encoder(x)
tembi = Text-Encoder(ClsTki), 0 ≤ i < Kt

ypred = arg max
0≤i<Kt

(
xemb · tembi

∥ xemb ∥∥ tembi ∥
)

(3)

By training with pairs of image and text annotations, CLIP is able to learn correlations between visual
and textual information, achieving state-of-the-art zero-shot accuracy.

A.2 OUTPUT LABEL MAPPINGS OF AUTOVP

As mentioned in Section 3, AutoVP incorporates four output label mappings: frequency mapping
(FreqMap), iterative mapping (IterMap), semantic mapping (SemanticMap), and fully connected
layer mapping (FullyMap). In the following, we provide more details of each mapping algorithm.

Target Labels

II. Iterative Mapping III. Semantic Mapping

IV. Fully Connected Layer Mapping V. Fully Connected Layer Mapping:
CLIP with Weight Initialization

CLIP
Text

Encoder

Source classes names

Target classes names Embedding of target
classes names

Embedding of source
classes names

Logit

of
Target
classes

Pred.
class

Logit

Wx+b

of
Source
classes

of
Target
classes

Pred.
class

81-templates x
#-of-target-classes

1

1

1

0

0

0

Default Template:
This is a photo of a [].

This is a photo
of a airplane

This is a photo
of a automobile

airplane

automobile

Source Labels

I. Frequency Mapping

VP Model

Mapping
Map to the ones with highest

cosine similarity score

Mapping
Remap at the
beginning of
each epoch

Figure A.1: Output Label Mapping. Illustration of four output mapping methods.

15

Published as a conference paper at ICLR 2024

A.2.1 FREQMAP (FREQUENCY MAPPING)

In FreqMap, the mapping is established between each target class and the most frequently mapped
source class. We demonstrate the general many-to-one mapping (multiple source labels mapped to
one target label) in Algorithm 1. In lines 6-10, we traverse all the training data pairs (xt, yt). First,
we pad the image xt with the current visual prompts to obtain a prompted image x̃t. Then, we could
obtain the prediction fθs(x̃t) = ys in the source domain. This gives us a mapping relation from ys
to yt, and we increase the count accordingly. In line 11, we obtain the list of source-target id pairs
(Sid, Tid), which is sorted by the count matrix (count) in descending order. Accordingly, we start
defining the mapping of FreqMap from the most frequently source-target pair. If the source class
has not been mapped yet and the mapping count for the target class has not reached the limit m, we
establish the mapping relationship M[Sid][Tid] = 1 (line 14). We continue this process until all target
classes have been mapped to m source classes. Once this condition is met, the mapping assignment
is completed, and we return the mapping matrix M.

Algorithm 1: FreqMap (δ, fθs ,Dt,m)
Input: visual prompts δ, source classifier fθs , target dataset Dt, and the specified number of

source classes mapped to each target class m
Output: mapping matrix M
Initialization

1 Ks, Kt ← number of source and target classes
2 M← 0Ks×Kt # mapping matrix
3 count← 0Ks×Kt # a zero matrix, records the number of images of each target class being

predicted (by fθs) as each source class
4 done_s← 0Ks # a boolean vector, records whether the source class has been assigned
5 done_t← 0Kt # a boolean vector, records whether the number of source classes per target

class is equal to m
Calculate the Frequency

6 foreach (xt, yt) ∈ Dt do
7 x̃t ← P(xt) # generates x̃t from xt and δ using Eq. 1
8 ys ← fθs(x̃t) # the predicted source domain class
9 count[ys][yt]← count[ys][yt] + 1

10 end
11 index_list← ArgSort(count) # get the list of source-target id pairs (Sid, Tid) sorted by

count[Sid][Tid] in descending order
Define the FreqMap

12 for (Sid, Tid) in index_list do
13 if not done_t[Tid] and not done_s[Sid] then
14 M[Sid][Tid]← 1 # assign the mapping from Sid (source label) to Tid (target label)
15 done_s[Sid]← True
16 end
17 if Sum(M[:][Tid]) == m then
18 done_t[Tid]← True # if the target class Tid has been mapped to m source classes
19 end
20 if Sum(done_t) == Kt then
21 break # early stop if all the target classes has been mapped to m source classes
22 end
23 end
24 return M

A.2.2 ITERMAP (ITERATIVE MAPPING)

In IterMap, at the beginning of each training epoch, the mapping relationship is established using
the FreqMap with the current prompted image. This means that the visual prompts updated via the
VP model are padded onto the image and participate in the mapping process. Hence, this mapping
relationship changes as the visual prompts are trained, which is known as bi-level optimization (Chen
et al., 2023b).

16

Published as a conference paper at ICLR 2024

A.2.3 SEMANTICMAP (SEMANTIC MAPPING)

In SemanticMap, source and target classes with semantically similar class names are mapped together.
This mapping is accomplished using CLIP’s tokenizer Tokenizer() and text encoder Text-Encoder().
We demonstrate the mapping process using the following equation:

ClsTkys = Tokenizer(Nys)

ClsTkyt = Tokenizer(Nyt)

Embys = Text-Encoder(ClsTkys)

Embyt = Text-Encoder(ClsTkyt)

Similarity(ys,yt) =
Embys ·Embyt

∥ Embys ∥∥ Embyt ∥
yt ← y∗

s = arg max
ys∈Ys

(Similarity(ys,yt))

(4)

In Eq. 4, let Ys = {0, · · · ,Ks − 1} and Yt = {0, · · · ,Kt − 1} be the set of source and target
labels, where Ks/Kt are the numbers of source/target classes. For the source label ys ∈ Ys with the
classname Nys and the target label yt ∈ Yt with the classname Nyt , we first utilize the tokenizer
to obtain token vectors (ClsTkys and ClsTkyt) corresponding to Nys and Nyt . Then, the text
encoder is used to obtain their embeddings (Embys and Embyt). Pair-wise cosine similarity is
calculated between each source and target embeddings, and each target label is mapped to the source
label with the highest similarity.

A.2.4 FULLYMAP (FULLY CONNECTED LAYER MAPPING)

FullyMap utilizes a linear layer Lt = w · Ls + b with weights w and bias b to learn the mapping,
enabling the transformation of the output source logits Ls to target logits Lt. As for weight initial-
ization (WI), it is employed in the case of CLIP with FullyMap. This technique involves setting the
weights between the target labels and their default templates as 1, while setting the rest to 0. With
WI, the linear layer can achieve a favorable initial mapping state, thereby expediting the process of
obtaining a good mapping relation.

A.3 AUTOVP TUNING PROCESS

In Figure A.2, there are three stages involved in the tuning process, while the Visual Prompt
component depicted in Figure 1 is not involved in the tuning process, as it does not contain any
hyper-parameters. During the Input Scaling stage, the initial scale of the input image is determined,
and users can choose whether to learn the resize scale during training. In the Pre-trained Classifier
stage, users have the option to select from four pre-trained models to serve as the feature extractor.
The Output Label Mapping stage offers four mapping methods to choose from. For FreqMap,
IterMap, and SemanticMap, users can specify the number of source classes that are mapped to a
single target class.

Figure A.2: Hyper-Parameter Tuning Selection. Illustration of the end-to-end hyper-parameter
tuning process in AutoVP with a total of 222 possible configurations.

17

Published as a conference paper at ICLR 2024

B DATASETS AND BASELINES

B.1 THE TWELVE DOWNSTREAM DATASETS

To assess the efficacy of the proposed AutoVP, we selected the following twelve datasets for our
experiments. The detailed information is shown in B.1.

• CIFAR10 & CIFAR100 (Krizhevsky & Hinton, 2009): The datasets consist of labeled subsets of
the 80 million tiny images dataset, which are composed of 32×32 color images.

• ISIC (Codella et al., 2019; Tschandl et al., 2018): The International Skin Imaging Collaboration
(ISIC) developed an international repository of dermoscopic images known as the ISIC Archive. The
images of the datasets were acquired using different devices at several medical centers worldwide.

• SVHN (Netzer et al., 2011): A real-world image dataset of street view house numbers.
• GTSRB (Houben et al., 2013): The German Traffic Sign Benchmark (GTSB) is a multi-class,

single-image classification challenge that was conducted at the International Joint Conference on
Neural Networks (IJCNN) in 2011.

• Flowers102 (Nilsback & Zisserman, 2008): The 102 categories flowers dataset consists of com-
monly occurring flowers in the United Kingdom.

• DTD (Cimpoi et al., 2014): The Describable Textures Dataset (DTD) is a collection of textural
images that have been annotated with a series of human-centric attributes.

• Food101 (Bossard et al., 2014): The food dataset consists of 101 different classes, with a total of
101,000 images.

• EuroSAT (Helber et al., 2019): The Sentinel-2 satellite images dataset for land use and land cover
classification.

• OxfordIIITPet (Pets) (Parkhi et al., 2012): The dataset includes diverse breeds of cats and dogs,
with images exhibiting variations in scale, pose, and lighting conditions.

• UCF101 (Soomro et al., 2012): The action recognition dataset consists of realistic action videos
that have been collected from YouTube.

• FMoW (Christie et al., 2018): The dataset contains satellite images that are used for sites and land
use classification.

Table B.1: Dataset Setting

Dataset Class Number Training Set Size Testing Set Size Batch Size

SVHN 10 73,257 26,032 128

EuroSAT 10 13,500 8,100 128

Flowers102 102 4,093 2,463 64

CIFAR100 100 50,000 10,000 128

UCF101 101 7,639 3,783 128

DTD 47 2,820 1,692 32

FMoW 62 76,863 22,108 128

GTSRB 43 26,640 12,630 128

CIFAR10 10 50,000 10,000 128

Food101 101 75,750 25,250 128

OxfordIIITPet 37 3,680 3,669 128

ISIC 7 4,990 555 128

B.2 BASELINES DETAILS

The reported accuracy of the baselines (ILM-VP by Chen et al. (2023b), CLIP-VP and LP by Bahng
et al. (2022)) in Section 4 is obtained from the results documented in the respective papers. For some
datasets (such as ISIC, FMoW, and GTSRB), the authors did not include them in their paper; in this
regard, we follow the corresponding experimental settings to obtain baseline accuracy.

18

Published as a conference paper at ICLR 2024

C ADDITIONAL EXPERIMENTS WITH AUTOVP

C.1 FIXED PRE-TRAINED MODEL vs. AUTO PRE-TRAINED MODEL SELECTION

We present additional experimental results to highlight the effectiveness of AutoVP. In addition
to the comparisons with CLIP and VP baselines discussed in Section 4.1, we further evaluate the
performance using ResNet18 as the pre-trained model and explore a scenario without any pre-trained
model restrictions. The results using ResNet18 are presented in Table C.1, while the results for the
unrestricted scenario are provided in Table C.2. These comparisons consistently demonstrate that
AutoVP outperforms previous approaches, including LP and the state-of-the-art VP methods.

Table C.1: AutoVP with ResNet18. Comparison of VP test accuracy (%) using ResNet18 as the
pre-trained model on 12 datasets.

Dataset AutoVP Setting AutoVP ILM-VP LP

SVHN FullyMap, p = 48 83.74 ± 0.45 75.2 65.0

CIFAR10 FullyMap, p = 48 87.81 ± 0.17 65.5 85.9

Flowers102 FullyMap, p = 16 85.40 ± 1.89 27.9 88.0

Food101 FullyMap, p = 16 54.15 ± 3.53 14.8 50.6

UCF101 FullyMap, p = 16 55.86 ± 1.81 23.9 63.2

OxfordIIITPet FullyMap, p = 16 82.65 ± 0.84 65.4 87.2

CIFAR100 FullyMap, p = 16 63.67 ± 3.48 24.8 63.3

EuroSAT FullyMap, p = 48 93.01 ± 0.15 85.2 93.8

DTD FullyMap, p = 16 54.82 ± 1.14 35.3 60.0

ISIC FullyMap, p = 16 67.44 ± 1.22 57.5 68.6

FMoW FullyMap, p = 16 30.17 ± 0.06 14.8 28.4

GTSRB FullyMap, p = 16 81.52 ± 1.21 52.0 77.4

Average Accuracy 70.02 45.2 69.3

Table C.2: AutoVP with source model selection. This table displays the best tuning setting without
any restriction on the choice of pre-trained model, and shows the test accuracy (%) of AutoVP and
the LP baseline of the chosen model across 12 datasets.

Dataset AutoVP Setting AutoVP LP

SVHN CLIP, FullyMap, p = 51 92.86 ± 0.18 65.40

CIFAR10 ResNeXt101-IG, FullyMap, p = 48 95.89 ± 0.07 93.89

Flowers102 Swin-T, FullyMap, p = 16 93.48 ± 0.52 95.75

Food101 CLIP, FreqMap-1, p = 16 82.28 ± 0.09 84.60

UCF101 Swin-T, FullyMap, p = 16 72.96 ± 0.26 75.96

OxfordIIITPet Swin-T, FullyMap, p = 16 90.20 ± 0.55 93.04

CIFAR100 ResNeXt101-IG, FullyMap, p = 48 79.76 ± 0.47 76.09

EuroSAT Swin-T, FullyMap, p = 16 95.98 ± 0.02 95.50

DTD Swin-T, FullyMap, p = 16 69.25 ± 0.58 71.49

ISIC Swin-T, FullyMap, p = 16 71.66 ± 1.45 72.22

FMoW Swin-T, FullyMap, p = 48 39.79 ± 0.83 32.73

GTSRB Swin-T, FullyMap, p = 55 88.10 ± 2.11 74.97

Average Accuracy 81.02 77.64

19

Published as a conference paper at ICLR 2024

C.2 DATA SCALABILITY

In the data scalability experiments, Figure C.1 illustrates the performance of AutoVP and LP on
each dataset under various data usage proportions. The corresponding settings can be found in Table
C.3. When the chosen pre-trained model is fixed to CLIP, AutoVP outperformed LP in scenarios
with limited data on most of the datasets. In some datasets, such as SVHN, GTSRB, and EuroSAT,
AutoVP performs better than LP for all proportions of data. Besides, in OxfordIIITPet, CIFAR100,
DTD, Food101, UCF101, and Flowers102, AutoVP also obtains promising performance compared
to LP on a small amount of data. This suggests that AutoVP will be a more suitable and effective
solution than LP, especially when training data is limited.

110 25 50 100 (%)

60

80

SVHN

110 25 50 100 (%)

60

70

80

90

GTSRB

110 25 50 100 (%)

85

90

95

EuroSAT

110 25 50 100 (%)
20

40

60

80

OxfordIIITPet

110 25 50 100 (%)

50

60

70

80
CIFAR100

110 25 50 100 (%)

20

40

60

DTD

110 25 50 100 (%)

65

70

75

80

85
Food101

110 25 50 100 (%)
20

40

60

80
UCF101

110 25 50 100 (%)
20

40

60

80

100
Flowers102

110 25 50 100 (%)

90

92

94

CIFAR10

110 25 50 100 (%)

50

60

70

ISIC

110 25 50 100 (%)

20

30

40

FMoW

 AutoVP Top1 Accuracy LP Accuracy

Figure C.1: Data Scalability. The charts present the accuracy of AutoVP and LP with varying
percentages of data usage: 100%, 50%, 25%, 10%, and 1%.

Table C.3: Data Scalability Settings. The table shows the settings for data scalability experiments
with data usage ranging from 100% to 1%. The source pre-trained model is fixed to CLIP. The
notation “Mapping-m” represents mapping m source classes to each target class.

Dataset 100% 50% 25% 10% 1%

SVHN FullyMap, p = 53 FullyMap, p = 51 FullyMap, p = 49 FullyMap, p = 80 FullyMap, p = 80

CIFAR10 IterMap-1, p = 22 FreqMap-1, p = 16 FreqMap-5, p = 16 IterMap-5, p = 16 IterMap-1, p = 16

Flowers102 FullyMap, p = 16 FreqMap-1, p = 16 FreqMap-1, p = 16 IterMap-1, p = 16 FullyMap, p = 16

Food101 FreqMap-1, p = 16 IterMap-5, p = 16 IterMap-1, p = 16 IterMap-1, p = 16 FullyMap, p = 16

UCF101 FullyMap, p = 17 FullyMap, p = 16 IterMap-1, p = 16 FullyMap, p = 16 FullyMap, p = 16

OxfordIIITPet FreqMap-10, p = 16 FreqMap-5, p = 16 FreqMap-5, p = 16 FullyMap, p = 16 FullyMap, p = 16

CIFAR100 FullyMap, p = 30 FullyMap, p = 26 IterMap-1, p = 16 FreqMap-1, p = 16 FullyMap, p = 16

EuroSAT FullyMap, p = 16 FullyMap, p = 16 FullyMap, p = 16 FullyMap, p = 16 FullyMap, p = 16

DTD FullyMap, p = 18 IterMap-10, p = 16 IterMap-5, p = 16 FullyMap, p = 16 FullyMap, p = 16

ISIC IterMap-1, p = 16 FreqMap-1, p = 16 FullyMap, p = 80 FreqMap-5, p = 48 FullyMap, p = 80

FMoW FullyMap, p = 16 FullyMap, p = 16 FullyMap, p = 16 FreqMap-10, p = 16 FullyMap, p = 17

GTSRB FullyMap, p = 80 FullyMap, p = 16 FullyMap, p = 79 FullyMap, p = 48 FullyMap, p = 80

20

Published as a conference paper at ICLR 2024

C.3 DOWNSTREAM DATASET ANALYSIS (ID/OOD vs. ACCURACY GAIN)

To further understand how the downstream dataset distribution influences the performance of visual
prompting. We conduct experiments to observe the relation between accuracy gain and dataset
characteristics. When using CLIP as the pre-trained model, we define confidence score, obtained
by averaging the maximum softmax probability of predictions across the entire training set, as an
indicator of dataset characteristics. For other vision pre-trained models, the FID score is used to
measure the dissimilarity between the downstream dataset and the ImageNet-1K dataset, i.e. the
degree of out-of-distribution (OOD). We present the Confidence/FID scores of each dataset in Figure
C.2, providing insights into their OOD characteristics. Furthermore, Figure C.3 demonstrates the
accuracy gain for each dataset when using ResNet18 as the pre-trained model. The experimental
results show that when using AutoVP, datasets with a higher degree of OOD tend to benefit from
more accuracy gains.

CIFAR10

OxfordIIITPet

Food101

UCF101

Flowers102

CIFAR100

DTD
FM

oW
EuroSAT

ISIC
GTSRB

SVHN

0.0

0.2

0.4

0.6

0.8

1.0
0.83 0.80

0.77

0.66 0.64

0.53 0.50 0.48
0.45

0.40

0.23
0.20

ID OOD

Confidence Score

OxfordIIITPet

UCF101

DTD
Food101

CIFAR100

CIFAR10

FM
oW

Flowers102

EuroSAT

GTSRB

SVHN
ISIC

50

100

150

200

250

75.3
85.0

95.1
103.8

119.8
134.5139.9141.6

150.7
158.5

211.2

248.6

ID OOD

FID Score

Figure C.2: Confidence Score and FID Score. We sort the datasets by the degree of out-of-
distribution (OOD), where the one closer to the left indicates higher similarity (in-distribution, ID)
to the training data of the pre-trained model, while the one closer to the right indicates greater
dissimilarity (OOD).

Figure C.3: Accuracy Gains with Resnet18. The gains are calculated by taking the difference
between the performance of AutoVP and LP or Non-VP scenario.

Table 2 has encompassed the prevalent 12 datasets in VP research. Furthermore, to enable a more
comprehensive comparison within a wider spectrum of VP research, we have included additional
datasets—SUN397(Xiao et al., 2010), RESISC(Cheng et al., 2017), CLEVR(Johnson et al., 2017),
and StanfordCar(Krause et al., 2013)—with their respective results available in Table C.4. Our
findings consistently demonstrate AutoVP’s superior performance compared to ILM and CLIP-VP
across the most of datasets. Especially notable is the substantial 15% increase in accuracy observed
in the out-of-distribution (OOD) dataset, CLEVR, when compared to linear probing (LP). However,
the in-distribution (ID) datasets, SUN397 and StanfordCar, showcased lower performance than LP,
aligning with the trend of accuracy gain illustrated in Figure 5 in Section 5.

21

Published as a conference paper at ICLR 2024

Table C.4: Performance on Additional Datasets. The
testing accuracy (%) for four additional datasets com-
monly found in VP research. The figure on the right side
shows the accuracy gains.

Dataset AutoVP Setting AutoVP LP ILM CLIP-VP

SUN397 FullyMap, p = 16 65.4 70.9 61.2 60.5

StanfordCar FullyMap, p = 16 61.8 77.6 57.6 56.2

RESISC FullyMap, p = 17 88.5 91.7 86.6 84.5

CLEVR FullyMap, p = 16 83.0 68.0 83.1 81.4

D ANALYSIS OF AUTOVP RESULTS

D.1 PROMPTS IN FREQUENCY DOMAIN

We have analyzed the learned prompts using the best setting selected from AutoVP and have
represented them in the frequency domain through Fast Fourier transformation (Brigham, 1988). In
Figure D.1(a), the prompting result of SVHN dataset with CLIP is notably distinct and achieves the
highest testing accuracy among all the pre-trained models. In the frequency analysis (Figure D.1(b)),
the prompts are concentrated in the low-frequency domain (at the center of the plot), with CLIP
displaying the most distinct structure and significantly larger magnitudes compared to the others.
These results validate the efficient learning of prompts with CLIP, harnessing low-frequency features
that generalize to the target domain.

0 50 100 150 200

0

25

50

75

100

125

150

175

200

AutoVP with ResNet18
Testing Acc=83.7%

0 50 100 150 200

0

25

50

75

100

125

150

175

200

AutoVP with ResNeXt101-IG
Testing Acc=85.6%

0 50 100 150 200

0

25

50

75

100

125

150

175

200

AutoVP with Swin-T
Testing Acc=90.7%

0 50 100 150 200

0

25

50

75

100

125

150

175

200

AutoVP with CLIP
Testing Acc=92.9%

(a) Learned Prompts with Different Models

0 50 100 150 200

0

25

50

75

100

125

150

175

200

AutoVP with ResNet18

0 50 100 150 200

0

25

50

75

100

125

150

175

200

AutoVP with ResNeXt101-IG

0 50 100 150 200

0

25

50

75

100

125

150

175

200

AutoVP with Swin-T

0 50 100 150 200

0

25

50

75

100

125

150

175

200

AutoVP with CLIP

e−1

e0

e4

e8

(b) Prompts in Frequency Domain

Figure D.1: Prompting Analysis of SVHN Using Various Pre-trained Models. (a) Frame-shape
prompts learned with the best settings selected from AutoVP for a given pre-trained model. (b)
Prompts in the frequency domain by Fast Fourier transformation.

22

Published as a conference paper at ICLR 2024

D.2 OUTPUT MAPPING ANALYSIS

Figure D.2: The Weight Distribution of FullyMap in DTD. The top 5 source labels exhibiting the
highest weight values within the FullyMap pertain to (a) the label bumpy and (b) the label scaly.

Figure D.2 illustrates that FullyMap can be interpreted as a weighted combination of multiple source
labels, where some human-readable features may exhibit similarity. For instance, in Figure D.2(a),
bumpy shows similarities with custard apple, disk brake, and pineapple, while in Figure D.2(b), scaly
shares similar features with boa constrictor, coho, and common iguana.

Figure D.3: The Correspondence Between Output Mapping Labels in DTD. Each column
represents the mapping between the target label and its respective top-1 source label in FullyMap.
(a) FullyMap (top-1 class having the largest weight) with Swin-T (second row). (b) IterMap-1 with
Swin-T (third row).

Furthermore, when comparing FullyMap and IterMap, a significant accuracy gap is observed, with
FullyMap achieving 69.96% and IterMap-1 only achieving 40.77%. However, in Figure D.3, IterMap
has mapped to some classes that are indeed very close to the target. For instance, in Figure D.3(b),
braided maps to knot, bubbly maps to bubble, and cobwebbed maps to spider web. This demonstrates
that a mere combination of source labels is insufficient for achieving better performance; the weighting
in the combination plays a crucial role, which is precisely what FullyMap accomplishes.

23

Published as a conference paper at ICLR 2024

D.3 THE PREFERENCES IN HYPER-PARAMETER TUNING SELECTION

ResNet18 ResNeXt101-IG Swin-T CLIP
Pre-trained Models

0

40

80

A
cc

ur
ac

y
(%

)
(a) Pre-trained Models

IterMap

FullyMap

FreqMap

SemanticMap

0.5 1.0 1.5
Initial Scale

0

40

80

(b) Initial Scale

IterMap

FullyMap

FreqMap

SemanticMap

ResNet18 ResNeXt101-IG Swin-T CLIP
Pre-trained Models

0

40

80

(c) Source-to-Target Classes of FreqMap/IterMap

1 5 10

Figure D.4: Average Tuning Results. The three charts display the average few-epoch tuning accuracy
for different selected conditions.

Figure D.4 illustrates the average tuning results for all datasets across different settings, including
image scale, mapping methods, pre-trained models, and so on (see Figure A.2). In Figure D.4(a),
among the vision models (ResNet18, ResNeXt-IG, Swin-T), the FullyMap demonstrates superior
performance compared to the other methods. However, for CLIP, a vision-language model, the
FullyMap only shows a slight advantage over the others. Furthermore, Figure D.4(b) indicates that
larger initial scales, such as 1.0 or 1.5 (yielding square images with a width of 128×1.0 or 128×1.5),
generally lead to better results when using FreqMap, IterMap, or FullyMap. Last, since both FreqMap
and IterMap can configure the number (m) of source labels mapped to each target class, we found
that increasing this count generally improves accuracy for the three vision models (see Figure D.4(c)).
However, for CLIP, mapping five source labels appears to be the optimal choice based on the average
tuning results.

E ABLATION STUDIES

E.1 THE IMPACT OF TEXT ENCODER IN CLIP

Figure E.1 illustrates the impact on accuracy when incorporating or excluding the CLIP text encoder.
On average, this configuration results in a significant decrease in accuracy of approximately 12%,
highlighting the crucial role of the text encoder in VP with CLIP.

SVHN
EuroSAT

Flowers102

CIFAR100

UCF101

DTD
FM

oW
GTSRB

CIFAR10

Food101

Pet
ISIC

0

20

40

60

80

100

T
es

ti
ng

 A
cc

ur
ac

y
(%

)

0.02
-0.81

-67.50

2.16 5.03

5.78

0.34

2.05 -0.93

-30.05

-46.35

-10.44

CLIP Variation Performance

AutoVP FullyM, Avg: 80.73

AutoVP FullyM w/o Text Encoder, Avg: 69.00

Figure E.1: The Accuracy Difference of AutoVP Variations. The chart shows the difference in
accuracy between AutoVP variations with and without the CLIP text encoder. The numbers above
the bars indicate the accuracy difference.

24

Published as a conference paper at ICLR 2024

E.2 VISUAL PROMPTING IN SEGMENTATION AND DETECTION TASKS

Pre-Trained
Model

FullyMap
Conv2d(21, 3)

Pre-Trained
Model

Classifier
Conv2d(256, 21)

 -> Conv2d(256, 3)

Visual Prompts

Pre-Trained
Model

Pre-Trained
Model

(a-1) Linear Probing

Box Head
Multilayer Perceptron

(MLP)

Visual Prompts

(a-2) AutoVP with FullyMap

(b-1) Linear Probing

(b-2) AutoVP without Mapping

(a) Segmentation (b) Detection
TrainableFrozen

Figure E.2: LP and AutoVP in Segmentation and Detection Tasks.

Although AutoVP primarily focuses on classification tasks, we aimed to delve deeper into various
vision tasks by incorporating models designed for different purposes. For segmentation tasks, we
employ DeepLabV3 (Chen et al., 2017) as the pre-trained backbone, and for detection tasks, we
utilize OWL-ViT (Minderer et al., 2022). To evaluate the capability of both in-distribution (ID) and
out-of-distribution (OOD) datasets, we chose ISIC as the OOD dataset for both tasks. For ID datasets,
we use Pets in the segmentation task and VOC (Everingham et al., 2015) in the detection task.

Our VP segmentation framework, depicted in Figure E.2 (a), integrates a FullyMap after the pre-
trained model to facilitate pixel-wise classification using a custom class number. In contrast, the
linear probing approach modifies the final 2D convolutional layer, and the results are depicted in
Table E.1.

Table E.1: Performance on Segmentation Datasets. The IoU and pixel accuracy (%) of linear
probing (LP) and AutoVP.

Dataset LP AutoVP

Pets IoU : 0.83, Pixel : 90.7% IoU : 0.77, Pixel : 86.9%

ISIC IoU : 0.64, Pixel : 78.1% IoU : 0.81, Pixel : 89.5%

We evaluated segmentation performance using two metrics: IoU (Intersection over Union) score and
pixel-wise classification accuracy. AutoVP exhibited superior performance on both metrics on the
ISIC dataset. Additionally, segmentation examples highlighted that predictions align more accurately
with the ground truth mask when the prompt space is larger (see Figure E.3). However, in the ID
dataset (Pets), VP performance was inferior to LP. This aligns with our findings in the classification
task, where OOD datasets derived greater benefits from visual prompts.

25

Published as a conference paper at ICLR 2024

Image

Predicted
Mask

Ground
Truth

(a) Linear Probing
IoU: 0.64, Pixel: 78.1%

(c) AutoVP (p=48)
IoU: 0.81, Pixel: 89.5%

(b) AutoVP (p=16)
IoU: 0.72, Pixel: 83.8%

Figure E.3: ISIC Segmentation. Performance of LP and AutoVP with different prompt sizes (p).
It’s important to note that the performance calculation involves only the target image itself without
the prompts, ensuring a fair comparison to LP. Specifically, the predicted mask is initially cropped to
the region of the original target image and then resized to match the dimensions used in LP.

In the case of the detection task, as illustrated in Figure E.2 (b), the LP approach fine-tunes on the box
predictor head, whereas the VP method incorporates trainable visual prompts. To achieve consistent
box output, we have omitted the inclusion of output mapping. The results are shown in Table E.2.
Similar to segmentation, the OOD dataset, ISIC, exhibits better performance than LP with a larger
prompt size.

Table E.2: Performance on Detection Datasets.
The IoU scores of linear probing (LP) and AutoVP.

Dataset Zero-shot Finetune box head VP

VOC IoU: 0.75 IoU: 0.76 IoU: 0.73

ISIC IoU: 0.52 IoU: 0.70 IoU: 0.80

IoU: 0.78

Predicted BoxGround Truth

IoU: 0.29 IoU: 0.81 IoU: 0.81

Img with
Prompts

Prediction

(a) AutoVP (p=16) (b) AutoVP (p=48)

26

Published as a conference paper at ICLR 2024

E.3 EXPLORING ADDITIONAL TUNING AXES

In AutoVP, we set the learning rate (LR) for CLIP to be 40 and employed the SGD optimizer with a
momentum of 0.9 and a weight decay (WD) of 0. In this section, we have undertaken supplementary
tuning options within the AutoVP framework. Specifically, we introduce additional choices for the
LR, selecting from 35, 40, and 45 (for CLIP), as well as WD, choosing from 0, 10−5, and 10−10.
The outcomes presented in Table E.3 showcase a 0.6% enhancement in accuracy with the additional
tuning options. It is important to note that the execution workload dramatically increases, as it will
involve exploring 9 times more additional combinations in the tuning process.

Table E.3: Hyper-Parameter Tuning for Learning Rate (LR) and Weight Decay (WD). The table
displays the optimal tuning configurations and corresponding testing accuracy for both scenarios
with and without additional LR and WD tuning options for AutoVP on Flowers102. The pre-trained
model used is CLIP. The highest accuracy is marked in bold.

Setting Tuning Selection Testing Accuracy (%)

AutoVP

w/o LR & WD tuning

FullyMap, p = 16

LR = 40

WD = 0

90.4

AutoVP

w/ LR & WD tuning

FullyMap, p = 16

LR = 45

WD = 10−10

91.0

E.4 IMPROVED ILM-VP WITH TUNING CONFIGURATION

In order to establish an equitable comparison with AutoVP, we undertake a comprehensive hyper-
parameter tuning process for ILM-VP. We investigate tuning options that span 1, 2, 5, and 10 source
classes for output mapping, as well as prompt sizes of 10, 20, 30, 40, and 50. For ILM-VP without
tuning, default settings are maintained, with the mapping number set to 1 and the prompt size set to
30.

The tuning procedure is applied to several datasets, and the results are shown in Table E.4. Although
hyper-parameter tuning in ILM-VP leads to an improvement in accuracy, it remains unable to surpass
the performance exhibited by AutoVP.

Table E.4: ILM-VP with Hyper-Parameter Tuning. The chosen tuning configurations and the
corresponding testing accuracy (%) in ILM-VP. The highest accuracy is marked in bold.

Datasets AutoVP
ILM-VP

w/ Tuning

ILM-VP

w/o Tuning

UCF101
FullyMap, p = 16

Accuracy: 73.1%

mapping number = 5, p = 30

Accuracy: 70.4%
Accuracy: 68.4%

EuroSAT
FullyMap, p = 16

Accuracy: 96.8%

mapping number = 2, p = 30

Accuracy: 96.2%
Accuracy: 96.7%

OxfordIIITPet
FreqMap-10, p = 16

Accuracy: 88.2%

mapping number = 5, p = 30

Accuracy: 86.7%
Accuracy: 85.1%

27

Published as a conference paper at ICLR 2024

E.5 COMPARISON OF AUTOVP AND BLACKVIP

Table E.5: AutoVP vs. BlackVIP. The testing accuracy (%) of AutoVP and BlackVIP.

Pets Cars Flowers Food SUN DTD SVHN EuroSAT RESISC CLEVR UCF Avg.

AutoVP 88.2 61.8 90.4 82.3 65.4 62.5 92.9 96.8 88.5 82.8 73.1 80.4

BlackVIP 89.7 65.6 70.6 86.6 64.7 45.2 44.3 73.1 64.5 36.8 69.1 64.6

Some visual prompting research has delved into a black-box setting (Tsai et al., 2020; Oh et al.,
2023), where the internal architecture of the pre-trained model remains unattainable during the
training process. For instance, BlackVIP (Oh et al., 2023) employs an input-dependent prompt
designer to generate visual prompts. These prompts are then fed into a black-box model, and
gradient approximation strategies are utilized to update the prompt designer. In Table E.5, we
present a comparison between AutoVP and BlackVIP. Since BlackVIP uses CLIP as the pre-trained
backbone, we report our results using the same pre-trained model. AutoVP demonstrates a 16%
performance increase on average compared to BlackVIP. This notable difference might be attributed
to the variance in update strategies: BlackVIP utilizes SPSA-GC for black-box models, while AutoVP
relies on classic gradient descent. However, due to the differing objectives of these two studies, direct
comparisons may introduce certain unfairness.

F PERFORMANCE AND RESOURCE UTILIZATION

F.1 COMPARISON OF AUTOVP, LINEAR PROBING, AND FULL FINE-TUNING

When comparing the performance of AutoVP to that of linear probing (LP) and full fine-tuning
(FF), it’s crucial to acknowledge the significant discrepancy in terms of trainable parameter size.
As FF involves a parameter size that is roughly 100 to 1000 times larger (as shown in Table F.4).
Nevertheless, it’s worth noting that the differences in performance between VP and FF are relatively
minor in certain datasets. For instance, in the case of EuroSAT, both AutoVP and FF achieve a 96%
accuracy (as demonstrated in Table F.1). This observation suggests that VP retains its advantages
even when faced with such substantial variations in parameter size.

Table F.1: Comparison of AutoVP, Linear Probing (LP), and Full Fine-Tuning (FF). With the
EuroSAT dataset and using CLIP as the pre-trained model, the table displays the testing accuracy,
execution time, and trainable parameter size associated with each respective method.

Experimental Info. AutoVP LP FF

Accuracy (%) 96.84 94.62 96.78

Execution Time (second) 2448 2370 3081

Trainable Parameter Size (Million) 0.15 0.005 151.28

28

Published as a conference paper at ICLR 2024

F.2 COMPUTING RESOURCES

In this section, we provide the execution time (measured on NVIDIA GeForce RTX 3090) and the
comparison of trainable parameters of AutoVP. For ease of comparison, we use the Flower102 dataset
for illustration. In Table F.2, we provide the end-to-end execution time (hyper-parameter tuning +
200-epoch training) of AutoVP. When we measure only the 200-epoch training, AutoVP demonstrates
its competitiveness in terms of similar or even lower training time (see Table F.3), compared to the
state-of-the-art VP baselines (ILM-VP and CLIP-VP The comparison of trainable parameters can
also be found in Table F.4.

Table F.2: Flowers102 End-to-End Execution Time. For the Flowers102 dataset, the pre-trained
model selected by AutoVP is Swin-T, the output mapping is FullyMap, and the prompt size is 16.

Hyper-Parameter Tuning 200-Epoch Training Total Execution Time

Time 146 mins 31 mins 177 mins

Table F.3: Execution Time Comparison. The 200-epoch training time (in minutes) on the Flow-
ers102 dataset varies depending on the chosen pre-trained model: Swin-T or CLIP. In both cases,
AutoVP utilizes the FullyMap as the output mapping method with the prompt size 16.

Pre-trained model AutoVP ILM-VP CLIP-VP Linear Probing

Swin-T 31 43 — 28

CLIP 39 76 38 40

Table F.4: Trainable Parameter Size. The average trainable parameter sizes (million) are calculated
across the 12 datasets for different pre-trained models, mapping methods, and baselines.

AutoVP
Linear Probing Full Finetune

SemanticMap FreqMap IterMap FullyMap

ResNet18 0.15 0.15 0.15 0.20 0.03 11.20

ResNeXt101-IG 0.15 0.15 0.15 0.20 0.11 86.85

Swin-T 0.15 0.15 0.15 0.20 0.04 27.56

CLIP 0.15 0.15 0.15 0.49 0.03 151.23

29

	Introduction
	Background and Related Work
	AutoVP Framework
	Experiments
	Experimental Results
	Ablation Studies of AutoVP

	Discussions
	Limitations
	Conclusion
	
	Implementation Details of AutoVP
	Pre-trained Classifier Details
	Output Label Mappings of AutoVP
	AutoVP Tuning Process

	Datasets and Baselines
	The Twelve Downstream Datasets
	Baselines Details

	Additional Experiments with AutoVP
	Fixed Pre-trained Model vs. Auto Pre-trained Model Selection
	Data Scalability
	Downstream Dataset Analysis (ID/OOD vs. Accuracy Gain)

	Analysis of AutoVP Results
	Prompts in Frequency Domain
	Output Mapping Analysis
	The Preferences in Hyper-Parameter Tuning Selection

	Ablation Studies
	The Impact of Text Encoder in CLIP
	Visual Prompting in Segmentation and Detection Tasks
	Exploring Additional Tuning Axes
	Improved ILM-VP with Tuning Configuration
	Comparison of AutoVP and BlackVIP

	Performance and Resource Utilization
	Comparison of AutoVP, Linear Probing, and Full Fine-Tuning
	Computing Resources

