
SAM Decoding: Speculative Decoding via Suffix Automaton

Anonymous ACL submission

Abstract
Speculative decoding (SD) has been demon-001
strated as an effective technique for lossless002
LLM inference acceleration. Retrieval-based003
SD methods, one kind of model-free method,004
have yielded promising speedup, but they often005
rely on incomplete retrieval resources, ineffi-006
cient retrieval methods, and are constrained to007
certain domains. This paper presents a novel008
retrieval-based speculative decoding method009
that adapts suffix automaton (SAM) for ef-010
ficient and accurate draft generation by uti-011
lizing common text corpus and dynamic text012
sequence. Unlike existing n-gram match-013
ing methods, SAM-Decoding finds the exact014
longest suffix match, achieving an average time015
complexity of O(1) per generation step of SAM016
update and suffix retrieval. It can also integrate017
with existing methods, adaptively selecting a018
draft generation strategy based on match length019
to generalize to broader domains. Extensive ex-020
periments on Spec-Bench show that our method021
is 18%+ faster than other retrieval-based SD022
methods. Additionally, when combined with023
advanced EAGLE-2, it provides an additional024
speedup of 3.28% – 11.13% across various-025
sized LLM backbones. Our code is available at026
our anonymous repository.027

1 Introduction028

The Transformer-based Large Language Models029

(LLMs) (Brown et al., 2020; Dubey et al., 2024;030

Yang et al., 2024) have demonstrated remarkable031

abilities and are extensively adopted in numerous032

domains. The scaling law drives LLMs to become033

deeper, reaching hundreds of billions of parameters,034

which makes them inefficient for generating text in035

a token-by-token autoregressive manner. Specula-036

tive decoding methods (Leviathan et al., 2023; Cai037

et al., 2024) seek to tackle this problem by quickly038

generating multiple draft tokens and subsequently039

concurrently verifying them with LLMs. These040

methods can decrease inference latency substan-041

tially while maintaining decoding accuracy.042

vicuna-7B vicuna-13B vicuna-33B
0

20

40

60

80

100

120

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

62.0

34.3

13.7

80.5

45.3

17.6

74.6

44.1

19.4

95.6

51.5

21.4

111.3

67.6

30.5

120.1

70.3

31.5

PLD
SAM-Decoding
Token Recycling
SAM-Decoding[T]
EAGLE-2
SAM-Decoding[E2]

Figure 1: Throughput of Vicuna-7B, Vicuna-13B,
Vicuna-33B on MT-Bench with A6000 GPU using PLD,
Token Recycling (Luo et al., 2024), EAGLE-2, and
SAM-Decoding, where PLD is the SOTA retrieval-
based SD baseline.

Speculative methods can be categorized into 043

model-based and model-free methods. Model- 044

based methods need to carefully choose and train 045

one or more small-sized draft models. For exam- 046

ple, Medusa (Cai et al., 2024) utilizes multiple 047

decoding heads to generate multiple future tokens 048

while EAGLE-2 (Li et al., 2024a) leverages shal- 049

low Transformer layers to predict the next last hid- 050

den states and corresponding decoding tokens. Al- 051

though these methods achieve impressive speedup, 052

they often fail to generate long draft tokens due to 053

drafting overhead or decaying prediction accuracy. 054

Retrieval-based speculative decoding methods, a 055

major type of model-free methods, aim to remedy 056

this issue by generating draft tokens from text cor- 057

pus or current text sequence. 058

However, current retrieval-based methods have 059

notable limitations. Firstly, diverse retrieval 060

sources contribute to the efficiency of retrieval- 061

based SD methods, but existing methods typically 062

rely on a single retrieval source: PLD (Saxena, 063

2023) focuses on current text while REST (He 064

1

https://anonymous.4open.science/r/SAM-Decoding-E371

et al., 2024) uses a text corpus. Secondly, the065

retrieval techniques they use have efficiency limi-066

tations. PLD finds n-gram matching from current067

text sequence, but it has poor theoretical computa-068

tional complexity and limited applicability to larger069

text corpus. REST uses suffixed arrays, which pro-070

vides better complexity than PLD, but still not opti-071

mal complexity. Thirdly, retrieval-based methods072

are suitable for specialized domains (e.g., summa-073

rization and RAG), which are unable to bring a074

noticeable acceleration in other domains.075

To address limitations in previous retrieval-based076

methods, this paper introduces SAM-Decoding, an077

innovative speculative decoding technique based078

on suffix automaton. (1) To enhance the coverage079

of the retrieved corpus, we utilize the common text080

corpus and the current text sequence as retrieved081

sources. (2) To improve the retrieval efficiency082

and accuracy, we adapt a suffix automaton (SAM)083

to solve the longest suffix match problem, which084

yields more accurate match positions and exact085

match length compared to n-gram matching. As086

for retrieval efficiency, the average time complexity087

of SAM update and suffix retrieval is O(1) by cap-088

turing relationships between adjacent suffixes. (3)089

To generalize our method, assuming the matching090

length of the longest suffix implying the quality of091

retrieval draft tokens, our method can be integrated092

with other types of speculative decoding methods,093

enabling more efficient text generation by deciding094

whether to adopt auxiliary decoding techniques.095

Specifically, SAM-Decoding creates both a static096

suffix automaton for the text corpus and a dynamic097

suffix automaton for the current text sequence. The098

nodes of suffix automaton represent substrings in099

the text corpus or current sequence. The earliest100

position of each substring is recorded in each node.101

During generation, we can directly retrieve and102

filter drafts from the context using the matching po-103

sitions and longest suffixes’ matching length. After104

each generation step, the automaton is updated:105

static automaton nodes transition based on new to-106

kens, while the dynamic automaton first expands107

its structure before node transitions.108

Extensive evaluations demonstrate the compet-109

itive performance of our method across tasks.110

On Spec-Bench, SAM-Decoding achieves 18%+111

faster than previous retrieval-based speculative de-112

coding methods (e.g., PLD, REST, etc.). SAM-113

Decoding further achieves speedups of up to 1.3×114

over alternative baselines on the code-generation115

benchmark like HumanEval. When combined with116

C
B

B

C

B

A
B C

C

next

CB,
BCB,
ABCB

CBC,
BCBC,
ABCBCABCAB

C,BCB
A

link

Figure 2: The suffix automaton corresponding to the
string “ABCBC”.

EAGLE-2 (Li et al., 2024a), as shown in Figure 1, 117

our method outperforms the state-of-the-art, deliv- 118

ering an additional 3.28% – 11.13% speedup on 119

MT-Bench w.r.t. various LLM backbones. 120

2 Background 121

2.1 Suffix Automaton 122

Suffix Automaton is an efficient data structure for 123

representing the substring index of a given string, 124

which allows fast substring retrieval. The time 125

complexity of constructing a suffix automaton is 126

O(L), where L is the length of the string and it can 127

be constructed incrementally. 128

As shown in Figure 2, a suffix automaton con- 129

tains a series of nodes and two types of state trans- 130

fer edges, extension edges (next) and suffix link 131

edges (link). A node in the automaton represents 132

a state and corresponds to all substrings that have 133

the same ending position in the string. Meanwhile, 134

extension edges are standard edges that represent a 135

possible extension of the current substring by ap- 136

pending a new character, while suffix link edges 137

create a path that allows the automaton to quickly 138

jump to states representing shorter suffixes of the 139

current substring. 140

Based on the two types of transfer edges, for a 141

progressively generated token sequence, we can 142

find the longest suffix that matches the sequence in 143

a suffix automaton at each step of the generation 144

with an average O(1) time complexity. 145

2.2 Speculative Decoding 146

Given the model input x = (x1, x2, . . . , xt), an 147

LLM generates a new token xt+1 at each gener- 148

ation step autoregressively. The key idea of 149

speculative decoding is to utilize a lightweight 150

draft model to generate multiple candidate to- 151

kens quickly, i.e., xdraft = (xt+1, xt+2, . . . , xt+n), 152

and then the target LLM simultaneously evaluates 153

these candidates and accept those aligned with 154

the output distribution of the LLM, i.e., xaccept = 155

2

ABCBCABCBC

… … B C … A B C B C

B
C

C
C

B

B

C

B

A
B C

C
Build

Build

① Drafting

Static SAM Dynamic SAMText Corpus

Generated Text

D-SAM: BCBCB

S-SAM: DEFGH

 BCDEAuxiliary:
Select

DEFGH

DEFGH DEF② LLM & Verify

Accepted Tokens

③ Update State
… B C D E F

… B C
B

C

C

Update SAM

D

D

…

Generated Draft Update text

Figure 3: Overview of SAM-Decoding’s workflow. In each round of generation, the suffix automaton matches
the suffixes of the generating text and retrieves the draft from the text corpus and the generated text respectively
according to the matching position. Our method can be combined with an auxiliary SD algorithm (Auxiliary) to
deal with the scenarios where the retrieval is not applicable. We select the best draft from the three candidate drafts
based on the match length, and then the drafts are verified by the LLM for accepted tokens. Using these accepted
tokens, we finally extend the dynamic SAM and generate text for the next round of generation.

.

(xt+1, xt+2, . . . , xt+m), where n and m denote the156

size of the draft and the number of accepted tokens.157

In the above, we assume that the draft is a se-158

quence of tokens. Recent works proposed to ver-159

ify a candidate token tree via a tree mask in the160

attention module to make the target LLM simulta-161

neously evaluate multiple branches of this token162

tree, thereby increasing the acceptance length of163

the draft model.164

3 SAM-Decoding165

In this section, we introduce our proposed method,166

SAM-Decoding. SAM-Decoding is a retrieval-167

based speculative decoding method designed to168

address three key limitations in existing retrieval-169

based speculative methods: (1) The use of insuf-170

ficient retrieval sources. (2) The employment of171

inefficient retrieval methods and restrictions on n-172

gram matching lengths. (3) Subpar performance173

outside specialized domains (e.g., summarization174

and RAG tasks).175

To tackle the first two limitations, SAM-176

Decoding leverages suffix automaton on diverse177

text sources, which significantly enhances the cov-178

erage of retrieved corpus and the efficiency of the179

retrieval process while allowing for flexible match-180

ing lengths. In what follows, we detail how SAM-181

Decoding can be integrated with both model-free182

and model-based methods. By utilizing the precise 183

matching information provided by the suffix au- 184

tomaton, our method not only overcomes the third 185

limitation but also ensures consistent performance 186

improvements across a wide range of tasks. The 187

workflow of SAM-Decoding is shown in Figure 3. 188

3.1 Suffix Automaton Construction 189

To cover comprehensive retrieval sources, SAM- 190

Decoding builds suffix automaton (SAM) by uti- 191

lizing common text corpus and the current text 192

sequence (including user prompts and already gen- 193

erated tokens). Thus, we construct two types of 194

suffix automaton: a static suffix automaton and 195

a dynamic suffix automaton. For the text cor- 196

pus, we pre-build a static suffix automaton offline, 197

which is used for state matching during inference. 198

For the current text sequence, we create and expand 199

a dynamic suffix automaton incrementally as gen- 200

eration progresses and performing state matching 201

concurrently. 202

A suffix automaton can be constructed in lin- 203

ear time using Blumer’s algorithm (Blumer et al., 204

1984). Since the suffix automaton is designed for a 205

single reference string, static suffix automation can 206

not be directly built using a text corpus. To this end, 207

we concatenate multiple strings in the corpus by us- 208

ing special symbols like an End-of-Sentence (EOS) 209

3

token. We then construct a static suffix automaton210

for this concatenated string.211

We have modified the suffix automaton for bet-212

ter draft generation. During each generation step,213

the current generated text sequence corresponds to214

a node in the automaton, representing the longest215

suffix match. At each node of the suffix automa-216

ton, we record the earliest position of all substrings217

corresponding to that node in the reference string,218

termed as min_endpos, which allows us to effi-219

ciently locate the previous ending position of the220

matched longest suffix. Hereafter, the subsequent221

tokens after the matched suffix can be regarded as222

potential drafts. The construction process of the223

suffix automaton is detailed in Appendix A.1.224

For the static suffix automaton, based on the fre-225

quency of occurrence of different substrings, we226

additionally compute the top-k successor states227

(topk_succ) of each state, and subsequently use228

them to construct more complex tree drafts. Al-229

though computing the successor states requires sig-230

nificant computation, this can be done offline, elim-231

inating the need to account for this time overhead232

in real-time processing.233

3.2 Drafting with Suffix Automaton234

We illustrate how to generate draft tokens effi-235

ciently based on the built suffix automaton. Let236

S denote the suffix automaton, T denote its as-237

sociated reference text, and x = (x1, x2, . . . , xt)238

denote the current text sequence. The state within239

the suffix automaton corresponding to the sequence240

x is denoted as st. In each round of generation, the241

transition to the next state is performed based on242

the newly generated token xt+1 and the current243

state st:244

st+1 = Transfer(S, xt+1, st).245

For dynamic suffix automaton, we extract n con-246

secutive tokens from the reference text T to form247

a draft, using the min_endpos value stored in the248

node corresponding to state st+1, termed as pt+1.249

Then the draft dt+1 is defined as:250

dt+1 = T [pt+1 + 1 : pt+1 + n],251

where dt+1 represents the generated draft and n252

denotes the length of the draft.253

For static suffix automaton, we construct a tree-254

structured draft by Prim’s algorithm based on top-k255

successors, as detailed in Appendix A.2,256

dt+1 = Prim(S, st+1, xt).257

Algorithm 1 State Transfer of Suffix Automaton
function Transfer

Input: suffix automaton S, next token t, cur-
rent state s, current matching length l
while s ̸= S.root and t /∈ s.next do

s, l = s.link, s.link.length
end while
if t ∈ s.next then

s, l = s.next[t], l + 1
else
l = 0

end if
Output: next state s, next matching length l

end function

In practical use, we track the longest-matched 258

suffix length (denoted as l) to determine whether to 259

use the static suffix automaton or the dynamic suf- 260

fix automaton. Specifically, let l1 and l2 be the 261

matching lengths of the static and dynamic au- 262

tomata, respectively. Our experimental findings 263

indicate that drafts generated from the dynamic au- 264

tomaton often outperform those from the static text 265

corpus. Consequently, we prioritize drafts from 266

the dynamic automaton. We use the draft from the 267

static automaton only if l1 > l2 + lbias, where lbias 268

is a predefined constant. 269

The complete state transfer process of the suffix 270

automaton is shown in Algorithm 1. Using amor- 271

tized analysis, we can prove that the average com- 272

plexity of state transfer is O(1), with a worst-case 273

time complexity of O(L), where L is the length 274

of the current generated text (C.f. proof in Ap- 275

pendix A.3). Existing methods like PLD uses a 276

brute-force search for n-gram matches, resulting in 277

a time complexity of O(n2L). REST also employs 278

n-grams but searches using suffix arrays, leading 279

to a time complexity of O(n2 logL). Here, n is 280

the predefined maximum matching length, and L 281

is the length of the current text or the concatenated 282

texts in the corpus. In contrast, our proposed SAM- 283

Decoding model has a lower time complexity and 284

can find the exact longest suffix match without any 285

limit on matching length, making it faster and more 286

accurate for draft generation. 287

3.3 Update of Suffix Automaton 288

After the draft is generated, we verify it us- 289

ing the large language model (LLM) and ac- 290

cept the correct tokens, denoted as xaccept = 291

(xt+1, xt+2, . . . , xt+m). We then update the state 292

4

of the suffix automaton based on these accepted293

tokens. For the static suffix automaton, we simply294

transfer the states according to Algorithm 1:295

st+i = Transfer(S, st+i−1, xt+i), i ∈ {1, 2, ...,m}.296

For the dynamic suffix automaton, we first trans-297

fer the matching state based on the accepted to-298

kens and then expand the state. Let St denote the299

dynamic suffix automaton for the generated text300

(x1, x2, . . . , xt). The process is as follows:301

st+i = Transfer(St+i−1, st+i−1, xt+i),302

St+i = Expand(St+i−1, xt+i),303

i ∈ {1, 2, ...,m},304

where the process of expanding the suffix automa-305

ton is detailed in Appendix A.1.306

3.4 Adaptive Draft Selection307

The retrieval-based speculative decoding methods308

excel at generating drafts from the corpus or the309

current text sequence effectively. If it fails to pro-310

duce a satisfactory draft, other speculative decod-311

ing techniques can be employed to generate more312

diverse drafts. To combine different types of drafts,313

a straightforward idea is that the length of the suf-314

fix match can indicate the confidence of the draft315

produced by the automaton, where long matches316

imply that more tokens are likely to be acceptable.317

To implement this, we concurrently use an auxil-318

iary speculative decoding technique alongside the319

suffix automaton. During each generation step, we320

adaptively select the drafts offered by the automa-321

ton or the auxiliary SD method based on the match322

length of the generated text within the automaton.323

For the auxiliary SD method, we set a fixed virtual324

match length lthreshold. In our study, we consider325

two auxiliary cutting-edge speculative decoding326

methods: the model-free Token Recycling and the327

model-based EAGLE-2.328

Among them, Token Recycling maintains an ad-329

jacency list of the top-k probable next tokens for330

each token and builds a draft tree using breadth-first331

search, and it continuously updates the list based332

on the latest tokens. EAGLE-2, on the other hand,333

leverages a Transformer decoder layer to jointly334

predict the last hidden states of the LLM and the335

next token autoregressively.336

4 Experiments337

In this section, we first introduce our experimental338

setup, then present the experimental results, and339

finally present the ablation experiments.340

Models and Tasks. We conducted experiments 341

on Vicuna-7B-v1.3 (Zheng et al., 2023). We 342

evaluated SAM-Decoding on Spec-Bench (Xia 343

et al., 2024), HumanEval (Chen et al., 2021), and 344

HARGID (Kamalloo et al., 2023). Spec-Bench 345

is a comprehensive benchmark designed for as- 346

sessing Speculative Decoding methods across di- 347

verse scenarios. It is based on six commonly 348

used datasets, MT-Bench (Zheng et al., 2023), 349

WMT14 DE-EN, CNN/Daily Mail (Nallapati et al., 350

2016), Natural Question (Kwiatkowski et al., 2019), 351

GSM8K (Cobbe et al., 2021), and DPR (Karpukhin 352

et al., 2020), including six aspects: Multi-turn Con- 353

versation (MT), Translation (Trans), Summariza- 354

tion (Sum), Question Answering (QA), Mathmat- 355

ical Reasoning (Math), and Retrieval-augmented 356

Generation (RAG). In addition, HumanEval, and 357

HARGID are used to evaluate the speed of decod- 358

ing methods in Code Generation task and Context 359

Q&A task, respectively. 360

Baselines. We considered the following base- 361

line methods, including the model-based method 362

EAGLE-2 (Li et al., 2024a), the model-free method 363

Token Recycling (Luo et al., 2024), and the 364

retrieval-based methods Lookahead Decoding (Fu 365

et al., 2024), PIA (Zhao et al., 2024), PLD (Saxena, 366

2023) and REST (He et al., 2024). 367

Metrics. We evaluated speculative decoding meth- 368

ods from the following aspects (Li et al., 2024b) 369

• Speedup Ratio: The wall-time speedup ratio 370

of speculative decoding methods compared to 371

autoregressive generation methods. 372

• Mean Accepted Tokens: The average num- 373

ber of tokens accepted per generation step. 374

• Throughput: The average number of tokens 375

generated per second. 376

Experiment Setup. We conducted experiments 377

on a server equipped with a 20-core CPU and a 378

single NVIDIA RTX A6000 GPU (48GB). The ex- 379

periments were implemented using PyTorch 2.3.0, 380

Transformers 4.46.1 and CUDA 12.1. For the 381

models, we used the float16 data type and applied 382

greedy decoding with a batch size of 1. Regarding 383

hyperparameters, lbias and lthreshold were set to 5, 384

but when there is no auxiliary method lbias is set to 385

0. The size of the draft generated by the automaton 386

was set to 40 by default, while for code datasets 387

the size of the draft is set to 16. For the auxiliary 388

5

Method
Spec-Bench HumanEval HAGRID

#MAT Tokens/s Speedup #MAT Tokens/s Speedup #MAT Tokens/s Speedup

Lookahead* 1.63 44.37 1.20× 1.76 30.81 1.54× 1.46 23.58 1.32×

REST* 1.63 51.34 1.38× 1.85 34.60 1.74× 1.53 24.91 1.39×

PIA 2.08 55.45 1.47× 2.62 65.49 1.68× 2.43 66.65 1.95×

PLD 1.75 59.02 1.56× 1.65 59.04 1.52× 2.03 44.11 1.29×

SAM-Decoding 2.30 69.37 1.84× 2.64 88.91 2.29× 2.44 76.72 2.24×

Token Recycling 2.83 69.65 1.84× 2.78 75.44 1.94× 2.88 66.17 1.93×

SAM-Decoding[T] 3.03 85.73 2.27× 2.94 95.08 2.45× 3.23 87.93 2.57×

EAGLE-2 4.36 90.14 2.38× 5.13 125.77 3.24× 4.15 82.61 2.41×

SAM-Decoding[E2] 4.62 97.56 2.58× 4.95 130.28 3.35× 4.75 96.60 2.81×

Table 1: Inference efficiency of SAM-Decoding compared to the baselines on Spec-Bench, HumanEval, and
HAGRID, where * indicates that the method was compared with the baseline provided in its environment.

Trans

MT

Sum

QA

Math

RAG

1.22×

0.95× 2.07×

1.29×

2.44×

1.22×

1.62×

1.07×
1.91×

1.38×

1.81×

1.13×

Lookahead
REST

PIA
PLD

SAM-Decoding

Figure 4: Relative speedup of SAM-Decoding
compared to retrieval-based SD baselines on
Spec-Bench.

Trans

MT

Sum

QA

Math

RAG

1.93×

1.61× 3.09×

1.92×

2.95×

1.96×

2.28×

1.71×2.93×

2.16×

2.28×

1.68×

Token Recycling
SAM-Decoding[T]

EAGLE-2 SAM-Decoding[E2]

Figure 5: Relative speedup of SAM-Decoding compared
to SD baselines on Spec-Bench when combined with aux-
iliary SD methods.

speculative decoding methods, we used the default389

configurations as described in their respective orig-390

inal papers.391

For SAM-Decoding, we constructed a static392

suffix automaton based on the Vicuna-7B gener-393

ation results on datasets Stanford-alpaca, python-394

code-instruction-18k, and GSK8k. To enhance our395

model, we incorporated two auxiliary approaches:396

the model-free Token Recycling and the model-397

based EAGLE-2. Here, SAM-Decoding[T], and398

SAM-Decoding[E2] denote the combinations of399

our base model with Token Recycling, and EAGLE-400

2, respectively.401

Experiment Results. Experimental results on402

Spec-Bench, HumanEval and HAGRID when us- 403

ing Vicuna-7B-v1.3 are shown in Table 1. It can 404

be seen that SAM-Decoding has higher inference 405

speedups on all datasets compared to retrieval- 406

based baselines, achieving speedup ratios of 1.84×, 407

2.29×, and 2.24× on each of the three datasets. 408

Meanwhile, further speedups can be achieved 409

by combining SAM-Decoding with other types 410

of methods. On the Spec-Bench and HAGRID 411

dataset, the inference speed of Token Recycling and 412

EAGLE-2 can be further improved by combining 413

SAM-Decoding. In Spec-Bench, the speedup ratios 414

are improved from 1.84×, 2.38× to 2.27×, 2.58×, 415

respectively, whereas on HAGRID dataset, the 416

6

speedup ratios are improved from 1.93×, 2.41×417

to 2.57×, 2.81×. In the HumanEval dataset, the418

throughput of the model-based EAGLE-2 method419

changed slightly after integrating SAM-Decoding,420

due to the fact that the code generation task is less421

likely to copy the generated text during the genera-422

tion process. Fortunately, SAM-Decoding can still423

speedup the model-free method Token Recycling,424

increasing its speedup ratios from 1.94× to 2.45×.425

In Figures 4 and 5, we further show the speedup426

of the different methods on each task of Spec-427

Bench. Compared to retrieval-based SD baselines,428

SAM-Decoding shows better performance across429

all tasks. Meanwhile, in the Spec-Bench, Multi-430

turn Conversation, Summarization, and Retrieval-431

augmented Generation were identified as particu-432

larly amenable to retrieval techniques. The results433

indicate that integrating SAM-Decoding into ex-434

isting method led to notable speed improvements.435

Specifically, for Token Recycling, the speedup ra-436

tio for the three tasks raised from 1.92×, 1.96×,437

and 1.68× to 2.48×, 2.86×, and 2.14×, respec-438

tively. For EAGLE-2, the speedup ratios raised439

from 2.87×, 2.33×, and 2.03× to 3.02×, 2.76×,440

and 2.23×, respectively.441

In addition to Vicuna-7B, we also conducted ex-442

periments on more models. Figure 1 shows the443

throughput of Vicuna-7B, Vicuna-13B and Vicuna-444

33B on MT-bench using SAM-Decoding and other445

baseline SD methods. It can be seen that SAM-446

Decoding outperforms retrieval-based baselines on447

all models. Also, SAM-Decoding can further im-448

prove the inference speed of model-free and model-449

based SD methods by combining them with SAM-450

Decoding. For more experimental results, please451

refer to Appendix B.452

Ablation Experiments. To further understand453

the contributions of various components of SAM-454

Decoding and the influence of different hyperpa-455

rameters on inference speed, we conducted a series456

of ablation studies.457

Firstly, we examined the effects of lbias and458

lthreshold on inference speed through a grid search.459

These parameters control the preference for gener-460

ating draft from the current text over text corpus461

and the preference for using suffix automaton over462

the auxiliary SD method when creating drafts. The463

findings are summarized in Figure 6. We observe464

that both the mean accepted tokens (MAT) and465

the speedup ratio increase with lbias and lthreshold466

before they equal 5. When the value of both param-467

2
3

4
5

6

lthreshold 2

3

4
5

6

l bia
s

2.0
2.2
2.4

2.6

2.8

3.0

3.2

2.12

2.08

2.16

2.21

2.22

2.27
2.24

2.18

2.16 2.17

2.80

2.88

2.89

2.96

2.93

3.03
2.97

2.97

3.03
2.96

#MAT
Speedup ratio

Figure 6: The speedup ratio and mean accepted tok-
nes of SAM-Decoding[T] under different lbias and
lthreshold.

20 30 40 50 60 70
Draft size (#tokens)

77

78

79

80

81

82

83

84

85

To
ke

ns
/s

82.49
82.97

83.51 83.36 83.06

77.97

Figure 7: The throughput of SAM-Decoding[T] under
different draft size.

eters exceeds 5, these indicators begin to decline. 468

Additionally, we investigated how the draft 469

length utilized by SAM-Decoding affects inference 470

speed. Figure 7 illustrates the throughput of SAM- 471

Decoding[T] at varying draft sizes. As the draft size 472

increases, there is a positive trend in throughput 473

until the draft size equals 40. When the draft size 474

exceeds 40, there is an observable decline in per- 475

formance metrics, which becomes more significant 476

as the draft size reaches 70. This phenomenon can 477

be attributed to the fact that, for draft sizes below 478

the average acceptance length, increasing the draft 479

size reduces the number of rounds for generation, 480

thereby enhancing efficiency. In contrast, once the 481

draft size surpasses this threshold, further increases 482

do not yield additional benefits and strain GPU 483

capacity, thus slowing inference speed. 484

Finally, we investigated the impact of differ- 485

ent modules within SAM-Decoding on inference 486

speed. SAM-Decoding comprises two draft gen- 487

eration modules: the static suffix automaton and 488

the dynamic suffix automaton. We measured the 489

7

Method
Spec-Bench

#MAT Tokens/s Speedup

PLD 1.75 59.02 1.56×

SAM-Decoding 2.30 69.37 1.84×

w/o Static SAM 1.85 61.93 1.64×

w/o Dynamic SAM 1.63 50.37 1.33×

Table 2: The impact of different draft generation mod-
ules on inference speed.

inference speed of SAM-Decoding after removing490

each of these two modules individually. The results491

are presented in Table 2. From the experimental492

results, it is clear that each module contributes to493

the acceleration of the decoding process. Notably,494

the dynamic suffix automaton has a significantly495

greater impact compared to the static suffix automa-496

ton. This suggests that, in many cases, generating497

drafts from the dynamic context is more effective498

than retrieving drafts from a pre-existing text cor-499

pus. For more ablation experiment results, please500

refer to Appendix C.501

5 Related Work502

Speculative Decoding. Speculative decoding is an503

approach that can significantly speed up large lan-504

guage models (LLMs) without compromising the505

quality of their outputs. The majority of specula-506

tive decoding techniques rely on smaller neural net-507

works to create drafts during the inference process.508

These techniques are referred to as model-based509

speculative decoding methods. Early implementa-510

tions of model-based speculative decoding, such511

as those Speculative Decoding (Leviathan et al.,512

2023), primarily focused on generating draft se-513

quences using pre-existing, smaller-scale LLMs.514

Subsequently, advancements like Medusa (Cai515

et al., 2024), SpecInfer (Miao et al., 2024) and516

EAGLE (Li et al., 2024b,a) introduced tree-based517

speculative methods and began the development of518

draft models tailored for speculative decoding.519

In contrast to model-based methods, certain ap-520

proaches focus on generating drafts through re-521

trieval, utilizing n-gram matching, which we re-522

fer to the retrieval-based method. Notable among523

these are Lookahead Decoding (Fu et al., 2024),524

PIA(Zhao et al., 2024), PLD (Saxena, 2023) and525

REST (He et al., 2024). Token Recycling (Luo526

et al., 2024), on the other hand, utilizes the pre-527

viously generated token distribution to generate528

drafts, becoming a model-free method different 529

from the retrieval-based method. 530

Additionally, beyond the aforementioned meth- 531

ods, research also conducted on speculative decod- 532

ing that relies either on the model itself (Kou et al., 533

2024) or on sub-models within the larger architec- 534

ture (Elhoushi et al., 2024). 535

Efficient LLM Architecture. There is also work 536

to improve the model’s inference speed from the 537

perspective of model structure. This part of the 538

work includes model distillation, quantization and 539

pruning. Model distillation (Sreenivas et al., 2024; 540

Muralidharan et al., 2024) distills the knowledge 541

of a large model into a small model thereby speed- 542

ing up inference while maintaining the model’s 543

performance. Quantization (Frantar et al., 2022; 544

Xiao et al., 2023; Lin et al., 2024; Liu et al., 2024; 545

Ashkboos et al., 2024b) reduces the number of bits 546

required to store parameters and reduces the data 547

transmission time from HBM to on-chip memory 548

during inference. Pruning (Frantar and Alistarh, 549

2023; Ashkboos et al., 2024a; Men et al., 2024; 550

Chen et al., 2024; Hu et al., 2024; Sun et al., 2024; 551

Zhang et al., 2024) is used to remove unimportant 552

parameters in the model. For structured pruning, it 553

can be combined with model distillation to train ef- 554

ficient small models, while semi-structured pruning 555

can reduce the model’s memory access and com- 556

puting overhead and improve the inference speed 557

by combining special hardware. 558

6 Conclusion 559

In this work, we propose SAM-Decoding, an spec- 560

ulative decoding method via suffix automatons 561

constructed from both generated text and text cor- 562

pus. SAM-Decoding can efficiently retrieve drafts 563

from retrieval sources, thereby accelerating infer- 564

ence. SAM-Decoding is also designed to seam- 565

lessly integrate with existing SD methods. Conse- 566

quently, in scenarios where retrieval is not feasible, 567

SAM-Decoding can adaptively switch to alterna- 568

tive methods for draft generation. Experimental 569

results demonstrate that SAM-Decoding outper- 570

form retrieval-based SD baselines. Meanwhile, 571

when combined with state-of-the-art techniques, 572

SAM-Decoding can significantly enhance their per- 573

formance in Multi-turn Conversation, Summariza- 574

tion, Retrieval-augmented Generation, and Context 575

Q&A tasks. 576

8

7 Limitation577

On the one hand, as a retrieval-based specula-578

tive decoding method, the performance of SAM-579

Decoding depends on the task type as well as the580

quality of the retrieval source. Currently, we have581

collected a text corpus based on the vicuna-7b582

generated results on Stanford-alpaca, GSM8k and583

python-instruct-18k. However, this corpus is still584

not diverse enough, and also the text in it may585

deviate from the text generated by other LLMs,586

which limits the performance of SAM-Decoding.587

Therefore, in the future we need to collect more588

specialized and diverse corpus for different types589

of tasks.590

On the other hand, when combining SAM-591

Decoding with other types of methods, we use a592

very heuristic approach, i.e., we choose different593

methods depending on the match length. This does594

not fully utilize the exact match lengths provided595

by the suffix automaton, so subsequently we will596

try to train classifier to select different decoding597

methods at each generate round.598

Finally, the performance of retrieval-based meth-599

ods is highly correlated with the usage scenarios,600

and the existing datasets do not well reflect the per-601

formance of retrieval-based methods in real usage,602

so in the future we also need to construct datasets603

that are more compatible with real scenarios to eval-604

uate the performance of retrieval-based methods.605

References606

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari607
do Nascimento, Torsten Hoefler, and James Hens-608
man. 2024a. Slicegpt: Compress large language609
models by deleting rows and columns. Preprint,610
arXiv:2401.15024.611

Saleh Ashkboos, Amirkeivan Mohtashami, Maximil-612
ian L Croci, Bo Li, Pashmina Cameron, Martin Jaggi,613
Dan Alistarh, Torsten Hoefler, and James Hensman.614
2024b. Quarot: Outlier-free 4-bit inference in rotated615
llms. arXiv preprint arXiv:2404.00456.616

Anselm Blumer, Janet Blumer, Andrzej Ehrenfeucht,617
David Haussler, and Ross McConnell. 1984. Build-618
ing the minimal dfa for the set of all subwords of a619
word on-line in linear time. In Automata, Languages620
and Programming: 11th Colloquium Antwerp, Bel-621
gium, July 16–20, 1984 11, pages 109–118. Springer.622

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie623
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind624
Neelakantan, Pranav Shyam, Girish Sastry, Amanda625
Askell, Sandhini Agarwal, Ariel Herbert-Voss,626
Gretchen Krueger, Tom Henighan, Rewon Child,627

Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 628
Clemens Winter, Christopher Hesse, Mark Chen, 629
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin 630
Chess, Jack Clark, Christopher Berner, Sam Mc- 631
Candlish, Alec Radford, Ilya Sutskever, and Dario 632
Amodei. 2020. Language models are few-shot learn- 633
ers. Preprint, arXiv:2005.14165. 634

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, 635
Jason D Lee, Deming Chen, and Tri Dao. 2024. 636
Medusa: Simple llm inference acceleration frame- 637
work with multiple decoding heads. arXiv preprint 638
arXiv:2401.10774. 639

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 640
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka- 641
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 642
Greg Brockman, et al. 2021. Evaluating large 643
language models trained on code. arXiv preprint 644
arXiv:2107.03374. 645

Xiaodong Chen, Yuxuan Hu, Jing Zhang, Yanling Wang, 646
Cuiping Li, and Hong Chen. 2024. Streamlining 647
redundant layers to compress large language models. 648
Preprint, arXiv:2403.19135. 649

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 650
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 651
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 652
Nakano, et al. 2021. Training verifiers to solve math 653
word problems. arXiv preprint arXiv:2110.14168. 654

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 655
Abhishek Kadian, Ahmad Al-Dahle, and Aiesha Let- 656
man et al. 2024. The llama 3 herd of models. 657
Preprint, arXiv:2407.21783. 658

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, 659
Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas 660
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed 661
Roman, et al. 2024. Layer skip: Enabling early 662
exit inference and self-speculative decoding. arXiv 663
preprint arXiv:2404.16710. 664

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas- 665
sive language models can be accurately pruned in 666
one-shot. Preprint, arXiv:2301.00774. 667

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and 668
Dan Alistarh. 2022. Gptq: Accurate post-training 669
quantization for generative pre-trained transformers. 670
arXiv preprint arXiv:2210.17323. 671

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. 672
2024. Break the sequential dependency of llm in- 673
ference using lookahead decoding. arXiv preprint 674
arXiv:2402.02057. 675

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason Lee, and 676
Di He. 2024. Rest: Retrieval-based speculative de- 677
coding. In Proceedings of the 2024 Conference of 678
the North American Chapter of the Association for 679
Computational Linguistics: Human Language Tech- 680
nologies (Volume 1: Long Papers), pages 1582–1595. 681

9

https://arxiv.org/abs/2401.15024
https://arxiv.org/abs/2401.15024
https://arxiv.org/abs/2401.15024
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2403.19135
https://arxiv.org/abs/2403.19135
https://arxiv.org/abs/2403.19135
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2301.00774

Yuxuan Hu, Jing Zhang, Zhe Zhao, Chen Zhao, Xi-682
aodong Chen, Cuiping Li, and Hong Chen. 2024.683
sp3: Enhancing structured pruning via PCA pro-684
jection. In Findings of the Association for Compu-685
tational Linguistics: ACL 2024, pages 3150–3170,686
Bangkok, Thailand. Association for Computational687
Linguistics.688

Ehsan Kamalloo, Aref Jafari, Xinyu Zhang, Nan-689
dan Thakur, and Jimmy Lin. 2023. Hagrid:690
A human-llm collaborative dataset for generative691
information-seeking with attribution. arXiv preprint692
arXiv:2307.16883.693

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick694
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and695
Wen-tau Yih. 2020. Dense passage retrieval for696
open-domain question answering. arXiv preprint697
arXiv:2004.04906.698

Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and699
Hao Zhang. 2024. Cllms: Consistency large lan-700
guage models. arXiv preprint arXiv:2403.00835.701

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-702
field, Michael Collins, Ankur Parikh, Chris Alberti,703
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-704
ton Lee, Kristina Toutanova, Llion Jones, Matthew705
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob706
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-707
ral questions: A benchmark for question answering708
research. Transactions of the Association for Compu-709
tational Linguistics, 7:452–466.710

Yaniv Leviathan, Matan Kalman, and Yossi Matias.711
2023. Fast inference from transformers via spec-712
ulative decoding. In International Conference on713
Machine Learning, pages 19274–19286. PMLR.714

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang715
Zhang. 2024a. Eagle-2: Faster inference of language716
models with dynamic draft trees. arXiv preprint717
arXiv:2406.16858.718

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang719
Zhang. 2024b. Eagle: Speculative sampling re-720
quires rethinking feature uncertainty. arXiv preprint721
arXiv:2401.15077.722

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-723
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,724
Xingyu Dang, Chuang Gan, and Song Han. 2024.725
Awq: Activation-aware weight quantization for on-726
device llm compression and acceleration. Proceed-727
ings of Machine Learning and Systems, 6:87–100.728

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge729
Soran, Dhruv Choudhary, Raghuraman Krishnamoor-730
thi, Vikas Chandra, Yuandong Tian, and Tijmen731
Blankevoort. 2024. Spinquant–llm quantization with732
learned rotations. arXiv preprint arXiv:2405.16406.733

Xianzhen Luo, Yixuan Wang, Qingfu Zhu, Zhiming734
Zhang, Xuanyu Zhang, Qing Yang, Dongliang Xu,735
and Wanxiang Che. 2024. Turning trash into treasure:736
Accelerating inference of large language models with737
token recycling. arXiv preprint arXiv:2408.08696.738

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, 739
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng 740
Chen. 2024. Shortgpt: Layers in large language mod- 741
els are more redundant than you expect. Preprint, 742
arXiv:2403.03853. 743

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao 744
Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee 745
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. 746
2024. Specinfer: Accelerating large language model 747
serving with tree-based speculative inference and 748
verification. In Proceedings of the 29th ACM Interna- 749
tional Conference on Architectural Support for Pro- 750
gramming Languages and Operating Systems, Vol- 751
ume 3, pages 932–949. 752

Saurav Muralidharan, Sharath Turuvekere Sreenivas, 753
Raviraj Joshi, Marcin Chochowski, Mostofa Patwary, 754
Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, 755
and Pavlo Molchanov. 2024. Compact language mod- 756
els via pruning and knowledge distillation. Preprint, 757
arXiv:2407.14679. 758

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing 759
Xiang, et al. 2016. Abstractive text summarization 760
using sequence-to-sequence rnns and beyond. arXiv 761
preprint arXiv:1602.06023. 762

Apoorv Saxena. 2023. Prompt lookup decoding. 763

Sharath Turuvekere Sreenivas, Saurav Muralidharan, 764
Raviraj Joshi, Marcin Chochowski, Mostofa Patwary, 765
Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, 766
and Pavlo Molchanov. 2024. Llm pruning and dis- 767
tillation in practice: The minitron approach. arXiv 768
preprint arXiv:2408.11796. 769

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. 770
2024. A simple and effective pruning approach for 771
large language models. Preprint, arXiv:2306.11695. 772

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, 773
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and 774
Zhifang Sui. 2024. Unlocking efficiency in large 775
language model inference: A comprehensive sur- 776
vey of speculative decoding. arXiv preprint 777
arXiv:2401.07851. 778

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, 779
Julien Demouth, and Song Han. 2023. Smoothquant: 780
Accurate and efficient post-training quantization for 781
large language models. In International Conference 782
on Machine Learning, pages 38087–38099. PMLR. 783

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, 784
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan 785
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2 786
technical report. arXiv preprint arXiv:2407.10671. 787

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, 788
Lu Hou, and Carlo Vittorio Cannistraci. 2024. Plug- 789
and-play: An efficient post-training pruning method 790
for large language models. In The Twelfth Interna- 791
tional Conference on Learning Representations. 792

10

https://doi.org/10.18653/v1/2024.findings-acl.187
https://doi.org/10.18653/v1/2024.findings-acl.187
https://doi.org/10.18653/v1/2024.findings-acl.187
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/2407.14679
https://arxiv.org/abs/2407.14679
https://arxiv.org/abs/2407.14679
https://github.com/apoorvumang/prompt-lookup-decoding/
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2306.11695
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF

Yao Zhao, Zhitian Xie, Chen Liang, Chenyi Zhuang,793
and Jinjie Gu. 2024. Lookahead: An inference ac-794
celeration framework for large language model with795
lossless generation accuracy. In Proceedings of the796
30th ACM SIGKDD Conference on Knowledge Dis-797
covery and Data Mining, pages 6344–6355.798

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan799
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,800
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.801
Judging llm-as-a-judge with mt-bench and chatbot802
arena. Advances in Neural Information Processing803
Systems, 36:46595–46623.804

A Suffix Automaton805

A.1 Construction Process of Suffix Automaton806

Algorithm 2 introduces the construction (Build-807

SAM) and expansion process (Expand) of Suffix808

Automaton, where the INIT_SAM function will809

create a suffix automaton that only contains the root810

node. For the root node, the link attribute value811

is −1, the next attribute value is empty, the length812

attribute value is 0, and the min_endpos attribute813

value is 0. Meanwhile, Algorithm 3 shows the814

construction process of the top-k successors for815

each node of static suffix automaton. Each node816

in the algorithm involves a new variable, “freq”,817

which represents the frequency of occurrence of818

the corresponding substring for each node, and can819

be initialized at the time of constructing the suffix820

automaton, i.e., “freq” is initialized to 1 for nodes821

generated by expansion, and “freq” is initialized to822

0 for nodes generated based on cloning.823

A.2 Drafting via Prim’s Algorithm824

Algorithm 4 introduces a drafting process based825

on Prim’s algorithm to find a maximum spanning826

tree. For static suffix automata, we can offline827

maintain the frequency of occurrence of the corre-828

sponding substring for each node. Therefore, based829

on the recorded frequency for each node in the au-830

tomaton, we can calculate the top-k successors and831

corresponding transition probabilities, where the832

transition probability is calculated by dividing the833

frequency of occurrence of the target state by the834

frequency of occurrence of the current state.835

A.3 Time Complexity of State Transfer836

In this section, we introduce the time complex-837

ity of state transfer of suffix automaton. Consider838

a suffix automaton S with initial state s0, which839

corresponds to the root node of the automaton (rep-840

resenting the empty string). Suppose that state s0841

undergoes transitions through a sequence of L to- 842

kens x = (x1, x2, . . . , xL): 843

si = Transfer(S, xi, si−1), i ∈ {1, 2, . . . , L}. 844

We aim to demonstrate that the average time 845

complexity of each state transition is O(1), while 846

the worst-case time complexity is O(L). 847

First, let us define the matching length associated 848

with state si as li. Given that each state transition 849

can increase the length of the match by at most 850

1, it follows that 0 ≤ li ≤ i. Next, we introduce 851

the concept of energy ϕ for each state si, defined 852

as ϕ(si) = li. Let ci represent the time cost of 853

the transition of the i-th state. We then define the 854

amortized cost ĉi as: 855

ĉi = ci + ϕ(si)− ϕ(si−1). 856

We can now express the total amortized cost over 857

all transitions as: 858

L∑
i=1

ĉi =
L∑
i=1

(ci + ϕ(si)− ϕ(si−1)) 859

=
L∑
i=1

ci + ϕ(sL)− ϕ(s0). 860

Since ϕ(si) ≥ 0 and ϕ(s0) = 0, it follows that: 861

L∑
i=1

ĉi ≥
L∑
i=1

ci. 862

Next, we analyze the upper bound of ĉi. Each 863

state transition involves moving through the link 864

edge zero or more times, followed by a move 865

through the next edge. Transitioning through the 866

link edge incurs a cost of 1 but decreases the poten- 867

tial by at least 1. Conversely, transitioning through 868

the next edge incurs a cost of 1 and increases the 869

potential by 1. Consequently, the amortized cost ĉi 870

is bounded above by 2, leading to: 871

L∑
i=1

ĉi ≤ 2L. 872

Thus, the average time complexity of state tran- 873

sitions is: 874∑L
i=1 ci
L

≤ 2L

L
= 2, 875

11

which is O(1). In the worst case, a single operation876

may require up to li transitions through the link877

edge, followed by one transition through the next878

edge, resulting in a worst-case time complexity of879

O(L).880

B Additional Experiment Results881

In this section, we present the results of the experi-882

ment on Llama3-8B-instruct, Vicuna-13B-v1.3 and883

Vicuna-33B-v1.3.884

Tables 3 and 4 present the speedup ratios of885

SAM-Decoding compared to baseline methods886

across the Spec-Bench, HumanEval, and HAGRID887

datasets, utilizing the Llama3-8B-instruct model.888

It can be seen that the inference speed of SAM-889

Decoding outperforms the strongest retrieval-based890

baseline PLD on all tasks. Meanwhile, SAM-891

Decoding , when paired with Token Recycling892

(SAM-Decoding[T]), brings speedups on all tasks.893

Specifically, SAM-Decoding enhances the speedup894

ratio of Token Recycling from 1.92×, 1.85×, and895

1.82× to 2.09×, 2.04×, and 2.12× for Multi-896

turn Conversation, Summarization, and Retrieval-897

Augmented Generation tasks, respectively. This898

improvement raises the overall speedup ratio of899

token recycling in the Spec-Bench dataset from900

1.91× to 2.05×. On the HumanEval and HAGRID901

datasets, SAM-Decoding increases the speedup ra-902

tio of Token Recycling from 1.99× and 2.17×903

to 2.16× and 2.30×, respectively. Furthermore,904

SAM-Decoding also amplifies the performance905

gains of EAGLE-2 in Multi-turn Conversation,906

Summarization, Retrieval-augmented Generation,907

Code Generation and Context Q&A tasks. The908

speedup ratios were increased from 2.08×, 1.85×,909

1.87×, 2.37×, and 2.18× to 2.36×, 1.98×, 2.11×,910

2.54× and 2.35× respectively.911

Tables 5, 6, 7 and 8 present the speedup ratios912

of SAM-Decoding compared to baseline methods913

across the Spec-Bench, HumanEval, and HAGRID914

datasets, utilizing the Vicuna-13B-v1.3 and Vicuna-915

33B-v1.3. On both models, SAM-Decoding still916

has inference speed exceeding the retrieval-based917

baseline, while by combining Token Recycling918

and EAGLE-2 also further improves the inference919

speed of the model on the Multi-turn Conversation,920

Summarization, Retrieval-augmented Generation921

and Context Q&A tasks.922

4.2%

65.5%

0.6%

23.4%

6.3%

Prefill (4.2%)
Decoding (65.4%)
Draft Generation (0.6%)
Verification (23.4%)
Updating (6.3%)

Figure 8: the percentage of inference time of different
modules in SAM-Decoding.

Token Recycling Dynamic SAM Static SAM0

20

40

60

80

100
Pe

rc
en

ta
ge

(%
)

85.96%

11.59%
2.45%

0

1

2

3

4

5

6

7

8

#M
AT

2.51

6.57

3.39

Percentage
#MAT

Figure 9: the percentage of usage and mean accept
tokens of different draft modules.

C Additional Ablation Experiments 923

In this section, we present additional ablation ex- 924

periments, including the percentage of inference 925

time of different modules in the decoding pro- 926

cess of SAM-Decoding, and the percentage of 927

drafts provided by different draft modules in SAM- 928

Decoding. 929

The inference process of SAM-Decoding is di- 930

vided into five stages: prefill, draft generation, de- 931

coding, verification, and updating. During the pre- 932

fill stage, the model processes the input prompt to 933

establish an initial state. In the first draft genera- 934

tion stage, a draft is produced based on this initial 935

state. The decoding stage involves the model fur- 936

ther processing this draft. Next comes verification, 937

where the correct parts of the draft are evaluated 938

based on the information processed during the de- 939

coding stage. Finally, the update phase modifies 940

12

Model Method MT Trans Sum QA Math RAG #MAT Tokens/s Speedup

Llama3-8B

PLD 1.30× 1.12× 1.41× 1.03× 1.30× 1.53× 1.39 44.26 1.28×

SAM-Decoding 1.59× 1.35× 1.50× 1.35× 1.54× 1.75× 1.72 52.35 1.51×

Token Recycling 1.92× 1.88× 1.85× 1.75× 2.24× 1.82× 2.76 66.42 1.91×

SAM-Decoding[T] 2.09× 1.93× 2.04× 1.82× 2.32× 2.12× 2.63 71.73 2.05×

EAGLE-2 2.08× 1.95× 1.85× 1.80× 2.31× 1.87× 3.90 68.69 1.98×

SAM-Decoding[E2] 2.36× 1.96× 1.98× 1.79× 2.32× 2.11× 3.92 72.47 2.08×

Table 3: Speedup of SAM-Decoding compared to the baselines on Spec-Bench.

Model Method
HumanEval HAGRID

#MAT Tokens/s Speedup #MAT Tokens/s Speedup

Llama3-8B

PLD 1.30 42.39 1.18× 1.50 45.15 1.56×

SAM-Decoding 2.06 64.38 1.79× 1.88 58.40 2.02×

Token Recycling 2.93 71.49 1.99× 2.84 62.77 2.17×

SAM-Decoding[T] 2.77 78.04 2.16× 2.70 66.76 2.30×

EAGLE-2 4.74 85.58 2.37× 3.97 63.30 2.18×

SAM-Decoding[E2] 4.76 91.50 2.54× 3.93 67.94 2.35×

Table 4: Speedup of SAM-Decoding compared to the baselines on HumanEval and HAGRID.

the state of the model based on the valid parts of941

the draft. Figure 8 illustrates the proportion of time942

each stage consumes within the SAM-Decoding[T]943

process based on Spec-Bench. As shown, the de-944

coding stage takes up the largest portion of time,945

accounting for 65.4% of the entire process. This946

is followed by the verification stage, which occu-947

pies 23.4% of the total time. The updating stage948

requires 6.3% of the time, whereas the draft gen-949

eration stage contributes only 0.6% to the overall950

duration. Additionally, the prefill stage comprises951

4.2% of the total processing time.952

Figure 9 shows the usage frequency of differ-953

ent draft modules of SAM-Decoding[T] on Spec-954

Bench and the corresponding average draft accept955

length. It can be seen that in 85.96% of the cases,956

due to insufficient matching length, we generate957

drafts based on the auxiliary method, correspond-958

ing to an average accept length of 2.51, while in the959

remaining 11.59% and 2.45% of the cases, the dy-960

namic suffix automaton and static suffix automaton961

are used to generate drafts, corresponding to aver-962

age accept lengths of 6.57 and 3.39, respectively.963

Finally, Table 9 shows the inference speed of964

different methods based on Vicuna-7B-v1.3 on965

NVIDIA A800 GPU. It can be seen that SAM-966

Decoding can still effectively combine Token Re-967

cycling and EAGLE-2 to achieve higher inference 968

speed, which shows the effectiveness of our ap- 969

proach for different devices. 970

13

Model Method MT Trans Sum QA Math RAG #MAT Tokens/s Overall

Vicuna-13B

PLD 1.61× 1.10× 2.36× 1.11× 1.69× 1.80× 1.66 33.89 1.59×

SAM-Decoding 2.08× 1.26× 2.23× 1.53× 2.09× 1.89× 2.19 39.24 1.84×

Token Recycling 2.03× 1.84× 2.07× 1.83× 2.42× 1.84× 2.81 42.74 2.01×

SAM-Decoding[T] 2.36× 1.80× 2.63× 1.83× 2.49× 2.22× 2.91 47.27 2.22×

EAGLE-2 3.10× 2.15× 2.58× 2.38× 3.19× 2.33× 4.42 56.06 2.63×

SAM-Decoding[E2] 3.27× 2.12× 2.89× 2.34× 3.12× 2.54× 4.51 57.88 2.72×

Table 5: Speedup of SAM-Decoding compared to the baselines on Spec-Bench.

Model Method
HumanEval HAGRID

#MAT Tokens/s Speedup #MAT Tokens/s Speedup

Vicuna-13B

PLD 1.54 32.06 1.44× 1.90 43.38 2.15×

SAM-Decoding 2.42 48.92 2.20× 2.21 41.93 2.08×

Token Recycling 2.79 46.03 2.07× 2.90 40.97 2.03×

SAM-Decoding[T] 2.79 50.87 2.28× 2.99 48.33 2.40×

EAGLE-2 5.15 77.85 3.49× 4.24 52.28 2.59×

SAM-Decoding[E2] 5.12 78.96 3.54× 4.41 56.17 2.78×

Table 6: Speedup of SAM-Decoding compared to the baselines on HumanEval and HAGRID.

Model Method MT Trans Sum QA Math RAG #MAT Tokens/s Overall

Vicuna-33B

PLD 1.50× 1.07× 2.06× 1.09× 1.59× 1.51× 1.65 13.33 1.46×

SAM-Decoding 1.91× 1.25× 1.98× 1.48× 1.83× 1.66× 1.97 15.35 1.68×

Token Recycling 2.10× 1.84× 2.19× 1.88× 2.42× 1.92× 2.70 18.80 2.06×

SAM-Decoding[T] 2.31× 1.79× 2.53× 1.90× 2.48× 2.06× 2.68 19.87 2.18×

EAGLE-2 3.29× 2.31× 2.73× 2.51× 3.65× 2.46× 4.06 25.86 2.83×

SAM-Decoding[E2] 3.40× 2.25× 2.93× 2.43× 3.45× 2.54× 4.08 25.91 2.84×

Table 7: Speedup of SAM-Decoding compared to the baselines on Spec-Bench.

Model Method
HumanEval HAGRID

#MAT Tokens/s Speedup #MAT Tokens/s Speedup

Vicuna-33B

PLD 1.58 14.18 1.51× 1.55 15.74 1.80×

SAM-Decoding 2.05 19.08 2.03× 1.90 16.15 1.85×

Token Recycling 2.64 19.64 2.09× 2.71 18.29 2.09×

SAM-Decoding[T] 2.73 22.44 2.39× 2.60 19.74 2.26×

EAGLE-2 3.53 28.18 3.00× 3.84 24.28 2.78×

SAM-Decoding[E2] 3.61 29.56 3.14× 3.82 25.08 2.87×

Table 8: Speedup of SAM-Decoding compared to the baselines on HumanEval and HAGRID.

14

Model Method MT Trans Sum QA Math RAG #MAT Tokens/s Overall

Vicuna-7B

Token Recycling 2.08× 1.76× 1.97× 1.85× 2.35× 1.76× 2.82 98.39 1.96×

SAM-Decoding[T] 2.62× 1.82× 2.92× 2.09× 2.60× 2.21× 3.02 119.21 2.38×

EAGLE-2 2.66× 1.76× 2.18× 2.03× 2.63× 1.97× 4.34 110.56 2.21×

SAM-Decoding[E2] 3.19× 1.97× 2.86× 2.28× 2.84× 2.32× 4.52 129.36 2.58×

Table 9: Speedup of SAM-Decoding on A800 GPU compared to the baselines on Spec-Bench.

15

Algorithm 2 Construction Process of Suffix Au-
tomaton

function Expand-State
Input: suffix automaton S, link l, next n,
length len, position p
s = S.expand_state()
s.link = l
s.next = n
s.length = len
s.min_endpos = p
Output: new state s

end function
function Expand

Input: suffix automaton S, token t
S.max_length = S.max_length + 1
l = S.max_length
c = Expand-State(S,−1, {}, l, l)
p = S.last
while p ̸= −1 and t /∈ p.next do
p.next[t] = c
p = p.link

end while
if p = None then
c.link = S.root

else
q = p.next[t]
if p.length + 1 = q.length then

c.link = q
else

cl = Expand-State(S, ,−1, {},−1,−1)
cl.link = q.link
cl.next = q.next
cl.length = p.length + 1
cl.min_endpos = q.min_endpos
while p ̸= None and p.next[t] = q do

p.next[t] = cl
p = p.link

end while
q.link = c.link = cl

end if
end if
S.last = c

end function
function Build-SAM

Input: token sequence s
S = INIT_SAM()
for t in s do

Expand(S, t)
end for
Output: suffix automaton S

end function

Algorithm 3 Construction Process of Top-k Suc-
cessors and Transition Probabilities

function dfs
Input: state s
for tn, sn ∈ s.next do

dfs(sn)
s.freq = s.freq + sn.freq

end for
s.topk_succs = TopKfreq(s.next)
s.topk_prob = []
for tn, sn ∈ s.topk_succ do

s.topk_prob.append(sn.freq/s.freq)
end for

end function
function Init_topk

Input: suffix automaton S
dfs(S.root)

end function

Algorithm 4 Drafting via Prim’s Algorithm

function Prim
Input: suffix automaton S, state s, start token
t
q = PriorityQueue()
q.push({1.0, s, t})
d = []
while q.size() > 0
and d.size() ̸= MAX_SIZE do

p, s, t = q.top()
q.pop()
d.append(t)
for (tn, sn, pn) in
zip(s.topk_succ, s.topk_prob) do
pnew = p ∗ pn
snew = sn
tnew = tn
q.push(pnew, snew, tnew)

end for
end while
Output: draft tree d

end function

16

	Introduction
	Background
	Suffix Automaton
	Speculative Decoding

	SAM-Decoding
	Suffix Automaton Construction
	Drafting with Suffix Automaton
	Update of Suffix Automaton
	Adaptive Draft Selection

	Experiments
	Related Work
	Conclusion
	Limitation
	Suffix Automaton
	Construction Process of Suffix Automaton
	Drafting via Prim's Algorithm
	Time Complexity of State Transfer

	Additional Experiment Results
	Additional Ablation Experiments

