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Abstract

Speculative decoding (SD) has been demon-
strated as an effective technique for lossless
LLM inference acceleration. Retrieval-based
SD methods, one kind of model-free method,
have yielded promising speedup, but they often
rely on incomplete retrieval resources, ineffi-
cient retrieval methods, and are constrained to
certain domains. This paper presents a novel
retrieval-based speculative decoding method
that adapts suffix automaton (SAM) for ef-
ficient and accurate draft generation by uti-
lizing common text corpus and dynamic text
sequence. Unlike existing n-gram match-
ing methods, SAM-Decoding finds the exact
longest suffix match, achieving an average time
complexity of O(1) per generation step of SAM
update and suffix retrieval. It can also integrate
with existing methods, adaptively selecting a
draft generation strategy based on match length
to generalize to broader domains. Extensive ex-
periments on Spec-Bench show that our method
is 18%-+ faster than other retrieval-based SD
methods. Additionally, when combined with
advanced EAGLE-2, it provides an additional
speedup of 3.28% — 11.13% across various-
sized LLM backbones. Our code is available at
our anonymous repository.

1 Introduction

The Transformer-based Large Language Models
(LLMs) (Brown et al., 2020; Dubey et al., 2024;
Yang et al., 2024) have demonstrated remarkable
abilities and are extensively adopted in numerous
domains. The scaling law drives LLMs to become
deeper, reaching hundreds of billions of parameters,
which makes them inefficient for generating text in
a token-by-token autoregressive manner. Specula-
tive decoding methods (Leviathan et al., 2023; Cai
et al., 2024) seek to tackle this problem by quickly
generating multiple draft tokens and subsequently
concurrently verifying them with LLMs. These
methods can decrease inference latency substan-
tially while maintaining decoding accuracy.
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Figure 1: Throughput of Vicuna-7B, Vicuna-13B,

Vicuna-33B on MT-Bench with A6000 GPU using PLD,
Token Recycling (Luo et al., 2024), EAGLE-2, and
SAM-Decoding, where PLD is the SOTA retrieval-
based SD baseline.

Speculative methods can be categorized into
model-based and model-free methods. Model-
based methods need to carefully choose and train
one or more small-sized draft models. For exam-
ple, Medusa (Cai et al., 2024) utilizes multiple
decoding heads to generate multiple future tokens
while EAGLE-2 (Li et al., 2024a) leverages shal-
low Transformer layers to predict the next last hid-
den states and corresponding decoding tokens. Al-
though these methods achieve impressive speedup,
they often fail to generate long draft tokens due to
drafting overhead or decaying prediction accuracy.
Retrieval-based speculative decoding methods, a
major type of model-free methods, aim to remedy
this issue by generating draft tokens from text cor-
pus or current text sequence.

However, current retrieval-based methods have
notable limitations. Firstly, diverse retrieval
sources contribute to the efficiency of retrieval-
based SD methods, but existing methods typically
rely on a single retrieval source: PLD (Saxena,
2023) focuses on current text while REST (He
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et al., 2024) uses a text corpus. Secondly, the
retrieval techniques they use have efficiency limi-
tations. PLD finds n-gram matching from current
text sequence, but it has poor theoretical computa-
tional complexity and limited applicability to larger
text corpus. REST uses suffixed arrays, which pro-
vides better complexity than PLD, but still not opti-
mal complexity. Thirdly, retrieval-based methods
are suitable for specialized domains (e.g., summa-
rization and RAG), which are unable to bring a
noticeable acceleration in other domains.

To address limitations in previous retrieval-based
methods, this paper introduces SAM-Decoding, an
innovative speculative decoding technique based
on suffix automaton. (1) To enhance the coverage
of the retrieved corpus, we utilize the common text
corpus and the current text sequence as retrieved
sources. (2) To improve the retrieval efficiency
and accuracy, we adapt a suffix automaton (SAM)
to solve the longest suffix match problem, which
yields more accurate match positions and exact
match length compared to n-gram matching. As
for retrieval efficiency, the average time complexity
of SAM update and suffix retrieval is O(1) by cap-
turing relationships between adjacent suffixes. (3)
To generalize our method, assuming the matching
length of the longest suffix implying the quality of
retrieval draft tokens, our method can be integrated
with other types of speculative decoding methods,
enabling more efficient text generation by deciding
whether to adopt auxiliary decoding techniques.

Specifically, SAM-Decoding creates both a static
suffix automaton for the text corpus and a dynamic
suffix automaton for the current text sequence. The
nodes of suffix automaton represent substrings in
the text corpus or current sequence. The earliest
position of each substring is recorded in each node.
During generation, we can directly retrieve and
filter drafts from the context using the matching po-
sitions and longest suffixes’ matching length. After
each generation step, the automaton is updated:
static automaton nodes transition based on new to-
kens, while the dynamic automaton first expands
its structure before node transitions.

Extensive evaluations demonstrate the compet-
itive performance of our method across tasks.
On Spec-Bench, SAM-Decoding achieves 18%+
faster than previous retrieval-based speculative de-
coding methods (e.g., PLD, REST, etc.). SAM-
Decoding further achieves speedups of up to 1.3 x
over alternative baselines on the code-generation
benchmark like HumanEval. When combined with
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Figure 2: The suffix automaton corresponding to the
string “ABCBC”.

EAGLE-2 (Li et al., 2024a), as shown in Figure 1,
our method outperforms the state-of-the-art, deliv-
ering an additional 3.28% — 11.13% speedup on
MT-Bench w.r.t. various LLM backbones.

2 Background

2.1 Suffix Automaton

Suffix Automaton is an efficient data structure for
representing the substring index of a given string,
which allows fast substring retrieval. The time
complexity of constructing a suffix automaton is
O(L), where L is the length of the string and it can
be constructed incrementally.

As shown in Figure 2, a suffix automaton con-
tains a series of nodes and two types of state trans-
fer edges, extension edges (next) and suffix link
edges (link). A node in the automaton represents
a state and corresponds to all substrings that have
the same ending position in the string. Meanwhile,
extension edges are standard edges that represent a
possible extension of the current substring by ap-
pending a new character, while suffix link edges
create a path that allows the automaton to quickly
jump to states representing shorter suffixes of the
current substring.

Based on the two types of transfer edges, for a
progressively generated token sequence, we can
find the longest suffix that matches the sequence in
a suffix automaton at each step of the generation
with an average O(1) time complexity.

2.2 Speculative Decoding

Given the model input z = (x1,x9,...,2¢), an
LLM generates a new token x4, at each gener-
ation step autoregressively. The key idea of
speculative decoding is to utilize a lightweight
draft model to generate multiple candidate to-
kens quickly, i.e., Zgraft = (Tt41, Tt42, -+ Ttn)s
and then the target LLM simultaneously evaluates
these candidates and accept those aligned with
the output distribution of the LLM, i.e., Taccept =



|..]alB]c]B]c]

B

O—0O—0O>=0

S-SAM: [DEEGH

D-SAM: _BCBCB

Auxiliary: _BCDE
@ Drafting
?\
C

O—0O

DEFGH

Text Corpus Static SAM Dynamic SAM
A — Iy}
DEFGH @ LLM & Verify DEF @ Update State | I 5 I G I 5 I E I = I
Generated Draft Accepted Tokens Update text

Update SAM

Figure 3: Overview of SAM-Decoding’s workflow. In each round of generation, the suffix automaton matches
the suffixes of the generating text and retrieves the draft from the text corpus and the generated text respectively
according to the matching position. Our method can be combined with an auxiliary SD algorithm (Auxiliary) to
deal with the scenarios where the retrieval is not applicable. We select the best draft from the three candidate drafts
based on the match length, and then the drafts are verified by the LLM for accepted tokens. Using these accepted
tokens, we finally extend the dynamic SAM and generate text for the next round of generation.

(Ti41, X142, ..., Ti+m), where n and m denote the
size of the draft and the number of accepted tokens.

In the above, we assume that the draft is a se-
quence of tokens. Recent works proposed to ver-
ify a candidate token tree via a tree mask in the
attention module to make the target LLM simulta-
neously evaluate multiple branches of this token
tree, thereby increasing the acceptance length of
the draft model.

3 SAM-Decoding

In this section, we introduce our proposed method,
SAM-Decoding. SAM-Decoding is a retrieval-
based speculative decoding method designed to
address three key limitations in existing retrieval-
based speculative methods: (1) The use of insuf-
ficient retrieval sources. (2) The employment of
inefficient retrieval methods and restrictions on n-
gram matching lengths. (3) Subpar performance
outside specialized domains (e.g., summarization
and RAG tasks).

To tackle the first two limitations, SAM-
Decoding leverages suffix automaton on diverse
text sources, which significantly enhances the cov-
erage of retrieved corpus and the efficiency of the
retrieval process while allowing for flexible match-
ing lengths. In what follows, we detail how SAM-
Decoding can be integrated with both model-free

and model-based methods. By utilizing the precise
matching information provided by the suffix au-
tomaton, our method not only overcomes the third
limitation but also ensures consistent performance
improvements across a wide range of tasks. The
workflow of SAM-Decoding is shown in Figure 3.

3.1 Suffix Automaton Construction

To cover comprehensive retrieval sources, SAM-
Decoding builds suffix automaton (SAM) by uti-
lizing common text corpus and the current text
sequence (including user prompts and already gen-
erated tokens). Thus, we construct two types of
suffix automaton: a static suffix automaton and
a dynamic suffix automaton. For the text cor-
pus, we pre-build a static suffix automaton offline,
which is used for state matching during inference.
For the current text sequence, we create and expand
a dynamic suffix automaton incrementally as gen-
eration progresses and performing state matching
concurrently.

A suffix automaton can be constructed in lin-
ear time using Blumer’s algorithm (Blumer et al.,
1984). Since the suffix automaton is designed for a
single reference string, static suffix automation can
not be directly built using a text corpus. To this end,
we concatenate multiple strings in the corpus by us-
ing special symbols like an End-of-Sentence (EOS)



token. We then construct a static suffix automaton
for this concatenated string.

We have modified the suffix automaton for bet-
ter draft generation. During each generation step,
the current generated text sequence corresponds to
a node in the automaton, representing the longest
suffix match. At each node of the suffix automa-
ton, we record the earliest position of all substrings
corresponding to that node in the reference string,
termed as min_endpos, which allows us to effi-
ciently locate the previous ending position of the
matched longest suffix. Hereafter, the subsequent
tokens after the matched suffix can be regarded as
potential drafts. The construction process of the
suffix automaton is detailed in Appendix A.1.

For the static suffix automaton, based on the fre-
quency of occurrence of different substrings, we
additionally compute the top-k successor states
(topk_succ) of each state, and subsequently use
them to construct more complex tree drafts. Al-
though computing the successor states requires sig-
nificant computation, this can be done offline, elim-
inating the need to account for this time overhead
in real-time processing.

3.2 Drafting with Suffix Automaton

We illustrate how to generate draft tokens effi-
ciently based on the built suffix automaton. Let
S denote the suffix automaton, 7" denote its as-
sociated reference text, and z = (z1,22,...,2¢)
denote the current text sequence. The state within
the suffix automaton corresponding to the sequence
x is denoted as s;. In each round of generation, the
transition to the next state is performed based on
the newly generated token z;,; and the current
state sy

St+1 = Transfer(S, Tt+4+1, St)'

For dynamic suffix automaton, we extract n con-
secutive tokens from the reference text 7' to form
a draft, using the min_endpos value stored in the
node corresponding to state Sy, termed as p;1.
Then the draft d;; is defined as:

diy1 = T[pis1+ 1 pey1 +nl,

where d;,1 represents the generated draft and n
denotes the length of the draft.

For static suffix automaton, we construct a tree-
structured draft by Prim’s algorithm based on top-k
successors, as detailed in Appendix A.2,

dt+1 = Prim(S, St415 l‘t).

Algorithm 1 State Transfer of Suffix Automaton

function Transfer
Input: suffix automaton .S, next token ¢, cur-
rent state s, current matching length [
while s # S.root and ¢t ¢ s.next do
s, I = s.link, s.link.length
end while
if ¢ € s.next then
s, | = s.next[t], | +1
else
=0
end if
QOutput: next state s, next matching length [
end function

In practical use, we track the longest-matched
suffix length (denoted as /) to determine whether to
use the static suffix automaton or the dynamic suf-
fix automaton. Specifically, let /; and [y be the
matching lengths of the static and dynamic au-
tomata, respectively. Our experimental findings
indicate that drafts generated from the dynamic au-
tomaton often outperform those from the static text
corpus. Consequently, we prioritize drafts from
the dynamic automaton. We use the draft from the
static automaton only if I; > lg 4 lpias, Where lpjas
is a predefined constant.

The complete state transfer process of the suffix
automaton is shown in Algorithm 1. Using amor-
tized analysis, we can prove that the average com-
plexity of state transfer is O(1), with a worst-case
time complexity of O(L), where L is the length
of the current generated text (C.f. proof in Ap-
pendix A.3). Existing methods like PLD uses a
brute-force search for n-gram matches, resulting in
a time complexity of O(n?L). REST also employs
n-grams but searches using suffix arrays, leading
to a time complexity of O(n?log L). Here, n is
the predefined maximum matching length, and L
is the length of the current text or the concatenated
texts in the corpus. In contrast, our proposed SAM-
Decoding model has a lower time complexity and
can find the exact longest suffix match without any
limit on matching length, making it faster and more
accurate for draft generation.

3.3 Update of Suffix Automaton

After the draft is generated, we verify it us-
ing the large language model (LLM) and ac-
cept the correct tokens, denoted as Taccepr =

(441, Tt42,- -+, Trrm). We then update the state



of the suffix automaton based on these accepted
tokens. For the static suffix automaton, we simply
transfer the states according to Algorithm 1:

St+i = Transfer(S, sy4i—1, Tr4i), © € {1,2,...,m}.

For the dynamic suffix automaton, we first trans-
fer the matching state based on the accepted to-
kens and then expand the state. Let S; denote the
dynamic suffix automaton for the generated text
(z1,22,...,2). The process is as follows:

¢4 = Transfer(Syyi—1, St4i—1, Te44),
St+i = Expand(Si4i-1, Te i),
ie{l,2,..,m},

where the process of expanding the suffix automa-
ton is detailed in Appendix A.1.

3.4 Adaptive Draft Selection

The retrieval-based speculative decoding methods
excel at generating drafts from the corpus or the
current text sequence effectively. If it fails to pro-
duce a satisfactory draft, other speculative decod-
ing techniques can be employed to generate more
diverse drafts. To combine different types of drafts,
a straightforward idea is that the length of the suf-
fix match can indicate the confidence of the draft
produced by the automaton, where long matches
imply that more tokens are likely to be acceptable.

To implement this, we concurrently use an auxil-
iary speculative decoding technique alongside the
suffix automaton. During each generation step, we
adaptively select the drafts offered by the automa-
ton or the auxiliary SD method based on the match
length of the generated text within the automaton.
For the auxiliary SD method, we set a fixed virtual
match length lipresholq- In our study, we consider
two auxiliary cutting-edge speculative decoding
methods: the model-free Token Recycling and the
model-based EAGLE-2.

Among them, Token Recycling maintains an ad-
jacency list of the top-k probable next tokens for
each token and builds a draft tree using breadth-first
search, and it continuously updates the list based
on the latest tokens. EAGLE-2, on the other hand,
leverages a Transformer decoder layer to jointly
predict the last hidden states of the LLM and the
next token autoregressively.

4 Experiments

In this section, we first introduce our experimental
setup, then present the experimental results, and
finally present the ablation experiments.

Models and Tasks. We conducted experiments
on Vicuna-7B-v1.3 (Zheng et al., 2023). We
evaluated SAM-Decoding on Spec-Bench (Xia
et al., 2024), HumanEval (Chen et al., 2021), and
HARGID (Kamalloo et al., 2023). Spec-Bench
is a comprehensive benchmark designed for as-
sessing Speculative Decoding methods across di-
verse scenarios. It is based on six commonly
used datasets, MT-Bench (Zheng et al., 2023),
WMT14 DE-EN, CNN/Daily Mail (Nallapati et al.,
2016), Natural Question (Kwiatkowski et al., 2019),
GSMB8K (Cobbe et al., 2021), and DPR (Karpukhin
et al., 2020), including six aspects: Multi-turn Con-
versation (MT), Translation (Trans), Summariza-
tion (Sum), Question Answering (QA), Mathmat-
ical Reasoning (Math), and Retrieval-augmented
Generation (RAG). In addition, HumanEval, and
HARGID are used to evaluate the speed of decod-
ing methods in Code Generation task and Context
Q&A task, respectively.

Baselines. We considered the following base-
line methods, including the model-based method
EAGLE-2 (Li et al., 2024a), the model-free method
Token Recycling (Luo et al.,, 2024), and the
retrieval-based methods Lookahead Decoding (Fu
et al., 2024), PIA (Zhao et al., 2024), PLD (Saxena,
2023) and REST (He et al., 2024).

Metrics. We evaluated speculative decoding meth-
ods from the following aspects (Li et al., 2024b)

* Speedup Ratio: The wall-time speedup ratio
of speculative decoding methods compared to
autoregressive generation methods.

* Mean Accepted Tokens: The average num-
ber of tokens accepted per generation step.

* Throughput: The average number of tokens
generated per second.

Experiment Setup. We conducted experiments
on a server equipped with a 20-core CPU and a
single NVIDIA RTX A6000 GPU (48GB). The ex-
periments were implemented using PyTorch 2.3.0,
Transformers 4.46.1 and CUDA 12.1. For the
models, we used the float16 data type and applied
greedy decoding with a batch size of 1. Regarding
hyperparameters, lp;.s and lipreshold Were set to 5,
but when there is no auxiliary method l};,s is set to
0. The size of the draft generated by the automaton
was set to 40 by default, while for code datasets
the size of the draft is set to 16. For the auxiliary



Method Spec-Bench HumanEval HAGRID
#MAT Tokens/s Speedup | #MAT Tokens/s Speedup | #MAT Tokens/s Speedup

Lookahead* 1.63 44.37 1.20x 1.76 30.81 1.54x% 1.46 23.58 1.32x
REST* 1.63 51.34 1.38x 1.85 34.60 1.74x 1.53 2491 1.39x
PIA 2.08 55.45 1.47 % 2.62 65.49 1.68x 2.43 66.65 1.95x%
PLD 1.75 59.02 1.56x 1.65 59.04 1.52x 2.03 44.11 1.29%x
SAM-Decoding 2.30 69.37 1.84x 2.64 88.91 2.29% 2.44 76.72 2.24x
Token Recycling 2.83 69.65 1.84x 2.78 75.44 1.94x 2.88 66.17 1.93x
SAM-Decoding[T] 3.03 85.73 2.27x 2.94 95.08 2.45x 3.23 87.93 2.57x
EAGLE-2 4.36 90.14 2.38x 5.13 125.77 3.24x 4.15 82.61 2.41x
SAM-Decoding[E2] | 4.62 97.56 2.58x% 4.95 130.28 3.35x% 4.75 96.60 2.81x

Table 1: Inference efficiency of SAM-Decoding compared to the baselines on Spec-Bench, HumanEval, and
HAGRID, where * indicates that the method was compared with the baseline provided in its environment.

Trans
1.22x

1.62x
QA

—e— Lookahead —— PIA —— SAM-Decoding
REST —+— PLD

Figure 4: Relative speedup of SAM-Decoding
compared to retrieval-based SD baselines on
Spec-Bench.

speculative decoding methods, we used the default
configurations as described in their respective orig-
inal papers.

For SAM-Decoding, we constructed a static
suffix automaton based on the Vicuna-7B gener-
ation results on datasets Stanford-alpaca, python-
code-instruction-18k, and GSK8k. To enhance our
model, we incorporated two auxiliary approaches:
the model-free Token Recycling and the model-
based EAGLE-2. Here, SAM-Decoding[T], and
SAM-Decoding[E2] denote the combinations of
our base model with Token Recycling, and EAGLE-
2, respectively.

Experiment Results. Experimental results on

—e— Token Recycling —+— EAGLE-2 —— SAM-Decoding[E2]
SAM-Decoding[T]

Figure 5: Relative speedup of SAM-Decoding compared
to SD baselines on Spec-Bench when combined with aux-
iliary SD methods.

Spec-Bench, HumanEval and HAGRID when us-
ing Vicuna-7B-v1.3 are shown in Table 1. It can
be seen that SAM-Decoding has higher inference
speedups on all datasets compared to retrieval-
based baselines, achieving speedup ratios of 1.84 x,
2.29x%, and 2.24x on each of the three datasets.
Meanwhile, further speedups can be achieved
by combining SAM-Decoding with other types
of methods. On the Spec-Bench and HAGRID
dataset, the inference speed of Token Recycling and
EAGLE-2 can be further improved by combining
SAM-Decoding. In Spec-Bench, the speedup ratios
are improved from 1.84x, 2.38 x to 2.27x, 2.58 %,
respectively, whereas on HAGRID dataset, the



speedup ratios are improved from 1.93x, 2.41x
to 2.57x, 2.81x. In the HumanEval dataset, the
throughput of the model-based EAGLE-2 method
changed slightly after integrating SAM-Decoding,
due to the fact that the code generation task is less
likely to copy the generated text during the genera-
tion process. Fortunately, SAM-Decoding can still
speedup the model-free method Token Recycling,
increasing its speedup ratios from 1.94x to 2.45x.

In Figures 4 and 5, we further show the speedup
of the different methods on each task of Spec-
Bench. Compared to retrieval-based SD baselines,
SAM-Decoding shows better performance across
all tasks. Meanwhile, in the Spec-Bench, Multi-
turn Conversation, Summarization, and Retrieval-
augmented Generation were identified as particu-
larly amenable to retrieval techniques. The results
indicate that integrating SAM-Decoding into ex-
isting method led to notable speed improvements.
Specifically, for Token Recycling, the speedup ra-
tio for the three tasks raised from 1.92x, 1.96x,
and 1.68x to 2.48x%, 2.86x, and 2.14 X, respec-
tively. For EAGLE-2, the speedup ratios raised
from 2.87x, 2.33x, and 2.03x to 3.02x, 2.76 %,
and 2.23 x, respectively.

In addition to Vicuna-7B, we also conducted ex-
periments on more models. Figure 1 shows the
throughput of Vicuna-7B, Vicuna-13B and Vicuna-
33B on MT-bench using SAM-Decoding and other
baseline SD methods. It can be seen that SAM-
Decoding outperforms retrieval-based baselines on
all models. Also, SAM-Decoding can further im-
prove the inference speed of model-free and model-
based SD methods by combining them with SAM-
Decoding. For more experimental results, please
refer to Appendix B.

Ablation Experiments. To further understand
the contributions of various components of SAM-
Decoding and the influence of different hyperpa-
rameters on inference speed, we conducted a series
of ablation studies.

Firstly, we examined the effects of ly,s and
l¢hreshold ON inference speed through a grid search.
These parameters control the preference for gener-
ating draft from the current text over text corpus
and the preference for using suffix automaton over
the auxiliary SD method when creating drafts. The
findings are summarized in Figure 6. We observe
that both the mean accepted tokens (MAT) and
the speedup ratio increase with lyi.s and lipreshold
before they equal 5. When the value of both param-

#MAT
? Speedup ratio

Figure 6: The speedup ratio and mean accepted tok-
nes of SAM-Decoding[T] under different l};.s and
lthreshold-
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Figure 7: The throughput of SAM-Decoding[T] under
different draft size.

eters exceeds 5, these indicators begin to decline.

Additionally, we investigated how the draft
length utilized by SAM-Decoding affects inference
speed. Figure 7 illustrates the throughput of SAM-
Decoding[T] at varying draft sizes. As the draft size
increases, there is a positive trend in throughput
until the draft size equals 40. When the draft size
exceeds 40, there is an observable decline in per-
formance metrics, which becomes more significant
as the draft size reaches 70. This phenomenon can
be attributed to the fact that, for draft sizes below
the average acceptance length, increasing the draft
size reduces the number of rounds for generation,
thereby enhancing efficiency. In contrast, once the
draft size surpasses this threshold, further increases
do not yield additional benefits and strain GPU
capacity, thus slowing inference speed.

Finally, we investigated the impact of differ-
ent modules within SAM-Decoding on inference
speed. SAM-Decoding comprises two draft gen-
eration modules: the static suffix automaton and
the dynamic suffix automaton. We measured the



Spec-Bench
Method
#MAT Tokens/s Speedup
PLD 1.75 59.02 1.56%
SAM-Decoding 2.30 69.37 1.84x
w/o Static SAM 1.85 61.93 1.64x
w/o Dynamic SAM | 1.63 50.37 1.33x%

Table 2: The impact of different draft generation mod-
ules on inference speed.

inference speed of SAM-Decoding after removing
each of these two modules individually. The results
are presented in Table 2. From the experimental
results, it is clear that each module contributes to
the acceleration of the decoding process. Notably,
the dynamic suffix automaton has a significantly
greater impact compared to the static suffix automa-
ton. This suggests that, in many cases, generating
drafts from the dynamic context is more effective
than retrieving drafts from a pre-existing text cor-
pus. For more ablation experiment results, please
refer to Appendix C.

5 Related Work

Speculative Decoding. Speculative decoding is an
approach that can significantly speed up large lan-
guage models (LLMs) without compromising the
quality of their outputs. The majority of specula-
tive decoding techniques rely on smaller neural net-
works to create drafts during the inference process.
These techniques are referred to as model-based
speculative decoding methods. Early implementa-
tions of model-based speculative decoding, such
as those Speculative Decoding (Leviathan et al.,
2023), primarily focused on generating draft se-
quences using pre-existing, smaller-scale LLMs.
Subsequently, advancements like Medusa (Cai
et al., 2024), SpeclInfer (Miao et al., 2024) and
EAGLE (Li et al., 2024b,a) introduced tree-based
speculative methods and began the development of
draft models tailored for speculative decoding.

In contrast to model-based methods, certain ap-
proaches focus on generating drafts through re-
trieval, utilizing n-gram matching, which we re-
fer to the retrieval-based method. Notable among
these are Lookahead Decoding (Fu et al., 2024),
PIA(Zhao et al., 2024), PLD (Saxena, 2023) and
REST (He et al., 2024). Token Recycling (Luo
et al., 2024), on the other hand, utilizes the pre-
viously generated token distribution to generate

drafts, becoming a model-free method different
from the retrieval-based method.

Additionally, beyond the aforementioned meth-
ods, research also conducted on speculative decod-
ing that relies either on the model itself (Kou et al.,
2024) or on sub-models within the larger architec-
ture (Elhoushi et al., 2024).

Efficient LLM Architecture. There is also work
to improve the model’s inference speed from the
perspective of model structure. This part of the
work includes model distillation, quantization and
pruning. Model distillation (Sreenivas et al., 2024;
Muralidharan et al., 2024) distills the knowledge
of a large model into a small model thereby speed-
ing up inference while maintaining the model’s
performance. Quantization (Frantar et al., 2022;
Xiao et al., 2023; Lin et al., 2024; Liu et al., 2024,
Ashkboos et al., 2024b) reduces the number of bits
required to store parameters and reduces the data
transmission time from HBM to on-chip memory
during inference. Pruning (Frantar and Alistarh,
2023; Ashkboos et al., 2024a; Men et al., 2024,
Chen et al., 2024; Hu et al., 2024; Sun et al., 2024;
Zhang et al., 2024) is used to remove unimportant
parameters in the model. For structured pruning, it
can be combined with model distillation to train ef-
ficient small models, while semi-structured pruning
can reduce the model’s memory access and com-
puting overhead and improve the inference speed
by combining special hardware.

6 Conclusion

In this work, we propose SAM-Decoding, an spec-
ulative decoding method via suffix automatons
constructed from both generated text and text cor-
pus. SAM-Decoding can efficiently retrieve drafts
from retrieval sources, thereby accelerating infer-
ence. SAM-Decoding is also designed to seam-
lessly integrate with existing SD methods. Conse-
quently, in scenarios where retrieval is not feasible,
SAM-Decoding can adaptively switch to alterna-
tive methods for draft generation. Experimental
results demonstrate that SAM-Decoding outper-
form retrieval-based SD baselines. Meanwhile,
when combined with state-of-the-art techniques,
SAM-Decoding can significantly enhance their per-
formance in Multi-turn Conversation, Summariza-
tion, Retrieval-augmented Generation, and Context
Q&A tasks.



7 Limitation

On the one hand, as a retrieval-based specula-
tive decoding method, the performance of SAM-
Decoding depends on the task type as well as the
quality of the retrieval source. Currently, we have
collected a text corpus based on the vicuna-7b
generated results on Stanford-alpaca, GSM8k and
python-instruct-18k. However, this corpus is still
not diverse enough, and also the text in it may
deviate from the text generated by other LLMs,
which limits the performance of SAM-Decoding.
Therefore, in the future we need to collect more
specialized and diverse corpus for different types
of tasks.

On the other hand, when combining SAM-
Decoding with other types of methods, we use a
very heuristic approach, i.e., we choose different
methods depending on the match length. This does
not fully utilize the exact match lengths provided
by the suffix automaton, so subsequently we will
try to train classifier to select different decoding
methods at each generate round.

Finally, the performance of retrieval-based meth-
ods is highly correlated with the usage scenarios,
and the existing datasets do not well reflect the per-
formance of retrieval-based methods in real usage,
so in the future we also need to construct datasets
that are more compatible with real scenarios to eval-
uate the performance of retrieval-based methods.
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A Suffix Automaton

A.1 Construction Process of Suffix Automaton

Algorithm 2 introduces the construction (Build-
SAM) and expansion process (Expand) of Suffix
Automaton, where the INIT_SAM function will
create a suffix automaton that only contains the root
node. For the root node, the link attribute value
is —1, the next attribute value is empty, the length
attribute value is 0, and the min_endpos attribute
value is 0. Meanwhile, Algorithm 3 shows the
construction process of the top-k successors for
each node of static suffix automaton. Each node
in the algorithm involves a new variable, “freq”,
which represents the frequency of occurrence of
the corresponding substring for each node, and can
be initialized at the time of constructing the suffix
automaton, i.e., “freq” is initialized to 1 for nodes
generated by expansion, and “freq” is initialized to
0 for nodes generated based on cloning.

A.2 Drafting via Prim’s Algorithm

Algorithm 4 introduces a drafting process based
on Prim’s algorithm to find a maximum spanning
tree. For static suffix automata, we can offline
maintain the frequency of occurrence of the corre-
sponding substring for each node. Therefore, based
on the recorded frequency for each node in the au-
tomaton, we can calculate the top-k successors and
corresponding transition probabilities, where the
transition probability is calculated by dividing the
frequency of occurrence of the target state by the
frequency of occurrence of the current state.

A.3 Time Complexity of State Transfer

In this section, we introduce the time complex-
ity of state transfer of suffix automaton. Consider
a suffix automaton S with initial state sy, which
corresponds to the root node of the automaton (rep-
resenting the empty string). Suppose that state sg
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undergoes transitions through a sequence of L to-
kens z = (z1,29,...,2L):

s; = Transfer(S, x;,s;—1), i€ {1,2,...,L}.

We aim to demonstrate that the average time
complexity of each state transition is O(1), while
the worst-case time complexity is O(L).

First, let us define the matching length associated
with state s; as [;. Given that each state transition
can increase the length of the match by at most
1, it follows that 0 < [; < 4. Next, we introduce
the concept of energy ¢ for each state s;, defined
as ¢(s;) = l;. Let ¢; represent the time cost of
the transition of the ¢-th state. We then define the
amortized cost ¢; as:

¢ = ci + P(si) — P(si-1).

We can now express the total amortized cost over
all transitions as:

L

> (ei+ d(si) — d(si-1))

i=1

L
=Y i+ d(s0) — d(s0)-
i=1

L
> 6
i=1

Since ¢(s;) > 0 and ¢(sp) = 0, it follows that:

L L
i=1 =1

Next, we analyze the upper bound of ¢;. Each
state transition involves moving through the link
edge zero or more times, followed by a move
through the next edge. Transitioning through the
link edge incurs a cost of 1 but decreases the poten-
tial by at least 1. Conversely, transitioning through
the next edge incurs a cost of 1 and increases the
potential by 1. Consequently, the amortized cost ¢;
is bounded above by 2, leading to:

L
Zc <2L.
=1

Thus, the average time complexity of state tran-
sitions is:

L
D il Ci <
=7 =

2,

2L
L



which is O(1). In the worst case, a single operation
may require up to /; transitions through the link
edge, followed by one transition through the next
edge, resulting in a worst-case time complexity of
O(L).

B Additional Experiment Results

In this section, we present the results of the experi-
ment on Llama3-8B-instruct, Vicuna-13B-v1.3 and
Vicuna-33B-v1.3.

Tables 3 and 4 present the speedup ratios of
SAM-Decoding compared to baseline methods
across the Spec-Bench, HumanEval, and HAGRID
datasets, utilizing the Llama3-8B-instruct model.
It can be seen that the inference speed of SAM-
Decoding outperforms the strongest retrieval-based
baseline PLD on all tasks. Meanwhile, SAM-
Decoding , when paired with Token Recycling
(SAM-Decoding[T]), brings speedups on all tasks.
Specifically, SAM-Decoding enhances the speedup
ratio of Token Recycling from 1.92x, 1.85x, and
1.82x to 2.09x, 2.04x, and 2.12x for Multi-
turn Conversation, Summarization, and Retrieval-
Augmented Generation tasks, respectively. This
improvement raises the overall speedup ratio of
token recycling in the Spec-Bench dataset from
1.91x to 2.05%. On the HumanEval and HAGRID
datasets, SAM-Decoding increases the speedup ra-
tio of Token Recycling from 1.99x and 2.17x
to 2.16x and 2.30x, respectively. Furthermore,
SAM-Decoding also amplifies the performance
gains of EAGLE-2 in Multi-turn Conversation,
Summarization, Retrieval-augmented Generation,
Code Generation and Context Q&A tasks. The
speedup ratios were increased from 2.08 <, 1.85x,
1.87x,2.37x,and 2.18 x to 2.36x, 1.98x, 2.11x,
2.54x and 2.35x respectively.

Tables 5, 6, 7 and 8 present the speedup ratios
of SAM-Decoding compared to baseline methods
across the Spec-Bench, HumanEval, and HAGRID
datasets, utilizing the Vicuna-13B-v1.3 and Vicuna-
33B-v1.3. On both models, SAM-Decoding still
has inference speed exceeding the retrieval-based
baseline, while by combining Token Recycling
and EAGLE-2 also further improves the inference
speed of the model on the Multi-turn Conversation,
Summarization, Retrieval-augmented Generation
and Context Q&A tasks.
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Figure 8: the percentage of inference time of different
modules in SAM-Decoding.
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Figure 9: the percentage of usage and mean accept
tokens of different draft modules.

C Additional Ablation Experiments

In this section, we present additional ablation ex-
periments, including the percentage of inference
time of different modules in the decoding pro-
cess of SAM-Decoding, and the percentage of
drafts provided by different draft modules in SAM-
Decoding.

The inference process of SAM-Decoding is di-
vided into five stages: prefill, draft generation, de-
coding, verification, and updating. During the pre-
fill stage, the model processes the input prompt to
establish an initial state. In the first draft genera-
tion stage, a draft is produced based on this initial
state. The decoding stage involves the model fur-
ther processing this draft. Next comes verification,
where the correct parts of the draft are evaluated
based on the information processed during the de-
coding stage. Finally, the update phase modifies



Model Method MT  Trans Sum QA Math RAG #MAT Tokens/s Speedup
PLD 1.30x  1.12x  141x 1.03x 130x 1.53x 1.39 44.26 1.28%
SAM-Decoding 1.59x  1.35x  1.50x 1.35x 1.54x 1.75x 1.72 52.35 1.51x%
Token Recycling 1.92x  1.88x 1.85x 1.75x 2.24x 1.82x 276 66.42 1.91x

Llama3-8B
SAM-Decoding[T] 2.09x 1.93x 2.04x 1.82x 232x 2.12x  2.63 71.73 2.05x%
EAGLE-2 2.08x 195x 1.85x 1.80x 231x 1.87x 3.90 68.69 1.98x
SAM-Decoding[E2] 2.36x 1.96x 198x 1.79x 232x 2.11x 392 72.47 2.08 %

Table 3: Speedup of SAM-Decoding compared to the baselines on Spec-Bench.
HumanEval HAGRID
Model Method
#MAT Tokens/s Speedup | #MAT Tokens/s Speedup

PLD 1.30 42.39 1.18x 1.50 45.15 1.56x
SAM-Decoding 2.06 64.38 1.79% 1.88 58.40 2.02x
Token Recycling 293 71.49 1.99x 2.84 62.77 2.17x

Llama3-8B
SAM-Decoding[T] 2.77 78.04 2.16% 2.70 66.76 2.30%
EAGLE-2 4.74 85.58 2.37x% 3.97 63.30 2.18x%
SAM-Decoding[E2] | 4.76 91.50 2.54% 3.93 67.94 2.35x%

Table 4: Speedup of SAM-Decoding compared to the baselines on HumanEval and HAGRID.

the state of the model based on the valid parts of
the draft. Figure 8 illustrates the proportion of time
each stage consumes within the SAM-Decoding[T]
process based on Spec-Bench. As shown, the de-
coding stage takes up the largest portion of time,
accounting for 65.4% of the entire process. This
is followed by the verification stage, which occu-
pies 23.4% of the total time. The updating stage
requires 6.3% of the time, whereas the draft gen-
eration stage contributes only 0.6% to the overall
duration. Additionally, the prefill stage comprises
4.2% of the total processing time.

Figure 9 shows the usage frequency of differ-
ent draft modules of SAM-Decoding[T] on Spec-
Bench and the corresponding average draft accept
length. It can be seen that in 85.96% of the cases,
due to insufficient matching length, we generate
drafts based on the auxiliary method, correspond-
ing to an average accept length of 2.51, while in the
remaining 11.59% and 2.45% of the cases, the dy-
namic suffix automaton and static suffix automaton
are used to generate drafts, corresponding to aver-
age accept lengths of 6.57 and 3.39, respectively.

Finally, Table 9 shows the inference speed of
different methods based on Vicuna-7B-v1.3 on
NVIDIA A800 GPU. It can be seen that SAM-
Decoding can still effectively combine Token Re-
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cycling and EAGLE-2 to achieve higher inference
speed, which shows the effectiveness of our ap-
proach for different devices.



Model Method MT Trans  Sum QA Math RAG #MAT Tokens/s Overall
PLD 1.61x 1.10x 236x 1.11x 1.69x 1.80x 1.66 33.89 1.59%
SAM-Decoding 2.08x 1.26x 2.23x 1.53x 2.09x 1.89x 2.19 39.24 1.84x
Token Recycling 2.03x  1.84x 2.07x 1.83x 242x 1.84x 2.81 42.74 2.01x

Vicuna-13B
SAM-Decoding[T] 2.36x 1.80x 2.63x 1.83x 249x 222x 291 47.27 2.22x
EAGLE-2 3.10x  2.15x  2.58x  2.38x 3.19x 233x 442 56.06 2.63x
SAM-Decoding[E2] 3.27x 2.12x 2.89x 234x 3.12x 2.54x 4.51 57.88 2.72%

Table 5: Speedup of SAM-Decoding compared to the baselines on Spec-Bench.
HumanEval HAGRID
Model Method
#MAT Tokens/s Speedup | #MAT Tokens/s Speedup
PLD 1.54 32.06 1.44x 1.90 43.38 2.15x
SAM-Decoding 242 48.92 2.20x 2.21 41.93 2.08x
. Token Recycling 2.79 46.03 2.07x 2.90 40.97 2.03x
Vicuna-13B
SAM-Decoding[T] 2.79 50.87 2.28x% 2.99 48.33 2.40x
EAGLE-2 5.15 77.85 3.49x 4.24 52.28 2.59x
SAM-Decoding[E2] | 5.12 78.96 3.54x 4.41 56.17 2.78%
Table 6: Speedup of SAM-Decoding compared to the baselines on HumanEval and HAGRID.

Model Method MT Trans  Sum QA Math RAG #MAT Tokens/s Overall
PLD 1.50x 1.07x 2.06x 1.09x 1.59x 1.51x 1.65 13.33 1.46x
SAM-Decoding 191x 1.25x 198x 1.48x 1.83x 1.66x 197 15.35 1.68x
Token Recycling 2.10x  1.84x 2.19x 1.88x 242x 192x  2.70 18.80 2.06x

Vicuna-33B
SAM-Decoding[T] 231x 1.79x 2.53x 190x 248x 2.06x 2.68 19.87 2.18x
EAGLE-2 329x  231x 273x 251x 3.65x 246x 4.06 25.86 2.83%
SAM-Decoding[E2] 3.40x 225x 2.93x 243x 345x 2.54x 4.08 2591 2.84x%

Table 7: Speedup of SAM-Decoding compared to the baselines on Spec-Bench.

HumanEval HAGRID
Model Method
#MAT Tokens/s Speedup | #MAT Tokens/s Speedup
PLD 1.58 14.18 1.51% 1.55 15.74 1.80x
SAM-Decoding 2.05 19.08 2.03x 1.90 16.15 1.85x
Token Recycling 2.64 19.64 2.09x 271 18.29 2.09%
Vicuna-33B
SAM-Decoding[T] 2.73 22.44 2.39x 2.60 19.74 2.26 %
EAGLE-2 3.53 28.18 3.00% 3.84 24.28 2.78x
SAM-Decoding[E2] | 3.61 29.56 3.14x 3.82 25.08 2.87x%

Table 8: Speedup of SAM-Decoding compared to the baselines on HumanEval and HAGRID.
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Model Method MT Trans  Sum QA Math RAG #MAT Tokens/s Overall

Token Recycling 208x 1.76x 197x 1.85x 2.35x 1.76x 2.82 98.39 1.96x

) SAM-Decoding[T] 2.62x 1.82x 2.92x 2.09x 2.60x 221x 3.02 119.21 2.38x%
Vicuna-7B

EAGLE-2 2.66x 1.76x 2.18x 2.03x 2.63x 197x 434 110.56  2.21x

SAM-Decoding[E2] 3.19x 1.97x 2.86x 228x 2.84x 232x 452 12936 2.58x

Table 9: Speedup of SAM-Decoding on A800 GPU compared to the baselines on Spec-Bench.
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Algorithm 2 Construction Process of Suffix Au-
tomaton
function Expand-State
Input: suffix automaton S, link I, next n,
length [en, position p
s = S.expand_state() Input: state s

slink = for ¢,,, s, € s.next do
s.next =n dfs(sp)

s.lel'lgth = len s.freq = s.freq + sy,.freq
s.min_endpos = p

Algorithm 3 Construction Process of Top-k Suc-
cessors and Transition Probabilities
function dfs

end for
Output: new state s s.topk_succs = TopK, (s.next)
end function s.topk_prob = ||

function Expand
Input: suffix automaton S, token ¢
S.max_length = S.max_length + 1
I = S.max_length
¢ = Expand-State(S, —1,{},,1)

for t,,, s, € s.topk_succ do
s.topk_prob.append(s,.freq/s.freq)
end for
end function
function Init_topk

p= S.last Input: suffix automaton S
while p # —1 and ¢ ¢ p.next do dfs(S.root)

p.next[t.] =c end function

p = p.link
end while

if p = None then
c.link = S.root

else
q = p.next[t]
ifp .lle?nligth + 1 =g length then Algorithm 4 Drafting via Prim’s Algorithm
c.link = ¢ - -
else function Prim

¢l = Expand-State(S, , —1,{}, —1, —1) Input: suffix automaton S, state s, start token

cl.link = ¢.link o
cl.next = g.next q = PriorityQueue()
cl.length = p.length + 1 Z‘pusﬂh({l'Q s,t})

cl.min_endpos = ¢.min_endpos
while p # None and p.next[t] = ¢ do
p.next[t] = cl

while ¢.size() > 0
and d.size() # MAX_SIZE do

p = p.link P, s, t = gq.top()
end while q-pop()
g.link = c.link = ¢l d.append(t)
end if for (tn, sn,pn) in
end if zip(s.topk_succ, s.topk_prob) do
Slast =c Pnew = P * Pn
end function Snew = Sn
function Build-SAM tnew = tn
Input: token sequence s q-push(Puew, Snews tnew)
S = INIT_SAM() end for
for ¢ in s do end while
Expand(S, t) Output: draft tree d

end for end function

Output: suffix automaton S
end function
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