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Abstract

Deep neural networks are notorious for defying theoretical treatment. However,
when the number of parameters in each layer tends to infinity, the network function
is a Gaussian process (GP) and quantitatively predictive description is possible.
Gaussian approximation allows one to formulate criteria for selecting hyperparam-
eters, such as variances of weights and biases, as well as the learning rate. These
criteria rely on the notion of criticality defined for deep neural networks. In this
work we describe a new practical way to diagnose criticality. We introduce partial
Jacobians of a network, defined as derivatives of preactivations in layer l with
respect to preactivations in layer l0 ≤ l. We derive recurrence relations for the
norms of partial Jacobians and utilize these relations to analyze criticality of deep
fully connected neural networks with LayerNorm and/or residual connections. We
derive and implement a simple and cheap numerical test that allows one to select
optimal initialization for a broad class of deep neural networks; containing fully
connected, convolutional and normalization layers. Using these tools we show
quantitatively that proper stacking of the LayerNorm (applied to preactivations)
and residual connections leads to an architecture that is critical for any initialization.
Finally, we apply our methods to analyze ResNet and MLP-Mixer architectures;
demonstrating the everywhere-critical regime. 4

1 Introduction

When the number of parameters in each layer becomes large, the functional space description of
deep neural networks simplifies dramatically. The network function, f(x), in this limit, is a Gaussian
process [37, 30] with a kernel – sometimes referred to as neural network Gaussian process (NNGP)
kernel [30] – determined by the network architecture and hyperparameters (e.g depth, precise choices
of layers and the activation functions, as well as the distribution of weights and biases). A similar
line of reasoning was earlier developed for recurrent neural networks [36]. Furthermore, for special
choices of parameterization and MSE loss function, the training dynamics under gradient descent can
be solved exactly in terms of the neural tangent kernel (NTK) [27, 31]. A large body of work was
devoted to the calculation of the NNGP kernel and NTK for different architectures, calculation of the
finite width corrections to these quantities, and empirical investigation of the training dynamics of
wide networks [39, 54, 25, 14, 3, 33, 1, 18, 19, 45, 58, 47, 6, 5, 32, 63, 61, 60, 59, 35, 17, 2, 49, 34].
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One important result that arose from these works is that the network architecture determines the most
appropriate initialization of the weights and biases [44, 46, 30]. To state this result, we consider
networks with/without LayerNorm [7] and residual connections [21]; the preactivations for which
can be defined as follows

hl+1
i (x) =

Nl∑
j=1

wl+1
ij ϕ(h̃l

j(x)) + bl+1
i + µhl

i(x) , (1)

where h̃l
j = LayerNorm(hl

j) and the parameter µ controls the strength of residual connections. For
the input layer: h1

i (x) =
∑N0

j=1 w
1
ijxj + b1i . In the (l + 1)-th layer, weights wl+1

ij ∈ RNl+1×Nl and
biases bl+1

i ∈ RNl+1×1 are taken from normal distributions N (0, σ2
w/N

l) and N (0, σ2
b ), respectively.

Hyperparameters σw and σb need to be tuned. ϕ(·) is the activation function and x ∈ RN0×1 is
the input. For results discussed in this work, x can be sampled from either a realistic (i.e. highly
correlated) dataset or a high entropy distribution.

For a network of depth L, the network function is given by f(x) = hL(x). Different network
architectures and activation functions, ϕ, lead to different “optimal” choices of (σw, σb). The optimal
choice can be understood, using the language of statistical mechanics, as a critical point (or manifold)
in the σb–σw plane. The notion of criticality becomes sharp as the network depth, L, becomes large.
Criticality ensures that NNGP kernel and the gradients’ norm remain O(L0) as the network gets
deeper [45]. Very deep networks will not train unless initialized critically, since the gradients explode
or vanish exponentially. Note that high trainability does not imply that the trained model has great
performance (test accuracy) after training.

1.1 Results

Here we focus on two main results of this work: (i) empirical method to check criticality of a neural
network and (ii) an architecture based on layer normalization and residual connections that is critical
for any initialization. First we introduce the notion of a partial Jacobian.

Definition 1.1. Let hl
i(x) be preactivations of a neural network f(x). The partial Jacobian J l0,l

ij is
defined as derivative of preactivations at layer l with respect to preactivations at layer l0 ≤ l

J l0,l
ij (x) =

∂hl
j(x)

∂hl0
i (x)

. (2)

The partial Jacobian is a random matrix with vanishing mean at initialization. Fixing l0 and varying
l allows us to study the behavior of Jacobian with depth. On the other hand, varying both l0 and
l is necessary to study general networks with non-repeating building blocks. Next, we introduce
a deterministic measure of the magnitude of J l0,l

ij — its squared Frobenius norm, averaged over
parameter-initializations.

Definition 1.2. Let J l0,l
ij be a partial Jacobian of a neural network f(x). Averaged partial Jacobian

norm (APJN)5 is defined as

J l0,l(x) ≡ Eθ

 1

Nl

Nl∑
j=1

Nl0∑
i=1

(
∂hl

j(x)

∂hl0
i (x)

)2
 , (3)

where Eθ indicates averaging over parameter-initializations.

APJN is a dominant factor in the magnitude of the gradients. In what follows, we show that criticality,
studied previously in the literature, occurs when APJN either remains finite, or varies algebraically as
l becomes large. To prove this we derive the recurrence relation for J l0,l(x) in the limit Nl → ∞ and
analyze it at large depth. Algebraic behavior of APJN with depth is characterized by an architecture-
dependent critical exponent, ζ, so that J l0,l(x) ≈ l−ζ . Such behavior is familiar from statistical
mechanics when a system is tuned to a critical point [10]. Away from criticality, there are two phases:

5In practice, we compute APJN using a very cheap estimator, viz. Hutchinson’s trace estimator[24].
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ordered and chaotic. In the ordered phase APJN vanishes exponentially with depth, whereas in the
chaotic phase APJN grows exponentially

J l0,l ≈ cl0e
± l

ξ . (4)

Here ξ is the correlation length. It characterizes how fast gradients explode or vanish. (See Section 2.1
for further discussion.)
Theorem 1.3 (Main result). Let f(x) be a deep MLP network with Lipschitz continuous activation
ϕ(·). Assume that LayerNorm is applied to preactivations and there are residual connections with
strength µ acting according to (1). In the sequential limit (N1 → ∞, . . . , Nl → ∞, . . . , NL−1 →
∞), the correlation length with a large L can be written as

ξ =
1

| log
[
(1− µ2)AB + µ2

]
|
, (5)

where the non-negative constants A and B are given by

A = σ2
wEθ

[
ϕ′(h̃L−2

k )2
]
, B = σ2

wEθ

[
ϕ(h̃L−2

k )2
]
+ σ2

b ,

and ϕ′(·) is the derivative of ϕ(·). We omitted the average over the neuron index k in the infinite
width limit, and the result does not depend on k.
Remark 1.4. As µ increases, the dependence on the initialization (σb, σw) gets weaker. When µ = 1,
the correlation length diverges; and the network is critical for any initialization, with ζ = O(1).

In practice, Theorem 1.3 and Remark 1.4 imply that different choices of initialization bear no effect
on trainability of the network provided that LayerNorm and residual connections are arranged as
stated.

1.2 Related Work

Some of our results were either surmised or obtained in a different form in the literature. We find that
LayerNorm ensures that NNGP kernel remains finite at any depth as suggested in the original work
of Ba et al. [7]. LayerNorm also alters the criticality of J l0,l(x). It was noted in Xu et al. [57] that
LayerNorm (applied to preactivations) regularizes the backward pass. We formalize this observation
by showing that LayerNorm (applied to preactivations) dramatically enhances correlation length
(which is not the case for LayerNorm applied to activations). This can be seen from Theorem 1.3,
setting µ = 0. When residual connections of strength 1 are combined with erf (or any other erf-like
activation function, e.g. tanh), the neural network enters a subcritical phase with enhanced correlation
length (see 4.3). A version of this result was discussed in Yang and Schoenholz [62]. When residual
connections are introduced on top of LayerNorm, the correlation length ξ is further increased. If
residual connections have strength µ = 1 the network enters a critical phase for any initialization.
Importance of correct ordering of LayerNorm, residual connections and attention layers was discussed
in Xiong et al. [56]. Benefit of combining BatchNorm and residual connections was mentioned
in [12]. Several architectures with the same order of GroupNorm and residual connections were
investigated in Yu et al. [64]. Existing initialization schemes such as He initialization6 [20], Fix-up
[65] and ReZero [8] are special cases of our method. They conform to the notion of criticality using
APJN, as defined in our work.

The partial Jacobian has been used to study generalization bounds in Arora et al. [4]. The Jacobian
norm (i.e. ||J0,l

ij ||2) of trained feed-forward neural networks was studied in Novak et al. [38], where
it was correlated with generalization. Partial Jacobians with l0 = l − 1 were studied in the context
of RNNs [11, 9], referred to as state-to-state Jacobians. Furthermore, the relation between Partial
Jacobians and Lyapunov exponents, as well as their impact on trainability, have been explored for
RNNs [16, 15].

As the aspect ratio (L/N ) of the network approaches 1, the finite width corrections to the Jacobian
become more prominent. On the other hand, even with a small aspect ratio, the effect of the spectral
density of Jacobian becomes important as the depth L becomes very large. Pennington et al. [43]
studied the spectrum of the input-output Jacobian for MLPs. Xiao et al. [54] extended the analysis to
CNNs, showing that very deep vanilla CNNs can be trained by achieving “dynamical isometry”.

6He initialization is critical only for ReLU networks.
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2 Recurrence Relations

Here we derive the infinite width recurrence relations for the APJN and the NNGP kernel. We use
Lemma 2.2 to derive NNGP kernel recurrence relation, and leverage that to get the recurrence relation
for APJN. Fixed point analyses of these relations help us define critical line and point. We start
with the vanilla MLP with no LayerNorm and µ = 0. Results with LayerNorm and/or residual
connections, as well as modern architectures are presented in the following sections. (We refer the
reader to Appendices D to F for proofs and detailed application of this recipe. Appendices I to K
contain the calculations and results for various activation functions.)
Definition 2.1. We define averaged covariance of preactivations as follows

Kl(x, x′) = Eθ

[
1

Nl

Nl∑
i=1

hl
i(x)h

l
i(x

′)

]
. (6)

Lemma 2.2. When Nl → ∞ for l = 1, . . . , L− 1 sequentially, the expectation value over parameter
initializations for a general function of preactivations: O(hl(x)), can be expressed as the averaging
over the Gaussian process hl(x) with covariance Kl(x, x′).

Eθ

[
O(hl

i(x))
]
=

1√
2πKl(x, x)

∫
dhlO(hl

i(x))e
− (hl

i(x))2

2Kl(x,x) . (7)

This result has been established in Lee et al. [30]. Note that the density in (7) only depends on the
diagonal part of the covariance matrix, Kl(x, x). We will refer to Kl(x, x) as NNGP kernel.
Remark 2.3. In the sequential infinite width limit the means appearing in (9)-(11) are self-averaging
and, therefore, deterministic. They converge in distribution to their averages over parameterizations.

1

Nl

Nl∑
i=1

ϕ(hl
i)

2
Nl′≤l−1→∞
−−−−−−−−→ Eθ

[
1

Nl

Nl∑
i=1

ϕ(hl
i)

2

]
. (8)

When performing analytic calculations we use the infinite width convention; whereas in our finite-
width experiments we explicitly average over initializations of θl.
Theorem 2.4. With 2.2, in the infinite width limit, the NNGP kernel Kl+1(x, x) is deterministic, and
can be determined recursively via

Kl+1(x, x) = σ2
wEθ

[
1

Nl

Nl∑
i=1

ϕ(hl
i(x))

2

]
+ σ2

b . (9)

Theorem 2.5. Let f(x) be an MLP network with a Lipschitz continuous activation function ϕ(x). In
the infinite width limit, APJN J l0,l+1(x) is deterministic and satisfies a recurrence relation

J l0,l+1(x) = χl
JJ l0,l(x) , (10)

where the factor χl
J is given by

χl
J = σ2

wEθ

[
σ2
w

Nl

Nl∑
i=1

(
ϕ′(hl

i(x))
)2]

. (11)

2.4 is due to Neal [37] and Lee et al. [30]. 2.5 is new and is valid only in the limit of infinite width.
The proof is in D. We will drop the explicit dependence on x to improve readability.

The expectation values that appear in (9)-(11) are evaluated using (7). When the integrals can be
taken analytically, they lead to explicit equations for the critical lines and/or the critical points. Details
of these calculations as well as the derivation of (9)-(11) can be found in the D. A subtlety emerges in
(10) when l0 = 0, where a correction of the order O(N−1

0 ) arises for non-scale invariant activation
functions. This subtlety is discussed in the D.

When the depth of the network becomes large, the l-dependence of the expectation values that appear
in (6), (11) saturate to a (possibly infinite) constant value; which means that Kl, J l0,l and χl

J have
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reached a fixed point. We denote the corresponding quantities as K⋆,J l0,⋆, χ⋆
J . The existence of a

fixed point is not obvious and should be checked on a case by case basis. Fixed point analysis for
Kl was done in Poole et al. [44] for bounded activation functions and in Roberts et al. [45] for the
general case. The stability is formulated in terms of

χ⋆
K =

∂Kl+1

∂Kl

∣∣∣
Kl=K⋆

. (12)

The norm of preactivations remains finite (or behaves algebraically) when χ⋆
K = 1.

Eq. (10) nicely expresses J l0,l+1 as a linear function of J l0,l. The behaviour of J l0,l+1 at large
l is determined by χl

J . When χl
J > 1 partial Jacobians diverge exponentially, while for χl

J < 1
partial Jacobians vanish exponentially. Neural networks are trainable only up to a certain depth when
initialized O(1) away from criticality, which is determined by the equation

χ⋆
J = 1 . (13)

Eq. (13) is an implicit equation on σb, σw and generally outputs a critical line in σb–σw plane. The
parameter χ⋆

J has to be calculated on a case-by-case basis using either (11) or the method presented in
the next section. Everywhere on the critical line, J l0,l saturates to a constant or behaves algebraically.

When the condition χ⋆
K = 1 is added, we are left with a critical point7. This analysis of criticality at

infinite width agrees with Roberts et al. [45], where χ⊥ is to be identified with χ⋆
J ; and Schoenholz

et al. [46], Martens et al. [34], where their analysis based on the equivalent χ1 or C ′(1) only works
for bounded activation functions. In particular, condition (13) together with χ⋆

K = 1 ensures that
NTK is O(1) at initialization.

2.1 Empirical Diagnostic of Criticality

APJN J l0,l provides a clear practical way to diagnose whether the network is critical or not. Proper
choice of l0 and l allows us to minimize the non-universal effects and cleanly extract χ⋆

J .

Recurrence relation (10), supplemented with the initial condition J l0,l0+1 = χl0
J , can be formally

solved as

J l0,l =

l−1∏
ℓ=l0

χℓ
J . (14)

We would like to obtain an estimate of χ⋆
J as accurately as possible. To that end, imagine that for

some l′ > l0 the fixed point has been essentially reached and χl′

J ≈ χ⋆
J . Then the APJN

J l0,l = (χ⋆
J )l−l′−1 ·

l′∏
ℓ=l0

χℓ
J (15)

depends on the details of how the critical point is approached; which are encoded in the last factor.
Proposition 2.6. If the network is homogeneous, i.e., consists of (possibly complex) blocks of layers,
periodically repeated L times; then the penultimate APJN provides an accurate estimate of χ⋆

J :

J L−2,L−1
∣∣∣
L→∞

= χ⋆
J . (16)

This is a direct consequence of combining (9) and (11) as L goes to infinity. See 1 for numerical
justification.

2.6 is the central result of this section and will be heavily used in the remainder of this work.

Note that for deep networks, away from criticality, APJN takes the form

J l0,l ≈ cl0e
± l

ξ , ξ = | logχ⋆
J |−1 , (17)

where cl0 is a non-universal constant that depends on l0. If the sign in (17) is positive (χ⋆
J > 1)

the network is in the chaotic phase, while when the sign is negative (χ⋆
J < 1) the network is in the

7Scale-invariant activation functions are more forgiving: away from the critical point, Kl scales algebraically
with l.
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Figure 1: log–log plots of partial Jacobian J 0,l vs. l. From left to right: (1)erf, (2)ReLU, (3)erf
and GELU with LayerNorm applied to preactivations and residual connections of strength 1. The
fluctuations get larger towards the output because the aspect ratio (i.e. l/Nl) approaches 1/4.

ordered phase. ξ has the meaning of correlation length: on the depth scale of approximately kξ the
gradients remain appreciable, and hence the network with the depth of ≈ kξ will train.

We used (16) to map out the σb–σw phase diagrams of various MLP architectures. The location of
the critical line agrees remarkably well with our infinite width calculations. Results are presented in
Fig. 2.

At criticality, χ⋆
J = 1 and the correlation length diverges; indicating that gradients can propagate

arbitrarily far. A more careful analysis of non-linear corrections shows that APJN can exhibit
algebraic behavior with depth and can still vanish in the infinite depth limit, but much slower than the
ordered phase.

2.2 Scaling at a Critical Point

At criticality χl
J saturates to a fixed value χ⋆

J = 1. If we are interested in J l0,l with l − l0 = O(L)

then it is essential to know how exactly χl
J approaches 1.

Theorem 2.7. Assume that deep neural network f(x) is initialized critically. Then l → ∞ asymp-
totics of APJN is given by

J l0,l(x) = O(l−ζ) , (18)

where ζ is the critical exponent Roberts et al. [45], see Appendix G for further details.

Critical exponents can be determined analytically in the limit of infinite width. Note that χl
J , given

by (11), depends on Kl by virtue of (7). Consequently, Eqs. (9)-(11) are coupled through non-linear
(in Kl and J l0,l) terms. These non-linear corrections are absent for any scale-invariant activation
function, but appear for other activation functions.

We checked the scaling empirically by plotting J 0,l vs. l in a log–log plot and fitting the slope. These
results are presented in Fig.1, and are in excellent agreement with infinite width calculation.

3 Layer Normalization

The fact that critical initialization is concentrated on a single point (σ⋆
w, σ

⋆
b ) may appear unsettling

because great care must be taken to initialize the network critically. The situation can be substantially
improved by utilizing the normalization techniques known as LayerNorm [7] and GroupNorm [52].
Our results apply to GroupNorm verbatim in the case when the number of groups is much smaller than
the width. LayerNorm can act either on preactivations or on activations (discussed in the Appendix D).
Depending on this choice, criticality will occur on different critical lines in σb–σw plane. When
LayerNorm is applied to preactivations the correlation length is enhanced, allowing for training much
deeper networks even far away from criticality.

The LayerNorm applied to preactivations takes the following form

6
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Figure 2: χ⋆
J empirical phase diagrams for an MLP with L = 50, N = 500. The solid lines indicate

the critical lines obtained through infinite width limit calculations, and the stars indicate the critical
points. The dotted lines in the rightmost column correspond to the critical lines for µ < 1 case. For
networks with LayerNorm and µ = 1, χ⋆

J = 1 holds on the entire σb–σw plane. We also note that
for erf activation, the case µ = 1 without LayerNorm is subcritical and has a large correlation length.

Definition 3.1 (Normalized preactivations).

h̃l
i =

hl
i − E[hl]√

E[(hl)2]− E[hl]2
Nl→∞−−−−→ 1√

Kl
hl
i , (19)

where we have introduced E[hl] = (
∑Nl

i=1 h
l
i)/Nl. In the limit of infinite width E[hl] = 0 and

E[(hl)2] = Kl, defined according to (6).

Normalized preactivations, h̃l
i, are distributed according to N (0, 1) for all l, σw, σb. The norms are,

therefore, always finite and the condition χ⋆
K = 1 is trivially satisfied. This results in a critical line

rather than a critical point.

The recurrence relations (9)-(11) for the NNGP and partial Jacobians are only slightly modified

Kl+1 = σ2
wEθ

[
1

Nl

Nl∑
i=1

ϕ(h̃l
i)

2

]
+ σ2

b χl
J =

σ2
w

Kl
Eθ

[
1

Nl

Nl∑
i=1

ϕ′(h̃l
i)

2

]
. (20)

Assuming that the value of χl
J at the fixed point is χ⋆

J , the network is critical when (13) holds.

χl
J (20) is depth independent and changes slowly with σw and σb. Thus, χ⋆

J remains close to 1 for
a wider range of hyperparameters. Consequently, the correlation length is large even away from
criticality, leading to a much higher trainability of deep networks.

4 Residual (Skip) Connections

Adding residual connections between the network layers is a widely used technique to facilitate
the training of deep networks. Originally introduced [21] in the context of convolutional neural
networks [29] (CNNs) for image recognition, residual connections have since been used in a variety
of networks architectures and tasks [50, 13].

Consider (1) with non-zero µ and without LayerNorm layers. Then the recurrence relations (9)-(11)
for the NNGP kernel and χl

J are modified as follows

Kl+1 = σ2
wEθ

 1

Nl

Nl∑
j=1

ϕ(hl
j)

2

+ σ2
b + µ2Kl , χl

J = σ2
wEθ

[
1

Nl

Nl∑
k=1

ϕ′(hl
k)

2

]
+ µ2 . (21)
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Figure 3: Trainability (Training Accuracy) of deep MLP (Nl = 500, L = 50) on FashonMNIST. The
combination of LayerNorm and µ = 1 makes the network everywhere-trainable. The subcritical case
of erf activation without LayerNorm, and µ = 1 also has enhanced trainability. The dashed white
lines denote the (analytical) critical lines.

Remark 4.1. When µ < 1, the fixed point value of NNGP kernel is scaled by (1− µ2)−1. For µ = 1,
the critical point is formally at (0, 0).
Remark 4.2. For µ = 1, (21) implies that χl

J ≥ 1, where the equality holds on the σw = 0 axis.
Consequently, APJN exponentially diverges as a function of depth l for all σw > 0. In this case, σw

needs to be taken sufficiently close to 0 to ensure trainability at large depths.

When µ < 1, residual connections amplify the chaotic phase and decrease the correlation length
away from criticality for unbounded activation functions.

Solving the recurrence relations (21) for erf activation, we find an effect observed in Yang and
Schoenholz [62] for tanh activation. They noted that tanh-like MLP networks with skip connections
"hover over the edge of chaos". We quantify their observation as follows.
Theorem 4.3. Let f(x) be a deep MLP network with erf activation function and residual connections
of strength µ = 1. Then in the limit Nl → ∞

• The NNGP kernel Kl linearly diverges with depth l.

• χl
J approaches 1 from above (Fig. 2) : χl

J ≈ 1 + c̃/
√
l, where c̃ = 2σ2

w/(π
√
σ2
w + σ2

b )
is a non-universal constant. Consequently, APJN diverges as a stretched exponential :
J l0,l = O(e

√
l
λ ), where λ = 1/(4c̃2) is the new length scale.

We will refer to this case as subcritical. Although χ⋆
J reaches 1, the APJN still diverges with depth

faster than any power law. The growth is controlled by the new scale λ. To control the gradient we
would like to make λ large, which can be accomplished by decreasing σw. In this case, the trainability
is enhanced (see Fig. 3). Similar results hold for tanh activation function [62], however in that case
there is no explicit expression for c̃.

5 Residual Connections + LayerNorm

In practice, it is common to use a combination of residual connections and LayerNorm. Using (1),
the recurrence relations (9)-(11) for NNGP and partial Jacobians are modified as follows

Kl+1 = σ2
wEθ

 1

Nl

Nl∑
j=1

ϕ(h̃l
j)

2

+ σ2
b + µ2Kl , χl

J =
σ2
w

Kl
Eθ

[
1

Nl

Nl∑
k=1

ϕ′(h̃l
k)

2

]
+ µ2 . (22)
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Remark 5.1. For µ < 1, (22) implies that the fixed point value of NNGP kernel is scaled by 1− µ2.
Moreover, residual connections do not shift the phase boundary. The interference between residual
connections and LayerNorm brings χl

J closer to 1 on the entire σb–σw plane (as can be seen from
Fig. 2). Therefore the correlation length ξ is improved in both the phases, allowing for training of
deeper networks. At criticality, Jacobians linearly diverge with depth.

As was mentioned before, the combination of LayerNorm and residual connections dramatically
enhances correlation length, leading to a more stable architecture. This observation is formalized by
1.3. The proof leverages the solutions of (22) close to the fixed point, and is fleshed out in Appendix
F.
Remark 5.2. When µ = 1, the correlation length diverges for any initialization.

5.2 provides an alternative perspective on architecture design. On the one hand, one can use
(16) to initialize a given network at criticality. Alternatively, one can use a combination of residual
connections and LayerNorm to ensure that the network will train well, irrespective of the initialization.
Remark 5.3. When µ = 1, the condition χ⋆

J = 1 holds on the entire σb − σw and for any activation
function ϕ (see Fig. 2). NNGP kernel diverges linearly, while APJN diverges algebraically with the
critical exponent of ζ = O(1). The exact value of the critical exponent depends on the activation
function and the ratio σb/σw. The trainability is dramatically enhanced, as shown in Fig. 3.
Remark 5.4. Networks with BatchNorm [26], used in conjunction with residual connection of strength
µ = 1, also enjoy this everywhere criticality and enhanced trainability [63, 23] (See Appendix B).

6 Modern Architectures

ResNet110 ResNet is one of the most widely used architectures in computer vision[21]. Figure 4
shows the results for ResNetV2 [22]; with BatchNorm replaced with LayerNorm. (See Appendix B
for BatchNorm results and discussions.)

At µ = 1, σ2
w − σ2

b phase diagram shows everywhere-criticality, as expected from our theory. For
σ2
b = 0, σ2

w − µ phase diagram gets closer to criticality as we increase µ, which results in better
training at higher µ.

Additionally, networks with larger µ enjoy better trainability due to the suppression of finite width
corrections to our theory (decreased effective L/N ).

Figure 4: ResNet110(LayerNorm): Left to right: (1) χ⋆
J phase diagram w.r.t. (σ2

w, σ
2
b ) at µ = 1.

The network is everywhere-critical in this case. (2) χ⋆
J phase diagram w.r.t. (σ2

w, µ). (3) Training
accuracy w.r.t. σ2

w, for different values of µ. Trainability improves with with higher µ, as the network
gets closer to everywhere-critical phase. For µ = 0 and small σ2

w the network is in the ordered phase,
and the output of every block is almost zero – this explains the poor trainability. (4) Training accuracy
w.r.t. µ at (σ2

w, σ
2
b ) = (2, 0). We see a monotonic improvement in trainability.

MLP-Mixer MLP-Mixer architecture is a recent example of MLP approach to computer vision
[48]. It can be analyzed using the tools presented above. Fig. 5 shows the phase and training diagrams.
Further details can be found in the SM. Note that the original architecture uses µ = 1.0.

Test accuracies for figures 4, 5 follow similar trends as train accuracies. (See Appendices B, H).
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Figure 5: MLP-Mixer. Left to right: (1)(2) µ = 0.5, 1.0 phase diagrams (χ⋆
J ). The network becomes

everywhere-critical when µ = 1. The solid black line indicates the empirical phase boundary. Stars
denote points we selected to train on CIFAR-10. (3)(4) µ = 0.5, 1.0 MLP-Mixer training curves.
All, but one, networks are L = 100 blocks deep. We see that as we increase µ from 0.5 to 1, the
trainability of all networks increases, and they are less sensitive to initialization.

7 Conclusions

We have introduced partial Jacobians and their averaged norms as tools to analyze the propagation of
gradients through deep neural networks at initialization. Using APJN evaluated close to the output,
J L−2,L−1 ≈ χ⋆

J , we have introduced a very cheap and simple empirical test for criticality. We have
also shown that criticality formulated in terms of partial Jacobians is equivalent to criticality studied
previously in literature [44, 45, 34]. Additionally, APJN can be utilized to quantify criticality in
inhomogeneous (i.e. no periodic stacking of blocks) networks [23].

We have investigated homogeneous architectures that include fully-connected layers, normalization
layers and residual connections. In the limit of infinite width, we showed that (i) in the presence of
LayerNorm, the critical point generally becomes a critical line, making the initialization problem
much easier, (ii) LayerNorm applied to preactivations enhances correlation length leading to improved
trainability, (iii) combination of µ = 1 residual connections and erf activation function enhances
correlation length driving the network to a subcritical phase with APJN growing according to a
stretched exponential law, (iv) combination of residual connections and LayerNorm drastically
increases correlation length leading to improved trainability, (v) when µ = 1 and LayerNorm is
applied to preactivations the network is critical on the entire σb–σw plane.

We have considered examples of modern architectures: ResNet and MLP-Mixer. We showed that
at µ = 1, they are critical everywhere, due to the interaction between LayerNorm and residual
connections. We have studied ResNet at different µ’s, showing that higher µ enjoys better trainability,
due to improved initialization and suppressed effective L/N corrections.

We have empirically demonstrated that deep (100 blocks) MLP-Mixer with µ = 1 trains well for
various initializations. In comparison, for µ = 0.5, it only trains well close to the critical line.

Our work shows that an architecture can be designed to have a large correlation length leading to a
guaranteed trainability with SGD for any initialization scheme.

8 Limitations and Future Works

While our method is empirically applicable to Transformer architectures (see Appendix C for
phase diagrams), there remains a notable absence of robust theoretical foundations for initializing
Transformers. We aim to extend our theory to the attention mechanism and determine the optimal
way to initialize Transformer architectures.

Another challenge arises from network topology. For graph neural networks, the generalization of
our methods remains ambiguous. We aspire to elucidate this in future research.

Lastly, we want to scale our experiments to larger image datasets as well as language tasks, with the
hope that our methods could help people train large models more efficiently.
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A Experimental Details

We implemented our methods using PyTorch [42] hooks and an efficient Jacobian approximate
algorithm [24].

Figure 1: We generated MNIST-like inputs, where all elements are sampled from the Gaussian
distribution N (0, 1). J 0,l data was averaged over 100 different parameter-initializations. Networks
were initialized width Nl = 1000. For erf plot we initialized at critical point (σw, σb) = (

√
π
4 , 0),

used depth L = 250 and the fitting was done with data points collected at depth l > 100; for ReLU
plot we initialized at critical point (σw, σb) = (

√
2, 0), used depth L = 100 and the fitting was done

with all data points; for the µ = 1 Pre-LN plot, we initialized both networks at (σw, σb) = (
√
2, 0),

used depth L = 250 and the fitting was done with l > 100 data points.

Figure 2: All the phase diagrams were plotted using χL−1
J generated from networks with L = 50

and Nl = 500. We used hooks to obtain the gradients that go into calculating χL−1
J . χL−1

J data was
averaged over 100 different parameter-initializations. Inputs were generated from a normal Gaussian
distribution and have dimension 28× 28. Generating the data for the figure took approximately 2
days on Google Colab Pro (single Tesla P100 GPU).

Figure 3: In all cases, networks are trained for 10 epochs using stochastic gradient descent with
CrossEntropy loss. We used the Fashion MNIST dataset [53]. All networks had depth L = 50 and
width Nl = 500. The learning rates were logarithmically sampled within (10−5, 1). Generating the
data for the figure took approximately 12 days on Google Colab Pro (single Tesla P100 GPU).

Figure 4: (1)We made the σ2
w − σ2

b phase diagram for ResNet110(LayerNorm) by averaging over
100 different parameter-initializations. The σ2

w − µ phase diagram was made by averaging over
200 parameters initialization. (3)(4) We used SGD with momentum= 0.9 and batch size 128. For
selecting the learning rate we ran a grid-search over 0.001, 0.005, 0.01, 0.02, 0.5 for 10 epochs; with
weight decay λ = 10−4. All models were trained for 50 epochs and averaged over 3 random seeds.
It takes 6 GPU days in total on a single NVIDIA RTX 3090 GPU.

Figure 5: (1)(2)We made the phase diagram for MLP-Mixer with 30 blocks and averaged over 100
different parameter-initializations. (3)(4)We used network with L = 100, patch size 4× 4, hidden
size C = 128, two MLP dimensions Ntm = Ncm = 256. The L = 32 point has doubled widths. All
networks have 10 million parameters. Notice that for all Mixer Layers we used NTK initialization.
We trained all cases on CIFAR-10 dataset using vanilla SGD paired with CSE. Batch size bs = 256,
weight decay λ = 10−4 was selected from {10−5, 10−4}, mixup rate α = 0.8 was selected from
{0.4, 0.8}. We also used RandAgument and horizontal flip with default settings in PyTorch. For
all cases we searched learning rates within {0.005, 0.01, 0.05, 0.1, 0.2, 0.5}. We also tried a linear
warm-up schedule for first 3000 iterations, but we did not see any improvement in performance.
Generating the data for the figure took approximately 4 days on Google Colab Pro (single Tesla P100
GPU).

B Additional Discussion on ResNet, ResNet with BatchNorm

For Convolution Layers, the NNGP kernel is a 4-index tensor: Kl
µν;ij(x, x

′), where the Greek letters
(µ, ν) index the channels, whereas the Latin letters (i, j) index the pixels. The infinite width limit in
this case is achieved by taking the number of channels to infinity (sequentially). In this limit, most
of our equations for MLP can be easily rewritten using the convolutional NNGP kernel. However,
in this case, the kernel is only diagonal in channel dimension: Kl

µν;ij(x, x
′) = Kl

ij(x, x
′)δµν . This

additional structure in the kernel makes it difficult to get a closed-form solution for J l,l+1 in general.

ResNet110 (LayerNorm) In Figure 4(2), the networks is critical close to µ = 1, as expected from
our analysis. One would naively expect the µ < 1 cases also to be critical, since for MLP with ReLU
and Pre-LN, σb = 0 is critical regardless of σw and µ. However, in Figure 4(2) the region away from
µ = 1 is in ordered phase. This is likely a result of the kernel Kl

µν;ij(x, x
′) not being diagonal in

spatial dimensions. We emphasize that the µ = 1 case stays unaffected by this, since the existence of
criticality does not depend on the details of the NNGP kernel in this case. This can be readily seen
from (71). We present the Numerical and training results in Figure 4.
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ResNet110 (BatchNorm) The operation of BatchNorm on a preactivation (pre-BN) in an MLP can
be described as follows:

h̃i(x) =
hi(x)− µi,B

σi,B
,

µi,B =
1

|B|
∑
x′∈B

h(x′) and σi,B =

√
1

|B|
∑
x′∈B

(h(x′)− µi,B)2 ,
(23)

where B is the batch that x belongs to and |B| is batch size.

The works Yang et al. [63], He et al. [23] show that for large batch size, the effect of BatchNorm for
NNGP kernel and Jacobian Norm is deterministic. We summarize the results for the pre-BN MLP
setup:

Kl+1(x, x′) =
σ2
w

Nl

Nl∑
j=1

Eθ

[
ϕ(h̃l

j(x))ϕ(h̃
l
j(x

′))
]
+ µ2Kl(x, x′) (24)

J l,l+1 =
σ2
w

Kl(x, x)−Kl(x, x′)
Eθ

[
ϕ(h̃l

j(x))ϕ(h̃
l
j(x))

]
+ µ2 , (25)

where x′ in the APJN term can be any x′ ̸= x, since for a large batch size all choices are equivalent.

From the above result, we can see that most results we have for LayerNorm can be translated to
BatchNorm with an easy replacement Kl(x, x) →

(
Kl(x, x)−Kl(x, x′)

)
. As a simple example,

consider a pre-BN ResNet architecture, but with all the Convolutional layers replaced with Linear
(Fully Connected) layers. For such a network, we have the following result for µ < 1:

J l,l+1 =
π2(1− µ2)

(π − 1)2
+ µ2 . (26)

For µ = 1, we have

J l,l+1 = 1 +O(l−1) (27)

The ResNet results can then be obtained by replacing Fully Connected layers with Convolution layers,
in a similar way as discussed in ResNet(LayerNorm) section. We show the numerical results for
ResNet with BatchNorm in Figure 6.

Figure 6: ResNet110(BatchNorm): Left to right: (1)(2) J L−1,L phase diagrams, with (σ2
w, σ

2
b ) and

(σ2
w, µ). (3)(4) Training curves w.r.t σ2

w and µ.

C Discussions on Transformers

As preliminary empirical results, we applied our method to Vision Transformers (ViTs). Figure 7
supports our argument in the main text that the Pre-LN architecture is generally insensitive to
initialization when µ = 1, where Post-LN is only stable with small σ2

w; Figure 8 further demonstrates
that the attention mechanism is highly sensitive to initialization and thus vulnerable to the gradient
vanishing/diverging problem.
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Figure 7: χJ Phase diagram for Vision Transformer (ViT) (L = 24, nheads = 8, dembd = 256).
We present cases with pre/post-LN, with/without MLP layers. Top-left: Usual ViT – becomes
everywhere-critical when µ = 1; ordered otherwise. Bottom-left: Usual ViT without MLP layers.
Top-right: ViT with post-LN (instead of pre-LN). Always ordered for finite σw. Bottom-right: ViT
with post-LN, without MLP layers.
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Figure 8: logχJ Phase diagram for stacked Attention layers with/without MLP layers (L = 24,
nheads = 8, dembd = 256). We use logχJ and cut off the colorbar at χJ = 101 because the χJ
values in this case span from ∼ 50 orders of magnitude.

D Technical details for Jacobians and LayerNorm

We will drop the dependence of hl
i(x) on x throughout the Appendices. It should not cause any

confusion since we are always considering a single input.

D.1 NNGP Kernel

First, we derive the recurrence relation for the NNGP kernel Eq.(9). As mentioned in the main text,
weights and biases are initialized (independently) from standard normal distribution N (0, σ2

w/fan_in).
We then have

Eθ[w
l
ijw

l
mn] =

σ2
w

Nl−1
δimδjn and Eθ[b

l
ib

l
j ] = σ2

bδij (28)
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by definition.

We would like to prove theorem 2.4, as a consequence of lemma 2.2. The proof of lemma 2.2 can be
found in [45].

Proof of theorem 2.4. One can prove this by definition with lemma 2.2.

Kl+1 ≡ 1

Nl+1

Nl+1∑
i=1

Eθ[h
l+1
i hl+1

i ]

=
1

Nl+1

Nl+1∑
i=1

Eθ

 Nl∑
j=1

wl+1
ij ϕ(hl

j) + bl+1
i

( Nl∑
k=1

wl+1
ik ϕ(hl

k) + bl+1
i

)
=

1

Nl+1

Nl+1∑
i=1

Eθ

 Nl∑
j=1

Nl∑
k=1

wl+1
ij wl+1

ik ϕ(hl
j)ϕ(h

l
k) + bl+1

i bl+1
i


=

1

Nl+1

Nl+1∑
i=1

Eθ

σ2
w

Nl

Nl∑
j=1

ϕ(hl
j)ϕ(h

l
j) + σ2

b


=
σ2
w

Nl

Nl∑
j=1

Eθ

[
ϕ(hl

j)ϕ(h
l
j)
]
+ σ2

b . (29)

D.2 Jacobians

Next, we prove theorem 2.5 in the main text.

Proof of theorem 2.5. We start from the definition of the averaged partial Jacobian norm (APJN)
(l > l0)

J l0,l+1 ≡ 1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

∂hl+1
i

∂hl0
j

∂hl+1
i

∂hl0
j


=

1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

(
Nl∑
k=1

∂hl+1
i

∂hl
k

∂hl
k

∂hl0
j

)(
Nl∑

m=1

∂hl+1
i

∂hl
m

∂hl
m

∂hl0
j

)
=

1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

Nl∑
k,m=1

(
wl+1

ik ϕ′(hl
k)
) (

wl+1
im ϕ′(hl

m)
)( ∂hl

k

∂hl0
j

∂hl
m

∂hl0
j

)
=

1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

Nl∑
k,m=1

wl+1
ik wl+1

im ϕ′(hl
k)ϕ

′(hl
m)

∂hl
k

∂hl0
j

∂hl
m

∂hl0
j


=

1

Nl+1

Nl+1∑
i=1

Nl0∑
j=1

Nl∑
k=1

σ2
w

Nl
Eθ

[
ϕ′(hl

k)ϕ
′(hl

k)
∂hl

k

∂hl0
j

∂hl
k

∂hl0
j

]

=
σ2
w

Nl

Nl∑
k=1

Eθ

ϕ′(hl
k)ϕ

′(hl
k)

Nl0∑
j=1

∂hl
k

∂hl0
j

∂hl
k

∂hl0
j

 . (30)
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where we used the chain rule and took the expectation value over wl+1. Next, we take the chain rule
again:

J l0,l+1 =
σ2
w

Nl

Nl∑
k=1

Eθ

ϕ′(hl
k)ϕ

′(hl
k)

Nl0∑
j=1

Nl−1∑
m,n=1

wl
kmwl

knϕ
′(hl−1

m )ϕ′(hl−1
n )

∂hl−1
m

∂hl0
j

∂hl−1
n

∂hl0
j


=

σ4
w

NlNl−1

Nl∑
k=1

Eθ

ϕ′(hl
k)ϕ

′(hl
k)

Nl0∑
j=1

Nl−1∑
m=1

ϕ′(hl−1
m )ϕ′(hl−1

m )
∂hl−1

m

∂hl0
j

∂hl−1
m

∂hl0
j

+O(1/Nl−1)


=

σ4
w

NlNl−1

Nl∑
k=1

Eθ

[
ϕ′(hl

k)ϕ
′(hl

k)
]
Eθ

Nl0∑
j=1

Nl−1∑
m=1

ϕ′(hl−1
m )ϕ′(hl−1

m )
∂hl−1

m

∂hl0
j

∂hl−1
m

∂hl0
j


=

σ2
w

Nl

Nl∑
k=1

Eθ

[
ϕ′(hl

k)ϕ
′(hl

k)
]
· σ2

w

Nl−1
Eθ

Nl0∑
j=1

Nl−1∑
m=1

ϕ′(hl−1
m )ϕ′(hl−1

m )
∂hl−1

m

∂hl0
j

∂hl−1
m

∂hl0
j


= χl

J J l0,l , (31)

where we integrate (by parts) over wl to get the second line. We take Nl−1 → ∞ and then Nl → ∞
to get the third line. We rearrange terms and use the Eq.(11) to get the fourth and fifth lines. Notice
that to get the third line we used the fact in the infinite width limit, the distribution of hl

i is independent
of hl−1

i . Thus we proved

J l0,l+1 = χl
JJ l0,l . (32)

The critical line is defined by requiring χ⋆
J = 1, where critical points are reached by further requiring

χ⋆
K = 1.

As we mentioned in the main text, l0 = 0 is subtle since the input dimension is fixed N0, which can
not be assumed to be infinity. Even though for a dataset like MNIST, usually N0 is not significantly
smaller than width Nl. We show how to take finite O(N−1

0 ) correction into account by using one
example.

Lemma D.1. Consider a one hidden layer network with a finite input dimension N0. In the infinite
width limit, the APJN is still deterministic and the first step of the recurrence relation is modified to:

J 0,2 =

(
χ1
J +

2σ2
w

N0
χ1
∆

N0∑
k

1

N0
h0
kh

0
k

)
J 0,1 , (33)

where J 0,1 = σ2
w.
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Proof.

J 0,2 =
1

N2
Eθ

 N2∑
i=1

N0∑
j=1

∂h2
i

∂h0
j

∂h2
i

∂h0
j


=

1

N2
Eθ

 N2∑
i=1

N0∑
j=1

N1∑
k,m=1

w2
ikw

2
imϕ′(h1

k)ϕ
′(h1

m)
∂h1

k

∂h0
j

∂h1
m

∂h0
j


=

1

N2

N2∑
i=1

N0∑
j=1

N1∑
k,m=1

Eθ[w
2
ikw

2
imw1

kjw
1
mjϕ

′(h1
k)ϕ

′(h1
m)]

=

N0∑
j=1

N1∑
k=1

σ2
w

N1
Eθ[w

1
kjw

1
kjϕ

′(h1
k)ϕ

′(h1
k)]

=σ2
w

(
χ1
J +

2σ2
w

N0
χ1
∆

N0∑
k

1

N0
h0
kh

0
k

)

=

(
χ1
J +

2σ2
w

N0
χ1
∆

N0∑
k

1

N0
h0
kh

0
k

)
J 0,1 , (34)

where to get the result we used integrate by parts, then explicitly integrated over w1
ij . We have

introduced a coefficient of finite width corrections, χl
∆, defined as follows.

Definition D.2 (Coefficient of Finite Width Corrections).

χl
∆ =

σ2
w

Nl

Nl∑
i=1

Eθ[ϕ
′′(hl

i)ϕ
′′(hl

i) + ϕ′′′(hl
i)ϕ

′(hl
i)] . (35)

Remark D.3. Notice that the correction to J 0,2 is order O(N−1
0 ). If one calculates the recurrence

relation for deeper layers, the correction to J 0,l will be O(
∑l

l′=0 N
−1
l′ ), which means the contribution

from hidden layers can be ignored in infinite width limit.

The J 0,2 example justifies the factorization of the integral when we go from the last line of Eq.(30)
to Eq.(32).

Finally, the full Jacobian in infinite width limit can be written as

Lemma D.4 (APJN with l0 = 0). The APJN (with l0 = 0) of a given network can be written as

J 0,l = σ2
w

(
χ1
J +

2σ2
w

N0
χ1
∆

N0∑
k

1

N0
h0
kh

0
k

)
l−1∏
l′=2

χl′

J . (36)

Note that APJN with l0 > 0 does not receive the O(N−1
0 ) correction.

D.3 APJN and gradients

As mentioned in the main text, APJN is an important tool in studying the exploding and vanishing
gradients problem. Its utility stems from the fact that it is a dominant factor in the norm of the
gradients. This can be readily by looking at the (squared) L2 norm of the gradient of any flattened
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parameter matrix θl, at initialization. In the infinite width limit, one gets

∥∇θlL∥22 =

(∑
all

∂L
∂hL

i

∂hL
i

∂hL−1
j

· · ·
∂hl+1

k

∂hl
m

∂hl
m

∂θln

)2

=
∑
all

(
∂L
∂hL

i

∂L
∂hL

i′

)(
∂hL

i

∂hL−1
j

∂hL
i′

∂hL−1
j′

)
· · ·

(
∂hl+1

k

∂hl
m

∂hl+1
k′

∂hl
m′

)(
∂hl

m

∂θln

∂hl
m′

∂θln

)

=
∑
all

(
∂L
∂hL

i

∂L
∂hL

i′

)(
∂hL

i

∂hL−1
j

∂hL
i′

∂hL−1
j′

)
· · ·

(
∂hl+1

k

∂hl
m

∂hl+1
k′

∂hl
m′

)
δmm′

∥∥∥∥∂hl

∂θl

∥∥∥∥2
F

=
∑
all

(
∂L
∂hL

i

∂L
∂hL

i′

)(
∂hL

i

∂hL−1
j

∂hL
i′

∂hL−1
j′

)
· · · δkk′J l,l+1

∥∥∥∥∂hl

∂θl

∥∥∥∥2
F

=
∑

i,i′,j,j′

(
∂L
∂hL

i

∂L
∂hL

i′

)(
∂hL

i

∂hL−1
j

∂hL
i′

∂hL−1
j′

)
δjj′ · · · J l,l+1

∥∥∥∥∂hl

∂θl

∥∥∥∥2
F

=
∑
i,i′

(
∂L
∂hL

i

∂L
∂hL

i′

)
δii′J L−1,L · · · J l,l+1

∥∥∥∥∂hl

∂θl

∥∥∥∥2
F

=

∥∥∥∥ ∂L
∂hL

∥∥∥∥2
2

J L−1,L · · · J l,l+1

∥∥∥∥∂hl

∂θl

∥∥∥∥2
F

=

∥∥∥∥ ∂L
∂hL

∥∥∥∥2
2

J l,L

∥∥∥∥∂hl

∂θl

∥∥∥∥2
F

, (37)

where ∥·∥2 denotes the L2 norm and ∥·∥F denotes the Frobenius norm.

D.4 LayerNorm on Pre-activations

Definition D.5 (Layer Normalization).

h̃l
i =

hl
i − E[hl]√

E[(hl)2]− E[hl]2
γl
i + βl

i , (38)

where γl
i and βl

i are learnable parameters.
Remark D.6. With only LayerNorm, the (1) is simplified to

hl+1
i =

Nl∑
j=1

wl+1
ij ϕ(h̃l

j) + bl+1
i . (39)

Remark D.7. In the limit of infinite width, using the law of large numbers, the average over neurons
E [· · · ] can be replaced by the average of parameter-initializations Eθ [· · · ]. Additionally, in this limit,
the preactivations are i.i.d. Gaussian distributed : hl ∼ N (0,Kl).

E
[
hl
]
= Eθ

[
hl
]
= 0 , (40)

E
[(
hl
)2]

= Eθ

[(
hl
)2]

= Kl . (41)

The normalized preactivation then simplifies to the form of Eq.(19).
Remark D.8. At initialization, the parameters γl

i and βl
i take the values 1 and 0, respectively. This

leads to the form in equation (19). In infinite width limit, it has the following form

h̃l
i =

hl
i − Eθ[h

l]√
Eθ[(hl)2]− Eθ[hl]2

. (42)

Lemma D.9. With LayerNorm on preactivations, the gaussian average is modified to

Eθ

[
O(h̃l

i)
]
=

1√
2π

∫
dh̃l

i O(h̃l
i) e

− (h̃l
i)

2

2 . (43)
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Proof. By definition h̃l
i is sampled from a standard normal distribution N (0, 1), then use lemma 2.2

to get the final form.

Theorem D.10. In the infinite width limit the recurrence relation for the NNGP kernel with Layer-
Norm on preactivations is

Kl+1 =
σ2
w

Nl

Nl∑
j=1

Eθ

[
ϕ(h̃l

j)ϕ(h̃
l
j)
]
+ σ2

b . (44)

Proof.

Kl+1 =
1

Nl+1

Nl+1∑
i=1

Eθ

[
hl+1
i hl+1

i

]
=

1

Nl+1

Nl+1∑
i=1

Eθ

 Nl∑
j=1

wl+1
ij ϕ(h̃l

j) + bl+1
i

( Nl∑
k=1

wl+1
ik ϕ(h̃l

k) + bl+1
i

)
=
σ2
w

Nl

Nl∑
j=1

Eθ

[
ϕ(h̃l

j)ϕ(h̃
l
j)
]
+ σ2

b . (45)

Theorem D.11. In the infinite width limit the recurrence relation for partial Jacobian with LayerNorm
on preactivations is

J l0,l+1 = χl
JJ l0,l , (46)

where χl
J =

σ2
w

NlKl

∑Nl

i=1 Eθ

[
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2
]
.

Proof.
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]
J l0,l

= χl
JJ l0,l , (47)

D.5 LayerNorm on activations

The general definition of LayerNorm on activations is given as follows.
Definition D.12 (LayerNorm on Activations).

ϕ̃(hl
i) =

ϕ(hl
i)− E[ϕ(hl)]√

E[ϕ(hl)2]− E[ϕ(hl)]2
γl
i + βl

i . (48)
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Remark D.13. The recurrence relation for preactivations (Eq.(1)) gets modified to

hl+1
i =

Nl∑
j=1

wl+1
ij ϕ̃(hl

j) + bl+1
i . (49)

Remark D.14. At initialization, the parameters γl
i and βl

i take the values 1 and 0, respectively. This
leads to the form

ϕ̃(hl
i) =

ϕ(hl
i)− E[ϕ(hl)]√

E[ϕ(hl)2]− E[ϕ(hl)]2

=
ϕ(hl

i)− Eθ

[
ϕ(hl)

]√
Eθ [ϕ(hl)2]− Eθ [ϕ(hl)]

2
,

(50)

where the first line follows from the fact that at initialization, the parameters γl
i and βl

i take the values
1 and 0 respectively. In the second line, we have invoked the infinite width limit.
Remark D.15. Evaluating the Gaussian average in this case is similar to the cases in the previous
section. The only difference is that the averages are taking over the distribution hl−1 ∼ N (0,Kl−1 =
σ2
w + σ2

b ). Again this can be summarized as

Eθ

[
O(hl

i)
]
=

1√
2π(σ2

w + σ2
b )

∫
dhl

i O(hl
i) e

− (hl
i)

2

2(σ2
w+σ2

b
) . (51)

Next, we calculate the modifications to the recurrence relations for the NNGP kernel and Jacobians.
Theorem D.16. In the infinite width limit the recurrence relation for the NNGP kernel with Layer-
Norm on activations is

Kl+1 = σ2
w + σ2

b . (52)

Proof.

Kl+1 =
1

Nl+1

Nl+1∑
i=1

Eθ

[
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i hl+1
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]
=

1

Nl+1

Nl+1∑
i=1

Eθ

 Nl∑
j=1

wl+1
ij ϕ̃(hl

j) + bl+1
i
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2
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[
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])2]
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2 + σ2
b

= σ2
w + σ2

b . (53)

Theorem D.17. In the infinite width limit the recurrence relation for partial Jacobian with LayerNorm
on activations is

J l0,l+1 = χl
JJ l0,l , (54)

where χl
J ≡ σ2

w

Eθ[ϕ′(hl)2)]
Eθ[ϕ(hl)2]−Eθ[ϕ(hl)]2

.
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Proof.
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2J
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JJ l0,l , (55)

E Residual Connections

Definition E.1. We define residual connections by the modified the recurrence relation for preactiva-
tions (Eq.(1))

hl+1
i =

Nl∑
j=1

wl+1
ij ϕ(hl

j) + bl+1
i + µhl

i , (56)

where the parameter µ controls the strength of the residual connection.

Remark E.2. Note that this definition requires Nl+1 = Nl. We ensure this by only adding residual
connections to the hidden layers, which are of the same width. More generally, one can introduce a
tensor parameter µij .

Remark E.3. In general, the parameter µ could be layer-dependent (µl). But we suppress this
dependence here since we are discussing self-similar networks.

Theorem E.4. In the infinite width limit, the recurrence relation for the NNGP kernel with residual
connections is changed by an additional term controlled by µ

Kl+1 =
σ2
w

Nl

Nl∑
j=1

Eθ

[
ϕ(hl

j)ϕ(h
l
j)
]
+ σ2

b + µ2Kl . (57)
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Proof.
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where we used the fact Nl+1 = Nl to get the last line.

Theorem E.5. In the infinite width limit, the recurrence relation for partial Jacobians with residual
connections has a simple multiplicative form

J l0,l+1 = χl
JJ l0,l , (59)

where the recurrence coefficient is shifted to χl
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J l0,l+1 = χl
JJ l0,l . (60)
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F Residual Connections with LayerNorm on Preactivations (Pre-LN)

We recall the recurrence relation (1):

hl+1
i =

Nl∑
j=1

wl+1
ij ϕ(h̃l

j) + bl+1
i + µhl

i . (61)

Theorem F.1. In the infinite width limit, the recurrence relation for the NNGP kernel is then modified
to
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Proof.
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Remark F.2. For µ < 1, the recursion relation has a fixed point

K⋆ =
σ2
w
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ϕ(h̃l⋆

j )ϕ(h̃l⋆

j )
]
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where the average here is exactly the same as cases for LayerNorm applied to preactivations without
residue connections. l⋆ labels some very large depth l.
Remark F.3. For µ = 1 case, the solution of (62) is

Kl = K0 +
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 . (65)

which is linearly growing since the expectation does not depend on depth. K0 is the NNGP kernel
after the input layer.

Theorem F.4. In the infinite width limit, the recurrence relation for Jacobians changes by a constant
shift in the recursion coefficient.

J l0,l+1 = χl
JJ l0,l , (66)

where for this case

χl
J =

σ2
w

NlKl

Nl∑
k=1

Eθ

[
ϕ′(h̃l

k)ϕ
′(h̃l

k)
]
+ µ2 . (67)
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Remark F.5. Assuming l ≥ l⋆, we combine (64) and (67) to derive Equation (5) in the Theorem 1.3.
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where A =
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[
ϕ′(h̃l
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k)
]

and B =
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[
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j)ϕ(h̃
l
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+ σ2

b . Recall that

ξ = | logχ⋆
J |−1. This directly leads us to Equation (5).

ξ =
1

|log (χ⋆
J )|

=
1

|log
(
(1− µ2)AB + µ2

)
|

(70)

Note that in Equation (5), we discard the average over neurons in A and B, since we are in the infinite
width limit.
Remark F.6. As we mentioned above µ = 1 needs extra care. Plugging µ = 1 into the result (65)
and (67) we find out that

χl
J |µ=1 =

σ2
w

∑Nl

k=1 Eθ

[
ϕ′(h̃l

k)ϕ
′(h̃l

k)
]
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j=1 Eθ

[
ϕ(h̃l

j)ϕ(h̃
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]
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b
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∼ 1 +O

(
1

l

)
. (71)

Thus, we get everywhere criticality: critical behavior independent of the choice of initialization
(σb, σw). It also follows that the correlation length ξ diverges in this case. (71) leads to power law
behaviour in Jacobians (with exponent ζ) at large depth. Note that the exponent ζ is not universal.

Remarks F.5 and F.6 together serve as the complete proof of Theorem 1.3

G Critical Exponents

To prove theorem 2.7, we first need to find the critical exponent of the NNGP kernel [45].
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Lemma G.1. In the infinite width limit, consider a critically initialized network with an activation
function ϕ. The scaling behavior of the fluctuation δKl ≡ Kl − K⋆ in non-exponential. If the
recurrence relation can be expand to leading order δKl as δKl+1 ≈ δKl − cn(δKl)n for n ≥ 2. The
solution of δKl is

δKl =
1

cn(n− 1)
l−ζK , (72)

where ζK = 1
n−1 .

Remark G.2. The constant cn and the order of the first non-zero term n is determined by the choice
of activation function.

Proof. We can expand the recurrence relation for the NNGP kernel (9) to the second order of
δKl = Kl −K⋆ on both sides.

δKl+1 ≈ δKl − cn(δKl)n . (73)

Use power law ansatz δKl = A l−ζK then

(l + 1)−ζK = l−ζK − cnA l−nζK . (74)

Multiply lζK on both side then use Taylor expansion ( l
l+1 )

ζK ≈ 1− ζK
l

ζK
l

= cnAl−(n−1)ζK . (75)

For arbitrary l, the only non-trivial solution of the equation above is

A =
1

cn(n− 1)
and ζK =

1

n− 1
. (76)

Proof of theorem 2.7. We will assume c2 ̸= 0. Then use lemma G.1, we can expand χl
J in terms of

δKl. To leading order l−1

χl
J ≈1− d1δKl

=1− d1
c2

l−1 . (77)

Consider a sufficiently large l. In this case O(l−1) approximation is valid. We write recurrence
relations of Jacobians as

J l0,l =

l−1∏
l′=l0

(
1− d1

c2
l′−1

)
J l0,l0

≈ cl0 · l−ζ . (78)

When cn = 0 for all n ≥ 2, from lemma G.1 we have δKl = 0. Thus the Jacobian saturates to some
constant.

We checked the scaling empirically by plotting J 0,l vs. l in a log–log plot and fitting the slope. These
results are presented in Fig.1.

H MLP-Mixer

In this section we would like to analyze an architecture called MLP-Mixer [48], which is based on
multi-layer perceptrons (MLPs). A MLP-Mixer (i) chops images into patches, then applies affine
transformations per patch, (ii) applies several Mixer Layers, (iii) applies pre-head LayerNorm, Global
Average Pooling, and an output affine transformation. We will explain the architecture by showing
forward pass equations.
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Suppose one has a single input with dimension (Cin, Hin,Win). We label it as xµi, where the Greek
letter labels channels and the Latin letter labels flattened pixels.

First of all the (i) is realized by a special convolutional layer, where kernel size f is equal to the stride
s. Then, the first convolution layer can be written as

h0
µi =

f2∑
j=1

Cin∑
ν=1

W 0
µν;jxν,j+(i−1)s2 + b0µi , (79)

where f is the size of filter and s is the stride. In our example f = s. Notice in PyTorch both bias
and weights are sampled from a uniform distribution U(−

√
k,
√
k), where k = (Cinf

2)−1.

Eθ[W
0
µν;iW

0
ρσ;j ] =

1

3Cinf2
δµρδνσδij , (80)

Eθ[b
0
µib

0
νj ] =

1

3Cinf2
δµνδij . (81)

Notice that the output of Conv2d: h0
µi ∈ RC×Np , where C stands for channels and Np = HinWin/f

2

stands for patches, both of them will be mixed later by Mixer layers.

Next, we stack l Mixer Layers. A Mixer Layer contains LayerNorms and two MLPs, where the
first one mixed patches i, j (token mixing) with a hidden dimension Ntm, the second one mixed
channels µ, ν (channel-mixing) with a hidden dimension Ncm. Notice that for Mixer Layers we use
the standard parameterization.

• First LayerNorm. It acts on channels µ.

h̃6l
µi =

h6l
µi − EC [h

6l
ρi]√

VarC [h6l
ρi]

, (82)

where we defined a channel mean EC [h
6l
ρi] ≡ 1

C

∑C
ρ=1 h

6l
ρi and channel variance VarC ≡

EC

[(
h6l
ρi

)2]− (EC [h
6l
ρi]
)2

.

• First MlpBlock. It mixes patches i, j, preactivations from different channels that share the
same weight and bias.

– 6l + 1: Linear Affine Layer.

h6l+1
µj =

Np∑
k=1

w6l+1
jk h̃6l

µk + b6l+1
j . (83)

– 6l + 2: Affine Layer.

h6l+2
µi =

Ntm∑
j=1

w6l+2
ij ϕ(h6l+1

µj ) + b6l+2
i , (84)

where Ntm stands for the hidden dimension of "token mixing".
– 6l + 3: Residual Connections.

h6l+3
µi = h6l+2

µi + µh6l
µi . (85)

• Second LayerNorm. It again acts on channels µ.

h̃6l+3
µi =

h6l+3
µi − EC [h

6l+3
ρi ]√

VarC [h
6l+3
ρi ]

. (86)

• Second MlpBlock. It mixes channels µ, ν, preactivations from different patches share the
same weight and bias.
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– 6l + 4: Linear Affine Layer.

h6l+4
νi =

C∑
ρ=1

w6l+4
νρ h̃6l+3

ρi + b6l+4
ν . (87)

– 6l + 5. Affine Layer.

h6l+5
µi =

Ncm∑
ν=1

w6l+5
µν ϕ(h6l+4

νi ) + b6l+5
µ . (88)

– 6l + 6. Residual Connections.

h6l+6
µi = h6l+5

µi + µh6l+3
µi . (89)

Suppose the network has L Mixer layers. After those layers the network has a pre-head LayerNorm
layer, a global average pooling layer, and an output layer. The pre-head LayerNorm normalizes over
channels µ can be described as the following

h̃6L
µi =

h6L
µi − EC [h

6L
ρi ]√

VarC [h6L
ρi ]

. (90)

Global Average Pool over patches i.

hp
µ =

1

Np

Np∑
i=1

h̃6L
µi . (91)

Output Layer

fµ =

C∑
ν=1

wµνh
p
ν + bµ . (92)

We plotted the phase diagram using the following quantity from repeating Mixer Layers:

χ⋆
J = lim

L→∞

 1

NpC

Np∑
i=1

C∑
µ=1

Eθ

 C∑
ρ=1

Np∑
k=1

∂h6L
µi

∂h6L−6
ρk

∂h6L
µi

∂h6L−6
ρk

 . (93)

I Results for Scale Invariant Activation Functions

Definition I.1 (Scale invariant activation functions).

ϕ(x) = a+ xΘ(x) + a− xΘ(−x) , (94)

where Θ(x) is the Heaviside step function. ReLU is the special case with a+ = 1 and a− = 0.

I.1 NNGP Kernel

First evaluate the average using lemma 2.2

Eθ

[
ϕ(hl

i)ϕ(h
l
i)
]
=

1√
2πKl

∫
dhl

i

(
a2+ + a2−

) (
hl
i

)2
e−

(hl
i)

2

2Kl

=
a2+ + a2−

2
Kl . (95)

Thus we obtain the recurrence relation for the NNGP kernel with scale invariant activation function.

Kl+1 =
σ2
w(a

2
+ + a2−)

2
Kl + σ2

b . (96)
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Finite fixed point of the recurrence relation above exists only if

χ⋆
K =

σ2
w(a

2
+ + a2−)

2
≤ 1 . (97)

As a result

σ2
w ≤ 2

a2+ + a2−
. (98)

For σ2
w = 2

a2
++a2

−
case, finite fixed point exists only if σ2

b = 0.

I.2 Jacobian(s)

The calculation is quite straightforward, by definition

χl
J =σ2

wEθ

[
ϕ′(hl

i)ϕ
′(hl

i)
]

=
σ2
w√

2πKl

∫
dhl

i

[
a+Θ(hl

i)− a−Θ(hl
i)
]2

e−
(hl

i)
2

2Kl

=
σ2
w(a

2
+ + a2−)

2
, (99)

where we used the property xδ(x) = 0 for Dirac’s delta function to get the first line.

Thus the critical line is defined by

σw =

√
2

a2+ + a2−
. (100)

For ReLU with a+ = 1 and a− = 0, the network is at critical line when

σw =
√
2 , (101)

where the critical point is located at

(σw, σb) = (
√
2, 0) . (102)

I.3 Critical Exponents

Since the recurrence relations for the NNGP kernel and Jacobians are linear. Then from lemma G.1
and theorem 2.7

ζK = 0 and ζ = 0 . (103)

I.4 LayerNorm on Pre-activations

Use lemma D.9 and combine all known results for scale-invariant functions

χl
J =

σ2
w

NlKl

Nl∑
k=1

Eθ

[
ϕ′(h̃l

k)ϕ
′(h̃l

k)
]∣∣∣∣∣

K̃l−1=1

=
σ2
w(a

2
+ + a2−)

σ2
w(a

2
+ + a2−) + 2σ2

b

. (104)

In this case,
χl
J ≤ 1 (105)

is always true. The equality only holds at σb = 0 line.
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I.5 LayerNorm on Activations

First we substitute Kl−1 = σ2
w + σ2

b into known results

Eθ

[
ϕ′(hl

i)ϕ
′(hl

i)
]
=

a2+ + a2−
2

, (106)

Eθ

[
ϕ(hl

i)ϕ(h
l
i)
]
=

a2+ + a2−
2

(σ2
w + σ2

b ) . (107)

There is a new expectation value we need to show explicitly

Eθ

[
ϕ(hl

i)
]
=

1√
2π(σ2

w + σ2
b )

∫ ∞

−∞
dhl

iϕ(h
l
i)e

− 1
2h

l
i(σ

2
w+σ2

b )
−1hl

i

=
1√

2π(σ2
w + σ2

b )

∫ ∞

0

dhl
i(a+ − a−)h

l
ie

− (hl
i)

2

2(σ2
w+σ2

b
)

= (a+ − a−)

√
σ2
w + σ2

b

2π
. (108)

Thus

χl
J =

σ2
w

σ2
w + σ2

b

·
π(a2+ + a2−)

π(a2+ + a2−)− (a+ − a−)2
. (109)

The critical line is defined by χ⋆
J = 1, which can be solved as

σb =

√
(a+ − a−)2

π(a2+ + a2−)− (a+ − a−)2
σw . (110)

For ReLU with a+ = 1 and a− = 0

σb =

√
1

π − 1
σw

≈0.683σw . (111)

I.6 Residual Connections

The recurrence relation for the NNGP kernel can be evaluated to be

Kl+1 =
σ2
w(a

2
+ + a2−)

2
Kl + σ2

b + µ2Kl . (112)

The condition for the existence of fixed point

χ⋆
K =

σ2
w(a

2
+ + a2−)

2
+ µ2 ≤ 1 (113)

leads us to

σ2
w ≤ 2(1− µ2)

a2+ + a2−
. (114)

For σ2
w = 2(1−µ2)

a2
++a2

−
, finite fixed point exists only if σ2

b = 0. (Diverges linearly otherwise)

The recurrence coefficient for Jacobian is evaluated to be

χ⋆
J =

σ2
w(a

2
+ + a2−)

2
+ µ2 . (115)

The critical line is defined as

σw =

√
2(1− µ2)

a2+ + a2−
. (116)

The critical point is located at
(√

2(1−µ2)
a2
++a2

−
, 0
)

.

For ReLU, the critical point is at
(√

2(1− µ2), 0
)

.
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I.7 Residual Connections with LayerNorm on Preactivations (Pre-LN)

Again use lemma D.9 and combine all known results for scale-invariant functions

χ⋆
J = lim

l→∞

(
σ2
w

NlKl

Nl∑
k=1

Eθ

[
ϕ′(h̃l

k)ϕ
′(h̃l

k)
]∣∣∣∣∣

K̃l−1=1

+ µ2

)

=
σ2
w(a

2
+ + a2−)(1− µ2)

σ2
w(a

2
+ + a2−) + 2σ2

b

+ µ2

= 1− 2σ2
b (1− µ2)

σ2
w(a

2
+ + a2−) + 2σ2

b

(117)

Similar to the case without residue connections

χl
J ≤ 1 (118)

is always true. The equality only holds at σb = 0 line for µ < 1.

Notice there is a very special case µ = 1, where the whole σb − σw plane is critical.

J Results for erf Activation Function

Definition J.1 (erf activation function).

ϕ(x) =
2√
π

∫ x

0

e−t2dt . (119)

J.1 NNGP Kernel

To evaluate lemma 2.2 exactly, we introduce two dummy variables λ1 and λ2[51].

Eθ

[
ϕ(λ1h

l
i)ϕ(λ2h

l
i)
]
=

∫
dλ1

∫
dλ2

d2

dλ1dλ2
Eθ

[
ϕ(λ1h

l
i)ϕ(λ2h

l
i)
]

=

∫
dλ1

∫
dλ2

∫
dhl

i

4√
2π3Kl

(
hl
i

)2
e−(λ

2
1+λ2

2+
1

2Kl )(h
l
i)

2

=

∫
dλ1

∫
dλ2

4Kl

π (1 + 2Kl(λ2
1 + λ2

2))

=
2

π
arcsin

(
2Klλ1λ2

1 + 2Kl(λ2
1 + λ2

2)

)
. (120)

We use the special case where λ1 = λ2 = 1.

Thus the recurrence relation for the NNGP kernel with erf activation function is

Kl+1 =
2σ2

w

π
arcsin

(
2Kl

1 + 2Kl

)
+ σ2

b . (121)

As in the scale-invariant case, finite fixed point only exists when

χ⋆
K =

4σ2
w

π

1

(1 + 2K⋆)
√
1 + 4K⋆

≤ 1 . (122)

Numerical results show the condition is satisfied everywhere in σb − σw plane, where χ⋆
K = 1 is only

possible when K⋆ = 0.
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J.2 Jacobians

Follow the definition

χl
J = σ2

wEθ

[
ϕ′(hl

i)ϕ
′(hl

i)
]

=
4σ2

w√
2π3Kl

∫
dhl

i e
−2(hl

i)
2

e−
(hl

i)
2

2Kl

=
4σ2

w

π

1√
1 + 4Kl

. (123)

To find phase boundary χ⋆
J = 1, we need to combine Eq.(121) and Eq.(123) and evaluate them at

K⋆.

K⋆ =
2σ2

w

π
arcsin

(
2K⋆

1 + 2K⋆

)
+ σ2

b , (124)

χ⋆
J =

4σ2
w

π

1√
1 + 4K⋆

= 1 . (125)

One can solve the equations above and find the critical line

σb =

√
16σ4

w − π2

4π2
− 2σ2

w

π
arcsin

(
16σ4

w − π2

16σ4
w + π2

)
. (126)

Critical point is reached by further requiring χ⋆
K = 1. Since χ⋆

K ≤ χ⋆
J , the only possible case is

K⋆ = 0, which is located at

(σw, σb) =

(√
π

4
, 0

)
. (127)

J.3 Critical Exponents

We show how to extract critical exponents of the NNGP kernel and Jacobians of erf activation
function.

Critical point for erf is at (σb, σw) = (0,
√

π
4 ), with K⋆ = 0. Now suppose l is large enough such

that the deviation of Kl from fixed point value K⋆ is small. Define δKl ≡ Kl −K⋆. Eq.(121) can be
rewritten as

δKl+1 =
1

2
arcsin

(
2δKl

1 + 2δKl

)
≈δKl − 2(δKl)2 .

(128)

From lemma G.1
A =

1

2
and ζK = 1 . (129)

Next we analyze critical exponent of Jacobians by expanding (123) around K⋆ = 0 critical point
(σb, σw) = (0,

√
π
4 ).

To leading order l−1 we have

χl
J ≈1− 2δKl

≈1− 1

l
.

(130)

Thus the recurrence relation for partial Jacobian, at large l, takes form

J l0,l+1 =

(
1− 1

l

)
J l0,l . (131)
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At large l

J l0,l = cl0 l
−1 , (132)

with a non-universal constant cl0 .

The critical exponent is
ζ = 1 , (133)

which is the same as ζK.

J.4 LayerNorm on Pre-activations

Use lemma D.9, we have

χl
J =

σ2
w

NlKl

Nl∑
k=1

Eθ

[
ϕ′(h̃l

k)ϕ
′(h̃l

k)
]∣∣∣∣∣

K̃l−1=1

=
4σ2

w√
5
[
2σ2

w arcsin
(
2
3

)
+ πσ2

b

] . (134)

The critical line is then defined by

σb =

√
2

π

[
2√
5
− arcsin

(
2

3

)]
σw

≈ 0.324σw . (135)

J.5 LayerNorm on Activations

Due to the symmetry of erf activation function Eθ

[
ϕ(hl

i)
]
= 0, we only need to modify our known

results.

Eθ

[
ϕ′(hl

i)ϕ
′(hl

i)
]
=

4

π

1√
1 + 4(σ2

w + σ2
b )

, (136)

Eθ

[
ϕ(hl

i)ϕ(h
l
i)
]
=

2

π
arcsin

(
2(σ2

w + σ2
b )

1 + 2(σ2
w + σ2

b )

)
. (137)

Thus

χl
J =

2σ2
w√

1 + 4(σ2
w + σ2

b )
· 1

arcsin
(

2(σ2
w+σ2

b )

1+2(σ2
w+σ2

b )

) , (138)

where the phase boundary is defined by the transcendental equation χl
J = 1.

J.6 Residual Connections

The recurrence relation for the NNGP kernel can be evaluated to be

Kl+1 =
2σ2

w

π
arcsin

(
2Kl

1 + 2Kl

)
+ σ2

b + µ2Kl . (139)

Finite fixed point only exists when

χ⋆
K =

4σ2
w

π

1

(1 + 2K⋆)
√
1 + 4K⋆

+ µ2 ≤ 1 . (140)

Notice that χ⋆
K ≤ χ⋆

J still holds, where the equality holds only when K⋆ = 0.

The recurrence coefficient for Jacobian is evaluated to be

χ⋆
J =

4σ2
w

π

1√
1 + 4K⋆

+ µ2 . (141)
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The critical line is defined as

σb =

√
16σ4

w − π2(1− µ2)2

4π2(1− µ2)
− 2σ2

w

π
arcsin

(
16σ4

w − π2(1− µ2)2

16σ4
w + π2(1− µ2)2

)
. (142)

Critical point is reached by further requiring χ⋆
K = 1. Since χ⋆

K ≤ χ⋆
J , the only possible case is

K⋆ = 0, which is located at

(σw, σb) =

(√
π(1− µ2)

4
, 0

)
. (143)

Note that for µ = 1, one needs to put extra effort into analyzing the scaling behavior. First we notice
that Kl monotonically increases with depth l – the recurrence relation for the NNGP kernel at large l
(or large Kl) is

Kl+1 ≈ σ2
w + σ2

b +Kl , (144)
which regulates the first term in (141).

For µ = 1 at large depth

χl
J ∼ 1 +

4σ2
w

π
√

C0 + 4(σ2
w + σ2

b )l
. (145)

Here C0 is a constant that depends on the input.

We can approximate the asymptotic form of logJ l0,l as follows

logJ l0,l = log

(
l∏

l′=l0

χl′

J

)

=

l∑
l′=l0

log

(
1 +

4σ2
w

π
√
C0 + 4(σ2

w + σ2
b )l

′

)

≈
∫ l

l0

dl′ log

(
1 +

4σ2
w

π
√
C0 + 4(σ2

w + σ2
b )l

′

)
∼ 2c̃

√
l +O(log l) , (146)

where c̃ =
2σ2

w

π
√

σ2
w+σ2

b

.

We conclude that at large depth, the APJN for µ = 1, erf networks can be written as

J l0,l ∼ O
(
e2c̃

√
l+O(log l)

)
. (147)

This result checks out empirically, as shown in Figure 9.8

J.7 Residual Connections with LayerNorm on Preactivations (Pre-LN)

Use lemma D.9 and the results we had without residue connections for erf with LayerNorm on
preactivations.

χ∗
J = lim

l→∞

(
σ2
w

NlKl

Nl∑
k=1

Eθ

[
ϕ′(h̃l

k)ϕ
′(h̃l

k)
]∣∣∣∣∣

K̃l−1=1

+ µ2

)

=
4σ2

w(1− µ2)√
5
[
2σ2

w arcsin
(
2
3

)
+ πσ2

b

] + µ2 . (148)

The critical line is then defined by

σb =

√
2

π

[
2√
5
− arcsin

(
2

3

)]
σw

≈ 0.324σw .

(149)

8We used NTK parameterization for this experiment. However, we emphasize that it does not affect the final
result.
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Figure 9: log(J l0,l)-
√
l for µ = 1, σ2

b = 0, erf.

K Results for GELU Activation Function

Definition K.1 (GELU activation function).

ϕ(x) =
x

2

[
1 + erf

(
x√
2

)]
=
x

2

[
1 +

2√
π

∫ x√
2

0

e−t2dt

]
. (150)

K.1 NNGP Kernel

Use lemma 2.2 for GELU

Eθ

[
ϕ(hl

i)ϕ(h
l
i)
]
=

1√
2πKl

∫
dhl

i

(hl
i)

2

4

[
1 + erf

(
hl
i√
2

)]2
e−

(hl
i)

2

2Kl

=
1√
2πKl

∫
dhl

i

(hl
i)

2

4

[
1 + erf2

(
hl
i√
2

)]
e−

(hl
i)

2

2Kl

=
Kl

4
+

1√
32πKl

∫
dhl

i (h
l
i)

2erf2
(

hl
i√
2

)
e−

(hl
i)

2

2Kl

=
Kl

4
+

Kl

√
32πKl

∫
dhl

i erf2
(

hl
i√
2

)
e−

(hl
i)

2

2Kl

+
(Kl)2√
32πKl

∫
dhl

i

[
erf′
(

hl
i√
2

)
erf′
(

hl
i√
2

)
+ erf

(
hl
i√
2

)
erf′′

(
hl
i√
2

)]
e−

(hl
i)

2

2Kl

=
Kl

4
+

Kl

2π

[
arcsin

(
Kl

1 +Kl

)
+

2Kl

(1 +Kl)
√
1 + 2Kl

]
, (151)

where from the third line to the fourth line we used integrate by parts twice, and to get the last line
we used results from erf activations.

Thus the recurrence relation for the NNGP kernel is

Kl+1 =

[
Kl

4
+

Kl

2π
arcsin

(
Kl

1 +Kl

)
+

(Kl)2

π(1 +Kl)
√
1 + 2Kl

]
σ2
w + σ2

b . (152)

As a result

χ⋆
K =

σ2
w

4
+

σ2
w

2π

[
arcsin

(
K⋆

1 +K⋆

)
+

4(K⋆)3 + 11(K⋆)2 + 5K⋆

(1 +K⋆)2(1 + 2K⋆)
3
2

]
. (153)
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K.2 Jacobians

Follow the definition

χl
J =σ2

wEθ

[
ϕ′(hl

i)ϕ
′(hl

i)
]

=
σ2
w√

2πKl

∫
dhl

i

1
2
+

1

2
erf
(

hl
i√
2

)
+

e−
(hl

i)
2

2 hl
i√

2π

2

e−
(hl

i)
2

2Kl

=
σ2
w√

2πKl

∫
dhl

i

1
4
+

1

4
erf
(

hl
i√
2

)2

+
hl
ierf

(
hl
i√
2

)
e−

(hl
i)

2

2

√
2π

+
e−(hl

i)
2

(hl
i)

2

2π

 e−
(hl

i)
2

2Kl

=
σ2
w

4
+

σ2
w

2π

[
arcsin

(
Kl

1 +Kl

)
+

Kl(3 + 5Kl)

(1 +Kl)(1 + 2Kl)
3
2

]
, (154)

where we dropped odd function terms to get the third line, and to get the last line we used known
result for erf in the second term, integration by parts in the third term.

Here to get the critical line is harder. One can use the recurrence relation for the NNGP kernel at
fixed point K⋆ and χ⋆

J = 1

K⋆ =
σ2
w

4
K⋆ +

σ2
w

2π

[
arcsin

(
K⋆

1 +K⋆

)
+

σ2
wK⋆

π(1 +K⋆)
√
1 + 2K⋆

]
K⋆ + σ2

b , (155)

χ⋆
J =

σ2
w

4
+

σ2
w

2π

[
arcsin

(
K⋆

1 +K⋆

)
+

K⋆(3 + 5K⋆)

(1 +K⋆)(1 + 2K⋆)
3
2

]
= 1 . (156)

Cancel the arcsin term, σw and σb then can be written as a function of K⋆

σw = 2

[
1 +

2K⋆(3 + 5K⋆)

π(1 +K⋆)(1 + 2K⋆)
3
2

+
2

π
arcsin

(
K⋆

1 +K⋆

)]− 1
2

, (157)

σb =
K⋆

√
2π(1 + 2K⋆)

3
4

σw . (158)

One can then scan K⋆ to draw the critical line.

In order to locate the critical point, we further require χ⋆
K = 1. To locate the critical point, we solve

χ⋆
J − χ⋆

K = 0 instead. We have

σ2
w[(K⋆)3 − 3(K⋆)2 − 2K⋆]

2π(1 +K⋆)2(1 + 2K⋆)
3
2

= 0 , (159)

which has two non-negative solutions out of three

K⋆ = 0 and K⋆ =
3 +

√
17

2
. (160)

One can then solve σb and σw by plugging corresponding K⋆ values.

(σw, σb) = (2, 0) , for K⋆ = 0 , (161)

(σw, σb) ≈ (1.408, 0.416) , for K⋆ =
3 +

√
17

2
. (162)

K.3 Critical Exponents

GELU behaves in a different way compared to erf. First we discuss the K⋆ = 0 critical point, which
is located at (σb, σw) = (0, 2). We expand Eq.(152), and keep next to leading order δKl = Kl −K⋆

δKl+1 ≈ δKl +
6

π
(δKl)2 . (163)
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From lemma G.1
A = −π

6
and ζK = 1 , (164)

which is not possible since δKl ≥ 0 for this case. This result means scaling analysis is not working
here.

Next, we consider the other fixed point with K⋆ = 3+
√
17

2 at (σb, σw) = (0.416, 1.408). Expand the
NNGP kernel recurrence relation again.

δKl+1 ≈ δKl + 0.00014(δKl)2 . (165)

Following the same analysis, we find

δKl ≈ −7142.9 l−1 . (166)

Looks like scaling analysis works for this case, since K⋆ > 0. The solution shows that the critical
point is half-stable[45]. If Kl < K⋆, the fixed point is repealing, while when Kl > K⋆, the fixed point
is attractive. However, the extremely large coefficient in the scaling behavior of δKl embarrasses the
analysis. Since for any network with a reasonable depth, the deviation δKl is not small.

Now we can expand χl
J at some large depth, up to leading order l−1.

χl
J ≈ 1− 66.668

l
. (167)

Then
δJ l0,l ≈ cl0 l

−66.668 , (168)
where cl0 is a positive non-universal constant.

Critical exponent

ζ = 66.668 . (169)

Which in practice is not traceable.

K.4 LayerNorm on Pre-activations

Use lemma D.9, we have

χl
J =

σ2
w

NlKl

Nl∑
k=1

Eθ

[
ϕ′(h̃l

k)ϕ
′(h̃l

k)
]∣∣∣∣∣

K̃l−1=1

=
σ2
w(6π + 4

√
3)

σ2
w(6π + 3

√
3) + 18πσ2

b

. (170)

The critical line is then at

σb =
(
6
√
3π
)− 1

2

σw

≈0.175σw . (171)

K.5 LayerNorm on Activations

First, we need to evaluate a new expectation value

Eθ

[
ϕ(hl

i)
]
=

1√
2π(σ2

w + σ2
b )

∫
dhl

i

hl
i

2

[
1 + erf

(
x√
2

)]
e
− (hl

i)
2

2(σ2
w+σ2

b
)

=
σ2
w + σ2

b√
2π(1 + σ2

w + σ2
b )

, (172)

where we used integration by parts to get the result.
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The other integrals are modified to

Eθ

[
ϕ′(hl

i)ϕ
′(hl

i)
]
=

1

4
+

1

2π

[
arcsin

(
σ2
w + σ2

b

1 + σ2
w + σ2

b

)
+

(σ2
w + σ2

b )[3 + 5(σ2
w + σ2

b )]

(1 + σ2
w + σ2

b )[1 + 2(σ2
w + σ2

b )]
3
2

]
,

(173)

Eθ

[
ϕ(hl

i)ϕ(h
l
i)
]
=

σ2
w + σ2

b

4
+

σ2
w + σ2

b

2π
arcsin

(
σ2
w + σ2

b

1 + σ2
w + σ2

b

)
+

(σ2
w + σ2

b )
2

π(1 + σ2
w + σ2

b )
√

1 + 2(σ2
w + σ2

b )
.

(174)

One can then combine those results to find χl
J

χl
J =

σ2
w

(
1 + σ2

w + σ2
b

) [
π + 2arcsin

(
σ2
w+σ2

b

1+σ2
w+σ2

b

)
+

2(σ2
w+σ2

b )(3+5(σ2
w+σ2

b ))

(1+σ2
w+σ2

b )(1+2(σ2
w+σ2

b ))
3
2

]
π(σ2

w + σ2
b )(1 + σ2

w + σ2
b )− 2(σ2

w + σ2
b )

2 +
4(σ2

w+σ2
b )

2√
1+2(σ2

w+σ2
b )

+ 2(σ2
w + σ2

b )(1 + σ2
w + σ2

b ) arcsin
(

σ2
w+σ2

b

1+σ2
w+σ2

b

) .

(175)

The critical line defined by χl
J = 1, one can numerically solve it by scanning over σb and σw.

K.6 Residual Connections

The recurrence relation for the NNGP kernel is

Kl+1 =

[
Kl

4
+

Kl

2π
arcsin

(
Kl

1 +Kl

)
+

(Kl)2

π(1 +Kl)
√
1 + 2Kl

]
σ2
w + σ2

b + µ2Kl . (176)

Fixed point exists if

χ⋆
K =

σ2
w

4
+

σ2
w

2π

[
arcsin

(
K⋆

1 +K⋆

)
+

4(K⋆)3 + 11(K⋆)2 + 5K⋆

(1 +K⋆)2(1 + 2K⋆)
3
2

]
+ µ2 ≤ 1 . (177)

The recurrence coefficient for Jacobian is

χ⋆
J =

σ2
w

4
+

σ2
w

2π

[
arcsin

(
K⋆

1 +K⋆

)
+

K⋆(3 + 5K⋆)

(1 +K⋆)(1 + 2K⋆)
3
2

]
+ µ2 . (178)

Phase boundary is shifted

σw = 2
√
1− µ2

[
1 +

2K⋆(3 + 5K⋆)

π(1 +K⋆)(1 + 2K⋆)
3
2

+
2

π
arcsin

(
K⋆

1 +K⋆

)]− 1
2

, (179)

σb =
K⋆

√
2π(1 + 2K⋆)

3
4

σw . (180)

One can again scan over K⋆ to draw the critical line.

In order to locate the critical point, we further require χ⋆
K = 1. To locate the critical point, we solve

χ⋆
J − χ⋆

K = 0 instead. We have

σ2
w[(K⋆)3 − 3(K⋆)2 − 2K⋆]

2π(1 +K⋆)2(1 + 2K⋆)
3
2

= 0 , (181)

which has two non-negative solutions out of three

K⋆ = 0 and K⋆ =
3 +

√
17

2
. (182)

One can then solve σb and σw by plugging corresponding K⋆ values.

(σw, σb) = (2
√
1− µ2, 0) , for K⋆ = 0 , (183)

(σw, σb) ≈ (1.408
√
1− µ2, 0.416

√
1− µ2) , for K⋆ =

3 +
√
17

2
. (184)
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K.7 Residual Connections with LayerNorm on Preactivations (Pre-LN)

Use lemma D.9 and the results we had without residue connections for GELU.

χ∗
J = lim

l→∞

(
σ2
w

NlKl

Nl∑
k=1

Eθ

[
ϕ′(h̃l

k)ϕ
′(h̃l

k)
]∣∣∣∣∣

K̃l−1=1

+ µ2

)

=
σ2
w(6π + 4

√
3)(1− µ2)

σ2
w(6π + 3

√
3) + 18πσ2

b

+ µ2

=1− (
√
3σ2

w − 18πσ2
b )(1− µ2)

σ2
w(6π + 3

√
3) + 18πσ2

b

. (185)

The critical line is then at

σb =
(
6
√
3π
)− 1

2

σw

≈0.175σw ,
(186)

just like without residue connections.

L Additional Experimental Results

In the following training results, we used NTK parameterization for the linear layers in the MLP. We
emphasize that this choice has little effect on the training and convergence in this case, compared to
standard initialization.

In figure 10, we showed empirically that the critical exponent of partial Jacobians are vanished for erf
with LayerNorm.

100 101 1022 × 10 1

3 × 10 1

4 × 10 1

(A) LN-erf, experiment
Theory
Fitting, = 0.007

100 101 1023 × 10 1

4 × 10 1

5 × 10 1

6 × 10 1

(B) erf-LN, experiment
Theory
Fitting, = 0.009

Figure 10: log− log plot of partial Jacobian J 0,l vs. l for (A) LN-erf and (B) erf-LN.

In figure 11, we tested 6k samples from CIFAR-10 dataset[28] with kernel regression based on neural
tangents library [40] [31] [41]. Test accuracy from kernel regression reflects the trainability (training
accuracy) with SGD in the ordered phase. We found that the trainable depth is predicted by the
correlation length cξ with LayerNorm applied to preactivations, where the prefactor c = 28. The
prefactor we had is the same as vanilla cases in [55]. The difference is from the fact that they used
log10 and we used loge.

In figure 12, we explore the broad range in σ2
w of the performance of MLP network with erf activation

function and LayerNorm on preativations. The network has depth L = 50 and width Nl = 500; and
is trained using SGD on Fashion MNIST. The learning rates are chosen based on a logarithmic scan
with a short training time.
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Figure 11: Test accuracy for LayerNorm applied to preactivations. σ2
b = 0.5 for all cases. Correlation

lengths are calculated using analytical results of χl
J .
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Figure 12: Training performance of MLP networks with erf activation function; and LayerNorm
applied to preactivations. It continues to train for several orders of magnitude of σ2

w (with learning-
rate tuning).
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