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Abstract

Mixed-Integer Linear Programming (MILP) is a fundamental and powerful frame-
work for modeling complex optimization problems across diverse domains. Re-
cently, learning-based methods have shown great promise in accelerating MILP
solvers by predicting high-quality solutions. However, most existing approaches
are developed and evaluated in single-domain settings, limiting their ability to
generalize to unseen problem distributions. This limitation poses a major obstacle
to building scalable and general-purpose learning-based solvers. To address this
challenge, we introduce ROME, a domain-Robust Mixture-of-Experts framework
for predicting MILP solutions across domains. ROME dynamically routes problem
instances to specialized experts based on learned task embeddings. The model
is trained using a two-level distributionally robust optimization strategy: inter-
domain to mitigate global shifts across domains, and intra-domain to enhance
local robustness by introducing perturbations on task embeddings. We reveal that
cross-domain training not only enhances the model’s generalization capability to
unseen domains but also improves performance within each individual domain by
encouraging the model to capture more general intrinsic combinatorial patterns.
Specifically, a single ROME model trained on three domains achieves an average
improvement of 67.7% then evaluated on five diverse domains. We further test the
pretrained model on MIPLIB in a zero-shot setting, demonstrating its ability to
deliver measurable performance gains on challenging real-world instances where
existing learning-based approaches often struggle to generalize.

1 Introduction

Mixed-Integer Linear Programming (MILP) is a fundamental and expressive framework for modeling
a wide range of real-world optimization problems, including logistics optimization [1l], network
design [2]], scheduling [3]], and industrial planning [4]. Due to its strong modeling capacity, MILP has
become a cornerstone of operation research and combinatorial optimization [5H7]. However, MILPs
are well known to be NP-hard, and solving large-scale instances with thousands of variables and
constraints remains computationally intensive. Even state-of-the-art solvers such as Gurobi [§] and
SCIP [9], which integrate advanced techniques like branch-and-bound, cutting planes, and heuristics,
can struggle to deliver timely and scalable solutions as problem complexity grows.
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Figure 1: Illustration of cross-domain training. (a) A single model is trained on a collection of
MILP domains with varying constraint types [[10], such as PAC (set packing), KPS (knapsack), COV
(set covering), and PAR (set partitioning), and evaluated on unseen domains such as MIPLIB. (b) We
conduct experiments across five distinct domains, reporting the average objective gap in percentage
relative to the best-known solution while varying the number of experts and training domains. Each
value in the heatmap denotes the average percentage gap to the best-known solution. The results show
that training on more diverse domains and selecting an appropriate number of experts can effectively
reduce this objective gap.

To alleviate these limitations, recent research has explored the use of machine learning to accelerate
MILP solving by identifying data-driven patterns in problem instances [11H14]]. These approaches
fall broadly into two categories. The first integrates neural networks into solver internals by replacing
key components such as variable selection [[L1]], cutting plane selection [12], and neighborhood
destruction strategies in large neighborhood search [15, [16]. The second line of research, which
we focus on in this paper, aims to directly predict initial feasible solutions [17H19]], which are then
refined by solvers to improve solution quality. These methods have shown promising results on large-
scale MILPs and are gaining increasing attention. However, while this solution-prediction paradigm
has shown strong empirical performance, most existing methods are trained and evaluated within
single-domain settings, which presents two major challenges. First, the learned models often overfit
to domain-specific patterns rather than capturing generalizable combinatorial structures, leading to
limited generalization to unseen domains. Second, deploying such models in practice often requires
collecting new training data for each specific scenario, limiting scalability and broader applications.

To build scalable learning-based solvers that generalize across domains, we advocate for a paradigm
shift from single-domain training to frameworks that explicitly embrace cross-domain structural
diversity. An illustration of the cross-domain training task is in Figure[I] A central insight of this
work is that training on multiple MILP domains not only improves generalization under distribution
shift but also enhances solution quality within each individual domain (see Section4.2). Rather than
treating distributional differences as noise, we view them as valuable signals that help the model
capture transferable combinatorial patterns. In this light, cross-domain training naturally acts as
a form of domain-level regularization, steering the model away from memorization and towards
learning general principles that transfer across tasks.

In this paper, we propose ROME, a Domain-Robust Mixture-of-Experts framework for MILP so-
lution prediction. ROME aims to generalize effectively across various problem distributions while
maintaining strong performance on specific tasks. The framework integrates a Mixture-of-Experts
(MoE) architecture with a two-level Distributionally Robust Optimization (DRO) objective into a
unified trainable framework. The MoE consists of multiple expert networks, each specializing in
distinct MILP distributions. For each instance, the MoE dynamically routes it to specialized experts
based on its graph embedding, allowing the model to adapt both its internal representations and
final outputs to the unique structural characteristics of each instance. To further enhance robustness,
RoME is trained using a two-level distributionally robust optimization strategy. (1) Inter-domain
robustness is achieved through group-DRO, which minimizes the worst-case loss across domains,
thereby reducing the impact of global distributional shifts. (2) Intra-domain robustness is ensured
by applying isotropic perturbations to the task embeddings, which stabilizes expert selection and
predictions.

To demonstrate the effectiveness of ROME, we conduct comprehensive experiments to demonstrate
the effectiveness of ROME. Specifically, we train a single RoOME model on three domains and evaluate
it across five diverse domains, where it achieves an average improvement of 67.7% over strong
baselines. We further test the pretrained model on MIPLIB in a zero-shot setting, demonstrating a
significant performance gain on challenging instances that existing learning-based approaches often
struggle to generalize. Finally, to gain a deeper understanding of RoME, we conduct interpretability



analyses that find expert activation patterns and task embeddings, shedding light on how the model
captures and transfers structural knowledge across domains.

2 Related Work

2.1 Machine Learning for MILPs

Machine learning has been widely applied to the field of MILPs [20-23]]. Recent work on learning-
based MILP solvers can be roughly classified into two categories. The first line of research integrates
machine learning to enhance the solving efficiency of conventional solvers. Researchers utilize a
learned model to replace some key modules in the solvers, including variable selection [[11}, 24} 13]],
node selection [25H27]], cutting plane selection [[12} 28] and large neighborhood search [[15 16} 29—
31]. Another line of research focuses on leveraging learning-based models to predict an initial
solution for MILPs. Nair et al. [17]] introduces the first solution-prediction framework for MILPs.
Building on this foundation, Han et al. [[18] proposes the Predict-and-Search (PS) framework, which
incorporates a trust-region search to improve feasibility and solution quality. To further enhance
prediction accuracy, Huang et al. [19] employs contrastive learning to train the solution-prediction
network. Liu et al. [32] adopts a prediction—correction paradigm to obtain higher-quality solutions by
iteratively refining initially mis-predicted variable assignments. Notably, Geng et al. [33] is the first
to propose an unsupervised method that incorporates gradient information into the prediction model
for MILPs, thereby significantly reducing the cost of collecting high-quality training data.

2.2 Cross-Domain Training Techniques

Mixture of Experts (MoE) [34] and Distributionally Robust Optimization (DRO) [35,136]] are two
core methodologies for cross-domain training, where MoE gives the model with the ability to
perceive and adapt to different domains, and DRO enhances robustness by balancing training across
domains. Early studies [37] focus on designing dedicated experts for individual domains, while
recent research [38|[39]] has shifted toward sparse architectural variants. The MoE paradigm has been
successfully applied to graph-based combinatorial optimization problems. For instance, MVMOoE [40]
tackles a suite of vehicle-routing variants, and MoE-style encoder-decoder frameworks, e.g., MAB-
MTL [41]], GCNCO [42]], GOAL [43]], consistently adopt a “header-encoder-decoder” architecture.
In contrast, DRO guarantees robustness to potential domain shifts by minimizing the worst-case risk
over an uncertainty set. Sagawa et al. [44]] first introduces Group DRO, which balances the losses
across different groups. CCD-DG [435] builds a class-conditioned Wasserstein ball and automatically
tunes its radius to protect against conditional shifts, while Moderately-DRO [46]] and its stochastic
variant [47] improves exploration of unseen domains and offeres tighter generalization bounds with
lower sampling complexity.

3 Methodology

In this section, we present ROME, a domain-Robust Mixture-of-Experts framework for cross-domain
MILP prediction. This section is organized as follows. Section[3.T]introduces the problem formulation,
the predict-and-search (PS) framework, and the cross-domain learning settings. Section [3.2]presents
the Mixture-of-Experts (MoE) architecture for instance-adaptive structure-awareness across different
domains. Section [3.3| presents a robust training objective that effectively improves the robustness
of the MoE model training. Finally, Section [3.4]introduces a group-level Distributionally Robust
Optimization (DRO) scheme to handle the cross-domain training process.

3.1 Problem Formulation

We focus on the task of learning to predict high-quality solutions for Mixed-Integer Linear Program-
ming (MILP) problems. A MILP instance 7 is defined as:

min {cTa:‘Awgb,lga:Su}, €))]
xEZLP XR"—P

where & € R"™ denotes the decision variables, with the first p entries being integer and the remaining
n — p continuous. The vector ¢ € R™ denotes the coefficients of the linear objective, the constraints



are defined by the matrix A € R™*" and the righ-hand side vector b € R™, and the variable bounds
are given by I € (RU {—o00})” and u = (R U {4+o00})™. Without loss of generality, we focus on
binary integer variables, and general integer variables can be handled via standard preprocessing
techniques [17].

We encode each MILP instance as a bipartite graph G = (W UV, £), where W and V denote the sets
of constraint and variable nodes, respectively, and the edge set £ corresponds to non-zero entries in
A. Each node and edge is associated with a set of features derived from problem coefficients and
structural attributes. Such a bipartite graph can completely describe a MILP instance, enabling graph
neural networks (GNNs) to process the instances and predict their solutions.

We adopt the Predict-and-Search (PS) paradigm to approximate the solution distribution of a given
MILP. Specifically, the distribution is defined via an energy function that assigns lower energy to
high-quality feasible solutions and infinite energy to infeasible ones:

exp(-E(z | 7))
Do exp(=E(z’ | 1))
Our goal is to learning distribution pg(x|Z) for a given instance Z. To make learning tractable, we as-

c'x, ifxisfeasible,

I =
p(z | I) +00, otherwise.

, where E(z|I)= { 2

sume a fully factorized solution distribution over the binary variables, i.e., pg(z|Z) = [1%_, po(x:|Z),
where pg(x;|Z) denotes the predicted marginal probability for variable ;. To do so, we use
a GNN model to output a p-dimension vector & = fo(Z) = (21, -+ ,%,)" € [0,1]P, where

#; = pe(x; = 1|Z). To train the model, we use a weighted set of feasible solutions {z )}V,
as supervised signals, where each solution is assigned a weight w; o exp(—c'z®). We let
xg.l) = po (xy) = 1|Z). Then, the training loss function is a binary cross-entropy loss defined as:

N p
Lpce(0|T) = — Z Zwi . [ac;-l) log&; + (1 — J;y)) log(1 — 55])} . 3)
i=1 j=1
At inference time, the GNN model outputs a predicted marginals & € [0,1]?. A standard MILP
solver, e.g., Gurobi or SCIP is then used to search for a feasible solution in a local neighborhood
around & by solving the following trust region problem:
min {cTa: | Az <b, l <z <wu,z, € B,A)}, “)
xCZP XRn—P
where the trust region B(2, A) := {x € R™ : ||x1., — &||1 < A} constrains the solver to remain
close to the predicted binary configuration..

It’s evident that the quality of the final solution depends heavily on the accuracy of the predicted
marginals. Poor predictions can mislead the solver and limit optimization performance. Therefore,
we focus on training a predictive model fy that can accurately predict the marginal probabilities.

3.2 Mixture-of-Experts with Structure-Aware Routing

We consider the setting where training samples are drawn from K different domains {Dy, ..., Dk},
each corresponding to a structurally distinct MILP family. Our goal is to learn a single unified
model that can robustly generalize not only across these diverse domains, but also those domains
unseen during training. However, due to the significant combinatorial differences between domains,
capturing all structural variations within a single monolithic model is challenging.

To address this challenge, we adopt a Mixture-of-Experts (MoE) framework that comprises three
key components: a shared graph encoder, multiple expert networks, and a task decoder. The shared
graph encoder learns common structural representations across tasks, while the expert networks
capture task-specific decision patterns under the guidance of a dynamic gating mechanism that
adaptively assigns expert weights based on task-level embeddings. Finally, the task decoder integrates
the aggregated expert outputs to generate the final prediction. This design enables structure-aware
representation learning and output specialization.

Shared Graph Encoder Given a MILP instance Z, represented as a bipartite graph G, we apply

a graph neural network (GNN) to extract node embeddings {h1,...,h,} C RY, where d is the
dimension of the hidden space. We then compute a global graph embedding hg € R? by mean
pooling over variable nodes, i.e., hg = + SV _ h;. In this work, we follow the GNN encoder design

p L~j=1
used in [18]].
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Figure 2: The overview of ROME. RoME employ a MoE architecture with structure-aware represen-
tation learning. For cross-domain training, ROME proposes a robust training object containing binary
cross-entropy loss Lgcg, expert diversity regularization Lp;, and fuzzy membership consistency loss
Lrobust- To further enhance generalization across structurally diverse MILP families, ROME uses a
group-level domain robust scheme to construct DRO loss.

Multiple Expert Network To capture structural diversity, we define a set of M expert networks

{ f(_(,l)7 RN éM)}, where each expert fém) : R4 — R maps the variable embeddings into an
expert-specific representation space:

5" = 15" (hy). 5)

Each expert can be interpreted as modeling a different mode of structural regularity, allowing
the model to specialize across domains. To route instances to experts, we use a gating network
gp© R? — RM that maps the graph-level embedding hg into a soft weighting over all experts:

a = Softmax (g§*(hg)/T), (6)

where 7 is a temperature parameter controlling the sharpness of the routing distribution. The vector
a € [0,1]™ can be interpreted as softly indicating which experts are most relevant for the current
instance. The final representation for each variable is computed by aggregating the expert outputs:

M
m=1

Task Decoder To further enhance specialization, we adopt a multi-head decoder that enables the
model to learn and combine multiple task-specific representations. Specifically, we use the decoder

set {dél)7 e ,df,H)} with H decoders, each mapping z; to a scalar logit:
o)) = dg” (2)). ®)

Another gating network ga°—which shares a similar architecture but different parameters with the

encoder gate—produces a soft weighting vector 3 € [0, 1] over the decoders:

B = Softmax (ggec(hg)/T/) ) ©



where 7’ is a temperature parameter controlling the sharpness of the routing distribution. The final
logit is obtained by aggregating the outputs from all decoder heads:

H
o= B o, (10)
h=1

and the predicted marginal is given by

#; = Sigmoid (o). (11)
This flexible MoE design allows the model to dynamically adjust both internal representations and
final outputs to match the structural characteristics of each instance. The expert network captures

variable-level diversity, while the task decoder adds output-level specialization to further enhance
generalization across domains.

3.3 Intra-Domain Robust Training Objective

To enable intra-domain robustness across structurally diverse instances in a domain, we introduce a
composite loss function consisting of three components: a binary cross-entropy loss to supervise the
training and a regularization term to promote output stability under domain uncertainty. Formally, for
a given training instance Z, the total objective is given by:

['(0‘-’[) = »CBCE + )\Div . »CDiv + >\R0bust : »CRobusla (12)

where Apjy and Agebust are hyperparameters balancing these terms.

Binary Cross-Entropy Loss Lpcg.  As introduced in Section|3.1], we train the model by minimizing
the weighted binary cross-entropy (3)) between the predicted marginals pg(x; = 1 | Z) and a weighted
set of feasible solutions sampled from the MILP instance. This loss serves as the primary signal for
learning meaningful solution distributions.

Expert Diversity Regularization Lp;,. To encourage each expert to learn distinct behaviors and
avoid mode collapse, we regularize the similarity among expert outputs. Recall that z](-m) denote
the output embedding of expert m for variable j after the expert network layer. Let z(") denote

the concatenation of the representation of all variables, i.e., z(™ = Concat(z\",--- , z{™). The
diversity loss is then computed as:
) ’<Zum,z0ﬂ>>
Lo = /1 13
PV M (M - 1) S 1= - 1=200] (13)

This term encourages orthogonal expert representations, promoting more diverse perspectives across
MILP structures.

Fuzzy Membership Consistency Loss Lropust- TO improve the model’s robustness to domain
uncertainty, we adopt a fuzzy membership view of the expert routing mechanism. The routing vector
a = gg(hg) € [0,1]M, derived from the task embedding hg, can be interpreted as a soft domain
membership, indicating the degree to which each expert should be activated. However, for unseen
or ambiguous MILP instances, the true domain identity may be uncertain or poorly represented
in the training data. In such cases, small variations in the task embedding may lead to unstable
routing decisions and inconsistent predictions. To address this, we encourage the model to maintain
output consistency under slight changes in the domain assignment. Concretely, we apply an isotropic
perturbation to the task embedding:

~ é

hg:hg+T'W7 JNN(071)7 (14)
2

where 7 is a learnable scalar controlling the perturbation magnitude. This perturbed task embedding

induces a new routing vector & = gy(hg), which results in a different mixture of expert representa-

tions z;. We then enforce consistency between the original and perturbed representations using the

following loss:

1N, .
Lrovust = — > 125 — z]13. (15)
P



This regularization encourages the model to produce stable representations even under uncertainty
in domain assignment, thus improving its robustness to both domain shift and embedding noise.
Beyond its regularization role, this loss is also theoretically motivated from two complementary
perspectives. First, from a computational-complexity viewpoint, most MILP classes are NP-complete,
implying that different MILPs can, in principle, be reduced to one another, a fact confirmed by recent
advances in graph-based combinatorial optimization [5, 48]]. Building on this insight, we exploit
structural similarities among domains so that related problems route to overlapping expert subsets,
enhancing cross-domain generalization. Perturbing task embeddings partially simulates such cross-
domain shifts, enforcing the same expert outputs for perturbed and original embeddings strengthens
this alignment and encourages domain-invariant reasoning. Second, from an adversarial-training
viewpoint, embedding perturbations stabilize the training, helping RoME capture high-level patterns
that persist across domains.

3.4 Inter-Domain Group-Level Robustness

To further enhance generalization across structurally diverse MILP families, we introduce a domain-
level training strategy based on distributionally robust optimization (DRO). Rather than minimizing a
uniform average of per-domain losses, we adopt a min-max objective that optimizes performance
under the worst-case distribution over training domains. Formally, let £ denote the expected loss on
domain Dy, estimated empirically via mini-batch sampling:

where £(0|Z) is the instance-level training loss as defined in Section We introduce a proba-
bility vector g € Ak, where Ak denotes the probability simplex over the K domains, satisfying

Zszl gr = 1 and g > 0. We aim to optimize the following objective:
K
i - L(0 17
min sup 3+ £4(6). )

IEAK =y

which seeks to minimize the worst-case expected loss under all convex combinations of domains-
specific losses. To achieve this, we alternatively update € and q. Intuitively, we maintain a distribution
q over groups, with high masses on high-loss groups, and update on each example proportionally
to the mass on its group. In each iteration, we first estimate L for a randomly chosen domain
using a minibatch. Then, we update the domain weights g using exponential gradient ascent so
that ¢, o< exp(n - L), where n > 0 is a hyperparameter controlling the sensitivity to high-loss
domains. The resulting weights g are then normalized to form a valid probability vector over domains.
Therefore, domains with higher empirical losses are thus assigned larger weights, allowing the model
to focus learning capacity on harder or underrepresented domains. By coupling this domain-level
reweighting with the instance-level regularization objectives introduced in Section [3.3] our training
pipeline enables scalable and principled optimization for robust multi-domain MILP learning.

4 Experiments

We conduct comprehensive experiments to evaluate the effectiveness of RoME in learning a unified
model for solving MILP problems from several different domains, including those in-distribution
and out-of-distribution datasets, and zero-shot generalization to real-world instances from MIPLIB.
We then conduct experiments to analyze the contributions of different components, as well as the
featured patterns of our learned model. All experiments are conducted on a single machine with
NVIDIA GeForce RTX 3090 GPUs and 24-core AMD EPYC 7402 CPUs (2.80 GHz). Code is
available at https://github. com/happypu326/RoME. More implementation details can be found
in Appendix [A]

4.1 Experimental Setup

Datasets We conduct experiments on five MILP problem families widely studied in the literature:
Independent Set (IS), Set Covering (SC), Item Placement (IP), Combinatorial Auctions (CA), and
Workload Appointment (WA). The instances in the dataset have diverse kinds of combinatorial
structures and constraints, with different levels of constraint coefficient sparsity, variable numbers,
and objective complexity. For IS SC and CA, we follow the conventional instances generation
process in existing works [[11} 12, [18L[19]. The IP and WA datasets are from NeurIPS 2021 ML4CO
competition [49]. Please see Appendix [C]for more detailed information on the benchmarks.
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Table 1: Performance comparison across various MILP domains, under a 1, 000s time limit. We train
RoME on IS, IP and SC, while the performance of ROME on WA and CA is zero-shot performance.
“” indicates that higher is better, and ‘]’ indicates that lower is better. We mark the best values in
bold. We also report the improvement of our method over the traditional solvers in terms of gap,.

IS (BKS 685.00) IP (BKS 11.16) SC (BKS 124.64) ‘WA (BKS 703.05) CA (BKS 97524.37)
Obj? Time] Objl gapy  Objil gapy ) Objil gapy )  ObjT  gapy, |
Gurobi 685.00 57.35 1143 0.27 125.21 0.57 703.47 0.42 97308.93 215.44

PS+Gurobi 685.00 14.67 1140 024 125.17 053 70347 042  97280.70  243.67
ConPS+Gurobi  685.00 20.13 1136 0.20 125.18 054 70347 042 9739583 128.54

RoME+Gurobi  685.00 2.08 11.22 0.06 12469 0.05 703.11 0.06 97489.28  35.09
Improvement 27.5 x 77.8% 91.2% 85.7% 83.7%
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Figure 3: The average primal gap of different methods over 100 instances as the solving process
proceeds. We use Gurobi for implementation and set the time limit to be 1,000 seconds.

Baselines We mainly consider two baselines, Predict-and-Search (PS) [18] and Contrastive Predict-
and-Search (ConPS) [[19]. Contrastive Predict-and-Search (ConPS) is a stronger baseline, leveraging
contrastive learning to enhance the performance of PS. For ConPS, we set the ratio of positive to
negative samples at ten, using low-quality solutions as negative samples. Our method and baselines
can be integrated with conventional solvers such as SCIP [9] and Gurobi [8]. Therefore, we also
include SCIP and Gurobi as baselines for a comprehensive comparison. Following Han et al. [[18]],
Gurobi and SCIP are set to focus on finding better primal solutions.

Metrics We compare the performance of our method and baselines using the best objective value
OBJ within 1,000 seconds. Following the setting in Han et al. [18]], we run a single-thread Gurobi for
3,600 seconds and record the best objective value as the best-known solution (BKS) to approximate
the optimal value. We calculate the absolute primal gap as the difference between the best objective
found by the solvers and the BKS, i.e., gap,,, := |OBJ — BKS|. Within the same solving time, a
lower absolute primal gap indicates stronger performance. For IS, where most test cases can be
solved within the 1,000s, we additionally report the time cost to obtain the optimal value, with a
lower time cost indicating a better performance.

Training and Evaluation Throughout all the performance experiments, we use one unified model
for ROME. To train this model, we use a training dataset composed of 720 instances, where the
dataset contains 240 IS instances, 240 IP instances and 240 SC instances. The validation set contains
240 instances with 80 IS, IP and SC instances, respectively. The performance of ROME on WA, CA
and MIPLIB is the performance of zero-shot generalization. The baselines are trained individually on
each dataset using 240 instances for training and 80 instances for validation. For evaluation, we run
all the methods on 100 testing instances for each dataset.

4.2 Main Results on Cross-Domain Generalization

We first evaluate the effectiveness of ROME trained on multiple domains on various test domains.
In this experiment, RoOME is trained on IS, IP, and SC. We train just one unified model on these
three datasets, and then test it on all five domains, where WA and CA serve as unseen zero-shot
testing datasets. The baseline methods are trained on each domain individually and evaluated on the
corresponding testing datasets. Tablepresents the average objective values and gap,,, achieved by
each method using the Gurobi solver across all five combinatorial problem families. Corresponding
results for SCIP are provided in Appendix [D.2] For the IS dataset, we also report the average solver
time in seconds, as all the methods can find the optimal solution within the time limit. The results in
Table 1| show that ROME consistently outperforms all baselines across domains. (1) For IS, IP and



SC, RoME is able to achieve the best objective values and absolute primal gap than the baselines
trained on the corresponding dataset. This implies that cross-domain training can benefit from the
performance of each single domain. (2) Notably, even though not trained on WA and CA, RoME
achieves the best performance on these unseen domains, demonstrating its zero-shot generalization
capability.

We also report the curves that the average primal gap (defined as gap,,, := |OBJ — BKS|/|BKS))
changes as the solving process proceeds in Figure 3| A rapid decrease in the curves indicates superior
solving performance and better convergence. The results in Figure 3] show that RoME exhibits a rapid
decline in primal gap and ultimately achieves the lowest primal gap.

Additionally,, we conduct comprehensive ablation studies to investigate the critical components of
RoME, evaluating the effects of key elements including DRO, the MoE architecture, embedding
perturbation strategies, and expert diversity. Detailed analyses can be found in Appendix [D.5}

4.3 Zero-Shot Generalization to MIPLIB Problems

To further evaluate the performance of ROME in the real-world complex dataset, we evaluate it on a
curated subset of the MIPLIB benchmark [10]. The MIPLIB dataset is a challenging MILP dataset,
where the instances are drawn from diverse industrial applications with heterogeneity modeling
structures. In this experiment, the baselines are trained and evaluated on splits within MIPLIB. In
contrast, ROME is trained on synthetic datasets as used in the main evaluation and directly applied
to MIPLIB in a zero-shot fashion. This setting simulates a practical scenario where the solver is
deployed in unseen domains without any retraining.

We select two groups of MIPLIB testing instances following the selection criterion in Appendix [C.3]
The first subset follows Liu et al. [32] and uses the IIS dataset selected from MILPLIB. IIS contains
six instances for baselines and five testing instances, where we draw the solving curve in Figure 4]
And another subset contains fifteen challenging MIPLIB instances in total, with Figure[5]showcasing
solving curves for a representative subset of five selected instances. We find ROME consistently
outperforms all the baselines across all the instances, highlighting its strong generalization ability on
real-world complex instances. Average results of objective values and gap,, . across both two selected
MIPLIB datasets are presented in Appendix [D.1] with each instance result also provided in the same
appendix.
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Figure 4: The primal gap of different methods on five easier instances from IIS dataset as the
solving process proceeds. We use Gurobi for implementation and set the time limit to be 1,000
seconds.

. ab2 5 | 8
0.0008 neos-3754480-nidda 04 dws008-03 0.0004 bab2 0.08 —1€0s 3656078-kumeu o 5100

0.0002 0.04 0.5

0.0000 l_\— 0.0 0.0000 0.00 0.0

107 08 101 07 100 5%10° 10 107 102 10° 2x10% 100
Time(s) Time(s) Time(s) Time(s)

Average Primal Gap
o
g
g
g

10%
Time(s)
Gurobi PS + Gurobi ConPS + Gurobi ~—— RoME + Gurobi
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4.4 Interpretability of RoOME

Current works typically adopt GNN-based models, which are inherently treated as black-boxes.
However, with the recent progress in large language models [50H52]], an increasing number of inter-
pretability techniques have emerged, particularly for MoE architectures, offering new opportunities



to better understand model behavior. Following this, to gain a deeper understanding of ROME, we
visualise its expert routing and embedding behaviour. Using the model trained on IS, IP and SC
following the main evaluation , we record which expert the gate selects when it solves instances
from the five benchmark domains and from five selected challenging instances from MIPLIB, as
summarised in Fig[f](a). We then obtain the task vectors of these instance and plot their distribution
through T-SNE, as shown in Fig[f](b). These interpretability analyses reveal that RoME develops
a clear and structured specialization among its experts. Each problem with unique constraint type
consistently activates a distinct expert, demonstrating that the mixture model avoids collapse and that
individual experts capture unique structural regularities across tasks. The alignment between task
embeddings and expert activations shows that ROME learns coherent, task-aware representations:
tasks with similar underlying formulations are embedded closely in the latent space and routed to
overlapping expert subsets. Furthermore, mixed-constraint MIPLIB instances are positioned near and
assigned to the domains they most resemble, explaining ROME’s strong generalization and zero-shot
adaptability to previously unseen problem families.
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Figure 6: Model interpretability. (a) Expert network activation patterns across different MILP
instances. Red indicates activated experts, while blue denotes inactive ones. (b) The distribution of

instances in the task embedding space.

5 Conclusion

In this paper, we present ROME, a cross-domain MILP solver that pairs a mixture-of-experts architec-
ture with a distributionally robust training objective. The mixture-of-experts architecture enhance
representation ability across different domains, while distributionally robust optimization shields
against distribution shifts, and together they boost generalization across MILP problem families.
Experiments demonstrate substantial improvements over existing learning-based baselines and strong
zero-shot performance on challenging MIPLIB instances.
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The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Section [3.3]and 3.4]introduce our DRO method in detail.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the implementation details in Appendix [A]

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

17



Answer:
Justification: Code is available at https://github.com/happypu326/RoME.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify the training and test details in Section the hyperparameters in
Appendix [B]and benchmark details in Appendix[C]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We analyze the experiment results in Section [4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We report the machine we used in Appendix[A.3]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer:[Yes]
Justification: We obey the NeurIPS Code of Ethics in the research.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss in Appendix
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:[Yes]
Justification: We cite the dataset and code we used in Section @.T]and Appendix [A.3]
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Implementation Details

A.1 Bipartite Graph Representation

Following previous works [[18, 32], we represent each MILP instance as a weighted bipartite graph
G =(VUW,E), where V and W denote the sets of variables and constraints, respectively. The
features attached to the bipartite graph are similar to the previous works [18} [32]]. The detailed
description of these features can be found in Table [2]

Table 2: Description of the variable, Constraint and edge features used in our bipartite graph
representation.

Index Variable Feature Name Description

0 Objective Normalized objective coefficient

1 Variable coefficient Average variable coefficient in all constraints

2 Variable degree Degree of the variable node in the bipartite graph

representation

3 Maximum variable coefficient Maximum variable coefficient in all constraints

4 Minimum variable coefficient ~Minimum variable coefficient in all constraints

5 Variable type Whether the variable is an integer variable or not)
Index Constraint Feature Name Description

0 Constraint coefficient Average of all coefficients in the constraint

1 Constraint degree Degree of constraint nodes

2 Bias Normalized right-hand-side of the constraint

3 Sense The sense of the constraint
Index Constraint Feature Name Description

0 Coefficient Constraint coefficient

A.2 Implementation Details of the GNN Encoder

In this work, we use a graph neural network (GNN) parameterized by 6 to extract diverse structural
representations for MILP instances. For a given instance Z, we initialize features for variables
v; € R®, constraints w; € R*, and edges e;; € R', then embed them through the MLP layers:

h{) = MLPy(v;), hS) = MLPy(w;), h{) = MLPy(e;;). (18)

Subsequently, we apply two graph convolution layers, each consisting of two interleaved half-
convolution operations [11]:

Rk« MLP, hgfi)’ Z MLP¢(h(k) h h(k))

w; w; )Y€ Tt
jei; €E

(19)
h{ETD « MLP, | RSP, >~ MLP (R, b

i 67‘,J'7

hi)

ice;; EE

Unlike the previous works that employ extra MLPs for logit prediction, our GNN encoder directly
propagates the refined node embeddings to the following modules.

A.3 Implementation Details of the Baselines

Optimization has broad applications in the real world, including statistical physics [S3]], complex
networks [54} 55], knowledge graph [56} 57]], and partial differential equations [S8H60]. Recent
breakthroughs in computer vision [61-64]], graph models [65]], and reinforcement learning have
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propelled the adoption of machine learning for faster combinatorial optimization solving. In our
work, we select two state-of-the-art methods, PS [[18] and ConPS [19], as baseline approaches, each
exemplifying a prominent direction in recent research. For PS, we utilize the official implementation
available athttps://github. com/sribdcn/Predict-and-Search, and we incorporate the same
graph neural network (GNN) encoder from PS into our model architecture. Since ConPS does not have
publicly available source code, we meticulously reimplemented its framework based on the original
descriptions and performed extensive hyperparameter tuning to replicate its reported performance.
All experiments are conducted on a single machine equipped with NVIDIA GeForce RTX 3090
GPUs and AMD EPYC 7402 24-core CPUs running at 2.80GHz. We use Gurobi version 11.0.3 and
SCIP version 8.1.0 in all experiments.

For each baseline, we collect 300 instances to serve as training and validation data. Each instance
is solved using Gurobi with a single thread for 3600 seconds, during which we record the best 50
solutions. We split the data into 80% for training and 20% for validation, and designate an additional
100 instances as the test set. During training, we set the initial learning rate to 0.0005 and train the
model for 10,000 epochs, employing an early stopping mechanism to prevent overfitting. In the
testing phase, the parameters (ko, k1, A) determine which variables are fixed to 0 or 1 and define the
scope of the subsequent search process. These parameters significantly influence the performance of
the methods. These parameters used in this work are detailed in Table

Table 3: The partial solution size parameter (kg, k1) and neighborhood parameter A.

Benchmark IS CA SC 1P WA

PS+Gurobi  (300,300,20)  (600,0,1)  (2000,0,100)  (400,5,10)  (0,500,10)
ConPS+Gurobi (1200, 600, 10)  (900,0,50)  (1000,0,200)  (400,5,3) (0,500,10)
RoME+Gurobi (250,200, 15) (350, 0,55) (1000, 0,200) (60,35,55) (20, 200, 100)
PS+SCIP (300,300, 15)  (400,0,10)  (2000,0,100)  (400,5,1) (0,600,5)
ConPS+SCIP (1200, 600, 10)  (900,0,50)  (1000,0,200)  (400,5,3) (0,400,50)
RoME+SCIP (250,200, 15)  (350,0,55) (1000, 0,200) (60, 35,55) (20,200, 100)

B Hyperparameters

The key training parameters are summarized in Table 4]

Table 4: Hyperparameters used in our experiments.

Name Value  Description

embed_size 128 The embedding size of the GNN encoder.
num_experts 3 Number of experts.

num_heads 3 Number of heads.

batch_size 4 Number of MILP instances in each training batch.
num_epochs 2000  Number of max running epochs.

Ir 0.0005 Learning rate for training.
perturbation_ratio 0.1 Perturbation rate on the task embedding space.

expert_diversity_ratio 0.2 Expert diversity ratio for training.

C Details on the Benchmarks

C.1 Benchmarks in Main Evaluation

The CA, SC, and IS benchmark instances are generated following the procedure outlined in [[11]].
Specifically, the CA instances are created using the algorithm described in [66], while the SC instances
are produced based on the method presented in [67]. The IP and WA instances are sourced from the
NeurIPS ML4CO 2021 competition [68]]. Table[5]provides detailed statistical information for all the
instances.
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Table 5: Statistical information of the benchmarks we used in this paper.
CA SC 1P WA IS

Constraint Number 2593 3000 195 64306 5943
Variable Number 1500 5000 1083 61000 1500
Number of Binary Variables 1500 5000 1050 1000 1500
Number of Continuous Variables 0 0 33 60000 0
Number of Integer Variables 0 0 0 0 0

C.2 Benchmarks used for Generalization

To evaluate the generalization capabilities of our methods, we construct larger CA and SC instances
using the data generation code from Gasse et al. [[L1]. The newly generated CA instances contain
approximately 2,596 constraints and 4,000 variables on average, while the SC instances comprise
6,000 constraints and 10,000 variables. These problem sizes are substantially larger than those
encountered during training, providing a more rigorous evaluation of the models’ performance on
unseen, large-scale instances.

C.3 Subset of MIPLIB

Table 6: Statistical information of the instances in the constructed MIPLIB dataset.

Instance Name Constraint Number  Variable Number Nonzero Coefficient Number
ex1010-pi 1468 25200 102114
fast0507 507 63009 409349
ramos3 2187 2187 32805
scpj4scip 1000 99947 999893
scpk4 2000 100000 1000000
scpl4 2000 200000 2000000
dws008-03 16344 32280 165168
dws008-01 6064 11096 56400
neos2 1103 2101 7326
bab2 17245 147912 2027726
bab5 4964 21600 155520
bab6 29904 114240 1283181
neos-3555904-turama 146493 37461 793605
neos-3656078-kumeu 17656 14870 59292
supportcasel7 2108 1381 5253
fastxgemm-n2r7s4tl 6972 904 22584
neos-3754480-nidda 203 253 1488
bg512142 1307 792 3953
tr12-30 750 1080 2508
s100 14733 364417 1777917
s55 9892 78141 317902

To evaluate the solvers’ performance on challenging real-world instances, we construct two groups of
MIPLIB [10] instances. The selection is based on instance similarity, measured using 100 human-
designed features as described in [10]. Group 1 follows Liu et al [32]], utilizing the IIS dataset from
MIPLIB. This dataset comprises 11 instances, divided into a training set of six instances—glass-sc,
iis-glass-cov, 5375, 214, 56133, iis-hc-cov, seymour, and v150d30-2hopcds—and a test set of five
instances: ex1010-pi, fast0507, ramos3, scpj4scip, and scpk4. We note that baseline methods are
trained on this split, whereas our method is evaluated in a zero-shot setting. To further evaluate
generalization, we construct Group 2 by selecting five challenging instances from MIPLIB’s reported
hard instances, dws008-03, bab2, neos-3656078-kumeu, neos-3754480-nidda, and s100, and then
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identifying another 10 similar instances based on feature similarity to form the new group. Detailed
information on the MIPLIB dataset is provided in Table [6]

D More Experiment Results

D.1 Results on MIPLIB Dataset

To further evaluate the generalization ability of RoOME on MIPLIB, we conduct two group experiments.
For the IIS subset, the baselines are trained on the designated training instances and then evaluated,
whereas RoME is evaluated in a zero-shot setting. And for the remaining instances, every method
is run in zero-shot mode. Since the instance sizes vary on different instances, we fix variables by a
proportion, using (ko, k1, A) = (0.7, 0, 1000). We report two selected MIPLIB dataset from Section
[.3] each containing five selected instances, with the average performance across both datasets for
each method presented in Table[7] The detailed MIPLIB results are presented in Table [§]

Table 7: The results in the IIS and the more complicated MIPLIB Instance. We build the ML
approaches on Gurobi and set the solving time limit to 3,600s.

IIS (BKS 196.00) Hard Instance (BKS -58988.70)

ObJ i/ £aP3ps i ObJ \L £aP;ps ‘L
Gurobi 211.00 15.00 -58663.30 325.40
PS+Gurobi 210.60 14.60 -57277.70 1710.99
ConPS+Gurobi  210.60 14.20 -58050.10 938.58
RoME+Gurobi  206.80 10.80 -58988.70 0.00

Table 8: The best objectives found by the approaches on each test instance in MIPLIB. BKS represents

the best objectives from the website of MIPLIB https://miplib.zib.de/index.html,

BKS Gurobi PS+Gurobi  ConPS+Gurobi RoME+Gurobi
ex1010-pi 233.00 239.00 241.00 239.00 237.00
fast0507 174.00 174.00 179.00 179.00 174.00
ramos3 186.00 233.00 225.00 225.00 224.00
scpjdscip 128.00 132.00 133.00 133.00 131.00
scpl4 259.00 277.00 275.00 275.00 273.00
dws008-03 62831.76 64452.67 71234.06 67473.85 62831.75
dws008-01 37412.60 37412.60 39043.26 38817.50 37415.68
neos2 454.86 454.86 454.86 454.86 454.86
bab2 -357544.31 -357538.58 -357449.20 -357544.31 -357542.78
bab5 -106411.84 -106411.84 -106411.84 -106411.84 -106411.84
bab6 -284248.23  -284248.23 -284224.56 -284224.56 -284224.56
neos-3555904-turama -34.7 -34.7 -34.7 -34.7 -34.7
neos-3656078-kumeu -13172.2 -13171.3 -13114.0 -13120.6 -13172.2
supportcasel7 1330.00 1330.00 1330.00 1330.00 1330.00
fastxgemm-n2r7s4tl 42.00 42.00 42.00 42.00 42.00
neos-3754480-nidda 12939.80 12940.78 12940.50 12940.50 12939.80
bg512142 184202.75 184202.75 190193.00 190193.00 190018.00
tr12-30 130596.00 130596.00 130596.00 130596.00 130596.00
s100 -0.1697 -0.1642 -0.0198 -0.1643 -0.1696
s55 -22.15 -22.15 -22.15 -22.15 -22.15

D.2 SCIP results in Main Evaluation

Consistent with the experimental setup in Section[4.2] we reported the results of different methods on
the SCIP solver as shown in Table [0l
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Table 9: Performance comparison across various MILP domains using SCIP solver, under a 1, 000s
time limit. We also report the improvement of our method over the traditional solvers in terms of

£aP,ps-

IS (BKS 685.00) IP (BKS 11.16) SC (BKS 124.64) ‘WA (BKS 703.05) CA (BKS 97524.37)
Objt Time| Objl gap,,} Objl gap,, . Objl gap,, ! ObjT  gapy,, |
SCIP 685.00 254.63 16.55 5.39 126.43 1.38 705.77 2.72 96423.90 1100.47

PS+SCIP 685.00 12935 16.18 5.02  126.65 1.60  705.21 216 96426.46 1097.91
ConPS+SCIP  685.00 78.53 16.16 500 126.40 1.35  705.21 216 96428.83 1095.54

RoME+SCIP 685.00 13.55 16.08 4.92 126.27 122 70508 2.03 96439.82 1084.55
Improvement 18.7 x 8.7% 11.6% 25.3% 1.4%

D.3 Fine-grained Instance-level Results

To provide a fine-grained, instance-level view of RoOME’s performance, we quantify its performance
drop relative to Gurobi. Following standard practice in multi-task learning, we introduce a win count
metric, the number of test instances, out of 100, on which each method achieves the best objective
value. We first compare Gurobi, PS, and RoME on the CA and SC benchmarks. As shown in Table@],
RoME consistently dominates both benchmarks.

Table 10: Total win counts. # denotes the number of instances on which each method achieves the
best objective.

CA (wins) SC (wins)

Gurobi 26/100 5/100
PS+Gurobi 19/100 10/100
RoME+Gurobi 55/100 85/100

We further separate the instances on which each learning-enhanced solver wins or loses against
Gurobi and report the mean absolute objective gap (Gap,,,) in Table [T} The results show that RoME
not only wins on a much larger portion of instances but also yields greater improvements when it
wins and smaller degradations when it loses, confirming its stability and overall superiority.

Table 11: Average win/lose gap against Gurobi.

CA SC
PS+Gurobi win 178.94 (43/100)  0.18 (68/100)
PS+Gurobi lose 207.17 (57/100)  0.41 (32/100)

RoME+Gurobi win  295.28 (65/100) 0.37 (91/100)
RoME+Gurobi lose  114.93 (35/100)  0.10 (9/100)

D.4 Generalization Results

To evaluate the generalization capabilities of our approach, we evaluate its performance on larger
instances of the CA and SC problems. These instances, detailed in Appendix [C.2] are significantly
larger than those used during training. We utilize the model trained on the dataset described in
Section [4.T] to perform zero-shot evaluations on these larger instances. The results, presented in
Table|12] indicate that our method, ROME, consistently outperforms baseline methods on these larger
instances, demonstrating its strong generalization ability.

D.5 Ablation Studies

The Effect of DRO and MoE To clarify the contribution of each component in RoME, we compare
the full model with three ablated variants: (i) an MoE-only version trained without the DRO, (ii) a
DRO-only version that replaces the MoE with a GCN proposed in the PS [18]], and (iii) a single-head
variant that removes expert diversity within the MoE architecture. As reported in Table omitting
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Table 12: We evaluate the generalization performance on 100 larger instances with a 1,000s time
limit.

SC (BKS 101.45) CA (BKS 115787.97)
Ob.' \L gapabs ‘L ObJ T gapabs *I/
Gurobi 102.29 0.84 114960.25 827.72

PS+Gurobi 102.27  0.82  115228.20 559.77
ConPS+Gurobi  102.18  0.73  115343.23 444.74
RoME+Gurobi 102.03 0.58 115787.97  0.00

either DRO or MoE substantially degrades performance, confirming that these two modules play
indispensable roles in RoOME’s cross-domain generalisation.

Table 13: Impact of DRO and MoE components under a 1, 000s time limit. We report the average
best objective values and absolute primal gap.

IP (BKS 11.16) SC (BKS 124.64) WA (BKS 703.05) CA (BKS 97524.37)
Obj | gap,s 4 Objl gapy ) Objl  gapy,d  Obj T gapy
Gurobi 1143  0.27 125.21 0.57 703.47 0.42 97308.93 21544

MoE-only+Gurobi  11.27  0.11  124.65 0.01 708.33 5.18 9528251 2241.86
DRO-only+Gurobi  11.27  0.11  124.64  0.00  704.13 1.08  97194.98  329.39
Single-head+Gurobi 11.18  0.02  124.83 0.19  703.14 1.09  92248.18 5276.19

RoME+Gurobi 1122 0.06 12469 0.05 70311 0.06 97489.28  35.09

The Effect of Task Embedding Perturbation Furthermore, we evaluate how perturbation influ-
ences cross-domain generalization. In RoME, the perturbation is applied in the task-embedding
space. We compare this design with three variants: one without any perturbation, one that perturbs
the variable-embedding space, and one that perturbs the raw feature space. Table [I4] shows that
perturbing task embeddings yields the most robust predictions. This aligns with our expectation: the
task-embedding space offers a higher-level representation of the entire instance, whereas perturbations
in the variable-embedding or feature spaces can distort the underlying problem structure, leading to
performance degradation, particularly when transferring across domains.

Table 14: Comparison of different perturbation locations under a 1, 000s time limit. We report the
average best objective values and absolute primal gap.

IP (BKS 11.16) SC (BKS 124.64) WA (BKS 703.05) CA (BKS 97524.37)
Obj| gap,,+ Objl gapy,, L Objl gapy,, !  ObjT  gapy, |
Gurobi 1143 0.27 125.21 0.57 703.47 0.42 97308.93  215.44

RoME without Perturb Embedding 11.61  0.45 125.27 0.63 703.20 0.15 94898.67  2625.7
Perturb on Variable Embedding 11.16  0.00 12484 020 703.24 0.19  94302.71 3221.66
Perturb on Variable Features 11.23  0.01 124.74 0.10 703.10 0.05 91472.19 6052.18

RoME+Gurobi 1122 0.06 124.69 0.05 703.11 0.06 97489.28  35.09

We also explore different perturbation magnitudes. As shown in Table a perturbation ratio of
0.1-0.15 yields the best trade-off.

The Effect of Expert Diversity Finally, we study the diversity of experts during training. Table
shows that appropriate augmentation of expert diversity improves model performance.

28



Table 15: Effect of perturbation ratio on CA and SC. The ML approaches are implemented using
Gurobi, with a time limit set to 1,000s. “?” indicates that higher is better, and ‘|’ indicates that lower
is better. We mark the best values in bold.

Perturbation Ratio SC (BKS 124.64) CA (BKS 97524.37)
ObJ \L gapabs \I/ Ob.] T gapabs \L
0.05 124.70  0.06 91362.30 6162.07
0.10 124.69  0.05 97489.28 35.09
0.15 124.66  0.02 97374.32  150.05
0.20 124.70  0.06  93362.68 4161.69

Table 16: Effect of expert diversity on CA and SC. The ML approaches are implemented using
Gurobi, with a time limit set to 1,000s. “1” indicates that higher is better, and ‘|’ indicates that lower
is better. We mark the best values in bold.

Expert Diversity Ratio SC (BKS 124.64) CA (BKS 97524.37)
ObJ \L gapabs \I/ Ob_] T gapabs \L
0.1 125.27 0.63 94898.67 2625.70
0.2 124.69 0.05 97489.28 35.09

E Discussions

E.1 Limitations

Higher training cost. Although cross-domain solvers demonstrate strong performance, their training
requires substantial diverse data and incurs relatively high computational costs. Limited by GPU
memory capacity, we selected 300 samples per cross-domain dataset. Our observations indicate that
while model performance improves with larger training sets, this comes at the cost of significantly
increased computational overhead.

Waiting for more sophisticated designs. Cross-domain MILP solving remains in its early stage and
currently lacks sophisticated architectural designs. For instance, the field would benefit from more
efficient sparse MoE architectures specifically optimized for large-scale MILP applications.

E.2 Future works

Better optimization algorithms. In this work, we employ DRO to balance training across different
domains, while simulating cross-domain distribution shifts through perturbations in the task embed-
ding space. We note that more sophisticated mathematical techniques could further enhance model
robustness by explicitly incorporating uncertainty. Future research directions include developing
advanced optimization algorithms to strengthen robustness and improve cross-domain generalization
performance.

Better model architecture. Future research directions may explore more sophisticated MoE archi-
tectures to enhance the current framework, such as incorporating sparse MoE variants or attention
mechanisms. Additionally, replacing the current GNN encoder with more expressive graph neural
network models could further improve representation learning capabilities.

E.3 Broader Impacts

This paper presents ROME, a domain-robust Mixture-of-Experts framework that predicts high-quality
initial solutions for diverse MILP problems without retraining. By plugging RoME into off-the-shelf
solvers, practitioners in logistics, network design, and manufacturing can accelerate solution times
and lower computational costs. Because RoOME learns structural patterns rather than proprietary
coefficients, it can be safely deployed on sensitive industrial instances while easing data-collection
burdens and expanding access to learning-based optimization where labeled solutions are scarce.
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