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Abstract

Increasing concerns and regulations about data001
privacy and sparsity necessitate the study002
of privacy-preserving, decentralized learn-003
ing methods for natural language processing004
(NLP) tasks. Federated learning (FL) pro-005
vides promising approaches for a large num-006
ber of clients (e.g., personal devices or or-007
ganizations) to collaboratively learn a shared008
global model to benefit all clients while al-009
lowing users to keep their data locally. De-010
spite interest in studying FL methods for NLP011
tasks, a systematic comparison and analysis is012
lacking in the literature. Herein, we present013
the FedNLP, a benchmarking framework for014
evaluating federated learning methods on four015
common formulations of NLP tasks: text clas-016
sification, sequence tagging, question answer-017
ing, and seq2seq generation. We propose018
a universal interface between Transformer-019
based language models (e.g., BERT, BART)020
and FL methods (e.g., FedAvg, FedOPT, etc.)021
under various non-IID partitioning strategies.022
Our extensive experiments with FedNLP pro-023
vide empirical comparisons between FL meth-024
ods and help us better understand the inherent025
challenges of this direction. The comprehen-026
sive analysis points to intriguing and exciting027
future research aimed at developing FL meth-028
ods for NLP tasks. 1029

1 Introduction030

Fine-tuning large pre-trained language models031

(LMs) such as BERT (Devlin et al., 2019) of-032

ten leads to state-of-the-art performance in many033

realistic NLP applications (e.g., text classifica-034

tion, named entity recognition, question answer-035

ing, summarization, etc.), when large-scale, cen-036

tralized training datasets are available. How-037

ever, due to the increasing concerns and regu-038

lations about data privacy (e.g., GPDR (Regula-039

tion, 2016)) emerging data from realistic users040

1We have uploaded our code and will make it public.
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Figure 1: The FedNLP benchmarking framework.

have been much more fragmented and distributed, 041

forming decentralized private datasets of multiple 042

“data silos” (a data silo can be viewed as an in- 043

dividual dataset) — across different clients (e.g., 044

organizations or personal devices). 045

To respect the privacy of the users and abide 046

by these regulations, we must assume that users’ 047

data in a silo are not allowed to transfer to a cen- 048

tralized server or other clients. For example, a 049

client cannot share its private user data (e.g., docu- 050

ments, conversations, questions asked on the web- 051

site/app) with other clients. This is a common 052

concern for organizations such as hospitals, finan- 053

cial institutions, or legal firms, as well as personal 054

computing devices such as smartphones, virtual 055

assistants (e.g., Amazon Alexa, Google Assistant, 056

etc.), or a personal computer. However, from a 057

machine learning perspective, models trained on 058

a centralized dataset that combine the data from 059

all organizations or devices usually result in bet- 060

ter performance in the NLP domain. Therefore, it 061
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is of vital importance to study NLP problems in062

such a realistic yet more challenging scenario —063

i.e., training data are distributed across different064

clients and cannot be shared for privacy concerns.065

The nascent field of federated learning (et al,066

2019; Li et al., 2020b) (FL) aims to enable many067

individual clients to train their models jointly068

while keeping their local data decentralized and069

completely private from other users or a central-070

ized server. A common training schema of FL071

methods is that each client sends its model param-072

eters to the server, which updates and sends back073

the global model to all clients in each round. Since074

the raw data of one client has never been exposed075

to others, FL is promising as an effective way to076

address the above challenges, particularly in the077

NLP domain, where many user-generated text data078

contain sensitive and/or personal information.079

Despite the growing progress in the FL domain,080

research into and application for NLP has been081

rather limited. There are indeed several recent082

works on using FL methods for processing med-083

ical information extraction tasks (Sui et al., 2020).084

However, such prior work usually has its exper-085

imental setup and specific task, making it diffi-086

cult to fairly compare these FL methods and an-087

alyze their performance in other NLP tasks. We088

argue that future research in this promising direc-089

tion (FL for NLP) would highly benefit from a uni-090

versal benchmarking platform for systematically091

comparing different FL methods for NLP. To the092

best of our knowledge, such a benchmarking plat-093

form is still absent from the literature.094

Therefore, our goal in this paper is to provide095

comprehensive comparisons between popular FL096

methods (e.g., FedAvg (McMahan et al., 2017a),097

FedOPT (Reddi et al., 2020), FedProx (Li et al.,098

2020c)) for four mainstream formulations of NLP099

tasks: text classification, sequence tagging, ques-100

tion answering, and seq2seq generation. Although101

there are few available realistic FL datasets for102

NLP due to privacy concerns, we manage to use103

existing NLP datasets to create various non-IID104

data partitions over clients. These non-IID parti-105

tions simulate various kinds of distribution shifts106

(e.g., label, features, quantities, etc.) over the107

clients, which often happen in real-world NLP108

applications. As for the base NLP models, we109

use the Transformer architecture (Vaswani et al.,110

2017) as the backbone and support a wide range of111

pre-trained LMs such as DistilBERT (Sanh et al.,112

2019), BERT (Devlin et al., 2019), BART (Lewis 113

et al., 2020), etc. To conduct extensive experi- 114

ments, we need to support the experiments with 115

multiple options on dimensions such as (1) task 116

formulations, (2) NLP models, (3) FL algorithms, 117

and (4) non-IID partitions. Therefore, we propose 118

FedNLP, a modular framework with universal in- 119

terfaces among the above four components, which 120

is thus more extensible for supporting future re- 121

search in FL for NLP. 122

We aim to unblock the research of FL for NLP 123

with the following two-fold contributions: 124

• Evaluation and analysis. We system- 125

atically compare popular federated learning 126

algorithms for mainstream NLP task formu- 127

lations under multiple non-IID data parti- 128

tions, which thus provides the first compre- 129

hensive understanding. Our analysis reveals 130

that there is a considerably large gap between 131

centralized and decentralized training under 132

various settings. We also analyze the effi- 133

ciency of different FL methods and model 134

sizes. With our analysis, we highlight several 135

directions to advance FL for NLP. 136

• Resource. The implementation of our exper- 137

iments forms a general open-source frame- 138

work, FedNLP, which is capable of evaluat- 139

ing, analyzing, and developing FL methods 140

for NLP. We also provide decentralized NLP 141

datasets of various task formulations created 142

by various non-IID partitioning strategies for 143

future research. 144

The remainder of this paper is structured as fol- 145

lows. We introduce the background knowledge 146

of federated learning and several typical FL al- 147

gorithms in §2. Then, we present the proposed 148

non-IID partitioning strategies to create synthetic 149

datasets for different task formulations in §3. Our 150

results, analysis, and findings are in §4. Finally, 151

we discuss related work (§5) and conclusions (§6). 152

2 Federated Learning for NLP 153

In this section, we first introduce the background 154

knowledge of federated learning (FL) in the con- 155

text of NLP tasks. Then, we illustrate a unified FL 156

framework that we used to study typical FL algo- 157

rithms. Based on this, we build our own research 158

framework, a general pipeline for benchmarking 159

and developing FL methods for NLP. 160
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2.1 Federated Learning Concepts161

Federated learning (FL) is a machine learning162

paradigm where multiple entities (clients) collab-163

orate in solving a machine learning problem un-164

der the coordination of a central server or service165

provider. Each client’s raw data is stored locally166

and not exchanged or transferred; instead, focused167

updates intended for immediate aggregation are168

used to achieve the learning objectives (Kairouz169

et al., 2019). Therefore, federated learning has170

been seen as a promising direction to decrease the171

risk of attack and leakage, reduce the difficulty172

and cost of data movement, and meet the privacy-173

related data storage regulations.174

In the basic conception of federated learning,175

we would like to minimize the objective function,176

F (x) = Ei∼P [Fi(x)],

where Fi(x) = Eξ∼Di [fi(x, ξ)].
(1)177

178

x ∈ Rd represents the parameter for the global179

model, Fi : Rd → R denotes the local objective180

function at client i, and P denotes a distribution181

on the collection of clients I. The local loss func-182

tions fi(x, ξ) are often the same across all clients,183

but the local data distribution Di will often vary,184

capturing data heterogeneity.185

Federated averaging (FedAvg) (McMahan186

et al., 2017a) is a common algorithm to solve (1)187

by dividing the training process into rounds. At188

the beginning of the t-th round (t ≥ 0), the server189

broadcasts the current global model x(t) to a co-190

hort of participants: a random subset of clients191

from S(t) which includesM clients in total. Then,192

each sampled client in the round’s cohort performs193

τi local SGD updates on its own local dataset and194

sends the local model changes ∆
(t)
i = x

(t,τi)
i −x(t)195

to the server. Finally, the server uses the aggre-196

gated ∆
(t)
i to update the global model: x(t+1) =197

x(t)+

∑
i∈S(t) pi∆

(t)
i∑

i∈S(t) pi
.where pi is the relative weight198

of client i. The above procedure will repeat un-199

til the algorithm converges. In the cross-silo set-200

ting where all clients participate in training on ev-201

ery round (each cohort is the entire population),202

we have S(t) = {1, 2, . . . ,M}. Consequently, we203

can learn a global model to benefit all clients while204

preserving their data privacy.205

2.2 Our Unified Framework for FL206

In this work, we propose to use FedOPT (Reddi207

et al., 2020), a generalized version of FedAvg, to208

Algorithm 1: FEDOPT (Reddi et al.,
2020)): A Generic FedAvg Algorithm

Input: Initial model x(0), CLIENTOPT,
SERVEROPT

1 for t ∈ {0, 1, . . . , T − 1} do
2 Sample a subset S(t) of clients
3 for client i ∈ S(t) in parallel do
4 Initialize local model x(t,0)

i = x(t)

5 for k = 0, . . . , τi − 1 do
6 Compute local stochastic gradient

gi(x
(t,k)
i )

7 Perform local update x
(t,k+1)
i =

CLIENTOPT (x
(t,k)
i , gi(x

(t,k)
i ), η, t)

8 Compute local model changes
∆

(t)
i = x

(t,τi)
i − x

(t,0)
i

9 Aggregate local changes
∆(t) =

∑
i∈S(t) pi∆

(t)
i /

∑
i∈S(t) pi

10 Update global model
x(t+1) = SERVEROPT (x(t),−∆(t), ηs, t)

build the FedNLP platform. As the pseudo-code 209

presented in Algorithm 1, the algorithm is parame- 210

terized by two gradient-based optimizers: CLIEN- 211

TOPT and SERVEROPT with client learning rate 212

η and server learning rate ηs, respectively. While 213

CLIENTOPT is used to update the local models, 214

SERVEROPT treats the negative of aggregated lo- 215

cal changes −∆(t) as a pseudo-gradient and ap- 216

plies it to the global model. This optimization 217

framework generalizes to many aggregation-based 218

FL algorithms and simplifies the system design. 219

To make our research general, we explore dif- 220

ferent combinations of SEVEROPT and CLIEN- 221

TOPT. The original FedAvg algorithm implicitly 222

sets SEVEROPT and CLIENTOPT to be SGD, with 223

a fixed server learning rate ηs of 1.0. FedProx (Li 224

et al., 2020c), tackling statistical heterogeneity by 225

restricting the local model updates to be closer to 226

the initial (global) model, can be easily incorpo- 227

rated into this framework by adding L2 regular- 228

ization for better stability in training. Moreover, 229

given that AdamW (Loshchilov and Hutter, 2019) 230

is widely used in NLP, we set it for ClientOpt 231

and let the ServerOpt to be SGD with momen- 232

tum to reduce the burden of tuning. 233

2.3 The Proposed FedNLP Framework 234

To support our research in this paper and other fu- 235

ture work in the area of federated learning for NLP, 236

we build a general research framework named 237

FedNLP, based on the above universal optimiza- 238

tion framework. We here briefly highlight its 239

unique features and leave the details in the follow- 240
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ing content and detailed design is shown in App. F.241

First, FedNLP is the very first framework that con-242

nects multiple FL algorithms with Transformer-243

based models, to our best knowledge. Also, we244

implement a flexible suite of interfaces to support245

different types of NLP tasks and models, as well as246

different non-IID partitioning strategies (Sec. 3.2.247

To study security and privacy guarantees, we also248

incorporate the state-of-the-art secure aggregation249

algorithms such as LightSecAgg (see F.5).250

3 Benchmarking Setup with FedNLP251

In this section, we introduce the creation of our252

benchmark datasets from a set of chosen NLP253

tasks with different non-IID partition methods. We254

evaluate various FL methods on these datasets.255

3.1 Task Formulations, Datasets, and Models256

There are numerous NLP applications, but most257

of them can be categorized based on four main-258

stream formulations: text classification (TC), se-259

quence tagging (ST), question answering (QA),260

and seq2seq generation (SS). The formal def-261

inition of each formulation is detailed in Ap-262

pendix §B. To cover all formulations while keep-263

ing our experiments in a reasonable scope, we se-264

lect one representative task for each formulation:265

• Text Classification: 20Newsgroup (Lang,266

1995) is a news classification dataset with an-267

notations for 20 labels. We showcase our268

FedNLP with this dataset as it has a larger out-269

put space (20 labels) than sentiment-analysis270

datasets, which is an important factor for the271

label-distribution shift scenarios. .272

• Sequence Tagging: OntoNotes (Pradhan273

et al., 2013) (5.0) is a corpus where sentences274

have annotations for the entity spans and types.275

We use it for the named entity recognition task,276

which is fundamental to information extraction277

and other applications.278

• QA: MRQA (Fisch et al., 2019) is a bench-279

mark consisting of 6 popular datasets2:280

SQuAD (Rajpurkar et al., 2016) (8529/431),281

NewsQA (Trischler et al., 2017) (11877/613),282

TriviaQA (Joshi et al., 2017) (4120/176) ,283

SearchQA (Dunn et al., 2017) (9972/499)284

, HotpotQA (Yang et al., 2018b) , and285

NQ (Kwiatkowski et al., 2019) (9617/795).286

2We only use part of the data to demonstrate and verify
our hypothesis; we show the train/test split in brackets.

Task Txt.Cls. Seq.Tag. QA Seq2Seq

Dataset 20News Onto. MRQA Giga.

# Training 11.3k 50k 53.9k 10k
# Test 7.5k 5k 3k 2k

# Labels 20 37* N/A N/A

Metrics Acc. F-1 F-1 ROUGE

Table 1: Statistics of the selected datasets for our ex-
periments. *37 is the size of the tag vacabulary.

• Seq2Seq Generation: Gigaword (DBL, 287

2012) is a news corpus with headlines that is of- 288

ten used for testing seq2seq models as a summa- 289

rization task. Other tasks such as dialogue re- 290

sponse generation and machine translation can 291

also be adapted to this format. 292

We show the basic statistics of the above 293

datasets in Table 1. Note that our FedNLP as a 294

research platform supports a much wider range of 295

specific tasks of each formulation, while we only 296

introduce the ones used in our experiments here 297

with typical settings. Moreover, our contribution 298

is more of a general FL+NLP benchmarking plat- 299

form instead of particular datasets and partitions. 300

Base NLP Models. Fine-tuning pre-trained 301

LMs has been the de facto method for NLP re- 302

search, so we focus on testing Transformer-based 303

architectures in FedNLP. Specifically, we choose 304

to use BART (Lewis et al., 2020), a text-to-text 305

Transformer model similar to the T5 model (Raf- 306

fel et al., 2020), for seq2seq tasks. 307

3.2 Non-IID Partitioning Strategies 308

The existing datasets have been used for central- 309

ized training in NLP. As our focus here is to test 310

decentralized learning methods, we need to dis- 311

tribute the existing datasets to a set of clients. It 312

is the non-IIDness of the client distribution that 313

makes federated learning a challenging problem. 314

Thus, we extend the common practice widely used 315

in prior works to the NLP domain for generating 316

synthetic FL benchmarks (Li et al., 2021). We 317

first introduce how we control the label distribu- 318

tion shift for TC and ST, then the quantity dis- 319

tribution shift, and finally how we model the dis- 320

tribution shift in terms of input features for non- 321

classification NLP tasks (e.g., summarization). 322

Non-IID Label Distributions. Here we present 323

how we synthesize the data partitions such that 324

clients the share same (or very similar) number 325

4



100 clients

1
0

0
 c

lie
n

ts

𝛼 = 1 𝛼 = 5 𝛼 = 10 𝛼 = 100

JSD

Figure 2: The J-S divergence matrix between 100 clients
on the 20News dataset when α ∈ {1, 5, 10, 100}. Each sub-
figure is a 100x100 symmetric matrix. The intensity of a cell
(i, j)’s color here represents the distance between the label
distribution of Client i and j. It is expected that when α is
smaller, the partition over clients is more non-IID in terms of
their label distributions.

of examples, but have different label distribu-326

tions from each other. We assume that on ev-327

ery client training, examples are drawn indepen-328

dently with labels following a categorical distri-329

bution over L classes parameterized by a vec-330

tor q (qi ≥ 0, i ∈ [1, L] and ‖q‖1 = 1). To syn-331

thesize a population of non-identical clients, we332

draw q ∼ DirL(αp) from a Dirichlet distribu-333

tion, where p characterizes a prior class distribu-334

tion over L classes, and α > 0 is a concentra-335

tion parameter controlling the identicalness among336

clients. For each client Cj , we draw a qj as its la-337

bel distribution and then sample examples without338

replacement from the global dataset according to339

qj . With α → ∞, all clients have identical dis-340

tributions to the prior (i.e., uniform distribution);341

with α → 0, on the other extreme, each client342

holds examples from only one class chosen at ran-343

dom. In Fig. 2, we show heatmaps for visualizing344

the distribution differences between each client.345

Figure 3 shows an example of the concrete label346

distributions for all clients with different α. We347

can see that when α is smaller, the overall label348

distribution shift becomes larger.349

Controlling non-IID Quantity. It is also com-350

mon that different clients have very different data351

quantities while sharing similar label distribution.352

We thus also provide a quantity-level Dirichlet al-353

location z ∼ DirN (β) where N is the number of354

clients. Then, we can allocate examples in a global355

dataset to all clients according to the distribution z356

— i.e., |Di| = zi|DG|. If we would like to model357

both quantity and label distribution shift, it is also358

easy to combine both factors. Note that one could359

assume it is a uniform distribution z ∼ U(N), (or360

β → ∞) if we expect all clients to share a sim-361

ilar number of examples. A concrete example is362

shown in Figure 8 (Appendix).363

Controlling non-IID Features. Although364

straightforward and effective, the above label-365

𝛼 = 1 𝛼 = 5 𝛼 = 10 𝛼 = 100

20 labels

1
0

0
 c
lie
n
ts

Ratio

Figure 3: Visualizing the non-IID label distributions on
20News with α being {1, 5, 10, 100}. Each sub-figure is a
100x20 matrix, where 100 is the number of clients, and 20
is the number of labels. The intensity of a cell here rep-
resents the ratio of a particular label in the local data of a
client. When α is smaller (1, 5, 10), each client has a rela-
tively unique label distribution, thus the differences between
clients are larger; when α = 100, every client has a nearly
uniform label distribution.

based Dirichlet allocation method has a major 366

limitation — it is only suitable for text classifi- 367

cation tasks where the outputs can be modeled 368

as category-based random variables. To create 369

synthetic partitions for other non-classification 370

NLP tasks and model distribution shifts, we 371

thus propose a partition method based on feature 372

clustering. Specifically, we use Sentence- 373

BERT (Reimers and Gurevych, 2019) to encode 374

each example to a dense vector by their text then 375

we apply K-Means clustering to get the cluster 376

label of each example; finally, we use these cluster 377

labels (as if they were classification tasks) to 378

follow the steps in modeling label distribution 379

shift. There are two obvious benefits of this 380

clustering-based Dirichlet partition method: 1) It 381

enables us to easily synthesize the FL datasets for 382

non-classification tasks (i.e., ST, QA, SS) as they 383

do not have discrete labels as output space; 2) The 384

BERT-based clustering results naturally imply 385

different sub-topics of a dataset, and thus feature 386

shift can be seen as a shift of latent labels — we 387

can reuse the same method for the label-based 388

Dirichlet partition method. 389

Natural Factors For datasets like MRQA, we 390

consider a cross-silo setting where each client is 391

associated with a particular sub-dataset (out of the 392

six datasets of the same format), forming a natu- 393

ral distribution shift based on the inherent factors 394

such as data source and annotating style. 395
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Task Dataset Partition Clients FedAvg FedProx FedOPT # Rounds

Text Classification 20news α =1 (label shift) 100 0.5142 0.5143 0.5349 22
Sequence Tagging OntoNotes α =0.1 (label shift) 30 0.7382 0.6731 0.7918 17

Question Answering MRQA natural factor 6 0.2707 0.2706 0.3280 13
Seq2Seq Generation Gigaword α =0.1 (feature shift) 100 0.3192 0.3169 0.3037 13

Table 2: The comparisons between different FL methods under the same setting on different NLP tasks. The
number of workers per round are 10, expect for the MRQA task, which uses 6.

20news Ontonotes GigawordMRQA

Figure 4: The learning curves of the three FL Methods on four different task formulations. The metrics used
for these tasks are accuracy, span-F1, token-F1, and ROUGE respectively; The x-axis is the number of rounds in
federated learning.

4 Experimental Results and Analysis396

In this section, we aim to analyze typical federated397

learning methods (introduced in on our benchmark398

datasets with multiple dimensions with the base399

NLP models listed previously. We put more im-400

plementation details and additional results in Ap-401

pendix. We organize our extensive experimental402

results and findings from the analysis as a collec-403

tion of research questions with answers.404

Experimental Setup and Hyper-parameters.405

We use DistilBERT and BART-base for most of406

our experiments, as the former is a distilled ver-407

sion of the BERT model and has a 7x speed408

improvement over BERT-base on mobile devices409

— a common scenario for FL applications; the410

BART-base model is the most suitable option con-411

sidering the trade-off between performance and412

computation cost. We leave our implementation413

details and the selected hyper-parameters in the414

submitted supplementary materials.415

Our experiments cover both cross-device and416

cross-silo settings. As shown in Table 2, in the417

cross-device setting, we use uniform sampling to418

select 10 clients for each round when the client419

number in a dataset is very large (e.g., 100). For420

the cross-silo setting, each round will select the421

same number of clients (we use 6 for the QA task).422

The local epoch number is set to 1 for all experi-423

ments. To make our results reproducible, we use424

wandb.ai to store all experiment logs and hyper-425

parameters as well as running scripts.426

Q1: How do popular FL methods perform
differently under the same setting?

We compare the three typical FL methods under 427

the same setting (i.e., data partition, communica- 428

tion rounds, etc.) for each task formulation. As 429

shown in Table 2, we report the results of FedAvg, 430

FedProx, and FedOPT. We can see that overall Fe- 431

dOPT performs better than the other two methods, 432

with the only exception being in the seq2seq gen- 433

eration task. FedAvg and FedProx perform sim- 434

ilarly with marginal differences, but FedAvg out- 435

performs FedProx in sequence tagging. These two 436

exceptions are surprising findings, as many prior 437

works in the FL community show that FedOPT is 438

generally better than FedProx than FedAvg on vi- 439

sion tasks and datasets. 440

We conjecture that such inconsistent perfor- 441

mance across tasks suggests the difference in 442

terms of the loss functions have a great impact on 443

FL performance. Seq2seq and sequence tagging 444

tasks usually have more complex loss landscapes 445

than text classification, as they are both typical 446

structured prediction tasks, while the text classi- 447

fication has a much smaller output space. From 448

Fig. 4, we see that the FedOPT outperforms the 449

other two methods at the beginning while gradu- 450

ally becoming worse over time. 451

This tells us that the use of AdamW as the client 452

optimizer may not always be a good choice, es- 453

pecially for a complex task such as the Seq2Seq 454

ones, as its adaptive method for scheduling learn- 455
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Figure 5: Testing FedOPT with DistilBERT for
20News under different data partition strategies.

ing rates might cause implicit conflicts. These ob-456

servations suggest that federated optimization al-457

gorithms need to be tailored for various NLP tasks,458

and exploring FL-friendly model architecture or459

loss function can also be promising directions to460

address these challenges.461

Q2: How do different non-IID partitions of
the same data influence FL performance?

The FedNLP platform supports users to inves-462

tigate the performance of an FL algorithm with a463

wide range of data partitioning strategies, as dis-464

cussed in §3.2. Here we look at the training curves465

of the FedOPT on different partitions, as shown in466

Figure 5. We reveal several findings:467

• When α is smaller (i.e., the partition is more468

non-IID in terms of their label distribution), the469

performance tends to degrade, based on the three470

curves (α = {1, 5, 10}).471

• The variance is also larger when the label distri-472

bution shift is larger. Both uniform and quantity-473

skew partitions have a smoother curve, while the474

variance is smaller for a larger α (e.g., 10).475

• Quantity skew does not introduce a great chal-476

lenge for federated learning when the label dis-477

tribution is closer to the uniform one.478

These findings suggest that it is important to479

design algorithms to mitigate data heterogene-480

ity. One promising direction is personalized FL,481

which enables each client to learn its own person-482

alized model via adapting its local data distribu-483

tion and system resources (Dinh et al., 2020; Fal-484

lah et al., 2020; Li et al., 2020a).485

Q3: How does freezing of Transformers in-
fluence the FL performance?

Communication cost is a major concern in the486

federated learning process. It is thus natural to487

consider freezing some Transformer layers of the488

Frozen Layers # Tunable Paras. Cent. FedOpt.

None 67.0M 86.86 55.11
E 43.1M 86.19 54.86

E + L0 36.0M 86.54 52.91
E + L0→1 29.0M 86.52 53.92
E + L0→2 21.9M 85.71 52.01
E + L0→3 14.8M 85.47 30.68
E + L0→4 7.7M 82.76 16.63
E + L0→5 0.6M 63.83 12.97

Table 3: Performance (Acc.%) on 20news (TC) when
different parts of DistilBERT are frozen for central-
ized training and FedOpt (at 28-th round). E stands for
the embedding layer and Li means the i-th layer. The
significant lower accuracy are underlined.
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Figure 6: Testing FedOPT with DistilBERT for
20News under different frozen layers.

client models in order to reduce the size of the 489

trainable parameters that will be transmitted be- 490

tween servers and clients. To study the influence 491

of freezing layers on the FL performance, we con- 492

duct a series of experiments that freeze the layers 493

from the embedding layer (E) to the top layer (L5) 494

of DistilBERT with both centralized training and 495

FedOPT on the text classification task. 496

We report our results in Table 3 and Figure 6. 497

We find that in centralized training, the largest 498

performance gain happens when we unfreeze the 499

last layer, while in FedOPT we have to unfreeze 500

the last three layers to enjoy a comparable per- 501

formance with the full model. This suggests that 502

reducing communication costs via freezing some 503

layers of Transformer LMs is feasible, though one 504

should be aware that the experience in centralized 505

training may not generalize to the FL experiments. 506

Q4: Are compact model DistilBERT ade-
quate for FL+NLP?

We know that BERT has a better performance than 507

DistilBERT for its larger model size. However, 508

is it cost-effective to use BERT rather than Dis- 509

tilBERT? To study this, we compare the perfor- 510
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Figure 7: FedOPT for 20News with different LMs.

mance of both models with FedOPT on text classi-511

fication, sharing the same setting as the above ex-512

periments. As shown in Figure 7, although BERT-513

base achieves better performance, the performance514

of DistilBERT is not significantly worse. Consid-515

ering the communication cost (BERT-base is al-516

most 2x larger), we argue that using DistilBERT is517

a more cost-effective choice for both experimental518

analysis and realistic applications.519

5 Related Work520

FL benchmarks and platforms. In the last few521

years a proliferation of frameworks and bench-522

mark datasets have been developed to enable re-523

searchers to better explore and study algorithms524

and modeling for federated learning, both from525

academia: LEAF(Caldas et al., 2018), FedML (He526

et al., 2020c), Flower (Beutel et al., 2020), and527

from the industry: PySyft (Ryffel et al., 2018),528

TensorFlow-Federated (TFF) (Ingerman and Os-529

trowski, 2019), FATE (Yang et al., 2019), Clara530

(NVIDIA, 2019), PaddleFL (Ma et al., 2019),531

Open FL (Intel®, 2021). However, most platforms532

only focus on designing a unified framework for533

federated learning methods and do not provide534

a dedicated environment for studying NLP prob-535

lems with FL methods. LEAF (Caldas et al., 2018)536

contains a few text datasets, however, it is limited537

to classification and next-word prediction datasets538

and does not consider the pre-trained language539

models. We want to provide a dedicated platform540

for studying FL methods in realistic NLP applica-541

tions with state-of-the-art language models.542

Federated learning in NLP applications.543

There are a few prior works that have begun to544

apply FL methods in privacy-oriented NLP appli-545

cations. For example, federated learning has been546

applied to many keyboard-related applications547

(Hard et al., 2018; Stremmel and Singh, 2020; 548

Leroy et al., 2019; Ramaswamy et al., 2019; 549

Yang et al., 2018a), sentence-level text intent 550

classification using Text-CNN (Zhu et al., 2020), 551

and pretraining and fine-tuning of BERT using 552

medical data from multiple silos without fetching 553

all data to the same place (Liu and Miller, 2020). 554

FL methods also have been proposed to train 555

high-quality language models that can outperform 556

the models trained without federated learning (Ji 557

et al., 2019; Chen et al., 2019). Besides these 558

applications, some work has been done in medical 559

relation extractions (Ge et al., 2020) and medical 560

name entity recognition (Sui et al., 2020). These 561

methods use federated learning to preserve the 562

privacy of sensitive medical data and learn data 563

in different platforms, excluding the need for 564

exchanging data between different platforms. 565

Our work aims to provide a unified platform 566

for studying various NLP applications in a shared 567

environment so that researchers can better design 568

new FL methods either for a specific NLP task or 569

as a general-purpose model. The aforementioned 570

prior works would thus be a particular instance of 571

the settings supported by the FedNLP platform. 572

6 Conclusion and Future Directions 573

Our key contribution is providing a thorough and 574

insightful empirical analysis of existing federated 575

learning algorithms in the context of NLP mod- 576

els. Notably, We compare typical FL methods 577

for four NLP task formulations under multiple 578

non-IID data partitions. Our findings reveal both 579

promise and the challenges of FL for NLP. In ad- 580

dition, we also provide a suite of resources to sup- 581

port future research in FL for NLP (e.g., a unify- 582

ing framework for connecting Transformer mod- 583

els with popular FL methods and different non-IID 584

partition strategies). Thus, we believe our well- 585

maintained open-source codebase to support fu- 586

ture work in this area. 587

Promising future directions in FL for NLP in- 588

cludes: 1) minimizing the performance gap, 2) im- 589

proving the system efficiency and scalability, 3) 590

trustworthy and privacy-preserving NLP, 4) per- 591

sonalized FL methods for NLP, etc. (Please see 592

Appendix E for more details.) 593
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Ethical Considerations and Limitations(*)594

Ethical considerations. The key motivation of595

FedNLP (and FL) is to protect the data privacy of596

general users by keeping their data on their own597

devices while benefit from a shared model from a598

broader community. Among the risks that need to599

be considered in any deployment of NLP are that600

responses may be wrong, or biased, in ways that601

would lead to improperly justified decisions. Al-602

though in our view the current technology is still603

relatively immature, and unlikely to be fielded in604

applications that would cause harm of this sort, it605

is desirable that FedNLP methods provide audit606

trails, and recourse so that their predictions can be607

explained to and critiqued by affected parties.608

Limitations. One limitation of our work is that609

we have not analyzed the privacy leakage of FL610

methods. We argue that novel privacy-centric611

measures are orthogonal to the development FL612

methods, which is beyond the scope of our work.613

How to fairly analyze the privacy leakage is now614

still an open problem for both FL and NLP, and615

it is only possible to study this when we have an616

existing platform like FedNLP.617
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Appendix986

987

A FL+NLP988

Many realistic NLP services heavily rely on users’989

local data (e.g., text messages, documents and990

their tags, questions and selected answers, etc.),991

which can be located at either personal devices992

or larger data-silos for organizations. These lo-993

cal data are usually regarded as highly private and994

thus not directly accessible by anyone, according995

to many data privacy regulations; this makes it dif-996

ficult to train a high-performance model to benefit997

users. Federated learning aims to solve machine998

learning under such a privacy-preserving use case,999

thus offering a novel and promising direction to1000

the community: FL+NLP.1001

Apart from the goal of learning a shared global1002

model for all clients, FL also provides a new per-1003

spective for many other interesting research ques-1004

tions in NLP. One related direction is to develop1005

personalized models for NLP applications, which1006

requires both protection of data privacy and trans-1007

ferred ability on users’ own input feature distri-1008

bution caused by language styles, interested top-1009

ics and so on. The recent concerns on adversar-1010

ial attacks and safety issues of NLP models are1011

also highly related to FL+NLP. We thus believe1012

FL+NLP is of vital importance for applying NLP1013

technologies in realistic use cases and could bene-1014

fit many relevant research areas.1015

A.1 Challenges of Applying FL in NLP1016

Given the promising benefits of studying FL+NLP,1017

however, this research direction is currently1018

blocked by the lack of a standardized platform1019

providing fundamental building blocks: bench-1020

mark datasets, NLP models, FL methods, evalu-1021

ation protocols, etc. Most of the current FL plat-1022

forms either focus on unifying various FL meth-1023

ods and use computer vision models and datasets1024

for their experiments, but lack the ability to con-1025

nect the study of pre-trained language models, the1026

most popular NLP , and realistic NLP applications1027

of various task formulations.1028

The first challenge in developing a comprehen-1029

sive and universal platform for FL+NLP is to deal1030

with various task formulations for realistic NLP1031

applications, which have different input and output1032

formats (Section B). As the non-IID data partition1033

over clients is the major feature of FL problems, it1034

is also a challenge to simulate the realistic non-IID 1035

partition for existing NLP datasets (Section 3.2). 1036

Finally, a platform also must integrate various FL 1037

methods with the Transformer-based NLP mod- 1038

els for a variety of task types, and thus a flexible 1039

and extensible learning framework is needed. In 1040

particular, the conventional trainer component of 1041

Transformers now needs to be modified for effi- 1042

cient and safe communications towards federated 1043

learning (Section F). 1044

B Basic Formulations of NLP Tasks 1045

There are various types of NLP applications, but 1046

many of them share a similar task formulation 1047

(i.e., input-and-put formats). We show four com- 1048

mon task formulations that can cover most of the 1049

mainstream NLP applications: text classification, 1050

sequence tagging, question answering, sequence- 1051

to-sequence generation. 1052

Text Classification (TC) The input is a sequence 1053

of words, x = [w1, w2, . . . ], and the output is a la- 1054

bel y in a fixed set of labels L. Many NLP applica- 1055

tions can be formulated as text classification tasks. 1056

For example, we can use TC models for classi- 1057

fying the topic of a news article to be political, 1058

sports, entertainment, etc., or analyzing movie re- 1059

views to be positive, negative or neutral. 1060

Sequence Tagging (ST) The input is a sequence 1061

of words, x = [w1, w2, . . . , wN ], and the out- 1062

put is a same-length sequence of tags y = 1063

[t1, t2, . . . , tN ], where ti is in a fixed set of labels 1064

L. The main difference between TC and ST is that 1065

ST learns to classify the label of each token in a 1066

sentence, which is particularly useful in analyzing 1067

syntactic structures (e.g., part-of-speech analysis, 1068

phrase chunking, and word segmentation) and ex- 1069

tracting spans (e.g., named entity recognition). 1070

Question Answering (QA) Given a passage P = 1071

[w1, w2, . . . , wN ] and a question q as input, the 1072

task is to locate a span in the passage as the an- 1073

swer to the question. Thus, the output is a pair of 1074

token index (s, e) where s, e ∈ {1, 2, . . . , N} for 1075

denoting the begin and end of the span in the pas- 1076

sage. This particular formulation is also known as 1077

reading comprehension. 1078

Natural Language Generation (NLG) Both in- 1079

put and output are sequence of words, x = 1080

[wi1, w
i
2, . . . , w

i
N ] , y = [wo1, w

o
2, . . . , w

o
M ]. It is 1081

shared by many realistic applications such as sum- 1082

marization, response generation in dialogue sys- 1083

tems, machine translation, etc. 1084
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Figure 8: The probability density of quantity of train-
ing examples in each of the 100 clients on the 20News
dataset with different β. When β is larger, then all
clients share more similar numbers of examples; when
β is smaller, then the range of the quantity is much
wider — i.e., the larger differences between clients in
terms of their sizes of datasets.

Language Modeling (LM) The left-to-right lan-1085

guage modeling task considers a sequence of1086

words as the input x = [w1, w2, . . . , wn] and a1087

token y = wn+1 as the output. The output token1088

is expected to be the most plausible next word of1089

the incomplete sentence denoted as x. Although1090

the direct application of LM is limited, a high-1091

performance pre-trained language model can ben-1092

efit a wide range of NLP applications (as above)1093

via fine-tuning. It also serves as an excellent test1094

bed as it requires no human annotations at all.1095

Others. There are some other applications that1096

not are covered by the above four basic formu-1097

lations, and our extensible platform (detailed in1098

Section F) enables users to easily implement their1099

specific tasks. For each task formulation, we show1100

which datasets are used in FedNLP and how we1101

partition them in Section 3.1102

C Implementation Details1103

Non-IID. Label Distribution Note that this1104

might cause a few clients not to have enough ex-1105

amples to sample for particular labels if they are1106

already used up. Prior works choose to stop as-1107

signing early and remove such clients, but it conse-1108

quently loses the other unused examples and also1109

causes the inconsistency of client numbers. Thus,1110

to avoid these issues, we propose a dynamic re-1111

assigning method which complement the vacancy1112

of a label by filling in the examples of other la- 1113

bels based on their current ratio of remaining unas- 1114

signed examples. 1115

C.1 The FedNLP Training Pipeline: Security 1116

and Efficiency 1117

Under the definition of federated learning in Algo- 1118

rithm 1, we design a training system to support the 1119

research of NLP in the FL paradigm. We highlight 1120

its core capabilities and design as follows. 1121

Supporting diverse FL algorithms. FedNLP 1122

aims to enable flexible customization for future 1123

algorithmic innovations. We have supported a 1124

number of classical federated learning algorithms, 1125

including FedAvg (McMahan et al., 2017a), Fe- 1126

dOPT (Reddi et al., 2020), and FedProx (Li et al., 1127

2020c). These algorithms follow the same frame- 1128

work introduced in Algorithm 1. The algorithmic 1129

APIs are modularized: all data loaders follow the 1130

same format of input and output arguments, which 1131

are compatible with different models and algo- 1132

rithms and are easy to support new datasets; the 1133

method of defining the model and related trainer is 1134

kept the same as in centralized training to reduce 1135

the difficulty of developing the distributed train- 1136

ing framework. For new FL algorithm develop- 1137

ment, worker-oriented programming reduces the 1138

difficulty of message passing and definition. More 1139

details are introduced in Appendix F.3. 1140

Enabling secure benchmarking with 1141

lightweight secure aggregation. In partic- 1142

ular, FedNLP enhances the security aspect of 1143

federated training, which is not supported by ex- 1144

isting non-NLP-oriented benchmarking libraries 1145

(e.g., TFF, LEAF). This is motivated by the fact 1146

that model weights from clients may still have 1147

the risk of privacy leakage (Zhu et al., 2019). To 1148

break this barrier, we integrate secure aggregation 1149

(SA) algorithms to the FedNLP system. NLP 1150

researchers do not need to master security- 1151

related knowledge and also benefit from a secure 1152

distributed training environment. To be more 1153

specific, FedNLP supports state-of-the-art SA 1154

algorithms LightSecAgg, SecAgg (Bonawitz 1155

et al., 2017), and SecAgg+ (Bell et al., 2020). At 1156

a high-level understanding, SA protects the client 1157

model by generating a single random mask and 1158

allows their cancellation when aggregated at the 1159

server. Consequently, the server can only see the 1160

aggregated model and not the raw model from 1161

each client. In this work, our main effort is to 1162
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design and optimize these SA algorithms in the1163

context of the FedNLP system. We provide an1164

algorithmic performance comparison in Appendix1165

F.5.1166

Realistic evaluation with efficient distributed1167

system design. FedNLP aims to support dis-1168

tributed training in multiple edge servers (e.g,1169

AWS EC2) or edge devices (e.g., IoTs and smart-1170

phones). To achieve this, the system is designed1171

with three layers: the application layer, the algo-1172

rithm layer, and the infrastructure layer. At the ap-1173

plication layer, FedNLP provides three modules:1174

data management, model definition, and a single-1175

process trainer for all task formats; at the algo-1176

rithm layer, FedNLP supports various FL algo-1177

rithms; at the infrastructure layer, FedNLP aims1178

at integrating single-process trainers with a dis-1179

tributed learning system for FL. Specifically, we1180

make each layer and module perform its own du-1181

ties and have a high degree of modularization. We1182

refer readers to Appendix F for a detailed descrip-1183

tion of the system architecture and design philos-1184

ophy.1185

D More Related Works1186

Federated Learning Methods. Federated1187

Learning (FL) is a widely disciplinary research1188

area that mainly focuses on three aspects: sta-1189

tistical challenge, trustworthiness, and system1190

optimization. Numerous methods have been1191

proposed to solve statistical challenges, including1192

FedAvg (McMahan et al., 2017b), FedProx (Li1193

et al., 2020c), FedOPT (Reddi et al., 2020),1194

FedNAS (He et al., 2020a,d), and FedMA (Wang1195

et al., 2020b) that alleviate the non-IID issue1196

with distributed optimization, and new formu-1197

lations, MOCHA (Smith et al., 2017), pFedMe1198

(Dinh et al., 2020), perFedAvg (Fallah et al.,1199

2020), and Ditto (Li et al., 2020a), that consider1200

personalization and fairness in federated training.1201

For trustworthiness, security and privacy are the1202

two main research directions that are mainly con-1203

cerned with resisting data or model attacks, recon-1204

struction, and leakage during training (So et al.,1205

2021b,a, 2020; Prakash et al., 2020; Prakash and1206

Avestimehr, 2020; Elkordy and Avestimehr, 2020;1207

Prakash et al., 2020; Wang et al., 2020a; Lyu1208

et al., 2020). Given that modern deep neural net-1209

works are over-parameterized and dominate nearly1210

all learning tasks, researchers also proposed algo-1211

rithms or systems to improve the efficiency and1212

scalability of edge training (He et al., 2020b,c, 1213

2019, 2021). We refer readers to the canonical sur- 1214

vey (Kairouz et al., 2019) for details. 1215

Although tremendous progress has been made 1216

in the past few years, these algorithms or systems 1217

have not been fully evaluated on realistic NLP 1218

tasks introduced in this paper. 1219

E Future Directions 1220

Minimizing the performance gap. In the FL 1221

setting, we demonstrate that federated fine-tuning 1222

still has a large accuracy gap in the non-IID dataset 1223

compared to centralized fine-tuning. Develop- 1224

ing algorithms for Transformer models with NLP 1225

tasks is of the highest priority. 1226

Improving the system efficiency and scalabil- 1227

ity. Transformer models are usually large, while 1228

resource-constrained edge devices may not be able 1229

to run large models. Designing efficient FL meth- 1230

ods for NLP tasks is thus a practical problem 1231

worth solving. How to adopt a reasonable user se- 1232

lection mechanism to avoid stragglers and speed 1233

up the convergence of training algorithms is also a 1234

pressing problem to be solved. 1235

Trustworthy and privacy-preserving NLP. 1236

We argue that it is an important future research 1237

direction to analyze and assure the privacy- 1238

preserving ability of these methods, although our 1239

focus in this paper is the implementation and 1240

performance analysis of the FL methods for NLP 1241

tasks. It is now an open problem for both FL 1242

and NLP areas, while it is an orthogonal goal 1243

for improving the trustworthy of decentralized 1244

learning, and it is only possible to study privacy 1245

preservation when we have an existing FL+NLP 1246

platform. This is also part of our motivation in 1247

proposing FedNLP, and we believe our framework 1248

provides a set of flexible interfaces for future 1249

development to analyze and improve the privacy- 1250

preserving ability of FL methods for NLP tasks 1251

and beyond. 1252

Personalized FedNLP. From the perspective of 1253

the data itself, user-generated text is inherently 1254

personalized. Designing personalized algorithms 1255

to improve model accuracy or fairness is a very 1256

promising direction. In addition, it is also an inter- 1257

esting problem to adapt the heterogeneous model 1258

architecture for each client in the FL network. We 1259

show that it is feasible to only fine-tune a small 1260

15



Algorithm 2: The FedNLP Workflow

# using text classification (TC) as an example

# initialize distributed computing environment
process_id, ... = FedNLP_init()

# GPU device management
device = map_process_to_gpu(process_id, ...)

# data management
data_manager = TCDataManager (process_id, ...)
# load the data dictionary by process_id
data_dict = dm.load_federated_data(process_id)

# create model by specifying the task
client_model, ... = create_model(model_args,

formulation="classification")

# define a customized NLP Trainer
client_trainer = TCTrainer(device,

client_model, ...)

# launch the federated training (e.g., FedAvg)
FedAvg_distributed(..., device,

client_model,
data_dict, ...,
client_trainer)

amount of the parameters of LMs, so it is promis-1261

ing to adapt recent prefix-tuning methods (Li and1262

Liang, 2021) for personalizing the parameters of1263

NLP models within the FedNLP framework.1264

F The System Design of FedNLP1265

The FedNLP platform consists of three layers:1266

the application layer, the algorithm layer, and1267

the infrastructure layer. At the application layer,1268

FedNLP provides three modules: data manage-1269

ment, model definition, and single-process trainer1270

for all task formats; At the algorithm layer,1271

FedNLP supports various FL algorithms; At the1272

infrastructure layer, FedNLP aims at integrating1273

single-process trainers with a distributed learning1274

system for FL. Specifically, we make each layer1275

and module perform its own duties and have a high1276

degree of modularization.1277

F.1 Overall Workflow1278

The module calling logic flow of the whole frame-1279

work is shown on the left of Figure 9. When1280

we start the federated training, we first complete1281

the launcher script, device allocation, data load-1282

ing, model creation, and finally call the API of the1283

federated learning algorithm. This process is ex-1284

pressed in Python-style code (see Alg. 2).1285

F.2 The Application Layer1286

Data Management. In data management, What1287

DataManager does is to control the whole work-1288

flow from loading data to returning trainable1289

features. To be specific, DataManager is set1290

up for reading h5py data files and driving a 1291

preprocessor to convert raw data to features. 1292

There are four types of DataManager accord- 1293

ing to the task definition. Users can customize 1294

their own DataManager by inheriting one of 1295

the DataManager class, specifying data operation 1296

functions, and embedding a particular preproces- 1297

sor. Note that the raw data’s H5Py file and the non- 1298

IID partition file are preprocessed offline, while 1299

DataManager only loads them in runtime. 1300

Model Definition. We support two types of 1301

models: Transformer and LSTM. For Transformer 1302

models, in order to dock with the existing NLP 1303

ecology, our framework is compatible with the 1304

HuggingFace Transformers library (Wolf et al., 1305

2020), so that various types of Transformers 1306

can be directly reused without the need for re- 1307

implementation. Specifically, our code is com- 1308

patible with the three main classes of Tokenizer, 1309

Model, and Config in HuggingFace. Users can 1310

also customize them based on HuggingFace’s 1311

code. Although LSTM has gradually deviated 1312

from the mainstream, we still support LSTM to 1313

reflect the framework’s integrity, which may meet 1314

some particular use cases in federated setting. 1315

NLP Trainer (single process perspective). As 1316

for the task-specific NLP Trainer, the most 1317

prominent feature is that it does not require users 1318

to have any background in distributed comput- 1319

ing. Users of FedNLP only need to complete 1320

single-process code writing. A user should in- 1321

herit the Trainer class in the application layer 1322

to implement the four methods as shown in the 1323

figure: 1. the get_model_params() interface al- 1324

lows the algorithm layer to obtain model param- 1325

eters and transmit them to the server; 2. the 1326

set_model_params() interface obtains the up- 1327

dated model from the server’s aggregation and 1328

then updates the model parameters of the local 1329

model; 3. the programming of the train() and 1330

test() function only needs to consider the data 1331

of a single user, meaning that the trainer is com- 1332

pletely consistent with the centralized training. 1333

F.3 The Algorithm Layer 1334

In the design of the algorithm layer, we follow 1335

the principle of one-line API. The parameters of 1336

the API include model, data, and single-process 1337

trainer (as shown in Algorithm 2). The algorithms 1338

we support include: 1339

16



Figure 9: The overall workflow and system design of the proposed FedNLP platform.

Centralized Training. We concatenate all client1340

datasets and use the global data DG to train a1341

global model — i.e., the conventional protocol for1342

learning a NLP model on a dataset.1343

FedAvg (McMahan et al., 2017a) is the de facto1344

method for federated learning, assuming both1345

client and server use the SGD optimizer for up-1346

dating model weights.1347

FedProx (Li et al., 2020c) can tackle statistical1348

heterogeneity by restricting the local model up-1349

dates to be closer to the initial (global) model with1350

L2 regularization for better stability in training.1351

FedOPT (Reddi et al., 2020) is a generalized1352

version of FedAvg. There are two gradient-based1353

optimizers in the algorithm: ClientOpt and1354

ServerOpt (please refer to the pseudo code in1355

the original paper (Reddi et al., 2020)). While1356

ClientOpt is used to update the local models,1357

SerevrOpt treats the negative of aggregated lo-1358

cal changes −∆(t) as a pseudo-gradient and ap-1359

plies it on the global model. In our FedNLP frame-1360

work, by default, we set the ClientOpt to be 1361

AdamW (Loshchilov and Hutter, 2019) and the 1362

SerevrOpt to be SGD with momentum (0.9) 1363

and fix server learning rate as 1.0. 1364

Each algorithm includes two core objects, 1365

ServerManager and ClientManager, which in- 1366

tegrate the communication module ComManager 1367

from the infrastructure layer and the Trainer of 1368

the training engine to complete the distributed al- 1369

gorithm protocol and edge training. Note that 1370

users can customize the Trainer by passing a cus- 1371

tomized Trainer through the algorithm API. 1372

F.4 The Infrastructure Layer 1373

The infrastructure layer includes three modules: 1374

1) Users can write distributed scripts to man- 1375

age GPU resource allocation. In particular, 1376

FedNLP provides the GPU assignment API 1377

(map_process_to_gpu() in Algorithm 2) to as- 1378

sign specific GPUs to different FL Clients. 1379

2) The algorithm layer can use a unified and ab- 1380

stract ComManager to complete a complex al- 1381
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gorithmic communication protocol. Currently,1382

we support MPI (Message Passing Interface),1383

RPC (Remote procedure call), and MQTT (Mes-1384

sage Queuing Telemetry Transport) communica-1385

tion backend. MPI meets the distributed training1386

needs in a single cluster; RPC meets the communi-1387

cation needs of cross-data centers (e.g., cross-silo1388

federated learning); MQTT can meet the commu-1389

nication needs of smartphones or IoT devices.1390

3) The third part is the training engine, which1391

reuses the existing deep learning training engines1392

by presenting as the Trainer class. Our cur-1393

rent version of this module is built on PyTorch,1394

but it can easily support frameworks such as1395

TensorFlow. In the future, we may consider sup-1396

porting the lightweight edge training engine opti-1397

mized by the compiler technology at this level.1398

F.5 Enhancing Security with Secure1399

Aggregation (SA)1400

FedNLP supports state-of-the-art SA algorithms1401

LightSecAgg, SecAgg (Bonawitz et al.,1402

2017), and SecAgg+ (Bell et al., 2020). Here, we1403

provide a short performance comparison of these1404

three algorithms. In general, LightSecAgg1405

provides the same model privacy guarantees as1406

SecAgg (Bonawitz et al., 2017) and SecAgg+1407

(Bell et al., 2020)) while substantially reducing the1408

aggregation (hence run-time) complexity (Figure1409

??). The main idea of LightSecAgg is that each1410

user protects its local model using a locally gener-1411

ated random mask. This mask is then encoded and1412

shared to other users, in such a way that the aggre-1413

gate mask of any sufficiently large set of surviving1414

users can be directly reconstructed at the server.1415

Our main effort in FedNLP is integrating these al-1416

gorithms, optimizing its system performance, and1417

designing user-friendly APIs to make it compati-1418

ble with NLP models and FL algorithms.1419
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