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Abstract

Increasing concerns and regulations about data
privacy and sparsity necessitate the study
of privacy-preserving, decentralized learn-
ing methods for natural language processing
(NLP) tasks. Federated learning (FL) pro-
vides promising approaches for a large num-
ber of clients (e.g., personal devices or or-
ganizations) to collaboratively learn a shared
global model to benefit all clients while al-
lowing users to keep their data locally. De-
spite interest in studying FL methods for NLP
tasks, a systematic comparison and analysis is
lacking in the literature. Herein, we present
the FedNLP, a benchmarking framework for
evaluating federated learning methods on four
common formulations of NLP tasks: text clas-
sification, sequence tagging, question answer-
ing, and seq2seq generation. We propose
a universal interface between Transformer-
based language models (e.g., BERT, BART)
and FL methods (e.g., FedAvg, FedOPT, etc.)
under various non-IID partitioning strategies.
Our extensive experiments with FedNLP pro-
vide empirical comparisons between FL meth-
ods and help us better understand the inherent
challenges of this direction. The comprehen-
sive analysis points to intriguing and exciting
future research aimed at developing FL meth-
ods for NLP tasks.

1 Introduction

Fine-tuning large pre-trained language models
(LMs) such as BERT (Devlin et al., 2019) of-
ten leads to state-of-the-art performance in many
realistic NLP applications (e.g., text classifica-
tion, named entity recognition, question answer-
ing, summarization, etc.), when large-scale, cen-
tralized training datasets are available. How-
ever, due to the increasing concerns and regu-
lations about data privacy (e.g., GPDR (Regula-
tion, 2016)) emerging data from realistic users
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Figure 1: The FedNLP benchmarking framework.

have been much more fragmented and distributed,
forming decentralized private datasets of multiple
“data silos” (a data silo can be viewed as an in-
dividual dataset) — across different clients (e.g.,
organizations or personal devices).

To respect the privacy of the users and abide
by these regulations, we must assume that users’
data in a silo are not allowed to transfer to a cen-
tralized server or other clients. For example, a
client cannot share its private user data (e.g., docu-
ments, conversations, questions asked on the web-
site/app) with other clients. This is a common
concern for organizations such as hospitals, finan-
cial institutions, or legal firms, as well as personal
computing devices such as smartphones, virtual
assistants (e.g., Amazon Alexa, Google Assistant,
etc.), or a personal computer. However, from a
machine learning perspective, models trained on
a centralized dataset that combine the data from
all organizations or devices usually result in bet-
ter performance in the NLP domain. Therefore, it



is of vital importance to study NLP problems in
such a realistic yet more challenging scenario —
i.e., training data are distributed across different
clients and cannot be shared for privacy concerns.

The nascent field of federated learning (et al,
2019; Li et al., 2020b) (FL) aims to enable many
individual clients to train their models jointly
while keeping their local data decentralized and
completely private from other users or a central-
ized server. A common training schema of FL
methods is that each client sends its model param-
eters to the server, which updates and sends back
the global model to all clients in each round. Since
the raw data of one client has never been exposed
to others, FL is promising as an effective way to
address the above challenges, particularly in the
NLP domain, where many user-generated text data
contain sensitive and/or personal information.

Despite the growing progress in the FL domain,
research into and application for NLP has been
rather limited. There are indeed several recent
works on using FL. methods for processing med-
ical information extraction tasks (Sui et al., 2020).
However, such prior work usually has its exper-
imental setup and specific task, making it diffi-
cult to fairly compare these FL methods and an-
alyze their performance in other NLP tasks. We
argue that future research in this promising direc-
tion (FL for NLP) would highly benefit from a uni-
versal benchmarking platform for systematically
comparing different FL methods for NLP. To the
best of our knowledge, such a benchmarking plat-
form is still absent from the literature.

Therefore, our goal in this paper is to provide
comprehensive comparisons between popular FL.
methods (e.g., FedAvg (McMabhan et al., 2017a),
FedOPT (Reddi et al., 2020), FedProx (Li et al.,
2020c¢)) for four mainstream formulations of NLP
tasks: text classification, sequence tagging, ques-
tion answering, and seq2seq generation. Although
there are few available realistic FL. datasets for
NLP due to privacy concerns, we manage to use
existing NLP datasets to create various non-I1ID
data partitions over clients. These non-IID parti-
tions simulate various kinds of distribution shifts
(e.g., label, features, quantities, etc.) over the
clients, which often happen in real-world NLP
applications. As for the base NLP models, we
use the Transformer architecture (Vaswani et al.,
2017) as the backbone and support a wide range of
pre-trained LMs such as DistilBERT (Sanh et al.,

2019), BERT (Devlin et al., 2019), BART (Lewis
et al., 2020), etc. To conduct extensive experi-
ments, we need to support the experiments with
multiple options on dimensions such as (1) task
formulations, (2) NLP models, (3) FL algorithms,
and (4) non-IID partitions. Therefore, we propose
FedNLP, a modular framework with universal in-
terfaces among the above four components, which
is thus more extensible for supporting future re-
search in FL for NLP.

We aim to unblock the research of FL for NLP
with the following two-fold contributions:

» Evaluation and analysis. We system-
atically compare popular federated learning
algorithms for mainstream NLP task formu-
lations under multiple non-IID data parti-
tions, which thus provides the first compre-
hensive understanding. Our analysis reveals
that there is a considerably large gap between
centralized and decentralized training under
various settings. We also analyze the effi-
ciency of different FL. methods and model
sizes. With our analysis, we highlight several
directions to advance FL for NLP.

* Resource. The implementation of our exper-
iments forms a general open-source frame-
work, FedNLP, which is capable of evaluat-
ing, analyzing, and developing FL. methods
for NLP. We also provide decentralized NLP
datasets of various task formulations created
by various non-IID partitioning strategies for
future research.

The remainder of this paper is structured as fol-
lows. We introduce the background knowledge
of federated learning and several typical FL al-
gorithms in §2. Then, we present the proposed
non-IID partitioning strategies to create synthetic
datasets for different task formulations in §3. Our
results, analysis, and findings are in §4. Finally,
we discuss related work (§5) and conclusions (§6).

2 Federated Learning for NLP

In this section, we first introduce the background
knowledge of federated learning (FL) in the con-
text of NLP tasks. Then, we illustrate a unified FL
framework that we used to study typical FL algo-
rithms. Based on this, we build our own research
framework, a general pipeline for benchmarking
and developing FL. methods for NLP.



2.1 Federated Learning Concepts

Federated learning (FL) is a machine learning
paradigm where multiple entities (clients) collab-
orate in solving a machine learning problem un-
der the coordination of a central server or service
provider. Each client’s raw data is stored locally
and not exchanged or transferred; instead, focused
updates intended for immediate aggregation are
used to achieve the learning objectives (Kairouz
et al., 2019). Therefore, federated learning has
been seen as a promising direction to decrease the
risk of attack and leakage, reduce the difficulty
and cost of data movement, and meet the privacy-
related data storage regulations.

In the basic conception of federated learning,
we would like to minimize the objective function,

F(z) = E;wp|Fi(x)],

where  Fj(x) = E¢up,[fi(z, §)]. @

x € RY represents the parameter for the global
model, F; : R? — R denotes the local objective
function at client 7, and P denotes a distribution
on the collection of clients Z. The local loss func-
tions f;(x, £) are often the same across all clients,
but the local data distribution D; will often vary,
capturing data heterogeneity.

Federated averaging (FedAvg) (McMahan
et al., 2017a) is a common algorithm to solve (1)
by dividing the training process into rounds. At
the beginning of the ¢-th round (¢ > 0), the server
broadcasts the current global model z(*) to a co-
hort of participants: a random subset of clients
from S which includes M clients in total. Then,
each sampled client in the round’s cohort performs
7; local SGD updates on its own local dataset and
sends the local model changes Agt) = mgt’”) —z®
to the server. Finally, the server uses the aggre-

gated Agt) to update the global model: a(+1) =

(®)
(t) 2ies(t) Pid;
of client ¢. The above procedure will repeat un-

til the algorithm converges. In the cross-silo set-
ting where all clients participate in training on ev-
ery round (each cohort is the entire population),
we have S®) = {1,2,..., M}. Consequently, we
can learn a global model to benefit all clients while
preserving their data privacy.

. where p; is the relative weight

2.2 Our Unified Framework for FL

In this work, we propose to use FedOPT (Reddi
et al., 2020), a generalized version of FedAvg, to

Algorithm 1: FEDOPT (Reddi et al,

2020)): A Generic FedAvg Algorithm
Input: Initial model w(o), CLIENTOPT,

SERVEROPT

1 fort €{0,1,...,7 — 1} do

2 Sample a subset S ®) of clients

3 for client i € S in parallel do

4 Initialize local model z{"**)

5

6

(1.0) _ (®

fork=0,...,7 —1do

Compute local stochastic gradient
(t,k)

gi(z; ™)

7 Perform local update «

CLIENTOPT ("% g, (z{"*), n, 1)

8 Compute local model changes

A® — (7)) _ (8.0)

(tk+1) _

i

9 Aggregate local changes

AD =Y o i)Y s pi

10 Update global model

2D = SERVEROPT (), —A® 1, 1)

build the FedNLP platform. As the pseudo-code
presented in Algorithm 1, the algorithm is parame-
terized by two gradient-based optimizers: CLIEN-
TOPT and SERVEROPT with client learning rate
1 and server learning rate 75, respectively. While
CLIENTOPT is used to update the local models,
SERVEROPT treats the negative of aggregated lo-
cal changes —A(") as a pseudo-gradient and ap-
plies it to the global model. This optimization
framework generalizes to many aggregation-based
FL algorithms and simplifies the system design.

To make our research general, we explore dif-
ferent combinations of SEVEROPT and CLIEN-
TOPT. The original FedAvg algorithm implicitly
sets SEVEROPT and CLIENTOPT to be SGD, with
a fixed server learning rate 7, of 1.0. FedProx (Li
et al., 2020c), tackling statistical heterogeneity by
restricting the local model updates to be closer to
the initial (global) model, can be easily incorpo-
rated into this framework by adding L2 regular-
ization for better stability in training. Moreover,
given that AdamW (Loshchilov and Hutter, 2019)
is widely used in NLP, we set it for ClientOpt
and let the ServerOpt to be SGD with momen-
tum to reduce the burden of tuning.

2.3 The Proposed FedNLP Framework

To support our research in this paper and other fu-
ture work in the area of federated learning for NLP,
we build a general research framework named
FedNLP, based on the above universal optimiza-
tion framework. We here briefly highlight its
unique features and leave the details in the follow-



ing content and detailed design is shown in App. F.
First, FedNLP is the very first framework that con-
nects multiple FL algorithms with Transformer-
based models, to our best knowledge. Also, we
implement a flexible suite of interfaces to support
different types of NLP tasks and models, as well as
different non-IID partitioning strategies (Sec. 3.2.
To study security and privacy guarantees, we also
incorporate the state-of-the-art secure aggregation
algorithms such as LightSecAgg (see E.5).

3 Benchmarking Setup with FedNLP

In this section, we introduce the creation of our
benchmark datasets from a set of chosen NLP
tasks with different non-IID partition methods. We
evaluate various FL methods on these datasets.

3.1 Task Formulations, Datasets, and Models

There are numerous NLP applications, but most
of them can be categorized based on four main-
stream formulations: text classification (TC), se-
quence tagging (ST), question answering (QA),
and seq2seq generation (SS). The formal def-
inition of each formulation is detailed in Ap-
pendix §B. To cover all formulations while keep-
ing our experiments in a reasonable scope, we se-
lect one representative task for each formulation:

» Text Classification: 20Newsgroup (Lang,
1995) is a news classification dataset with an-
notations for 20 labels. @ We showcase our
FedNLP with this dataset as it has a larger out-
put space (20 labels) than sentiment-analysis
datasets, which is an important factor for the
label-distribution shift scenarios. .

* Sequence Tagging: OntoNotes (Pradhan
et al., 2013) (5.0) is a corpus where sentences
have annotations for the entity spans and types.
We use it for the named entity recognition task,
which is fundamental to information extraction
and other applications.

* QA: MRQA (Fisch et al.,, 2019) is a bench-
mark consisting of 6 popular datasets’:
SQuAD (Rajpurkar et al., 2016) (8529/431),
NewsQA (Trischler et al., 2017) (11877/613),
TriviaQA (Joshi et al., 2017) (4120/176) ,
SearchQA (Dunn et al., 2017) (9972/499)
, HotpotQA (Yang et al, 2018b) , and
NQ (Kwiatkowski et al., 2019) (9617/795).

2We only use part of the data to demonstrate and verify
our hypothesis; we show the train/test split in brackets.

Task H Txt.Cls. ‘ Seq.Tag. ‘ QA ‘ Seq2Seq
Dataset H 20News ‘ Onto. ‘ MRQA ‘ Giga.
# Training 11.3k 50k 53.9k 10k

# Test 7.5k S5k 3k 2k
# Labels 20 37* N/A N/A
Metrics || Acc. | F-1 | F-1 | ROUGE

Table 1: Statistics of the selected datasets for our ex-
periments. *37 is the size of the tag vacabulary.

* Seq2Seq Generation: Gigaword (DBL,
2012) is a news corpus with headlines that is of-
ten used for testing seq2seq models as a summa-
rization task. Other tasks such as dialogue re-
sponse generation and machine translation can
also be adapted to this format.

We show the basic statistics of the above
datasets in Table 1. Note that our FedNLP as a
research platform supports a much wider range of
specific tasks of each formulation, while we only
introduce the ones used in our experiments here
with typical settings. Moreover, our contribution
is more of a general FL+NLP benchmarking plat-
form instead of particular datasets and partitions.

Base NLP Models. Fine-tuning pre-trained
LMs has been the de facto method for NLP re-
search, so we focus on testing Transformer-based
architectures in FedNLP. Specifically, we choose
to use BART (Lewis et al., 2020), a text-to-text
Transformer model similar to the T5 model (Raf-
fel et al., 2020), for seq2seq tasks.

3.2 Non-IID Partitioning Strategies

The existing datasets have been used for central-
ized training in NLP. As our focus here is to test
decentralized learning methods, we need to dis-
tribute the existing datasets to a set of clients. It
is the non-IIDness of the client distribution that
makes federated learning a challenging problem.
Thus, we extend the common practice widely used
in prior works to the NLP domain for generating
synthetic FL. benchmarks (Li et al., 2021). We
first introduce how we control the label distribu-
tion shift for TC and ST, then the quantity dis-
tribution shift, and finally how we model the dis-
tribution shift in terms of input features for non-
classification NLP tasks (e.g., summarization).

Non-IID Label Distributions. Here we present
how we synthesize the data partitions such that
clients the share same (or very similar) number



100 clients _

JSD ~— I

=10 a =100

)
vk
c
2
©
o
=1
=

Figure 2: The J-S divergence matrix between 100 clients
on the 20News dataset when o« € {1,5,10,100}. Each sub-
figure is a 100x100 symmetric matrix. The intensity of a cell
(4,4)’s color here represents the distance between the label
distribution of Client ¢ and j. It is expected that when « is
smaller, the partition over clients is more non-IID in terms of
their label distributions.

of examples, but have different label distribu-
tions from each other. We assume that on ev-
ery client training, examples are drawn indepen-
dently with labels following a categorical distri-
bution over L classes parameterized by a vec-
tor g (¢; > 0,7 € [1,L] and ||g|l1 = 1). To syn-
thesize a population of non-identical clients, we
draw ¢ ~ Dirp(ap) from a Dirichlet distribu-
tion, where p characterizes a prior class distribu-
tion over L classes, and «« > 0 is a concentra-
tion parameter controlling the identicalness among
clients. For each client C;, we draw a q; as its la-
bel distribution and then sample examples without
replacement from the global dataset according to
qj. With o — o0, all clients have identical dis-
tributions to the prior (i.e., uniform distribution);
with « — 0, on the other extreme, each client
holds examples from only one class chosen at ran-
dom. In Fig. 2, we show heatmaps for visualizing
the distribution differences between each client.
Figure 3 shows an example of the concrete label
distributions for all clients with different o. We
can see that when « is smaller, the overall label
distribution shift becomes larger.

Controlling non-IID Quantity. It is also com-
mon that different clients have very different data
quantities while sharing similar label distribution.
We thus also provide a quantity-level Dirichlet al-
location z ~ Diry(8) where N is the number of
clients. Then, we can allocate examples in a global
dataset to all clients according to the distribution z
—i.e., |D;| = z|Dg|. If we would like to model
both quantity and label distribution shift, it is also
easy to combine both factors. Note that one could
assume it is a uniform distribution z ~ U(N), (or
B — o00) if we expect all clients to share a sim-
ilar number of examples. A concrete example is
shown in Figure 8 (Appendix).

Controlling non-IID  Features. Although
straightforward and effective, the above label-
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Figure 3: Visualizing the non-IID label distributions on
20News with « being {1,5,10,100}. Each sub-figure is a
100x20 matrix, where 100 is the number of clients, and 20
is the number of labels. The intensity of a cell here rep-
resents the ratio of a particular label in the local data of a
client. When « is smaller (1, 5, 10), each client has a rela-
tively unique label distribution, thus the differences between
clients are larger; when a@ = 100, every client has a nearly
uniform label distribution.

based Dirichlet allocation method has a major
limitation — it is only suitable for text classifi-
cation tasks where the outputs can be modeled
as category-based random variables. To create
synthetic partitions for other non-classification
NLP tasks and model distribution shifts, we
thus propose a partition method based on feature
clustering. Specifically, we use Sentence-
BERT (Reimers and Gurevych, 2019) to encode
each example to a dense vector by their text then
we apply K-Means clustering to get the cluster
label of each example; finally, we use these cluster
labels (as if they were classification tasks) to
follow the steps in modeling label distribution
shift. There are two obvious benefits of this
clustering-based Dirichlet partition method: 1) It
enables us to easily synthesize the FL datasets for
non-classification tasks (i.e., ST, QA, SS) as they
do not have discrete labels as output space; 2) The
BERT-based clustering results naturally imply
different sub-topics of a dataset, and thus feature
shift can be seen as a shift of latent labels — we
can reuse the same method for the label-based
Dirichlet partition method.

Natural Factors For datasets like MRQA, we
consider a cross-silo setting where each client is
associated with a particular sub-dataset (out of the
six datasets of the same format), forming a natu-
ral distribution shift based on the inherent factors
such as data source and annotating style.



Task Dataset ‘ Partition Clients | FedAvg FedProx FedOPT | # Rounds
Text Classification 20news «a =1 (label shift) 100 0.5142 0.5143 0.5349 22
Sequence Tagging  OntoNotes | « =0.1 (label shift) 30 0.7382 0.6731 0.7918 17
Question Answering MRQA natural factor 6 0.2707 0.2706 0.3280 13
Seq2Seq Generation  Gigaword | v =0.1 (feature shift) 100 0.3192 0.3169 0.3037 13

Table 2: The comparisons between different FL. methods under the same setting on different NLP tasks. The
number of workers per round are 10, expect for the MRQA task, which uses 6.
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Figure 4: The learning curves of the three FL Methods on four different task formulations. The metrics used
for these tasks are accuracy, span-F1, token-F1, and ROUGE respectively; The x-axis is the number of rounds in

federated learning.

4 Experimental Results and Analysis

In this section, we aim to analyze typical federated
learning methods (introduced in on our benchmark
datasets with multiple dimensions with the base
NLP models listed previously. We put more im-
plementation details and additional results in Ap-
pendix. We organize our extensive experimental
results and findings from the analysis as a collec-
tion of research questions with answers.

Experimental Setup and Hyper-parameters.
We use DistilBERT and BART-base for most of
our experiments, as the former is a distilled ver-
sion of the BERT model and has a 7x speed
improvement over BERT-base on mobile devices
— a common scenario for FL applications; the
BART-base model is the most suitable option con-
sidering the trade-off between performance and
computation cost. We leave our implementation
details and the selected hyper-parameters in the
submitted supplementary materials.

Our experiments cover both cross-device and
cross-silo settings. As shown in Table 2, in the
cross-device setting, we use uniform sampling to
select 10 clients for each round when the client
number in a dataset is very large (e.g., 100). For
the cross-silo setting, each round will select the
same number of clients (we use 6 for the QA task).
The local epoch number is set to 1 for all experi-
ments. To make our results reproducible, we use
wandb.ai to store all experiment logs and hyper-
parameters as well as running scripts.

Q1: How do popular FL methods perform
differently under the same setting?

We compare the three typical FL. methods under
the same setting (i.e., data partition, communica-
tion rounds, etc.) for each task formulation. As
shown in Table 2, we report the results of FedAvg,
FedProx, and FedOPT. We can see that overall Fe-
dOPT performs better than the other two methods,
with the only exception being in the seq2seq gen-
eration task. FedAvg and FedProx perform sim-
ilarly with marginal differences, but FedAvg out-
performs FedProx in sequence tagging. These two
exceptions are surprising findings, as many prior
works in the FL. community show that FedOPT is
generally better than FedProx than FedAvg on vi-
sion tasks and datasets.

We conjecture that such inconsistent perfor-
mance across tasks suggests the difference in
terms of the loss functions have a great impact on
FL performance. Seq2seq and sequence tagging
tasks usually have more complex loss landscapes
than text classification, as they are both typical
structured prediction tasks, while the text classi-
fication has a much smaller output space. From
Fig. 4, we see that the FedOPT outperforms the
other two methods at the beginning while gradu-
ally becoming worse over time.

This tells us that the use of AdamW as the client
optimizer may not always be a good choice, es-
pecially for a complex task such as the Seq2Seq
ones, as its adaptive method for scheduling learn-
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Figure 5: Testing FedOPT with Disti1BERT for
20News under different data partition strategies.

ing rates might cause implicit conflicts. These ob-
servations suggest that federated optimization al-
gorithms need to be tailored for various NLP tasks,
and exploring FL-friendly model architecture or
loss function can also be promising directions to
address these challenges.

Q2: How do different non-1ID partitions of
the same data influence FL performance?

The FedNLP platform supports users to inves-
tigate the performance of an FL algorithm with a
wide range of data partitioning strategies, as dis-
cussed in §3.2. Here we look at the training curves
of the FedOPT on different partitions, as shown in
Figure 5. We reveal several findings:

* When « is smaller (i.e., the partition is more
non-IID in terms of their label distribution), the
performance tends to degrade, based on the three
curves (o = {1,5,10}).

* The variance is also larger when the label distri-
bution shift is larger. Both uniform and quantity-
skew partitions have a smoother curve, while the
variance is smaller for a larger « (e.g., 10).

* Quantity skew does not introduce a great chal-
lenge for federated learning when the label dis-
tribution is closer to the uniform one.

These findings suggest that it is important to
design algorithms to mitigate data heterogene-
ity. One promising direction is personalized FL,
which enables each client to learn its own person-
alized model via adapting its local data distribu-
tion and system resources (Dinh et al., 2020; Fal-
lah et al., 2020; Li et al., 2020a).

Q3: How does freezing of Transformers in-
fluence the FL performance?

Communication cost is a major concern in the
federated learning process. It is thus natural to
consider freezing some Transformer layers of the

Frozen Layers | # Tunable Paras. | Cent. FedOpt.

None 67.0M 86.86  55.11

E 43.1M 86.19  54.86

E+ Lo 36.0M 86.54 52091
E+ Ly 29.0M 86.52  53.92
E+ Loso 21.9M 85.71  52.01
E+ Los 14.8M 85.47  30.68
E+ Loy 7™ 82.76  16.63
E+ Loys 0.6M 63.83 12.97

Table 3: Performance (Acc.%) on 20news (TC) when
different parts of Disti1BERT are frozen for central-
ized training and FedOpt (at 28-th round). E stands for
the embedding layer and L; means the i-th layer. The
significant lower accuracy are underlined.
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Figure 6: Testing FedOPT with DistilBERT for
20News under different frozen layers.

client models in order to reduce the size of the
trainable parameters that will be transmitted be-
tween servers and clients. To study the influence
of freezing layers on the FL performance, we con-
duct a series of experiments that freeze the layers
from the embedding layer (£) to the top layer (Ls)
of DistilBERT with both centralized training and
FedOPT on the text classification task.

We report our results in Table 3 and Figure 6.
We find that in centralized training, the largest
performance gain happens when we unfreeze the
last layer, while in FedOPT we have to unfreeze
the last three layers to enjoy a comparable per-
formance with the full model. This suggests that
reducing communication costs via freezing some
layers of Transformer LMs is feasible, though one
should be aware that the experience in centralized
training may not generalize to the FL experiments.

Q4: Are compact model DistilBERT ade-
quate for FL+NLP?

We know that BERT has a better performance than
DistilBERT for its larger model size. However,
is it cost-effective to use BERT rather than Dis-
tilIBERT? To study this, we compare the perfor-
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Figure 7: FedOPT for 20News with different LMs.

mance of both models with FedOPT on text classi-
fication, sharing the same setting as the above ex-
periments. As shown in Figure 7, although BERT-
base achieves better performance, the performance
of DistilBERT is not significantly worse. Consid-
ering the communication cost (BERT-base is al-
most 2x larger), we argue that using DistilBERT is
a more cost-effective choice for both experimental
analysis and realistic applications.

5 Related Work

FL benchmarks and platforms. In the last few
years a proliferation of frameworks and bench-
mark datasets have been developed to enable re-
searchers to better explore and study algorithms
and modeling for federated learning, both from
academia: LEAF(Caldas et al., 2018), FedML (He
et al., 2020c), Flower (Beutel et al., 2020), and
from the industry: PySyft (Ryffel et al., 2018),
TensorFlow-Federated (TFF) (Ingerman and Os-
trowski, 2019), FATE (Yang et al., 2019), Clara
(NVIDIA, 2019), PaddleFL (Ma et al., 2019),
Open FL (Intel®, 2021). However, most platforms
only focus on designing a unified framework for
federated learning methods and do not provide
a dedicated environment for studying NLP prob-
lems with FL. methods. LEAF (Caldas et al., 2018)
contains a few text datasets, however, it is limited
to classification and next-word prediction datasets
and does not consider the pre-trained language
models. We want to provide a dedicated platform
for studying FL. methods in realistic NLP applica-
tions with state-of-the-art language models.

Federated learning in NLP applications.
There are a few prior works that have begun to
apply FL methods in privacy-oriented NLP appli-
cations. For example, federated learning has been
applied to many keyboard-related applications

(Hard et al., 2018; Stremmel and Singh, 2020;
Leroy et al., 2019; Ramaswamy et al., 2019;
Yang et al., 2018a), sentence-level text intent
classification using Text-CNN (Zhu et al., 2020),
and pretraining and fine-tuning of BERT using
medical data from multiple silos without fetching
all data to the same place (Liu and Miller, 2020).
FL methods also have been proposed to train
high-quality language models that can outperform
the models trained without federated learning (Ji
et al.,, 2019; Chen et al., 2019). Besides these
applications, some work has been done in medical
relation extractions (Ge et al., 2020) and medical
name entity recognition (Sui et al., 2020). These
methods use federated learning to preserve the
privacy of sensitive medical data and learn data
in different platforms, excluding the need for
exchanging data between different platforms.

Our work aims to provide a unified platform
for studying various NLP applications in a shared
environment so that researchers can better design
new FL methods either for a specific NLP task or
as a general-purpose model. The aforementioned
prior works would thus be a particular instance of
the settings supported by the FedNLP platform.

6 Conclusion and Future Directions

Our key contribution is providing a thorough and
insightful empirical analysis of existing federated
learning algorithms in the context of NLP mod-
els. Notably, We compare typical FL. methods
for four NLP task formulations under multiple
non-IID data partitions. Our findings reveal both
promise and the challenges of FL for NLP. In ad-
dition, we also provide a suite of resources to sup-
port future research in FL for NLP (e.g., a unify-
ing framework for connecting Transformer mod-
els with popular FL. methods and different non-IID
partition strategies). Thus, we believe our well-
maintained open-source codebase to support fu-
ture work in this area.

Promising future directions in FL for NLP in-
cludes: 1) minimizing the performance gap, 2) im-
proving the system efficiency and scalability, 3)
trustworthy and privacy-preserving NLP, 4) per-
sonalized FL. methods for NLP, etc. (Please see
Appendix E for more details.)



Ethical Considerations and Limitations(*¥)

Ethical considerations. The key motivation of
FedNLP (and FL) is to protect the data privacy of
general users by keeping their data on their own
devices while benefit from a shared model from a
broader community. Among the risks that need to
be considered in any deployment of NLP are that
responses may be wrong, or biased, in ways that
would lead to improperly justified decisions. Al-
though in our view the current technology is still
relatively immature, and unlikely to be fielded in
applications that would cause harm of this sort, it
is desirable that FedNLP methods provide audit
trails, and recourse so that their predictions can be
explained to and critiqued by affected parties.

Limitations. One limitation of our work is that
we have not analyzed the privacy leakage of FL
methods. We argue that novel privacy-centric
measures are orthogonal to the development FL
methods, which is beyond the scope of our work.
How to fairly analyze the privacy leakage is now
still an open problem for both FL. and NLP, and
it is only possible to study this when we have an
existing platform like FedNLP.
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Appendix

A FL+NLP

Many realistic NLP services heavily rely on users’
local data (e.g., text messages, documents and
their tags, questions and selected answers, etc.),
which can be located at either personal devices
or larger data-silos for organizations. These lo-
cal data are usually regarded as highly private and
thus not directly accessible by anyone, according
to many data privacy regulations; this makes it dif-
ficult to train a high-performance model to benefit
users. Federated learning aims to solve machine
learning under such a privacy-preserving use case,
thus offering a novel and promising direction to
the community: FL+NLP.

Apart from the goal of learning a shared global
model for all clients, FL also provides a new per-
spective for many other interesting research ques-
tions in NLP. One related direction is to develop
personalized models for NLP applications, which
requires both protection of data privacy and trans-
ferred ability on users’ own input feature distri-
bution caused by language styles, interested top-
ics and so on. The recent concerns on adversar-
ial attacks and safety issues of NLP models are
also highly related to FL+NLP. We thus believe
FL+NLP is of vital importance for applying NLP
technologies in realistic use cases and could bene-
fit many relevant research areas.

A.1 Challenges of Applying FL in NLP

Given the promising benefits of studying FL+NLP,
however, this research direction is currently
blocked by the lack of a standardized platform
providing fundamental building blocks: bench-
mark datasets, NLP models, FL. methods, evalu-
ation protocols, etc. Most of the current FL plat-
forms either focus on unifying various FL meth-
ods and use computer vision models and datasets
for their experiments, but lack the ability to con-
nect the study of pre-trained language models, the
most popular NLP, and realistic NLP applications
of various task formulations.

The first challenge in developing a comprehen-
sive and universal platform for FL+NLP is to deal
with various task formulations for realistic NLP
applications, which have different input and output
formats (Section B). As the non-IID data partition
over clients is the major feature of FL problems, it
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is also a challenge to simulate the realistic non-1ID
partition for existing NLP datasets (Section 3.2).
Finally, a platform also must integrate various FL
methods with the Transformer-based NLP mod-
els for a variety of task types, and thus a flexible
and extensible learning framework is needed. In
particular, the conventional trainer component of
Transformers now needs to be modified for effi-
cient and safe communications towards federated
learning (Section F).

B Basic Formulations of NLP Tasks

There are various types of NLP applications, but
many of them share a similar task formulation
(i.e., input-and-put formats). We show four com-
mon task formulations that can cover most of the
mainstream NLP applications: text classification,
sequence tagging, question answering, sequence-
to-sequence generation.

Text Classification (T'C) The input is a sequence
of words, x = [wy, we, .. .], and the output is a la-
bel y in a fixed set of labels £. Many NLP applica-
tions can be formulated as text classification tasks.
For example, we can use TC models for classi-
fying the topic of a news article to be political,
sports, entertainment, etc., or analyzing movie re-
views to be positive, negative or neutral.

Sequence Tagging (ST) The input is a sequence
of words, * = [wj,ws,...,wy]|, and the out-
put is a same-length sequence of tags y
[t1,t2,...,tN], where ¢; is in a fixed set of labels
L. The main difference between TC and ST is that
ST learns to classify the label of each token in a
sentence, which is particularly useful in analyzing
syntactic structures (e.g., part-of-speech analysis,
phrase chunking, and word segmentation) and ex-
tracting spans (e.g., named entity recognition).

Question Answering (QA) Given a passage P =
[wy,ws,...,wy] and a question ¢ as input, the
task is to locate a span in the passage as the an-
swer to the question. Thus, the output is a pair of
token index (s,e) where s,e € {1,2,..., N} for
denoting the begin and end of the span in the pas-
sage. This particular formulation is also known as
reading comprehension.

Natural Language Generation (NLG) Both in-
put and output are sequence of words, x
[wi,ws, ..., wy] .,y = [wwsg, ..., wq] Itis
shared by many realistic applications such as sum-
marization, response generation in dialogue sys-
tems, machine translation, etc.
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Figure 8: The probability density of quantity of train-
ing examples in each of the 100 clients on the 20News
dataset with different 5. When [ is larger, then all
clients share more similar numbers of examples; when
B is smaller, then the range of the quantity is much
wider — i.e., the larger differences between clients in
terms of their sizes of datasets.

Language Modeling (LM) The left-to-right lan-
guage modeling task considers a sequence of
words as the input x = [wi,ws,...,w,| and a
token y = wp41 as the output. The output token
is expected to be the most plausible next word of
the incomplete sentence denoted as z. Although
the direct application of LM is limited, a high-
performance pre-trained language model can ben-
efit a wide range of NLP applications (as above)
via fine-tuning. It also serves as an excellent test
bed as it requires no human annotations at all.

Others. There are some other applications that
not are covered by the above four basic formu-
lations, and our extensible platform (detailed in
Section F) enables users to easily implement their
specific tasks. For each task formulation, we show
which datasets are used in FedNLP and how we
partition them in Section 3.

C Implementation Details

Non-IID. Label Distribution Note that this
might cause a few clients not to have enough ex-
amples to sample for particular labels if they are
already used up. Prior works choose to stop as-
signing early and remove such clients, but it conse-
quently loses the other unused examples and also
causes the inconsistency of client numbers. Thus,
to avoid these issues, we propose a dynamic re-
assigning method which complement the vacancy
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of a label by filling in the examples of other la-
bels based on their current ratio of remaining unas-
signed examples.

C.1 The FedNLP Training Pipeline: Security
and Efficiency

Under the definition of federated learning in Algo-
rithm 1, we design a training system to support the
research of NLP in the FL paradigm. We highlight
its core capabilities and design as follows.

Supporting diverse FL algorithms. FedNLP
aims to enable flexible customization for future
algorithmic innovations. We have supported a
number of classical federated learning algorithms,
including FedAvg (McMahan et al., 2017a), Fe-
dOPT (Reddi et al., 2020), and FedProx (Li et al.,
2020c). These algorithms follow the same frame-
work introduced in Algorithm 1. The algorithmic
APIs are modularized: all data loaders follow the
same format of input and output arguments, which
are compatible with different models and algo-
rithms and are easy to support new datasets; the
method of defining the model and related trainer is
kept the same as in centralized training to reduce
the difficulty of developing the distributed train-
ing framework. For new FL algorithm develop-
ment, worker-oriented programming reduces the
difficulty of message passing and definition. More
details are introduced in Appendix F.3.

Enabling secure  benchmarking  with
lightweight secure aggregation. In partic-
ular, FedNLP enhances the security aspect of
federated training, which is not supported by ex-
isting non-NLP-oriented benchmarking libraries
(e.g., TFF, LEAF). This is motivated by the fact
that model weights from clients may still have
the risk of privacy leakage (Zhu et al., 2019). To
break this barrier, we integrate secure aggregation
(SA) algorithms to the FedNLP system. NLP
researchers do not need to master security-
related knowledge and also benefit from a secure
distributed training environment. To be more
specific, FedNLP supports state-of-the-art SA
algorithms LightSecAgqg, SecAgg (Bonawitz
et al., 2017), and SecAgg+ (Bell et al., 2020). At
a high-level understanding, SA protects the client
model by generating a single random mask and
allows their cancellation when aggregated at the
server. Consequently, the server can only see the
aggregated model and not the raw model from
each client. In this work, our main effort is to



design and optimize these SA algorithms in the
context of the FedNLP system. We provide an
algorithmic performance comparison in Appendix
E5.

Realistic evaluation with efficient distributed
system design. FedNLP aims to support dis-
tributed training in multiple edge servers (e.g,
AWS EC2) or edge devices (e.g., [oTs and smart-
phones). To achieve this, the system is designed
with three layers: the application layer, the algo-
rithm layer, and the infrastructure layer. At the ap-
plication layer, FedNLP provides three modules:
data management, model definition, and a single-
process trainer for all task formats; at the algo-
rithm layer, FedNLP supports various FL algo-
rithms; at the infrastructure layer, FedNLP aims
at integrating single-process trainers with a dis-
tributed learning system for FL. Specifically, we
make each layer and module perform its own du-
ties and have a high degree of modularization. We
refer readers to Appendix F for a detailed descrip-
tion of the system architecture and design philos-

ophy.
D More Related Works

Federated Learning Methods. Federated
Learning (FL) is a widely disciplinary research
area that mainly focuses on three aspects: sta-
tistical challenge, trustworthiness, and system
optimization.  Numerous methods have been
proposed to solve statistical challenges, including
FedAvg (McMahan et al., 2017b), FedProx (Li
et al., 2020c), FedOPT (Reddi et al., 2020),
FedNAS (He et al., 2020a,d), and FedMA (Wang
et al.,, 2020b) that alleviate the non-IID issue
with distributed optimization, and new formu-
lations, MOCHA (Smith et al., 2017), pFedMe
(Dinh et al., 2020), perFedAvg (Fallah et al.,
2020), and Ditto (Li et al., 2020a), that consider
personalization and fairness in federated training.

For trustworthiness, security and privacy are the
two main research directions that are mainly con-
cerned with resisting data or model attacks, recon-
struction, and leakage during training (So et al.,
2021b,a, 2020; Prakash et al., 2020; Prakash and
Avestimehr, 2020; Elkordy and Avestimehr, 2020;
Prakash et al., 2020; Wang et al., 2020a; Lyu
et al., 2020). Given that modern deep neural net-
works are over-parameterized and dominate nearly
all learning tasks, researchers also proposed algo-
rithms or systems to improve the efficiency and
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scalability of edge training (He et al., 2020b,c,
2019, 2021). We refer readers to the canonical sur-
vey (Kairouz et al., 2019) for details.

Although tremendous progress has been made
in the past few years, these algorithms or systems
have not been fully evaluated on realistic NLP
tasks introduced in this paper.

E Future Directions

Minimizing the performance gap. In the FL
setting, we demonstrate that federated fine-tuning
still has a large accuracy gap in the non-IID dataset
compared to centralized fine-tuning. Develop-
ing algorithms for Transformer models with NLP
tasks is of the highest priority.

Improving the system efficiency and scalabil-
ity. Transformer models are usually large, while
resource-constrained edge devices may not be able
to run large models. Designing efficient FL. meth-
ods for NLP tasks is thus a practical problem
worth solving. How to adopt a reasonable user se-
lection mechanism to avoid stragglers and speed
up the convergence of training algorithms is also a
pressing problem to be solved.

Trustworthy and privacy-preserving NLP.
We argue that it is an important future research
direction to analyze and assure the privacy-
preserving ability of these methods, although our
focus in this paper is the implementation and
performance analysis of the FL. methods for NLP
tasks. It is now an open problem for both FL
and NLP areas, while it is an orthogonal goal
for improving the trustworthy of decentralized
learning, and it is only possible to study privacy
preservation when we have an existing FL+NLP
platform. This is also part of our motivation in
proposing FedNLP, and we believe our framework
provides a set of flexible interfaces for future
development to analyze and improve the privacy-
preserving ability of FL methods for NLP tasks
and beyond.

Personalized FedNLP. From the perspective of
the data itself, user-generated text is inherently
personalized. Designing personalized algorithms
to improve model accuracy or fairness is a very
promising direction. In addition, it is also an inter-
esting problem to adapt the heterogeneous model
architecture for each client in the FL network. We
show that it is feasible to only fine-tune a small



Algorithm 2: The FedNLP Workflow

n
i

using text classification (TC) as an example

# initialize ronment

process_id,

distributed computing envi
FedNLP_init ()

# GPU device management

device = map_process_to_gpu(process_id, ...)

# data management

data_manager = TCDataManager (process_id, ...)
# load the data dictionary by process_id
data_dict = dm.load_federated_data (process_id)

# create model by specifying the task
client_model, . = create_model (model_args,
formulation="classification")

# define a customized NLP Trainer
client_trainer TCTrainer (device,
client_model, ...)

# launch the federated training (e.g., FedAvg)
FedAvg_distributed(..., device,

client_model,

data_dict, ...,

client_trainer)

amount of the parameters of LMs, so it is promis-
ing to adapt recent prefix-tuning methods (Li and
Liang, 2021) for personalizing the parameters of
NLP models within the FedNLP framework.

F The System Design of FedNLP

The FedNLP platform consists of three layers:
the application layer, the algorithm layer, and
the infrastructure layer. At the application layer,
FedNLP provides three modules: data manage-
ment, model definition, and single-process trainer
for all task formats; At the algorithm layer,
FedNLP supports various FL algorithms; At the
infrastructure layer, FedNLP aims at integrating
single-process trainers with a distributed learning
system for FL. Specifically, we make each layer
and module perform its own duties and have a high
degree of modularization.

F.1 Overall Workflow

The module calling logic flow of the whole frame-
work is shown on the left of Figure 9. When
we start the federated training, we first complete
the launcher script, device allocation, data load-
ing, model creation, and finally call the API of the
federated learning algorithm. This process is ex-
pressed in Python-style code (see Alg. 2).

F.2 The Application Layer

Data Management. In data management, What
DataManager does is to control the whole work-
flow from loading data to returning trainable
features. To be specific, DataManager is set
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up for reading h5py data files and driving a
preprocessor to convert raw data to features.
There are four types of DataManager accord-
ing to the task definition. Users can customize
their own DataManager by inheriting one of
the pataManager class, specifying data operation
functions, and embedding a particular preproces-
sor. Note that the raw data’s u5py file and the non-
IID partition file are preprocessed offline, while
DataManager only loads them in runtime.

Model Definition. We support two types of
models: Transformer and LSTM. For Transformer
models, in order to dock with the existing NLP
ecology, our framework is compatible with the
HuggingFace Transformers library (Wolf et al.,
2020), so that various types of Transformers
can be directly reused without the need for re-
implementation. Specifically, our code is com-
patible with the three main classes of Tokenizer,
Model, and config in HuggingFace. Users can
also customize them based on HuggingFace’s
code. Although LSTM has gradually deviated
from the mainstream, we still support LSTM to
reflect the framework’s integrity, which may meet
some particular use cases in federated setting.

NLP Trainer (single process perspective). As
for the task-specific NLP Trainer, the most
prominent feature is that it does not require users
to have any background in distributed comput-
ing. Users of FedNLP only need to complete
single-process code writing. A user should in-
herit the Trainer class in the application layer
to implement the four methods as shown in the
figure: 1. the get_model_params () interface al-
lows the algorithm layer to obtain model param-
eters and transmit them to the server; 2. the
set_model_params () interface obtains the up-
dated model from the server’s aggregation and
then updates the model parameters of the local
model; 3. the programming of the train() and
test () function only needs to consider the data
of a single user, meaning that the trainer is com-
pletely consistent with the centralized training.

F.3 The Algorithm Layer

In the design of the algorithm layer, we follow
the principle of one-line API. The parameters of
the API include model, data, and single-process
trainer (as shown in Algorithm 2). The algorithms
we support include:



Application Layer:

Text Classification, Span Extraction, Sequence Tagging, Seq2Seq, Language Modeling
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Figure 9: The overall workflow and system design of the proposed FedNLP platform.

Centralized Training. We concatenate all client
datasets and use the global data Dg to train a
global model — i.e., the conventional protocol for
learning a NLP model on a dataset.

FedAvg (McMabhan et al., 2017a) is the de facto
method for federated learning, assuming both
client and server use the SGD optimizer for up-
dating model weights.

FedProx (Li et al., 2020c) can tackle statistical
heterogeneity by restricting the local model up-
dates to be closer to the initial (global) model with
L2 regularization for better stability in training.

FedOPT (Reddi et al., 2020) is a generalized
version of FedAvg. There are two gradient-based
optimizers in the algorithm: ClientOpt and
ServerOpt (please refer to the pseudo code in
the original paper (Reddi et al., 2020)). While
ClientOpt is used to update the local models,
SerevrOpt treats the negative of aggregated lo-
cal changes —A(®) as a pseudo-gradient and ap-
plies it on the global model. In our FedNLP frame-
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work, by default, we set the ClientOpt to be
AdamW (Loshchilov and Hutter, 2019) and the
SerevrOpt to be SGD with momentum (0.9)
and fix server learning rate as 1.0.

Each algorithm includes two core objects,
ServerManager and ClientManager, which in-
tegrate the communication module ComManager
from the infrastructure layer and the Trainer of
the training engine to complete the distributed al-
gorithm protocol and edge training. Note that
users can customize the Trainer by passing a cus-
tomized Trainer through the algorithm APIL.

F.4 The Infrastructure Layer
The infrastructure layer includes three modules:

1) Users can write distributed scripts to man-
age GPU resource allocation. In particular,
FedNLP provides the GPU assignment API
(map_process_to_gpu () in Algorithm 2) to as-
sign specific GPUs to different FL Clients.

2) The algorithm layer can use a unified and ab-
stract ComManager to complete a complex al-



gorithmic communication protocol. Currently,
we support MPI (Message Passing Interface),
RPC (Remote procedure call), and MQTT (Mes-
sage Queuing Telemetry Transport) communica-
tion backend. MPI meets the distributed training
needs in a single cluster; RPC meets the communi-
cation needs of cross-data centers (e.g., cross-silo
federated learning); MQTT can meet the commu-
nication needs of smartphones or IoT devices.

3) The third part is the training engine, which
reuses the existing deep learning training engines
by presenting as the Trainer class. Our cur-
rent version of this module is built on PyTorch,
but it can easily support frameworks such as
TensorFlow. In the future, we may consider sup-
porting the lightweight edge training engine opti-
mized by the compiler technology at this level.

F.5 Enhancing Security with Secure
Aggregation (SA)

FedNLP supports state-of-the-art SA algorithms
LightSecAgg, SecAgg (Bonawitz et al.,
2017), and SecAgg+ (Bell et al., 2020). Here, we
provide a short performance comparison of these
three algorithms. In general, LightSecAgg
provides the same model privacy guarantees as
SecAgg (Bonawitz et al.,, 2017) and SecAgg+
(Bell et al., 2020)) while substantially reducing the
aggregation (hence run-time) complexity (Figure
??). The main idea of Light SecAqgq is that each
user protects its local model using a locally gener-
ated random mask. This mask is then encoded and
shared to other users, in such a way that the aggre-
gate mask of any sufficiently large set of surviving
users can be directly reconstructed at the server.
Our main effort in FedNLP is integrating these al-
gorithms, optimizing its system performance, and
designing user-friendly APIs to make it compati-
ble with NLP models and FL algorithms.
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