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Abstract

Retrieval-augmented generation (RAG) is a promising method for addressing some
of the memory-related challenges associated with Large Language Models (LLMs).
Two separate systems form the RAG pipeline, the retriever and the reader, and
the impact of each on downstream task performance is not well-understood. Here,
we work towards the goal of understanding how retrievers can be optimized for
RAG pipelines for common tasks such as Question Answering (QA). We conduct
experiments focused on the relationship between retrieval and RAG performance
on QA and attributed QA and unveil a number of insights useful to practitioners
developing high-performance RAG pipelines. For example, lowering search ac-
curacy has minor implications for RAG performance while potentially increasing
retrieval speed and memory efficiency.

1 Introduction

Retrieval-augmented generation (RAG) (1) is gaining popularity due to its ability to address some of
the challenges with using Large Language Models (LLMs), including hallucinations (2) and outdated
training data (1; 3). RAG pipelines are made up of two disparate components: a retriever, which
identifies documents relevant to a query from a given corpus, and a reader, which is typically an LLM
prompted with a query, the text of the retrieved documents, and instructions to use this context to
generate its response. However, it is unclear how a RAG pipeline’s performance on downstream tasks
can be attributed to each of these components (1; 2).

In this work, we study the contributions of retrieval to downstream performance.1. For this purpose,
we evaluate pipelines with separately trained retriever and LLM components, as training retrieval-
augmented models end-to-end is both more resource-intensive and obfuscates the contribution of the
retriever itself. We aim to address questions that will enable practitioners to design retrieval systems
tailored for use in RAG pipelines. For example, what are the weaknesses of the typical search and
retrieval setup in RAG systems? Which search hyperparameters matter for RAG task performance?

We choose to evaluate RAG pipeline performance on both standard QA and attributed QA. In
attributed QA, the model is instructed to cite supporting documents provided in the prompt when

1https://www.github.com/intellabs/rag-retrieval-study
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making factual claims (4; 5). This task is interesting for its potential to boost the trustworthiness and
verifiability of generated text (6).

We make four contributions: (1) We show how both QA performance and citation metrics vary with
more retrieved documents, adding new data to a small literature on attributed QA with RAG. (2)
We describe how RAG task performance is affected when fewer gold documents are included in
the context. (3) We show that saving retrieval time by decreasing approximate nearest neighbor
(ANN) search accuracy in the retriever has only a minor effect on task performance. (4) We show that
injecting noise into retrieval results in performance degradation. We find no setting that improves
above the gold ceiling, contrary to a prior report (7).

2 Background

A RAG pipeline is made up of two components: a retriever and a reader. The retriever component
identifies relevant information from an exterior knowledge base which is included alongside a query
in a prompt for the reader model (8). This process has been used as an effective alternative to
expensive fine-tuning (2; 9) and is shown to reduce LLM hallucinations (10).

Retrieval models. Dense vector embedding models have become the norm due to their improved
performance above sparse retrievers that rely on metrics such as term frequency (11). These dense
retrievers leverage nearest neighbor search algorithms to find document embeddings that are the
closest to the query embedding. Of these dense models, most retrievers encode each document as a
single vector (12). However, multi-vector models that allow interactions between document terms and
query terms such as ColBERT (13) may generalize better to new datasets. In practical applications,
most developers refer to text embedding leaderboards (14) or general information retrieval (IR)
benchmarks such as BEIR (15) to select a retriever.

Approximate Nearest Neighbor (ANN) search. Modern vector embeddings contain ≥ 1024
dimensions, resulting in severe search performance degradation (e.g., sifting through ≈ 170GB of
data for general knowledge corpora like Wikipedia) due to the curse of dimensionality. Consequently,
RAG pipelines often employ approximate nearest neighbor search as a compromise, opting for faster
search times at the expense of some accuracy (1; 16). Despite this common practice, there is very
little discussion in the literature regarding the optimal parameters for configuring ANN search, and
the best way to balance the trade-off between accuracy and speed. Operating at a lower search
accuracy could lead to massive improvements in search speed and memory footprint (for example, by
eliminating the common re-ranking step (e.g. 17)).

3 Experiment setup

We conduct our experiments with two instruction-tuned LLMs: LLaMA (Llama-2-7b-chat) (18) and
Mistral (Mistral-7B-Instruct-v0.3) (19). No further training or fine-tuning was performed. We avoided
additional fine-tuning to ensure that our results are directly relevant to RAG pipelines currently being
deployed across industry applications. Additional experiment details are in Appendix A.1.

Question answering (QA) and attributed QA. For a query in a standard QA task, a RAG pipeline
prompts an LLM to generate an answer based on information from a list of retrieved documents. In
attributed QA, an LLM is also required to explicitly cite (e.g., by document ID) one or more of the
documents used.

Prompting. Following previous work (5), the models learn the desired format for attributing answers
with citations via few-shot learning. We use 2-shot prompting for Mistral because of its longer context
window and 1-shot prompting for LLaMA. We maintain the same prompt order for the experiments:
system instruction, list of retrieved documents, then the query (see Figure 1). When evaluating QA
without attribution, 0-shots are given.

3.1 Retrieval

We chose to evaluate two high-performing, open-source dense retrieval models. For single vector
embeddings, we relied on BGE-base to embed documents (bge-base-en-v1.5 (20), BEIR15 score of
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0.533). We used the Intel SVS library2 to search over these embeddings for efficient dense retrieval,
exploiting its state-of-the-art graph-based ANN search performance (21). For multi-vector search, we
used ColBERTv2 (22), which leverages BERT embeddings to determine similarity between terms in
documents and queries (BEIR15 score of 0.499).

Figure 1: Example prompts for QA (left) and attributed QA (right, following (5)).

3.2 Datasets

ASQA is a long-form QA dataset for factoid questions designed to evaluate a model’s performance
on naturally-occurring ambiguous questions (23). It is made up of 948 queries and the ground truth
documents are based on a 12/20/2018 Wikipedia dump with 21M passages. We use the set of five
gold documents provided by (5) which yields the best performance in their RAG pipeline.

QAMPARI is an open-domain QA dataset in which the 1000 queries have several answers that can
be found across multiple passages (24). It is designed to be difficult for both retrieval and generation.
As with ASQA, we use the five gold documents provided by (5) from the 2018 Wikipedia dump.

Natural Questions (NQ) is a dataset of 100k actual questions submitted to the Google search engine
(25). We follow (26) and use the KILT (27) version of the dataset, which consists of 2837 queries
supported by 112M passages from a 2019 Wikipedia dump). It includes a short answer and at least
one gold passage for each query. Though NQ has not traditionally corresponded to attributed QA, we
adapt it to this task by simply prompting the language model to support statements with references to
documents included in the context (see Figure 1).

3.3 Metrics

For retrieval, we report recall@k, which reflects the percentage of gold passages that have been
retrieved in k documents. We also refer to this as retriever recall or gold document recall. When
using ANN, we also report search recall@k, that is the percentage of the k exact nearest neighbors
(according to the retriever similarity) that have been retrieved in the k approximate nearest neighbors.

Correctness on the QA tasks is quantified by string exact match recall (EM Rec.), or the percentage
of short answers provided by the dataset which appear as exact substrings of the generated output.
Note that for NQ, we report recall only over the top five gold answers following (5).

To report citation quality, we use a process aligned with (4) that follows exactly the citation metrics
found in the ALCE framework (5): citation recall and citation precision. Citation recall is a measure
of whether each generated statement includes citation(s) which entail it. Citation precision quantifies
whether each individual citation is necessary to support a statement.

Confidence intervals. All metrics are computed for each query in the dataset, and averaged across
all n queries. To characterize the spread of the distribution, we compute 95% confidence intervals
(CIs) across queries using bootstrapping. That is, we resample n queries with replacement from the
true distribution, compute the mean, and repeat this process for 1000 bootstrap iterations. We then
find the 2.5 and 97.5 percentiles for this distribution to yield the 95% confidence intervals. Note that
these bootstrapped CIs can be used to determine whether the difference between two distributions is
statistically significant (28).

2https://github.com/intel/ScalableVectorSearch
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4 Results

We first analyze how many retrieved documents should be included in the LLM context window
to maximize correctness on the selected QA tasks. This is shown as a function of the number of
retrieved nearest neighbors, k. Incorporating the retrieved documents narrows the performance
disparity between the closed-book scenario (k=0) and the gold-document-only ceiling. However,
the performance of the evaluated retrieval systems still significantly lags behind the ideal. ColBERT
usually outperforms BGE by a small margin.

Figure 2: Correctness achieved by Mistral with various numbers of documents retrieved with BGE-
base and ColBERT. Optimal performance is observed with k = 10 or 20.

Correctness on QA begins to plateau around 5-10 documents. We find that Mistral performs best
for all three datasets with 10 or 20 documents (Figure 2). LLaMA performs best when k = 4 or 5 for
ASQA and NQ, but k = 10 for QAMPARI (Appendix Figure 8). This difference between LLMs is
likely due to LLaMA’s shorter context window. We also find that adding the citation prompt to NQ
results in almost no change to performance until k > 10. Tables 1 and 2 show that citation recall
generally peaks around the same point as QA correctness, while citation precision tends to peak at
much lower k. Since citation precision measures how many of the cited documents are required for
each statement, this suggests that showing the LLM more documents (i.e. at higher k) results in more
extraneous, or unnecessary, citations. Citation measures for other datasets and models are in A.4.

We further investigated where gold documents appear within the ranked list of retrieved documents.
We found that gold documents typically ranked between 7-13th nearest neighbor (Appendix Table
6). Given these results, we conducted all subsequent analyses and experiments with 5-10 context
documents, as these were generally good settings for QA performance even if some of the gold
documents are missed.

Based on the results above, we hypothesized that the ideal number of documents to include in a RAG
pipeline is directly related to the number of gold documents that are retrieved within that k. This
is relatively unexplored in the literature, as most have investigated how well LLMs can utilize the
context and ignore non-gold documents (16; 26; 29; 30). Because we observed similar trends across
datasets, we dropped QAMPARI from the following results for simplicity. We re-analyze the results

4



Table 1: Performance on ASQA with Mistral and various numbers of BGE-base retrieved documents,
k, in the prompt. Optimal QA correctness is achieved at k = 10, while it is k = 5 for citation recall.

Ret. EM Recall Citation Recall Citation Precision
k Rec@k Mean 95% CI Mean 95% CI Mean 95% CI

gold 1 50.725 48.73 - 52.79 65.187 63.073 - 67.231 62.261 60.285 - 64.41
0 0 27.286 25.334 - 29.176 - - - -

1 0.093 30.749 28.826 - 32.743 52.265 49.660 - 55.032 63.695 60.822 - 66.285
2 0.162 33.719 31.594 - 35.705 59.103 56.911 - 61.440 64.827 62.411 - 67.148
3 0.208 35.145 33.001 - 37.123 61.368 59.103 - 63.668 62.920 60.887 - 65.180
4 0.247 35.793 33.697 - 37.818 61.243 58.918 - 63.562 59.692 57.219 - 61.986
5 0.284 37.595 35.394 - 39.601 61.563 59.229 - 63.898 59.017 56.776 - 61.301

10 0.387 38.703 36.619 - 40.955 58.525 56.245 - 60.715 53.852 51.679 - 55.879
20 0.490 38.129 36.044 - 40.355 53.823 51.552 - 56.176 47.449 45.137 - 49.658

100 0.692 32.819 30.588 - 34.881 25.920 23.896 - 28.013 24.009 22.103 - 26.117

Table 2: Performance on ASQA with Mistral and various numbers of ColBERT retrieved documents,
k, in the prompt. Optimal QA correctness is achieved at k = 10, while it is k = 5 for citation recall.

Ret. EM Recall Citation Recall Citation Precision
k Rec@k Mean 95% CI Mean 95% CI Mean 95% CI

gold 1 50.725 48.730 - 52.790 65.187 63.073 - 67.231 62.261 60.285 - 64.410
0 0 27.286 25.334 - 29.176 - - - -

1 0.098 32.186 30.168 - 34.227 56.794 54.498 - 59.417 69.560 66.798 - 72.272
2 0.179 36.369 34.160 - 38.564 62.343 60.350 - 64.545 68.367 66.114 - 70.577
3 0.242 38.730 36.482 - 40.772 63.722 61.543 - 66.061 66.802 64.672 - 69.018
4 0.291 40.146 37.880 - 42.277 65.351 63.150 - 67.456 65.355 63.282 - 67.521
5 0.328 40.023 37.956 - 42.228 66.037 63.887 - 68.297 63.906 61.971 - 65.889

10 0.447 41.553 39.282 - 43.575 61.826 59.702 - 64.195 56.964 54.719 - 59.113
20 0.553 40.642 38.551 - 42.695 58.506 56.205 - 60.759 51.272 49.167 - 53.473

100 0.743 36.074 33.956 - 38.182 31.083 28.880 - 33.300 28.676 26.651 - 30.631

above for k = 10 documents in the prompt, and simply bin the queries depending on the retriever
recall (i.e. the percentage of retrieved gold documents).

Including just one gold document highly increases correctness. We observe a significant increase
in the EM recall of queries with just one gold document in the prompt versus no gold documents.
This is the case when either Mistral (Figure 3) or LLaMA (Appendix Figure 9) is used as the reader
module. We note that this trend was also observed in (26).

More gold documents correlates with higher correctness. We find that increasing the number
of gold documents in the prompt steadily increases QA correctness metrics. This is illustrated for
Mistral in Figure 3 and LLaMA in Figure 9. We note that the difference in average correctness begins
to plateau around a retrieval recall of 0.5. This supports the hypothesis that the ideal number of
documents in the context window is directly related to the number of gold documents in that context
window, in spite of the potential noise added by more non-gold documents.

4.1 Gold document recall and search accuracy regime

Next, we investigated how using approximate search affected RAG performance on the QA task. In
particular, since the prior evidence suggests that gold documents are key to performance, we ran
two sets of experiments to understand how both search recall and gold document recall affect QA
performance. First, we took the gold set and replaced some of these to reach a gold document recall
target of 0.9, 0.7, or 0.5. For each query, we sampled a subset of the gold documents so that the
average gold recall across all queries in a dataset reached the target, and populated the rest of the 10
documents with the nearest non-gold neighbors. Second, we set the ANN search algorithm to achieve
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Figure 3: The per-query relationship between the number of gold documents included in the prompt
and the QA accuracy achieved with Mistral on ASQA. Including just one gold document significantly
improves accuracy. There is a correlation between the number of gold documents and EM Recall.

search recall targets of 0.95, 0.9, and 0.7 (details in Appendix A.1.1) and compared these to exact
search (recall 1.0) for BGE-base. Figure 12 shows the results of these two experiments.

Manipulating ANN search recall only results in minor decrements in QA performance. We
found that gold document recall (Fig. 12, left) is a far bigger factor for QA performance than search
recall (Fig. 12, right). Setting the search recall@10 to 0.7 only results in a 2-3% drop in gold
document recall with respect to using exhaustive search (Table 3). While our data is limited to a
single dense retriever, it is the first experiment (to our knowledge) demonstrating that practitioners
using current SOTA retrievers can take advantage of the speed and memory footprint benefits of ANN
search with little to no adverse impact on RAG task performance.

Figure 4: Gold document recall (left) has a greater impact on RAG QA performance compared to
search recall (right). RAG pipeline uses Mistral and BGE-base. Shaded bar is ceiling performance
using all gold documents per query. Error bars are 95% bootstrap confidence intervals.

Table 3: Gold document recall for the BGE-base retriever at different ANN search recall regimes.
Reported as mean with 95% confidence intervals (in grey).

ANN Search Recall@10 Doc. Recall@10
ASQA NQ

1.0 (exact) 0.387 0.367 - 0.404 0.278 0.267 - 0.290
0.95 0.377 0.361 - 0.396 0.274 0.262 - 0.286
0.9 0.363 0.346 - 0.381 0.264 0.252 - 0.277
0.7 0.361 0.342 - 0.380 0.245 0.232 - 0.256

Citation metrics generally decrease as fewer supporting documents are available. We observed
that decreases in document recall and search recall lead to decreases in citation metrics (full results in
Appendix A.6). As with QA performance, decreases in document recall affect citation performance
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more than decreases in search recall (Table 4). However, this effect is less clear for the ASQA dataset,
which is more likely to have multiple gold evidence documents that entail a single answer (A.6).

Table 4: Citation recall decreases as document recall and search recall decrease (NQ dataset, BGE-
base retriever with Mistral reader). Values in parentheses are 95% CIs.

Citation Recall
Doc. Recall@10 Mean 95% CI

1.0 75.041 73.772 - 76.397
0.9 72.084 70.765 - 73.409
0.7 66.669 65.258 - 68.148
0.5 60.827 59.428 - 62.292

Search Recall@10
0.95 55.340 53.872 - 56.814
0.9 52.443 50.835 - 53.972
0.7 49.856 48.405 - 51.340

4.2 Injecting noisy documents of varying relevance

Next, we explored whether the relevance of the non-gold documents included in the context window
affects the performance of the RAG pipeline on QA tasks. We define relevance as the similarity
between the query and the retrieved document as defined by the corresponding retriever. A prior work
(7) made two claims about query-document similarity: (1) random non-gold documents increase QA
performance above the gold-only ceiling; and (2) highly similar, non-gold documents are distracting
and decrease QA performance.

To investigate claim 1, we added documents of varying similarity to either the gold set or the 5 most
similar documents (nearest neighbor indices 0-4). First, we used BGE-base to retrieve all documents
in the dataset for each ASQA query, assigning each neighbor a similarity score. We order the retrieved
documents by this score and divide them into ten equal-sized bins. We define documents in the first
bin 10th percentile noise, the second bin 20th percentile noise, etc. We randomly select 5 documents
from each bin and append them to the prompt after either the gold or BGE-base retrieved documents.
This setting follows the experiments in (7). Note that when injecting additional noise on top of the
gold documents, the gold document recall (but not accuracy or F1) is still 1.0.

Our evidence does not clearly replicate claims in (7) about injecting noise. Contrary to claim
1, we find that adding noisy documents, regardless of their noise percentile, degrades correctness
(Figure 5) and citation quality (A.7) compared to the gold-only ceiling.

Figure 5: ASQA Mistral performance after injecting noisy documents from various percentiles of
similarity to the query. Adding noisy documents from all percentiles degrades QA correctness.
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Figure 5 also shows no consistent trend in performance changes with decreasingly similar documents.
However, it is possible that claim 2 – that very similar neighbors are more distracting than distantly
similar neighbors – might only be observed if we take the 1st percentile of neighbors, as similarity
is known to drop steeply with further neighbors (see Appendix Figure 6). We therefore repeated
a similar experiment with samples from the first 100 neighbors to test this claim. We compare
performance for Mistral on ASQA with 5 gold documents to performance when the 5th − 10th or
the 95th − 100th nearest neighbors are added (Table 5). Although QA performance still degrades,
the effect is smaller—injecting more similar neighbors only drops performance by 1 point. Overall,
injecting closer neighbors does not appear to be more detrimental than farther ones. Interestingly
though, citation scores improve for farther neighbors. A similar pattern of QA performance was
observed when using the same LLM as (7) (Appendix A.7).

These results are in line with 4.1. Due to how ANN graph search is parameterized (A.1.1, lowering
search recall adds “noisy” non-gold documents that are still similar to the query. Here and in 4.1, we
observed that injecting highly similar neighbors only mildly degrades downstream task performance.

Table 5: Mistral performance on ASQA when adding non-gold (noise) documents based on their
similarity ranking (between 5th − 100th nearest neighbor).

Injected Noise EM Recall Citation Recall Citation Precision
Mean 95% CI Mean 95% CI Mean 95% CI

gold only 50.73 48.73 - 52.79 65.19 63.07 - 67.23 62.26 60.29 - 64.41
gold + 5th − 10th 49.91 47.82 - 51.90 59.45 57.40 - 61.40 55.40 53.15 - 57.62
gold + 95th − 100th 49.24 47.05 - 51.46 58.69 56.37 - 61.11 56.14 53.96 - 58.23

5 Conclusion

Overall, our experiments suggest that models that can retrieve a higher number of gold documents
will maximize QA performance. We also observe that leveraging ANN search to retrieve documents
with a lower recall results in only slight QA performance degradation, which correlates with the very
minor changes to gold document recall. Thus, operating at a lower search recall regime is a viable
option in practice to potentially increase speed and memory efficiency. We also find that, contrary to a
prior study (7), injecting noisy documents alongside gold or retrieved documents degrades correctness
compared to the gold ceiling. We also find that it has an inconsistent effect on citation metrics. This
suggests that the impact of document noise on RAG performance requires further study.

Future work should test the generality of these findings in other settings. Understanding how
approximate vs. exact search affects multi-vector retrievers such as (13) would be interesting,
especially given their generally good performance. Additionally, we only evaluated systems where
the retriever and reader are trained separately. RAG systems trained end-to-end (e.g. Fusion-in-
Decoder (FiD) (31) model), may rely less on gold documents such that retrieval metrics are not useful
relevance markers (32).
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A Appendix

A.1 Experiment setup

We conduct the retrieval portion of the experiments on a 2-socket 2nd generation Intel® Xeon® 8280L
@2.70GHz CPUs with 28 cores (2x hyperthreading enabled) and 384GB DDR4 memory (@2933MT/s) per
socket, running Ubuntu 22.04. Retrieval results were saved to files and were inserted into the prompt (Figure 1)
for the LLM during the reader portion of the experiments.

We ran LLM inference on NVIDIA GPUs of varying models (NVIDIA Titan Xp or X Pascal series, or NVIDIA
A40). The CPU hosts for these GPU nodes were either Intel® E5-2699 v4 or Intel® Xeon® 8280 or 8280L. Run
time for generating answers for all queries in ASQA and QAMPARI was approximately 30 minutes for Mistral
and 20 minutes for LLaMA. Because there are more queries in NQ, run time was approximately 1.5 hours for
Mistral and 1 hour for LLaMA.

A temperature of 1 and top p of 0.95 were used for generation with both LLMs.

A.1.1 Tuning ANN search

Approximate nearest neighbor (ANN) techniques that utilize graphs are notable for their exceptional search
accuracy and speed, particularly with data of high dimensionality (33; 34; 21). We leverage the Intel SVS
library’s graph-based search capabilities to our advantage. These graph-based approaches employ proximity
graphs, in which the nodes correspond to data vectors. A connection is established between two nodes if they
meet a specific property or neighborhood criterion, leveraging the natural structure found within the data.

The search process begins at a predetermined starting node and progresses through the graph, moving from one
node to the next, each step bringing the search closer to the nearest neighbor by following a best-first search
strategy. To prevent becoming trapped in a local minimum and to enable the discovery of multiple nearest
neighbors, backtracking is employed (34; 35). Increasing the extent of backtracking means that a larger section
of the graph is examined, which enhances the precision of the search but also results in a longer and therefore
slower process. By adjusting the setting that determines the level of backtracking, we can fine-tune the balance
between search accuracy, reflected in the quality of the nearest neighbors found, and the number of queries that
can be handled per second. The Intel SVS library uses the search_window_size parameter to set the search
accuracy vs. speed trade-off. By changing the search_window_size we set the retrieval module to operate at
different search recall regimes.

A.2 Nearest neighbor similarity

(a) Neighbor index (x-axis) shown linearly. (b) Neighbor index (x-axis) shown on a log-scale.

Figure 6: Average similarity of nearest neighbors for the ALCE dataset using BGE-base as a retriever.

A.3 Gold documents as nearest neighbors

Table 6 shows how gold documents rank in the nearest neighbors. The 25th, 50th, and 75th percentiles are
provided. Figure 7 shows how the average similarity score of gold documents, compared to the average similarity
of different neighbor rankings.

11



Table 6: Nearest neighbor ranking of gold documents for each retriever and dataset. Since these
distributions are skewed across queries, we report quartiles (1st, 2nd / median, and 3rd). The median
neighbor ranking of gold documents is between 7 and 13.

Q1 (25) Q2 (50) Q3 (75)

ASQA
BGE-base 3.0 8.0 25.0
BGE-large 3.0 8.0 25.0
ColBERTv2 3.0 7.0 21.0

NQ
BGE-base 3.0 11.0 32.0
BGE-large 3.0 10.5 33.0
ColBERTv2 2.0 7.0 24.0

QAMPARI
BGE-base 4.0 13.0 37.0
BGE-large 4.0 13.0 41.0
ColBERTv2 4.0 11.0 31.0

Figure 7: The similarity score (maximum inner product) of BGE-base neighbors, averaged across
queries within the dataset. The solid black line is the mean similarity score for gold documents (grand
mean first within query then across queries).

A.4 Additional varied number of neighbors results

Correctness results for all three datasets with LLaMA are in Figure 8. We present detailed results for including
varied number of retrieved documents, k, for ASQA with LLaMA in Tables 7 and 8. Detailed results on NQ are
shown in Tables 9, 10, 7 and 12. Detailed results on QAMPARI are included in Tables 13, 14, 15 and 16.

Table 7: Correctness and citation quality on ASQA achieved with LLaMA with various numbers of
BGE-base retrieved documents, k, included in the prompt.

Ret. EM Recall Citation Recall Citation Precision
k Rec@k Mean 95% CI Mean 95% CI Mean 95% CI

gold 1 47.466 45.304 - 49.426 46.326 44.123 - 48.524 46.294 44.082 - 48.686
0 0 23.327 21.355 - 25.252 - - - -
1 0.093 29.587 27.553 - 31.639 28.025 25.854 - 30.463 35.261 32.479 - 38.025

2 0.162 33.09 31.052 - 35.208 47.128 44.734 - 49.398 53.155 50.567 - 55.656
3 0.208 33.212 31.144 - 35.472 50.786 48.408 - 53.057 52.383 49.939 - 54.661
4 0.247 33.686 31.706 - 35.607 46.221 43.969 - 48.433 47.776 45.412 - 50.114
5 0.284 34.402 32.205 - 36.468 42.227 40.019 - 44.503 41.97 39.805 - 44.187

10 0.387 32.956 30.789 - 35.019 34.6 32.18 - 37.153 30.585 28.381 - 32.625
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Figure 8: Correctness achieved by prompting LLaMA with various numbers of documents retrieved
with BGE-base and ColBERT, k, included in the prompts. Optimal performance is observed with
k = 4 or 5 for ASQA and NQ, while optimal performance for QAMPARI is achieved with k = 10.

Table 8: Correctness and citation quality on ASQA achieved with LLaMA with various numbers of
ColBERT retrieved documents, k, included in the prompt.

Ret. EM Recall Citation Recall Citation Precision
k Rec@k Mean 95% CI Mean 95% CI Mean 95% CI

gold 1 47.466 45.304 - 49.426 46.326 44.123 - 48.524 46.294 44.082 - 48.686
0 0 23.327 21.355 - 25.252 - - - -

1 0.098 31.928 29.979 - 33.962 34.944 32.569 - 37.116 43.637 41.007 - 46.503
2 0.179 36.262 34.089 - 38.509 52.282 49.951 - 54.57 58.651 56.199 - 60.848
3 0.242 36.548 34.33 - 38.787 54.545 52.246 - 56.676 57.067 54.78 - 59.45
4 0.291 36.813 34.688 - 38.9 50.63 48.394 - 52.85 51.505 49.236 - 53.808
5 0.328 36.712 34.668 - 38.79 46.293 43.897 - 48.806 44.565 42.292 - 46.945

10 0.447 35.016 32.844 - 37.057 37.334 34.937 - 39.771 32.033 29.975 - 34.319
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Table 9: Correctness and citation quality on NQ achieved with Mistral with various numbers of
BGE-base retrieved documents, k, included in the prompt.

Ret. EM Recall Citation Recall Citation Precision
k Rec@k Mean 95% CI Mean 95% CI Mean 95% CI

gold 1 84.646 83.222 - 86.042 74.66 73.349 - 76.006 64.407 63.179 - 65.615
0 46.696 44.836 - 48.467 - - - -

1 0.072 37.871 36.164 - 39.726 31.101 29.567 - 32.776 36.4 34.695 - 38.181
2 0.117 40.925 39.02 - 42.792 43.51 41.923 - 45.18 39.554 38.067 - 41.129
3 0.152 45.301 43.497 - 47.127 47.423 45.796 - 48.944 40.574 39.101 - 42.005
4 0.181 49.735 47.902 - 51.639 49.943 48.38 - 51.534 43.404 42.007 - 44.826
5 0.205 51.421 49.559 - 53.226 51.062 49.51 - 52.51 43.69 42.326 - 45.13

10 0.279 56.778 54.916 - 58.654 55.869 54.395 - 57.241 46.267 45.014 - 47.542
20 0.355 61.145 59.391 - 62.883 57.173 55.754 - 58.595 46.497 45.282 - 47.711

100 0.53 60.333 58.548 - 62.143 49.816 48.332 - 51.397 36.671 35.502 - 37.921

Table 10: Correctness and citation quality on NQ achieved with Mistral with various numbers of
ColBERT retrieved documents, k, included in the prompt.

Ret. EM Recall Citation Recall Citation Precision
k Rec@k Mean 95% CI Mean 95% CI Mean 95% CI

gold 1 84.646 83.222 - 86.042 74.66 73.349 - 76.006 64.407 63.179 - 65.615
0 46.696 44.836 - 48.467 - - - -

1 0.122 49.567 47.797 - 51.463 67.754 66.276 - 69.245 77.295 75.828 - 78.863
2 0.179 55.398 53.542 - 57.244 72.288 70.925 - 73.617 68.703 67.417 - 69.971
3 0.214 58.486 56.714 - 60.204 71.02 69.784 - 72.254 63.799 62.58 - 65.048
4 0.237 60.41 58.688 - 62.178 69.883 68.64 - 71.088 60.987 59.797 - 62.236
5 0.254 61.916 60.134 - 63.66 68.635 67.291 - 69.896 59.862 58.683 - 61.101

10 0.321 64.171 62.424 - 66.056 67.233 65.901 - 68.508 55.348 54.1 - 56.477
20 0.381 62.558 60.874 - 64.434 64.701 63.314 - 66.002 50.239 49.051 - 51.368

100 0.506 58.384 56.502 - 60.204 50.21 48.575 - 51.79 35.233 34.014 - 36.53

Table 11: Correctness and citation quality on NQ achieved with LLaMA with various numbers of
BGE-base retrieved documents, k, included in the prompt.

Ret. EM Recall Citation Recall Citation Precision
k Rec@k Mean 95% CI Mean 95% CI Mean 95% CI

gold 1 80.932 79.52 - 82.341 54.725 53.288 - 56.182 55.763 54.364 - 57.225
0 0 36.389 34.544 - 38.174 - - - -

1 0.072 39.715 37.821 - 41.559 23.417 22.007 - 24.828 27.726 26.215 - 29.241
2 0.117 40.357 38.421 - 42.192 33.892 32.343 - 35.487 35.623 34.07 - 37.219
3 0.152 43.718 41.91 - 45.436 36.163 34.775 - 37.658 35.104 33.599 - 36.504
4 0.181 47.611 45.858 - 49.384 35.693 34.254 - 37.059 34.527 33.198 - 35.826
5 0.205 49.159 47.374 - 50.969 34.839 33.47 - 36.317 32.967 31.56 - 34.304

10 0.279 53.424 51.638 - 55.164 28.622 27.287 - 29.967 25.923 24.689 - 27.058
20 0.381 62.558 60.874 - 64.434 64.701 63.314 - 66.002 50.239 49.051 - 51.368

100 0.506 58.384 56.502 - 60.204 50.21 48.575 - 51.79 35.233 34.014 - 36.53
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Table 12: Correctness and citation quality on NQ achieved with LLaMA with various numbers of
ColBERT retrieved documents, k, included in the prompt.

Ret. EM Recall Citation Recall Citation Precision
k Rec@k Mean 95% CI Mean 95% CI Mean 95% CI

gold 1 80.932 79.52 - 82.341 54.725 53.288 - 56.182 55.763 54.364 - 57.225
0 0 36.389 34.544 - 38.174 - - - -
1 0.122 48.847 47.126 - 50.617 54.977 53.446 - 56.483 67.286 65.586 - 68.933
2 0.179 53.481 51.638 - 55.306 57.519 56.141 - 58.831 65.442 64.0 - 66.948
3 0.214 57.088 55.27 - 58.972 56.378 54.94 - 57.854 59.892 58.342 - 61.326
4 0.237 58.786 57.031 - 60.592 48.572 47.112 - 50.152 51.234 49.727 - 52.642
5 0.254 59.04 57.208 - 60.804 44.974 43.704 - 46.308 46.73 45.352 - 48.104

10 0.321 59.212 57.349 - 60.945 20.997 19.857 - 22.213 21.104 19.948 - 22.278
20 0.381 62.558 60.874 - 64.434 64.701 63.314 - 66.002 50.239 49.051 - 51.368

100 0.506 58.384 56.502 - 60.204 50.21 48.575 - 51.79 35.233 34.014 - 36.53

Table 13: Correctness and citation quality on QAMPARI achieved with Mistral with various numbers
of BGE-base retrieved documents, k, included in the prompt.

Ret. EM Recall Citation Recall Citation Precision
k Rec@k Mean 95% CI Mean 95% CI Mean 95% CI

gold 1 39.152 36.879 - 41.44 23.239 20.827 - 25.708 19.774 17.585 - 22.032
0 0 17.112 15.259 - 19.021 - - - -

1 0.055 14.354 12.779 - 16.08 33.017 30.351 - 35.699 36.011 33.027 - 38.934
2 0.087 16.804 15.018 - 18.58 36.782 34.151 - 39.78 31.867 29.142 - 34.636
3 0.115 16.946 15.279 - 18.68 35.924 33.233 - 38.771 32.36 29.821 - 34.87
4 0.137 17.598 15.9 - 19.5 32.543 29.642 - 35.231 29.509 26.957 - 32.077
5 0.157 19.35 17.56 - 21.2 25.487 22.815 - 28.265 21.428 19.138 - 23.791

10 0.221 21.538 19.677 - 23.281 11.457 9.762 - 13.288 9.758 8.234 - 11.331
20 0.297 22.414 20.36 - 24.42 10.378 8.664 - 12.171 9.808 8.146 - 11.343

100 0.482 18.195 16.4 - 20.062 3.779 2.684 - 4.97 2.953 2.103 - 3.853

Table 14: Correctness and citation quality on QAMPARI achieved with Mistral with various numbers
of ColBERT retrieved documents, k, included in the prompt.

Ret. EM Recall Citation Recall Citation Precision
k Rec@k Mean 95% CI Mean 95% CI Mean 95% CI

gold 1 39.152 36.879 - 41.44 23.239 20.827 - 25.708 19.774 17.585 - 22.032
0 0 17.112 15.259 - 19.021 - - - -

1 0.067 16.649 14.88 - 18.461 45.446 42.724 - 48.362 50.431 47.383 - 53.375
2 0.119 20.556 18.72 - 22.44 43.893 41.037 - 46.795 36.006 33.398 - 38.801
3 0.159 21.407 19.48 - 23.3 41.728 38.943 - 44.541 36.444 34.06 - 39.093
4 0.192 22.379 20.54 - 24.3 31.825 29.095 - 34.731 27.747 25.325 - 30.264
5 0.22 24.657 22.5 - 26.64 23.981 21.59 - 26.459 20.101 17.861 - 22.51

10 0.412 29.836 27.68 - 31.962 10.084 8.391 - 11.862 8.456 6.94 - 10.001
20 0.412 30.613 28.359 - 32.9 8.417 6.859 - 10.063 6.874 5.533 - 8.274

100 0.641 24.105 21.94 - 26.381 2.381 1.603 - 3.17 1.755 1.141 - 2.475
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Table 15: Correctness and citation quality on QAMPARI achieved with LLaMA with various numbers
of BGE-base retrieved documents, k, included in the prompt.

Ret. EM Recall Citation Recall Citation Precision
k Rec@k Mean 95% CI Mean 95% CI Mean 95% CI

gold 1 32.444 30.36 - 34.8 24.308 21.621 - 26.906 16.42 14.395 - 18.422
0 0 13.725 12.2 - 15.26 - - - -

1 0.055 14.029 12.58 - 15.56 40.375 37.366 - 43.518 38.634 35.803 - 41.521
2 0.087 14.693 13.14 - 16.32 43.257 40.15 - 46.217 31.847 29.341 - 34.352
3 0.115 14.04 12.62 - 15.502 56.025 53.052 - 59.194 38.662 36.274 - 41.237
4 0.137 15.744 14.22 - 17.28 33.229 30.63 - 35.999 22.892 20.558 - 25.194
5 0.157 15.677 14.02 - 17.3 22.242 19.811 - 24.751 16.372 14.373 - 18.386

10 0.221 18.742 16.88 - 20.62 3.443 2.444 - 4.513 2.76 1.974 - 3.588
20 0.412 30.613 28.359 - 32.9 8.417 6.859 - 10.063 6.874 5.533 - 8.274

100 0.641 24.105 21.94 - 26.381 2.381 1.603 - 3.17 1.755 1.141 - 2.475

Table 16: Correctness and citation quality on QAMPARI achieved with LLaMA with various numbers
of ColBERT retrieved documents, k, included in the prompt.

Ret. EM Recall Citation Recall Citation Precision
k Rec@k Mean 95% CI Mean 95% CI Mean 95% CI

gold 1 32.444 30.36 - 34.8 24.308 21.621 - 26.906 16.42 14.395 - 18.422
0 0 13.725 12.2 - 15.26 - - - -

1 0.067 16.153 14.68 - 17.78 52.048 48.95 - 55.218 50.288 47.517 - 53.223
2 0.119 18.804 17.08 - 20.52 55.04 52.239 - 57.998 38.711 35.952 - 41.13
3 0.159 19.874 18.24 - 21.56 62.55 59.748 - 65.626 41.091 38.741 - 43.48
4 0.192 21.358 19.64 - 23.18 35.157 32.209 - 38.061 25.063 22.702 - 27.476
5 0.22 21.722 20.02 - 23.58 22.076 19.738 - 24.713 15.817 13.845 - 17.859

10 0.412 24.998 23.02 - 27.04 3.647 2.533 - 4.746 2.723 1.88 - 3.622
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A.5 Additional varied number of gold documents results

Figure 9 shows the relationship between the number of gold documents in the prompt and correctness achieved
on ASQA with LLaMA. In Figure 9 and 10 we present results comparing retriever recall and correctness.

Figure 9: The per-query relationship between the number of gold documents included in the prompt
and the QA accuracy achieved with LLaMA on ASQA. We find that including just one gold document
significantly improves accuracy. There is a correlation between the number of gold documents and
the accuracy.

Figure 10: The per-query relationship between the gold document recall in the prompt and the QA
accuracy achieved with Mistral on NQ. There is a correlation between the number of gold documents
and the accuracy.

Figure 11: The per-query relationship between the number of gold documents included in the prompt
and the QA accuracy achieved with LLaMA on NQ. We find that including just one gold document
significantly improves accuracy. There is a correlation between the number of gold documents and
the accuracy.

17



A.6 Additional recall manipulation results

Figure 12: Llama results varying gold document recall (left) and BGE-base search recall (right).
Shaded bar is ceiling performance using all gold documents per query. Error bars are 95% bootstrap
confidence intervals.

Generally, both citation recall and citation precision decrease as document recall and search recall decrease.

Since the ASQA dataset is more likely to contain multiple gold evidence documents per query, it is less
consistently affected by decreases in document recall. For example, we see in Table 17 that between 0.7 and 0.9
search recall@10, citation recall is nearly identical for ASQA – the 95% CIs are nearly completely overlapping.
However, this is not the case for the NQ dataset, which shows a consistent decrease as recall drops.

Table 17: Full Mistral results for changes in citation metrics as gold document recall and search recall
(BGE-base retriever) vary.

Citation Recall Citation Precision
ASQA NQ ASQA NQ

Doc. Recall@10
1.0 65.229 (62.876, 67.321) 75.041 (73.772, 76.397) 62.375 (60.257, 64.469) 64.904 (63.660, 66.105)
0.9 64.797 (62.701, 66.887) 72.084 (70.765, 73.409) 62.092 (60.075, 64.032) 63.023 (61.723, 64.317)
0.7 64.914 (62.781, 66.991) 66.669 (65.258, 68.148) 61.599 (59.471, 63.646) 59.059 (57.693, 60.474)
0.5 60.482 (58.238, 62.692) 60.827 (59.428, 62.292) 58.731 (56.339, 61.011) 54.530 (53.122, 55.875)

Search Recall@10
0.95 57.636 (55.250, 59.867) 55.340 (53.872, 56.814) 52.909 (50.559, 55.129) 45.906 (44.476, 47.292)
0.9 55.764 (53.341, 58.244) 52.443 (50.835, 53.972) 50.460 (48.284, 52.665) 43.263 (42.005, 44.552)
0.7 56.017 (53.551, 58.342) 49.856 (48.405, 51.340) 52.007 (49.744, 54.265) 41.523 (40.198, 42.859)

Table 18: Full Llama results for changes in citation metrics as gold document recall and search recall
(BGE-base retriever) vary.

Citation Recall Citation Precision
ASQA NQ ASQA NQ

Doc. Recall@10
1.0 46.326 (44.123, 48.524) 54.697 (53.309, 56.104) 46.294 (44.082, 48.686) 55.748 (54.285, 57.262)
0.9 46.778 (44.492, 48.999) 53.438 (51.979, 54.862) 46.411 (44.130, 48.779) 55.758 (54.275, 57.143)
0.7 42.450 (40.073, 44.566) 49.078 (47.618, 50.660) 42.618 (40.377, 45.055) 50.265 (48.662, 51.771)
0.5 39.634 (37.468, 41.970) 45.827 (44.258, 47.346) 39.780 (37.453, 41.911) 47.506 (45.929, 48.962)

Search Recall@10
0.95 34.425 (32.106, 36.668) 28.412 (27.054, 29.697) 30.218 (28.282, 32.411) 25.735 (24.561, 26.914)
0.9 33.419 (31.234, 35.618) 26.626 (25.383, 27.994) 28.745 (26.698, 30.792) 24.402 (23.262, 25.549)
0.7 34.190 (31.658, 36.568) 25.033 (23.710, 26.321) 29.509 (27.349, 31.602) 22.853 (21.708, 24.054)
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A.7 Additional noise experiment results

In Table 19 we show detailed results for ASQA Mistral performance after injecting noisy documents from
various percentiles of similarity to the query. These correspond to the correctness results in Figure 5 in the main
body of the paper.

Table 20 shows the first 100 noise experiment for ASQA with Llama2 for augmenting both gold and BGE-base
retrieved data with noise first in the prompt.

Table 19: ASQA Mistral performance with gold or BGE-base retrieved documents (respectively)
and noisy documents from various percentiles of similarity to the query. We find that adding noisy
documents from all percentiles degrades both correctness and citation performance. There is no
obvious correlation between the percentile of the noise and the degradation of performance.

(a) 5 Gold docs

Correct. Citation
noise percentile EM Rec. Rec. Prec.

- 50.673 65.403 62.462
10 40.500 53.000 55.298
20 42.533 55.243 59.944
30 42.983 56.767 55.459
40 43.483 53.833 56.917
50 42.633 53.783 55.800
60 39.733 53.157 54.985
70 42.433 57.750 57.429
80 42.833 56.283 56.075
90 43.517 59.533 62.917

100 42.333 57.417 60.245

(b) 5 docs retrieved with BGE-base

Correct. Citation
EM Rec. Rec. Prec.

37.569 61.188 58.763
34.550 50.286 52.583
34.683 52.967 53.254
34.100 51.133 49.812
32.783 50.350 58.433
35.300 54.250 54.867
31.783 50.036 51.439
29.833 53.667 55.573
32.467 50.900 51.321
32.000 49.900 49.900
34.250 50.900 52.275

Table 20: LLaMA performance on ASQA when adding non-gold (noise) documents based on their
similarity ranking (between 5th − 100th nearest neighbor). BGE-base results (right) with 5 retrieved
documents. Noisy documents are added after the gold or retrieved documents in the prompt.

(a) 5 gold docs

Correct. Citation
noise idx. EM Rec. Rec. Prec.

gold only 47.426 46.261 46.033
gold + 5th − 10th 43.070 40.778 36.135
gold + 95th − 100th 41.807 38.646 35.536

(b) 5 BGE-base retrieved docs

Correct. Citation
noise idx. EM Rec. Rec. Prec.

BGE-base only 34.488 42.029 41.781
BGE-base + 5th − 10th 33.284 33.979 30.298
BGE-base + 95th − 100th 30.979 34.561 31.932
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