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Abstract

We challenge a common assumption underlying most supervised deep learning:
that a model makes a prediction depending only on its parameters and the features
of a single input. To this end, we introduce a general-purpose deep learning
architecture that takes as input the entire dataset instead of processing one datapoint
at a time. Our approach uses self-attention to reason about relationships between
datapoints explicitly, which can be seen as realizing non-parametric models using
parametric attention mechanisms. However, unlike conventional non-parametric
models, we let the model learn end-to-end from the data how to make use of other
datapoints for prediction. Empirically, our models solve cross-datapoint lookup
and complex reasoning tasks unsolvable by traditional deep learning models. We
show highly competitive results on tabular data, early results on CIFAR-10, and
give insight into how the model makes use of the interactions between points.

1 Introduction

From CNNs [57] to Transformers [90], most of supervised deep learning relies on parametric
modeling: models learn parameters θ from a set of training data Dtrain = {(x1,y1), . . . , (xn,yn)}
to maximize training likelihoods p(y | x;θ) mapping from features x ∈ X to target values y ∈ Y .
At test time, they then make a prediction p(y∗ | x∗;θ) that depends only on those parameters θ and
the test input x∗. That is, parametric models do not consider direct dependencies between datapoints.

This paper challenges parametric modeling as the dominant paradigm in deep learning. Based on the
same end-to-end learning motivations that underpin deep learning itself, we consider giving models
the additional flexibility of using training data directly when making predictions p(y∗ | x∗,Dtrain;θ).

Concretely, we introduce Non-Parametric Transformers (NPTs): a general deep learning architec-
ture that takes the entire dataset as input and predicts by explicitly learning interactions between
datapoints (Fig. 1). NPTs leverage both parametric and non-parametric predictive mechanisms, with
the use of end-to-end training allowing the model to naturally learn from the data how to balance
the two. Namely, instead of just learning predictive functions from the features to the targets of
independent datapoints, NPTs can also learn to reason about general relationships between inputs.
We use multi-head self-attention [4, 59, 90] to model relationships between datapoints and construct
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Figure 1: NPTs learn direct interactions between datapoints. (a) Input data: predict masked target
entry [?] for datapointXi. (b) Notation from §2. (c) Parametric models predict only from the features
of the given input. (d) NPTs predict by modeling relationships between all points in the dataset.

a training objective for NPTs with a stochastic masking mechanism inspired by self-supervised
reconstruction tasks in natural language processing [24]. We show that these models learn to look
up information from other datapoints and capture the causal mechanism generating the data in
semi-synthetic settings. However, unlike conventional non-parametric models, NPTs are not forced to
only make predictions in this way: they can also use the power of ordinary parametric deep learning.

Background. While questioning parametric modeling assumptions is unconventional in deep
learning, in statistics, so-called non-parametric models are a well-known and long-established field
of study. Non-parametric models make predictions in explicit dependence of the training data
p(y∗ | x∗,Dtrain). The most popular example of such models in the machine learning community
are perhaps Gaussian Processes [74]. Non-parametric models typically do not require any training
of parameters, and instead often directly interpolate between training points according to a fixed
procedure, e.g., [74, p.17]. The interactions between inputs are fully defined by architectural choices
and a small set of hyperparameters that must be carefully chosen. Conventional non-parametric
models cannot learn – in the sense familiar to deep learning practitioners – interactions from the
data, limiting the flexibility these models have in adapting to the data at hand. Approaches such as
Deep Gaussian Processes [22], Deep Kernel Learning [95], and Neural Processes [36, 37, 49] have
all sought to apply ideas from deep neural networks to non-parametrics. Compared to NPTs, these
approaches rely heavily on motivations from stochastic processes. This leads to them being either
less flexible than NPTs or requiring strong assumptions on the data, making them inapplicable to the
practical scenarios considered in this paper (cf. §3). Unlike previous work, NPTs explicitly learn to
predict from interactions between datapoints, and they can be applied to general supervised machine
learning tasks. We refer to §3 for an overview of these and other related approaches.

A key contribution of this paper is opening the door to a more general treatment of how deep learning
models can make use of dependencies between datapoints for predictions. Our results demonstrate
that NPTs make use of interactions between datapoints in practice, and we show highly competitive
performance on several established tabular datasets as well as early image classification results.
Additionally, we show that NPTs can solve complex reasoning tasks by combining representation
learning and cross-datapoint lookup; something that is impossible for conventional deep learning or
non-parametric models due to their inability to learn relations between datapoints.

We next discuss the specifics of our model (§2), before moving on to related work (§3), empirical
results (§4), and finally, limitations, future work, and conclusions (§5).

2 Non-Parametric Transformers

Non-Parametric Transformers (NPTs) explicitly learn relationships between datapoints to improve
predictions. To accomplish this, they rely on three main ingredients: (1) We provide the model
with the entire dataset – all datapoints – as input. We approximate this with minibatches where
necessary for large data. At test time, both training and test data are input to the model; during
training, the model learns to predict targets from the training data (§2.6). (2) We use self-attention
between datapoints to explicitly model relationships between datapoints. For example, at test time,
the attention mechanism models relationships amongst training points, amongst test points, and
between the two. (3) NPT’s training objective is to reconstruct a corrupted version of the input dataset.
Similar to BERT [24], we apply stochastic masking to inputs and minimize a loss on predictions at
entries masked out in the input. Next, we introduce the three components in detail.
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Figure 2: Overview of the Non-Parametric Transformer. (a) The input dataset and mask matrix are
stacked and (b) linearly embedded for all datapoints independently. NPT then applies (c) Attention
Between Datapoints (ABD, §2.4) across all n samples of hidden dimension h = d · e. (d) Attention
Between Attributes (ABA, §2.5) then attends between the attributes for each datapoint independently.
We repeat steps (c) and (d) and obtain a final prediction from a separate linear projection (not shown).

2.1 Datasets as Inputs

NPTs take as input the entire datasetX ∈ Rn×d. The datapoints are stacked as the rows of this matrix
{Xi,: ∈ Rd | i ∈ 1 . . . n}, and we refer to the columns as attributes {X:,j ∈ Rn | j ∈ 1 . . . d}. Each
attribute is assumed to share a semantic meaning among all datapoints. In single-target classification
and regression, we assume that the targets (labels) are the final attribute X:,d, and the other attributes
{X:,j | j 6= d} are input features, e.g., the pixels of an image. Each Xi,j is an entry or value. In
addition to tabular data, many modalities such as images, graphs, or timeseries can be reshaped to fit
this format. Note that this is a departure from common notation for supervised learning as introduced
in §1, as the inputX now includes both features and targets (collectively, attributes).

In masked language modeling [24], mask tokens denote which words in a sentence are unknown and
where, at training time, model predictions will have a loss backpropagated. Analogously, we use a
binary matrix M ∈ Rn×d to specify which entries are masked in the input X . This matrix is also
passed to NPT as input. The task is to predict the masked values XM = {Xi,j |Mi,j = 1} from
the observed valuesXO = {Xi,j |Mi,j = 0}, i.e., to predict p(XM |XO).

In summary, NPT takes as input the entire dataset and masking matrix (X,M), and makes predictions
X̂ ∈ Rn×d for values masked at input. This general setup accommodates many machine learning
settings simply by adjusting the placement of the binary masks in M . We focus on single-target
classification and regression – corresponding to a masking matrixM with 1s at all entries of the label
columnX:,d – but outline multi-target settings, imputation, self-supervision using input features, and
semi-supervision in Appendix C.4. Next, we describe the NPT architecture.

2.2 NPT Architecture

An overview of the Non-Parametric Transformer (NPT) is depicted in Fig. 2. NPT receives the
dataset and masking matrix (X,M) as input (Fig. 2a). We stack these and apply an identical linear
embedding to each of n datapoints, obtaining an input representationH(0) ∈ Rn×d×e (Fig. 2b). Next,
we apply a sequence of multi-head self-attention layers [4, 24, 90]. Crucially, we alternatingly apply
attention between datapoints and attention between attributes of individual datapoints (Figs. 2c-d).

These operations allow our model to learn both relationships between datapoints as well as trans-
formations of individual datapoints. Finally, an output embedding gives the prediction X̂ ∈ Rn×d,
which now has predicted values at entries that were masked at input. We refer to Appendix C.3 for
details, such as treatment of categorical and continuous variables. Importantly:

Property 1. NPTs are equivariant to a permutation of the datapoints. (cf. Appendix A for proof.)

In other words, if the set of input datapoints is shuffled, NPTs produce the same prediction but shuffled
in an analogous manner. This explicitly encodes the assumption that the learned relations between
datapoints should not depend on their ordering. At a high level, permutation-equivariance holds
because all components of NPTs are permutation-equivariant, and the composition of permutation-
equivariant functions is itself permutation-equivariant. We now briefly recap multi-head self-attention
which plays an important role throughout the NPT architecture.
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2.3 Multi-Head Self-Attention

Multi-head self-attention (MHSA) is a powerful mechanism for learning complex interactions between
elements in an input sequence. Popularized in natural language processing [4, 24, 90], MHSA-based
models have since been successfully applied to many areas of machine learning (cf. §3).

Dot-product attention computes attention weights by comparing queries {Qi ∈ R1×hk | i ∈ 1 . . . n}
with keys {Ki ∈ R1×hk | i ∈ 1 . . .m}, ultimately updating the representation of the queries by
aggregating over values {Vi ∈ R1×hv | i ∈ 1 . . .m} via the attention weights. We stack the queries,
keys, and values into matrices Q ∈ Rn×hk , K ∈ Rm×hk , and V ∈ Rm×hv and, as is commonly
done for convenience, assume hk = hv = h. Then, we compute dot-product attention as

Att(Q,K,V ) = softmax(QKT /
√
h)V . (1)

Multi-head dot-product attention concatenates a series of k independent attention heads

MHAtt(Q,K,V ) = concat
axis=h

(O1, . . . ,Ok)WO, where (2)

Oj = Att(QWQ
j ,KW

K
j ,VW

V
j ). (3)

We learn embedding matrices WQ
j ,W

K
j ,W

V
j ∈ Rh×h/k, j ∈ {1, . . . , k} for each head j, and

WO ∈ Rh×h mixes outputs from different heads. Here, we focus on multi-head self -attention,
MHSelfAtt(H) = MHAtt(Q = H,K = H,V = H), which uses the same inputs for queries,
keys, and values. Following Transformer best practices to improve performance [16, 24, 59, 66, 90],
we first add a residual branch and apply Layer Normalization (LN) [3] followed by MHSelfAtt(·),

Res(H) = HW res + MHSelfAtt(LN(H)), (4)

with learnable weight matrix W res ∈ Rh×h. Then, we add another residual branch with LN and a
row-wise feed-forward network (rFF), finally giving the full multi-head self-attention layer as

MHSA(H) = Res(H) + rFF(LN(Res(H)) ∈ Rn×h. (5)

2.4 Attention Between Datapoints (ABD)

The Attention Between Datapoints (ABD) layer is a key operation for NPT. It explicitly transforms
data by reasoning about pairwise relationships between all datapoints, see Fig. 2c. As input to ABD,
we flatten the output of the previous layer H(`) from Rn×d×e to Rn×h with h = d · e. Then, we
apply MHSA(·) between the intermediate datapoint representations {H(`)

i ∈ R1×h | i ∈ 1 . . . n} as

ABD(H(`)) = MHSA(H(`)) = H(`+1) ∈ Rn×h. (6)

At the first ABD layer, we inputH(0) ∈ Rn×d×e, the linearly embedded input data. After applying
ABD, we reshape the output again, from Rn×h to Rn×d×e. Here, the rFF of each ABD layer is an
MLP that is applied independently to each of the n datapoints.

Note that this is distinct from how MHSA(·) is usually applied in the literature, as we compute
attention between different datapoints and not between the features of a single datapoint [24, 25, 46,
90]. For example, in natural language processing, attention is usually applied between the tokens
(attributes) of a sentence (datapoint) but not between different sentences. For example, NPT could
learn to attend between two datapoints with indices i and i′ by embedding Qi and Ki′ in close
proximity. Following (1), datapoint i will then attend more closely to i′ becauseQiK

T
i′ will be large.

By stacking many ABD layers, NPT can learn higher-order interactions between datapoints [24, 90].

2.5 Attention Between Attributes (ABA)

We now introduce Attention Between Attributes (ABA), which we by default perform after each
ABD layer. ABA layers can help the model learn better per-datapoint representations for the
between-datapoint interactions, see Fig. 2d. For ABA, we apply MHSA(·) independently to each row
(corresponding to a single datapoint) in the inputH(`)

i ∈ Rd×e, i ∈ {1, . . . , n}, giving

ABA(H(`)) = stack
axis=n

(MHSA(H
(`)
1 ), . . . ,MHSA(H(`)

n )) = H(`+1) ∈ Rn×d×e. (7)
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Just like in standard Transformers [24, 25, 46, 90], ABA is used to transform attribute representations
of single datapoints independently. We batch over the n dimension to compute ABA efficiently. By
alternating between attention between datapoints (ABD) and attributes (ABA), NPTs can model
both complex dependencies between points as well as learn suitable transformations of datapoints
individually. Next, we describe the use of masking mechanisms during NPT training and evaluation.

2.6 Masking and Optimization

Masking. Much like in masked language modeling [24], we use masks to indicate which values
NPT is expected to predict, and to prevent the model from accessing ground truth values. Recall that
NPT needs to predict p(XM |XO), with masked valuesXM = {Xi,j |Mi,j = 1} and observed
values XO = {Xi,j | Mi,j = 0}. Masked values can be either features or targets. Canonically,
masked language modeling is used to perform self-supervised learning on a sequence of tokens in
a sentence [24]. We use such stochastic feature masking to mask feature values Xi,j , j 6= d, with
probability pfeature during training. We also apply stochastic masking to the targets of the training set
X:,d with probability ptarget. We call this stochastic target masking. Note that we take great care to
avoid test set leakage and never reveal targets of the test set to NPT. We refer to Appendix C.4 for
full details of our masking procedure in a variety of settings.

NPT Objective. During training, we compute the negative log-likelihood loss at training targets
LTargets as well as the auxiliary loss from masked-out features LFeatures. We write the NPT training
objective as LNPT = (1− λ)LTargets + λLFeatures, where λ is a hyperparameter. At test time, we only
mask and compute a loss over the targets of test points. See Appendix C.5 for optimization details.

This objective has a few notable elements. Feature masking requires NPTs to make predictions over
all attributes, encouraging the models to learn a representation of the entire dataset. This increases the
difficulty of the task and adds more supervision, which we find tends to have a beneficial regularizing
effect. Interestingly, stochastic target masking means that many training targets are unmasked to the
model at training time. This allows NPTs to learn to predict the masked targets of certain training
datapoints using the targets of other training datapoints in addition to all input features.2 NPTs
no longer have to memorize a mapping between training inputs and outputs in their parameters θ,
and can instead use their representational capacity to learn functions using other training features
and targets as input. For example, NPTs could learn to assign test datapoints to clusters of training
datapoints, and predict on those points using interpolation of the training targets in their respective
cluster. We explore the ability of NPTs to solve such tasks in §4.2. Further, we study more complex
extensions to these tasks, which cannot be solved by simple interpolative models, in Appendix B.1.2.

Handling Large Datasets. Due to the poor O(n2) time and space complexity of self-attention, we
resort to approximations once the data grows too large. For example, we reach 24 GB of GPU memory
for standard NPT model sizes at about 8000 datapoints. We find that processing the data in random
subsets for model training and prediction, i.e., minibatching, is a simple and effective solution. We
construct minibatches such that, at test time, training and test data are both present in the same batch,
to allow NPTs to attend to training datapoints. In §4.3, we show that NPTs make use of attention
between datapoints with minibatching enabled. See §5 for further discussion and ideas for future work.

3 Related Work

Deep Non-Parametric Models. Deep Gaussian Processes [22] and Deep Kernel Learning (DKL)
[95] extend ideas from Gaussian Processes [74] to representation learning. Deep GPs stack standard
GPs with the aim to learn more expressive relationships between input points, sharing motivation
with NPTs. However, unlike NPTs, deep GPs are difficult to work with in practice, requiring complex
approximate inference schemes [13, 21, 77]. DKL applies a neural network to each datapoint
independently before passing points on to a standard Gaussian Process, making predictions based
directly on similarity in embedding space instead of learning the interactions themselves.

Neural Processes. Similar to GPs, Neural Processes (NPs) [36, 37] define a distribution over
functions. They use a latent variable model parametrized by neural networks, fulfilling specific

2A concern here could be that the model will memorize training targets and fail to generalize. In practice, we
do not observe generalization issues, likely because (i) a loss is never backpropagated on an unmasked value,
and (ii) BERT-style masking [24] uses token randomization to prevent memorization. See Appendix C.4.
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architectural constraints to approximately preserve consistency of finite-dimensional marginals.
Attentive Neural Processes (ANPs) [49] extend Neural Processes to allow for direct attention between
a context set and targets. However, as the authors themselves stress, “NPs and GPs have different
training regimes” [49]. While a GP can be trained on a single dataset, (A)NPs require multiple
realizations of the dataset. The authors further note that “a direct comparison between the two is
usually not plausible” [49], which is why we cannot compare (A)NPs to NPTs on our standard tasks.

Attention. NPTs are part of a line of recent work that explores the use of Transformer-based
architectures outside of natural language processing, e.g., Transformers in computer vision [25, 46,
67] or architectures exploiting desirable invariances or equivariances [33, 44, 59, 61]. Like NPTs, Set
Transformer [59] attends to a set of input points. However, unlike NPTs, Set Transformer relies on
the existence of multiple independent sets for training and makes only a single prediction for each set.
Like NPTs, Axial Transformers [42] and MSA Transformers [73] attend to multiple dimensions of
matrix-shaped input. However, Axial Transformers process single images as input, i.e., no attention
across datapoints is performed. MSA Transformers use attention within individual protein sequences
and across an aligned protein family for contact prediction, but do not consider a more general
setting. Recent works have improved neural network performance on tabular data using attention.
AutoInt [80] is a direct application of multi-head attention to tabular data, and TabNet [2] sequentially
attends to sparse subsets of the features inspired by tree-based models. Both approaches do not reason
about interactions between datapoints, a key contribution that we introduce with NPT in this work.

Few-Shot Learning, Meta-Learning, and Prompting. In §4.2, we apply NPTs to tasks that require
learning of relational structure between datapoints on training data to achieve good generalization
performance on novel test inputs. This setup shares motivations with meta-learning [6, 8, 29, 56], in
which a model is pre-trained on a variety of tasks, such that it can then learn new tasks using only
a small number of additional training points from the new task. However, we consider evaluation
without any additional gradient updates, unlike recent meta-learning methods [29, 97] which are
therefore inapplicable to this setting. Recent works on few-shot learning with text prompting [12, 72]
provide a trained Transformer-based language model with a few examples of a novel relationship
in a prompt at prediction time, where they observe strong generalization on the task. Similarly, we
consider attention between a “context” of datapoints. While ground-truth input-output pairs are
provided for prompting, we consider settings in which no ground-truth is given at prediction time (cf.
Appendix B.1.2), but the model can solve the task if it has learned the underlying relational structure.

Semi-Supervised Learning and Graph Neural Networks. NPTs relate to work on semi-supervised
learning [15, 27, 51] and transductive learning [89], which both make use of unlabeled inputs during
training. NPTs natively support this by simply including any unlabeled datapoints with masked-out
targets in the input matrix at training time. This body of related work includes semi-supervised
and transductive learning on graphs using graph neural networks (GNNs), e.g., [34, 52, 53, 91, 96].
NPTs can be seen as a generalization of GNNs in which a set of dependencies (edges) between
datapoints is not known a priori and is instead learned from data using self-attention. Like NPTs,
Neural Relational Inference (NRI) [53] attempts to discover relations amongst datapoints. However,
NRI lacks scalability because it requires that embeddings be stored for each potential graph edge.

Metric Learning. (Deep) Metric Learning aims to learn distance functions such that the (semantic)
similarity and dissimilarity between input points is meaningfully captured, e.g., [65, 76, 79, 92–94].
Similarly, retrieval models in NLP learn to look up relevant training instances for prediction [38,
39, 41]. The attention between datapoints in NPTs can be seen as implicitly learning exactly such
(dis-)similarity. Usually, metric learning embeds inputs by applying the same embedding function
independently to each datapoint. This is in contrast to NPTs, which leverage a learned self-attention
mechanism between test inputs and training datapoints (including their labels) at prediction time.

4 Experiments

We seek to answer the following set of questions in our evaluation3 of NPTs: (Q1) How do NPTs
perform on standard benchmarks for supervised machine learning? (Q2) Can NPTs successfully
model interactions between datapoints in idealized settings? (Q3) Do NPTs actually learn to rely on
interactions between datapoints for prediction on real-world datasets? (Q4) If so, what is the nature
of these interactions, e.g., which other datapoints are relevant for prediction?

3We release code for NPTs at github.com/OATML/Non-Parametric-Transformers.

6

https://github.com/OATML/Non-Parametric-Transformers


Table 1: Average rank order of various methods (± standard error) on UCI benchmarks, across binary
classification, multi-class classification, and regression tasks. We determine rank using the test area
under the receiver operating characteristic (AUROC) curve on binary classification (4 of 10 datasets),
accuracy on multi-class classification (2 of 10), and root mean squared error (RMSE) on regression
(4 of 10), and sort methods by ascending rank for each metric. See Appendix B.7 for the full results.

Method AUROC

NPT 2.50 ± 0.87
CatBoost 2.75± 0.85
LightGBM 3.50± 1.55
XGBoost 4.75± 1.25
Gradient Boosting 5.00± 0.71
MLP 5.75± 1.49
Random Forest 6.00± 0.71
TabNet 6.50± 1.32
k-NN 8.25± 0.48

Method Accuracy

NPT 2.50 ± 0.50
XGBoost 2.50 ± 1.50
MLP 3.00± 2.00
CatBoost 3.50± 0.50
Gradient Boosting 3.50± 1.50
Random Forest 6.50± 0.50
TabNet 7.50± 0.50
LightGBM 7.50± 1.50
k-NN 8.50± 0.50

Method RMSE

CatBoost 3.00 ± 0.91
XGBoost 3.25± 0.63
NPT 3.25± 1.31
Gradient Boosting 4.00± 1.08
Random Forest 4.50± 0.87
MLP 5.00± 1.22
LightGBM 6.50± 1.55
TabNet 6.75± 0.95
k-NN 8.75± 0.25

4.1 NPTs Perform Competitively on Established Benchmarks

To answer (Q1), we evaluate NPTs on tabular data from the UCI Repository [26] as well as the
CIFAR-10 [55] and MNIST [58] image classification datasets. Tabular data is ubiquitous in real-world
machine learning [20] but notoriously challenging for general purpose deep neural networks, which
are rarely used in practice here because they are consistently outperformed by boosting models [78].4

Tabular Datasets, Setup, and Baselines. We evaluate NPTs over 10 datasets varying across the
number of datapoints, number of features, composition (categorical or continuous) of features, and
task. 4 of the 10 are binary classification, 2 are multi-class classification, and 4 are regression. We
compare NPT against a wide set of standard or state-of-the-art baselines: Random Forests [10],
Gradient Boosting Trees [32], XGBoost [17], CatBoost [71], LightGBM [48], MLPs, k-NN [1, 30],
and TabNet [2]. For additional background on tree-based models, see Appendix D.1. We tune the
parameters of all models on validation sets and use 10-fold cross-validation whenever computationally
feasible. Note that while we perform an extensive grid search for the baselines, we only search over a
small set of configurations for NPTs. We refer the reader to Appendix E for further details on the
setup for datasets and baselines, and Appendix C.1 for NPT hyperparameters.

Tabular Data Results. We report the average rank order for NPT and various tree-based and deep
learning baselines in Table 1. NPT achieves the highest average ranking on binary and multi-class
classification tasks, outperforming CatBoost and XGBoost, two popular state-of-the-art boosting
methods designed specifically for tabular data. On regression tasks, NPT ties in average rank with
XGBoost, and is outperformed only by CatBoost. In addition to its strong rank-wise performance,
NPT achieves best performance on 4 of the 10 benchmark datasets – more than any other method. We
find that these are remarkable results for a general purpose model that does not include tabular-specific
design, supporting our hypothesis that attention between datapoints is a useful architectural inductive
bias for prediction. For all metrics across all datasets, i.e., NLL for classification, AUROC/accuracy
for binary/multi-class classification, and (R)MSE for regression, we refer the reader to Appendix B.7.
In the appendix, we present ablations which suggest that the performance of NPT is robust across a
wide range of hyperparameter choices (Appendix B.4) and that both the introduction of the ABA layer
and the stochastic feature masking contribute positively to the performance of NPTs (Appendix B.5).

Image Data Results. On CIFAR-10, we replace our linear encoder with a CNN followed by ABD
layers on the CNN encodings, achieving a test accuracy of 93.7%. We achieve 98.3% accuracy
on MNIST using linear patching [25]. Crucially, we show in §4.3 that NPTs learn to make use
of interactions between images on both the CIFAR-10 and MNIST datasets, supporting the claim
that attention between datapoints is useful beyond tabular data. We also explore linear patching on
CIFAR-10. See Appendix B.8 for these results along with setup details and further discussion.

4We conduct an informal survey of all Kaggle [45] competitions using tabular data completed in 2020 with a
public leaderboard. In 11 out of a total of 13 cases, the winning entries relied on some form of boosting.
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Figure 3: Demonstrating NPT’s ability to predict from Attention Between Datapoints (ABD). (a) We
append to the original data with masked targets [?] a copy of the same data with all masked values
revealed, such that perfect prediction via lookup is possible. (b) Attention weights indicate that the
ideal lookup behavior is learned by NPT. Shown are actual values learned by NPT at head 0 and
depth 4 for the first 3 datapoints. (c) NPT predictions closely match the ideal values. (d) Additionally,
we intervene on the values of individual targets, (e) finding that NPT predictions adjust accordingly.

4.2 NPTs Can Learn to Predict Using Attention Between Datapoints

To determine if NPTs can successfully learn to exploit interactions between datapoints (Q2), we intro-
duce a task with strong input correlations for which we know ground-truth interactions. Concretely,
we use the UCI Protein regression dataset (cf. §4.1) to construct the following semi-synthetic task:
for each batch, we input the original data with masked target values as well as a copy of the original
data where all target values have been revealed, i.e., no masking is applied (Fig. 3a). NPTs can use
attention between datapoints to achieve arbitrarily good performance by learning to look up the target
values in the matching duplicate row. At test time, we input novel semi-synthetic test data to ensure
that NPT has learned the correct relational mechanism and not just memorized target values.

NPTs successfully learn to perform this lookup between original and duplicate datapoints. The ABD
attention weights, visualized for the first three datapoints in Fig. 3b, clearly show the model correctly
attending to the duplicates. As a result, NPT predictions are Pearson-correlated with the duplicate
targets at r = 99.9% (Fig. 3c). This equals an RMSE of only 0.44, about a magnitude lower than the
error on the original Protein dataset (Table 11). We conclude that NPTs learn to predict by looking up
the target values from matching points. Further discussion and attention maps are in Appendix B.1.1.

Purely parametric models cannot exploit information from other datapoints, limiting their performance.
For example, MLPs achieve an RMSE of 3.62 on this task. Non-parametric approaches also cannot
solve this task in its original form, because unlike NPTs they must be told which datapoints are
the originals (training data) and which the duplicates (test data) as well as which columns contain
features and which target values. We demonstrate in Appendix B.1.2 that even when we make these
concessions, we can easily adapt the task such that both k-Nearest Neighbors and Deep Kernel
Learning fail to solve it. In fact, we are not aware of any other model that can solve the adapted task.

Additionally, we perform an interventional experiment to investigate the extent to which NPTs have
actually learned the causal mechanism underlying the lookup task. As illustrated in Fig. 3d, we now
intervene on individual duplicate datapoints at test time by varying their target value across a wide
range. We stress that we perform these experiments without retraining the model, using exactly the
same NPT from Figs. 3a-c. The model is now confronted with target values associated with features

8



Table 2: Drop in NPT performance after destroying information from other datapoints. Shown are
changes in test set performance, where negative values indicate worse performance after corruption.

∆ Accuracy CIFAR-10 Poker Income Higgs MNIST Forest Kick Breast Cancer

−1.2 −1.1 −1.1 −0.5 −0.4 −0.1 −0.1 0.0
∆RMSE/RMSE (%) Yacht Protein Boston Concrete

−52% −21% −20% −7%

that are highly unlikely under the training data. This label distribution shift [35] is a challenging
setting for neural networks. However, NPT predictions follow the intervened target values with
near-perfect correlation, Fig. 3e, continuing to predict by correctly looking up targets.

We now confidently conclude that NPTs robustly learn the causal data-generating mechanism under-
lying the semi-synthetic dataset. This requires NPTs to learn a non-trivial sequence of compuational
steps. They must learn to match rows based on similarity of relevant features; to look up the target
value of the duplicated datapoint; and, to copy that value into the target of the masked datapoint.

4.3 NPTs Learn to Use Attention Between Datapoints on Real Data

We next consider (Q3): do NPTs actually learn to use attention between datapoints for prediction
on real data? We design a test that allows us to quantify the extent to which the predictions of an
NPT trained in standard fashion on one of our benchmark datasets depend on relationships between
datapoints at test time. Concretely, for each target value in the input we randomize the data for all
other datapoints by independently shuffling each of their attributes across the rows. We then evaluate
the loss on the prediction at the target entry and repeat this procedure for all test datapoints. This
completely corrupts the information from all datapoints except the one for which we evaluate. Hence,
a model that relies meaningfully on attention between datapoints will show deteriorating performance.
We give an algorithm for the corruption procedure as well as further discussion in Appendix B.2.1.

We report the resulting change in performance after corruption in Table 2 for all datasets from §4.1.
We find that for most datasets, the corruption of other rows at test time significantly decreases the
performance of the trained NPT models. This indicates that the NPTs have successfully learned
to make predictions supported by attention between datapoints. For some datasets, the corruption
experiment deteriorates performance completely. For example, for the Protein regression dataset NPT
achieves state-of-the-art performance, but corrupting the input at test time leads to NPT performing
worse than all of the baselines considered in §4.1. We note that minor differences in performance are
often still significant, as differences between competing models in §4.1 are often likewise small.

Interestingly, on certain datasets such as Forest Cover, Kick, and Breast Cancer, corrupted inputs do
not significantly affect performance. It appears that when NPTs do not find it advantageous to rely
on attention between datapoints during training, they can learn to completely ignore other inputs,
essentially collapsing into a standard parametric model. This supports our earlier claims that NPTs
can learn end-to-end from data the extent to which they rely on other datapoints for prediction. We
think this is extremely interesting behavior and are unaware of prior work reporting similar results.
However, we stress that these results reflect inductive biases of the NPT architecture and do not lend
themselves to general statements about the performance of parametric versus non-parametric models.

4.4 NPTs Rely on Similar Datapoints for Predictions on Real Data

So far, we have presented convincing evidence that NPTs (sometimes strongly) depend on attention
between datapoints. However, we do not know what kind of interactions are learned in practice
on real data (Q4). As an initial step towards understanding this, we now present two experiments
investigating to which other datapoints NPT attends.

Qualitative Evidence. Figure 4 shows an attention map for attention between datapoints (ABD)
of NPT on a batch of the Protein regression dataset. We sort the input data with respect to their
input space distance such that similar datapoints are now close to each other. The diagonal pattern
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in Fig. 4 indicates that NPT attends more strongly to datapoints that are similar in feature space.
Appendix B.3.1 discusses this further and gives additional attention maps.
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Fig. 4: Attention weights.

Quantitative Evidence. Seeking a quantitative measure for this hy-
pothesis, the data deletion experiment repeats the following procedure
for all test set points: iteratively delete other datapoints from the input
if they do not significantly affect the prediction. We stop if less than
2% of the original datapoints remain, or if the total change in prediction
for the target (relative to the original prediction with all data) exceeds
10%. We investigate the average input feature space distances between
the test point and the kept datapoints, as well as the distances between
the test point and the deleted datapoints. “Input features” here refer to
all attributes of the input datapoints that are not labels.

We find that kept datapoints have a significantly lower average feature
space distance to the test point than those deleted. This indicates that
two datapoints i, i′ that are similar in input feature space, such that∑
j<d(Xi,j − Xi′,j)

2 is low, have a larger effect on the predictions of one another. A Wilcoxon
signed-rank test is significant at p ≈ 8.77 · 10−130. We give full details on this in Appendix B.3.2.

Both experiments support the hypothesis that NPTs rely on similar datapoints for prediction in real
data settings. One possible explanation is that similar datapoints might have different realizations of
observation noise which NPTs could learn to average out. Altogether, we conclude that NPTs can
and do learn representations which rely on interactions between datapoints for prediction.

5 Limitations, Future Work, and Conclusions

Limitations. NPTs share scaling limitations with all naïvely non-parametric approaches [74] and
GNNs [52]. We demonstrate this in a preliminary analysis of the computational cost of NPTs and the
baseline methods – including training time and CPU/GPU memory requirements – in Appendix B.6.
While we have seen success with random minibatching (§2.6), future work might consider applying
principled attention approximations, such as learning representative input points [59], kernelization
[19, 47], or other sparsity-inducing methods [5, 18, 84], to improve the scalability of NPTs.

Future Work. We believe that the unique predictive mechanism of NPTs makes them an inter-
esting object of study for other tasks including continual learning, multi-task learning, few-shot
generalization, and domain adaptation. For example, when predicting under distribution shift, general
relations between datapoints and attributes may remain valid and allow NPTs to accommodate such
scenarios better. Additionally, future work could explore the connections to stochastic processes, e.g.,
by extending NPTs to be approximately consistent, similar to Neural Processes [36, 37, 49].

Conclusions. We have introduced Non-Parametric Transformers (NPTs), a novel deep learning
architecture that takes the entire dataset as input and uses self-attention to model complex relationships
between datapoints. NPTs challenge and naturally extend parametric modeling as the dominant
paradigm of deep learning. They have the additional flexibility to learn to predict by directly attending
to other datapoints. Notably, NPTs learn this end-to-end from the data at hand. Empirically, NPTs
achieve highly competitive performance on a variety of benchmarks, and additional experiments
demonstrate their ability to solve complex reasoning tasks over datapoints. Further, we show that
on real data, NPTs learn to rely on attention between datapoints for prediction. We believe that the
characteristics of NPTs will make them an exciting object of further study.
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