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ABSTRACT

Video moment retrieval (VMR) identifies a specific moment in an untrimmed video
for a given natural language query. This task is prone to suffer the weak visual-
textual alignment problem innate in the video datasets. Due to the ambiguity, a
query does not fully cover the relevant details of the corresponding moment, or the
moment may contain misaligned and irrelevant frames, potentially limiting further
performance gains and generalization capability. To tackle this problem, we pro-
pose a background-aware moment detection transformer (BM-DETR). Our model
adopts a contrastive approach, carefully utilizing the negative queries matched to
other moments in the video. Specifically, our model learns to predict the target
moment from the joint probability of each frame given the positive query and
the complement of negative queries. This leads to effective use of the surround-
ing background, improving moment sensitivity and enhancing overall alignments
in videos. Our approach is efficient and outperforms previous methods, includ-
ing contrastive learning-based, on multiple datasets with significantly reduced
computational costs.

1 INTRODUCTION

Video moment retrieval (VMR) (Gao et al., 2017) retrieves the target moment in an untrimmed video
corresponding to a natural language query. A successful VMR model requires a comprehensive
understanding of videos, language queries, and correlations to predict relevant moments precisely.
In contrast to traditional action localization tasks (Yeung et al., 2016; Shou et al., 2016) that predict
a fixed set of actions like “throwing” or “jumping,” VMR is a more difficult task requiring joint
comprehension of semantic meanings in video and language.

A video is typically composed of short video clips, where query sentences describe each clip.
However, query sentences are often ambiguous as to whether they fully express the events occurring
within the matching moment, and boundary annotations might include frames unrelated to the query
sentences (Zhou et al., 2021; Huang et al., 2022). As shown in Figure 1, the moment prediction can
be imprecise and weakly aligned with annotations. For instance, the query “Person pours some water
into a glass” does not describe an event for “drink water”, but the boundary annotation includes it.
Furthermore, queries like “Person sitting on the sofa eating out of a dish” may confuse the model, as
the actions “sitting” and the object “sofa” overlap throughout the video.

Some prior works (Zhang et al., 2020b;a; Mun et al., 2020; Zeng et al., 2020; Gao & Xu, 2021; Liu
et al., 2021) take only a single query as input to predict the moment. However, solely relying on a
single query may learn only local-level alignment and make it easy to overlook the global context due
to weak alignment problems. Whereas, contrastive learning-based methods (Ding et al., 2021; Nan
et al., 2021; Wang et al., 2022; Li et al., 2023) learn the query and the ground-truth moment features
close to each other while keeping others apart (Oord et al., 2018). Nevertheless, due to semantic
overlap and sparse annotation dilemma (Zeng et al., 2020) in videos, Li et al. (2023) claimed that
adopting vanilla contrastive learning into VMR is suboptimal. Negative queries from random videos
used to have semantic overlap, making them false negatives, while negative moments also likely
are false negatives due to the sparse annotation. Because of this, negative sampling from the same
video limits the number of negative samples, inducing inaccurate estimation of marginal distribution
used in contrastive methods of InfoNCE (Oord et al., 2018). If negative queries from the same video
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Figure 1: Top: We give an example of weak visual-textual alignment in the video. Bottom: We
compare the current (left) and proposed (right) VMR approach.

semantically overlap with positive queries, vanilla contrastive learning wrongly forces them apart. To
overcome this, Li et al. (2023) proposed a novel geodesic-guided contrastive learning scheme for
VMR. Despite this, it still had to sample a large number of negative moments with varying lengths,
leading to high computational costs to approximate the true partition and achieve sophisticated
alignment faithfully.

In this paper, we propose a novel Background-aware Moment DEtection TRansformer (BM-DETR).
We utilize contexts outside of the target moments (i.e.,, negative queries) along with the positive query.
Our model calculates the joint probability of each frame given a positive query and the complement
of negative queries, resulting in frame attention scores for enhancing multimodal representations. By
considering the relative relationships between queries within the video, the model learns how to best
identify and focus on the relevant visual features of the target moment, improving moment sensitivity,
or true positive rate. Then, we utilize cross-modal discrimination between other video-query pairs
for fine-grained semantic alignment. Furthermore, we leverage a temporal shifting method as an
auxiliary objective, improving the model’s robustness to temporal content changes.

In contrast to previous approaches, which relied on a single query with complex multimodal reasoning
or mining a multitude of negative moments with high cost, our model can attend to the target moment
and be aware of the contextual meanings throughout the video. Moreover, our model is efficient
and outperforms previous contrastive learning methods by eliminating dense moment features and
reducing redundant computations.

To sum up, the contributions of our paper can be summarized as follows:

• We propose BM-DETR to mitigate the weak visual-textual alignment problem, which is
crucial in video moment retrieval tasks.

• By considering temporal and contextual relationships within videos, our model can enhance
overall alignment in videos and enable robust moment detection.

• Our model outperforms state-of-the-art methods in efficiency and transferability on four
public datasets and two out-of-distribution VMR scenarios.

2 RELATED WORK

Video moment retrieval. Video moment retrieval (VMR) aims to retrieve the target moment
in a video based on a natural language sentence. Existing approaches are mainly classified into
proposal-based methods and proposal-free methods. The proposal-based methods (Gao et al., 2017;
Xu et al., 2019; Anne Hendricks et al., 2017; Chen et al., 2018; Zhang et al., 2019; 2020b; Gao & Xu,
2021; Wang et al., 2021; 2022) sample candidate moments from the video and select the most similar
moment to the given query. In contrast, proposal-free methods (Yuan et al., 2019; He et al., 2019;
Rodriguez et al., 2020; Chen et al., 2020; Zhang et al., 2020a; Mun et al., 2020; Zeng et al., 2020; Liu
et al., 2021) regress target moments from video and language features without generating candidate
moments. Breaking away from traditional paradigms, several studies (Lei et al., 2021; Cao et al.,
2021; Woo et al., 2022; Liu et al., 2022b; Moon et al., 2023; Lin et al., 2023) utilized the DETR’s
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Figure 2: An overview of the proposed BM-DETR framework.

(Zhu et al., 2020) object detection ability for localization tasks. In this paper, our model also follows
DETR’s detection paradigm.

Visual-textual alignment problem in video domains. Labeling videos is expensive and cum-
bersome, making it difficult to build high-quality and scalable video datasets. This often leads to
alignment issues, which have been observed (Miech et al., 2020; Ko et al., 2022; Han et al., 2022) as
a crucial bottleneck of video understanding. VMR is sensitive to the above issues since it requires
accurate temporal moment locations. To tackle these problems, a couple of studies (Zhou et al., 2021;
Huang et al., 2022; Nan et al., 2021; Ding et al., 2021; Li et al., 2023) carefully designed their model-
ing to achieve sophisticated video alignments. For instance, Zhou et al. (2021) changed the phrases
(e.g., verb) in language queries to improve semantic diversity, and Li et al. (2023) proposed a novel
geodesic-guided contrastive learning scheme considering the semantic alignment and uniformity
between video and query. In this paper, we propose background-aware moment detection to enhance
overall alignments in videos.

3 METHOD

3.1 VIDEO MOMENT RETRIEVAL TASK

Given an untrimmed video V and language query Q, we represent the video as V “ tfiuLv
i“1 where

fi denotes the i-th frame. Likewise, the language query is denoted as Q “ twiu
Lw
i“1 where wi denotes

the i-th word. Lv and Lw indicate the overall count of frames and words, respectively. We aim to
localize the target moment m “ pts, teq in V from Q, where ts and te represent the start and end
times of the target moment, respectively.

3.2 BACKGROUND-AWARE MOMENT DETECTION

As mentioned earlier, a single query may not be sufficient to disambiguate the corresponding moment
due to the weak alignment in videos. That said, predicting the target moment in V based solely on
information from Q is less informative and ineffective, where the term “information” refers to the
knowledge or cues used for accurate predictions of the target moment in V . Hence, we propose
an alternative to resolve this problem inspired by importance sampling (Tokdar & Kass, 2010).
Similar to the contrastive learning (Oord et al., 2018), a specific query Q` is designated as the target
(positive), while we randomly sampled a negative query Q´ for each training step. Our main idea is
based on two guiding principles, which are as follows:

Principle 1. Queries from the same video V allow for disambiguation of the target query Q`, as
they have implicit contextual and temporal relationships with the corresponding video moments.

Principle 2. To avoid spurious correlations, we differentiate between negative query Q´ and target
query Q` based on their temporal locations and semantic similarity.

We use Q´ that has less intersection over union (IoU) than a certain threshold (e.g., 0.5). Additionally,
we remove Q´ that have high semantic similarity with Q` using SentenceBERT (Reimers &
Gurevych, 2019) to reduce semantic overlap further.

Let P pfi | Q`q and P pfi | Q´q to be the likelihood of i-th frame to match the positive and negative
query from the same video clip, respectively. We assume these likelihoods are independent since their
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corresponding moments are at different temporal locations. Our model predicts the target moment by
the joint probability of each frame, and the probability can be represented as:

P pfi | Q`,␣Q´q :“ P pfi | Q`q ¨ p1´ P pfi | Q´qq.

Considering P pfi|Q´q, our model can focus on relatively more important meanings included in the
target query. As a result, being aware of contexts preceding and following the target moment is more
informative for the model’s prediction, further improving moment sensitivity.

3.3 ARCHITECTURE

We give an overall architecture of the BM-DETR in Figure 2. First, our encoder takes the V , Q`,
and Q´ as the inputs. Then we obtain frame attention scores from encoder outputs and update
them for background-aware moment detection. After our decoder predicts moments from given
inputs, we calculate the losses from predictions and ground-truth moments, as in DETR (Zhu et al.,
2020). In addition, we leverage a temporal shifting method to encourage the model’s time-equivariant
predictions. The details of the model components are described in the following sections.

3.3.1 ENCODER

Our encoder aims to catch the multimodal interaction between video V and query Q. Initially,
the pre-trained model (e.g.,, CLIP (Radford et al., 2021)) is employed to convert each input into
multi-dimensional features and normalize them. We utilize two projection layers to convert input
features into the same hidden dimension d. Each projection layer consists of several MLPs. Then, we
obtain video representations as V P RLvˆd and query representation as Q P RLwˆd. Note that there
are two query representations Q` and Q´ for positive and negative queries, respectively. We direct
them to the multimodal encoder Ep¨q, a stack of transformer encoder layers denoted as:

EpV,Qq “ EpPEpVq }Qq,

where PE means the positional encoding function (Vaswani et al., 2017), } indicates the concatenation
on the feature dimension. We denote the length of concatenated features as L “ Lv ` Lw. Finally,
we obtain multimodal features X` and X´ represented as:

X` “ EpV,Q`q, X´ “ EpV,Q´q,

where X` P RLˆd and X´ P RLˆd.

3.3.2 IMPLEMENTING THE BACKGROUND-AWARE MOMENT DETECTION

Let us redefine the frame parts of the multimodal features X` and X´ are v` “ tf`
i u

Lv
i and

v´ “ tf´
i u

Lv
i , respectively. We compute the likelihood of each frame to match the positive and

negative queries, denoted as P pfi | Q`q and P pfi | Q´q, respectively. These probabilities can be
obtained through a Probabilistic Frame-Query Matcher (PFM) defined as:

P pfi | Q`q “ PFMpf`
i q, P pfi | Q´q “ PFMpf´

i q.

PFM consists of two linear layers followed by tanh and sigmoid (σ) functions defined as:

PFMpfiq “ σptanhpfiW1qW2q,

where W1 P Rdˆ d
2 and W2 P R

d
2 ˆ1 are learnable matrices. As mentioned in Section 3.2, the joint

probability of i-th frame pi can be calculated as:

P pfi | Q`,␣Q´q “ P pfi | Q`q ¨ p1´ P pfi | Q´qq.

After that, the softmax function is applied to obtain the frame attention scores o:

o “ Softmaxpp1,p2, ...,pLv
q.

Finally, we leverage o to enhance the positive frame features v` in X` to v1
`. This can be formulated

as follows:

v1
` “ ob v`,

where b is an element-wise product. If there is no negative query in the video, we only use positive
visual features v` to obtain frame attention scores o. We denote the updated multimodal features as
X 1

` and send it to the decoder to predict the target moment.
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3.3.3 DECODER

Thanks to the advances in object detection (Liu et al., 2022a), we can directly use moment locations
as queries rather than naively initialize them as learnable embeddings. We utilize learnable spans as
S “ tSmu

M
m“1, and each learnable span is represented as Sm “ pcm, wmq, where cm and wm refer

to the center and width of the corresponding span. Given a span Sm, we utilize positional encoding
and MLP layers to generate positional query Pm as:

Pm “ MLPpPEpSmqq “ MLPpPEpcmq } PEpwmqq,

where PE means fixed positional encoding to generate sinusoidal embeddings from the learnable
span. Two key modules in our decoder are self-attention and cross-attention. In the self-attention
module, the queries and keys additionally take Pm as:

Qm “ Dm ` Pm, Km “ Dm ` Pm, Vm “ Dm,

where Dm is the decoder embedding, an input of the decoder layer. Each component in the cross-
attention module can be represented as:

Qm “ pDm } PEpSmq b σpMLPpDmqqq, Km “ pX
1
` } PEpX 1

`qq, Vm “ X 1
`.

The learnable spans are updated layer-by-layer, and we provide the reference spans Sm,ref to utilize
modulated attention, which helps to extract multimodal features with various lengths.

Sm,ref “ σpMLPpDmqq

Please refer to Liu et al. (2022a) for the implementation details.

3.4 FINE-GRAINED SEMANTIC ALIGNMENT

Since queries from different videos describe different semantic meanings specific to their respective
video topics, they are more likely to have less semantic overlap with Q`. Therefore, it is intuitively
clear that aligning semantic meanings across different videos would be more effective than comparing
with Q´. Let the visual and textual representations from multimodal features X 1

` are v1 P RLvˆd

and q1 P RLvˆd, respectively. We first adopt an attentive pooling to extract the global context of each
representation as:

v̂ “
Lv
ÿ

n“1

avi v
1
i, av “ Softmaxpv1Wvq,

q̂ “
Lv
ÿ

n“1

aqiq
1
i, aq “ Softmaxpq1Wqq,

where Wv P Rdˆ1 and Wq P Rdˆ1 are learnable matrices. Then we can compute semantic similarity
score s as:

s “ Spv̂, q̂q “
v̂T ¨ q̂

}v̂ }2 }q̂}2
,

where } ¨ }2 represents the L2-norm of a vector. As our background moment detection makes v̂ more
sensitive to the semantic meaning within the target moment, we can learn fine-grained semantic
matching with q̂. This is in contrast to vanilla contrastive learning, where moment features are pushed
away by different queries, regardless of the semantic relationships. Finally, we compare the semantic
scores obtained from different videos.

3.5 TEMPORAL SHIFTING

Recent studies (Xu et al., 2021; Zhang et al., 2021; Hao et al., 2022; Zhang et al., 2022) demonstrated
that temporal augmentation techniques are effective for localization tasks. Inspired by this, we use a
temporal shifting method that randomly moves the ground-truth moment to a new temporal location
for VMR. This allows our model to make time-equivariant predictions, but we acknowledge that this
technique may disrupt long-term temporal semantic information in videos. To address this issue, we
empirically apply the temporal shifting method to videos with short durations (i.e., |V | < 60s), during
each training step.
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3.6 LEARNING OBJECTIVES

Based on decoder outputs, we apply MLP layers to generate a set of M predictions denoted as
ŷ “ tŷiu

M
i“1. Each prediction ŷi contains two components: 1) the class label ĉi to indicate whether the

predicted moment is the ground-truth moment or not, and 2) temporal moment location m̂i “ pt̂
i
s, t̂

i
eq.

Following previous work (Lei et al., 2021), we find the optimal assignment i between the ground-truth
y and the predictions ŷi, using the matching cost Cmatch as:

Cmatchpy, ŷiq “ ´ppĉiq ` Lmomentpm, m̂iq.

We use Hungarian algorithm to find the optimal pair and calculate the loss between the ground-truth
moment and predictions.

i “ argmin
iPN

Cmatchpy, ŷiq.

Details of loss formulation are described below.

Moment localization loss. The moment localization loss contains two losses: 1) L1 loss and 2) a
generalized IoU loss (Rezatofighi et al., 2019). This loss is designed to calculate the accuracy of a
prediction by comparing it to the ground-truth moment.

Lmomentpm, m̂iq “ λL1 || m´ m̂i || `λiouLioupm, m̂iq,

where λL1 and λiou are the coefficients to adjust weights.

Frame margin loss. The margin loss encourages frames within the ground-truth moment to have
high scores via hinge loss. Let ffore and fback are frame features in v1

`. We use a linear layer to
predict the scores of these frame features. Note that ffore is located within the ground-truth moment,
and fback is not. The loss can be formulated as follows:

Lmargin “ maxp0,∆` fbackW ´ fforeWq,

where W P Rdˆ1 and ∆ is the margin.

Frame probability loss. We encourage frames within the target moment to have a high probability.
Let P and N be the sets of positive and negative frame indices. Then we calculate the loss from the
joint probability of frames p “ tpiu

Lv
i as follows:

Lprob “ 1´
1

|P|
ÿ

iPP
pi `

1

|N |
ÿ

jPN
pj .

Semantic alignment loss. We obtain multimodal features tv̂i, q̂iu
B
i“1 within a batch B that corre-

spond to different videos and calculate semantic scores from both positive and irrelevant pairs. The
loss can be formulated as follows:

Lsemantic “ ´
1

|B|

B
ÿ

i“1

log
exppSpv̂i, q̂iq{τq

ř

jPB exppSpv̂i, q̂jq{τq
,

where τ is a temperature parameter and set as 0.07.

Overall loss. The overall loss L is determined by linearly combining the individual losses mentioned
above, and we optimize our model as:

L “ λclsLcls ` λmomentLmoment ` λmarginLmargin ` λprobLprob ` λsemanticLsemantic,

where λcls, λmargin, λprob, and λsemantic are hyper-parameters and λmoment involves two hyper-
parameters λL1 and λiou, and Lcls is the cross-entropy function computed by ĉi that classifies whether
the predicted moment is the ground-truth moment.
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Table 1: Performance results on Charades-STA test split. We use an asterisk (*) to indicate that we
re-implemented the method with the same training scheme.

Method C3D VGG SF+C

R1@0.5Ò R1@0.7Ò R1@0.5Ò R1@0.7Ò R1@0.5Ò R1@0.7Ò

2D-TAN (Zhang et al., 2020b) 39.70 27.10 41.34 23.91 46.02 27.5
DRN (Zeng et al., 2020) 45.40 26.40 42.90 23.68 - -
VSLNet (Zhang et al., 2020a) 47.31 30.19 - - 42.69 24.14
CBLN (Liu et al., 2021) 47.94 28.22 43.67 24.44 - -
FVMR (Gao & Xu, 2021) 38.16 18.22 42.36 24.14 - -
MDETR* (Lei et al., 2021) 49.25 27.02 54.09 31.24 53.07 30.59
LVTR (Woo et al., 2022) 47.15 25.72 - - - -
UMT (Liu et al., 2022b) - - 48.31 29.25 - -
QD-DETR (Moon et al., 2023) - - 52.77 31.13 57.31 32.55
UniVTG (Lin et al., 2023) - - - - 58.01 35.65

CL-based:
IVG-DCL (Nan et al., 2021) 50.24 32.88 - - - -
SSCS (Ding et al., 2021) - - 43.15 25.54 - -
MMN (Wang et al., 2022) - - 47.31 27.28 - -
G2L (Li et al., 2023) - - 47.91 28.42 - -

BM-DETR (ours) 54.08 34.47 56.91 36.24 59.48 38.33

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We experiment on four representative VMR datasets with various characteristics: Charades-STA
(Gao et al., 2017), ActivityNet-Captions (Krishna et al., 2017), QVHighlights (Lei et al., 2021),
and TACoS (Regneri et al., 2013). Charades-STA and ActivityNet-Captions cover human activities,
whereas TACoS contains cooking scenarios. QVHighlights contains videos with diverse themes,
including lifestyle vlogs and news.

Importantly, Charades-STA and ActivityNet-Captions has been widely used for VMR datasets, but
there are significant bias problems (Otani et al., 2020; Yuan et al., 2021) that current models heavily
rely on identifying frequent patterns in the temporal moment distribution of the datasets, rather
than real comprehension. To conduct further reliable evaluations and validate generality, we also
experiment on out-of-distribution test splits (i.e., test-ood) in Charades-CD and ActivityNet-CD.

For a fair comparison, we use the same encoder in each dataset as used in previous models: VGG
(Simonyan & Zisserman, 2014), C3D (Tran et al., 2015), I3D (Carreira & Zisserman, 2017), and
SF+C, which is a concatenation of SlowFast (Feichtenhofer et al., 2019) and CLIP (Radford et al.,
2021).

We use two metrics to compare our model with previous works; 1) R@n, IoU=m, which measures
the percentage of the top-n predicted moments with an IoU greater than m (i.e., 0.5) and 2) Mean
Average Precision (mAP) over IoU thresholds.

Please refer to the Appendix for detailed experiment settings and model configurations.

4.2 COMPARISON WITH THE STATE-OF-THE-ART METHODS

In this section, we report the performance of BM-DETR on various datasets and compare it with
previous models. We use bolds to mark the best score in each table, while the second-best score is
underlined, and gray out methods that use additional input sources (i.e., audio). We report the average
performance of 5 runs with random seeds.

In Table 1-4, we compare the BM-DETR to previous models on Charades-STA, ActivityNet-Captions,
TACoS, and QVHighlights, respectively. BM-DETR clearly outperforms SOTA methods, including
contrastive learning-based, on Charades-STA regardless of the video encoder. For the other datasets,
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Table 2: Performance results on QVHighlights test split.

Method SF+C

R1@0.5Ò R1@0.7Ò mAP@0.5Ò mAP@0.75Ò mAPavg Ò

MCN (Anne Hendricks et al., 2017) 11.41 2.72 24.94 8.22 10.67
CAL (Escorcia et al., 2019) 25.49 11.54 23.40 7.65 9.89
XML (Lei et al., 2020) 41.83 30.35 44.63 31.73 32.14
XML+ (Lei et al., 2021) 46.69 33.46 47.89 34.67 34.90
MDETR (Lei et al., 2021) 52.89 33.02 54.82 29.40 30.73
UMT (Liu et al., 2022b) 56.23 41.18 53.83 37.01 36.12
QD-DETR (Moon et al., 2023) 62.40 44.98 62.52 39.88 39.86
UniVTG (Lin et al., 2023) 58.86 40.86 57.60 35.59 35.47

BM-DETR (ours) 60.12 43.05 63.08 40.18 40.08

Table 3: Performance results on ActivityNet-Captions val2 split.

Method C3D

IoU@0.5Ò IoU@0.7Ò

2D-TAN (Zhang et al., 2020b) 44.51 26.54
VSLNet (Zhang et al., 2020a) 43.22 26.16
DRN (Zeng et al., 2020) 45.45 24.39
CBLN (Liu et al., 2021) 48.12 27.60
SMIN (Wang et al., 2021) 48.46 30.34
GTR (Cao et al., 2021) 50.57 29.11

CL-based:
IVG-DCL (Nan et al., 2021) 43.84 27.10
SSCS (Ding et al., 2021) 46.67 27.56
MMN (Wang et al., 2022) 48.59 29.26
G2L (Li et al., 2023) 51.68 33.35

BM-DETR (ours) 50.23 30.88

Table 4: Performance results on TACoS test split.

Method C3D

IoU@0.5Ò IoU@0.7Ò

2D-TAN (Zhang et al., 2020b) 37.29 25.32
VSLNet (Zhang et al., 2020a) 29.61 24.27
DRN (Zeng et al., 2020) - 23.17
CBLN (Liu et al., 2021) 38.98 27.65
FVMR (Gao & Xu, 2021) 41.48 29.12
GTR (Cao et al., 2021) 40.39 30.22

CL-based:
IVG-DCL (Nan et al., 2021) 38.84 29.07
SSCS (Ding et al., 2021) 41.33 29.56
MMN (Wang et al., 2022) 39.24 26.17
G2L (Li et al., 2023) 42.74 30.95

BM-DETR (ours) 43.91 31.08

Table 5: Performance results on Charades-CD test-ood split.

Method I3D

IoU@0.5Ò IoU@0.7Ò

2D-TAN (Zhang et al., 2020b) 35.88 13.91
LG (Mun et al., 2020) 42.90 19.29
DRN (Zeng et al., 2020) 31.11 15.17
VSLNet (Zhang et al., 2020a) 34.10 17.87
DCM (Yang et al., 2021) 45.47 22.70
Shuffling (Hao et al., 2022) 46.67 27.08

BM-DETR (ours) 55.02 29.52

Table 6: Performance results on ActivityNet-CD test-ood split.

Method I3D

IoU@0.5Ò IoU@0.7Ò

2D-TAN (Zhang et al., 2020b) 22.01 10.34
LG (Mun et al., 2020) 23.85 10.96
VSLNet (Zhang et al., 2020a) 20.03 10.29
DCM (Yang et al., 2021) 22.32 11.22
Shuffling (Hao et al., 2022) 24.57 13.21

BM-DETR (ours) 26.67 15.33

BM-DETR achieves competitive performance compared to baseline models. Notably, BM-DETR
also shows superior performance on OOD datasets in Table 5 and 6, showcasing its robustness.

Compared with MMN, which utilizes negative samples from both the same and other videos based on
IoU, we only use negative queries within the same video that have less semantic overlap with positive
queries. Our model outperforms MMN on all datasets, despite using fewer negative samples, which
confirms our design choices and sampling strategies. However, we observe that performance gain on
ActivityNet-Captions is smaller than other datasets. The reason is that ActivityNet-Captions has a
significant sparse annotation dilemma and semantic overlapping than other datasets. If there is too
much semantic overlap in the video, only a small number of negative queries will be used, making
our modeling less effective. This is also a significant problem that leads vanilla contrastive learning to
wrong results. Nevertheless, BM-DETR performs competitively compared to SOTA methods while
maintaining efficiency. We will discuss this in the following sections.

4.3 ABLATION STUDY

Ablations on model components. To validate the effectiveness of each model component, we build
up several baseline models with different model components. In Table 7, using background moment
detection, fine-grained semantic matching, temporal shifting, and learnable spans are represented by
BMD, FS, TS, and LS, respectively. We observe that there is significant performance degradation
when BMD is unavailable, demonstrating BMD plays a crucial role in our modeling. Also, we
confirm that all components contribute to performance improvement.
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Figure 3: Visualization of predictions on Charades-STA (Left) and ActivityNet-Captions (Right).

Table 7: Ablation on model components.

Method SF+C

IoU@0.5Ò IoU@0.7Ò

Full Model 59.48 38.33
w/o TS 57.21 35.88
w/o LS 56.99 35.97
w/o FS 56.24 35.16
w/o BMD 55.32 35.02
w/o BMD+FS 54.89 34.57
w/o ALL 53.31 30.17

Table 8: Ablation on losses.

Method SF+C

IoU@0.5Ò IoU@0.7Ò

Full Losses 59.48 38.33
w/o Ls 58.24 37.14
w/o Lm 56.21 36.29
w/o Lp 55.79 36.03
w/o Lm, Lp, Ls 54.02 32.02

Table 9: Ablation on efficiency.

Method IterationÓ InferenceÓ

MMN (Wang et al., 2022) 0.32s 37s
G2L (Li et al., 2023) 0.84s 43s

BM-DETR (ours) 0.19s 35s

Albations on model losses. To investigate the impact of each loss, we turn off one loss at a time. In
Table 8, Ls, Lm, and Lp means margin, probability, and semantic losses, respectively. We observe
that loss related to alignment within the video (i.e., Lm and Lp) helps in more accurate predictions.

Ablations on efficiency. In Table 9, we compute the average iteration time in the training stage and
total inference time on ActivityNet-Captions. Our model is quite efficient compared to contrastive
learning-based approaches. Moreover, G2L (Li et al., 2023) requires 8 A100 GPUs for training, but
our model can be optimized with a single GPU.

4.4 VISUALIZATION RESULTS

In Figure 3, we visualize moment predictions on Charades-STA and ActivityNet-Captions to show
how our model behaves given weakly-aligned videos. For Charades-STA, the object “laptop” overlaps
in ground-truth moments. Nevertheless, our model successfully provides accurate temporal moments.
On the other hand, some of the predictions on ActivityNet-Captions are somewhat less accurate. Since
the queries in the video have different temporal positions but overlap semantically, our model does
not use negating queries on each other. This reduces the impact of our background moment detection,
resulting in inaccurate moment detection. We will address our limitations in future research.

5 CONCLUSION

In this paper, we argue the weak visual-textual alignment problem and present BM-DETR to alleviate
it. We carefully desgin our model by adopting a contrastive approach to overcome weak alignment in
videos for VMR. With the proposed background-aware moment detection, BM-DETR can effectively
learn to identify and focus on the most relevant visual features of the target moment. BM-DETR
demonstrates its strength and robustness on four public datasets and two out-of-distribution datasets.
Moreover, our model shows remarkable efficiency compared to previous contrastive learning-based
methods without mining costly negative moments. Future work will focus on improving modeling
for cases when low diversity negative queries cases and extending our method to a variety of video
understanding tasks.
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Figure 4: Visualization of our model architecture (Left) and temporal shifting method (Right).

A APPENDIX

A.1 DETAILS OF MODEL

Our model is built upon Moment-DETR (Lei et al., 2021) implemented in Pytorch and trained using
a single Titan Xp. The encoder and decoder in our model are stacked with 3 layers of transformer
block. We utilize AdamW to optimize our model and set the weight decay as 1e-4. We set the hidden
dimension of transformers as 256, and the model weights are initialized with Xavier init. We set the
batch size 32. We use a fixed number of 10 learnable spans, the same number of predicted moments.

A.2 EXPERIMENT SETUP

We provide more details for training each dataset: Charades-STA (Gao et al., 2017), ActivityNet-
Captions (Krishna et al., 2017), TACoS (Regneri et al., 2013), and QVHighlights (Lei et al., 2021).
We extract visual features every 1s for Charades-STA and 2s for the other datasets. For Charades-STA
and TACoS, we set the learning rate as 2e-4. We set the learning rate as 1e-4 for ActivityNet-
Captions and QVHighlights. We train the model for 50 epochs on Charades-STA and 100 epochs on
ActivityNet-Captions and TACoS. For QVHighlights (Lei et al., 2021), we train the model for 200
epochs. In addition, some queries in QVHighlights are matched to multiple ground-truth moments.
In this case, our model finds the optimal bipartite matching between ground-truth moments and
predictions.

A.3 ADDITIONAL VISUALIZATION RESULTS

In Figure 5, we provide four additional visualization results of our model’s prediction. Also, we
present frame attention scores o` below. We can see the frame attention scores within the ground-truth
moment are higher than others.
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Figure 5: Four visualization examples of our model’s moment prediction.
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