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ABSTRACT

Node classification is a fundamental task, but obtaining node classification labels
can be challenging and expensive in many real-world scenarios. Transfer learn-
ing has emerged as a promising solution to address this challenge by leveraging
knowledge from source domains to enhance learning in a target domain. Existing
transfer learning methods for node classification primarily focus on integrating
Graph Convolutional Networks (GCNs) with various transfer learning techniques.
While these approaches have shown promising results, they often suffer from a lack
of theoretical guarantees, restrictive conditions, and high sensitivity to hyperparam-
eter choices. To overcome these limitations, we employ a Graph Convolutional
Multinomial Logistic Lasso Regression (GCR) model which simplifies GCN, and
develop a transfer learning method called Trans-GCR based on the GCR model.
We provide theoretical guarantees of the estimate obtained under the GCR model in
high-dimensional settings. Moreover, Trans-GCR demonstrates superior empirical
performance, has a low computational cost, and requires fewer hyperparameters
than existing methods.

1 INTRODUCTION

Network (a.k.a graph) data is ubiquitous in various domains, including social networks (Barabási,
2013), citation networks (Ji et al., 2022), and biological networks (Zitnik et al., 2018; Han et al.,
2019). A fundamental task in network analysis is node classification (Kipf & Welling, 2016), which
aims to predict the class labels of a node based on its own features and its neighboring nodes’
features. Usually, the node features are high-dimensional (Hamilton et al., 2017). Thus, we focus
on high-dimensional settings in this paper. Nevertheless, obtaining node classification labels can be
challenging and expensive in many real-world scenarios (Dai et al., 2022). For example, classifying
genes into disease categories using a gene-gene interaction network faces a scarcity of disease labels,
as experimentally annotating genes is expensive (Guney et al., 2016).

To address the challenge of limited labeled data, transfer learning, which uses knowledge from source
domains to enhance learning in a target domain, has emerged as a promising solution (Dai et al.,
2022). Continuing the aforementioned example, despite the scarcity of disease labels, abundant
functional annotations of genes exist in curated databases like KEGG pathways (Kanehisa et al.,
2012), offering ample source data. In the existing literature, various transfer learning methods based
on Graph Convolutional Networks (GCNs) (Sperduti & Starita, 1997; Bruna et al., 2014; Defferrard
et al., 2016; Kipf & Welling, 2017) have been proposed to enhance node classification accuracy.
These GCN-based transfer learning methods can be broadly summarized into three main areas.

First, pre-training and fine-tuning approaches (Hu et al., 2019; 2020; Lu et al., 2021; Yang et al.,
2022; Kooverjee et al., 2022; Xu et al., 2023), which usually pre-train a GCN on a large-scale
dataset to learn transferable representations and then fine-tune the pre-trained model on a target task.
While effective, these methods usually lack theoretical guarantees. Second, theoretical transferability
analysis. Researchers have investigated the theoretical transferability properties of GCNs for graphs
sampled from the same underlying space or graphon model (Nilsson & Bresson, 2020; Ruiz et al.,
2020; Levie et al., 2021; Ruiz et al., 2023). Despite valuable theoretical insights, they often assume
that the source and target domain are drawn from exactly the same underlying model, which usually
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does not hold in practical scenarios where domain shifts occur. Third, to address the domain
shifts challenge, various domain adaptation techniques have been proposed, such as unsupervised
adaptation (Wu et al., 2020), local structure transfer (Zhu et al., 2021), adversarial domain alignment
(Dai et al., 2022), and noise-resistant transfer (Yuan et al., 2023). Despite promising results, they
often lack theoretical guarantees or can be sensitive to hyperparameter choices. In summary, existing
methods suffer from a lack of theoretical guarantees, restrictive conditions, and high sensitivity to
hyperparameters.

To address these limitations, we propose a novel statistical transfer learning framework based on
a Graph Convolutional Multinomial Logistic Lasso Regression (GCR) model. The GCR model
assumes that the classification label depends on the graph-aggregated node features (obtained through
multiple graph aggregation layers), followed by a multinomial logistic lasso regression model which
assumes a linear relationship between aggregated features and labels. This assumption is inspired by
empirical observations suggesting that removing nonlinear activation functions (e.g., ReLU) in GCN’s
hidden layers achieves comparable performance to the original GCN architecture (Wu et al., 2019).
Our GCR model extends beyond the work of (Wu et al., 2019) by introducing a rigorous statistical
formulation with the ability to handle high-dimensional features. Building upon this GCR model,
the main contribution of this paper is to develop a two-step transfer learning method Trans-GCR.
Specifically, we let βs and βt = βs+δ denote the GCR’s high-dimensional sparse model parameters
in source and target data, respectively, where δ measures the domain shift. In the first step, we obtain
the estimate of source domain parameters, denoted as β̂s, by minimizing the l1-regularized negative
likelihood function of the GCR model using source data. In the second step, we estimate the shift
term δ by substituting βt with β̂s + δ in the GCR negative likelihood function and minimizing it
using the target data. This step leverages the knowledge learned from β̂s. Finally, our estimate of the
target domain parameters is given by β̂t = β̂s + δ̂.

Our method enjoys the following advantages: (1) We demonstrate through extensive empirical
studies that our proposed method achieves superior or comparable performance compared with
existing complicated GCN-based transfer learning approaches for node classification. (2) We provide
theoretical guarantees of the estimate obtained under GCR model in high-dimensional settings under
mild conditions. (3) By leveraging the simplified model GCR, our method involves fewer parameters
to be trained than more complex GCN-based models, resulting in reduced computational cost. (4)
Our framework has only two hyperparameters, i.e., the number of graph aggregation layers and the
l1−norm penalty strength.

2 PRELIMINARIES

A graph with n nodes is represented by an adjacency matrix A = (Aij) ∈ {0, 1}n×n, i, j = 1, . . . , n,
where Aij = 1 if there is an edge between nodes i and j, and Aij = 0 otherwise. We only consider
a graph with no self-loops, so all diagonal entries of A are 0. In addition, each node is associated
with a d-dimensional covariates and a C-dimensional one-hot class label. The entire covariate matrix
is X ∈ Rn×d, and the entire classification label matrix is Y ∈ {0, 1}n×C . Node classification aims
to predict Y based on X and A. The normalized adjacency matrix is

S = D̃− 1
2 ÃD̃− 1

2 , where Ã = A+ In, (2.1)

where In is an n× n identity matrix, Ã denote the adjacency matrix with added self-connections.
Here, D̃ is the degree matrix of Ã, with diagonal entry D̃ii representing the degree of node i, and all
off-diagonal elements being zero.

2.1 RELATED WORK: GRAPH CONVOLUTIONAL NETWORKS

GCNs and their variants have gained increasing popularity for node classification tasks (Hamilton
et al., 2017; Kipf & Welling, 2017; Wang, 2019; Chien et al., 2020). The core strength of GCNs lies
in their ability to leverage the underlying graph structure to propagate and aggregate information
from neighboring nodes. A standard two-layer GCN works by H(1) = Relu(AXW(1));H(2) =
Softmax(AH(1)W(2)), where W(1) and W(2) are parameters to be learned. As pointed out by Wu
et al. (2019), the key to GCN’s success lies in its ability to perform graph convolutions, and not
necessarily in its use of nonlinearity through activation functions such as ReLU. In fact, empirical
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observations in Wu et al. (2019) suggested that removing the nonlinear activation function from
the GCN’s hidden layers does not substantially impact the model’s performance. From a practical
perspective, the removal of nonlinearities results in a simpler model, which offers several advantages.
First, it reduces the computational complexity of the model, making training and inference faster
and more efficient. This is particularly important in large-scale graph datasets, where computational
resources may be limited. Second, the simplified architecture requires fewer hyperparameters,
reducing tuning complexity and preventing overfitting.

2.2 HIGH-DIMENSIONAL GRAPH CONVOLUTIONAL MULTINOMIAL LOGISTIC LASSO
REGRESSION MODEL

Motivated by the aforementioned observations, we propose the GCR model to model the relationship
between Y, X, and A. GCR assumes that the classification labels are not only affected by their
own, but also their neighbors’ features based on the graph structure captured by the adjacency matrix.
Usually, a normalized adjacency matrix is used, and a common choice is S in Eq. 2.1. In what follows,
we present the GCR model using S. In GCR, there is a vector of coefficients βc = (β1c, . . . ,βdc)

T

for each category c = 1, . . . , C. To ensure the identifiability of βc, we take the last category as
the reference category, i.e., βC = 0d. In GCR model, given predictors X and A, for each node
i = 1 . . . , n, the probability of node i’s classification label Yi belonging to category c is

Pic = P(Yi = c|X,A) = exp
∑n

j=1 SM
ij Xjβc

1+
∑C−1

l=1 exp
∑n

j=1
SM
ij

Xjβl
, c = 1, . . . , C, (2.2)

where Xj = (Xj1, . . . ,Xjd) is the jth row of X, SMij is the (i, j)th element in SM , S is defined in
Eq. 2.1, and M is the number of convolution layer. The sum

∑n
j=1 S

M
ij Xj aggregates neighboring

nodal features, encouraging neighboring nodes to have similar aggregated features, thus having similar
classification labels. A larger value of M enables the model to capture higher-order neighborhood
dependencies. In the high-dimensional setting, where d can be larger than n, we assume βc to be
sparse such that s << d, where s is the number of nonzero elements of βc.

Parameter estimation. Given observed data (A,X,Y), the parameter estimate β̂ =

(β̂1, . . . , β̂C−1) is obtained by minimizing the following negative log-likelihood with l1 regulariza-
tion, l(β;Y,X,A) = −

∑n
i=1

∑C
c=1(Yic logPic + (1 − Yic) log(1 − Pic)) + λ

∑C−1
c=1 ||βc||1,

where Pic is defined in Eq. 2.2, || · ||1 is the l1−norm, λ ≥ 0 is a regularization hyperparameter
controlling the trade-off between the log-likelihood and the penalty. Such regularization is commonly
used in other high-dimensional penalized regression/classification problem (e.g., Ridge, Elastic Net
etc.). l(β;Y,X,A) can be further simplified as

l(β;Y,X,A) = −
∑n
i=1

∑C
c=1(Yic

∑n
j=1 S

M
ij Xjβc− log(1+e

∑n
j=1 SM

ij Xjβc))+λ
∑C−1
c=1 ||βc||1

(2.3)
To minimize Eq. 2.3, we use the standard coordinate descent algorithm (Wright, 2015), which
iteratively minimizes the objective function with respect to each coordinate of β, while keeping the
others fixed.

3 TRANSFER LEARNING

In this paper, we consider the following transfer learning problem. Let (A(0),X(0),Y(0)) denote
the target data, where A(0) ∈ {0, 1}n0×n0 , X(0) ∈ Rn0×d, Y(0) ∈ {0, 1}n0×C . Let β(0) =

(β
(0)
1 , . . . ,β

(0)
C−1) ∈ Rd×(C−1) denote the true coefficient matrix associated with target data under

GCR model. Let (A(k),X(k),Y(k)) denote the kth source data, k = 1, . . . ,K, where A(k) ∈
{0, 1}nk×nk , X(k) ∈ Rnk×d, Y(k) ∈ {0, 1}nk×C . Let β(k) = (β

(k)
1 , . . . ,β

(k)
C−1) ∈ Rd×(C−1)

denote the true coefficient matrix associated with the kth source data, for the C − 1 classes. Note that
the last class’s coefficient β(k)

C = 0d is fixed to avoid identifiability issues.

The difference between the kth source domain’s coefficient and the target domain’s coefficient is
δ(k) = β(0) − β(k), where δ(k) ∈ Rd×(C−1). The overall domain shift for the k-th source domain
is (C − 1)−1

∑C−1
c=1 ||δ(k)c ||1, where δ(k)c is the cth column of δ(k). A source sample is defined
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as h−level transferable if its domain shift level is lower than a threshold h. The set of h−level
transferable source data is Ah = {k : (C − 1)−1

∑C−1
c=1 ||δ(k)c ||1 ≤ h}. To ensure that transferring

sources within the set Ah is beneficial, h should be reasonably small. In the subsequent sections, we
will abbreviate the notation Ah as A for brevity without special emphasis.

3.1 TRANSFER LEARNING WHEN THE TRANSFERABLE SOURCE SET IS KNOWN

In this subsection, we present a transfer learning method under GCR (abbreviated as Trans-GCR) for
the node classification task when the transferable source set A is known, i.e., we have prior knowledge
of which source data to utilize. Our method Trans-GCR is motivated by the transfer learning literature
in the conventional regression model (without considering graph structure) (Bastani, 2018; Li et al.,
2022; Tian & Feng, 2023). Figure 1 shows the workflow of Trans-GCR, which works in the following
steps. We first preprocess A(k) to obtain the normalized adjacency matrices S(k), k ∈ {0,A}.

Source sample pooling. We then pooled all source domain data in A into a single source sample,
which includes a normalized adjacency matrix SA ∈ RnA×nA , node features XA ∈ RnA×d, and
labels YA ∈ {0, 1}nA×C , where the total number of nodes is nA =

∑
k∈A nk. SA has a block

structure with diagonal blocks corresponding to the individual S(k) matrices, k ∈ A. The pooled node
features XA and labels YA are obtained by concatenating the respective X(k) and Y(k) matrices
row-wise, k ∈ A. The rationale behind pooling the source samples in A together is due to the
assumption that the source domains in A are similar to the target domain, with only small domain
shifts, implying that they share similar underlying model parameters. By pooling the source samples
(Wang, 2019), the algorithm effectively increases the sample size, which leads to a more accurate and
stable estimate.

Source domain parameter estimation. Let βA denote the latent parameter in GCR that are used to
generate YA. To obtain β̂A, we minimize the aforementioned negative log-likelihood with l1−norm
penalty in Eq. 2.3 using the pooled source samples. Domain shift estimation. Let δA denote the
difference between the pooled source parameters βA and the target domain parameters β(0), i.e.,
β(0) = βA + δA. We then estimate δA by minimizing the following loss function, which essentially
replaces β(0) with β̂A + δA in the likelihood function of GCR model for the target data. Specifically,
we solve the following optimization problem to estimate δA:

−
n0∑
i=1

∑C
c=1[Y

(0)
ic (

n0∑
j=1

sijX
(0)
j )(β̂A

c +δAc )−ψ(
n0∑
j=1

sijX
(0)
j (β̂A

c +δAc ))]+λ
C−1∑
c=1

||β̂A
c +δAc ||1, (3.1)

where ψ(x) = log (1 + ex), sij is the (i, j)th element of (S(0))M for the target domain, β̂A
c and δAc

are the cth column of β̂A and δA, respectively. This reformulation transforms the unknown parameter
from β(0) to δA. Finally, once the domain shift δA is calculated, we compute the final target domain
parameter estimate as β̂(0) = β̂A + δ̂A.

We summarize our procedure in Algorithm 1 in Appendix G, which involves two hyperparameters:
the graph convolution layers M and the l1−norm penalty strength λ. Note that while Trans-GCR
requires two hyperparameters: λ and M , it avoids additional hyperparameters required by GCN, such
as dropout rates, learning rates, and hidden sizes, which require extensive tuning. When implementing
Trans-GCR, we apply cross-validation procedures to select these hyperparameters.

3.2 TRANSFERABLE SOURCE DETECTION

In section 3.1, we presented a method when the transferable set A is known. Nevertheless, in
real applications, such prior knowledge might be unavailable. When the source domain differs
significantly from the target domain, negative transfer can occur, leading to decreased performance
on the target task (Li et al., 2022; Tian & Feng, 2023). To address this issue, we propose a data-driven
cross-validation approach to select the transferable set A automatically.

Our method begins by partitioning nodes in the target data into V folds, i.e., s1, . . . , sV . For each
fold v, the labels of nodes in sv in the target data (denoted as Y(0)

sv ) are held out as the testing target
data, while the labels in the remaining folds Y(0)

−sv serve as the training target data. We then apply
the transfer learning Algorithm 1 using the kth source data {A(k),X(k),Y(k)} and training target
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Figure 1: Workflow of Trans-GCR. We first pool all source domains to get an estimate β̂A. We then
use target data and the knowledge from β̂A to estimate domain shift δ̂A. The final estimate for the
target data is β̂(0) = β̂A + δ̂A.

data {A(0),X(0),Y
(0)
−sv} to obtain the estimate β̂(0)

vk for the target data. Note that we use the entire
network structure of the target data A(0) and all node covariates X(0) to obtain aggregated features.
However, we only use the classification labels of the training nodes Y

(0)
−sv when minimizing the

negative log-likelihood in Eq. 2.3 during the estimation process.

Using the model estimate β̂(0)
vk , we predict labels for the testing nodes in the target data, calculating

P̂(Y(0)
i = c), i ∈ sv. The model’s performance is assessed through the negative log-likelihood,

NL(k)
v = −

∑
i∈sv

∑C
c=1(Y

(0)
ic log P̂(Y(0)

i = c) + (1 − Y
(0)
ic ) log(1 − P̂(Y(0)

i = c)). We then
average NL(k)

v across all V folds, yielding NL(k) = V −1
∑V
v=1 NL(k)

v . A lower score of NL(k)

indicates higher transferability of the kth source data. We rank the K sources by their corresponding
NL(k) values and select the top L sources with the lowest scores as the estimated transferable set
Â, where L is a user-defined hyperparameter specifying the number of source data to include. We
summarize our procedure in Algorithm 2 in the Appendix G. Note that in practice, our cross-validation
procedure can be efficiently implemented using parallel computing techniques.

4 THEORETICAL PROPERTIES

In this section, we present our main theoretical results. Establishing theoretical guarantees for the
GCR model under high-dimensional network data is extremely challenging as: (1) The network
dependency prevents the application of standard concentration results, valid only for i.i.d. data.
For instance, standard M-estimation theory requires independence among observations to derive
consistency and the rate of convergence. (2) The ultra-high dimensionality, where the dimension
of X can be much larger than n, further complicates the theoretical analysis. Analyzing any high-
dimensional model is difficult because it requires a thorough understanding of high-dimensional
geometry. Consequently, we need new tools to address these challenges, which is a key part of our
theoretical contribution.

For simplicity and ease of presentation, this section focuses on results for the case where C = 2
corresponds to a two-class classification problem and M = 1. Nevertheless, our theoretical results
can be easily generalized to the multiclass cases. In what follows, we build theoretical guarantees
under the normalized adjacency matrix AX/

√
np, where p is the network connectivity probability,

and np is the expected degree. To ease presentations, we let Z = (AX)/
√
np (replace p by p̂ when

uknown). We would like to highlight that rows of Z are not independent. Let ∥β(0)∥0 = s for some
s ≪ d. The estimate β̂ is obtained by minimizing the loss function in Eq. 2.2, which can further
rewritten using Z, as shown below,

β̂ = argminβ
{
−
∑n
i=1

[
YiZ

⊤
i β − log (1 + exp(Z⊤

i β))
]
+ λ∥β∥1

}
, (4.1)

where Zi is the ith row of Z. The key difference between our analysis of β̂ and that of a standard
high dimensional generalized linear model (e.g., Van de Geer et al. (2014)) is precisely the depen-
dence among observations. Below, we present the assumptions required to establish the theoretical
guarantees of our penalized estimator β̂:
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Assumption 4.1. We assume Xi’s are generated independently from a sub-gaussian distribution
with parameter σX, i.e., E[exp(λa⊤Xi)] ≤ exp(λ2σ2

X/2) for all λ ∈ R and for all a ∈ Sp−1. Let
ΣX be the covariance matrix of Xi. Assume that λmin(ΣX) ≥ κl > 0 and maxj ΣX,jj ≤ σ+ for
some constant (κl, σ+).

Assumption 4.2 (Network connectivity). The network connectivity parameter p satisfies
(np)/ log n→ ∞, and p log d→ 0 as n→ ∞.

Assumption 4.3 (Sparsity). The sparsity parameter s of β(0) satisfies: s log
2 d
n

(1−2p)
4p log ((1−p)/p) = o(1).

All three assumptions above are quite standard in the literature on the analysis of high-dimensional
linear and generalized linear models. Assumption 4.1 requires the covariates to be sub-gaussian, a
ubiquitous assumption, which is often needed to deal with ultra-dimensional setup (i.e., d can be as
large as en

γ

for some γ < 1) (see Chapter 6 of Bühlmann & Van De Geer (2011) for details). One may
relax this assumption as the cost of the trade-off between d and n; the thicker the tail of X, the more
stringent condition is needed on d for estimation, or one may use robust loss function (Goldsmith
(2015)). Assumption 4.2 is also a standard assumption in the literature of network estimation, which
merely assumes p to be (slightly) larger than n−1 in order (Lei & Rinaldo, 2015). As for Assumption
4.3, in standard i.i.d. setup we require s log d/n → 0. However, here, our condition is slightly
different; we have an additional factor involving a factor of p. Whether this dependence is optimal is
out of the scope of this paper. Given these assumptions, we are now ready to state our main theorem:

Theorem 4.4. Under Assumption 4.1-4.3, the ℓ1-penalized estimator β̂ obtained in equation 4.1
satisfies;

∥β̂ − β(0)∥22 ≤ c s log dn

for some constant c > 0 with probability 1 − g(n, p, d), where g(n, p, d) goes to 0 as n → ∞,
mentioned explicitly in the proof.

The proof of the theorem is deferred to the Appendix. One of the main technical challenges lies in
establishing a condition equivalent to the standard restricted strong convexity (RSC) or restricted
eigenvalue (RE) condition in the presence of network dependency. It requires that the sample
covariance matrix has a minimum eigenvalue bounded away from zero in certain directions (the
global minimum eigenvalue is always zero since the sample covariance matrix is low-rank due
to the dimensionality exceeding the sample size). This task is difficult even in an i.i.d. setup, as
demonstrated by the collaborative efforts of mathematicians and statisticians over the past decade
Raskutti et al. (2010); Zhou (2009); Rudelson & Zhou (2012); Negahban et al. (2009) for related
references. The modified RSC condition under network dependency is presented in Lemma C.1,
which is of independent interest.

Remark 4.5. It may seem surprising that the convergence rate of β̂, as established in Theorem 4.4
does not depend on p. This is precisely because we have appropriately scaled Z = (AX)/

√
np by p.

If we change the scale, i.e., say we use symmetric normalized Laplacian D−1/2AD−1/2, then the
effective calling would be Z = (AX)/np. In that case, the estimation rate of β̂ would depend on p,
and this dependence can be easily quantified by carefully tracking the steps of our proof. However, as
this involves technical algebra without adding further insight, we refrain from pursuing it here.

Remark 4.6. Our theorem precisely quantifies the estimation rate of β(0) in a single domain, which
can be viewed as the estimation rate using only data from the target domain. Recently, estimating
β(0) using related source samples under the high-dimensional generalized linear model setup has
been explored by Tian & Feng (2023); Li et al. (2023). As previously mentioned, extending these
ideas to incorporate network dependency is quite challenging. However, we have conjectured an
estimation rate for β(0) obtained using Trans-GCR. See Appendix E for details.

Remark 4.7. Although in our theory we have assumed all the entries of A are generated indepen-
dently from Ber(p), Theorem 4.4 continues to hold under the self-loop (resp. no self-loop), i.e. if we
set Aii = 1 (resp. Aii = 0) and generate off-diagonal elements from Ber(p), with different constant
c′ instead of c. In the proof, we have pointed out the required modifications precisely to adapt proof
when i) we have self-loop, and ii) p is unknown and estimated from the data.
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5 SIMULATION STUDIES

Simulation setup. For the kth dataset, we generate simulation data in the following steps. We
first generate node features X(k) ∈ Rnk×d from i.i.d. Gaussian with mean zero and identity
covariance matrix. We then generate adjacency matrix A(k) ∈ {0, 1}nk×nk considering three
different models: ER random graph model (Erdős & Rényi, 1959), stochastic block model (Holland
et al., 1983), and graphon model (Lovász & Szegedy, 2006). We then generate a C-classes response
Y(k) ∈ {0, 1}nk×C using Eq. 2.2 with M = 1.

In this simulation, we consider a three-classes outcome, i.e., C = 3. For the target data, we set the
target sample size n0 = 200. We consider high-dimensional sparse node covariates, where the number
of covariates is d = 500, and the number of non-zero covariates in β(0)

c is s = 50. We set non-zero
model coefficients for the first s covariates, i.e., β(0)

1 = (0.4 · 1s, 0d−s), β
(0)
2 = (0.5 · 1s, 0d−s),

where 1s has all s elements 1 and 0d−s has all d − s elements 0. For the kth source data, we set
β
(k)
1 = β

(0)
1 − (hk ·1s, 0d−s), β(k)

2 = β
(0)
2 +(hk ·1s, 0d−s), k = 1, . . . ,K. For the first five sources,

we set hk = h where h is a small value and consider varying h to study its effect. For the subsequent
sources, hk is set to be a large value, i.e., 10. We regard the first five sources as transferable datasets,
that is, A = {1, . . . , 5}, and view the remaining sources as non-transferable datasets. We set the
source sample sizes as the same value, i.e., n1 = . . . = nK = n.

Evaluation metric and baselines. We evaluate the performance by calculating the mean squared
estimation errors (MSE) between the estimated coefficients and the true target coefficient, i.e.,
MSE = 1

2d (||β̂
(0)
1 − β

(0)
1 ||2F + ||β̂(0)

2 − β
(0)
2 ||2F ). All experiments are replicated 100 times to

calculate the averaged MSE. We compare our method Trans-GCR with two baselines: (1) GCR
which uses target data only, and (2) Naive transfer learning (Naive TL), which pools the source and
target data together in a brute-force way and trains a single model on the combined dataset to obtain
an estimation. Specifically, the adjacency matrices are merged into a block-diagonal matrix, while
the node features and outcome vectors are concatenated row-wise.

5.1 SIMULATION RESULTS WHEN THE TRANSFERABLE SOURCE SET IS KNOWN

We first show results when A = {1, . . . , 5} is known, i.e., we will only use the first five source data
to perform transfer learning. Due to page limit, we only show the results when network is generated
under ER model in the main text, but additional simulation results under SBM and graphon model
can be found in Figures S1 and S2 in the Appendix. In addition, we also show our method’s superior
performance with two convolution layers in Figure S3.

Asymptotic performance. To investigate the asymptotic performance of the Trans-GCR method,
we vary the sample size of source data n ∈ {100, . . . , 1000} while fixing source-target domain shift
h = 1, fixing the ER edge probability in the target data and source data p0 = . . . = p5 = 0.05.
Figure 2(a) shows that our method Trans-GCR demonstrates a marked decrease in MSE as the source
data sample size increases. Naive TL also shows a decreasing MSE trend but at a significantly higher
error rate compared with Trans-GCR. In contrast, the GCR method has the highest MSE across all
source sample sizes and remains unchanged since it does not utilize source data information.

Effect of source-target domain shift. To investigate the impact of h, we vary h ∈ {1, . . . , 10},
while fixing source sample size n = 600, and fixing the ER edge probability p0 = . . . = p5 = 0.05.
Figure 2(b) reveals that the MSE of Trans-GCR and Naive TL increases gradually as the source-target
domain shift grows, which is expected since a larger shift implies reduced transferability between
source and target domains. When h increases to 10, the advantage of transfer learning disappears.

Effect of source-target network density discrepancy. To investigate the impact of the network
density difference between the source and target networks, we vary the ER edge probability in the
source data p1 = . . . = p5 ∈ {0.01, . . . , 0.1} while fixing the ER edge probability in the target
data as 0.05, and fixing n = 600, h = 1. Figure 2(c) reveals that both Trans-GCR and Naive TL
show a slight U-shape trend, with the best results achieved when the source and target network
densities are similar. As the density difference increases in either direction, the performance degrades.
While network density discrepancies can impact the performance of transfer learning approaches,
Trans-GCR demonstrates strong robustness in handling these differences, consistently outperforming
GCR and Naive TL across the range of density variations tested.
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Figure 2: Performance comparison (MSE) of Trans-GCR (red), GCR (black), Naive TL (blue) across
varying (a) Source sample size, (b) Source-target gap h, (c) Source network density (0.05 means
identical densities) (d) Source network within-community probability (higher value means more
discrepancy).

Effect of source-target network distribution discrepancy. To investigate the impact of distribution
discrepancy between source and target networks, we consider a scenario where the target network
is generated from the ER model with parameter 0.05 while the source networks are generated from
a balanced two-block SBM. In the SBM, we fix the between-community connection probability as
0.05 and the vary within-community probability from 0.05 to 0.14. When the within-community
probability is 0.05, the SBM becomes identical to the ER(0.05) model used for the target network.
We fix the source sample size n = 600, and source-target domain shift h = 1. Figure 2(d) shows that
the MSE of the Trans-GCR method slightly increases as the distribution discrepancy increases. In
contrast, the MSE of Naive TL shows a clear upward trend.

5.2 TRANSFERABLE SOURCE DETECTION RESULTS
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Figure 3: AUC for detecting transfer-
able sources.

Given K source domains, we apply Algorithm 2 to obtain the
transferability score for each source domain. Here, we use a
three-fold cross-validation. To assess the effectiveness of these
scores in identifying transferable sources, we treat the task as a
binary classification problem and compute the AUC (area under
the ROC curve). A higher AUC indicates better performance in
distinguishing transferable and non-transferable sources based
on the transferability scores. Following the aforementioned
setting, the first five source domains are defined as transferable.
We vary the number of total candidate source domainsK from 6
to 10, while fixing ER edge probability p0 = . . . = pK = 0.05,
and source data sample size n = 600. Figure 3 shows that as
K increases, indicating a more challenging detection task, the
AUC slightly decreases. Despite this, the AUC consistently
remains above 0.9, showcasing the method’s robustness and accuracy in identifying transferable
source domains.

6 REAL DATA EXPERIMENTS

Data description. We conduct experiments on three widely-used real-world citation networks (Tang
et al., 2008; Shen et al., 2020): (1) DBLPv7 (abbreviated as D), containing 5484 nodes and 8130
edges, extracted from the DBLP database; (2) Citationv1 (abbreviated as C), containing 8935 nodes
and 15113 edges, obtained from the Microsoft Academic Graph database; (3) ACMv9 (abbreviated
as A), containing 9360 nodes and 15602 edges, derived from the ACM digital library. In these
networks, each node represents a paper, and the adjacency matrix A encodes the citation relationships
between papers. The bag-of-words attribute vectors X are derived from keywords extracted from
paper titles, with a combined vocabulary of 6775 unique attributes across all networks. Thus, the
feature dimension of X is 6775. Each paper is associated with a label belonging to one of these five
classes: Databases, Artificial Intelligence, Computer Vision, Information Security, and Networking.

Transfer learning tasks. To evaluate the effectiveness of our method Trans-GCR, we conduct nine
transfer learning tasks between different source and target: (1) C → D, (2) A → D, (3) C & A → D,
(4) D → C, (5) A → C, (6) D & A → C, (7) D → A, (8) C → A, and (9) D & C → A.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Baselines. We compare our proposed method with several baselines: GCN-based domain adaption
methods, including (1) AdaGCN (Dai et al., 2022), (2) UDAGCN (Wu et al., 2020), and (3) pre-
training GNNs (Hu et al., 2020); Naive transfer learning methods, as detailed in Section 5. Briefly,
this involves pooling the source and target data into a single dataset and training a single model on
the combined data. We apply this naive transfer learning strategy across different models, including:
(3) GCR model, (4) GPR-GNN (Chien et al., 2020), (5) GRAND (Feng et al., 2020) (6) Node2vec
(Grover & Leskovec, 2016), (7) GraphSAGE (Hamilton et al., 2017), (8) GCN (Kipf & Welling,
2017), (9) APPNP (Gasteiger et al., 2018), (10) attri2vec (Zhang et al., 2019), (11) SGC (Wu et al.,
2019), and (12) GAT (Velickovic et al., 2017). In addition to the naive transfer learning results
of methods in (3)-(12), we also report the performance of selected methods trained solely on the
target domain data for comparison. We take a cross-validated grid-search and present in Table 1 the
performance of the baselines in the best configuration of hyperparameters.

Evaluation. We evaluate the performance of our Trans-GCR method using a standard metric, i.e.,
micro-F1 (Dai et al., 2022). These metrics assess the model’s predictions on the testing subset of
the target data. All experiments are replicated 10 times. Our evaluation aims to answer three key
questions: (1) How does the performance of our Trans-GCR method compare with other baseline
methods, given the fixed training rate? (2) How does the computational time of our Trans-GCR
method compare with other baseline methods? (3) How does the training rate of the source and target
networks affect the performance of Trans-GCR? Here, the training rate of a network refers to the
proportion of nodes whose labels were utilized for training the model.
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Figure 4: Averaged computational
time (seconds) of different methods.

Results. (1) Performance comparison with fixed training
rate. Table 1 shows the averaged micro-F1 when a 75% source
training and a 3% target training rate. Due to space constraints,
we only present the results of seven naive transfer learning
methods here, with additional results available in Table S3. The
performance of these methods when trained solely on target
data is provided in Table S4. The results demonstrate that Trans-
GCR consistently outperforms the baseline methods across all
tasks. AdaGCN generally performs better than naive TL meth-
ods, indicating the advantages of domain adaptation. However,
despite AdaGCN’s good performance, it suffers from high com-
putational costs, which we will discuss later. Notably, Trans-
GCR performs better with two source domains (e.g., C & A →
D) than with one (e.g., C → D). This suggests that Trans-GCR
effectively leverages complementary information from multiple
source domains, enhancing transfer learning performance on
the target task. (2) Computational time. Figure 4 shows that Trans-GCR has significantly lower
computational time than AdaGCN, demonstrating its efficiency.

Method Trans-GCR AdaGCN
(a) (b)

Figure 5: (a) Varying source training rates (b)
Varying target training rates.

(3) Effect of training rate. Figure 5(a) shows the
micro-F1 for the transfer learning tasks D → C, as the
source training rate increases from 1% to 90%, while
the target rate is fixed at 3%. Figure 5(b) depicts the
micro-F1 results as the target training rate increases
from 1% to 10%, while fixing the source training rate
at 75%. As we can see, our proposed method Trans-
GCR consistently outperforms AdaGCN across all
different source training rates and target training rates,
while increasing rates leads to improved performance
of our method. Results on other transfer learning
tasks, leading to similar conclusions, are shown in Appendix F.2.

(4) Sensitivity analysis to hyperparameters. When implementing Trans-GCR, we employed a
cross-validation procedure to select the optimal M and λ. We systematically varied M from 2 to 7
and λ from 0.005 to 0.0015. Table S5 and S6 in the Appendix shows the results. From Table S5, we
have the following observations: (1) For each target-source pair, the performance generally improves
with increasing M . The performance is optimal when M = 5, after which it may stabilize or slightly
decrease. (2) Even though there is some variability in the micro-F1 scores for different values of
M , it is not overly sensitive. For example, the micro-F1 score for the target domain D with source
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domain C slightly fluctuates between 75.21% and 76.53%. From Table S6, we observe that: For
each target-source pair, the performance varies with different λ values. The performance is generally
higher at the smallest λ value (0.0005). Nevertheless, the changes in micro-F1 scores are relatively
modest, indicating that our method is robust to variations in λ. For example, the micro-F1 score for
the target domain C with source domain A varies slightly between 78.56% and 79.61%. In summary,
these tables collectively indicate that our proposed Trans-GCR method is not highly sensitive to the
specific values of M and λ.

Table 1: Averaged Micro F1 score (%) of various methods, over 10 replicates, with source training
rate fixed at 0.75 and target training rate fixed at 0.03.

Target Source Trans-GCR GCR AdaGCN UDAGCN Pre-trained
GNNs

GPRGNN GRAND GCN APPNP SGC GAT

D
C 76.53 72.30 75.14 69.52 73.15 74.48 67.23 71.59 73.10 72.12 71.74
A 75.16 69.75 74.52 58.24 70.03 72.07 66.78 69.12 70.82 68.64 67.34

C&A 76.61 70.09 74.87 71.15 72.89 75.11 69.33 64.35 70.94 71.31 62.48

C
D 78.99 72.82 77.85 61.63 75.32 75.36 67.13 72.97 75.26 77.56 73.17
A 80.37 77.16 79.29 71.85 67.48 75.02 73.24 73.85 75.86 76.73 73.39

D&A 80.58 77.23 78.91 73.35 76.21 75.72 69.67 70.53 74.81 77.31 70.52

A
D 72.61 69.54 72.35 53.35 66.78 71.67 66.63 66.87 66.56 69.26 66.67
C 73.56 71.17 73.32 55.52 68.94 72.95 56.74 66.10 67.33 72.52 67.79

D&C 73.78 71.32 73.26 65.85 69.61 72.91 67.31 63.19 64.81 70.18 63.80

7 DISCUSSION

In this paper, we introduce the GCR model to capture the relationship between node classification
labels (Y), network structure (A), and node covariates (X). We then propose Trans-GCR, a transfer
learning method that enhances estimation in the target domain using knowledge from the source
domain. Despite its strong empirical performance and theoretical benefits, our method has limitations
that need further research. Firstly, our theoretical results are limited to the ER random graph
model. While we show empirical success with other models like SBM and graphon, theoretical
validation for these models is still needed. Secondly, the GCR model assumes a linear relationship
between graph convolutional features and the log odds ratio; extending this to nonlinear models
would be valuable. Thirdly, our source detection algorithm only provides a transferability score, and
developing a hypothesis testing method for source domain transferability would be useful. Fourthly,
our algorithm currently transfers only point estimations of model parameters, and extending it to
include confidence interval estimation would provide a measure of uncertainty. Lastly, asM increases,
SM converges to a matrix of ones, resulting in oversmoothing, where node representations become
indistinguishable. Future work could explore adaptive propagation mechanisms, such as APPNP,
to mitigate oversmoothing and preserve meaningful differentiation between node representations in
deeper architectures.
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Paul Erdős and Alfréd Rényi. On random graphs i. Publ. math. debrecen, 6(290-297):18, 1959.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning on graphs.
Advances in neural information processing systems, 33:22092–22103, 2020.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations, 2018.

Aaron Seth Goldsmith. LASSO Asymptotics For Heavy Tailed Errors. PhD thesis, 2015.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
855–864, 2016.

Emre Guney, Jörg Menche, Marc Vidal, and Albert-László Barábasi. Network-based in silico drug
efficacy screening. Nature communications, 7(1):10331, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Peng Han, Peng Yang, Peilin Zhao, Shuo Shang, Yong Liu, Jiayu Zhou, Xin Gao, and Panos Kalnis.
Gcn-mf: disease-gene association identification by graph convolutional networks and matrix
factorization. In Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 705–713, 2019.

Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
steps. Social networks, 5(2):109–137, 1983.

Jean Honorio and Tommi Jaakkola. Tight bounds for the expected risk of linear classifiers and
pac-bayes finite-sample guarantees. In Artificial Intelligence and Statistics, pp. 384–392. PMLR,
2014.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In International Conference on Learning
Representations, 2020.

Ziniu Hu, Changjun Fan, Ting Chen, Kai-Wei Chang, and Yizhou Sun. Pre-training graph neural
networks for generic structural feature extraction. arXiv preprint arXiv:1905.13728, 2019.

Pengsheng Ji, Jiashun Jin, Zheng Tracy Ke, and Wanshan Li. Co-citation and co-authorship networks
of statisticians. Journal of Business & Economic Statistics, 40(2):469–485, 2022.

Minoru Kanehisa, Susumu Goto, Yoko Sato, Miho Furumichi, and Mao Tanabe. Kegg for integration
and interpretation of large-scale molecular data sets. Nucleic acids research, 40(D1):D109–D114,
2012.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
International Conference on Learning Representations (ICLR), 2017.

Nishai Kooverjee, Steven James, and Terence Van Zyl. Investigating transfer learning in graph neural
networks. Electronics, 11(8):1202, 2022.

Jing Lei and Alessandro Rinaldo. Consistency of spectral clustering in stochastic block models. The
Annals of Statistics, pp. 215–237, 2015.

Ron Levie, Wei Huang, Lorenzo Bucci, Michael Bronstein, and Gitta Kutyniok. Transferability of
spectral graph convolutional neural networks. Journal of Machine Learning Research, 22(272):
1–59, 2021.

Sai Li, T Tony Cai, and Hongzhe Li. Transfer learning for high-dimensional linear regression:
Prediction, estimation and minimax optimality. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 84(1):149–173, 2022.

Sai Li, Linjun Zhang, T Tony Cai, and Hongzhe Li. Estimation and inference for high-dimensional
generalized linear models with knowledge transfer. Journal of the American Statistical Association,
pp. 1–12, 2023.

László Lovász and Balázs Szegedy. Limits of dense graph sequences. Journal of Combinatorial
Theory, Series B, 96(6):933–957, 2006.

Yuanfu Lu, Xunqiang Jiang, Yuan Fang, and Chuan Shi. Learning to pre-train graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 4276–4284, 2021.

Peter McCullagh. Generalized linear models. Routledge, 2019.

Shahar Mendelson, Alain Pajor, and Nicole Tomczak-Jaegermann. Uniform uncertainty principle for
bernoulli and subgaussian ensembles. Constructive Approximation, 28:277–289, 2008.

Sahand Negahban, Bin Yu, Martin J Wainwright, and Pradeep Ravikumar. A unified framework for
high-dimensional analysis of m-estimators with decomposable regularizers. Advances in neural
information processing systems, 22, 2009.

Axel Nilsson and Xavier Bresson. An experimental study of the transferability of spectral graph
networks. arXiv preprint arXiv:2012.10258, 2020.

Eugene Ostrovsky and Leonid Sirota. Exact value for subgaussian norm of centered indicator random
variable. arXiv preprint arXiv:1405.6749, 2014.

Yaniv Plan and Roman Vershynin. One-bit compressed sensing by linear programming. Communica-
tions on pure and Applied Mathematics, 66(8):1275–1297, 2013.

Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Restricted eigenvalue properties for correlated
gaussian designs. The Journal of Machine Learning Research, 11:2241–2259, 2010.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mark Rudelson and Shuheng Zhou. Reconstruction from anisotropic random measurements. In
Conference on Learning Theory, pp. 10–1. JMLR Workshop and Conference Proceedings, 2012.

Luana Ruiz, Luiz Chamon, and Alejandro Ribeiro. Graphon neural networks and the transferability
of graph neural networks. Advances in Neural Information Processing Systems, 33, 2020.

Luana Ruiz, Luiz FO Chamon, and Alejandro Ribeiro. Transferability properties of graph neural
networks. IEEE Transactions on Signal Processing, 2023.

Xiao Shen, Quanyu Dai, Sitong Mao, Fu-lai Chung, and Kup-Sze Choi. Network together: Node
classification via cross-network deep network embedding. IEEE Transactions on Neural Networks
and Learning Systems, 32(5):1935–1948, 2020.

Alessandro Sperduti and Antonina Starita. Supervised neural networks for the classification of
structures. IEEE Transactions on Neural Networks, 8(3):714–735, 1997.

Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer: extraction and
mining of academic social networks. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 990–998, 2008.

Ye Tian and Yang Feng. Transfer learning under high-dimensional generalized linear models. Journal
of the American Statistical Association, 118(544):2684–2697, 2023.

Sara Van de Geer, Peter Bühlmann, Ya’acov Ritov, and Ruben Dezeure. On asymptotically optimal
confidence regions and tests for high-dimensional models. 2014.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio,
et al. Graph attention networks. stat, 1050(20):10–48550, 2017.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cam-
bridge university press, 2019.

Minjie Yu Wang. Deep graph library: Towards efficient and scalable deep learning on graphs. In
ICLR workshop on representation learning on graphs and manifolds, 2019.

Stephen J Wright. Coordinate descent algorithms. Mathematical programming, 151(1):3–34, 2015.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. Unsupervised domain adaptive
graph convolutional networks. In Proceedings of the web conference 2020, pp. 1457–1467, 2020.

Jiarong Xu, Renhong Huang, Xin Jiang, Yuxuan Cao, Carl Yang, Chunping Wang, and Yang Yang.
Better with less: A data-active perspective on pre-training graph neural networks. Advances in
Neural Information Processing Systems, 36:56946–56978, 2023.

Yaming Yang, Ziyu Guan, Zhe Wang, Wei Zhao, Cai Xu, Weigang Lu, and Jianbin Huang. Self-
supervised heterogeneous graph pre-training based on structural clustering. Advances in Neural
Information Processing Systems, 35:16962–16974, 2022.

Jingyang Yuan, Xiao Luo, Yifang Qin, Zhengyang Mao, Wei Ju, and Ming Zhang. Alex: Towards
effective graph transfer learning with noisy labels. In Proceedings of the 31st ACM international
conference on multimedia, pp. 3647–3656, 2023.

Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. Attributed network embedding via
subspace discovery. Data Mining and Knowledge Discovery, 33:1953–1980, 2019.

Shuheng Zhou. Restricted eigenvalue conditions on subgaussian random matrices. arXiv preprint
arXiv:0912.4045, 2009.

Qi Zhu, Carl Yang, Yidan Xu, Haonan Wang, Chao Zhang, and Jiawei Han. Transfer learning of
graph neural networks with ego-graph information maximization. Advances in Neural Information
Processing Systems, 34:1766–1779, 2021.

Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with
graph convolutional networks. Bioinformatics, 34(13):i457–i466, 2018.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

In this Appendix, we show (1) the notation table to briefly summarize important notations in this
manuscript, (2) proofs of theoretical guarantees, (3) additional experimental results, and (4) pseudo
code of algorithms.

A NOTATION TABLE

We present the detailed expressions of notations widely used in the proposed model and algorithm in
Table S1.

Table S1: Notations

Notations Description

n number of nodes in entire network
A ∈ {0, 1}n×n adjacency matrix of entire network without self-loops
d number of covariates
X ∈ Rn×d entire covariate matrix
Xj ∈ R1×d feature vector of node j, i.e., jth row in covariate matrix X
C number of classes
Y ∈ {0, 1}n×C entire classification label matrix
Ã adjacency matrix of entire network with added self-connections
D̃ degree matrix of Ã
S normalized adjacency matrix of Ã
n0 target domain sample size
A(0) ∈ {0, 1}n0×n0 adjacency matrix of target network
X(0) ∈ Rn0×d covariate matrix of target domain
Y(0) ∈ {0, 1}n0×C classification label matrix of target domain
β(0) ∈ Rd×(C−1) true coefficient matrix associated with target domain under GCR
nk the kth source domain sample size
A(k) ∈ {0, 1}nk×nk adjacency matrix of the kth source network
X(k) ∈ Rnk×d covariate matrix of the kth source domain
Y(k) ∈ {0, 1}nk×C classification label matrix of the kth source domain
β(k) ∈ Rd×(C−1) true coefficient matrix associated with kth source domain under GCR
δ(k) difference between the kth source and the target domain’s coefficient
Ah the set of h−level transferable source data, abbreviated as A for brevity
p0 parameter of Erdős–Rényi (ER) random graph model for target domain
pk parameter of ER random graph model for the kth source domain
AA pooled adjacency matrix
XA pooled covariate matrix
YA pooled label matrix
nA sample size in the pooled sample
βA true underlying parameter related to the pooled sample (AA,XA,YA)

β̂(0) estimate for β(0) obtained using our algorithms

B ROADMAP OF THE PROOF

The proof of our method comprises three key components:

1. Obtaining an optimal value of λ, the penalty parameter, that upper bounds the effect of the
noise in the system (Lemma C.2).

2. Establishing restricted strong convexity of the sample covariance matrix (Lemma C.1).

3. Combining Step 1 and Step 2 along with the fact that β̂ minimizes the penalized loss function
to complete the proof via some algebraic manipulation.
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Step 3 is similar to the analysis of the analysis of independent data as in Tian & Feng (2023) or Li
et al. (2022). The key difference between the existing analysis and our analysis is Step 1 and Step 2.
In this subsection, we highlight the differences. In Step 1, we need to provide an upper bound on

∥∇Ln(β0)∥∞ = max
1≤j≤d

∣∣∣∣∣ 1n
n∑
i=1

Zij

{
Yi − ψ′(Z⊤

i β
(0))
}∣∣∣∣∣

In the case of i.i.d. observations, the above expression is the maximum of d sample averages, so one
may use any standard concentration bound for the sample average (e.g., Chernoff bound, Hoeffding’s
inequality, etc.) along with a union bound would be sufficient. However, as our observations are
dependent, we cannot use any standard concentration inequality directly. Hence, careful modifications
are necessary, which are presented in the proof of Lemma C.2 in detail.

Step 3 is the most technically demanding part of our proof, where we demonstrate that the Bregman
divergence of the loss function, defined as:

δLn(u) = Ln(β0 + u)− Ln(β0)−
〈
u,∇Ln(β(0))

〉
is lower bounded by g(u)|u|22. This condition would be straightforward to establish with g(u) ≡ C
for some C > 0 if Ln were strongly convex over the entire domain. However, in the high-dimensional
setting, strong convexity on the entire domain is not feasible, making this condition challenging to
prove, constructing a suitable g(u).

For i.i.d. observations, this result is established in Negahban et al. (2009). However, as in Step 1, the
proof becomes significantly more complex when the observations are dependent. To address this,
we had to modify the proof technique of Negahban et al. (2009) to account for dependencies among
observations. The details of this modification, as well as a comparison with the proof for i.i.d. data in
Negahban et al. (2009), are provided in the proof of Lemma C.1.

C PROOF OF THEOREM 4.4

For notational simplicity, define ψ(x) = log (1 + ex). Recall that our loss function is negative
log-likelihood:

Ln(β) =
1

n

∑
i

{
−YiZ

⊤
i β + ϕ(Z⊤

i β)
}
,

and our estimator is:
β̂ = argminβ [Ln(β) + λ∥β∥1] .

Furthermore, define the Bregman divergence δLn(β) as:

δLn(β) = Ln(β)− Ln(β
(0))− ⟨β − β(0),∇Ln(β(0))⟩ . (C.1)

As Ln(·) is a convex loss function, it is immediate that δLn(β) ≥ 0 for all β ∈ R. Furthermore,
define v̂ = β̂ − β(0) and the penalized excess risk function Rn as:

Rn(v) = Ln(β
(0) + v) + λ∥β(0) + v∥1 − Ln(β

(0))− λ∥β(0)∥1 .

As both the loss and penalty functions are convex, Rn(·) is a convex function. Furthermore, as β̂
minimizes the penalized loss function, we have:

Rn(v̂) ≤ 0, or equivalently Ln(β̂) + λ∥β̂∥1 ≤ Ln(β
(0)) + λ∥β(0)∥1 . (C.2)

Recall that we need to show ∥v̂∥22 = ∥β̂ − β(0)∥22 ≤ C(s log d)/n. We prove this by reductio ad
absurdum. As s = o(log d/n), we know C(s log d)/n < 1. Suppose that the claim of the theorem
is not true. Then there exists t ∈ (0, 1) such that C(s log d)/n < ∥tv̂∥22 ≤ 1. Call tv̂ = ṽ. By the
convexity of Rn(·) we have:

Rn(ṽ) = Rn(tv̂) = Rn(tv̂ + (1− t)0) ≤ tRn(v̂)︸ ︷︷ ︸
≤0

+(1− t)Rn(0)︸ ︷︷ ︸
=0

≤ 0 .
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The above chain of inequalities provides an immediate upper bound on Rn(ṽ). For the lower bound,
we use Bregman divergence:

0 ≥ Rn(ṽ) = Ln(β
(0) + ṽ) + λ∥β(0) + ṽ∥1 − Ln(β

(0))− λ∥β(0)∥1
= ⟨ṽ,∇Ln(β(0))⟩+ δLn(ṽ) + λ∥β(0) + ṽ∥1 − λ∥β(0)∥1
≥ δLn(ṽ)− ∥∇Ln(β(0))∥∞∥ṽ∥1 + λ∥β(0) + ṽ∥1 − λ∥β(0)∥1

Therefore, we have:

δLn(ṽ) + λ∥β(0) + ṽ∥1 ≤ ∥∇Ln(β(0))∥∞∥ṽ∥1 + λ∥β(0)∥1 .

Now suppose we choose λ such that ∥∇Ln(β(0))∥∞ ≤ λ/2 with high probability. We will specify
the choice of λ later in the proof. Under this choice we have:

δLn(ṽ) + λ∥β(0) + ṽ∥1 ≤ λ

2
∥ṽ∥1 + λ∥β(0)∥1

=⇒ δLn(ṽ) + λ∥ṽSc∥1 ≤ 3λ

2
∥ṽS∥1 . (C.3)

As δLn(ṽ) ≥ 0, we further have ∥ṽSc∥1 ≤ 3∥ṽS∥1, i.e. ṽ ∈ C(s, 3), where C(s, α) is defined as:

C(s, α) = {v ∈ Rp : ∥vSc∥1 ≤ α∥vS∥1, for some S with |S| = s} .

We next present a lemma, which establishes a lower bound on δLn(·) with high probability:
Lemma C.1. Under Assumptions 1 and 2, there exists some positive constants κl and C4 such that,

δLn(u) ≥ Lψ(T )∥u∥22

{
κl −

(
C4 log d

√
Ψ(p)

n

)
∥u∥1
∥u∥2

}
, ∀ ∥u∥2 ≤ 1 .

with probability at least 1 − (exp
(
1
2 log d+ 1− c4 log

2 dΨ(p)
)
+ 2exp(1− (c1 − 3/2) log d) +

2exp
(
3
2 log d+ 1− c2n

)
), where

Ψ(p) =
1− 2p

4p log ((1− p)/p)
,

and Lψ(T ) is a constant, same as in the proof of Proposition 2 of Negahban et al. (2009).

We defer the proof the lemme to the end to maintain the flow. Consider the event when the upper
bound of Lemma C.1 holds. As by definition ∥ṽ∥2 ≤ 1, applying Lemma C.1 on ṽ yields:

δLn(ṽ) ≥ Lψ(T )κl∥ṽ∥22 − Lψ(T )

(
C4 log d

√
Ψ(p)

n

)
∥ṽ∥1∥ṽ∥2 .

Using this lower bound on the Bregman divergence in equation equation C.3, we have:

Lψ(T )κl∥ṽ∥22 + λ∥ṽSc∥1 ≤ 3λ

2
∥ṽS∥1 + Lψ(T )

(
C4 log d

√
Ψ(p)

n

)
∥ṽ∥1∥ṽ∥2

≤ 3λ
√
s

2
∥ṽS∥2 + Lψ(T )

(
C4 log d

√
Ψ(p)

n

)
(∥ṽS∥1 + ∥ṽSc∥1)∥ṽ∥2

≤ 9

8Lψ(T )κl
sλ2 +

Lψ(T )κl
2

∥ṽS∥2 + 4Lψ(T )

(
C4 log d

√
Ψ(p)

n

)
(∥ṽS∥1)∥ṽ∥2 .

Changing sides we have:

Lψ(T )κl
2

∥ṽ∥22 + λ∥ṽSc∥1 ≤ 9

8Lψ(T )κl
sλ2 + 4Lψ(T )

(
C4 log d

√
Ψ(p)

n

)
(∥ṽS∥1)∥ṽ∥2

≤ 9

8Lψ(T )κl
sλ2 + 4Lψ(T )

√
s

(
C4 log d

√
Ψ(p)

n

)
∥ṽ∥22
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As under Assumption 4.3, we have s log d = op(
√
n/Ψ(p)), eventually it will be smaller than

Lψ(T )κl/4. Therefore, we have:

1

4
Lψ(T )κl∥ṽ∥22 + λ∥ṽSc∥1 ≤ 9

8Lψ(T )κl
sλ2 =⇒ ∥ṽ∥22 ≤ 9

2L2
ψ(T )κ

2
l

sλ2 . (C.4)

If we can show that a proper choice of λ is C2

√
log d/n, then we are done as in that we have:

∥ṽ∥22 ≤ 9C2

2L2
ψ(T )κ

2
l

s log d

n
≜ C

s log d

n

which contradicts the assumption that ∥ṽ∥2 > C
√
s log d/n. This will complete the proof. In the

following lemma, we show that, indeed C2

√
log d/n is a valid choice for λ:

Lemma C.2. Under Assumption 4.1, there are universal positive constants (c1, c2, c3) such that

∥∇Ln(β(0))∥∞ =

∥∥∥∥∥ 1n
n∑
i=1

Zi

{
Yi − ψ′(Z⊤

i β
(0))
}∥∥∥∥∥

∞

≤ C

√
log d

n
,

with probability 1− c1
(
d−c2 + n−1 + elogn−np/c3

)
.

Therefore, under the above lemma, we replace λ byC
√
log d/n in equation equation C.4 we complete

the proof. Proof of Lemma C.1 and Lemma C.2 can be found in Appendix D

D PROOF OF ADDITIONAL LEMMAS

D.1 PROOF OF LEMMA C.1

The proof of Lemma C.1 follows the basic structure of the proof of Proposition 2 of Negahban et al.
(2009). However, suitable modifications are necessary to incorporate network dependency. We first
state Proposition 2 of Negahban et al. (2009) here for the convenience of the readers:
Proposition D.1 (Proposition 2 of Negahban et al. (2009)). Consider the logistic loss (negative
log-likelihood) function:

Ln(β) =
1

n

∑
i

{
−YiZ

⊤
i β + log (1 + eZ

⊤
i β)
}

Define the Bregman divergence of Ln as follows:

δLn(u) = Ln(β
∗ + u)− Ln(β

∗)− ⟨u,∇Ln(β∗)⟩ = 1

n

∑
i

ψ′′(Z⊤
i β

∗ + vZ⊤
i u)(Z

⊤
i u)

2 .

where ψ(x) = log (1 + ex). Then we have:

δLn(u) ≥ κ1∥u∥2

{
∥u∥2 − κ2

√
log d

n
∥u∥1

}
∀ ∥u∥2 ≤ 1

with probability at least 1− c1e
−c2n for some constant κ1, κ2.

However, in their proof, the authors heavily used that Zi’s are i.i.d., which is not longer true in our
situation, as Zi’s the rows of AX/

√
np. Below, we highlight the modification of the steps that are

needed for the proof:

Modification 1: We first need to show that there exists some constant κl (not depending
on (n, p, d)) such that

v⊤E

[
1

n

∑
i

Z⊤
i Zi

]
v = v⊤

(
1

n2p
E[X⊤A⊤AX]

)
v ≥ κl∥v∥22

for all v ∈ Rd. It is easy to see that E[X⊤A⊤AX]/(n2p) = ΣX . Therefore, as long as we assume
that λmin(ΣX) ≥ κl, we are done. The lower bound on the minimum eigenvalue of ΣX follows from
Assumption 4.1.
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Remark D.2. Suppose we do not know p. Then, we can estimate it from separate data (by data
splitting) independent of current data. An application of Hoeffding’s inequality yields:

P (|p̂− p| ≥ t/n) ≤ Ce−ct
2

.

Taking t = np and t = np/2 (which goes to infinity as per Assumption 4.2), we have:

P(p/2 ≤ p̂ ≤ 2p) ≥ 1− C1e
−cn2p2 ↑ 1 .

Therefore, we can perform the entire analysis conditioning on this event.
Remark D.3. As per Remark D.2, if we condition on the event p̂ ≤ 2p, then we have on that event:

v⊤E
[(

1

n2p̂
E[X⊤A⊤AX]

)]
v ≥ κl

2
∥v∥22 .

Furthermore, if we add self-loop, it is easy to see that

E[X⊤A⊤AX] =

(
1− 1− p

np

)
ΣX

As the constant goes to 1 as n ↑ ∞, we have:

v⊤E
[(

1

n2p̂
E[X⊤A⊤AX]

)]
v ≥ κl

4
∥v∥2 ∀ large n .

Modification 2: To conclude equation (72) of Negahban et al. (2009), we need i) an upper bound on
E[(u⊤Zi)4] and ii) a tail bound P(|u⊤Zi| ≥ t). Getting the tail bound is easy, as we can apply the
Cauchy-Schwarz inequality:

P(|u⊤Zi| ≥ t) ≤ E[(u⊤Zi)2]
t2

≤ λmax(ΣX)

t2
.

Now we need to bound the fourth moment (in fact, any 2 + δ moment is sufficient):

E[(u⊤Zi)4]

= E


 1
√
np

n∑
j=1

aij(X
⊤
j u)

4


= E


 1
√
np

n∑
j=1

(aij − p+ p)(X⊤
j u)

4


≤ 8

E


 1
√
np

n∑
j=1

(aij − p)(X⊤
j u)

4
+ E


√

p
√
n

n∑
j=1

(X⊤
j u)

4



= 8

 1

n2

∑
j

E

[(
aij − p
√
p

)4

(X⊤
j u)

4

]
+

1

n2

∑
j ̸=j′

E

[(
aij − p
√
p

)2

(X⊤
j u)

2

]
E

[(
aij − p
√
p

)2

(X⊤
j u)

2

]

+p2
1

n2

∑
j

E[(X⊤
j u)

4] + p2
1

n2

∑
j ̸=j′

E[(X⊤
j u)

2]E[(X⊤
j′u)

2]


≤
{

1

np
E[(X⊤u)4] +

(
E[(X⊤u)2

)2
+
p2

n
E[(X⊤u)4] + p2

(
E[(X⊤u)2

)2}
which is finite as E[(X⊤u)4] is finite (X is sub-gaussian) and np ↑ ∞.
Remark D.4. If p is unknown, then we can modify the first step by conditioning on the event p̂ ≥ p/2
and have:

E


 1√

np̂

n∑
j=1

aij(X
⊤
j u)

4
 ≤ 4E


 1
√
np

n∑
j=1

aij(X
⊤
j u)

4
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The rest of the proof will remain the same. Furthermore, if we add self-loop, then we have to single
the term aii(X

⊤
i u)

2 out as now aii = 1. However, it will add another term of other 1/(n2p2) to the
above bound, which is asymptotically negligible.

Modification 3: We next show an analog of equation (76) of Negahban et al. (2009). Following the
notations of Negahban et al. (2009), define a random process Z(t) as:

Z(t) = sup
u∈S2(1)∩B1(t)

∣∣∣∣∣ 1n
n∑
i=1

{gu(Zi)− E[gu(Zi)]}

∣∣∣∣∣ ≜ Ft(Z1, . . . , Zn) .

We will apply bounded difference inequality (Theorem 6.2 of Boucheron et al. (2003)). Note that
conditional of X, Zi’s are independent random vectors. Furthermore, for any 1 ≤ i ≤ n and for any
Z ′
i ̸= Zi:

Ft(Z1, . . . , Zi−1,Zi, . . . , Zn)− Ft(Z1, . . . , Zi−1, Z
′
i, . . . , Zn)

≤ 1

n
sup

u∈S2(1)∩S1(t)
|gu(Z ′

i)− E[gu(Z ′
i)]| ≤

τ2

2n
[∵ gu(·) ≤ τ2/4].

Therefore, by bounded difference inequality:

P (Z(t) ≥ E[Z(t) | X] + t | X) ≤ exp

(
−8nt2

τ4

)
As the right-hand side does not depend on the value of X, we can further conclude the following by
taking expectations with respect to X on both sides:

P (Z(t) ≥ E[Z(t) | X] + t) ≤ exp

(
−8nt2

τ4

)
. (D.1)

Next, using symmetrization and Rademacher complexity bounds, we bound E[Z(t) | X]. For
notational simplicity let us define:

Vn = max
1≤j≤p

∣∣∣∣∣ 1√
n

n∑
k=1

Xkj

∣∣∣∣∣
Γn = max

1≤j≤d

1

n

n∑
k=1

X2
kj .

Now, as we have already pointed out, conditional on X, Zi’s are i.i.d. random vectors. Therefore,
the symmetrization argument holds, and following the same line of argument as of Negahban et al.
(2009), we can conclude an analog of their equation (78):

E[Z(t) | X] ≤ 8K3tEϵ,Z

[
max
1≤j≤d

∣∣∣∣∣ 1n
n∑
i=1

ϵiZij1|Z⊤
i β∗|≤T

∣∣∣∣∣ | X
]

=
8K3t√
n

EZ|X

[
Eϵ|Z,X

[
max
1≤j≤d

∣∣∣∣∣ 1√
n

n∑
i=1

ϵiZij1|Z⊤
i β∗|≤T

∣∣∣∣∣
]]

First, observe that {ϵ1, . . . , ϵn} are Rademacher random variables (which are also subgaussian with
sub-gaussian constant being 1), and therefore, conditionally on Z,

1√
n

n∑
i=1

ϵiZij1|Z⊤
i β∗|≤T is subgaussian with norm

√√√√ 1

n

n∑
i=1

Z2
ij1|Z⊤

i β∗|≤T ≤

√√√√ 1

n

n∑
i=1

Z2
ij .

Therefore, from standard probability tail bound calculation, we have:

Eϵ|Z,X

[
max
1≤j≤d

∣∣∣∣∣ 1√
n

n∑
i=1

ϵiZij1|Z⊤
i β∗|≤T

∣∣∣∣∣
]
≤
√
2 log d max

1≤j≤d

√√√√ 1

n

n∑
i=1

Z2
ij .
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Therefore, we have:

E[Z(t) | X] ≤ 8
√
2K3t

√
log d

n
E

 max
1≤j≤d

√√√√ 1

n

n∑
i=1

Z2
ij | X

 (D.2)

Recall that by define Zij = (
∑
k AikXkj)/

√
np, which is not centered conditional on X. Therefore

we first center it:

Zij =
1

√
np

∑
k

AikXkj =
1

√
np

∑
k

(Aik − p)Xkj +

√
p

n

∑
k

Xkj ≜ Z̄ij +

√
p

n

∑
k

Xkj .

Using this we have:

E

 max
1≤j≤d

√√√√ 1

n

n∑
i=1

Z2
ij | X

 ≤ E

 max
1≤j≤d

√√√√ 1

n

n∑
i=1

Z̄2
ij | X

+
√
p max
1≤j≤d

∣∣∣∣∣ 1√
n

∑
k

Xkj

∣∣∣∣∣
= E

 max
1≤j≤d

√√√√ 1

n

n∑
i=1

Z̄2
ij | X

+
√
pVn

≤

√√√√E

[
max
1≤j≤d

1

n

n∑
i=1

Z̄2
ij | X

]
+
√
pVn . (D.3)

Remark D.5. If we have p̂, then again, at the bound in equation equation D.3, we have an additional
factor of

√
2 for replacing p̂ by p.

We next establish an upper bound on the conditional expectation of the maximum of the mean of
Z̄2
ij . We first claim that Z̄ij is a SG(σj) random variable with the value of σj defined in equation

equation D.4 below. To see this, first note that, from Theorem 2.1 of Ostrovsky & Sirota (2014), we
know (Aik − p) is SG(

√
2Q(p)). Therefore, we have:

Z̄ij =
1

√
np

∑
k

(Aik − p)Xkj ∈ SG

(√
2Q2(p)

p

1

n

∑
k

X2
kj

)
≜ SG(σj) . (D.4)

Remark D.6. The same sub-gaussian bound continues to hold even under self-loop as (1− p) is
sub-gaussian with constant ≤ 2Q2(p).

Let µj = E[Z̄2
ij |X]. Then, by equation (37) of Honorio & Jaakkola (2014), we know Z̄2

ij − µj is a
sub-exponential random variable, in particular:

Z̄2
ij − µj ∈ SE

(√
32σj , 4σ

2
j

)
.

Hence we have, by equation (2.18) of Wainwright (2019) (we use the version for the two-sided bound
here):

P

(∣∣∣∣∣ 1n
n∑
i=1

(
Z̄2
ij − µj

)∣∣∣∣∣ ≥ t

)
≤ exp

(
− 1

8σ2
j

min

{
nt2

8
, nt

})
. (D.5)

Going back to equation D.3, we have:

E

[
max
1≤j≤d

1

n

n∑
i=1

Z̄2
ij | X

]
= E

[
max
1≤j≤d

{(
1

n

n∑
i=1

(Z̄2
ij − µj)

)
+ µj

}
| X

]

≤ E

[
max
1≤j≤d

∣∣∣∣∣ 1n
n∑
i=1

(Z̄2
ij − µj)

∣∣∣∣∣ | X
]
+ max

1≤j≤d
µj

Now, bound the first term using the concentration inequality equation D.5. Towards that end, define
σ∗ = maxj σj and observe that σ∗ =

√
2Q2(p)/p

√
Γn.

E

[
max
1≤j≤d

∣∣∣∣∣ 1n
n∑
i=1

(Z̄2
ij − µj)

∣∣∣∣∣ | X
]
≤ 8max{σ∗

√
log d, σ2

∗ log d} .
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Furthermore, observe that:

µj = E[Z̄2
ij | X] = E

( 1
√
np

∑
k

(Aik − p)Xkj

)2

| X

 = (1− p)
1

n

∑
k

X2
kj ,

which implies, max1≤j≤d µj = (1− p)Γn. Using these bounds in equation equation D.3, we have:

E

 max
1≤j≤d

√√√√ 1

n

n∑
i=1

Z2
ij | X

 ≤
√
max{σ∗

√
log d, σ2

∗ log d}+ (1− p)Γn +
√
pVn (D.6)

Remark D.7. Here also the constant will change by an additional factor of
√
2, see Remark D.5.

This, along, with equation equation D.2,yields:

E[Z(t) | X] ≤ Ct

√
log d

n

(√
max{σ∗

√
log d, σ2

∗ log d}+ (1− p)Γn +
√
pVn

)
≜ Ct

√
log d

n
g(X, p, d) . (D.7)

Using this in the inequality equation D.1 yields:

P

(
Z(t) ≥ Ct

√
log d

n
g(X, p, d) + y

)
≤ exp

(
−8ny2

τ4

)
. (D.8)

We next provide an upper bound for g(X, p, d) term. Note that in the expression of g(X, p, d), there
are two key terms: Γn, Vn. Therefore, if we can obtain an upper bound on them individually, we can
obtain an upper bound on g(X, p, d). We start with Vn; for any fixed j, Xkj’s are i.i.d sub-gaussian
random variable with constant σ2

X . Therefore, we have:

P

(∣∣∣∣∣ 1√
n

n∑
k=1

Xkj

∣∣∣∣∣ ≥ t

)
≤ 2e

− t2

2σ2
X

As a consequence, by union bound:

P(Vn ≥ t) = P

(
max
j

∣∣∣∣∣ 1√
n

n∑
k=1

Xkj

∣∣∣∣∣ ≥ t

)
≤ 2e

log d− t2

2σ2
X

Therefore, choosing t = σX
√
2c1 log d (where c1 ≥ 2), we have:

Vn ≤ σX
√
2c1 log d) with probability ≥ 1− 2exp(−(c1 − 1) log d) . (D.9)

Call this event Ωn,X,1. Our next target is Γn which can be further upper bounded by:

Γn = max
j

1

n

n∑
k=1

X2
kj ≤ max

j

1

n

n∑
k=1

(X2
kj − ΣX,jj) + max

j
ΣX,jj ≜ Γ̄n +max

j
ΣX,jj .

As we have assumed maxj ΣX,jj ≤ C1 for some constant C1, we need to bound Γ̄n. Here, we also
use the fact that X2

jk − ΣX,jj ∈ SE(
√
32σX , 4σ

2
X). Therefore, by equation (2.18) of Wainwright

(2019) we have:

P

(∣∣∣∣∣ 1n
n∑
k=1

(X2
kj − ΣX,jj)

∣∣∣∣∣ ≥ t

)
≤ 2exp

(
− n

8σ2
X

min

{
t2

8
, t

})
Therefore, by union bound:

P

(
max
1≤j≤d

∣∣∣∣∣ 1n
n∑
k=1

(X2
kj − ΣX,jj)

∣∣∣∣∣ ≥ t

)
≤ 2exp

(
log d− n

8σ2
X

min

{
t2

8
, t

})
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Choosing t = maxj ΣX,jj , we have:

Γn ≤ 2max
j

ΣX,jj ≤ 2C1 with probability ≥ 1− 2exp(log d− c2n) . (D.10)

Call this event Ωn,X,2. Now, going back to the definition of g(X, p, d) in equation equation D.7, we
first note that, on the event Ωn,X,1 ∩ Ωn,X,2:

σ∗ =

√
2Q2(p)

p
Γn ≤ 2

√
C1Q2(p)

p
≜ 2
√
C1Ψ(p) .

It is immediate from the definition of Q(p) that Ψ(p) ∼ 1/(−4p log p) for p close to 0. Therefore for
all small p and large d, σ2

∗ log d ≥ 1 and consequently max{σ∗
√
log d, σ2

∗ log d} = σ2
∗ log d. Hence,

we have on the event Ωn,X,1 ∩ Ωn,X,2:

g(X, p, d) ≤ C2

√
Ψ(p) log d+ 2C1 + σX

√
2c1p log d .

It is immediate that the dominating term is the first term, which implies:

g(X, p, d) ≤ 3C2

√
Ψ(p) log d .

We now use this bound in equation equation D.1. Note that:

P (Z(t) ≥ E[Z(t) | X] + y)

≥ P (Z(t) ≥ E[Z(t) | X] + y,Ωn,X,1 ∩ Ωn,X,2)

≥ P

(
Z(t) ≥ 3CC2t log d

√
Ψ(p)

n
+ y,Ωn,X,1 ∩ Ωn,X,2

)

≥ P

(
Z(t) ≥ 3CC2t log d

√
Ψ(p)

n
+ y

)
+ P(Ωn,X,1 ∩ Ωn,X,2)− 1

Therefore,

P

(
Z(t) ≥ 3CC2t log d

√
Ψ(p)

n
+ y

)
≤ exp

(
−8ny2

τ4

)
+ P((Ωn,X,1 ∩ Ωn,X,2)

c)

≤ exp

(
−8ny2

τ4

)
+ 2exp(−(c1 − 1) log d) + 2exp(log d− c2n) .

(D.11)

Choosing y = C3t log d
√
Ψ(p)/n, we have:

P

(
Z(t) ≥ 3CC2t log d

√
Ψ(p)

n
+ C3t log d

√
Ψ(p)

n

)

≤ exp

(
−8C2

3 t
2 log2 dΨ(p)

τ4

)
+ 2exp(−(c1 − 1) log d) + 2exp(log d− c2n) . (D.12)

Modification 4: Our last modification, not modification per se, but an application of peeling argument.
Infact we want an upper bound on the event E defined as:

E =

{
Z(t) ≥ 3eCC2t log d

√
Ψ(p)

n
+ C3et log d

√
Ψ(p)

n
for some t ∈ [1,

√
d]

}
.

Note that t denotes the ℓ1 norm of a a vector u such that ∥u∥2 = 1. Therefore, t ∈ [1,
√
d]. Also

recall that Z(t) is the suprema of the empirical process over all vectors u such that ∥u∥2 = 1 and
∥u∥1 ≤ t. In peeling, we write E as union of disjoint events. Define Ej as:

Ej =

{
Z(t) ≥ 3eCC2t log d

√
Ψ(p)

n
+ C3et log d

√
Ψ(p)

n
for some t ∈ [

√
d/ej ,

√
d/ej−1]

}
.
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Therefore,

E ⊆ ∪⌈ 1
2 log d⌉
j=1 Ej =⇒ P(E) ≤

⌈ 1
2 log d⌉∑
j=1

P(Ej) .

Now observe that, for any t ∈ [
√
d/ej ,

√
d/ej−1], we have Z(t) ≤ Z(

√
d/ej−1) and also

3eCC2t log d

√
Ψ(p)

n
+ C3et log d

√
Ψ(p)

n
≥ 3eCC2

√
d

ej
log d

√
Ψ(p)

n
+ C3e

√
d

ej
log d

√
Ψ(p)

n

≥ 3CC2

√
d

ej−1
log d

√
Ψ(p)

n
+ C3

√
d

ej−1
log d

√
Ψ(p)

n
.

Therefore:

P(Ej) ≤ P

(
Z

( √
d

ej−1

)
≥ 3CC2

√
d

ej−1
log d

√
Ψ(p)

n
+ C3

√
d

ej−1
log d

√
Ψ(p)

n

)

≤ exp

(
−8C2

3d log
2 dΨ(p)

e2j−2τ4

)
+ 2exp(−(c1 − 1) log d) + 2exp(log d− c2n)

≤ exp
(
−c4 log2 dΨ(p)

)
+ 2exp(−(c1 − 1) log d) + 2exp(log d− c2n)

Hence:

P(E) ≤ exp

(
1

2
log d+ 1− c4 log

2 dΨ(p)

)
+2exp(1− (c1 − 3/2) log d)+2exp

(
3

2
log d+ 1− c2n

)
.

On the event Ec (which is a high probability event):

Z(t) ≤ 3eCC2t log d

√
Ψ(p)

n
+ C3et log d

√
Ψ(p)

n
for all t ∈ [1,

√
d] .

Now let us conclude with the entire roadmap of the proof. First, following the same line of argument
as of Negahban et al. (2009) we show that

δLn(u) ≥ Lψ(T )
1

n

∑
i

ϕτ

(
(u⊤Zi)

21|Z⊤
i β∗|≤T

)
= Lψ(T )∥u∥2

1

n

∑
i

ϕτ

((
u⊤Zi/∥u∥

)2
1|Z⊤

i β∗|≤T

)
= Lψ(T )∥u∥2Pn(gu/∥u∥(Z))
= Lψ(T )∥u∥22

{
P (gu/∥u∥(Z)) + (Pn − P )gu/∥u∥(Z)

}
We have proved in Modification 1 that P (gu/∥u∥(Z)) ≥ κl. Therefore,

δLn(u) ≥ Lψ(T )∥u∥22
{
κl + (Pn − P )gu/∥u∥(Z)

}
Now for any u,

(Pn − P )gu/∥u∥(Z) ≤ Z

(∥∥∥∥ u

∥u∥2

∥∥∥∥
1

)
≤

(
3eCC2 log d

√
Ψ(p)

n
+ C3e log d

√
Ψ(p)

n

)
∥u∥1
∥u∥2

.

Hence, we conclude that:

δLn(u) ≥ Lψ(T )∥u∥22

{
κl −

(
C4 log d

√
Ψ(p)

n

)
∥u∥1
∥u∥2

}
.
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D.2 PROOF OF LEMMA C.2

Recall that we have:
∇Ln(β(0)) =

1

n

∑
i

Zi

{
Yi − ψ′(Z⊤

i β
(0))
}
.

Now consider the jth element of ∇Ln(β(0)), i.e.,

∇Ln(β(0))j =
1

n

∑
i

Zij

{
Yi − ψ′(Z⊤

i β
(0))
}
.

First, we show that conditional on Z1j , . . . , Znj , the terms are mean 0 (which is true from the
definition of Yi), independent subgaussian random variable. The subgaussianity follows from the
fact that:∥∥∥∥∥∑

i

Zij

{
Yi − ψ′(Z⊤

i β
(0))
}∥∥∥∥∥

2

ψ2

≤ C
∑
i

Z2
ij∥Yi − ψ′(Z⊤

i β
(0))∥2ψ2

≤ C
∑
i

Z2
ij .

Here C is some absolute constant. Therefore, we have:

P
(
max1≤j≤d

∣∣∣ 1√
n

∑
i Zij

{
Yi − ψ′(Z⊤

i β
(0))
}∣∣∣ ≥ t | Z

)
≤ c1exp

(
log d− c2

t2

max1≤j≤d
1
n

∑n
i=1 Z2

ij

)
(D.13)

We next bound the term in the tail bound max1≤j≤d(
∑n
i=1 Z

2
ij)/n. Towards that end, first observe

that:

max
1≤j≤d

1

n

n∑
i=1

Z2
ij = max

1≤j≤d

1

n
Z⊤

∗jZ∗j = max
1≤j≤d

1

n2p
e⊤j X

⊤A⊤AXej

= max
1≤j≤d

1

n
e⊤j X

(
A⊤A

np

)
X⊤ej .

Remark D.8. If p is unknown, i.e., we have p̂, then, conditional on the event p/2 ≤ p̂ ≤ 2p, the
above equality will be replaced by an inequality with an additional factor of 2.

As we know E[X⊤A⊤AX]/(n2p) = ΣX and if we define σ+ = maxj ΣX,jj , we have:

max
1≤j≤d

1

n

n∑
i=1

Z2
ij ≤ max

1≤j≤d

[
1

n
e⊤j X

(
A⊤A

np

)
X⊤ej − ΣX,jj

]
+ σ+ .

From Hanson-Wright inequality, we have for any matrix Q (independent of X):

P
(

max
1≤j≤d

∣∣X⊤
∗jQX∗j − E[X⊤

∗jQX∗j ]
∣∣ ≥ t

)
≤ exp

(
−cmin

( t2

κ4u∥Q∥2F
,

t

κ2u∥Q∥2

))
.

Here Q = (A⊤A)/n2p. We use some concentration results on Q in the rest of the proof. For
notational convenience, set Ã = A/

√
np. We have the following concentration bound:

Lemma D.9. For the Frobenous norm, we have with probability ≥ 1− n−1:

∥Ã⊤Ã∥2F ≤ E[∥Ã⊤Ã∥2F ] + n+ n2p2 ≤ 2(n+ n2p2) .

For the operator norm, we have with probability ≥ 1− elogn−
np
c :

∥Ã− E[Ã]∥op ≤ 1 + 3
√
2 =⇒ ∥Ã∥op ≤ 2

√
np .

Remark D.10. This lemma remains the same for the self-loop.

First, assume the above lemma is true, and consider the event so that the upper bound holds. Call that
event E . On this event we have:

P
(

max
1≤j≤d

1

n

∣∣X⊤
∗jQX∗j − E[X⊤

∗jQX∗j ]
∣∣ ≥ t | E

)
≤ exp

(
log d− cmin

( n2t2

2κ4u(n+ n2p2)
,

t

2κ2up

))
.
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Choosing

t = Kmax

{√
log d

n
+ p2 log d, p log d

}
we conclude:

max
1≤j≤d

1

n

∣∣X⊤
∗jQX∗j − E[X⊤

∗jQX∗j ]
∣∣ ≤ Kmax

{√
log d

n
+ p2 log d, p log d

}
≤ Kmax

{√
log d

n
, p log d

}
.

Therefore, we have

max
1≤j≤d

1

n

n∑
i=1

Z2
ij ≤ σ+ +Kmax

{√
log d

n
, p log d

}
≤ 2σ+

with probability ≥ 1− n−1 − elogn−
np
c . Call this event E1. Therefore, we have:

P

(
max
1≤j≤d

∣∣∣∣∣ 1√
n

∑
i

Zij

{
Yi − ψ′(Z⊤

i β
(0))
}∣∣∣∣∣ ≥ t

)

≤ P

(
max
1≤j≤d

∣∣∣∣∣ 1√
n

∑
i

Zij

{
Yi − ψ′(Z⊤

i β
(0))
}∣∣∣∣∣ ≥ t | Z ∈ E1

)
+ P(Ec1)

≤ c1exp

(
log d− c2t

2

2σ+

)
+

1

n
+ exp

(
log n− np

c

)
.

Choosing t = K
√
log d we complete the proof.

D.3 PROOF OF LEMMA D.9

Upper bound on ∥Ã∥op: To establish a bound on ∥Ã∥op, we first center it:

∥Ã∥op = ∥Ã− E[Ã]∥op + ∥E[Ã]∥op .

A bound on ∥E[Ã]∥op directly follows from the definition:

∥E[Ã]∥op =
1

√
np

∥E[A]∥op =
1

√
np

∥p(11⊤ − I)∥op ≤ √
np . (D.14)

Now we bound ∥Ã − E[Ã]∥op. As Ã = A/
√
np, it is enough to bound ∥A − E[A]∥op. Using

Corollary 3.12 and Remark 3.13 of Bandeira & Van Handel (2016) (with ϵ = 1/2), which implies:

P
(
∥A− E[A]∥op ≥ 3

√
2σ̃ + t

)
≤ e

logn− t2

cσ2
∗

where

σ̃ = max
i

√∑
j

Var(Ãij) =
√
np(1− p) ≤ √

np, σ∗ = max
i,j

|Aij | ≤ 1 .

Therefore, we obtain:

P
(
∥A− E[A]∥op ≥ 3

√
2
√
np+ t

)
≤ elogn−

t2

c

Taking t =
√
np, we get:

P
(
∥A− E[A]∥op ≥ (1 + 3

√
2)
√
np
)
≤ elogn−

np
c

As Ã = A/
√
np, we have:

P
(
∥Ã− E[Ã]∥op ≥ (1 + 3

√
2)
)
≤ elogn−

np
c (D.15)
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Combining the bound on equation equation D.14 and equation D.15 we have with probability
≥ 1− elogn−

np
c :

∥Ã∥op ≤ √
np+ (1 + 3

√
2) ≤ 2

√
np . (D.16)

Finding a bound on ∥Ã⊤Ã∥2F : As before, we first find the expected value of ∥Ã⊤Ã∥2F . For any
1 ≤ i ̸= j ≤ n:

E[(Ã⊤Ã)2ij ] =
1

n2p2
E[(A⊤A)2ij ] =

1

n2p2
E

( n∑
k=1

AkiAkj

)2


=
1

n2p2

 n∑
k=1

E[(AkiAkj)
2] +

∑
k ̸=l

E[(AkiAkj)(AliAlj)]


≤ 1

n2p2
(np2 + n2p4) =

1

n
+ p2 .

Now for 1 ≤ i = j ≤ n:

E[(Ã⊤Ã)2ii] =
1

n2p2
E

( n∑
k=1

A2
ki

)2


=
1

n2p2

∑
k

E[A4
ki] +

∑
k ̸=l

E[A2
kiA

2
li]


≤ 1

n2p2
(np+ n2p2) =

1

np
+ 1 .

Therefore, we have:

E[∥Ã⊤Ã∥2F ] =
∑
i

E[(Ã⊤Ã)2ii] +
∑
i ̸=j

E[(Ã⊤Ã)2ij ]

≤ n

(
1

np
+ 1

)
+ n2

(
1

n
+ p2

)
≤ n+

1

p
+ n2p2 ≤ n+ n2p2 .

The last inequality follows from p ≥ n−1. Next, we establish a bound on the variance:

Var
(
∥Ã⊤Ã∥2F

)
=

1

n4p4
Var(∥A⊤A∥2F )

=
1

n4p4
Var

∑
i,j

(A⊤A)2i,j


=

1

n4p4

∑
i,j

Var
(
(A⊤A)2i,j

)
+

∑
(i,j) ̸=(k,l)

Cov((A⊤A)2i,j , (A
⊤A)2k,l)


≜

1

n4p4
(T1 + T2) .

We bound T1 and T2 separately. For that, we use some basic bounds on the raw moments of a
binomial random variable; if X ∼ Ber(n, p), then E[Xk] ≤ Cnkpk for all k ∈ {1, 2, 3, 4}, for
some universal constant C as long as np ↑ ∞. Observe that (A⊤A)ii ∼ Ber(n − 1, p) and
(A⊤A)ij ∼ Ber(n− 2, p2) for i ̸= j. For T1 we have:∑

i,j

Var
(
(A⊤A)2i,j

)
=

n∑
i=1

Var
(
(A⊤A)2ii

)
+
∑
i ̸=j

Var
(
(A⊤A)2ij

)
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≤
∑
i

E[(A⊤A)4ii] +
∑
i̸=j

E[(A⊤A)4ij ]

≤ C(n5p4 + n6p8) .

Next, we bound T2, i.e., the covariance term. Note that if (i, j, k, l) all are distinct, then covariance is
0 as the terms are independent. Therefore, we only consider the cases when there are three or two
distinct indices. We first deal with the terms of two distinct indices, i.e., Cov((A⊤A)2ii, (A

⊤A)2ij)

where i ̸= j. There are almost n2 many terms of this form. For each of these types of terms:

Cov((A⊤A)2ii, (A
⊤A)2ij) = E

[
(A⊤A)2ii(A

⊤A)2ij
]
− E

[
(A⊤A)2ii

]
E
[
(A⊤A)2ij

]
≤ E

[
(A⊤A)2ii(A

⊤A)2ij
]

= E


 n∑
k,k′=1

A2
kiAk′iAk′j

2


= E


∑

k

A3
kiAkj +

∑
k ̸=k′

A2
kiAk′iAk′j

2


= E


∑

k

AkiAkj +
∑
k ̸=k′

AkiAk′iAk′j

2


≤ 2

E

(∑
k

AkiAkj

)2
+ E


∑
k ̸=k′

AkiAk′iAk′j

2



≤ 2C(n2p4 + n4p6) .

Therefore, we have: ∑
i ̸=j

Cov((A⊤A)2ii, (A
⊤A)2ij) ≤ 2C(n4p4 + n6p6) . (D.17)

Next, we bound the covariance terms of the form Cov((A⊤A)2ij , (A
⊤A)2jk), i.e. two terms share an

index with i ̸= j ̸= k. There are almost n3 such terms. For each term:
Cov((A⊤A)2ij , (A

⊤A)2jk) ≤ E
[
(A⊤A)2ij(A

⊤A)2jk
]

= E


∑

l,l′

AliAljAl′iAl′k

2


= E


∑

l

A2
liAljAlk +

∑
l ̸=l′

AliAljAl′iAl′k

2


= E


∑

l

AliAljAlk +
∑
l ̸=l′

AliAljAl′iAl′k

2


= 2

E

(∑
l

AliAljAlk

)2
+ E


∑
l ̸=l′

AliAljAl′iAl′k

2



≤ 2C(n2p6 + n4p8) .

As there are almost n3 such terms, we have:∑
i ̸=j ̸=k

Cov((A⊤A)2ij , (A
⊤A)2jk) ≤ 2C(n5p6 + n7p8) (D.18)
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Therefore, combining equation D.17 and equation D.18, we have:

T2 ≤ C1

(
n4p4 + n6p6 + n5p6 + n7p8

)
.

Combining the bounds on the variance and the covariance term, we conclude:

Var(∥A⊤A∥2F ) ≤ C2(n
5p4 + n6p8 + n4p4 + n6p6 + n5p6 + n7p8) ≤ C3(n

5p4 + n6p6 + n7p8) .

Here the last equality follows from the fact that n5p4 ≥ n4p4, n6p6 ≥ n6p8 and n6p6 ≥ n4p4 (as
np ≥ 1). As a consequence, we have:

Var(∥Ã⊤Ã∥2F ) =
1

n4p4
Var(∥A⊤A∥2F ) ≤ C3(n+ n2p2 + n3p4) .

The last step involves an application of Chebychev’s inequality:

P
(
∥Ã⊤Ã∥2F − E[∥Ã⊤Ã∥2F ] ≥ t

)
≤ Var(∥Ã⊤Ã∥2F )

t2
.

Taking t = n+ n2p2, we have:

P
(
∥Ã⊤Ã∥2F − E[∥Ã⊤Ã∥2F ] ≥ n+ n2p2

)
≤ Var(∥Ã⊤Ã∥2F )

(n+ n2p2)2
≤ C3

n(1 + np2 + n2p4)

n2(1 + 2np2 + n2p4)
≤ C3

n
.

Therefore, with probability ≥ 1− n−1:

∥Ã⊤Ã∥2F ≤ E[∥Ã⊤Ã∥2F ] + n+ n2p2 ≤ 2(n+ n2p2) .

E EXTENSION OF THEOREM 4.4 UNDER MULTIPLE SOURCE

In Theorem 4.4, we have established the convergence guarantee of β̂ on a domain under network
dependency. This section presents some ideas for extending our analysis when we have data from
multiple related source domains. We have conjectured a theorem (Theorem E.10) and lay down
the steps needed to prove it. There is one conjecture (Conjecture E.8), which, if true, will lead to a
complete proof of the theorem.

We start a simple setting with one source domain A and one target domain. Consider the transfer
learning setup, in which we have n1 observations from the source domain and n0 observations from
the target domain. We assume that p0 = p1 = p. Define Z = (AX)/

√
np ∈ Rn×d, and Zi is the ith

row of Z. Given the logistic regression, the inverse link function (McCullagh, 2019) for logit link is
ψ′(u) = logistic(u), where ψ(u) = log(1 + eu). The method is similar to the proposed method, i.e.,
we have a two-step estimator:

1. Step 1: First estimate β̂A as:

β̂A = argminβ − 1

nA + n0

∑
k∈{0,A}

{
(Y(k))⊤Z(k)β − log (1 + eZ

⊤
i β)
}
+ λβ ∥β∥1

2. Step 2: Then estimate the correction δ̂A only based on the target observations:

δ̂A = argminδ − 1

n0

{
(Y(0))⊤Z(0)(β̂A + δ)− log (1 + eZ

⊤(β̂A+δ))
}
+ λδ ∥δ∥1 .

Our final estimator for the target coefficient β(0) is β̂(0) = β̂A + δ̂A. We must extend Theorem 1 of
Tian & Feng (2023) to handle the network dependency. There are two key steps in the proof: i) to
establish the rate of convergence of β̂A (which is the estimator of βA obtained by combining all the
observations from both the set of transferable source A and the target domain, and ii) then establish
the rate of convergence of the β(0) is β̂(0) = β̂A + δ̂A, where δ̂A is obtained using only the target
observations.

We will use bolded ψ′ hereafter to denote the vector with each component from the scalar function ψ′

with corresponding variables. Define ûA = β̂A − βA, D =
{(

Z(k),Y(k)
)}

k∈{0,A}
, and L(β,D)
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is the negative log likelihood on the combined sample D:

L(β,D) = − 1

nA + n0

∑
k∈{0,A}

(
Y(k)

)T
Z(k)β +

1

nA + n0

∑
k∈{0,A}

nk∑
i=1

ψ
(
βTZ

(k)
i

)
∇L(β,D) = − 1

nA + n0

∑
k∈{0,A}

(
Z(k)

)T
Y(k) +

1

nA + n0

∑
k∈{0,A}

(
Z(k)

)T
ψ′
(
βTZ

(k)
i

)
δL(u,D) = L

(
βA + u,D

)
− L

(
βA)−∇L

(
βA)T u.

We present useful assumptions and lemmas first.
Assumption E.1. (SubGaussian Assumption.) For any a ∈ Rp,aTX(k) are κu∥a∥22-subGaussian
variables with zero mean for all k ∈ {0,A}, where κu is a positive constant.

Assumption E.2. (Positive Definite Covariance Assumption.) Denote the covariance matrix of X(k)

as Σ(k)
X , k ∈ {0,A}, we require that λmin

(
Σ

(k)
X

)
≥ κl > 0, where κl is a positive constant.

Assumption E.3. (Connectivity Bound of Network.) pk > lognk

nk
, k ∈ {0,A}.

Assumption E.4. Denote

Σ̃h =
∑

k∈{0,A}

αkE
[
S(k)

(
S(k)

)T ∫ 1

0

ψ′′
((

S(k)
)T
β(0) + t

(
S(k)

)T (
βA − β(0)

))
dt

]

and Σ̃
(k)
h = E

[∫ 1

0
ψ′′
((

S(k)
)T
β(0) + t

(
Z(k)

)T (
β(k) − β(0)

))
dt · S(k)

(
S(k)

)T]
. It holds

that supk∈{0,A}

∥∥∥Σ̃−1
h Σ̃

(k)
h

∥∥∥
1
<∞.

Lemma E.5. Under Assumptions E.1 and E.4,

∥∥δA∥∥
1
=
∥∥∥βA − β(0)

∥∥∥
1
≤ Clh

where βA is the true coefficient of Step 1, δA is the true coefficient of Step 2, and β(0) is the true
coefficient of target domain. And Cl := supk∈T ∪A

∥∥∥Σ̃−1
h Σ̃

(k)
h

∥∥∥
1
<∞.

Lemma E.6. Under Assumptions E.1 and E.2, there exists some positive constants κl and C4 such
that,

δL(u,D) ≥ Lψ(T )∥u∥22

{
κl −

(
C4 log d

√
Ψ(p)

n

)
∥u∥1
∥u∥2

}
with probability at least 1 − (exp

(
1
2 log d+ 1− c4 log

2 dΨ(p)
)
+ 2exp(1− (c1 − 3/2) log d) +

2exp
(
3
2 log d+ 1− c2n

)
), where T is some constant, Lψ(T ) = min

u≤|2T |
ψ′′(u), and Ψ(p) ∼

1/(−4p log p).
Lemma E.7. Under Assumption E.1, there are universal positive constants (c6, c7, c8) such that

1

nA + n0

∥∥∥∥∥∥
∑

k∈{0,A}

(
Z(k)

)T [
Y(k) −ψ′

(
Z(k)β(k)

)]∥∥∥∥∥∥
∞

≲

√
log d

nA + n0

with probability 1− (c6
(
d−c7 +

∑
k n

−1
k +

∑
k e

lognk−nkpk/c8
)
).

Conjecture E.8. Under Assumption E.1, there are universal positive constants (c9, c10, c11) such
that

1

nA + n0

∥∥∥∥∥∥
∑

k∈{0,A}

(
Z(k)

)T [
ψ′
(
Z(k)β(k)

)
−ψ′

(
Z(k)βA

)]∥∥∥∥∥∥
∞

≲

√
log d

nA + n0

with probability 1− c9d
−c10 + exp [−c11 (nA + n0)].
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Lemma E.9. With high probability of at least 1− d−K̃ − n−1 − elogn−
np
c , where K̃ and c are some

constants, there exists some constant C such that:

∥AXv∥22
n2p∥v∥22

=
v⊤X⊤A⊤AXv

n2p∥v∥22
≤ C ∀ v : ∥vSc∥1 ≤ κ∥vS∥1 .

Theorem E.10. (Convergence rate of Trans-GCR). Under Assumptions E.1, E.2, E.3, E.4, suppose
h≪

√
n0

log d , h ≤ c
√
s, n0 ≥ c log d and nA ≥ cs log d, where c > 0 is a constant, we have

supξ∈Ξ(s,h) P
(
∥β̂(0) − β(0)∥2 ≲ h log d

√
Ψ(p)
nA+n0

+
√

s log d
nA+n0

+
(

log d
nA+n0

)1/4 √
h

)
≥ 1− n−1

0

E.1 PROOF OF LEMMA E.5

By definition in (E.1),

∑
k∈{0,A}

αkE
{[
ψ′
((
βA)T Z(k)

)
− ψ′

((
β(k)

)T
Z(k)

)]
Z(k)

}
= 0p

which implies

∑
k∈{0,A}

αkE
{[
ψ′
((
βA)T Z(k)

)
− ψ′

((
β(0)

)T
Z(k)

)]
Z(k)

}

=
∑

k∈{0,A}

αkE
{[
ψ′
((
β(k)

)T
Z(k)

)
− ψ′

((
β(0)

)T
Z(k)

)]
Z(k)

}
By Taylor expansion,

∑
k∈{0,A}

αkE
[∫ 1

0

ψ′′
((
βA)T Z(k) + t

(
βA − β(0)

)T
Z(k)

)
Z(k)

(
Z(k)

)T](
βA − β(0)

)
=

∑
k∈{0,A}

αkE
[∫ 1

0

ψ′′
((
β(k)

)T
Z(k) + t

(
β(k) − β(0)

)T
Z(k)

)
Z(k)

(
Z(k)

)T](
β(k) − β(0)

)

Therefore, by Assumption E.4,
∥∥βA − β(0)

∥∥
1
≤
∑
k∈A αk

∥∥∥Σ̃−1
h Σ̃

(k)
h

∥∥∥
1
·
∥∥β(k) − β(0)

∥∥
1
≤ Clh.

E.2 PROOF OF LEMMA E.6

See proof of Lemma C.1.

E.3 PROOF OF LEMMA E.7

Here, we define Bi as the i-th row of matrix B, and B(j) as the j-th column of matrix B. For a fixed

index j ∈ {1, 2, . . . , p}, we denoteR(k)
ij := Z

(k)
ij

(
Y

(k)
i − ψ′

(〈
β(k),Z

(k)
i

〉))
, and the j-th element

of
(
Z(k)

)T [
Y(k) −ψ′ (Z(k)β(k)

)]
can be written as

∑nk

i=1R
(k)
ij . Given the condition

{
Z

(k)
i

}nk

i=1
,

y
(k)
i follow a Bernoulli distribution with parameter

exp
(〈

β(k),Z
(k)
i

〉)
1+exp

(〈
β(k),Z

(k)
i

〉) . For any t ∈ R, we compute

logE
[
exp

(
tR

(k)
ij

)
| Z(k)

i

]
= log

{
E
[
exp

(
tZ

(k)
ij Y

(k)
i

)
| Z(k)

i

]
exp

(
−tZ(k)

ij ψ
′
(〈
β(k),Z

(k)
i

〉))}
= ψ

(
tZ

(k)
ij +

〈
β(k),Z

(k)
i

〉)
− ψ

(〈
β(k),Z

(k)
i

〉)
− tZ

(k)
ij ψ

′
(〈
β(k),Z

(k)
i

〉)
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By second-order Taylor series expansion, we have

logE
[
exp

(
tR

(k)
ij

)
| Z(k)

i

]
=
t2

2
Z2
ijψ

′′
(〈
β(k),Z

(k)
i

〉
+ vitZ

(k)
ij

)
for some vi ∈ [0, 1]

Since this upper bound holds for each i = 1, 2, . . . , nk, we have shown that

nk∑
i=1

logE
[
exp

(
tR

(k)
ij

)
| Z(k)

i

]
≤ t2

2

{
nk∑
i=1

(
Z

(k)
ij

)2
ψ′′
(〈
β(k),Z

(k)
i

〉
+ vitZ

(k)
ij

)}

For the link function ψ(x) = log {1 + exp (x)}, it is easy to know that its second derivative ψ′′(x) =

exp (x) / (1 + exp (x))2 takes values between 0 and 1, therefore the aforementioned equation can be
simply bounded by an upper bound:

nk∑
i=1

logE
[
exp

(
tR

(k)
ij

)
| Z(k)

i

]
≤ t2

2

nk∑
i=1

(
Z

(k)
ij

)2
and

∑
k∈{0,A}

nk∑
i=1

logE
[
exp

(
tR

(k)
ij

)
| Z(k)

i

]
≤ t2

2

∑
k∈{0,A}

nk∑
i=1

(
Z

(k)
ij

)2

To control
∑
k∈{0,A}

∑nk

i=1

(
Z

(k)
ij

)2
, it is easy to observe that it is a kind of quadratic forms respect

to X
(k)
(j) so we will use Hanson-Wright inequality:

∑
k∈{0,A}

nk∑
i=1

(
Z

(k)
ij

)2
=

∑
k∈{0,A}

Z
(k)
(j)

T
Z

(k)
(j)

=
∑

k∈{0,A}

(
Ã(k)X

(k)
(j)

)T
Ã(k)X

(k)
(j)

△
=

∑
k∈{0,A}

X
(k)
(j)

T
Q(k)X

(k)
(j)

=X(j)
TQX(j)

where X(j) ∈ R(nA+n0) represents the vector obtained by vertically concatenating X
(k)
(j) , and

Q ∈ R(nA+n0)×(nA+n0) represents the block diagonal matrix with diagonal elements Q(k). Hanson-
Wright inequality tell us:

P
{∣∣∣X(j)

TQX(j) − E
[
X(j)

TQX(j)

]∣∣∣ > t
}

≤2exp
[
− cmin

( t2

κ4u∥Q∥2F
,

t

κ2u∥Q∥2

)]
In our article on linear regression, we have already proven that
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∥Q∥2F =
∑

k∈{0,A}

∥Q(k)∥2F ≤
∑

k∈{0,A}

2(nk + (nkpk)
2)

∥Q∥2 = max
k∈{0,A}

∥Q(k)∥2 ≤ 4 max
k∈{0,A}

{nkpk}

with high probability 1−
∑
k n

−1
k −

∑
k e

lognk−
nkpk

c converge to 1, and

E
[
X(j)

TQX(j)

]
= σ2

jj (nA + n0)

So we have the tail bound

P

 1

nA + n0

∑
k∈{0,A}

nk∑
i=1

(
Z

(k)
ij

)2
≥ C


≤2exp(−nA + n0

2
) +

∑
k

n−1
k +

∑
k

elognk−
nkpk

c

Define the event E =

{
maxj=1,...,p

1
nA+n0

∑
k∈{0,A}

∑nk

i=1

(
Z

(k)
ij

)2
≤ C

}
, we have

P [Ec] ≤ 2exp

(
−nA + n0

2
+ log d

)
+
∑
k

n−1
k +

∑
k

elognk−
nkpk

c

≤2exp(−c (nA + n0)) +
∑
k

n−1
k +

∑
k

elognk−
nkpk

c

where we have used the fact that nA ≫ log d.

Given that
{
Z

(k)
i

}
∈ E , using the independence between R(k)

ij given Z
(k)
i , we have

1

nA + n0

∑
k∈{0,A}

nk∑
i=1

logE
[
exp

(
tR

(k)
ij

)
| Z(k)

i

]

=
1

nA + n0

∑
k∈{0,A}

nk∑
i=1

E
[
tR

(k)
ij | Z(k)

i

]
≤ct2 for each j = 1, 2, . . . , d

By the Chernoff bound, we obtain

P

∣∣∣∣∣∣ 1

nA + n0

∑
k∈{0,A}

nk∑
i=1

R
(k)
ij

∣∣∣∣∣∣ ≥ δ | Zi

 ≤ 2exp
(
−c(nA + n0)δ

2
)

Combining this bound with the union bound yields

P

 max
j=1,...,d

∣∣∣∣∣∣ 1

nA + n0

∑
k∈{0,A}

nk∑
i=1

R
(k)
ij

∣∣∣∣∣∣ ≥ t | E

 ≤ 2exp
(
−c(nA + n0)t

2 + log d
)

Setting t = c
√

log d
nA+n0

, and putting together the pieces yields
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P

 max
j=1,...,d

∣∣∣∣∣∣ 1

nA + n0

∑
k∈{0,A}

nk∑
i=1

R
(k)
ij

∣∣∣∣∣∣ ≥ c

√
log d

nA + n0


≤P [Ec] + P

 max
j=1,...,d

∣∣∣∣∣∣ 1

nA + n0

∑
k∈{0,A}

nk∑
i=1

R
(k)
ij

∣∣∣∣∣∣ ≥ t | E


≤c6d−c7 +

∑
k

n−1
k +

∑
k

elognk−
nkpk
c8

E.4 PROOF OF LEMMA E.9

In this section, we prove that with high probability, there exists some constant c12 such that:

∥Zv∥22
n∥v∥22

=
∥AXv∥22
n2p∥v∥22

=
v⊤X⊤A⊤AXv

n2p∥v∥22
≤ c12 ∀ v : ∥vSc∥1 ≤ κ∥vS∥1 .

Using our previous notation, we define Z = (AX)/
√
np. Define events Ωn,1 ={

∥A⊤A∥op/np ≤ 4np
}

and Ωn,2 =
{
∥A⊤A∥2F /np ≤ 2(n+ n2p2)

}
Therefore, we have:

P
(∥∥∥∥ (X⊤A⊤AX)

n2p
− ΣX

(
1− 1

n

)∥∥∥∥
∞

≥ t

)
≤ P

(∥∥∥∥ (X⊤A⊤AX)

n2p
− ΣX

(
1− 1

n

)∥∥∥∥
∞

≥ t | A ∈ Ωn,1 ∩ Ωn,2

)
+ P(A ∈ (Ωn,1 ∩ Ωn,2)

c)

≤ 2exp

(
2 log d− c′ min

(
n2t2

n+ n2p2
,
t

p

))
+ elogn−

np
c +

1

n
.

The last step comes from Hanson Wright inequality.

Therefore, choosing

t = Kmax

{√
log d

n
+ p2 log d, p log d

}
we conclude:∥∥∥∥ (X⊤A⊤AX)

n2p
− ΣX

(
1− 1

n

)∥∥∥∥
∞

≤ Kmax

{√
log d

n
+ p2 log d, p log d

}
≤ Kmax

{√
log d

n
, p log d

}
.

which means

∥∥∥∥X⊤A⊤AX

n2p
− ΣX

∥∥∥∥
∞

≤ Kmax

{√
log d

n
, p log d

}
≜ ϵn .

with probability ≥ 1− d−K̃ − n−1 − elogn−
np
c for some constant c and K̃.

Using this, we have:

v⊤Z⊤Zv

n∥v∥2
=

v⊤ΣXv

∥v∥2
+

v⊤(Z⊤Z/n− ΣZ)v

∥v∥2

≤ λmax(ΣX) +

∥∥∥∥Z⊤Z

n
− ΣX

∥∥∥∥
∞

∥v∥21
∥v∥22

≤ λmax(ΣX) + ϵn
(1 + κ)2s∥v∥22

∥v∥22
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≤ λmax(ΣX) + (1 + κ)2sϵn .

Here the penultimate inequality follows from the fact:

∥v∥1 = ∥vS∥1 + ∥vSc∥1 ≤ (1 + k)∥vS∥1 ≤ (1 + k)
√
s∥vS∥2 .

Hence as soon as we assume sϵn is bounded or goes to 0 we are good.

E.5 PROOF OF THEOREM E.10

We follow the proof of Theorem 1 in Tian & Feng (2023) and extend and modify the results to allow
for network dependency. Notice that we assume both source and target domains share the same ER
graph probability, denoted as p.

Step 1:

Step 1 aims to solve the following equation w.r.t. β ∈ Rd :

∑
k∈{0,A}

[(
Z(k)

)T
Y(k) −

nk∑
i=1

ψ′
(
βTZ

(k)
i

)
Z

(k)
i

]
= 0p

converging to its population version’s solution under certain conditions with αk = nk

nA+n0
:

∑
k∈{0,A}

αkE
{[
ψ′
((
βA)T Z(k)

)
− ψ′

((
β(k)

)T
Z(k)

)]
Z(k)

}
= 0p (E.1)

As we define before, ûA = β̂A − βA and D =
{(

Z(k),Y(k)
)}

k∈{0,A}
. Firstly, we

claim that when λβ ≥ 2
∥∥∇L (βA,D

)∥∥
∞, it holds that with probability of at least 1 −

(exp
(
1
2 log d+ 1− c4 log

2 dΨ(p)
)
+ 2exp(1− (c1 − 3/2) log d) + 2exp

(
3
2 log d+ 1− c2n

)
) that

∥∥ûA∥∥
2
≤ 8

C4

κl
Clh log d

√
Ψ(p)

nA + n0
+ 3

√
s

κ1
λω + 2

√
Cl
κ1
hλω (E.2)

According to the definition of ω̂A, Hölder inequality and Lemma 1, we will have

δL̂
(
ûA,D

)
≤ λβ

(∥∥βA
S

∥∥
1
+
∥∥βA

Sc

∥∥
1

)
− λβ

(∥∥∥β̂A
S

∥∥∥
1
+
∥∥∥β̂A

Sc

∥∥∥
1

)
+∇L̂(βA,D)T ûA

≤ λβ
(∥∥βA

S

∥∥
1
+
∥∥βA

Sc

∥∥
1

)
− λβ

(∥∥∥β̂A
S

∥∥∥
1
+
∥∥∥β̂A

Sc

∥∥∥
1

)
+

1

2
λβ
∥∥ûA∥∥

1

≤ 3

2
λβ
∥∥ûA

S

∥∥
1
− 1

2
λβ
∥∥ûA

Sc

∥∥
1
+ 2λβ

∥∥βA
Sc

∥∥
1

≤ 3

2
λβ
∥∥ûA

S

∥∥
1
− 1

2
λβ
∥∥ûA

Sc

∥∥
1
+ 2λβClh (E.3)

If we assume that the claim we stated does not hold, we consider C ={
u : 3

2 ∥uS∥1 −
1
2 ∥uSc∥1 + 2Clh ≥ 0

}
. By (E.3) and the convexity of L̂, we conclude

ûA ∈ C. Then for any t ∈ (0, 1), we can see that

1

2

∥∥tûA
Sc

∥∥
1
= t · 1

2

∥∥ûA
Sc

∥∥
1
≤ t ·

(
3

2

∥∥ûA
S

∥∥
1
+ 2Cβh

)
≤ 3

2

∥∥tûA
S

∥∥
1
+ 2Clh
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which also implies that tûA ∈ C. There exists certain t satisfying that
∥∥tûA

∥∥
2
> 8κ2Clh

√
log d
nA+n0

+

3
√
s

κ1
λω + 2

√
Cl

κ1
hλω and

∥∥tûA
∥∥
2
≤ 1. We denote ũA = tûA and F (u) = L̂

(
βA + u,D

)
−

L̂
(
βA)+ λβ

(∥∥βA + u
∥∥
1
−
∥∥βA

∥∥
1

)
. As F (0) = 0 and F

(
ûA) ≤ 0, by convexity, we establish

F
(
ũA) = F

(
tûA + (1− t)0

)
≤ tF

(
ûA) ≤ 0 (E.4)

However, by Lemma E.6 and the same trick we use for (E.3),

F
(
ũA) ≥ δL̂

(
ûA,D

)
+∇L̂

(
βA)T ũA − λβ

∥∥βA∥∥
1
+ λβ

∥∥βA + ũA∥∥
1

≥ Lψ(T )κl
∥∥ũA∥∥2

2
− Lψ(T )

C4 log d

√
Ψ(p)

nA + n0

∥∥ũA∥∥
1

∥∥ũA∥∥
2

− 3

2
λβ
∥∥ũA

S

∥∥
1
+

1

2
λβ
∥∥ũA

Sc

∥∥
1
− 2λβClh

≥ Lψ(T )κl
∥∥ũA∥∥2

2
− Lψ(T )C4 log d

√
Ψ(p)

nA + n0

∥∥ũA∥∥
1

∥∥ũA∥∥
2

− 3

2
λβ
∥∥ũA

S

∥∥
1
− 2λβClh

Due to ũA ∈ C, it holds that

1

2

∥∥ũA∥∥
1
≤ 2

∥∥ũA
S

∥∥
1
+ 2Cβh ≤ 2

√
s
∥∥ũA∥∥

2
+ 2Clh

Here, we denote κ1 = Lψ(T )κl, κ2 = C4 log d/κl, when nA + n0 > 16κ22sΨ(p), we have

2C4

κl
log d

√
sΨ(p)
nA+n0

≤ 1
2 .Then it follows

F
(
ũA) ≥ 1

2
κ1
∥∥ũA∥∥2

2
−

2κ1κ2
√

Ψ(p)

nA + n0
Cβh+

3

2
λβ

√
s

∥∥ũA∥∥
2
− 2λβClh =

1

2
κ1
∥∥ũA∥∥2

2
−

2κ1C4

κl
log d

√
Ψ(p)

nA + n0
Cβh+

3

2
λβ

√
s

∥∥ũA∥∥
2
− 2λβClh > 0

that conflicts with (E.4). Thus our claim at the beginning holds.

Next, we will prove
∥∥∥∇L̂ (βA)∥∥∥

∞
≲
√

log d
nA+n0

with probability at least 1− (c12d
−c13 +

∑
k n

−1
k +∑

k e
lognk−

nkpk
c14 ). To see this, we notice that

∇L̂
(
βA) = 1

nA + n0

∑
k∈{0,A}

(
Z(k)

)T [
−Y(k) +ψ′

(
Z(k)βA

)]
=

1

nA + n0

∑
k∈{0,A}

(
Z(k)

)T [
−Y(k) +ψ′

(
Z(k)β(k)

)]
+

1

nA + n0

∑
k∈{0,A}

(
Z(k)

)T [
−ψ′

(
Z(k)β(k)

)
+ψ′

(
Z(k)βA

)]
(E.5)

By extending Lemma 6 of Negahban et al. (2009) for network dependency in our settings, under
Assumptions E.1 and the fact nA ≥ Cs log d, we have shown in Lemma E.7 that
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1

nA + n0

∥∥∥∥∥∥
∑

k∈{0,A}

(
Z(k)

)T [
−Y(k) +ψ′

(
Z(k)β(k)

)]∥∥∥∥∥∥
∞

≲

√
log d

nA + n0

with probability at least 1− (c6d
−c7 +

∑
k n

−1
k +

∑
k e

lognk−
nkpk
c8 ).

The remaining work aims to bound the infinity norm of the second term in (E.5). We denote U (k)
ij =

Z
(k)
ij

[
−ψ′

((
Z

(k)
i

)T
β(k)

)
+ ψ′

((
Z

(k)
i

)T
βA
)]

. Under Assumption E.1, we have shown in

Conjecture E.8 that:

1

nA + n0
sup

j=1,...,d

∣∣∣∣∣∣
∑

k∈{0,A}

nk∑
i=1

U
(k)
ij

∣∣∣∣∣∣ ≲
√

log d

nA + n0

with probability at least 1 − (c9d
−c10 +

∑
k n

−1
k +

∑
k e

lognk−
nkpk
c11 ). Hence

∥∥∥∇L̂ (βA)∥∥∥
∞

≲√
log d
nA+n0

holds with probability at least 1− (c12d
−c13 +

∑
k n

−1
k +

∑
k e

lognk−
nkpk
c14 ). We plug this

rate into (E.2), and get

∥∥ûA∥∥
2
≲ h log d

√
Ψ(p)

nA + n0
+

√
s log d

nA + n0
+

(
log d

nA + n0

)1/4 √
h (E.6)

with probability at least 1 − (c12d
−c13 +

∑
k n

−1
k +

∑
k e

lognk−
nkpk
c14 ) when λβ ≍ Cβ

√
log d
nA+n0

with Cβ > 0 sufficiently large. As ûA ∈ C, (E.6) implies

∥∥ûA∥∥
1
≲ s

√
log d

nA + n0
+

(
log d

nA + n0

)1/4 √
sh+ h

1 + log d

√
sΨ(p)

nA + n0

 (E.7)

with probability at least 1− (c12d
−c13 +

∑
k n

−1
k +

∑
k e

lognk−
nkpk
c14 ).

Step 2:
For our convenience, we state the notation again here: D(0) =

(
Z(0),Y(0)

)
, L̂(0)

(
β,D(0)

)
=

− 1
n0

(
Y(0)

)T
Z(0)β + 1

n0

∑n0

i=1 ψ

((
Z

(0)
i

)T
β

)
, ∇L̂(0)

(
β,D(0)

)
= − 1

n0

(
Z(0)

)T
Y(0) +

1
n0

(
Z(0)

)T
ψ′ (Z(0)β

)
, δA = β(0) − βA, β̂(0) = β̂A + δ̂A, v̂A = δ̂A − δA, and δL̂(0)(δ,D) =

L̂(0)
(
β̂A + δ,D(0)

)
− L̂(0)

(
β̂A + δA,D(0)

)
−∇L̂(0)

(
β̂A + δA,D(0)

)T
v̂A.

Following similar derivations for (E.3), when λδ ≥ 2
∥∥∥∇L̂(0)

(
β(0),D(0)

)∥∥∥
∞

, we establish

δL̂(0)
(
δ̂A,D

)
≤λδ

(∥∥δA∥∥
1
−
∥∥∥δ̂A∥∥∥

1

)
−∇L̂(0)

(
β̂A + δA,D(0)

)T
v̂A

≤ λδ
(
2
∥∥δA∥∥

1
−
∥∥v̂A∥∥

1

)
+
∥∥∥∇L̂(0)

(
β(0),D(0)

)∥∥∥
∞

∥∥v̂A∥∥
1

−
[
∇L̂(0)

(
β̂A + δA,D(0)

)
−∇L̂(0)

(
β(0),D(0)

)]T
v̂A

≤ 2λδ
∥∥δA∥∥

1
− 1

2
λδ
∥∥v̂A∥∥

1

− 1

n0

[
ψ′
((

Z(0)
)T (

β̂A + δA
))

−ψ′
((

Z(0)
)T
β(0)

)]T
v̂A
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with c0 > 0 being a constant that is enough small. The last inequality holds according to:
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[
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β̂A + δA
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−ψ′
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where Λ(0) = diag

({
ψ′′
((

Z
(0)
i

)T
β(0) + ti

(
Z

(0)
i

)T
ûA
)}n0

i=1

)
is a n0 × n0 diagonal matrix

and
∥∥Λ(0)

∥∥
max

≤Mψ .

We denote ṽA = tv̂A and similar to what we defined before, let F (0)(v) = L̂(0)
(
β̂A + δA+

v,D(0)
)
− L̂(0)

(
β̂A + δA,D(0)

)
+ λδ

(∥∥δA + v
∥∥
1
−
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1

)
. As F (0) = 0 and F (0)

(
v̂A) ≤ 0

, by convexity, for any t ∈ (0, 1], we establish

F (0) (ṽA) = F (0) (tv̂A + (1− t)0) ≤ tF (0)
(
ûA) ≤ 0 (E.9)

Setting t ∈ (0, 1] ensures that
∥∥ṽA∥∥

2
≤ 1. By noticing the fact that

∥∥ṽA∥∥
2
≤
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1
, we can apply

Lemma E.6 on ṽA with minor modifications. Also by (E.9) and (E.8), we establish:
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(E.10)

with κ1 = Lψ(T )κl, κ3 = C4/κl.

We showed in the proof of Step 1 that
∥∥ûA

Sc

∥∥
1
≤ 3

∥∥ûA
S

∥∥
1
+ 4Clh. Next we discuss about bounding

1
n0

∥∥Z(0)ûA
∥∥2
2

by
∥∥ûA

∥∥2
2

using this fact.

If 3
∥∥ûA

S

∥∥
1
≥ 4Clh, then

∥∥ûA
Sc

∥∥
1
≤ 6

∥∥ûA
S

∥∥
1
. Then by Lemma E.9 (the extension on Theorem 1.6

of Zhou (2009) for network dependency), we have

1
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2
≲

s log d
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(E.11)

with probability at least 1− d−K̃ − n−1
0 − elogn0−n0p

c .

If 3
∥∥ûA

S

∥∥
1
< 4Clh, then

∥∥ûA
Sc

∥∥
1
≤ 8Clh ≤

√
s. Also

∥∥ûA
∥∥
2
≤ 1 with probability 1−(c12d

−c13 +∑
k n

−1
k +

∑
k e

lognk−
nkpk
c14 ). We denote
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Π0(s) = {u ∈ Rp : ∥u∥2 ≤ 1, ∥u∥0 ≤ s}
Π1(s) =

{
u ∈ Rp : ∥u∥2 ≤ 1, ∥u∥1 ≤

√
s
}

Due to Lemma 3.1 of Plan & Vershynin (2013), Π1(s) ⊆ 2conv (Π0(s)), where conv (Π0(s)) is the
closure of convex hull of Π0(s). Similarly, an extension for network dependency on the proof of
Theorem 2.4 in Mendelson et al. (2008) will also conclude (E.11).

Next we bound 1
n0

∥∥∥Z(0)ṽA
∥∥∥2
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by
∥∥ṽA

∥∥2
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. From basic inequality, we establish
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(E.12)

implying ∥∥v̂A∥∥
1
≤
∥∥∥δ̂A∥∥∥

1
+ Clh ≤ 3

∥∥ûA∥∥
1
+ 4Clh

Combined with results by (E.7), we have
∥∥ṽA
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1
≤
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1
≤

√
s when s log d/ (nA + n0) and h

are small enough. We can see δL̂(0)
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> 0 from the strict convexity, which leads to
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Similar to the analysis considering 3
∥∥ûA
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< 4C1h above, we establish
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(E.14)

with probability at least 1− C ′n−1
0 , κ1 = Lψ(T )κl, κ3 = C4/κl.
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1
≤ C s log d
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∥∥ṽA∥∥
1
≲

[
s log d

nA + n0
+ h

√
log d

nA + n0

]
·

√
1

log d

√
n0

Ψ(p)
+
∥∥ṽA∥∥2

2

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Because
∥∥ṽA

∥∥
2
≤ 1, by (E.14), the following inequality holds
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∥∥ṽA∥∥

1

which implies
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with probability at least 1− C ′n−1
0 .

When s log d/ (nA + n0) and h is small enough, due to h
√

log d
n0

= o(1), the right side of (E.15) can

be very small, implying
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≤ c < 1 with probability at least 1− C ′n−1

0 . We should notice that
this result holds for any t ∈ (0, 1] such that
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Similarly, the ℓ1-bound on v̂A will be obtained by going over the analysis procedure of ṽA
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Lastly, we combine the conclusions in this Step 2 with the upper bounds on
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2

and
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in
Step 1, to complete the proof.

Combining the above inequalities, we obtain:
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F ADDITIONAL EXPERIMENTAL RESULTS

In this section, we first conduct additional simulation studies considering other network models such
as SBM and graphon models, and also consider multiple convolution layers M = 2 (see in Appendix
F.1). Subsequently, we present additional results of real data analyses for transfer learning tasks,
sensitivity analyses to hyperparameters, as well as the performance considering varying source and
target data training rate in Appendix F.2.

F.1 ADDITIONAL SIMULATION RESULTS

Here, we conduct simulation studies considering similar settings in Section 5.1 but generating the
adjacency matrices from SBM or graphon models.

Figure S1 presents the results for SBM models. Figures S1 (a)(b) were performed when SBM
generated the adjacency matrices of both target and source domains with between-community
connection probability as 0.08 and the within-community probability as 0.1. Figures S1 (c)(d) were
performed when the adjacency matrices of both target and source domains were generated by SBM
with between-community connection probability as 0.08 and within-community probability as 0.04.
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Figure S1: Performance comparison (MSE) of Trans-GCR (red), GCR (black), Naive TL (blue)
across varying (a)(c) Source sample size, (b)(d) Source-target gap h, for two additional SBM models.

Figure S2 presents the results for graphon models. Figures S2 (a)(b), and (c)(d) were performed
with the adjacency matrices of both target and source domains generated by two types of graphons,
respectively.
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Figure S2: Performance comparison (MSE) of Trans-GCR (red), GCR (black), Naive TL (blue)
across varying (a)(c) Source sample size, (b)(d) Source-target gap h, for two additional graphon
models.
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We also show the performance comparisons when we consider multiple convolution layers such as
M = 2 in Figure S3.
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Figure S3: Performance comparison (MSE) of Trans-GCR (red), GCR (black), Naive TL (blue)
across varying (a) Source sample size, (b) Source-target gap h, (c) Source network density (0.05
means identical densities) (d) Source network within-community probability (higher value means
more discrepancy) when convolution layers M = 2.

We show performance comparison on averaged true positive rate (TPR) and false discovery proportion
(FDP) for varying source data sample size in Table S2 as an additional metric to evaluate the estimate
of the coefficients.

Table S2: Performance comparison on averaged true positive rate (TPR) and false discovery proportion
(FDP) for varying source data sample size, over 10 replicates. TPRs and FDPs were calculated overall
for coefficient matrices.

Method Metric 100 200 300 400 500 600 700 800 900 1000

Trans-GCR
TPR 0.478 0.496 0.556 0.572 0.578 0.582 0.758 0.762 0.712 0.714
FDP 0.378 0.342 0.275 0.263 0.133 0.123 0.237 0.134 0.164 0.112

GCR
TPR 0.072 0.054 0.032 0.050 0.072 0.042 0.050 0.022 0.066 0.026
FDP 0.521 0.739 0.813 0.613 0.452 0.625 0.523 0.546 0.567 0.715

Naive TL
TPR 0.660 0.664 0.904 0.930 0.972 0.976 0.982 0.984 0.962 0.986
FDP 0.717 0.715 0.722 0.717 0.606 0.677 0.667 0.668 0.662 0.669

F.2 ADDITIONAL REAL DATA RESULTS

Here we present additional results from the real data analysis. Table S3 shows the averaged Micro-F1
scores for additional naive transfer learning methods as a supplement to Table 1. The performance of
naive transfer learning methods when trained solely on target data is provided in Table S4. Table S5
and S6 show the results of sensitivity analyses to hyperparameter M and λ. We also present the effect
of source training rate and target training rate on Micro-F1 in Figure S4 for the transfer learning tasks
D → C, C → D, and A → D, in Figure S5 for the transfer learning tasks D → A, C → A, and A →
C, respectively.

We additionally consider two large-scale graphs and present in Table S7. The ogbn-arxiv dataset is a
directed citation graph of Computer Science arXiv papers, where nodes represent papers and directed
edges indicate citations. Each paper has a 128-dimensional feature vector derived from its title and
abstract, and the task is to classify papers into 40 subject areas based on these features. Papers are
also associated with publication years. We split the dataset into two subsets, including ogbn-arxiv1
(n=58,970, papers published up to 2017), and ogbn-arxiv2 (n=78,402, papers published since 2018).
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Table S3: Averaged Micro F1 score (%) of additional naive transfer learning methods, over 10
replicates, with source training rate fixed at 0.75 and target training rate fixed at 0.03.

Target Source node2vec GraphSAGE attri2vec

D
C 66.55 69.78 67.64
A 56.66 65.82 63.15

C&A 52.09 56.22 65.75

C
D 62.34 69.63 73.33
A 63.17 70.64 69.91

D&A 50.93 60.77 71.85

A
D 54.36 62.59 62.92
C 61.53 65.20 64.23

D&C 49.27 57.11 63.42

Table S4: Averaged Micro F1 score (%) for comparisions with different methods, over 10 replicates,
with only target training rate fixed at 0.03 (The third column is showing our proposed method’s
performance for transfer learning as a reference).

Target Source Trans-GCR node2vec GraphSAGE GCN APPNP attri2vec SGC GAT GPRGNN GRAND

D C or A 76.53 or 75.16 60.18 67.22 63.59 70.03 67.28 70.78 62.47 68.44 44.37

C D or A 78.99 or 80.37 57.10 60.91 69.71 75.75 71.86 77.19 69.25 73.89 55.34

A D or C 72.61 or 73.56 51.31 57.07 65.02 63.84 65.20 70.78 61.70 66.47 33.41

Table S5: Averaged Micro F1 score (%) of our proposed Trans-GCR for varying M , over 10
replicates, with source training rate fixed at 0.75 and target training rate fixed at 0.03.

Target Source M=2 M=3 M=4 M=5 M=6 M=7

D
C 75.24 76.03 76.05 76.53 75.21 75.94
A 73.14 74.36 72.03 75.16 74.79 76.69

C&A 76.17 75.71 78.36 76.61 77.41 75.09

C
D 77.99 77.11 79.73 78.99 79.21 78.94
A 76.88 79.07 80.16 80.37 79.85 80.32

D&A 77.29 80.31 79.04 80.58 81.14 81.31

A
D 70.68 72.91 72.19 72.61 72.13 74.86
C 69.42 73.18 73.17 73.56 74.49 74.21

D&C 71.81 74.01 74.59 73.78 76.34 75.87

Table S6: Averaged Micro F1 score (%) of our proposed Trans-GCR for varying λ, over 10 replicates,
with source training rate fixed at 0.75 and target training rate fixed at 0.03, while fixing M = 5.

Target Source λ=0.00005 λ=0.0001 λ=0.0005 λ=0.001 λ=0.0015 λ = 0.01 λ = 0.1

D
C 73.19 75.32 73.76 76.73 75.12 59.71 21.57
A 72.45 73.82 75.14 74.57 75.38 56.17 21.96

C&A 71.32 74.63 77.08 74.67 73.82 58.20 21.47

C
D 78.26 79.18 79.96 78.91 78.68 65.53 25.62
A 77.16 80.24 81.17 79.27 79.39 67.63 25.01

D&A 77.64 80.45 80.85 80.39 79.98 65.61 25.47

A
D 70.69 67.91 70.64 72.41 72.97 58.15 20.33
C 70.02 73.16 72.37 74.18 74.08 59.43 20.23

D&C 70.44 72.59 73.82 73.18 72.01 58.76 20.34

Table S7: Averaged Micro F1 score (%) of various methods for additional datasets over 10 replicates,
with source training rate fixed at 0.75 and target training rate fixed at 0.03. We were unable to obtain
results for AdaGCN due to its high computational cost on such large datasets.

Target Source Trans-GCR GCR AdaGCN UDAGCN GPRGNN GRAND GCN APPNP SGC GAT

ogbn-arxiv2 ogbn-arxiv1 62.95 59.76 NA 60.24 34.03 28.19 58.56 27.89 56.81 53.36
ogbn-arxiv1 ogbn-arxiv2 60.48 57.99 NA 57.58 27.78 29.96 54.35 20.61 47.93 41.33
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Method Trans-GCR AdaGCN

DBLPv7 to Citationv1 Citationv1 to DBLPv7 ACMv9 to DBLPv7

Figure S4: Multi-label classification with varying source training rates (first column, with target
training rate fixed to be 0.03), with varying target training rate (second column, with source training
rate fixed to be 0.75).
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Method Trans-GCR AdaGCN

DBLPv7 to ACMv9 Citationv1 to ACMv9 ACMv9 to Citationv1

Figure S5: Multi-label classification with varying source training rates (first column, with target
training rate fixed to be 0.03), with varying target training rate (second column, with source training
rate fixed to be 0.75).
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G PSEUDO CODE FOR ALGORITHMS

Here, we summarize the procedure of Trans-GCR in Algorithm 1, and the procedure of source domain
selection in Algorithm 2.

Algorithm 1 Trans-GCR Algorithm

Require: Target data (A(0),X(0),Y(0)); Source data (A(k),X(k),Y(k)), k ∈ A; Hyperparameter
M and λ.
Step 1. Preprocessing. Calculate the normalized adjacency matrix S(k) based on A(k), k ∈
{0,A}.
Step 2. Pooled source samples. Get pooled source sample with SA ∈ RnA×nA , XA ∈ RnA×d,
YA ∈ {0, 1}nA×C .
Step 3. Source domain parameter estimation. Get β̂A by Eq. 2.3, using the pooled source
samples (SA,XA,YA).
Step 4. Domain shift estimation. Obtain domain shift estimate δ̂A using Eq. 3.1 and target data.
Step 5. Target domain parameter estimation. Obtain β̂(0) = β̂A + δ̂A.

Output: β̂(0).

Algorithm 2 Source Domain Transferability Score Calculation Algorithm

Require: Data: Target data (A(0),X(0),Y(0)); Source data (A(k),X(k),Y(k)), k = 1, . . . ,K;
Hyperparameters: Number of layers M ; Cross-validation folds V ; Number of selected source data
L.
Step 1. Target data partition. Randomly partition data points in the target domain {1, . . . , n0}
into V subsets of approximately equal size s1, . . . , sV .
Step 2. Training and testing target data construction. Construct testing target data (A(0),X(0),
Y

(0)
sv ), where we only use the label information of nodes in sv . Similarly, construct training target

data (A(0), X(0), Y(0)
−sv ) by excluding the label information of nodes in sv .

Step 3. Cross-validation based score. For kth source data, k = 1, . . . ,K, repeat the following
procedure.

For v = 1, . . . , V ,
• Model estimation. Apply the transfer learning Algorithm 1 using the source data
{A(k),X(k),Y(k)} and training target data {A(0),X(0),Y

(0)
−sv} to obtain the estimate β̂(0)

vk
for the target data after transfer learning.

• Model evaluation Using the learned β̂(0)
vk from the previous step, evaluate its prediction

performance in the target domain testing data {A(0),X(0),Y
(0)
sv } by calculating the negative

log-likelihood value NL(k)
v for nodes in sv .

Averaged score over folds. Calculate averaged negative log-likelihood over V folds for each
k source data, NL(k) = 1

V

∑V
v=1 NL(k)

v

Step 4. Selection. Rank the K sources according to NL(k) and select among the top L lowest
sources as Â.
Output: Â and Transferability score NL(k), k = 1, . . . ,K.
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