
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRANSFER LEARNING UNDER HIGH-DIMENSIONAL
GRAPH CONVOLUTIONAL REGRESSION MODEL FOR
NODE CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Node classification is a fundamental task, but obtaining node classification labels
can be challenging and expensive in many real-world scenarios. Transfer learn-
ing has emerged as a promising solution to address this challenge by leveraging
knowledge from source domains to enhance learning in a target domain. Existing
transfer learning methods for node classification primarily focus on integrating
Graph Convolutional Networks (GCNs) with various transfer learning techniques.
While these approaches have shown promising results, they often suffer from a lack
of theoretical guarantees, restrictive conditions, and high sensitivity to hyperparam-
eter choices. To overcome these limitations, we employ a Graph Convolutional
Multinomial Logistic Lasso Regression (GCR) model which simplifies GCN, and
develop a transfer learning method called Trans-GCR based on the GCR model.
We provide theoretical guarantees of the estimate obtained under the GCR model in
high-dimensional settings. Moreover, Trans-GCR demonstrates superior empirical
performance, has a low computational cost, and requires fewer hyperparameters
than existing methods.

1 INTRODUCTION

Network (a.k.a graph) data is ubiquitous in various domains, including social networks (Barabási,
2013), citation networks (Ji et al., 2022), and biological networks (Zitnik et al., 2018; Han et al.,
2019). A fundamental task in network analysis is node classification (Kipf & Welling, 2016), which
aims to predict the class labels of a node based on its own features and its neighboring nodes’
features. Usually, the node features are high-dimensional (Hamilton et al., 2017). Thus, we focus
on high-dimensional settings in this paper. Nevertheless, obtaining node classification labels can be
challenging and expensive in many real-world scenarios (Dai et al., 2022). For example, classifying
genes into disease categories using a gene-gene interaction network faces a scarcity of disease labels,
as experimentally annotating genes is expensive (Guney et al., 2016).

To address the challenge of limited labeled data, transfer learning, which uses knowledge from source
domains to enhance learning in a target domain, has emerged as a promising solution (Dai et al.,
2022). Continuing the aforementioned example, despite the scarcity of disease labels, abundant
functional annotations of genes exist in curated databases like KEGG pathways (Kanehisa et al.,
2012), offering ample source data. In the existing literature, various transfer learning methods based
on Graph Convolutional Networks (GCNs) (Sperduti & Starita, 1997; Bruna et al., 2014; Defferrard
et al., 2016; Kipf & Welling, 2017) have been proposed to enhance node classification accuracy.
These GCN-based transfer learning methods can be broadly summarized into three main areas.

First, pre-training and fine-tuning approaches (Hu et al., 2019; 2020; Lu et al., 2021; Yang et al.,
2022; Kooverjee et al., 2022; Xu et al., 2023), which usually pre-train a GCN on a large-scale
dataset to learn transferable representations and then fine-tune the pre-trained model on a target task.
While effective, these methods usually lack theoretical guarantees. Second, theoretical transferability
analysis. Researchers have investigated the theoretical transferability properties of GCNs for graphs
sampled from the same underlying space or graphon model (Nilsson & Bresson, 2020; Ruiz et al.,
2020; Levie et al., 2021; Ruiz et al., 2023). Despite valuable theoretical insights, they often assume
that the source and target domain are drawn from exactly the same underlying model, which usually

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

does not hold in practical scenarios where domain shifts occur. Third, to address the domain
shifts challenge, various domain adaptation techniques have been proposed, such as unsupervised
adaptation (Wu et al., 2020), local structure transfer (Zhu et al., 2021), adversarial domain alignment
(Dai et al., 2022), and noise-resistant transfer (Yuan et al., 2023). Despite promising results, they
often lack theoretical guarantees or can be sensitive to hyperparameter choices. In summary, existing
methods suffer from a lack of theoretical guarantees, restrictive conditions, and high sensitivity to
hyperparameters.

To address these limitations, we propose a novel statistical transfer learning framework based on
a Graph Convolutional Multinomial Logistic Lasso Regression (GCR) model. The GCR model
assumes that the classification label depends on the graph-aggregated node features (obtained through
multiple graph aggregation layers), followed by a multinomial logistic lasso regression model which
assumes a linear relationship between aggregated features and labels. This assumption is inspired by
empirical observations suggesting that removing nonlinear activation functions (e.g., ReLU) in GCN’s
hidden layers achieves comparable performance to the original GCN architecture (Wu et al., 2019).
Our GCR model extends beyond the work of (Wu et al., 2019) by introducing a rigorous statistical
formulation with the ability to handle high-dimensional features. Building upon this GCR model,
the main contribution of this paper is to develop a two-step transfer learning method Trans-GCR.
Specifically, we let βs and βt = βs+δ denote the GCR’s high-dimensional sparse model parameters
in source and target data, respectively, where δ measures the domain shift. In the first step, we obtain
the estimate of source domain parameters, denoted as β̂s, by minimizing the l1-regularized negative
likelihood function of the GCR model using source data. In the second step, we estimate the shift
term δ by substituting βt with β̂s + δ in the GCR negative likelihood function and minimizing it
using the target data. This step leverages the knowledge learned from β̂s. Finally, our estimate of the
target domain parameters is given by β̂t = β̂s + δ̂.

Our method enjoys the following advantages: (1) We demonstrate through extensive empirical
studies that our proposed method achieves superior or comparable performance compared with
existing complicated GCN-based transfer learning approaches for node classification. (2) We provide
theoretical guarantees of the estimate obtained under GCR model in high-dimensional settings under
mild conditions. (3) By leveraging the simplified model GCR, our method involves fewer parameters
to be trained than more complex GCN-based models, resulting in reduced computational cost. (4)
Our framework has only two hyperparameters, i.e., the number of graph aggregation layers and the
l1−norm penalty strength.

2 PRELIMINARIES

A graph with n nodes is represented by an adjacency matrix A = (Aij) ∈ {0, 1}n×n, i, j = 1, . . . , n,
where Aij = 1 if there is an edge between nodes i and j, and Aij = 0 otherwise. We only consider
a graph with no self-loops, so all diagonal entries of A are 0. In addition, each node is associated
with a d-dimensional covariates and a C-dimensional one-hot class label. The entire covariate matrix
is X ∈ Rn×d, and the entire classification label matrix is Y ∈ {0, 1}n×C . Node classification aims
to predict Y based on X and A. The normalized adjacency matrix is

S = D̃− 1
2 ÃD̃− 1

2 , where Ã = A+ In, (2.1)

where In is an n× n identity matrix, Ã denote the adjacency matrix with added self-connections.
Here, D̃ is the degree matrix of Ã, with diagonal entry D̃ii representing the degree of node i, and all
off-diagonal elements being zero.

2.1 RELATED WORK: GRAPH CONVOLUTIONAL NETWORKS

GCNs and their variants have gained increasing popularity for node classification tasks (Hamilton
et al., 2017; Kipf & Welling, 2017; Wang, 2019; Chien et al., 2020). The core strength of GCNs lies
in their ability to leverage the underlying graph structure to propagate and aggregate information
from neighboring nodes. A standard two-layer GCN works by H(1) = Relu(AXW(1));H(2) =
Softmax(AH(1)W(2)), where W(1) and W(2) are parameters to be learned. As pointed out by Wu
et al. (2019), the key to GCN’s success lies in its ability to perform graph convolutions, and not
necessarily in its use of nonlinearity through activation functions such as ReLU. In fact, empirical

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

observations in Wu et al. (2019) suggested that removing the nonlinear activation function from
the GCN’s hidden layers does not substantially impact the model’s performance. From a practical
perspective, the removal of nonlinearities results in a simpler model, which offers several advantages.
First, it reduces the computational complexity of the model, making training and inference faster
and more efficient. This is particularly important in large-scale graph datasets, where computational
resources may be limited. Second, the simplified architecture requires fewer hyperparameters,
reducing tuning complexity and preventing overfitting.

2.2 HIGH-DIMENSIONAL GRAPH CONVOLUTIONAL MULTINOMIAL LOGISTIC LASSO
REGRESSION MODEL

Motivated by the aforementioned observations, we propose the GCR model to model the relationship
between Y, X, and A. GCR assumes that the classification labels are not only affected by their
own, but also their neighbors’ features based on the graph structure captured by the adjacency matrix.
Usually, a normalized adjacency matrix is used, and a common choice is S in Eq. 2.1. In what follows,
we present the GCR model using S. In GCR, there is a vector of coefficients βc = (β1c, . . . ,βdc)

T

for each category c = 1, . . . , C. To ensure the identifiability of βc, we take the last category as
the reference category, i.e., βC = 0d. In GCR model, given predictors X and A, for each node
i = 1 . . . , n, the probability of node i’s classification label Yi belonging to category c is

Pic = P(Yi = c|X,A) = exp
∑n

j=1 SM
ij Xjβc

1+
∑C−1

l=1 exp
∑n

j=1
SM
ij

Xjβl
, c = 1, . . . , C, (2.2)

where Xj = (Xj1, . . . ,Xjd) is the jth row of X, SMij is the (i, j)th element in SM , S is defined in
Eq. 2.1, and M is the number of convolution layer. The sum

∑n
j=1 S

M
ij Xj aggregates neighboring

nodal features, encouraging neighboring nodes to have similar aggregated features, thus having similar
classification labels. A larger value of M enables the model to capture higher-order neighborhood
dependencies. In the high-dimensional setting, where d can be larger than n, we assume βc to be
sparse such that s << d, where s is the number of nonzero elements of βc.

Parameter estimation. Given observed data (A,X,Y), the parameter estimate β̂ =

(β̂1, . . . , β̂C−1) is obtained by minimizing the following negative log-likelihood with l1 regulariza-
tion, l(β;Y,X,A) = −

∑n
i=1

∑C
c=1(Yic logPic + (1 − Yic) log(1 − Pic)) + λ

∑C−1
c=1 ||βc||1,

where Pic is defined in Eq. 2.2, || · ||1 is the l1−norm, λ ≥ 0 is a regularization hyperparameter
controlling the trade-off between the log-likelihood and the penalty. Such regularization is commonly
used in other high-dimensional penalized regression/classification problem (e.g., Ridge, Elastic Net
etc.). l(β;Y,X,A) can be further simplified as

l(β;Y,X,A) = −
∑n
i=1

∑C
c=1(Yic

∑n
j=1 S

M
ij Xjβc− log(1+e

∑n
j=1 SM

ij Xjβc))+λ
∑C−1
c=1 ||βc||1

(2.3)
To minimize Eq. 2.3, we use the standard coordinate descent algorithm (Wright, 2015), which
iteratively minimizes the objective function with respect to each coordinate of β, while keeping the
others fixed.

3 TRANSFER LEARNING

In this paper, we consider the following transfer learning problem. Let (A(0),X(0),Y(0)) denote
the target data, where A(0) ∈ {0, 1}n0×n0 , X(0) ∈ Rn0×d, Y(0) ∈ {0, 1}n0×C . Let β(0) =

(β
(0)
1 , . . . ,β

(0)
C−1) ∈ Rd×(C−1) denote the true coefficient matrix associated with target data under

GCR model. Let (A(k),X(k),Y(k)) denote the kth source data, k = 1, . . . ,K, where A(k) ∈
{0, 1}nk×nk , X(k) ∈ Rnk×d, Y(k) ∈ {0, 1}nk×C . Let β(k) = (β

(k)
1 , . . . ,β

(k)
C−1) ∈ Rd×(C−1)

denote the true coefficient matrix associated with the kth source data, for the C − 1 classes. Note that
the last class’s coefficient β(k)

C = 0d is fixed to avoid identifiability issues.

The difference between the kth source domain’s coefficient and the target domain’s coefficient is
δ(k) = β(0) − β(k), where δ(k) ∈ Rd×(C−1). The overall domain shift for the k-th source domain
is (C − 1)−1

∑C−1
c=1 ||δ(k)c ||1, where δ(k)c is the cth column of δ(k). A source sample is defined

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

as h−level transferable if its domain shift level is lower than a threshold h. The set of h−level
transferable source data is Ah = {k : (C − 1)−1

∑C−1
c=1 ||δ(k)c ||1 ≤ h}. To ensure that transferring

sources within the set Ah is beneficial, h should be reasonably small. In the subsequent sections, we
will abbreviate the notation Ah as A for brevity without special emphasis.

3.1 TRANSFER LEARNING WHEN THE TRANSFERABLE SOURCE SET IS KNOWN

In this subsection, we present a transfer learning method under GCR (abbreviated as Trans-GCR) for
the node classification task when the transferable source set A is known, i.e., we have prior knowledge
of which source data to utilize. Our method Trans-GCR is motivated by the transfer learning literature
in the conventional regression model (without considering graph structure) (Bastani, 2018; Li et al.,
2022; Tian & Feng, 2023). Figure 1 shows the workflow of Trans-GCR, which works in the following
steps. We first preprocess A(k) to obtain the normalized adjacency matrices S(k), k ∈ {0,A}.

Source sample pooling. We then pooled all source domain data in A into a single source sample,
which includes a normalized adjacency matrix SA ∈ RnA×nA , node features XA ∈ RnA×d, and
labels YA ∈ {0, 1}nA×C , where the total number of nodes is nA =

∑
k∈A nk. SA has a block

structure with diagonal blocks corresponding to the individual S(k) matrices, k ∈ A. The pooled node
features XA and labels YA are obtained by concatenating the respective X(k) and Y(k) matrices
row-wise, k ∈ A. The rationale behind pooling the source samples in A together is due to the
assumption that the source domains in A are similar to the target domain, with only small domain
shifts, implying that they share similar underlying model parameters. By pooling the source samples
(Wang, 2019), the algorithm effectively increases the sample size, which leads to a more accurate and
stable estimate.

Source domain parameter estimation. Let βA denote the latent parameter in GCR that are used to
generate YA. To obtain β̂A, we minimize the aforementioned negative log-likelihood with l1−norm
penalty in Eq. 2.3 using the pooled source samples. Domain shift estimation. Let δA denote the
difference between the pooled source parameters βA and the target domain parameters β(0), i.e.,
β(0) = βA + δA. We then estimate δA by minimizing the following loss function, which essentially
replaces β(0) with β̂A + δA in the likelihood function of GCR model for the target data. Specifically,
we solve the following optimization problem to estimate δA:

−
n0∑
i=1

∑C
c=1[Y

(0)
ic (

n0∑
j=1

sijX
(0)
j)(β̂A

c +δAc)−ψ(
n0∑
j=1

sijX
(0)
j (β̂A

c +δAc))]+λ
C−1∑
c=1

||β̂A
c +δAc ||1, (3.1)

where ψ(x) = log (1 + ex), sij is the (i, j)th element of (S(0))M for the target domain, β̂A
c and δAc

are the cth column of β̂A and δA, respectively. This reformulation transforms the unknown parameter
from β(0) to δA. Finally, once the domain shift δA is calculated, we compute the final target domain
parameter estimate as β̂(0) = β̂A + δ̂A.

We summarize our procedure in Algorithm 1 in Appendix G, which involves two hyperparameters:
the graph convolution layers M and the l1−norm penalty strength λ. Note that while Trans-GCR
requires two hyperparameters: λ and M , it avoids additional hyperparameters required by GCN, such
as dropout rates, learning rates, and hidden sizes, which require extensive tuning. When implementing
Trans-GCR, we apply cross-validation procedures to select these hyperparameters.

3.2 TRANSFERABLE SOURCE DETECTION

In section 3.1, we presented a method when the transferable set A is known. Nevertheless, in
real applications, such prior knowledge might be unavailable. When the source domain differs
significantly from the target domain, negative transfer can occur, leading to decreased performance
on the target task (Li et al., 2022; Tian & Feng, 2023). To address this issue, we propose a data-driven
cross-validation approach to select the transferable set A automatically.

Our method begins by partitioning nodes in the target data into V folds, i.e., s1, . . . , sV . For each
fold v, the labels of nodes in sv in the target data (denoted as Y(0)

sv) are held out as the testing target
data, while the labels in the remaining folds Y(0)

−sv serve as the training target data. We then apply
the transfer learning Algorithm 1 using the kth source data {A(k),X(k),Y(k)} and training target

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1: Workflow of Trans-GCR. We first pool all source domains to get an estimate β̂A. We then
use target data and the knowledge from β̂A to estimate domain shift δ̂A. The final estimate for the
target data is β̂(0) = β̂A + δ̂A.

data {A(0),X(0),Y
(0)
−sv} to obtain the estimate β̂(0)

vk for the target data. Note that we use the entire
network structure of the target data A(0) and all node covariates X(0) to obtain aggregated features.
However, we only use the classification labels of the training nodes Y

(0)
−sv when minimizing the

negative log-likelihood in Eq. 2.3 during the estimation process.

Using the model estimate β̂(0)
vk , we predict labels for the testing nodes in the target data, calculating

P̂(Y(0)
i = c), i ∈ sv. The model’s performance is assessed through the negative log-likelihood,

NL(k)
v = −

∑
i∈sv

∑C
c=1(Y

(0)
ic log P̂(Y(0)

i = c) + (1 − Y
(0)
ic) log(1 − P̂(Y(0)

i = c)). We then
average NL(k)

v across all V folds, yielding NL(k) = V −1
∑V
v=1 NL(k)

v . A lower score of NL(k)

indicates higher transferability of the kth source data. We rank the K sources by their corresponding
NL(k) values and select the top L sources with the lowest scores as the estimated transferable set
Â, where L is a user-defined hyperparameter specifying the number of source data to include. We
summarize our procedure in Algorithm 2 in the Appendix G. Note that in practice, our cross-validation
procedure can be efficiently implemented using parallel computing techniques.

4 THEORETICAL PROPERTIES

In this section, we present our main theoretical results. Establishing theoretical guarantees for the
GCR model under high-dimensional network data is extremely challenging as: (1) The network
dependency prevents the application of standard concentration results, valid only for i.i.d. data.
For instance, standard M-estimation theory requires independence among observations to derive
consistency and the rate of convergence. (2) The ultra-high dimensionality, where the dimension
of X can be much larger than n, further complicates the theoretical analysis. Analyzing any high-
dimensional model is difficult because it requires a thorough understanding of high-dimensional
geometry. Consequently, we need new tools to address these challenges, which is a key part of our
theoretical contribution.

For simplicity and ease of presentation, this section focuses on results for the case where C = 2
corresponds to a two-class classification problem and M = 1. Nevertheless, our theoretical results
can be easily generalized to the multiclass cases. In what follows, we build theoretical guarantees
under the normalized adjacency matrix AX/

√
np, where p is the network connectivity probability,

and np is the expected degree. To ease presentations, we let Z = (AX)/
√
np (replace p by p̂ when

uknown). We would like to highlight that rows of Z are not independent. Let ∥β(0)∥0 = s for some
s ≪ d. The estimate β̂ is obtained by minimizing the loss function in Eq. 2.2, which can further
rewritten using Z, as shown below,

β̂ = argminβ
{
−
∑n
i=1

[
YiZ

⊤
i β − log (1 + exp(Z⊤

i β))
]
+ λ∥β∥1

}
, (4.1)

where Zi is the ith row of Z. The key difference between our analysis of β̂ and that of a standard
high dimensional generalized linear model (e.g., Van de Geer et al. (2014)) is precisely the depen-
dence among observations. Below, we present the assumptions required to establish the theoretical
guarantees of our penalized estimator β̂:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Assumption 4.1. We assume Xi’s are generated independently from a sub-gaussian distribution
with parameter σX, i.e., E[exp(λa⊤Xi)] ≤ exp(λ2σ2

X/2) for all λ ∈ R and for all a ∈ Sp−1. Let
ΣX be the covariance matrix of Xi. Assume that λmin(ΣX) ≥ κl > 0 and maxj ΣX,jj ≤ σ+ for
some constant (κl, σ+).

Assumption 4.2 (Network connectivity). The network connectivity parameter p satisfies
(np)/ log n→ ∞, and p log d→ 0 as n→ ∞.

Assumption 4.3 (Sparsity). The sparsity parameter s of β(0) satisfies: s log
2 d
n

(1−2p)
4p log ((1−p)/p) = o(1).

All three assumptions above are quite standard in the literature on the analysis of high-dimensional
linear and generalized linear models. Assumption 4.1 requires the covariates to be sub-gaussian, a
ubiquitous assumption, which is often needed to deal with ultra-dimensional setup (i.e., d can be as
large as en

γ

for some γ < 1) (see Chapter 6 of Bühlmann & Van De Geer (2011) for details). One may
relax this assumption as the cost of the trade-off between d and n; the thicker the tail of X, the more
stringent condition is needed on d for estimation, or one may use robust loss function (Goldsmith
(2015)). Assumption 4.2 is also a standard assumption in the literature of network estimation, which
merely assumes p to be (slightly) larger than n−1 in order (Lei & Rinaldo, 2015). As for Assumption
4.3, in standard i.i.d. setup we require s log d/n → 0. However, here, our condition is slightly
different; we have an additional factor involving a factor of p. Whether this dependence is optimal is
out of the scope of this paper. Given these assumptions, we are now ready to state our main theorem:

Theorem 4.4. Under Assumption 4.1-4.3, the ℓ1-penalized estimator β̂ obtained in equation 4.1
satisfies;

∥β̂ − β(0)∥22 ≤ c s log dn

for some constant c > 0 with probability 1 − g(n, p, d), where g(n, p, d) goes to 0 as n → ∞,
mentioned explicitly in the proof.

The proof of the theorem is deferred to the Appendix. One of the main technical challenges lies in
establishing a condition equivalent to the standard restricted strong convexity (RSC) or restricted
eigenvalue (RE) condition in the presence of network dependency. It requires that the sample
covariance matrix has a minimum eigenvalue bounded away from zero in certain directions (the
global minimum eigenvalue is always zero since the sample covariance matrix is low-rank due
to the dimensionality exceeding the sample size). This task is difficult even in an i.i.d. setup, as
demonstrated by the collaborative efforts of mathematicians and statisticians over the past decade
Raskutti et al. (2010); Zhou (2009); Rudelson & Zhou (2012); Negahban et al. (2009) for related
references. The modified RSC condition under network dependency is presented in Lemma C.1,
which is of independent interest.

Remark 4.5. It may seem surprising that the convergence rate of β̂, as established in Theorem 4.4
does not depend on p. This is precisely because we have appropriately scaled Z = (AX)/

√
np by p.

If we change the scale, i.e., say we use symmetric normalized Laplacian D−1/2AD−1/2, then the
effective calling would be Z = (AX)/np. In that case, the estimation rate of β̂ would depend on p,
and this dependence can be easily quantified by carefully tracking the steps of our proof. However, as
this involves technical algebra without adding further insight, we refrain from pursuing it here.

Remark 4.6. Our theorem precisely quantifies the estimation rate of β(0) in a single domain, which
can be viewed as the estimation rate using only data from the target domain. Recently, estimating
β(0) using related source samples under the high-dimensional generalized linear model setup has
been explored by Tian & Feng (2023); Li et al. (2023). As previously mentioned, extending these
ideas to incorporate network dependency is quite challenging. However, we have conjectured an
estimation rate for β(0) obtained using Trans-GCR. See Appendix E for details.

Remark 4.7. Although in our theory we have assumed all the entries of A are generated indepen-
dently from Ber(p), Theorem 4.4 continues to hold under the self-loop (resp. no self-loop), i.e. if we
set Aii = 1 (resp. Aii = 0) and generate off-diagonal elements from Ber(p), with different constant
c′ instead of c. In the proof, we have pointed out the required modifications precisely to adapt proof
when i) we have self-loop, and ii) p is unknown and estimated from the data.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 SIMULATION STUDIES

Simulation setup. For the kth dataset, we generate simulation data in the following steps. We
first generate node features X(k) ∈ Rnk×d from i.i.d. Gaussian with mean zero and identity
covariance matrix. We then generate adjacency matrix A(k) ∈ {0, 1}nk×nk considering three
different models: ER random graph model (Erdős & Rényi, 1959), stochastic block model (Holland
et al., 1983), and graphon model (Lovász & Szegedy, 2006). We then generate a C-classes response
Y(k) ∈ {0, 1}nk×C using Eq. 2.2 with M = 1.

In this simulation, we consider a three-classes outcome, i.e., C = 3. For the target data, we set the
target sample size n0 = 200. We consider high-dimensional sparse node covariates, where the number
of covariates is d = 500, and the number of non-zero covariates in β(0)

c is s = 50. We set non-zero
model coefficients for the first s covariates, i.e., β(0)

1 = (0.4 · 1s, 0d−s), β
(0)
2 = (0.5 · 1s, 0d−s),

where 1s has all s elements 1 and 0d−s has all d − s elements 0. For the kth source data, we set
β
(k)
1 = β

(0)
1 − (hk ·1s, 0d−s), β(k)

2 = β
(0)
2 +(hk ·1s, 0d−s), k = 1, . . . ,K. For the first five sources,

we set hk = h where h is a small value and consider varying h to study its effect. For the subsequent
sources, hk is set to be a large value, i.e., 10. We regard the first five sources as transferable datasets,
that is, A = {1, . . . , 5}, and view the remaining sources as non-transferable datasets. We set the
source sample sizes as the same value, i.e., n1 = . . . = nK = n.

Evaluation metric and baselines. We evaluate the performance by calculating the mean squared
estimation errors (MSE) between the estimated coefficients and the true target coefficient, i.e.,
MSE = 1

2d (||β̂
(0)
1 − β

(0)
1 ||2F + ||β̂(0)

2 − β
(0)
2 ||2F). All experiments are replicated 100 times to

calculate the averaged MSE. We compare our method Trans-GCR with two baselines: (1) GCR
which uses target data only, and (2) Naive transfer learning (Naive TL), which pools the source and
target data together in a brute-force way and trains a single model on the combined dataset to obtain
an estimation. Specifically, the adjacency matrices are merged into a block-diagonal matrix, while
the node features and outcome vectors are concatenated row-wise.

5.1 SIMULATION RESULTS WHEN THE TRANSFERABLE SOURCE SET IS KNOWN

We first show results when A = {1, . . . , 5} is known, i.e., we will only use the first five source data
to perform transfer learning. Due to page limit, we only show the results when network is generated
under ER model in the main text, but additional simulation results under SBM and graphon model
can be found in Figures S1 and S2 in the Appendix. In addition, we also show our method’s superior
performance with two convolution layers in Figure S3.

Asymptotic performance. To investigate the asymptotic performance of the Trans-GCR method,
we vary the sample size of source data n ∈ {100, . . . , 1000} while fixing source-target domain shift
h = 1, fixing the ER edge probability in the target data and source data p0 = . . . = p5 = 0.05.
Figure 2(a) shows that our method Trans-GCR demonstrates a marked decrease in MSE as the source
data sample size increases. Naive TL also shows a decreasing MSE trend but at a significantly higher
error rate compared with Trans-GCR. In contrast, the GCR method has the highest MSE across all
source sample sizes and remains unchanged since it does not utilize source data information.

Effect of source-target domain shift. To investigate the impact of h, we vary h ∈ {1, . . . , 10},
while fixing source sample size n = 600, and fixing the ER edge probability p0 = . . . = p5 = 0.05.
Figure 2(b) reveals that the MSE of Trans-GCR and Naive TL increases gradually as the source-target
domain shift grows, which is expected since a larger shift implies reduced transferability between
source and target domains. When h increases to 10, the advantage of transfer learning disappears.

Effect of source-target network density discrepancy. To investigate the impact of the network
density difference between the source and target networks, we vary the ER edge probability in the
source data p1 = . . . = p5 ∈ {0.01, . . . , 0.1} while fixing the ER edge probability in the target
data as 0.05, and fixing n = 600, h = 1. Figure 2(c) reveals that both Trans-GCR and Naive TL
show a slight U-shape trend, with the best results achieved when the source and target network
densities are similar. As the density difference increases in either direction, the performance degrades.
While network density discrepancies can impact the performance of transfer learning approaches,
Trans-GCR demonstrates strong robustness in handling these differences, consistently outperforming
GCR and Naive TL across the range of density variations tested.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.010

0.015

0.020

0.025

1 2 3 4 5 6 7 8 9 10
h

M
SE

method

Trans−GCMLR
GCMLR
Naive TL

0.010

0.015

0.020

0.025

0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14
Source Network Within−Community Probability

M
SE

method Trans−GCMLR GCMLR Naive TL

0.010

0.015

0.020

0.025

0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14
Source Network Within−Community Probability

M
SE

method Trans−GCMLR GCMLR Naive TL

0.010

0.015

0.020

0.025

100 200 300 400 500 600 700 800 9001000
Source data sample size

M
SE

Method

Trans−GCMLR
GCMLR
Naive TL

Source data sample size Source-target gap h Source-network density p Source network within-
community probability

(a) (b)

0.010

0.015

0.020

0.025

0.010.020.030.040.050.060.070.080.090.10
Source Network Density p

M
SE

method

Trans−GCMLR
GCMLR
Naive TL

(c)

0.010

0.015

0.020

0.025

0.050.060.070.080.090.100.110.120.130.14
Source Network Within−Community Probability

M
SE

method

Trans−GCMLR
GCMLR
Naive TL

(d)

Method

0.010

0.015

0.020

0.025

0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14
Source Network Within−Community Probability

M
SE

method Trans−GCMLR GCMLR Naive TLTrans-GCR GCR Naive-TL

Figure 2: Performance comparison (MSE) of Trans-GCR (red), GCR (black), Naive TL (blue) across
varying (a) Source sample size, (b) Source-target gap h, (c) Source network density (0.05 means
identical densities) (d) Source network within-community probability (higher value means more
discrepancy).

Effect of source-target network distribution discrepancy. To investigate the impact of distribution
discrepancy between source and target networks, we consider a scenario where the target network
is generated from the ER model with parameter 0.05 while the source networks are generated from
a balanced two-block SBM. In the SBM, we fix the between-community connection probability as
0.05 and the vary within-community probability from 0.05 to 0.14. When the within-community
probability is 0.05, the SBM becomes identical to the ER(0.05) model used for the target network.
We fix the source sample size n = 600, and source-target domain shift h = 1. Figure 2(d) shows that
the MSE of the Trans-GCR method slightly increases as the distribution discrepancy increases. In
contrast, the MSE of Naive TL shows a clear upward trend.

5.2 TRANSFERABLE SOURCE DETECTION RESULTS

0.933 0.928 0.908 0.912 0.905

0.00

0.25

0.50

0.75

1.00

6 7 8 9 10
Number of source data

A
U

C

Figure 3: AUC for detecting transfer-
able sources.

Given K source domains, we apply Algorithm 2 to obtain the
transferability score for each source domain. Here, we use a
three-fold cross-validation. To assess the effectiveness of these
scores in identifying transferable sources, we treat the task as a
binary classification problem and compute the AUC (area under
the ROC curve). A higher AUC indicates better performance in
distinguishing transferable and non-transferable sources based
on the transferability scores. Following the aforementioned
setting, the first five source domains are defined as transferable.
We vary the number of total candidate source domainsK from 6
to 10, while fixing ER edge probability p0 = . . . = pK = 0.05,
and source data sample size n = 600. Figure 3 shows that as
K increases, indicating a more challenging detection task, the
AUC slightly decreases. Despite this, the AUC consistently
remains above 0.9, showcasing the method’s robustness and accuracy in identifying transferable
source domains.

6 REAL DATA EXPERIMENTS

Data description. We conduct experiments on three widely-used real-world citation networks (Tang
et al., 2008; Shen et al., 2020): (1) DBLPv7 (abbreviated as D), containing 5484 nodes and 8130
edges, extracted from the DBLP database; (2) Citationv1 (abbreviated as C), containing 8935 nodes
and 15113 edges, obtained from the Microsoft Academic Graph database; (3) ACMv9 (abbreviated
as A), containing 9360 nodes and 15602 edges, derived from the ACM digital library. In these
networks, each node represents a paper, and the adjacency matrix A encodes the citation relationships
between papers. The bag-of-words attribute vectors X are derived from keywords extracted from
paper titles, with a combined vocabulary of 6775 unique attributes across all networks. Thus, the
feature dimension of X is 6775. Each paper is associated with a label belonging to one of these five
classes: Databases, Artificial Intelligence, Computer Vision, Information Security, and Networking.

Transfer learning tasks. To evaluate the effectiveness of our method Trans-GCR, we conduct nine
transfer learning tasks between different source and target: (1) C → D, (2) A → D, (3) C & A → D,
(4) D → C, (5) A → C, (6) D & A → C, (7) D → A, (8) C → A, and (9) D & C → A.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Baselines. We compare our proposed method with several baselines: GCN-based domain adaption
methods, including (1) AdaGCN (Dai et al., 2022), (2) UDAGCN (Wu et al., 2020), and (3) pre-
training GNNs (Hu et al., 2020); Naive transfer learning methods, as detailed in Section 5. Briefly,
this involves pooling the source and target data into a single dataset and training a single model on
the combined data. We apply this naive transfer learning strategy across different models, including:
(3) GCR model, (4) GPR-GNN (Chien et al., 2020), (5) GRAND (Feng et al., 2020) (6) Node2vec
(Grover & Leskovec, 2016), (7) GraphSAGE (Hamilton et al., 2017), (8) GCN (Kipf & Welling,
2017), (9) APPNP (Gasteiger et al., 2018), (10) attri2vec (Zhang et al., 2019), (11) SGC (Wu et al.,
2019), and (12) GAT (Velickovic et al., 2017). In addition to the naive transfer learning results
of methods in (3)-(12), we also report the performance of selected methods trained solely on the
target domain data for comparison. We take a cross-validated grid-search and present in Table 1 the
performance of the baselines in the best configuration of hyperparameters.

Evaluation. We evaluate the performance of our Trans-GCR method using a standard metric, i.e.,
micro-F1 (Dai et al., 2022). These metrics assess the model’s predictions on the testing subset of
the target data. All experiments are replicated 10 times. Our evaluation aims to answer three key
questions: (1) How does the performance of our Trans-GCR method compare with other baseline
methods, given the fixed training rate? (2) How does the computational time of our Trans-GCR
method compare with other baseline methods? (3) How does the training rate of the source and target
networks affect the performance of Trans-GCR? Here, the training rate of a network refers to the
proportion of nodes whose labels were utilized for training the model.

497 382

14527

3363

6755

2217

795

6243

1865
874

0

5000

10000

15000

Tr
an

s−
G

C
R

G
C

R

A
da

G
C

N

no
de

2v
ec

G
ra

ph
S

A
G

E

G
C

N

A
P

P
N

P

at
tr

i2
ve

c

S
G

C

G
AT

Method

C
om

pu
ta

tio
na

l t
im

e
(s

ec
on

ds
)

dose

Trans−GCR

GCR

AdaGCN

node2vec

GraphSAGE

GCN

APPNP

attri2vec

SGC

GAT

Figure 4: Averaged computational
time (seconds) of different methods.

Results. (1) Performance comparison with fixed training
rate. Table 1 shows the averaged micro-F1 when a 75% source
training and a 3% target training rate. Due to space constraints,
we only present the results of seven naive transfer learning
methods here, with additional results available in Table S3. The
performance of these methods when trained solely on target
data is provided in Table S4. The results demonstrate that Trans-
GCR consistently outperforms the baseline methods across all
tasks. AdaGCN generally performs better than naive TL meth-
ods, indicating the advantages of domain adaptation. However,
despite AdaGCN’s good performance, it suffers from high com-
putational costs, which we will discuss later. Notably, Trans-
GCR performs better with two source domains (e.g., C & A →
D) than with one (e.g., C → D). This suggests that Trans-GCR
effectively leverages complementary information from multiple
source domains, enhancing transfer learning performance on
the target task. (2) Computational time. Figure 4 shows that Trans-GCR has significantly lower
computational time than AdaGCN, demonstrating its efficiency.

Method Trans-GCR AdaGCN
(a) (b)

Figure 5: (a) Varying source training rates (b)
Varying target training rates.

(3) Effect of training rate. Figure 5(a) shows the
micro-F1 for the transfer learning tasks D → C, as the
source training rate increases from 1% to 90%, while
the target rate is fixed at 3%. Figure 5(b) depicts the
micro-F1 results as the target training rate increases
from 1% to 10%, while fixing the source training rate
at 75%. As we can see, our proposed method Trans-
GCR consistently outperforms AdaGCN across all
different source training rates and target training rates,
while increasing rates leads to improved performance
of our method. Results on other transfer learning
tasks, leading to similar conclusions, are shown in Appendix F.2.

(4) Sensitivity analysis to hyperparameters. When implementing Trans-GCR, we employed a
cross-validation procedure to select the optimal M and λ. We systematically varied M from 2 to 7
and λ from 0.005 to 0.0015. Table S5 and S6 in the Appendix shows the results. From Table S5, we
have the following observations: (1) For each target-source pair, the performance generally improves
with increasing M . The performance is optimal when M = 5, after which it may stabilize or slightly
decrease. (2) Even though there is some variability in the micro-F1 scores for different values of
M , it is not overly sensitive. For example, the micro-F1 score for the target domain D with source

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

domain C slightly fluctuates between 75.21% and 76.53%. From Table S6, we observe that: For
each target-source pair, the performance varies with different λ values. The performance is generally
higher at the smallest λ value (0.0005). Nevertheless, the changes in micro-F1 scores are relatively
modest, indicating that our method is robust to variations in λ. For example, the micro-F1 score for
the target domain C with source domain A varies slightly between 78.56% and 79.61%. In summary,
these tables collectively indicate that our proposed Trans-GCR method is not highly sensitive to the
specific values of M and λ.

Table 1: Averaged Micro F1 score (%) of various methods, over 10 replicates, with source training
rate fixed at 0.75 and target training rate fixed at 0.03.

Target Source Trans-GCR GCR AdaGCN UDAGCN Pre-trained
GNNs

GPRGNN GRAND GCN APPNP SGC GAT

D
C 76.53 72.30 75.14 69.52 73.15 74.48 67.23 71.59 73.10 72.12 71.74
A 75.16 69.75 74.52 58.24 70.03 72.07 66.78 69.12 70.82 68.64 67.34

C&A 76.61 70.09 74.87 71.15 72.89 75.11 69.33 64.35 70.94 71.31 62.48

C
D 78.99 72.82 77.85 61.63 75.32 75.36 67.13 72.97 75.26 77.56 73.17
A 80.37 77.16 79.29 71.85 67.48 75.02 73.24 73.85 75.86 76.73 73.39

D&A 80.58 77.23 78.91 73.35 76.21 75.72 69.67 70.53 74.81 77.31 70.52

A
D 72.61 69.54 72.35 53.35 66.78 71.67 66.63 66.87 66.56 69.26 66.67
C 73.56 71.17 73.32 55.52 68.94 72.95 56.74 66.10 67.33 72.52 67.79

D&C 73.78 71.32 73.26 65.85 69.61 72.91 67.31 63.19 64.81 70.18 63.80

7 DISCUSSION

In this paper, we introduce the GCR model to capture the relationship between node classification
labels (Y), network structure (A), and node covariates (X). We then propose Trans-GCR, a transfer
learning method that enhances estimation in the target domain using knowledge from the source
domain. Despite its strong empirical performance and theoretical benefits, our method has limitations
that need further research. Firstly, our theoretical results are limited to the ER random graph
model. While we show empirical success with other models like SBM and graphon, theoretical
validation for these models is still needed. Secondly, the GCR model assumes a linear relationship
between graph convolutional features and the log odds ratio; extending this to nonlinear models
would be valuable. Thirdly, our source detection algorithm only provides a transferability score, and
developing a hypothesis testing method for source domain transferability would be useful. Fourthly,
our algorithm currently transfers only point estimations of model parameters, and extending it to
include confidence interval estimation would provide a measure of uncertainty. Lastly, asM increases,
SM converges to a matrix of ones, resulting in oversmoothing, where node representations become
indistinguishable. Future work could explore adaptive propagation mechanisms, such as APPNP,
to mitigate oversmoothing and preserve meaningful differentiation between node representations in
deeper architectures.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Afonso S Bandeira and Ramon Van Handel. Sharp nonasymptotic bounds on the norm of random
matrices with independent entries. 2016.

Albert-László Barabási. Network science. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 371(1987):20120375, 2013.

Hamsa Bastani. Predicting with proxies: Transfer learning in high dimension. arXiv preprint
arXiv:1812.11097, 2018.

Stéphane Boucheron, Gábor Lugosi, and Olivier Bousquet. Concentration inequalities. In Summer
school on machine learning, pp. 208–240. Springer, 2003.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Lecun. Spectral networks and locally con-
nected networks on graphs. In International Conference on Learning Representations (ICLR2014),
CBLS, 2014.

Peter Bühlmann and Sara Van De Geer. Statistics for high-dimensional data: methods, theory and
applications. Springer Science & Business Media, 2011.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. arXiv preprint arXiv:2006.07988, 2020.

Quanyu Dai, Xiao-Ming Wu, Jiaren Xiao, Xiao Shen, and Dan Wang. Graph transfer learning via
adversarial domain adaptation with graph convolution. IEEE Transactions on Knowledge and
Data Engineering, 35(5):4908–4922, 2022.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29:3844–3852, 2016.

Paul Erdős and Alfréd Rényi. On random graphs i. Publ. math. debrecen, 6(290-297):18, 1959.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning on graphs.
Advances in neural information processing systems, 33:22092–22103, 2020.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations, 2018.

Aaron Seth Goldsmith. LASSO Asymptotics For Heavy Tailed Errors. PhD thesis, 2015.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
855–864, 2016.

Emre Guney, Jörg Menche, Marc Vidal, and Albert-László Barábasi. Network-based in silico drug
efficacy screening. Nature communications, 7(1):10331, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Peng Han, Peng Yang, Peilin Zhao, Shuo Shang, Yong Liu, Jiayu Zhou, Xin Gao, and Panos Kalnis.
Gcn-mf: disease-gene association identification by graph convolutional networks and matrix
factorization. In Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 705–713, 2019.

Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
steps. Social networks, 5(2):109–137, 1983.

Jean Honorio and Tommi Jaakkola. Tight bounds for the expected risk of linear classifiers and
pac-bayes finite-sample guarantees. In Artificial Intelligence and Statistics, pp. 384–392. PMLR,
2014.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In International Conference on Learning
Representations, 2020.

Ziniu Hu, Changjun Fan, Ting Chen, Kai-Wei Chang, and Yizhou Sun. Pre-training graph neural
networks for generic structural feature extraction. arXiv preprint arXiv:1905.13728, 2019.

Pengsheng Ji, Jiashun Jin, Zheng Tracy Ke, and Wanshan Li. Co-citation and co-authorship networks
of statisticians. Journal of Business & Economic Statistics, 40(2):469–485, 2022.

Minoru Kanehisa, Susumu Goto, Yoko Sato, Miho Furumichi, and Mao Tanabe. Kegg for integration
and interpretation of large-scale molecular data sets. Nucleic acids research, 40(D1):D109–D114,
2012.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
International Conference on Learning Representations (ICLR), 2017.

Nishai Kooverjee, Steven James, and Terence Van Zyl. Investigating transfer learning in graph neural
networks. Electronics, 11(8):1202, 2022.

Jing Lei and Alessandro Rinaldo. Consistency of spectral clustering in stochastic block models. The
Annals of Statistics, pp. 215–237, 2015.

Ron Levie, Wei Huang, Lorenzo Bucci, Michael Bronstein, and Gitta Kutyniok. Transferability of
spectral graph convolutional neural networks. Journal of Machine Learning Research, 22(272):
1–59, 2021.

Sai Li, T Tony Cai, and Hongzhe Li. Transfer learning for high-dimensional linear regression:
Prediction, estimation and minimax optimality. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 84(1):149–173, 2022.

Sai Li, Linjun Zhang, T Tony Cai, and Hongzhe Li. Estimation and inference for high-dimensional
generalized linear models with knowledge transfer. Journal of the American Statistical Association,
pp. 1–12, 2023.

László Lovász and Balázs Szegedy. Limits of dense graph sequences. Journal of Combinatorial
Theory, Series B, 96(6):933–957, 2006.

Yuanfu Lu, Xunqiang Jiang, Yuan Fang, and Chuan Shi. Learning to pre-train graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 4276–4284, 2021.

Peter McCullagh. Generalized linear models. Routledge, 2019.

Shahar Mendelson, Alain Pajor, and Nicole Tomczak-Jaegermann. Uniform uncertainty principle for
bernoulli and subgaussian ensembles. Constructive Approximation, 28:277–289, 2008.

Sahand Negahban, Bin Yu, Martin J Wainwright, and Pradeep Ravikumar. A unified framework for
high-dimensional analysis of m-estimators with decomposable regularizers. Advances in neural
information processing systems, 22, 2009.

Axel Nilsson and Xavier Bresson. An experimental study of the transferability of spectral graph
networks. arXiv preprint arXiv:2012.10258, 2020.

Eugene Ostrovsky and Leonid Sirota. Exact value for subgaussian norm of centered indicator random
variable. arXiv preprint arXiv:1405.6749, 2014.

Yaniv Plan and Roman Vershynin. One-bit compressed sensing by linear programming. Communica-
tions on pure and Applied Mathematics, 66(8):1275–1297, 2013.

Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Restricted eigenvalue properties for correlated
gaussian designs. The Journal of Machine Learning Research, 11:2241–2259, 2010.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mark Rudelson and Shuheng Zhou. Reconstruction from anisotropic random measurements. In
Conference on Learning Theory, pp. 10–1. JMLR Workshop and Conference Proceedings, 2012.

Luana Ruiz, Luiz Chamon, and Alejandro Ribeiro. Graphon neural networks and the transferability
of graph neural networks. Advances in Neural Information Processing Systems, 33, 2020.

Luana Ruiz, Luiz FO Chamon, and Alejandro Ribeiro. Transferability properties of graph neural
networks. IEEE Transactions on Signal Processing, 2023.

Xiao Shen, Quanyu Dai, Sitong Mao, Fu-lai Chung, and Kup-Sze Choi. Network together: Node
classification via cross-network deep network embedding. IEEE Transactions on Neural Networks
and Learning Systems, 32(5):1935–1948, 2020.

Alessandro Sperduti and Antonina Starita. Supervised neural networks for the classification of
structures. IEEE Transactions on Neural Networks, 8(3):714–735, 1997.

Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer: extraction and
mining of academic social networks. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 990–998, 2008.

Ye Tian and Yang Feng. Transfer learning under high-dimensional generalized linear models. Journal
of the American Statistical Association, 118(544):2684–2697, 2023.

Sara Van de Geer, Peter Bühlmann, Ya’acov Ritov, and Ruben Dezeure. On asymptotically optimal
confidence regions and tests for high-dimensional models. 2014.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio,
et al. Graph attention networks. stat, 1050(20):10–48550, 2017.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cam-
bridge university press, 2019.

Minjie Yu Wang. Deep graph library: Towards efficient and scalable deep learning on graphs. In
ICLR workshop on representation learning on graphs and manifolds, 2019.

Stephen J Wright. Coordinate descent algorithms. Mathematical programming, 151(1):3–34, 2015.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. Unsupervised domain adaptive
graph convolutional networks. In Proceedings of the web conference 2020, pp. 1457–1467, 2020.

Jiarong Xu, Renhong Huang, Xin Jiang, Yuxuan Cao, Carl Yang, Chunping Wang, and Yang Yang.
Better with less: A data-active perspective on pre-training graph neural networks. Advances in
Neural Information Processing Systems, 36:56946–56978, 2023.

Yaming Yang, Ziyu Guan, Zhe Wang, Wei Zhao, Cai Xu, Weigang Lu, and Jianbin Huang. Self-
supervised heterogeneous graph pre-training based on structural clustering. Advances in Neural
Information Processing Systems, 35:16962–16974, 2022.

Jingyang Yuan, Xiao Luo, Yifang Qin, Zhengyang Mao, Wei Ju, and Ming Zhang. Alex: Towards
effective graph transfer learning with noisy labels. In Proceedings of the 31st ACM international
conference on multimedia, pp. 3647–3656, 2023.

Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. Attributed network embedding via
subspace discovery. Data Mining and Knowledge Discovery, 33:1953–1980, 2019.

Shuheng Zhou. Restricted eigenvalue conditions on subgaussian random matrices. arXiv preprint
arXiv:0912.4045, 2009.

Qi Zhu, Carl Yang, Yidan Xu, Haonan Wang, Chao Zhang, and Jiawei Han. Transfer learning of
graph neural networks with ego-graph information maximization. Advances in Neural Information
Processing Systems, 34:1766–1779, 2021.

Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with
graph convolutional networks. Bioinformatics, 34(13):i457–i466, 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

In this Appendix, we show (1) the notation table to briefly summarize important notations in this
manuscript, (2) proofs of theoretical guarantees, (3) additional experimental results, and (4) pseudo
code of algorithms.

A NOTATION TABLE

We present the detailed expressions of notations widely used in the proposed model and algorithm in
Table S1.

Table S1: Notations

Notations Description

n number of nodes in entire network
A ∈ {0, 1}n×n adjacency matrix of entire network without self-loops
d number of covariates
X ∈ Rn×d entire covariate matrix
Xj ∈ R1×d feature vector of node j, i.e., jth row in covariate matrix X
C number of classes
Y ∈ {0, 1}n×C entire classification label matrix
Ã adjacency matrix of entire network with added self-connections
D̃ degree matrix of Ã
S normalized adjacency matrix of Ã
n0 target domain sample size
A(0) ∈ {0, 1}n0×n0 adjacency matrix of target network
X(0) ∈ Rn0×d covariate matrix of target domain
Y(0) ∈ {0, 1}n0×C classification label matrix of target domain
β(0) ∈ Rd×(C−1) true coefficient matrix associated with target domain under GCR
nk the kth source domain sample size
A(k) ∈ {0, 1}nk×nk adjacency matrix of the kth source network
X(k) ∈ Rnk×d covariate matrix of the kth source domain
Y(k) ∈ {0, 1}nk×C classification label matrix of the kth source domain
β(k) ∈ Rd×(C−1) true coefficient matrix associated with kth source domain under GCR
δ(k) difference between the kth source and the target domain’s coefficient
Ah the set of h−level transferable source data, abbreviated as A for brevity
p0 parameter of Erdős–Rényi (ER) random graph model for target domain
pk parameter of ER random graph model for the kth source domain
AA pooled adjacency matrix
XA pooled covariate matrix
YA pooled label matrix
nA sample size in the pooled sample
βA true underlying parameter related to the pooled sample (AA,XA,YA)

β̂(0) estimate for β(0) obtained using our algorithms

B ROADMAP OF THE PROOF

The proof of our method comprises three key components:

1. Obtaining an optimal value of λ, the penalty parameter, that upper bounds the effect of the
noise in the system (Lemma C.2).

2. Establishing restricted strong convexity of the sample covariance matrix (Lemma C.1).

3. Combining Step 1 and Step 2 along with the fact that β̂ minimizes the penalized loss function
to complete the proof via some algebraic manipulation.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Step 3 is similar to the analysis of the analysis of independent data as in Tian & Feng (2023) or Li
et al. (2022). The key difference between the existing analysis and our analysis is Step 1 and Step 2.
In this subsection, we highlight the differences. In Step 1, we need to provide an upper bound on

∥∇Ln(β0)∥∞ = max
1≤j≤d

∣∣∣∣∣ 1n
n∑
i=1

Zij

{
Yi − ψ′(Z⊤

i β
(0))
}∣∣∣∣∣

In the case of i.i.d. observations, the above expression is the maximum of d sample averages, so one
may use any standard concentration bound for the sample average (e.g., Chernoff bound, Hoeffding’s
inequality, etc.) along with a union bound would be sufficient. However, as our observations are
dependent, we cannot use any standard concentration inequality directly. Hence, careful modifications
are necessary, which are presented in the proof of Lemma C.2 in detail.

Step 3 is the most technically demanding part of our proof, where we demonstrate that the Bregman
divergence of the loss function, defined as:

δLn(u) = Ln(β0 + u)− Ln(β0)−
〈
u,∇Ln(β(0))

〉
is lower bounded by g(u)|u|22. This condition would be straightforward to establish with g(u) ≡ C
for some C > 0 if Ln were strongly convex over the entire domain. However, in the high-dimensional
setting, strong convexity on the entire domain is not feasible, making this condition challenging to
prove, constructing a suitable g(u).

For i.i.d. observations, this result is established in Negahban et al. (2009). However, as in Step 1, the
proof becomes significantly more complex when the observations are dependent. To address this,
we had to modify the proof technique of Negahban et al. (2009) to account for dependencies among
observations. The details of this modification, as well as a comparison with the proof for i.i.d. data in
Negahban et al. (2009), are provided in the proof of Lemma C.1.

C PROOF OF THEOREM 4.4

For notational simplicity, define ψ(x) = log (1 + ex). Recall that our loss function is negative
log-likelihood:

Ln(β) =
1

n

∑
i

{
−YiZ

⊤
i β + ϕ(Z⊤

i β)
}
,

and our estimator is:
β̂ = argminβ [Ln(β) + λ∥β∥1] .

Furthermore, define the Bregman divergence δLn(β) as:

δLn(β) = Ln(β)− Ln(β
(0))− ⟨β − β(0),∇Ln(β(0))⟩ . (C.1)

As Ln(·) is a convex loss function, it is immediate that δLn(β) ≥ 0 for all β ∈ R. Furthermore,
define v̂ = β̂ − β(0) and the penalized excess risk function Rn as:

Rn(v) = Ln(β
(0) + v) + λ∥β(0) + v∥1 − Ln(β

(0))− λ∥β(0)∥1 .

As both the loss and penalty functions are convex, Rn(·) is a convex function. Furthermore, as β̂
minimizes the penalized loss function, we have:

Rn(v̂) ≤ 0, or equivalently Ln(β̂) + λ∥β̂∥1 ≤ Ln(β
(0)) + λ∥β(0)∥1 . (C.2)

Recall that we need to show ∥v̂∥22 = ∥β̂ − β(0)∥22 ≤ C(s log d)/n. We prove this by reductio ad
absurdum. As s = o(log d/n), we know C(s log d)/n < 1. Suppose that the claim of the theorem
is not true. Then there exists t ∈ (0, 1) such that C(s log d)/n < ∥tv̂∥22 ≤ 1. Call tv̂ = ṽ. By the
convexity of Rn(·) we have:

Rn(ṽ) = Rn(tv̂) = Rn(tv̂ + (1− t)0) ≤ tRn(v̂)︸ ︷︷ ︸
≤0

+(1− t)Rn(0)︸ ︷︷ ︸
=0

≤ 0 .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The above chain of inequalities provides an immediate upper bound on Rn(ṽ). For the lower bound,
we use Bregman divergence:

0 ≥ Rn(ṽ) = Ln(β
(0) + ṽ) + λ∥β(0) + ṽ∥1 − Ln(β

(0))− λ∥β(0)∥1
= ⟨ṽ,∇Ln(β(0))⟩+ δLn(ṽ) + λ∥β(0) + ṽ∥1 − λ∥β(0)∥1
≥ δLn(ṽ)− ∥∇Ln(β(0))∥∞∥ṽ∥1 + λ∥β(0) + ṽ∥1 − λ∥β(0)∥1

Therefore, we have:

δLn(ṽ) + λ∥β(0) + ṽ∥1 ≤ ∥∇Ln(β(0))∥∞∥ṽ∥1 + λ∥β(0)∥1 .

Now suppose we choose λ such that ∥∇Ln(β(0))∥∞ ≤ λ/2 with high probability. We will specify
the choice of λ later in the proof. Under this choice we have:

δLn(ṽ) + λ∥β(0) + ṽ∥1 ≤ λ

2
∥ṽ∥1 + λ∥β(0)∥1

=⇒ δLn(ṽ) + λ∥ṽSc∥1 ≤ 3λ

2
∥ṽS∥1 . (C.3)

As δLn(ṽ) ≥ 0, we further have ∥ṽSc∥1 ≤ 3∥ṽS∥1, i.e. ṽ ∈ C(s, 3), where C(s, α) is defined as:

C(s, α) = {v ∈ Rp : ∥vSc∥1 ≤ α∥vS∥1, for some S with |S| = s} .

We next present a lemma, which establishes a lower bound on δLn(·) with high probability:
Lemma C.1. Under Assumptions 1 and 2, there exists some positive constants κl and C4 such that,

δLn(u) ≥ Lψ(T)∥u∥22

{
κl −

(
C4 log d

√
Ψ(p)

n

)
∥u∥1
∥u∥2

}
, ∀ ∥u∥2 ≤ 1 .

with probability at least 1 − (exp
(
1
2 log d+ 1− c4 log

2 dΨ(p)
)
+ 2exp(1− (c1 − 3/2) log d) +

2exp
(
3
2 log d+ 1− c2n

)
), where

Ψ(p) =
1− 2p

4p log ((1− p)/p)
,

and Lψ(T) is a constant, same as in the proof of Proposition 2 of Negahban et al. (2009).

We defer the proof the lemme to the end to maintain the flow. Consider the event when the upper
bound of Lemma C.1 holds. As by definition ∥ṽ∥2 ≤ 1, applying Lemma C.1 on ṽ yields:

δLn(ṽ) ≥ Lψ(T)κl∥ṽ∥22 − Lψ(T)

(
C4 log d

√
Ψ(p)

n

)
∥ṽ∥1∥ṽ∥2 .

Using this lower bound on the Bregman divergence in equation equation C.3, we have:

Lψ(T)κl∥ṽ∥22 + λ∥ṽSc∥1 ≤ 3λ

2
∥ṽS∥1 + Lψ(T)

(
C4 log d

√
Ψ(p)

n

)
∥ṽ∥1∥ṽ∥2

≤ 3λ
√
s

2
∥ṽS∥2 + Lψ(T)

(
C4 log d

√
Ψ(p)

n

)
(∥ṽS∥1 + ∥ṽSc∥1)∥ṽ∥2

≤ 9

8Lψ(T)κl
sλ2 +

Lψ(T)κl
2

∥ṽS∥2 + 4Lψ(T)

(
C4 log d

√
Ψ(p)

n

)
(∥ṽS∥1)∥ṽ∥2 .

Changing sides we have:

Lψ(T)κl
2

∥ṽ∥22 + λ∥ṽSc∥1 ≤ 9

8Lψ(T)κl
sλ2 + 4Lψ(T)

(
C4 log d

√
Ψ(p)

n

)
(∥ṽS∥1)∥ṽ∥2

≤ 9

8Lψ(T)κl
sλ2 + 4Lψ(T)

√
s

(
C4 log d

√
Ψ(p)

n

)
∥ṽ∥22

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

As under Assumption 4.3, we have s log d = op(
√
n/Ψ(p)), eventually it will be smaller than

Lψ(T)κl/4. Therefore, we have:

1

4
Lψ(T)κl∥ṽ∥22 + λ∥ṽSc∥1 ≤ 9

8Lψ(T)κl
sλ2 =⇒ ∥ṽ∥22 ≤ 9

2L2
ψ(T)κ

2
l

sλ2 . (C.4)

If we can show that a proper choice of λ is C2

√
log d/n, then we are done as in that we have:

∥ṽ∥22 ≤ 9C2

2L2
ψ(T)κ

2
l

s log d

n
≜ C

s log d

n

which contradicts the assumption that ∥ṽ∥2 > C
√
s log d/n. This will complete the proof. In the

following lemma, we show that, indeed C2

√
log d/n is a valid choice for λ:

Lemma C.2. Under Assumption 4.1, there are universal positive constants (c1, c2, c3) such that

∥∇Ln(β(0))∥∞ =

∥∥∥∥∥ 1n
n∑
i=1

Zi

{
Yi − ψ′(Z⊤

i β
(0))
}∥∥∥∥∥

∞

≤ C

√
log d

n
,

with probability 1− c1
(
d−c2 + n−1 + elogn−np/c3

)
.

Therefore, under the above lemma, we replace λ byC
√
log d/n in equation equation C.4 we complete

the proof. Proof of Lemma C.1 and Lemma C.2 can be found in Appendix D

D PROOF OF ADDITIONAL LEMMAS

D.1 PROOF OF LEMMA C.1

The proof of Lemma C.1 follows the basic structure of the proof of Proposition 2 of Negahban et al.
(2009). However, suitable modifications are necessary to incorporate network dependency. We first
state Proposition 2 of Negahban et al. (2009) here for the convenience of the readers:
Proposition D.1 (Proposition 2 of Negahban et al. (2009)). Consider the logistic loss (negative
log-likelihood) function:

Ln(β) =
1

n

∑
i

{
−YiZ

⊤
i β + log (1 + eZ

⊤
i β)
}

Define the Bregman divergence of Ln as follows:

δLn(u) = Ln(β
∗ + u)− Ln(β

∗)− ⟨u,∇Ln(β∗)⟩ = 1

n

∑
i

ψ′′(Z⊤
i β

∗ + vZ⊤
i u)(Z

⊤
i u)

2 .

where ψ(x) = log (1 + ex). Then we have:

δLn(u) ≥ κ1∥u∥2

{
∥u∥2 − κ2

√
log d

n
∥u∥1

}
∀ ∥u∥2 ≤ 1

with probability at least 1− c1e
−c2n for some constant κ1, κ2.

However, in their proof, the authors heavily used that Zi’s are i.i.d., which is not longer true in our
situation, as Zi’s the rows of AX/

√
np. Below, we highlight the modification of the steps that are

needed for the proof:

Modification 1: We first need to show that there exists some constant κl (not depending
on (n, p, d)) such that

v⊤E

[
1

n

∑
i

Z⊤
i Zi

]
v = v⊤

(
1

n2p
E[X⊤A⊤AX]

)
v ≥ κl∥v∥22

for all v ∈ Rd. It is easy to see that E[X⊤A⊤AX]/(n2p) = ΣX . Therefore, as long as we assume
that λmin(ΣX) ≥ κl, we are done. The lower bound on the minimum eigenvalue of ΣX follows from
Assumption 4.1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Remark D.2. Suppose we do not know p. Then, we can estimate it from separate data (by data
splitting) independent of current data. An application of Hoeffding’s inequality yields:

P (|p̂− p| ≥ t/n) ≤ Ce−ct
2

.

Taking t = np and t = np/2 (which goes to infinity as per Assumption 4.2), we have:

P(p/2 ≤ p̂ ≤ 2p) ≥ 1− C1e
−cn2p2 ↑ 1 .

Therefore, we can perform the entire analysis conditioning on this event.
Remark D.3. As per Remark D.2, if we condition on the event p̂ ≤ 2p, then we have on that event:

v⊤E
[(

1

n2p̂
E[X⊤A⊤AX]

)]
v ≥ κl

2
∥v∥22 .

Furthermore, if we add self-loop, it is easy to see that

E[X⊤A⊤AX] =

(
1− 1− p

np

)
ΣX

As the constant goes to 1 as n ↑ ∞, we have:

v⊤E
[(

1

n2p̂
E[X⊤A⊤AX]

)]
v ≥ κl

4
∥v∥2 ∀ large n .

Modification 2: To conclude equation (72) of Negahban et al. (2009), we need i) an upper bound on
E[(u⊤Zi)4] and ii) a tail bound P(|u⊤Zi| ≥ t). Getting the tail bound is easy, as we can apply the
Cauchy-Schwarz inequality:

P(|u⊤Zi| ≥ t) ≤ E[(u⊤Zi)2]
t2

≤ λmax(ΣX)

t2
.

Now we need to bound the fourth moment (in fact, any 2 + δ moment is sufficient):

E[(u⊤Zi)4]

= E

 1
√
np

n∑
j=1

aij(X
⊤
j u)

4

= E

 1
√
np

n∑
j=1

(aij − p+ p)(X⊤
j u)

4

≤ 8

E

 1
√
np

n∑
j=1

(aij − p)(X⊤
j u)

4
+ E

√

p
√
n

n∑
j=1

(X⊤
j u)

4

= 8

 1

n2

∑
j

E

[(
aij − p
√
p

)4

(X⊤
j u)

4

]
+

1

n2

∑
j ̸=j′

E

[(
aij − p
√
p

)2

(X⊤
j u)

2

]
E

[(
aij − p
√
p

)2

(X⊤
j u)

2

]

+p2
1

n2

∑
j

E[(X⊤
j u)

4] + p2
1

n2

∑
j ̸=j′

E[(X⊤
j u)

2]E[(X⊤
j′u)

2]

≤
{

1

np
E[(X⊤u)4] +

(
E[(X⊤u)2

)2
+
p2

n
E[(X⊤u)4] + p2

(
E[(X⊤u)2

)2}
which is finite as E[(X⊤u)4] is finite (X is sub-gaussian) and np ↑ ∞.
Remark D.4. If p is unknown, then we can modify the first step by conditioning on the event p̂ ≥ p/2
and have:

E

 1√

np̂

n∑
j=1

aij(X
⊤
j u)

4
 ≤ 4E

 1
√
np

n∑
j=1

aij(X
⊤
j u)

4

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

The rest of the proof will remain the same. Furthermore, if we add self-loop, then we have to single
the term aii(X

⊤
i u)

2 out as now aii = 1. However, it will add another term of other 1/(n2p2) to the
above bound, which is asymptotically negligible.

Modification 3: We next show an analog of equation (76) of Negahban et al. (2009). Following the
notations of Negahban et al. (2009), define a random process Z(t) as:

Z(t) = sup
u∈S2(1)∩B1(t)

∣∣∣∣∣ 1n
n∑
i=1

{gu(Zi)− E[gu(Zi)]}

∣∣∣∣∣ ≜ Ft(Z1, . . . , Zn) .

We will apply bounded difference inequality (Theorem 6.2 of Boucheron et al. (2003)). Note that
conditional of X, Zi’s are independent random vectors. Furthermore, for any 1 ≤ i ≤ n and for any
Z ′
i ̸= Zi:

Ft(Z1, . . . , Zi−1,Zi, . . . , Zn)− Ft(Z1, . . . , Zi−1, Z
′
i, . . . , Zn)

≤ 1

n
sup

u∈S2(1)∩S1(t)
|gu(Z ′

i)− E[gu(Z ′
i)]| ≤

τ2

2n
[∵ gu(·) ≤ τ2/4].

Therefore, by bounded difference inequality:

P (Z(t) ≥ E[Z(t) | X] + t | X) ≤ exp

(
−8nt2

τ4

)
As the right-hand side does not depend on the value of X, we can further conclude the following by
taking expectations with respect to X on both sides:

P (Z(t) ≥ E[Z(t) | X] + t) ≤ exp

(
−8nt2

τ4

)
. (D.1)

Next, using symmetrization and Rademacher complexity bounds, we bound E[Z(t) | X]. For
notational simplicity let us define:

Vn = max
1≤j≤p

∣∣∣∣∣ 1√
n

n∑
k=1

Xkj

∣∣∣∣∣
Γn = max

1≤j≤d

1

n

n∑
k=1

X2
kj .

Now, as we have already pointed out, conditional on X, Zi’s are i.i.d. random vectors. Therefore,
the symmetrization argument holds, and following the same line of argument as of Negahban et al.
(2009), we can conclude an analog of their equation (78):

E[Z(t) | X] ≤ 8K3tEϵ,Z

[
max
1≤j≤d

∣∣∣∣∣ 1n
n∑
i=1

ϵiZij1|Z⊤
i β∗|≤T

∣∣∣∣∣ | X
]

=
8K3t√
n

EZ|X

[
Eϵ|Z,X

[
max
1≤j≤d

∣∣∣∣∣ 1√
n

n∑
i=1

ϵiZij1|Z⊤
i β∗|≤T

∣∣∣∣∣
]]

First, observe that {ϵ1, . . . , ϵn} are Rademacher random variables (which are also subgaussian with
sub-gaussian constant being 1), and therefore, conditionally on Z,

1√
n

n∑
i=1

ϵiZij1|Z⊤
i β∗|≤T is subgaussian with norm

√√√√ 1

n

n∑
i=1

Z2
ij1|Z⊤

i β∗|≤T ≤

√√√√ 1

n

n∑
i=1

Z2
ij .

Therefore, from standard probability tail bound calculation, we have:

Eϵ|Z,X

[
max
1≤j≤d

∣∣∣∣∣ 1√
n

n∑
i=1

ϵiZij1|Z⊤
i β∗|≤T

∣∣∣∣∣
]
≤
√
2 log d max

1≤j≤d

√√√√ 1

n

n∑
i=1

Z2
ij .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Therefore, we have:

E[Z(t) | X] ≤ 8
√
2K3t

√
log d

n
E

 max
1≤j≤d

√√√√ 1

n

n∑
i=1

Z2
ij | X

 (D.2)

Recall that by define Zij = (
∑
k AikXkj)/

√
np, which is not centered conditional on X. Therefore

we first center it:

Zij =
1

√
np

∑
k

AikXkj =
1

√
np

∑
k

(Aik − p)Xkj +

√
p

n

∑
k

Xkj ≜ Z̄ij +

√
p

n

∑
k

Xkj .

Using this we have:

E

 max
1≤j≤d

√√√√ 1

n

n∑
i=1

Z2
ij | X

 ≤ E

 max
1≤j≤d

√√√√ 1

n

n∑
i=1

Z̄2
ij | X

+
√
p max
1≤j≤d

∣∣∣∣∣ 1√
n

∑
k

Xkj

∣∣∣∣∣
= E

 max
1≤j≤d

√√√√ 1

n

n∑
i=1

Z̄2
ij | X

+
√
pVn

≤

√√√√E

[
max
1≤j≤d

1

n

n∑
i=1

Z̄2
ij | X

]
+
√
pVn . (D.3)

Remark D.5. If we have p̂, then again, at the bound in equation equation D.3, we have an additional
factor of

√
2 for replacing p̂ by p.

We next establish an upper bound on the conditional expectation of the maximum of the mean of
Z̄2
ij . We first claim that Z̄ij is a SG(σj) random variable with the value of σj defined in equation

equation D.4 below. To see this, first note that, from Theorem 2.1 of Ostrovsky & Sirota (2014), we
know (Aik − p) is SG(

√
2Q(p)). Therefore, we have:

Z̄ij =
1

√
np

∑
k

(Aik − p)Xkj ∈ SG

(√
2Q2(p)

p

1

n

∑
k

X2
kj

)
≜ SG(σj) . (D.4)

Remark D.6. The same sub-gaussian bound continues to hold even under self-loop as (1− p) is
sub-gaussian with constant ≤ 2Q2(p).

Let µj = E[Z̄2
ij |X]. Then, by equation (37) of Honorio & Jaakkola (2014), we know Z̄2

ij − µj is a
sub-exponential random variable, in particular:

Z̄2
ij − µj ∈ SE

(√
32σj , 4σ

2
j

)
.

Hence we have, by equation (2.18) of Wainwright (2019) (we use the version for the two-sided bound
here):

P

(∣∣∣∣∣ 1n
n∑
i=1

(
Z̄2
ij − µj

)∣∣∣∣∣ ≥ t

)
≤ exp

(
− 1

8σ2
j

min

{
nt2

8
, nt

})
. (D.5)

Going back to equation D.3, we have:

E

[
max
1≤j≤d

1

n

n∑
i=1

Z̄2
ij | X

]
= E

[
max
1≤j≤d

{(
1

n

n∑
i=1

(Z̄2
ij − µj)

)
+ µj

}
| X

]

≤ E

[
max
1≤j≤d

∣∣∣∣∣ 1n
n∑
i=1

(Z̄2
ij − µj)

∣∣∣∣∣ | X
]
+ max

1≤j≤d
µj

Now, bound the first term using the concentration inequality equation D.5. Towards that end, define
σ∗ = maxj σj and observe that σ∗ =

√
2Q2(p)/p

√
Γn.

E

[
max
1≤j≤d

∣∣∣∣∣ 1n
n∑
i=1

(Z̄2
ij − µj)

∣∣∣∣∣ | X
]
≤ 8max{σ∗

√
log d, σ2

∗ log d} .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Furthermore, observe that:

µj = E[Z̄2
ij | X] = E

(1
√
np

∑
k

(Aik − p)Xkj

)2

| X

 = (1− p)
1

n

∑
k

X2
kj ,

which implies, max1≤j≤d µj = (1− p)Γn. Using these bounds in equation equation D.3, we have:

E

 max
1≤j≤d

√√√√ 1

n

n∑
i=1

Z2
ij | X

 ≤
√
max{σ∗

√
log d, σ2

∗ log d}+ (1− p)Γn +
√
pVn (D.6)

Remark D.7. Here also the constant will change by an additional factor of
√
2, see Remark D.5.

This, along, with equation equation D.2,yields:

E[Z(t) | X] ≤ Ct

√
log d

n

(√
max{σ∗

√
log d, σ2

∗ log d}+ (1− p)Γn +
√
pVn

)
≜ Ct

√
log d

n
g(X, p, d) . (D.7)

Using this in the inequality equation D.1 yields:

P

(
Z(t) ≥ Ct

√
log d

n
g(X, p, d) + y

)
≤ exp

(
−8ny2

τ4

)
. (D.8)

We next provide an upper bound for g(X, p, d) term. Note that in the expression of g(X, p, d), there
are two key terms: Γn, Vn. Therefore, if we can obtain an upper bound on them individually, we can
obtain an upper bound on g(X, p, d). We start with Vn; for any fixed j, Xkj’s are i.i.d sub-gaussian
random variable with constant σ2

X . Therefore, we have:

P

(∣∣∣∣∣ 1√
n

n∑
k=1

Xkj

∣∣∣∣∣ ≥ t

)
≤ 2e

− t2

2σ2
X

As a consequence, by union bound:

P(Vn ≥ t) = P

(
max
j

∣∣∣∣∣ 1√
n

n∑
k=1

Xkj

∣∣∣∣∣ ≥ t

)
≤ 2e

log d− t2

2σ2
X

Therefore, choosing t = σX
√
2c1 log d (where c1 ≥ 2), we have:

Vn ≤ σX
√
2c1 log d) with probability ≥ 1− 2exp(−(c1 − 1) log d) . (D.9)

Call this event Ωn,X,1. Our next target is Γn which can be further upper bounded by:

Γn = max
j

1

n

n∑
k=1

X2
kj ≤ max

j

1

n

n∑
k=1

(X2
kj − ΣX,jj) + max

j
ΣX,jj ≜ Γ̄n +max

j
ΣX,jj .

As we have assumed maxj ΣX,jj ≤ C1 for some constant C1, we need to bound Γ̄n. Here, we also
use the fact that X2

jk − ΣX,jj ∈ SE(
√
32σX , 4σ

2
X). Therefore, by equation (2.18) of Wainwright

(2019) we have:

P

(∣∣∣∣∣ 1n
n∑
k=1

(X2
kj − ΣX,jj)

∣∣∣∣∣ ≥ t

)
≤ 2exp

(
− n

8σ2
X

min

{
t2

8
, t

})
Therefore, by union bound:

P

(
max
1≤j≤d

∣∣∣∣∣ 1n
n∑
k=1

(X2
kj − ΣX,jj)

∣∣∣∣∣ ≥ t

)
≤ 2exp

(
log d− n

8σ2
X

min

{
t2

8
, t

})

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Choosing t = maxj ΣX,jj , we have:

Γn ≤ 2max
j

ΣX,jj ≤ 2C1 with probability ≥ 1− 2exp(log d− c2n) . (D.10)

Call this event Ωn,X,2. Now, going back to the definition of g(X, p, d) in equation equation D.7, we
first note that, on the event Ωn,X,1 ∩ Ωn,X,2:

σ∗ =

√
2Q2(p)

p
Γn ≤ 2

√
C1Q2(p)

p
≜ 2
√
C1Ψ(p) .

It is immediate from the definition of Q(p) that Ψ(p) ∼ 1/(−4p log p) for p close to 0. Therefore for
all small p and large d, σ2

∗ log d ≥ 1 and consequently max{σ∗
√
log d, σ2

∗ log d} = σ2
∗ log d. Hence,

we have on the event Ωn,X,1 ∩ Ωn,X,2:

g(X, p, d) ≤ C2

√
Ψ(p) log d+ 2C1 + σX

√
2c1p log d .

It is immediate that the dominating term is the first term, which implies:

g(X, p, d) ≤ 3C2

√
Ψ(p) log d .

We now use this bound in equation equation D.1. Note that:

P (Z(t) ≥ E[Z(t) | X] + y)

≥ P (Z(t) ≥ E[Z(t) | X] + y,Ωn,X,1 ∩ Ωn,X,2)

≥ P

(
Z(t) ≥ 3CC2t log d

√
Ψ(p)

n
+ y,Ωn,X,1 ∩ Ωn,X,2

)

≥ P

(
Z(t) ≥ 3CC2t log d

√
Ψ(p)

n
+ y

)
+ P(Ωn,X,1 ∩ Ωn,X,2)− 1

Therefore,

P

(
Z(t) ≥ 3CC2t log d

√
Ψ(p)

n
+ y

)
≤ exp

(
−8ny2

τ4

)
+ P((Ωn,X,1 ∩ Ωn,X,2)

c)

≤ exp

(
−8ny2

τ4

)
+ 2exp(−(c1 − 1) log d) + 2exp(log d− c2n) .

(D.11)

Choosing y = C3t log d
√
Ψ(p)/n, we have:

P

(
Z(t) ≥ 3CC2t log d

√
Ψ(p)

n
+ C3t log d

√
Ψ(p)

n

)

≤ exp

(
−8C2

3 t
2 log2 dΨ(p)

τ4

)
+ 2exp(−(c1 − 1) log d) + 2exp(log d− c2n) . (D.12)

Modification 4: Our last modification, not modification per se, but an application of peeling argument.
Infact we want an upper bound on the event E defined as:

E =

{
Z(t) ≥ 3eCC2t log d

√
Ψ(p)

n
+ C3et log d

√
Ψ(p)

n
for some t ∈ [1,

√
d]

}
.

Note that t denotes the ℓ1 norm of a a vector u such that ∥u∥2 = 1. Therefore, t ∈ [1,
√
d]. Also

recall that Z(t) is the suprema of the empirical process over all vectors u such that ∥u∥2 = 1 and
∥u∥1 ≤ t. In peeling, we write E as union of disjoint events. Define Ej as:

Ej =

{
Z(t) ≥ 3eCC2t log d

√
Ψ(p)

n
+ C3et log d

√
Ψ(p)

n
for some t ∈ [

√
d/ej ,

√
d/ej−1]

}
.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Therefore,

E ⊆ ∪⌈ 1
2 log d⌉
j=1 Ej =⇒ P(E) ≤

⌈ 1
2 log d⌉∑
j=1

P(Ej) .

Now observe that, for any t ∈ [
√
d/ej ,

√
d/ej−1], we have Z(t) ≤ Z(

√
d/ej−1) and also

3eCC2t log d

√
Ψ(p)

n
+ C3et log d

√
Ψ(p)

n
≥ 3eCC2

√
d

ej
log d

√
Ψ(p)

n
+ C3e

√
d

ej
log d

√
Ψ(p)

n

≥ 3CC2

√
d

ej−1
log d

√
Ψ(p)

n
+ C3

√
d

ej−1
log d

√
Ψ(p)

n
.

Therefore:

P(Ej) ≤ P

(
Z

(√
d

ej−1

)
≥ 3CC2

√
d

ej−1
log d

√
Ψ(p)

n
+ C3

√
d

ej−1
log d

√
Ψ(p)

n

)

≤ exp

(
−8C2

3d log
2 dΨ(p)

e2j−2τ4

)
+ 2exp(−(c1 − 1) log d) + 2exp(log d− c2n)

≤ exp
(
−c4 log2 dΨ(p)

)
+ 2exp(−(c1 − 1) log d) + 2exp(log d− c2n)

Hence:

P(E) ≤ exp

(
1

2
log d+ 1− c4 log

2 dΨ(p)

)
+2exp(1− (c1 − 3/2) log d)+2exp

(
3

2
log d+ 1− c2n

)
.

On the event Ec (which is a high probability event):

Z(t) ≤ 3eCC2t log d

√
Ψ(p)

n
+ C3et log d

√
Ψ(p)

n
for all t ∈ [1,

√
d] .

Now let us conclude with the entire roadmap of the proof. First, following the same line of argument
as of Negahban et al. (2009) we show that

δLn(u) ≥ Lψ(T)
1

n

∑
i

ϕτ

(
(u⊤Zi)

21|Z⊤
i β∗|≤T

)
= Lψ(T)∥u∥2

1

n

∑
i

ϕτ

((
u⊤Zi/∥u∥

)2
1|Z⊤

i β∗|≤T

)
= Lψ(T)∥u∥2Pn(gu/∥u∥(Z))
= Lψ(T)∥u∥22

{
P (gu/∥u∥(Z)) + (Pn − P)gu/∥u∥(Z)

}
We have proved in Modification 1 that P (gu/∥u∥(Z)) ≥ κl. Therefore,

δLn(u) ≥ Lψ(T)∥u∥22
{
κl + (Pn − P)gu/∥u∥(Z)

}
Now for any u,

(Pn − P)gu/∥u∥(Z) ≤ Z

(∥∥∥∥ u

∥u∥2

∥∥∥∥
1

)
≤

(
3eCC2 log d

√
Ψ(p)

n
+ C3e log d

√
Ψ(p)

n

)
∥u∥1
∥u∥2

.

Hence, we conclude that:

δLn(u) ≥ Lψ(T)∥u∥22

{
κl −

(
C4 log d

√
Ψ(p)

n

)
∥u∥1
∥u∥2

}
.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D.2 PROOF OF LEMMA C.2

Recall that we have:
∇Ln(β(0)) =

1

n

∑
i

Zi

{
Yi − ψ′(Z⊤

i β
(0))
}
.

Now consider the jth element of ∇Ln(β(0)), i.e.,

∇Ln(β(0))j =
1

n

∑
i

Zij

{
Yi − ψ′(Z⊤

i β
(0))
}
.

First, we show that conditional on Z1j , . . . , Znj , the terms are mean 0 (which is true from the
definition of Yi), independent subgaussian random variable. The subgaussianity follows from the
fact that:∥∥∥∥∥∑

i

Zij

{
Yi − ψ′(Z⊤

i β
(0))
}∥∥∥∥∥

2

ψ2

≤ C
∑
i

Z2
ij∥Yi − ψ′(Z⊤

i β
(0))∥2ψ2

≤ C
∑
i

Z2
ij .

Here C is some absolute constant. Therefore, we have:

P
(
max1≤j≤d

∣∣∣ 1√
n

∑
i Zij

{
Yi − ψ′(Z⊤

i β
(0))
}∣∣∣ ≥ t | Z

)
≤ c1exp

(
log d− c2

t2

max1≤j≤d
1
n

∑n
i=1 Z2

ij

)
(D.13)

We next bound the term in the tail bound max1≤j≤d(
∑n
i=1 Z

2
ij)/n. Towards that end, first observe

that:

max
1≤j≤d

1

n

n∑
i=1

Z2
ij = max

1≤j≤d

1

n
Z⊤

∗jZ∗j = max
1≤j≤d

1

n2p
e⊤j X

⊤A⊤AXej

= max
1≤j≤d

1

n
e⊤j X

(
A⊤A

np

)
X⊤ej .

Remark D.8. If p is unknown, i.e., we have p̂, then, conditional on the event p/2 ≤ p̂ ≤ 2p, the
above equality will be replaced by an inequality with an additional factor of 2.

As we know E[X⊤A⊤AX]/(n2p) = ΣX and if we define σ+ = maxj ΣX,jj , we have:

max
1≤j≤d

1

n

n∑
i=1

Z2
ij ≤ max

1≤j≤d

[
1

n
e⊤j X

(
A⊤A

np

)
X⊤ej − ΣX,jj

]
+ σ+ .

From Hanson-Wright inequality, we have for any matrix Q (independent of X):

P
(

max
1≤j≤d

∣∣X⊤
∗jQX∗j − E[X⊤

∗jQX∗j]
∣∣ ≥ t

)
≤ exp

(
−cmin

(t2

κ4u∥Q∥2F
,

t

κ2u∥Q∥2

))
.

Here Q = (A⊤A)/n2p. We use some concentration results on Q in the rest of the proof. For
notational convenience, set Ã = A/

√
np. We have the following concentration bound:

Lemma D.9. For the Frobenous norm, we have with probability ≥ 1− n−1:

∥Ã⊤Ã∥2F ≤ E[∥Ã⊤Ã∥2F] + n+ n2p2 ≤ 2(n+ n2p2) .

For the operator norm, we have with probability ≥ 1− elogn−
np
c :

∥Ã− E[Ã]∥op ≤ 1 + 3
√
2 =⇒ ∥Ã∥op ≤ 2

√
np .

Remark D.10. This lemma remains the same for the self-loop.

First, assume the above lemma is true, and consider the event so that the upper bound holds. Call that
event E . On this event we have:

P
(

max
1≤j≤d

1

n

∣∣X⊤
∗jQX∗j − E[X⊤

∗jQX∗j]
∣∣ ≥ t | E

)
≤ exp

(
log d− cmin

(n2t2

2κ4u(n+ n2p2)
,

t

2κ2up

))
.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Choosing

t = Kmax

{√
log d

n
+ p2 log d, p log d

}
we conclude:

max
1≤j≤d

1

n

∣∣X⊤
∗jQX∗j − E[X⊤

∗jQX∗j]
∣∣ ≤ Kmax

{√
log d

n
+ p2 log d, p log d

}
≤ Kmax

{√
log d

n
, p log d

}
.

Therefore, we have

max
1≤j≤d

1

n

n∑
i=1

Z2
ij ≤ σ+ +Kmax

{√
log d

n
, p log d

}
≤ 2σ+

with probability ≥ 1− n−1 − elogn−
np
c . Call this event E1. Therefore, we have:

P

(
max
1≤j≤d

∣∣∣∣∣ 1√
n

∑
i

Zij

{
Yi − ψ′(Z⊤

i β
(0))
}∣∣∣∣∣ ≥ t

)

≤ P

(
max
1≤j≤d

∣∣∣∣∣ 1√
n

∑
i

Zij

{
Yi − ψ′(Z⊤

i β
(0))
}∣∣∣∣∣ ≥ t | Z ∈ E1

)
+ P(Ec1)

≤ c1exp

(
log d− c2t

2

2σ+

)
+

1

n
+ exp

(
log n− np

c

)
.

Choosing t = K
√
log d we complete the proof.

D.3 PROOF OF LEMMA D.9

Upper bound on ∥Ã∥op: To establish a bound on ∥Ã∥op, we first center it:

∥Ã∥op = ∥Ã− E[Ã]∥op + ∥E[Ã]∥op .

A bound on ∥E[Ã]∥op directly follows from the definition:

∥E[Ã]∥op =
1

√
np

∥E[A]∥op =
1

√
np

∥p(11⊤ − I)∥op ≤ √
np . (D.14)

Now we bound ∥Ã − E[Ã]∥op. As Ã = A/
√
np, it is enough to bound ∥A − E[A]∥op. Using

Corollary 3.12 and Remark 3.13 of Bandeira & Van Handel (2016) (with ϵ = 1/2), which implies:

P
(
∥A− E[A]∥op ≥ 3

√
2σ̃ + t

)
≤ e

logn− t2

cσ2
∗

where

σ̃ = max
i

√∑
j

Var(Ãij) =
√
np(1− p) ≤ √

np, σ∗ = max
i,j

|Aij | ≤ 1 .

Therefore, we obtain:

P
(
∥A− E[A]∥op ≥ 3

√
2
√
np+ t

)
≤ elogn−

t2

c

Taking t =
√
np, we get:

P
(
∥A− E[A]∥op ≥ (1 + 3

√
2)
√
np
)
≤ elogn−

np
c

As Ã = A/
√
np, we have:

P
(
∥Ã− E[Ã]∥op ≥ (1 + 3

√
2)
)
≤ elogn−

np
c (D.15)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Combining the bound on equation equation D.14 and equation D.15 we have with probability
≥ 1− elogn−

np
c :

∥Ã∥op ≤ √
np+ (1 + 3

√
2) ≤ 2

√
np . (D.16)

Finding a bound on ∥Ã⊤Ã∥2F : As before, we first find the expected value of ∥Ã⊤Ã∥2F . For any
1 ≤ i ̸= j ≤ n:

E[(Ã⊤Ã)2ij] =
1

n2p2
E[(A⊤A)2ij] =

1

n2p2
E

(n∑
k=1

AkiAkj

)2

=
1

n2p2

 n∑
k=1

E[(AkiAkj)
2] +

∑
k ̸=l

E[(AkiAkj)(AliAlj)]

≤ 1

n2p2
(np2 + n2p4) =

1

n
+ p2 .

Now for 1 ≤ i = j ≤ n:

E[(Ã⊤Ã)2ii] =
1

n2p2
E

(n∑
k=1

A2
ki

)2

=
1

n2p2

∑
k

E[A4
ki] +

∑
k ̸=l

E[A2
kiA

2
li]

≤ 1

n2p2
(np+ n2p2) =

1

np
+ 1 .

Therefore, we have:

E[∥Ã⊤Ã∥2F] =
∑
i

E[(Ã⊤Ã)2ii] +
∑
i ̸=j

E[(Ã⊤Ã)2ij]

≤ n

(
1

np
+ 1

)
+ n2

(
1

n
+ p2

)
≤ n+

1

p
+ n2p2 ≤ n+ n2p2 .

The last inequality follows from p ≥ n−1. Next, we establish a bound on the variance:

Var
(
∥Ã⊤Ã∥2F

)
=

1

n4p4
Var(∥A⊤A∥2F)

=
1

n4p4
Var

∑
i,j

(A⊤A)2i,j

=

1

n4p4

∑
i,j

Var
(
(A⊤A)2i,j

)
+

∑
(i,j) ̸=(k,l)

Cov((A⊤A)2i,j , (A
⊤A)2k,l)

≜

1

n4p4
(T1 + T2) .

We bound T1 and T2 separately. For that, we use some basic bounds on the raw moments of a
binomial random variable; if X ∼ Ber(n, p), then E[Xk] ≤ Cnkpk for all k ∈ {1, 2, 3, 4}, for
some universal constant C as long as np ↑ ∞. Observe that (A⊤A)ii ∼ Ber(n − 1, p) and
(A⊤A)ij ∼ Ber(n− 2, p2) for i ̸= j. For T1 we have:∑

i,j

Var
(
(A⊤A)2i,j

)
=

n∑
i=1

Var
(
(A⊤A)2ii

)
+
∑
i ̸=j

Var
(
(A⊤A)2ij

)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

≤
∑
i

E[(A⊤A)4ii] +
∑
i̸=j

E[(A⊤A)4ij]

≤ C(n5p4 + n6p8) .

Next, we bound T2, i.e., the covariance term. Note that if (i, j, k, l) all are distinct, then covariance is
0 as the terms are independent. Therefore, we only consider the cases when there are three or two
distinct indices. We first deal with the terms of two distinct indices, i.e., Cov((A⊤A)2ii, (A

⊤A)2ij)

where i ̸= j. There are almost n2 many terms of this form. For each of these types of terms:

Cov((A⊤A)2ii, (A
⊤A)2ij) = E

[
(A⊤A)2ii(A

⊤A)2ij
]
− E

[
(A⊤A)2ii

]
E
[
(A⊤A)2ij

]
≤ E

[
(A⊤A)2ii(A

⊤A)2ij
]

= E

 n∑
k,k′=1

A2
kiAk′iAk′j

2

= E

∑

k

A3
kiAkj +

∑
k ̸=k′

A2
kiAk′iAk′j

2

= E

∑

k

AkiAkj +
∑
k ̸=k′

AkiAk′iAk′j

2

≤ 2

E

(∑
k

AkiAkj

)2
+ E

∑
k ̸=k′

AkiAk′iAk′j

2

≤ 2C(n2p4 + n4p6) .

Therefore, we have: ∑
i ̸=j

Cov((A⊤A)2ii, (A
⊤A)2ij) ≤ 2C(n4p4 + n6p6) . (D.17)

Next, we bound the covariance terms of the form Cov((A⊤A)2ij , (A
⊤A)2jk), i.e. two terms share an

index with i ̸= j ̸= k. There are almost n3 such terms. For each term:
Cov((A⊤A)2ij , (A

⊤A)2jk) ≤ E
[
(A⊤A)2ij(A

⊤A)2jk
]

= E

∑

l,l′

AliAljAl′iAl′k

2

= E

∑

l

A2
liAljAlk +

∑
l ̸=l′

AliAljAl′iAl′k

2

= E

∑

l

AliAljAlk +
∑
l ̸=l′

AliAljAl′iAl′k

2

= 2

E

(∑
l

AliAljAlk

)2
+ E

∑
l ̸=l′

AliAljAl′iAl′k

2

≤ 2C(n2p6 + n4p8) .

As there are almost n3 such terms, we have:∑
i ̸=j ̸=k

Cov((A⊤A)2ij , (A
⊤A)2jk) ≤ 2C(n5p6 + n7p8) (D.18)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Therefore, combining equation D.17 and equation D.18, we have:

T2 ≤ C1

(
n4p4 + n6p6 + n5p6 + n7p8

)
.

Combining the bounds on the variance and the covariance term, we conclude:

Var(∥A⊤A∥2F) ≤ C2(n
5p4 + n6p8 + n4p4 + n6p6 + n5p6 + n7p8) ≤ C3(n

5p4 + n6p6 + n7p8) .

Here the last equality follows from the fact that n5p4 ≥ n4p4, n6p6 ≥ n6p8 and n6p6 ≥ n4p4 (as
np ≥ 1). As a consequence, we have:

Var(∥Ã⊤Ã∥2F) =
1

n4p4
Var(∥A⊤A∥2F) ≤ C3(n+ n2p2 + n3p4) .

The last step involves an application of Chebychev’s inequality:

P
(
∥Ã⊤Ã∥2F − E[∥Ã⊤Ã∥2F] ≥ t

)
≤ Var(∥Ã⊤Ã∥2F)

t2
.

Taking t = n+ n2p2, we have:

P
(
∥Ã⊤Ã∥2F − E[∥Ã⊤Ã∥2F] ≥ n+ n2p2

)
≤ Var(∥Ã⊤Ã∥2F)

(n+ n2p2)2
≤ C3

n(1 + np2 + n2p4)

n2(1 + 2np2 + n2p4)
≤ C3

n
.

Therefore, with probability ≥ 1− n−1:

∥Ã⊤Ã∥2F ≤ E[∥Ã⊤Ã∥2F] + n+ n2p2 ≤ 2(n+ n2p2) .

E EXTENSION OF THEOREM 4.4 UNDER MULTIPLE SOURCE

In Theorem 4.4, we have established the convergence guarantee of β̂ on a domain under network
dependency. This section presents some ideas for extending our analysis when we have data from
multiple related source domains. We have conjectured a theorem (Theorem E.10) and lay down
the steps needed to prove it. There is one conjecture (Conjecture E.8), which, if true, will lead to a
complete proof of the theorem.

We start a simple setting with one source domain A and one target domain. Consider the transfer
learning setup, in which we have n1 observations from the source domain and n0 observations from
the target domain. We assume that p0 = p1 = p. Define Z = (AX)/

√
np ∈ Rn×d, and Zi is the ith

row of Z. Given the logistic regression, the inverse link function (McCullagh, 2019) for logit link is
ψ′(u) = logistic(u), where ψ(u) = log(1 + eu). The method is similar to the proposed method, i.e.,
we have a two-step estimator:

1. Step 1: First estimate β̂A as:

β̂A = argminβ − 1

nA + n0

∑
k∈{0,A}

{
(Y(k))⊤Z(k)β − log (1 + eZ

⊤
i β)
}
+ λβ ∥β∥1

2. Step 2: Then estimate the correction δ̂A only based on the target observations:

δ̂A = argminδ − 1

n0

{
(Y(0))⊤Z(0)(β̂A + δ)− log (1 + eZ

⊤(β̂A+δ))
}
+ λδ ∥δ∥1 .

Our final estimator for the target coefficient β(0) is β̂(0) = β̂A + δ̂A. We must extend Theorem 1 of
Tian & Feng (2023) to handle the network dependency. There are two key steps in the proof: i) to
establish the rate of convergence of β̂A (which is the estimator of βA obtained by combining all the
observations from both the set of transferable source A and the target domain, and ii) then establish
the rate of convergence of the β(0) is β̂(0) = β̂A + δ̂A, where δ̂A is obtained using only the target
observations.

We will use bolded ψ′ hereafter to denote the vector with each component from the scalar function ψ′

with corresponding variables. Define ûA = β̂A − βA, D =
{(

Z(k),Y(k)
)}

k∈{0,A}
, and L(β,D)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

is the negative log likelihood on the combined sample D:

L(β,D) = − 1

nA + n0

∑
k∈{0,A}

(
Y(k)

)T
Z(k)β +

1

nA + n0

∑
k∈{0,A}

nk∑
i=1

ψ
(
βTZ

(k)
i

)
∇L(β,D) = − 1

nA + n0

∑
k∈{0,A}

(
Z(k)

)T
Y(k) +

1

nA + n0

∑
k∈{0,A}

(
Z(k)

)T
ψ′
(
βTZ

(k)
i

)
δL(u,D) = L

(
βA + u,D

)
− L

(
βA)−∇L

(
βA)T u.

We present useful assumptions and lemmas first.
Assumption E.1. (SubGaussian Assumption.) For any a ∈ Rp,aTX(k) are κu∥a∥22-subGaussian
variables with zero mean for all k ∈ {0,A}, where κu is a positive constant.

Assumption E.2. (Positive Definite Covariance Assumption.) Denote the covariance matrix of X(k)

as Σ(k)
X , k ∈ {0,A}, we require that λmin

(
Σ

(k)
X

)
≥ κl > 0, where κl is a positive constant.

Assumption E.3. (Connectivity Bound of Network.) pk > lognk

nk
, k ∈ {0,A}.

Assumption E.4. Denote

Σ̃h =
∑

k∈{0,A}

αkE
[
S(k)

(
S(k)

)T ∫ 1

0

ψ′′
((

S(k)
)T
β(0) + t

(
S(k)

)T (
βA − β(0)

))
dt

]

and Σ̃
(k)
h = E

[∫ 1

0
ψ′′
((

S(k)
)T
β(0) + t

(
Z(k)

)T (
β(k) − β(0)

))
dt · S(k)

(
S(k)

)T]
. It holds

that supk∈{0,A}

∥∥∥Σ̃−1
h Σ̃

(k)
h

∥∥∥
1
<∞.

Lemma E.5. Under Assumptions E.1 and E.4,

∥∥δA∥∥
1
=
∥∥∥βA − β(0)

∥∥∥
1
≤ Clh

where βA is the true coefficient of Step 1, δA is the true coefficient of Step 2, and β(0) is the true
coefficient of target domain. And Cl := supk∈T ∪A

∥∥∥Σ̃−1
h Σ̃

(k)
h

∥∥∥
1
<∞.

Lemma E.6. Under Assumptions E.1 and E.2, there exists some positive constants κl and C4 such
that,

δL(u,D) ≥ Lψ(T)∥u∥22

{
κl −

(
C4 log d

√
Ψ(p)

n

)
∥u∥1
∥u∥2

}
with probability at least 1 − (exp

(
1
2 log d+ 1− c4 log

2 dΨ(p)
)
+ 2exp(1− (c1 − 3/2) log d) +

2exp
(
3
2 log d+ 1− c2n

)
), where T is some constant, Lψ(T) = min

u≤|2T |
ψ′′(u), and Ψ(p) ∼

1/(−4p log p).
Lemma E.7. Under Assumption E.1, there are universal positive constants (c6, c7, c8) such that

1

nA + n0

∥∥∥∥∥∥
∑

k∈{0,A}

(
Z(k)

)T [
Y(k) −ψ′

(
Z(k)β(k)

)]∥∥∥∥∥∥
∞

≲

√
log d

nA + n0

with probability 1− (c6
(
d−c7 +

∑
k n

−1
k +

∑
k e

lognk−nkpk/c8
)
).

Conjecture E.8. Under Assumption E.1, there are universal positive constants (c9, c10, c11) such
that

1

nA + n0

∥∥∥∥∥∥
∑

k∈{0,A}

(
Z(k)

)T [
ψ′
(
Z(k)β(k)

)
−ψ′

(
Z(k)βA

)]∥∥∥∥∥∥
∞

≲

√
log d

nA + n0

with probability 1− c9d
−c10 + exp [−c11 (nA + n0)].

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Lemma E.9. With high probability of at least 1− d−K̃ − n−1 − elogn−
np
c , where K̃ and c are some

constants, there exists some constant C such that:

∥AXv∥22
n2p∥v∥22

=
v⊤X⊤A⊤AXv

n2p∥v∥22
≤ C ∀ v : ∥vSc∥1 ≤ κ∥vS∥1 .

Theorem E.10. (Convergence rate of Trans-GCR). Under Assumptions E.1, E.2, E.3, E.4, suppose
h≪

√
n0

log d , h ≤ c
√
s, n0 ≥ c log d and nA ≥ cs log d, where c > 0 is a constant, we have

supξ∈Ξ(s,h) P
(
∥β̂(0) − β(0)∥2 ≲ h log d

√
Ψ(p)
nA+n0

+
√

s log d
nA+n0

+
(

log d
nA+n0

)1/4 √
h

)
≥ 1− n−1

0

E.1 PROOF OF LEMMA E.5

By definition in (E.1),

∑
k∈{0,A}

αkE
{[
ψ′
((
βA)T Z(k)

)
− ψ′

((
β(k)

)T
Z(k)

)]
Z(k)

}
= 0p

which implies

∑
k∈{0,A}

αkE
{[
ψ′
((
βA)T Z(k)

)
− ψ′

((
β(0)

)T
Z(k)

)]
Z(k)

}

=
∑

k∈{0,A}

αkE
{[
ψ′
((
β(k)

)T
Z(k)

)
− ψ′

((
β(0)

)T
Z(k)

)]
Z(k)

}
By Taylor expansion,

∑
k∈{0,A}

αkE
[∫ 1

0

ψ′′
((
βA)T Z(k) + t

(
βA − β(0)

)T
Z(k)

)
Z(k)

(
Z(k)

)T](
βA − β(0)

)
=

∑
k∈{0,A}

αkE
[∫ 1

0

ψ′′
((
β(k)

)T
Z(k) + t

(
β(k) − β(0)

)T
Z(k)

)
Z(k)

(
Z(k)

)T](
β(k) − β(0)

)

Therefore, by Assumption E.4,
∥∥βA − β(0)

∥∥
1
≤
∑
k∈A αk

∥∥∥Σ̃−1
h Σ̃

(k)
h

∥∥∥
1
·
∥∥β(k) − β(0)

∥∥
1
≤ Clh.

E.2 PROOF OF LEMMA E.6

See proof of Lemma C.1.

E.3 PROOF OF LEMMA E.7

Here, we define Bi as the i-th row of matrix B, and B(j) as the j-th column of matrix B. For a fixed

index j ∈ {1, 2, . . . , p}, we denoteR(k)
ij := Z

(k)
ij

(
Y

(k)
i − ψ′

(〈
β(k),Z

(k)
i

〉))
, and the j-th element

of
(
Z(k)

)T [
Y(k) −ψ′ (Z(k)β(k)

)]
can be written as

∑nk

i=1R
(k)
ij . Given the condition

{
Z

(k)
i

}nk

i=1
,

y
(k)
i follow a Bernoulli distribution with parameter

exp
(〈

β(k),Z
(k)
i

〉)
1+exp

(〈
β(k),Z

(k)
i

〉) . For any t ∈ R, we compute

logE
[
exp

(
tR

(k)
ij

)
| Z(k)

i

]
= log

{
E
[
exp

(
tZ

(k)
ij Y

(k)
i

)
| Z(k)

i

]
exp

(
−tZ(k)

ij ψ
′
(〈
β(k),Z

(k)
i

〉))}
= ψ

(
tZ

(k)
ij +

〈
β(k),Z

(k)
i

〉)
− ψ

(〈
β(k),Z

(k)
i

〉)
− tZ

(k)
ij ψ

′
(〈
β(k),Z

(k)
i

〉)
30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

By second-order Taylor series expansion, we have

logE
[
exp

(
tR

(k)
ij

)
| Z(k)

i

]
=
t2

2
Z2
ijψ

′′
(〈
β(k),Z

(k)
i

〉
+ vitZ

(k)
ij

)
for some vi ∈ [0, 1]

Since this upper bound holds for each i = 1, 2, . . . , nk, we have shown that

nk∑
i=1

logE
[
exp

(
tR

(k)
ij

)
| Z(k)

i

]
≤ t2

2

{
nk∑
i=1

(
Z

(k)
ij

)2
ψ′′
(〈
β(k),Z

(k)
i

〉
+ vitZ

(k)
ij

)}

For the link function ψ(x) = log {1 + exp (x)}, it is easy to know that its second derivative ψ′′(x) =

exp (x) / (1 + exp (x))2 takes values between 0 and 1, therefore the aforementioned equation can be
simply bounded by an upper bound:

nk∑
i=1

logE
[
exp

(
tR

(k)
ij

)
| Z(k)

i

]
≤ t2

2

nk∑
i=1

(
Z

(k)
ij

)2
and

∑
k∈{0,A}

nk∑
i=1

logE
[
exp

(
tR

(k)
ij

)
| Z(k)

i

]
≤ t2

2

∑
k∈{0,A}

nk∑
i=1

(
Z

(k)
ij

)2

To control
∑
k∈{0,A}

∑nk

i=1

(
Z

(k)
ij

)2
, it is easy to observe that it is a kind of quadratic forms respect

to X
(k)
(j) so we will use Hanson-Wright inequality:

∑
k∈{0,A}

nk∑
i=1

(
Z

(k)
ij

)2
=

∑
k∈{0,A}

Z
(k)
(j)

T
Z

(k)
(j)

=
∑

k∈{0,A}

(
Ã(k)X

(k)
(j)

)T
Ã(k)X

(k)
(j)

△
=

∑
k∈{0,A}

X
(k)
(j)

T
Q(k)X

(k)
(j)

=X(j)
TQX(j)

where X(j) ∈ R(nA+n0) represents the vector obtained by vertically concatenating X
(k)
(j) , and

Q ∈ R(nA+n0)×(nA+n0) represents the block diagonal matrix with diagonal elements Q(k). Hanson-
Wright inequality tell us:

P
{∣∣∣X(j)

TQX(j) − E
[
X(j)

TQX(j)

]∣∣∣ > t
}

≤2exp
[
− cmin

(t2

κ4u∥Q∥2F
,

t

κ2u∥Q∥2

)]
In our article on linear regression, we have already proven that

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

∥Q∥2F =
∑

k∈{0,A}

∥Q(k)∥2F ≤
∑

k∈{0,A}

2(nk + (nkpk)
2)

∥Q∥2 = max
k∈{0,A}

∥Q(k)∥2 ≤ 4 max
k∈{0,A}

{nkpk}

with high probability 1−
∑
k n

−1
k −

∑
k e

lognk−
nkpk

c converge to 1, and

E
[
X(j)

TQX(j)

]
= σ2

jj (nA + n0)

So we have the tail bound

P

 1

nA + n0

∑
k∈{0,A}

nk∑
i=1

(
Z

(k)
ij

)2
≥ C

≤2exp(−nA + n0

2
) +

∑
k

n−1
k +

∑
k

elognk−
nkpk

c

Define the event E =

{
maxj=1,...,p

1
nA+n0

∑
k∈{0,A}

∑nk

i=1

(
Z

(k)
ij

)2
≤ C

}
, we have

P [Ec] ≤ 2exp

(
−nA + n0

2
+ log d

)
+
∑
k

n−1
k +

∑
k

elognk−
nkpk

c

≤2exp(−c (nA + n0)) +
∑
k

n−1
k +

∑
k

elognk−
nkpk

c

where we have used the fact that nA ≫ log d.

Given that
{
Z

(k)
i

}
∈ E , using the independence between R(k)

ij given Z
(k)
i , we have

1

nA + n0

∑
k∈{0,A}

nk∑
i=1

logE
[
exp

(
tR

(k)
ij

)
| Z(k)

i

]

=
1

nA + n0

∑
k∈{0,A}

nk∑
i=1

E
[
tR

(k)
ij | Z(k)

i

]
≤ct2 for each j = 1, 2, . . . , d

By the Chernoff bound, we obtain

P

∣∣∣∣∣∣ 1

nA + n0

∑
k∈{0,A}

nk∑
i=1

R
(k)
ij

∣∣∣∣∣∣ ≥ δ | Zi

 ≤ 2exp
(
−c(nA + n0)δ

2
)

Combining this bound with the union bound yields

P

 max
j=1,...,d

∣∣∣∣∣∣ 1

nA + n0

∑
k∈{0,A}

nk∑
i=1

R
(k)
ij

∣∣∣∣∣∣ ≥ t | E

 ≤ 2exp
(
−c(nA + n0)t

2 + log d
)

Setting t = c
√

log d
nA+n0

, and putting together the pieces yields

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

P

 max
j=1,...,d

∣∣∣∣∣∣ 1

nA + n0

∑
k∈{0,A}

nk∑
i=1

R
(k)
ij

∣∣∣∣∣∣ ≥ c

√
log d

nA + n0

≤P [Ec] + P

 max
j=1,...,d

∣∣∣∣∣∣ 1

nA + n0

∑
k∈{0,A}

nk∑
i=1

R
(k)
ij

∣∣∣∣∣∣ ≥ t | E

≤c6d−c7 +

∑
k

n−1
k +

∑
k

elognk−
nkpk
c8

E.4 PROOF OF LEMMA E.9

In this section, we prove that with high probability, there exists some constant c12 such that:

∥Zv∥22
n∥v∥22

=
∥AXv∥22
n2p∥v∥22

=
v⊤X⊤A⊤AXv

n2p∥v∥22
≤ c12 ∀ v : ∥vSc∥1 ≤ κ∥vS∥1 .

Using our previous notation, we define Z = (AX)/
√
np. Define events Ωn,1 ={

∥A⊤A∥op/np ≤ 4np
}

and Ωn,2 =
{
∥A⊤A∥2F /np ≤ 2(n+ n2p2)

}
Therefore, we have:

P
(∥∥∥∥ (X⊤A⊤AX)

n2p
− ΣX

(
1− 1

n

)∥∥∥∥
∞

≥ t

)
≤ P

(∥∥∥∥ (X⊤A⊤AX)

n2p
− ΣX

(
1− 1

n

)∥∥∥∥
∞

≥ t | A ∈ Ωn,1 ∩ Ωn,2

)
+ P(A ∈ (Ωn,1 ∩ Ωn,2)

c)

≤ 2exp

(
2 log d− c′ min

(
n2t2

n+ n2p2
,
t

p

))
+ elogn−

np
c +

1

n
.

The last step comes from Hanson Wright inequality.

Therefore, choosing

t = Kmax

{√
log d

n
+ p2 log d, p log d

}
we conclude:∥∥∥∥ (X⊤A⊤AX)

n2p
− ΣX

(
1− 1

n

)∥∥∥∥
∞

≤ Kmax

{√
log d

n
+ p2 log d, p log d

}
≤ Kmax

{√
log d

n
, p log d

}
.

which means

∥∥∥∥X⊤A⊤AX

n2p
− ΣX

∥∥∥∥
∞

≤ Kmax

{√
log d

n
, p log d

}
≜ ϵn .

with probability ≥ 1− d−K̃ − n−1 − elogn−
np
c for some constant c and K̃.

Using this, we have:

v⊤Z⊤Zv

n∥v∥2
=

v⊤ΣXv

∥v∥2
+

v⊤(Z⊤Z/n− ΣZ)v

∥v∥2

≤ λmax(ΣX) +

∥∥∥∥Z⊤Z

n
− ΣX

∥∥∥∥
∞

∥v∥21
∥v∥22

≤ λmax(ΣX) + ϵn
(1 + κ)2s∥v∥22

∥v∥22

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

≤ λmax(ΣX) + (1 + κ)2sϵn .

Here the penultimate inequality follows from the fact:

∥v∥1 = ∥vS∥1 + ∥vSc∥1 ≤ (1 + k)∥vS∥1 ≤ (1 + k)
√
s∥vS∥2 .

Hence as soon as we assume sϵn is bounded or goes to 0 we are good.

E.5 PROOF OF THEOREM E.10

We follow the proof of Theorem 1 in Tian & Feng (2023) and extend and modify the results to allow
for network dependency. Notice that we assume both source and target domains share the same ER
graph probability, denoted as p.

Step 1:

Step 1 aims to solve the following equation w.r.t. β ∈ Rd :

∑
k∈{0,A}

[(
Z(k)

)T
Y(k) −

nk∑
i=1

ψ′
(
βTZ

(k)
i

)
Z

(k)
i

]
= 0p

converging to its population version’s solution under certain conditions with αk = nk

nA+n0
:

∑
k∈{0,A}

αkE
{[
ψ′
((
βA)T Z(k)

)
− ψ′

((
β(k)

)T
Z(k)

)]
Z(k)

}
= 0p (E.1)

As we define before, ûA = β̂A − βA and D =
{(

Z(k),Y(k)
)}

k∈{0,A}
. Firstly, we

claim that when λβ ≥ 2
∥∥∇L (βA,D

)∥∥
∞, it holds that with probability of at least 1 −

(exp
(
1
2 log d+ 1− c4 log

2 dΨ(p)
)
+ 2exp(1− (c1 − 3/2) log d) + 2exp

(
3
2 log d+ 1− c2n

)
) that

∥∥ûA∥∥
2
≤ 8

C4

κl
Clh log d

√
Ψ(p)

nA + n0
+ 3

√
s

κ1
λω + 2

√
Cl
κ1
hλω (E.2)

According to the definition of ω̂A, Hölder inequality and Lemma 1, we will have

δL̂
(
ûA,D

)
≤ λβ

(∥∥βA
S

∥∥
1
+
∥∥βA

Sc

∥∥
1

)
− λβ

(∥∥∥β̂A
S

∥∥∥
1
+
∥∥∥β̂A

Sc

∥∥∥
1

)
+∇L̂(βA,D)T ûA

≤ λβ
(∥∥βA

S

∥∥
1
+
∥∥βA

Sc

∥∥
1

)
− λβ

(∥∥∥β̂A
S

∥∥∥
1
+
∥∥∥β̂A

Sc

∥∥∥
1

)
+

1

2
λβ
∥∥ûA∥∥

1

≤ 3

2
λβ
∥∥ûA

S

∥∥
1
− 1

2
λβ
∥∥ûA

Sc

∥∥
1
+ 2λβ

∥∥βA
Sc

∥∥
1

≤ 3

2
λβ
∥∥ûA

S

∥∥
1
− 1

2
λβ
∥∥ûA

Sc

∥∥
1
+ 2λβClh (E.3)

If we assume that the claim we stated does not hold, we consider C ={
u : 3

2 ∥uS∥1 −
1
2 ∥uSc∥1 + 2Clh ≥ 0

}
. By (E.3) and the convexity of L̂, we conclude

ûA ∈ C. Then for any t ∈ (0, 1), we can see that

1

2

∥∥tûA
Sc

∥∥
1
= t · 1

2

∥∥ûA
Sc

∥∥
1
≤ t ·

(
3

2

∥∥ûA
S

∥∥
1
+ 2Cβh

)
≤ 3

2

∥∥tûA
S

∥∥
1
+ 2Clh

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

which also implies that tûA ∈ C. There exists certain t satisfying that
∥∥tûA

∥∥
2
> 8κ2Clh

√
log d
nA+n0

+

3
√
s

κ1
λω + 2

√
Cl

κ1
hλω and

∥∥tûA
∥∥
2
≤ 1. We denote ũA = tûA and F (u) = L̂

(
βA + u,D

)
−

L̂
(
βA)+ λβ

(∥∥βA + u
∥∥
1
−
∥∥βA

∥∥
1

)
. As F (0) = 0 and F

(
ûA) ≤ 0, by convexity, we establish

F
(
ũA) = F

(
tûA + (1− t)0

)
≤ tF

(
ûA) ≤ 0 (E.4)

However, by Lemma E.6 and the same trick we use for (E.3),

F
(
ũA) ≥ δL̂

(
ûA,D

)
+∇L̂

(
βA)T ũA − λβ

∥∥βA∥∥
1
+ λβ

∥∥βA + ũA∥∥
1

≥ Lψ(T)κl
∥∥ũA∥∥2

2
− Lψ(T)

C4 log d

√
Ψ(p)

nA + n0

∥∥ũA∥∥
1

∥∥ũA∥∥
2

− 3

2
λβ
∥∥ũA

S

∥∥
1
+

1

2
λβ
∥∥ũA

Sc

∥∥
1
− 2λβClh

≥ Lψ(T)κl
∥∥ũA∥∥2

2
− Lψ(T)C4 log d

√
Ψ(p)

nA + n0

∥∥ũA∥∥
1

∥∥ũA∥∥
2

− 3

2
λβ
∥∥ũA

S

∥∥
1
− 2λβClh

Due to ũA ∈ C, it holds that

1

2

∥∥ũA∥∥
1
≤ 2

∥∥ũA
S

∥∥
1
+ 2Cβh ≤ 2

√
s
∥∥ũA∥∥

2
+ 2Clh

Here, we denote κ1 = Lψ(T)κl, κ2 = C4 log d/κl, when nA + n0 > 16κ22sΨ(p), we have

2C4

κl
log d

√
sΨ(p)
nA+n0

≤ 1
2 .Then it follows

F
(
ũA) ≥ 1

2
κ1
∥∥ũA∥∥2

2
−

2κ1κ2
√

Ψ(p)

nA + n0
Cβh+

3

2
λβ

√
s

∥∥ũA∥∥
2
− 2λβClh =

1

2
κ1
∥∥ũA∥∥2

2
−

2κ1C4

κl
log d

√
Ψ(p)

nA + n0
Cβh+

3

2
λβ

√
s

∥∥ũA∥∥
2
− 2λβClh > 0

that conflicts with (E.4). Thus our claim at the beginning holds.

Next, we will prove
∥∥∥∇L̂ (βA)∥∥∥

∞
≲
√

log d
nA+n0

with probability at least 1− (c12d
−c13 +

∑
k n

−1
k +∑

k e
lognk−

nkpk
c14). To see this, we notice that

∇L̂
(
βA) = 1

nA + n0

∑
k∈{0,A}

(
Z(k)

)T [
−Y(k) +ψ′

(
Z(k)βA

)]
=

1

nA + n0

∑
k∈{0,A}

(
Z(k)

)T [
−Y(k) +ψ′

(
Z(k)β(k)

)]
+

1

nA + n0

∑
k∈{0,A}

(
Z(k)

)T [
−ψ′

(
Z(k)β(k)

)
+ψ′

(
Z(k)βA

)]
(E.5)

By extending Lemma 6 of Negahban et al. (2009) for network dependency in our settings, under
Assumptions E.1 and the fact nA ≥ Cs log d, we have shown in Lemma E.7 that

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

1

nA + n0

∥∥∥∥∥∥
∑

k∈{0,A}

(
Z(k)

)T [
−Y(k) +ψ′

(
Z(k)β(k)

)]∥∥∥∥∥∥
∞

≲

√
log d

nA + n0

with probability at least 1− (c6d
−c7 +

∑
k n

−1
k +

∑
k e

lognk−
nkpk
c8).

The remaining work aims to bound the infinity norm of the second term in (E.5). We denote U (k)
ij =

Z
(k)
ij

[
−ψ′

((
Z

(k)
i

)T
β(k)

)
+ ψ′

((
Z

(k)
i

)T
βA
)]

. Under Assumption E.1, we have shown in

Conjecture E.8 that:

1

nA + n0
sup

j=1,...,d

∣∣∣∣∣∣
∑

k∈{0,A}

nk∑
i=1

U
(k)
ij

∣∣∣∣∣∣ ≲
√

log d

nA + n0

with probability at least 1 − (c9d
−c10 +

∑
k n

−1
k +

∑
k e

lognk−
nkpk
c11). Hence

∥∥∥∇L̂ (βA)∥∥∥
∞

≲√
log d
nA+n0

holds with probability at least 1− (c12d
−c13 +

∑
k n

−1
k +

∑
k e

lognk−
nkpk
c14). We plug this

rate into (E.2), and get

∥∥ûA∥∥
2
≲ h log d

√
Ψ(p)

nA + n0
+

√
s log d

nA + n0
+

(
log d

nA + n0

)1/4 √
h (E.6)

with probability at least 1 − (c12d
−c13 +

∑
k n

−1
k +

∑
k e

lognk−
nkpk
c14) when λβ ≍ Cβ

√
log d
nA+n0

with Cβ > 0 sufficiently large. As ûA ∈ C, (E.6) implies

∥∥ûA∥∥
1
≲ s

√
log d

nA + n0
+

(
log d

nA + n0

)1/4 √
sh+ h

1 + log d

√
sΨ(p)

nA + n0

 (E.7)

with probability at least 1− (c12d
−c13 +

∑
k n

−1
k +

∑
k e

lognk−
nkpk
c14).

Step 2:
For our convenience, we state the notation again here: D(0) =

(
Z(0),Y(0)

)
, L̂(0)

(
β,D(0)

)
=

− 1
n0

(
Y(0)

)T
Z(0)β + 1

n0

∑n0

i=1 ψ

((
Z

(0)
i

)T
β

)
, ∇L̂(0)

(
β,D(0)

)
= − 1

n0

(
Z(0)

)T
Y(0) +

1
n0

(
Z(0)

)T
ψ′ (Z(0)β

)
, δA = β(0) − βA, β̂(0) = β̂A + δ̂A, v̂A = δ̂A − δA, and δL̂(0)(δ,D) =

L̂(0)
(
β̂A + δ,D(0)

)
− L̂(0)

(
β̂A + δA,D(0)

)
−∇L̂(0)

(
β̂A + δA,D(0)

)T
v̂A.

Following similar derivations for (E.3), when λδ ≥ 2
∥∥∥∇L̂(0)

(
β(0),D(0)

)∥∥∥
∞

, we establish

δL̂(0)
(
δ̂A,D

)
≤λδ

(∥∥δA∥∥
1
−
∥∥∥δ̂A∥∥∥

1

)
−∇L̂(0)

(
β̂A + δA,D(0)

)T
v̂A

≤ λδ
(
2
∥∥δA∥∥

1
−
∥∥v̂A∥∥

1

)
+
∥∥∥∇L̂(0)

(
β(0),D(0)

)∥∥∥
∞

∥∥v̂A∥∥
1

−
[
∇L̂(0)

(
β̂A + δA,D(0)

)
−∇L̂(0)

(
β(0),D(0)

)]T
v̂A

≤ 2λδ
∥∥δA∥∥

1
− 1

2
λδ
∥∥v̂A∥∥

1

− 1

n0

[
ψ′
((

Z(0)
)T (

β̂A + δA
))

−ψ′
((

Z(0)
)T
β(0)

)]T
v̂A

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

≤ 2λδ
∥∥δA∥∥

1
− 1

2
λδ
∥∥v̂A∥∥

1
+

1

4c0
M2
ψ · 1

n0

∥∥∥Z(0)ûA
∥∥∥2
2

+ c0 ·
1

n0

∥∥∥Z(0)v̂A
∥∥∥2
2

(E.8)

with c0 > 0 being a constant that is enough small. The last inequality holds according to:

− 1

n0

[
ψ′
((

Z(0)
)T (

β̂A + δA
))

−ψ′
((

Z(0)
)T
β(0)

)]T
v̂A

=
1

n0

(
ûA)T (Z(0)

)T
Λ(0)Z(0)v̂A

≤ 1

4c0
M2
ψ · 1

n0

∥∥∥Z(0)ûA
∥∥∥2
2
+ c0 ·

1

n0

∥∥∥Z(0)v̂A
∥∥∥2
2

where Λ(0) = diag

({
ψ′′
((

Z
(0)
i

)T
β(0) + ti

(
Z

(0)
i

)T
ûA
)}n0

i=1

)
is a n0 × n0 diagonal matrix

and
∥∥Λ(0)

∥∥
max

≤Mψ .

We denote ṽA = tv̂A and similar to what we defined before, let F (0)(v) = L̂(0)
(
β̂A + δA+

v,D(0)
)
− L̂(0)

(
β̂A + δA,D(0)

)
+ λδ

(∥∥δA + v
∥∥
1
−
∥∥δA∥∥

1

)
. As F (0) = 0 and F (0)

(
v̂A) ≤ 0

, by convexity, for any t ∈ (0, 1], we establish

F (0) (ṽA) = F (0) (tv̂A + (1− t)0) ≤ tF (0)
(
ûA) ≤ 0 (E.9)

Setting t ∈ (0, 1] ensures that
∥∥ṽA∥∥

2
≤ 1. By noticing the fact that

∥∥ṽA∥∥
2
≤
∥∥ṽA∥∥

1
, we can apply

Lemma E.6 on ṽA with minor modifications. Also by (E.9) and (E.8), we establish:

κ1
∥∥ṽA∥∥2

2
− κ1κ3

log d

√
Ψ(p)

n0

 ·
∥∥ṽA∥∥2

1
≤

F (0)
(
ṽA)−∇L̂(0)

(
β̂A + δA,D(0)

)T
ṽA ≤ 2λδ

∥∥δA∥∥
1
− 1

2
λδ
∥∥ṽA∥∥

1
+

1

4c0
M2
ψ · 1

n0

∥∥∥Z(0)ûA
∥∥∥2
2
+ c0 ·

1

n0

∥∥∥Z(0)ṽA
∥∥∥2
2

(E.10)

with κ1 = Lψ(T)κl, κ3 = C4/κl.

We showed in the proof of Step 1 that
∥∥ûA

Sc

∥∥
1
≤ 3

∥∥ûA
S

∥∥
1
+ 4Clh. Next we discuss about bounding

1
n0

∥∥Z(0)ûA
∥∥2
2

by
∥∥ûA

∥∥2
2

using this fact.

If 3
∥∥ûA

S

∥∥
1
≥ 4Clh, then

∥∥ûA
Sc

∥∥
1
≤ 6

∥∥ûA
S

∥∥
1
. Then by Lemma E.9 (the extension on Theorem 1.6

of Zhou (2009) for network dependency), we have

1

n0

∥∥∥Z(0)ûA
∥∥∥2
2
≲
∥∥ûA∥∥2

2
≲

s log d

nA + n0
+ h ·

√
log d

nA + n0
(E.11)

with probability at least 1− d−K̃ − n−1
0 − elogn0−n0p

c .

If 3
∥∥ûA

S

∥∥
1
< 4Clh, then

∥∥ûA
Sc

∥∥
1
≤ 8Clh ≤

√
s. Also

∥∥ûA
∥∥
2
≤ 1 with probability 1−(c12d

−c13 +∑
k n

−1
k +

∑
k e

lognk−
nkpk
c14). We denote

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Π0(s) = {u ∈ Rp : ∥u∥2 ≤ 1, ∥u∥0 ≤ s}
Π1(s) =

{
u ∈ Rp : ∥u∥2 ≤ 1, ∥u∥1 ≤

√
s
}

Due to Lemma 3.1 of Plan & Vershynin (2013), Π1(s) ⊆ 2conv (Π0(s)), where conv (Π0(s)) is the
closure of convex hull of Π0(s). Similarly, an extension for network dependency on the proof of
Theorem 2.4 in Mendelson et al. (2008) will also conclude (E.11).

Next we bound 1
n0

∥∥∥Z(0)ṽA
∥∥∥2
2

by
∥∥ṽA

∥∥2
2
. From basic inequality, we establish

0 ≤ L̂(0)
(
β̂(0),D(0)

)
− L̂(0)

(
β(0),D(0)

)
−∇L̂(0)

(
β(0),D(0)

)T
(β̂(0) − β(0))

≤ λδ

(∥∥∥β(0) − β̂A
∥∥∥
1
−
∥∥∥δ̂A∥∥∥

1

)
+
∥∥∥∇L̂(0)

(
β(0),D(0)

)∥∥∥
∞

∥β̂(0) − β(0)∥1

≤ λδ

(∥∥∥β(0) − β̂A
∥∥∥
1
−
∥∥∥δ̂A∥∥∥

1

)
+

1

2
λδ∥β̂(0) − β(0)∥1

≤ 3

2
λδ

∥∥∥β(0) − β̂A
∥∥∥
1
− 1

2
λδ

∥∥∥δ̂A∥∥∥
1

≤ 3

2
λδClh+

3

2
λδ
∥∥ûA∥∥

1
− 1

2
λδ

∥∥∥δ̂A∥∥∥
1

(E.12)

implying ∥∥v̂A∥∥
1
≤
∥∥∥δ̂A∥∥∥

1
+ Clh ≤ 3

∥∥ûA∥∥
1
+ 4Clh

Combined with results by (E.7), we have
∥∥ṽA

∥∥
1
≤
∥∥v̂A

∥∥
1
≤

√
s when s log d/ (nA + n0) and h

are small enough. We can see δL̂(0)
(
δ̂A,D

)
> 0 from the strict convexity, which leads to

∥∥∥δ̂A∥∥∥
1
≤

3
∥∥ûA

∥∥
1
+ 3h. Then we get

∥∥v̂A∥∥
1
≤
∥∥∥β(0) − β̂A

∥∥∥
1
+
∥∥∥δ̂A∥∥∥

1
≤ 4

∥∥ûA∥∥
1
+ 4h ≤

√
s (E.13)

Similar to the analysis considering 3
∥∥ûA

S

∥∥
1
< 4C1h above, we establish

c0 ·
1

n0

∥∥∥Z(0)ṽA
∥∥∥2
2
≤ c0 · C

∥∥ṽA∥∥2
2

holds with probability at least 1− d−K̃ − n−1
0 − elogn0−n0p

c . As long as c0C < c9/2, by (E.10), we
have

κ1
∥∥ṽA∥∥2

2
− κ1κ3

log d

√
Ψ(p)

n0

 ·
∥∥ṽA∥∥2

1

≤2λδ
∥∥δA∥∥

1
− 1

2
λδ
∥∥ṽA∥∥

1
+ C

s log d

nA + n0
+ Ch

√
log d

nA + n0
+ c3/2

∥∥ṽA∥∥2
2

(E.14)

with probability at least 1− C ′n−1
0 , κ1 = Lψ(T)κl, κ3 = C4/κl.

If satisfying λδ
∥∥δA∥∥

1
≤ C s log d

nA+n0
+ Ch

√
log d
nA+n0

, then

∥∥ṽA∥∥
1
≲

[
s log d

nA + n0
+ h

√
log d

nA + n0

]
·

√
1

log d

√
n0

Ψ(p)
+
∥∥ṽA∥∥2

2

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Because
∥∥ṽA

∥∥
2
≤ 1, by (E.14), the following inequality holds

∥∥ṽA∥∥2
2
≲

s log d

nA + n0
+ h

√
log d

nA + n0
≲

s log d

nA + n0
+

[
h

√
log d

n0

]
∧ h2

with probability at least 1− C ′n−1
0 .

If λδ
∥∥δA∥∥

1
> C s log d

nA+n0
+ Ch

√
log d
nA+n0

, then
∥∥ṽA

∥∥
1
≲ h+

∥∥ṽA
∥∥2
2
, leading to

∥∥ṽA∥∥2
2
≲ 2λδ

∥∥δA∥∥
1
− 1

2
λδ
∥∥ṽA∥∥

1

which implies
∥∥ṽA

∥∥
1
≤ 4

∥∥δA∥∥
1
≤ 4Clh. By plugging this result into (E.14), we obtain

∥∥ṽA∥∥2
2
≲

s log d

nA + n0
+

[
h

√
log d

n0

]
∧ h2 (E.15)

with probability at least 1− C ′n−1
0 .

When s log d/ (nA + n0) and h is small enough, due to h
√

log d
n0

= o(1), the right side of (E.15) can

be very small, implying
∥∥ṽA

∥∥
2
≤ c < 1 with probability at least 1− C ′n−1

0 . We should notice that
this result holds for any t ∈ (0, 1] such that

∥∥ṽA
∥∥
2
≤ 1. Finally let’s consider the vector of interest:

v̂A. Suppose
∥∥ṽA

∥∥2
2
≥ s log d

nA+n0
+
[
h
(√

log d
n0

)]
∧ h2 for some constant C > 0 with probability at

least C ′n−1
0 , then there exists t ∈ (0, 1] such that c <

∥∥ṽA
∥∥
2
≤ 1. This contradicts with the fact∥∥ṽA

∥∥
2
≤ c with probability at least 1− C ′n−1

0 . Hence we establish

∥∥v̂A∥∥2
2
≲

s log d

nA + n0
+

[
h

√(
log d

n0

)]
∧ h2 ≲ 1

with probability at least 1− C ′n−1
0 .

Similarly, the ℓ1-bound on v̂A will be obtained by going over the analysis procedure of ṽA

∥∥v̂A∥∥
1
≲

[
s

√
log d

nA + n0
+ h

]
·

√√√√√ 1

Ψ(p)

with probability at least 1− C ′n−1
0 .

Lastly, we combine the conclusions in this Step 2 with the upper bounds on
∥∥ûA

∥∥
2

and
∥∥ûA

∥∥
1

in
Step 1, to complete the proof.

Combining the above inequalities, we obtain:

∥∥∥β̂(0) − β(0)
∥∥∥
2
≤ ∥û∥2 + ∥v̂∥2 ≲ h log d

√
Ψ(p)

nA + n0
+

√
s log d

nA + n0
+

(
log d

nA + n0

)1/4 √
h.

And

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

∥∥∥β̂(0) − β(0)
∥∥∥
1
≤ ∥û∥1 + ∥v̂∥1 ≲ s

√
log d

nA + n0
+

(
log d

nA + n0

)1/4 √
sh+

h

1 + log d

√
sΨ(p)

nA + n0

+

[
s

√
log d

nA + n0
+ h

]
·

√√√√√ 1

Ψ(p)
.

F ADDITIONAL EXPERIMENTAL RESULTS

In this section, we first conduct additional simulation studies considering other network models such
as SBM and graphon models, and also consider multiple convolution layers M = 2 (see in Appendix
F.1). Subsequently, we present additional results of real data analyses for transfer learning tasks,
sensitivity analyses to hyperparameters, as well as the performance considering varying source and
target data training rate in Appendix F.2.

F.1 ADDITIONAL SIMULATION RESULTS

Here, we conduct simulation studies considering similar settings in Section 5.1 but generating the
adjacency matrices from SBM or graphon models.

Figure S1 presents the results for SBM models. Figures S1 (a)(b) were performed when SBM
generated the adjacency matrices of both target and source domains with between-community
connection probability as 0.08 and the within-community probability as 0.1. Figures S1 (c)(d) were
performed when the adjacency matrices of both target and source domains were generated by SBM
with between-community connection probability as 0.08 and within-community probability as 0.04.

0.005

0.010

0.015

0.020

1 2 3 4 5 6 7 8 9 10
h

M
SE

method

Trans−GCMLR
GCMLR
Naive TL

0.005

0.010

0.015

0.020

100 200 300 400 500 600 700 800 9001000
Source data sample size

M
SE

method

Trans−GCR
GCR
Naive TL

0.010

0.015

0.020

0.025

0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14
Source Network Within−Community Probability

M
SE

method Trans−GCMLR GCMLR Naive TL

0.010

0.015

0.020

0.025

0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14
Source Network Within−Community Probability

M
SE

method Trans−GCMLR GCMLR Naive TL
Source data sample size Source-target gap h

(a) (b) (c) (d)

Method

0.010

0.015

0.020

0.025

0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14
Source Network Within−Community Probability

M
SE

method Trans−GCMLR GCMLR Naive TLTrans-GCR GCR Naive-TL
Source data sample size Source-target gap h

0.005

0.010

0.015

0.020

1 2 3 4 5 6 7 8 9 10
h

M
SE

method

Trans−GCMLR
GCMLR
Naive TL

0.005

0.010

0.015

0.020

100 200 300 400 500 600 700 800 9001000
Source data sample size

M
SE

method

Trans−GCR
GCR
Naive TL

Figure S1: Performance comparison (MSE) of Trans-GCR (red), GCR (black), Naive TL (blue)
across varying (a)(c) Source sample size, (b)(d) Source-target gap h, for two additional SBM models.

Figure S2 presents the results for graphon models. Figures S2 (a)(b), and (c)(d) were performed
with the adjacency matrices of both target and source domains generated by two types of graphons,
respectively.

0.015

0.020

0.025

0.030

100 200 300 400 500 600 700 800 9001000
Source data sample size

M
SE

method

Trans−GCR
GCR
Naive TL

0.010

0.015

0.020

0.025

0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14
Source Network Within−Community Probability

M
SE

method Trans−GCMLR GCMLR Naive TL

0.010

0.015

0.020

0.025

0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14
Source Network Within−Community Probability

M
SE

method Trans−GCMLR GCMLR Naive TL
Source data sample size Source-target gap h

(a) (b) (d)

Method

0.010

0.015

0.020

0.025

0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14
Source Network Within−Community Probability

M
SE

method Trans−GCMLR GCMLR Naive TLTrans-GCR GCR Naive-TL
Source data sample size Source-target gap h

0.025

0.030

0.035

0.040

1 2 3 4 5
h

M
SE

method

Trans−GCMLR
GCMLR
Naive TL

0.025

0.030

0.035

0.040

100 200 300 400 500 600 700 800 9001000
Source data sample size

M
SE

method

Trans−GCR
GCR
Naive TL

(c)

0.015

0.020

0.025

0.030

1 2 3 4 5
h

M
SE

method

Trans−GCMLR
GCMLR
Naive TL

Figure S2: Performance comparison (MSE) of Trans-GCR (red), GCR (black), Naive TL (blue)
across varying (a)(c) Source sample size, (b)(d) Source-target gap h, for two additional graphon
models.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

We also show the performance comparisons when we consider multiple convolution layers such as
M = 2 in Figure S3.

0.010

0.015

0.020

0.025

0.010.020.030.040.050.060.070.080.090.10
Source Network Density p

M
SE

method

Trans−GCMLR
GCMLR
Naive TL

0.010

0.015

0.020

0.025

1 2 3 4 5
h

M
SE

method

Trans−GCMLR
GCMLR
Naive TL

0.010

0.015

0.020

0.025

100 200 300 400 500 600 700 800 9001000
Source data sample size

M
SE

method

Trans−GCR
GCR
Naive TL

0.010

0.015

0.020

0.025

0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14
Source Network Within−Community Probability

M
SE

method Trans−GCMLR GCMLR Naive TL

0.010

0.015

0.020

0.025

0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14
Source Network Within−Community Probability

M
SE

method Trans−GCMLR GCMLR Naive TL
Source data sample size Source-target gap h Source-network density p Source network within-

community probability

(a) (b) (c)

Method

0.010

0.015

0.020

0.025

0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14
Source Network Within−Community Probability

M
SE

method Trans−GCMLR GCMLR Naive TLTrans-GCR GCR Naive-TL

0.010

0.015

0.020

0.025

0.050.060.070.080.090.100.110.120.130.14
Source Network Within−Community Probability

M
SE

method

Trans−GCMLR
GCMLR
Naive TL

(d)

Figure S3: Performance comparison (MSE) of Trans-GCR (red), GCR (black), Naive TL (blue)
across varying (a) Source sample size, (b) Source-target gap h, (c) Source network density (0.05
means identical densities) (d) Source network within-community probability (higher value means
more discrepancy) when convolution layers M = 2.

We show performance comparison on averaged true positive rate (TPR) and false discovery proportion
(FDP) for varying source data sample size in Table S2 as an additional metric to evaluate the estimate
of the coefficients.

Table S2: Performance comparison on averaged true positive rate (TPR) and false discovery proportion
(FDP) for varying source data sample size, over 10 replicates. TPRs and FDPs were calculated overall
for coefficient matrices.

Method Metric 100 200 300 400 500 600 700 800 900 1000

Trans-GCR
TPR 0.478 0.496 0.556 0.572 0.578 0.582 0.758 0.762 0.712 0.714
FDP 0.378 0.342 0.275 0.263 0.133 0.123 0.237 0.134 0.164 0.112

GCR
TPR 0.072 0.054 0.032 0.050 0.072 0.042 0.050 0.022 0.066 0.026
FDP 0.521 0.739 0.813 0.613 0.452 0.625 0.523 0.546 0.567 0.715

Naive TL
TPR 0.660 0.664 0.904 0.930 0.972 0.976 0.982 0.984 0.962 0.986
FDP 0.717 0.715 0.722 0.717 0.606 0.677 0.667 0.668 0.662 0.669

F.2 ADDITIONAL REAL DATA RESULTS

Here we present additional results from the real data analysis. Table S3 shows the averaged Micro-F1
scores for additional naive transfer learning methods as a supplement to Table 1. The performance of
naive transfer learning methods when trained solely on target data is provided in Table S4. Table S5
and S6 show the results of sensitivity analyses to hyperparameter M and λ. We also present the effect
of source training rate and target training rate on Micro-F1 in Figure S4 for the transfer learning tasks
D → C, C → D, and A → D, in Figure S5 for the transfer learning tasks D → A, C → A, and A →
C, respectively.

We additionally consider two large-scale graphs and present in Table S7. The ogbn-arxiv dataset is a
directed citation graph of Computer Science arXiv papers, where nodes represent papers and directed
edges indicate citations. Each paper has a 128-dimensional feature vector derived from its title and
abstract, and the task is to classify papers into 40 subject areas based on these features. Papers are
also associated with publication years. We split the dataset into two subsets, including ogbn-arxiv1
(n=58,970, papers published up to 2017), and ogbn-arxiv2 (n=78,402, papers published since 2018).

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Table S3: Averaged Micro F1 score (%) of additional naive transfer learning methods, over 10
replicates, with source training rate fixed at 0.75 and target training rate fixed at 0.03.

Target Source node2vec GraphSAGE attri2vec

D
C 66.55 69.78 67.64
A 56.66 65.82 63.15

C&A 52.09 56.22 65.75

C
D 62.34 69.63 73.33
A 63.17 70.64 69.91

D&A 50.93 60.77 71.85

A
D 54.36 62.59 62.92
C 61.53 65.20 64.23

D&C 49.27 57.11 63.42

Table S4: Averaged Micro F1 score (%) for comparisions with different methods, over 10 replicates,
with only target training rate fixed at 0.03 (The third column is showing our proposed method’s
performance for transfer learning as a reference).

Target Source Trans-GCR node2vec GraphSAGE GCN APPNP attri2vec SGC GAT GPRGNN GRAND

D C or A 76.53 or 75.16 60.18 67.22 63.59 70.03 67.28 70.78 62.47 68.44 44.37

C D or A 78.99 or 80.37 57.10 60.91 69.71 75.75 71.86 77.19 69.25 73.89 55.34

A D or C 72.61 or 73.56 51.31 57.07 65.02 63.84 65.20 70.78 61.70 66.47 33.41

Table S5: Averaged Micro F1 score (%) of our proposed Trans-GCR for varying M , over 10
replicates, with source training rate fixed at 0.75 and target training rate fixed at 0.03.

Target Source M=2 M=3 M=4 M=5 M=6 M=7

D
C 75.24 76.03 76.05 76.53 75.21 75.94
A 73.14 74.36 72.03 75.16 74.79 76.69

C&A 76.17 75.71 78.36 76.61 77.41 75.09

C
D 77.99 77.11 79.73 78.99 79.21 78.94
A 76.88 79.07 80.16 80.37 79.85 80.32

D&A 77.29 80.31 79.04 80.58 81.14 81.31

A
D 70.68 72.91 72.19 72.61 72.13 74.86
C 69.42 73.18 73.17 73.56 74.49 74.21

D&C 71.81 74.01 74.59 73.78 76.34 75.87

Table S6: Averaged Micro F1 score (%) of our proposed Trans-GCR for varying λ, over 10 replicates,
with source training rate fixed at 0.75 and target training rate fixed at 0.03, while fixing M = 5.

Target Source λ=0.00005 λ=0.0001 λ=0.0005 λ=0.001 λ=0.0015 λ = 0.01 λ = 0.1

D
C 73.19 75.32 73.76 76.73 75.12 59.71 21.57
A 72.45 73.82 75.14 74.57 75.38 56.17 21.96

C&A 71.32 74.63 77.08 74.67 73.82 58.20 21.47

C
D 78.26 79.18 79.96 78.91 78.68 65.53 25.62
A 77.16 80.24 81.17 79.27 79.39 67.63 25.01

D&A 77.64 80.45 80.85 80.39 79.98 65.61 25.47

A
D 70.69 67.91 70.64 72.41 72.97 58.15 20.33
C 70.02 73.16 72.37 74.18 74.08 59.43 20.23

D&C 70.44 72.59 73.82 73.18 72.01 58.76 20.34

Table S7: Averaged Micro F1 score (%) of various methods for additional datasets over 10 replicates,
with source training rate fixed at 0.75 and target training rate fixed at 0.03. We were unable to obtain
results for AdaGCN due to its high computational cost on such large datasets.

Target Source Trans-GCR GCR AdaGCN UDAGCN GPRGNN GRAND GCN APPNP SGC GAT

ogbn-arxiv2 ogbn-arxiv1 62.95 59.76 NA 60.24 34.03 28.19 58.56 27.89 56.81 53.36
ogbn-arxiv1 ogbn-arxiv2 60.48 57.99 NA 57.58 27.78 29.96 54.35 20.61 47.93 41.33

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Method Trans-GCR AdaGCN

DBLPv7 to Citationv1 Citationv1 to DBLPv7 ACMv9 to DBLPv7

Figure S4: Multi-label classification with varying source training rates (first column, with target
training rate fixed to be 0.03), with varying target training rate (second column, with source training
rate fixed to be 0.75).

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Method Trans-GCR AdaGCN

DBLPv7 to ACMv9 Citationv1 to ACMv9 ACMv9 to Citationv1

Figure S5: Multi-label classification with varying source training rates (first column, with target
training rate fixed to be 0.03), with varying target training rate (second column, with source training
rate fixed to be 0.75).

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

G PSEUDO CODE FOR ALGORITHMS

Here, we summarize the procedure of Trans-GCR in Algorithm 1, and the procedure of source domain
selection in Algorithm 2.

Algorithm 1 Trans-GCR Algorithm

Require: Target data (A(0),X(0),Y(0)); Source data (A(k),X(k),Y(k)), k ∈ A; Hyperparameter
M and λ.
Step 1. Preprocessing. Calculate the normalized adjacency matrix S(k) based on A(k), k ∈
{0,A}.
Step 2. Pooled source samples. Get pooled source sample with SA ∈ RnA×nA , XA ∈ RnA×d,
YA ∈ {0, 1}nA×C .
Step 3. Source domain parameter estimation. Get β̂A by Eq. 2.3, using the pooled source
samples (SA,XA,YA).
Step 4. Domain shift estimation. Obtain domain shift estimate δ̂A using Eq. 3.1 and target data.
Step 5. Target domain parameter estimation. Obtain β̂(0) = β̂A + δ̂A.

Output: β̂(0).

Algorithm 2 Source Domain Transferability Score Calculation Algorithm

Require: Data: Target data (A(0),X(0),Y(0)); Source data (A(k),X(k),Y(k)), k = 1, . . . ,K;
Hyperparameters: Number of layers M ; Cross-validation folds V ; Number of selected source data
L.
Step 1. Target data partition. Randomly partition data points in the target domain {1, . . . , n0}
into V subsets of approximately equal size s1, . . . , sV .
Step 2. Training and testing target data construction. Construct testing target data (A(0),X(0),
Y

(0)
sv), where we only use the label information of nodes in sv . Similarly, construct training target

data (A(0), X(0), Y(0)
−sv) by excluding the label information of nodes in sv .

Step 3. Cross-validation based score. For kth source data, k = 1, . . . ,K, repeat the following
procedure.

For v = 1, . . . , V ,
• Model estimation. Apply the transfer learning Algorithm 1 using the source data
{A(k),X(k),Y(k)} and training target data {A(0),X(0),Y

(0)
−sv} to obtain the estimate β̂(0)

vk
for the target data after transfer learning.

• Model evaluation Using the learned β̂(0)
vk from the previous step, evaluate its prediction

performance in the target domain testing data {A(0),X(0),Y
(0)
sv } by calculating the negative

log-likelihood value NL(k)
v for nodes in sv .

Averaged score over folds. Calculate averaged negative log-likelihood over V folds for each
k source data, NL(k) = 1

V

∑V
v=1 NL(k)

v

Step 4. Selection. Rank the K sources according to NL(k) and select among the top L lowest
sources as Â.
Output: Â and Transferability score NL(k), k = 1, . . . ,K.

45

	Introduction
	Preliminaries
	Related Work: Graph Convolutional Networks
	High-Dimensional Graph Convolutional Multinomial Logistic Lasso Regression Model

	Transfer Learning
	Transfer Learning When the Transferable Source Set is Known
	Transferable Source Detection

	Theoretical Properties
	Simulation Studies
	Simulation Results When the Transferable Source Set is Known
	Transferable Source Detection Results

	Real Data Experiments
	Discussion
	Notation Table
	Roadmap of the proof
	Proof of Theorem 4.4
	Proof of Additional Lemmas
	Proof of Lemma C.1
	Proof of Lemma C.2
	Proof of Lemma D.9

	Extension of Theorem 4.4 under multiple source
	Proof of Lemma E.5
	Proof of Lemma E.6
	Proof of Lemma E.7
	Proof of Lemma E.9
	Proof of Theorem E.10

	Additional Experimental Results
	Additional Simulation Results
	Additional Real Data Results

	Pseudo Code for Algorithms

