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ABSTRACT

In recent years, semi-supervised/self-supervised methods based on contrastive
learning have made great empirical progress in various fields of deep learning, and
even outperform supervised methods in some fields (such as NLP and CV). How-
ever, there are very few theoretical works that may explain why the model trained
using contrastive learning-based methods can outperform the model trained in
general supervised methods on supervised tasks. Based on the manifold assump-
tion about the input space, this work proposes three elements of metric-based
contrastive learning:(1) Augmented neighborhood defined for every point in the
input space (2) Metric-based optimization loss on the output space. (3) General-
ization error on the union of the augmented neighborhood. Moreover, we propose
an upper bound of (3) named UBGEAN(Upper Bound of Generalization Error on
Augmented Neighborhood) which relate to labeled empirical loss and unlabeled
metric-based contrastive loss. We also explain the relationship between the exist-
ing contrastive semi-supervised/self-supervised methods and our upper bound. Fi-
nally, based on it, we propose a supervised consistent contrastive learning method
based on this upper bound. we verify the validity of the UBGEAN’s generalization
capacity against empirical loss by conducting a series of experiments and achiev-
ing an 8.2275% improvement on average in 4 tasks. Also, we design another set
of experiments to verify the fine-tuning of the self-supervised training model of
contrast learning, and it shows that our upper bound can provide a more stable
effect to make the self-supervised pre-trained model of contrast learning achieve
the effect of supervised pre-training model.

1 INTRODUCTION

Semi-supervised/self-supervised representation learning algorithms based on contrastive learning
have developed rapidly in recent years, emerging from NLP(Devlin et al. (2019),Fang et al.
(2020),Giorgi et al. (2021),Schick & Schütze (2020)), and then sweeping through computer vi-
sion(Liu et al. (2019),Chen et al. (2020),He et al. (2020),Grill et al. (2020),Chen & He (2021),Laine
& Aila (2017)), recommendation algorithm(Yang et al. (2022),Xia et al. (2021)) and other related
fields. They have attracted wide attention due to their low cost of data learning and high gener-
alization performance. Moreover, combined with transfer learning, the models trained by semi-
supervised/self-supervised representation learning methods based on contrastive learning achieve
good empirical results in downstream tasks, and even outperform supervised methods in some fields.

However, at the same time, there is a lack of good theoretical work to explain how semi-
supervised/self-supervised training methods based on contrastive learning affect the generalization
performance of machine learning models in downstream supervised task. While in the existing few
theoretical analysis work, we notice that most of the work on self-supervised contrastive learning
is constructed on the definition of the feature metric learning problem(Huang et al. (2021),Wang
& Isola (2020)). We believe that under this definition, this kind of analysis can only explain the
generalization ability of the agent task itself based on metric learning. But it doesn’t explain how
the models that trained on the contrastive learning methods affect the generalization performance
of the downstream supervised task (such as image classification). For example, in the field of CV
self-supervised learning (BYOL(Grill et al. (2020)), SimSiam(Chen & He (2021)) et al.), how does
the fine-tuning performance of the model trained by their methods catch up with or even surpass
the model obtained by supervised learning after it is transferred to the supervised task? In the semi-
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supervised domain, how do some excellent semi-supervised contrastive learning algorithms (Sohn
et al. (2020))achieve good generalization results? These are all examples where the existing theo-
retical work cannot explain how the contrastive learning training methods affect the generalization
performance of the model.

In order to figure out the impact of metric-based contrastive learning methods on generalization
errors, this work takes the methods in CV as an example to analyze most self-supervised/semi-
supervised representation learning methods based on contrast learning and extracts three elements
that these algorithm designs follow in common: (1). Data augmentations that maintain semantic in-
variance. (2). Metric-based contrastive loss defined on representation space. (3). The empirical loss
of labeled data should be used to participate in the optimization when allocating the model to train
some supervised tasks(Self-supervise learning use label during finetune stage). And these elements
will be discussed in more detail using mathematical theory. Based on the assumption that the input
space is manifold, from the perspective of contrastive learning, we show a rigorous definition of
generalization error on sample space with data augmentation. Combined with the proposed theory,
we reconstructed the previously extracted corresponding elements as follows: (1). Data augmen-
tation in contrastive learning induces an augmentation neighborhood O∗

xj
on the manifold for each

sample point. (2). Metric-based optimization loss L on output space. (3). Generalization error:∫⊔n
j=1 O∗

xj

L(f(x), F (x))p(x)dx that is closer to the real input space and defined on the augmented

neighborhood. And finally we prove an upper bound named UBGEAN(UBGEAN (Upper Bound
of Generalization Error on Augmented Neighbourhood) of the generalization error on the union of
augmentation neighborhoods, which is related to the empirical loss and the contrastive loss.

Our contribution can be summarized in the following three points:

• We define the generalization error
∫
O∗

xj

L(f(x), F (x))p(x)dx on the data-induced augmentation

neighborhood O∗
xj

more precisely from the mathematical point of view.

• We prove an upper bound UBGEAN of the generalization error on the union of augmentation
neighborhoods, which is related to the empirical loss and the contrastive loss. And we explain
the relationship between the upper bound and existing self-supervised/semi-supervised methods
through theoretical analysis.

• Based on UBGEAN, we propose a consistent supervised contrastive learning method with bet-
ter generalization ability. And then we experimentally verify that for the transfer of the self-
supervised contrastive learning algorithm, using UBGEAN to finetune the loss will make the fine-
tuning effect have a more stable improvement and exceed the supervised pre-trained model.

2 RELATED WORK

Semi Supervised Contrastive Learning A recent line of deep semi-supervised learning algo-
rithms(Laine & Aila (2017)Verma et al. (2022)Zhang et al. (2018)Xie et al. (2020))are designed
based on a simple concept that, if a proper augmentation was to be applied to an unlabeled example,
the prediction should not change significantly.Therefore, with this concept, loss function can be de-
signed to enforce model to have a consistent prediction on an unlabeled data and any of its perturbed
version and to have the same prediction on labeled data and their label at the same time. Our work
reveals that the essence of this kind of algorithm is to estimate and optimize two different parts of
an upper bound of the generalization error of the model with inconsistent samples, and reveals the
reason why the model using this kind of algorithm can achieve good generalization effect according
to our theory. We also verified the influence of the sample inconsistency on the generalization ability
of the model through experiments.

Self Supervised Contrastive Learning Early works such as MoCo(He et al. (2020)) and SimCLR
(Chen et al. (2020)), use loss like InfoNCE to pull the positive samples together while enforcing
them away from the negative samples in the embedding space. This need of negative samples re-
quires large memory bank, which is expensive, and properly designed strategies to produce negative
samples. Some recent work like BYOL(Grill et al. (2020)) and SimSiam(Chen & He (2021)) has
proposed algorithms that do not require negative sample for training, and achieved better results
than previous models that require negative samples. In our work, we point out that the normal form
of using positive samples to construct contrast loss for pre-training and fine- tuning on downstream
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tasks is actually to estimate and decoupled optimize two terms of an upper bound of the model’s
generalization error with inconsistent data.

3 THEORY

3.1 AUGMENTED NEIGHBOURHOOD

In order to state our result, we’d like to begin by introducing some basic notations and common
assumptions. We use M in

n to denote the nth compact manifold of dimension n, and let the input
space X = M i1

1 ⊔ M i2
2 ⊔ · · · ⊔ M ik

k be a disjoint union of k compact manifold. We also set our
model a continuous map from the input space to a unit hypersphere in the m−dimension space, that
is, f ∈ H : X → Sm−1. The output space of f is usually called embedding space when it comes to
the representation learning. The real map F : X → Sm−1, known as conception, is also continuous.
The image of the input space under F is denoted as X , and this continuity of F allows us to explore
the potential consistency between X and X .

We consider the classification task as our downstream task and denote it as T . The labeling function
of task T here is a surjective continuous function gT : X → Y = {l1, . . . , ld}. Y is a finite space
called label space when given the discrete topology, where every single point set in Y is both an
open set and a closed set. For T , the embedding space we consider is actually a subset of the real
embedding space X and is denoted as XT . We assume that XT , the features extracted by F , can be
written as a finite collection of closed disjoint sets X T

1 , . . . ,X T
d , among which X T

i = g−1
T (li) :=

{F (x) ∈ X |gT (F (x)) = li} is a close set. As a result, gT induces a partition on XT as is shown in
1.

 

Figure 1: Different tasks induces different partition on embedding space. Task corresponding to the
picture on the left is to classify cats and dogs, while the right one require to classify short haired cat,
long haired cat and dog

As for the instance discrimination task, the agent task for contrastive learning paradigms also induces
a partition on XT . Since every sample in our training set D = {xi}ni=1 is the label of its own
class, the label space of this task is Y = {lx1

, . . . , lxn
}. We denote by Ai : X → X to one

type of augmentation operation, then the collection of augmentation used during the training is
A = {A1, A2, . . . , An}. Therefore, the actual training set is DA = D ∪ A(D), and we denote
g : X → Y as the label function of the instance discrimination task. So XA

xj
= g−1(lxj

) actually
gives a closed neighborhood of F (xj), containing all the images of the samples under F which are
generated by applying A to sample points xj . On the embedding space, for every F (xj), we define
a distribution p(y|F (xj))y ∈ X “around” it, whose value is proportional to the distance between
y and F (x)(See more detail in Appendix A.1). Then by p(y|F (xj)), for any given τ ∈ [0, 1], we
have a closed ball B(F (Xj), δxj ), such that ∀F (x) ∈ B(F (xj), δxj ) ⇒ pA(y|F (xj)) ≥ τ . This
closed ball gives an area where our model is ”confident” enough to recognize all points in the same
class, and it also represents an area with density that is high enough. So now we introduce our first
assumption:
Assumption 1 (The Smoothness Assumption). If two points x1, x2 resided in a high-density region
are close, then so should be their corresponding outputs y1, y2, and vice versa.
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Clearly the close ball mentioned above describes an area satisfying the smoothness assumption.
And every two points in it will be classified into the same class under g or other proper classifier. In
addition, the points in the closed ball are also considered to be relatively easy to learn for our model,
and we often make f only learn these points instead of letting it learn those points after adversarial
data augmentation. Because they are so bad that even if the features are perfectly extracted, our
classifier’s “confidence” in its classification results is often insufficient or even unable to get the
correct results.

With Sδxj
= {x ∈ X|F (x) ∈ B(F (xj), δxj

)}, we naturally derive the definition of augmented
neighborhood:

Definition 1. For the collection of data augmentation A = {A1, A2, . . . , An}, we name the follow-
ing set:

n⋃
i=1

{Ai(X)
⋂

Sδxj
} (1)

as the augmented neighborhood of xj , and denoted it as O∗
x. As a visualization, please see 2, A.2

provide an example to help to build intuition.

 

Figure 2: A Visualization for Augmented Neighborhood

3.2 UPPER BOUND OF GENERALIZATION ERROR OF AUGMENTED NEIGHBORHOOD

After defining the basic set (augmented neighborhood) clearly for modeling the contrastive learning
instance discrimination task, we now consider the generalization error on this set.

When studying the generalization error of machine learning models, we first need to define the loss
function. According to the characteristic that the common loss functions used in current contrastive
learning work(MSE, cosine similarity, L2 norm, etc.) are all essentially metric loss, in this work
metric loss is denoted as L, which implies positivity,symmetry and triangle inequality.

Now we generalize the output space of the model f mentioned above from the embedding space to
any other output space, and F also changes accordingly. Given some arbitrary samples D = {xi}ni=1
drawn from the sample space XD which is the subset of the real input space X , for each point in the
space, if we consider its augmented neighborhood, we get the relation between sample space and
the union of augmented neighborhoods:XD ⊂

⊔
x∈XD

O∗
x.

Definition 2. For the sample space XD, we call the generalization error on the union of augmented
neighborhood of each point GEAN(Generalization error based on the augmented neighborhood),
which is defined as the following equation:∫

⊔
x∈XD

O∗
x

L(f(x), F (x))p(x) dx (2)

p(x)is a probability density function over X . We assume that the pD(x) is the probability density
function on XD, it meets pD(x) = p(x)∫

XD
p(x) dx

. Combining the relation above:XD ⊂
⊔

x∈XD
O∗

x
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,we give the following inequality:∫
XD

L(f(x), F (x))pD(x) dx ⩽
∫
XD

p(x) dx ·
∫
XD

L(f(x), F (x))p(x)dx ⩽∫
XD

L(f(x), F (x))p(x) dx ⩽
∫
⊔

x∈XD
O∗

x

L(f(x), F (x))p(x) dx ⩽
∫
X

L(f(x), F (x))p(x)dx

(3)

 

(a) Sample Space
 

(b) Augmented Neighborhood

Figure 3: Sample Space and Augmented Neighborhood of Samples

Actually,the left term of this inequality is the generalization error on the sample space XD, which is
a traditional form of error. While the middle term is the generalization error on the disjoint union of
the augmented neighborhood of each point in the sample space XD we proposed. And the rightmost
term is the generalization error on the entire input space, it contains more than one sample space like
XD. According to Equation (3), if we consider GEAN, it is not only a better approximation of the
generalization error on the real input space, compared with the traditional loss, but also enables the
model f to learn the property of local continuity of F in the augmented neighborhood as expected.

Instead of considering the generalization error on the whole sample space, we often concentrate on
the generalization error defined on the union of the augmented neighborhood of each point in the
sample D = {xj}nj=1, which is: ∫

⊔n
j=1 O∗

xj

L(f(x), F (x))p(x) dx (4)

In the following, we default to discuss GEAN as ( 4). With some necessary assumption(see appendix
A.3), it is equvialent to:

n∑
j=1

∫
O∗

xj

L(f(x), F (x))pxj (x) dx (5)

Where pxj (x) :=
p(x)∫

O∗
xj

p(x) dx
.Therefore, we find that GEAN is actually equivalent to a multi-targets

learning problem on the augmented neighborhoods of many sample points. That is, GEAN is
a multi-objective optimization problem by simultaneously minimizing the generalization error on
O∗

xj
(j = 1, 2, · · ·n).

Theorem 1.

C +

n∑
j=1

(∫
O∗

xj

L(F (xj), f(xj))pxj
(x) dx+

∫
O∗

xj

L(f(x), f(xj))pxj
(x) dx

)
(6)

is an upper bound of the generalization error (4), which is called UBGEAN (upper
bound of generalization error on augmented neighborhood) for short.In which C =∑n

j=1(
∫
O∗

xj

L(F (x), F (xj))pxj
(x)dx

(see proof in A.5)
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This inequality actually gives an upper bound of the generalization error defined on the union of
augmented neighborhoods. More importantly, this upper bound reveals the profound nature of semi-
supervised and self-supervised learning based on metric-contrast loss. Let’s explain what each item
in UBGEAN means:

For the optimization problem with related to the parameter of f , the first

term
n∑

j=1

∫
O∗

xj

L(F (x), F (xj))pxj
(x) dx of UBGEAN does not contain term f , so this term is

regarded as a negligible constant.

For the second term
n∑

j=1

∫
O∗

xj

L(F (xj), f(xj))pxj
(x) dx of UBGEAN, according to the definition of

the distribution on each augmented neighborhood, it satisfies
∫
O∗

xj

pxj (x) dx = 1 (j = 1, 2, · · · .).
Therefore, we can deduce the following equation:

n∑
j=1

∫
O∗

xj

L(F (xj), f(xj))pxj
(x) dx =

n∑
j=1

L(F (xj), f(xj))

∫
O∗

xj

pxj
(x) dx

=

n∑
j=1

L(F (xj), f(xj))

(7)

This is the sum of the metric loss between the output of the model for each data point and the its
label (or conception coding). And the estimation of the generalization error on the sample space XD

is
n∑

j=1

L(F (xj), f(xj))dx, so the second term is equivalent to the general empirical loss.

The third term
n∑

j=1

∫
O∗

xj

L(f(x), f(xj))pxj (x) dx represents the sum of expectations of the metric

loss between each sample point and its augmented neighborhood, which measures the continuity
of the model on augmented neighborhood of each sample. Under the smoothness assumption, all
existing metric-based contrastive loss using only positive samples (such as SimSiam and Byol) is
equivalent to the third term. In particular, we take SimSiam as an example to explain the reasons.
SimSiam takes Ex,T

[
∥Fθ(T (x))−Fθt (T ′(x))∥22

]
as the loss function to update parameters, which

can be regarded as the third term Ex

[∫
O∗

T ′(x)

L(f(x), f(T ′(x)))pT ′(x)(x) dx

]
of UBGEAN on

the augmented neighborhood O∗
T ′(x) induced by T ′(x), and its empirical estimation is a Monte

Carlo estimation of
∫
O∗

T ′(x)

L(f(x), f(T ′(x)))pT ′(x)(x) dx. In addition, the existing common semi-

supervised work using metric based contrastive loss(such as PI-Model, UDA, FixMatch45) all use
MSE loss for their unsupervised contrastive loss, which is also equivalent to the third term here.

4 EXPERIMENT AND CONCLUSION

In this section, we are going to directly state the connection between UBGEAN we proposed and
semi-supervised and self-supervised learning methods using metric based loss.

4.1 CONSISTENT UPPER BOUND

According to our theory, directly optimizing UBGEAN yields model with better generalization abil-
ity, since the first term of UBGEAN is independent of the model, what we are really need in opti-
mization is:

n∑
j=1

(∫
O∗

xj

L(F (xj), f(xj))pxj
(x) dx+

∫
O∗

xj

L(f(x), f(xj))pxj
(x) dx

)
(8)
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As a computable approximation of this objective function, we usually consider its monte carlo esti-
mation:

n∑
j=1

(
L(F (xj), f(xj)) +

1

N

N∑
i=1

L(f(xi
j), f(xj))

)
(9)

where xi
j ∼ pxj

(x)(Sampling from the augmented neighborhood is to randomly augment the data).
And for computational efficiency, we set N = 1. And the pseudo code is following:

Algorithm 1 pseudo code here

# aug: augmentation method

for x, label in loader:
if UBGEAN != 0: # >=1 1 use UBGEAN loss
# here UBGEAN is the number of samples.

aug = aug(x)
UBGEAN_loss += loss(aug, output)

exp_loss = loss(model(x), label) # CosineSimilarity loss
loss = exp_loss + beta * UBGEAN_loss
loss.backward()
update(model)

Experiment Set: We choose Resnet50 as our baseline models.We use cosine similarity as a metric
loss after softmax (this is equivalent to do a metric learning by projecting the probability vector onto
the unit hypersphere. Detailed proof is provided in the Appendix (A.4) ), and we choose Adam as
optimizer. we set the same augmentations as SimSiam(Chen et al. (2020)). See appendix B.1 for
more detailed experimental settings.

Random Init Food101 SVHN CIFAR10 CIFAR100

Experience loss 57.32% 95.49% 86.45% 61.80%
UBGEAN 74.82% 97.04% 93.37% 68.74%

Table 1: Results of Random Initialization on each Dataset with the Standard ResNet-50 Architec-
ture. We train randomly initialized ResNet-50 model with UBGEAN and empirical loss respectively
under the same baseline on Food101 Bossard et al. (2014), SVHN Netzer et al. (2011), CIFAR-10
Krizhevsky et al. (2009) and CIFAR-100 Krizhevsky et al. (2009).

Main Result: We can tell from Table 1 that, compared with the general experience loss, our method
has greatly improved the performance of the model, which indicates that UBGEAN, as a upper
bound of GEAN, effectively controls the generalization error of the model and help it to achieve a
better generalization effect. Meanwhile, we can see from figure 1 that, our method has always been
ahead of the traditional method based on experience loss in the generalization ability of the whole
learning process.Therefore, the theory we propose can offer a better generalization performance,and
you can use it in any supervised learning scenario.
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Figure 4: Random Init on CIFAR-10 with different loss

4.2 INCONSISTENT ESTIMATION

Many representative semi-supervised methods containing contrastive loss(Sohn et al. (2020),Xie
et al. (2020),Lee et al. (2013)), the final loss of these methods are usually made up of two parts,
the first one is the unsupervised contrastive loss based on metric or cross entropy computed using
unlabeled data, and the second one is a supervised loss based on cross entropy computed using
labeled data. In order to generalize our theory, we need to find the equivalence between cross
entropy(CE) loss and usual metric loss like squared error(SE) loss, it is shown in that under some
condition that is good enough, we may assume that CE is equivalent to SE.

As a result, according to our theory, the existing semi-supervised methods is essentially decoupling
UBGEAN in the estimation phase. They use labeled dataDl to estimate (8) or just the first term
in it, and use unlabeled data to estimate second term of (8). This decoupling of estimates actually
sacrifices the accuracy of estimates to reduce the dependence on labeled data.

The essential difference between these methods and ours is the consistency of data used when esti-
mating (8). For the consistent estimation, which is ours, the data used when updating (8) comes from
the same batch, while the inconsistent one use data from different batch or even different amount of
data to estimate the two terms in (8) respectively.

4.3 DECOUPLED OPTIMIZATION

For the self supervised transfer learning method, we think that it has performed a transfer learning
for the third term of UBGEAN. The current measurement based comparative learning pre training
method can be divided into two steps: first, learn the third term of UBGEAN on a large number of
unlabeled data, and then transfer the model to the downstream task for fine-tuning with empirical
loss.

According to our theory, the common self supervised learning paradigm essentially uses data from
two different domains to decoupling optimize the second and third terms of UBGEAN(Where Du

and Dl represent two different domains respectively). After the pre train stage based on contrastive
learning, if we transfer the model to a new domain, the third terms of the UBGEAN on this new
domain

∑
x′∈Dl

∫
O∗

x′
L(f(x′), f(x))px′(x) dx has a good starting point because of the pre training.

After appropriate fine-tuning, the UBGEAN on this new domain will be smaller, which implies the
improvement of model generalization performance. This explains why the pre training based on
contrastive learning can effectively improve the generalization ability of the model.

Therefore, we believe that after fine-tuning with experience loss, the UBGEAN of the model that
uses contrastive learning for pre training will have a smaller value than that of the model that uses
supervised pre training.
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Experiment set: We use the supervised pre trained model and SimSiam pre trained Resnet50.We
use cosine similarity as a metric loss. After the same fine-tuning using experiential loss, we select
the best models base on its performance on verification set. Then we use UBGEAN as a comparative
indicators, since we use random augmentation for its estimation, we compute 20 times and take the
average as an estimation for the real UBGEAN. See Appendix B.3 for detailed experimental settings.

Main Result: According to Table 2 below, the experimental results are consistent with our theoret-
ical analysis. The SimSiam pre training model has a lower UBGEAN value after fine-tuning, which
indicates that pre training method based on contrastive learning effectively controls the UBGEAN
of the model after transferring into a new domain.

Table 2: Loss of differernt pre-trained models after fine-tuning with empirical loss

Simsiam Supervised

CIFAR10
UBGEAN(2nd+3rd) −0.958± 4.99× 10−6 −0.974± 4.99× 10−6

UBGEAN(3rd) −0.00826± 4.98× 10−6 −0.00594± 3.06× 10−6

CIFAR100
UBGEAN(2nd+3rd) −0.785± 2.70× 10−6 −0.840± 2.45× 10−6

UBGEAN(3rd) −0.00408± 2.70× 10−6 −0.00259± 2.45× 10−6

After this, We do a further exploration for the fine-tuning stage of the transfer learning problem.

Experiment set: We used Resnet50 fine tuned by SimSiam and supervised methods on ImageNet
for comparative experiments. For the two pre trained models, we use empirical loss and UBGEAN
to fine tune(i.e. 1, the augmentations are the same as SimSiam(Chen et al. (2020))). See Appendix
B.4 for detailed experimental settings.

Table 3: Transfer Learning Results with the Standard ResNet-50 Architecture

Fine-tuned Food101 SVHN CIFAR10 CIFAR100 DTD Pets Aircraft

SimSiam
Empirical loss 75.88% 96.50% 94.22% 76.23% 61.60% 78.25% 54.76%

UBGEAN 81.62% 97.49% 96.46% 81.61% 67.77% 83.92% 70.12%
Supervised

Empirical loss 79.57% 96.57% 96.22% 82.52% 69.95% 89.81% 52.81%
UBGEAN 82.96% 96.87% 96.94% 84.15% 69.95% 92.10% 70.30%

Main results: The results in Table 3 indicate that when we use UBGEAN to fine tune the model pre
trained on ImageNet with loss equivalent to the third term of UBGEAN and the model of supervised
pre trained on ImageNet as well, we find out that the former has better generalization ability than the
latter. That is to say, for all the model using unsupervised pre training methods whose loss equiv-
alent to the third term of UBGEAN, using the same data augmentation to compute the consistent
estimatation of UBGEAN in the fine-tuning stage will have a greater impact on the final result than
the supervised pre training model.

REPRODUCIBILITY STATEMENT

The implementation code can be found in file submitted with the paper. All datasets and the code
platform (PyTorch) we use are public. In addition, we also provide detailed experiment set and
mathematical proof in the Appendix.
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A PROOF AND EXAMPLE

A.1 THE DISTRIBUTION ON EMBEDDING SPACE

In piratical we usually consider p(lxi
|F (xj)), the output layer of a model for classification tasks,

who gives a multinomial distribution implying the corresponding ”confidence” that the model rec-
ognize F (xj) as each class which is the cosine similarity between the sample and the center of each
class. Inspired by that we now define a distribution making XA

xj
the area with high density:
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Definition 3. We denote pA(y|F (xj)) as the distribution making XA
xj

the area with high density,
whose value is proportional to the cosine similarity between y = F (x) , x ∈ XA

xj
and F (xj) , since

F (x), F (xj) ∈ Sm−1, then the cosine similarity here is then the usual inner product of vector, and
it is defined as followed:

pA(y|F (xj)) ∝ exp{yTF (xj)} = exp

{
1− ||y − F (xj)||2

2

}
∝

exp

{
−1

2
(y − F (xj))

T (y − F (xj))

}
, ∀y ∈ X

(10)

And this actually actually gives the fact that y|F (xj) ∼ N (F (xj), I).

In order to find an area with density that is high enough in XA
xj

, we give the following theorem:

Theorem 2. For any given τ ∈ [0, 1](we name it as ”confidence level”), there exists δxj
> 0 such

that
∀F (x) ∈ B(F (xj), δxj

) ⇒ pXA
xj
(x) ⩾ τ

Proof: We denote the normalization term of p(y|F (xj)) as N , then the inequality we want is actu-
ally

pA(y|F (xj))

N
⩾ τ. (11)

Now we have the following

pA(y|F (xj))

N
(x) ⩾ τ ⇔ exp

{
1− ||y − F (xj)||2

2

}
⩾ τN(

2 ln
e

τN

) 1
2

⩾ ||y − F (xj)||
(12)

Then we complete the proof.

A.2 AN EXAMPLE FOR AUGMENTED NEIGHBORHOOD

As a way to comprehend this neighborhood, for example, consider a set of uniform noise augmen-
tations AU and an open neighborhood Uxj

of a sample xj in input space, whose local coordinate
representation is hHWC · hMH×W×C

. hMH×W×C
actually refers to a method of storing pictures of

certain objects in reality in an H ×W × C tensor form and using them as the input of the model.
The subscript MH×W×C of the reflection represents a space composed of all H ×W × C tensors,
where H and W are adjusted to the needs while C is usually 3 since we’re dealing with colored
pictures. And hHWC is a tile reflection from MH×W×C to the vector space RHWC with H ·W ·C
dimensions, which is

hHWC : MH×W×C → RHWC

hMH×W×C
(xj) 7→ flatten(hMH×W×C

(xj))
(13)

After this mapping, now we’re pondering the problem in a metric space (RHWC , ∥·∥L2
) based on

the L2-norm, because we map the open neighborhood Uxj
in the input space manifold X into the

metric space (RHWC , ∥·∥L2
) under the local coordinate representation is hHWC · hMH×W×C

. In
practical applications, based on the above local coordinate representation, there must be a correspon-
dence like below, which makes every specific uniform noise augmentation Ay

U ∈ AU can uniquely
correspond to a tensor in MH×W×C :

∀Ay
U ∈ AU , ∃!My ∈ MH×W×C

s.t.

hMH×W×C
(Ay

U (xj)) = hMH×W×C
(x) +pointwise My

(14)

where the image hHWC(My) of My in fact is uniformly distributed in B(O, 1) ⊂ (RHWC , ∥·∥L2
).

Let UB(O, 1) be the uniform distribution and pU be its probability density function. When a uniform
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noise augmentation acts on the sample xj , firstly My is produced, where hHWC(My) ∼ pU (x).
Then My is pointwise added in hMH×W×C

(xj). After that, we get the needed tensor. If we flat-
ten this tensor, then it’s easy to see that it is a sample from UB(hHWC ·hMH×W×C

(xj), 1). And
when we traverse all uniform noise augmentations, or say, consider a set of tensors which are
produced by all uniform noise augmentations acting on the sample xj , we in fact get a hyper-
sphere B(hHWC · hMH×W×C

(xj), 1) ⊂ (RHWC , ∥·∥L2
) under the local coordinate representation

hHWC · hMH×W×C
(·) after flattening. By the homeomorphic property of the local representation

map, we actually get an open neighborhood about xj in the input space X , on which there is also an
inherited uniform distribution.

A.3 ASSUMPTION FOR AUGMENTED NEIGHBORHOOD

Assumption 2. For any two samples drawn from the same sample spaceXD, we consider the inte-
gration on any set A:

∫
A
p(x)dx, if we take A as their augmented neighborhood, we consider these

two terms
∫
O∗

xi

p(x) dx,
∫
O∗

xj

p(x) dx to be the same.

This assumption is summarized from an intuition that since two samples are drawn from the same
sample space, then we would like to expect their ”behaviour” under the same augmentation is the
same, and since augmented neighborhood can be explained as ”the collection of the augmented
sample that looks like the original one”, then we may consider these two samples have the same
”size” of augmented neighborhood.

Definition 4. The pdf pxj (x) defined on the augmented neighborhoodO∗
xj

of any sample point xj

satisfies:

pxj (x) =
p(x)∫

O∗
xj

p(x) dx
, ∀x ∈ O∗

xj
, supp(x) = O∗

xj
(15)

Since GEAN is defined on the disjoint union of several closed sets, combined with the probability
density function we defined before on the augmented neigborhood of each sample point, GEAN has
the following:

∫
⊔n

j=1 O∗
xj

L(f(x), F (x))p(x) dx =

n∑
j=1

P(O∗
xj
)

∫
O∗

xj

L(f(x), F (x))pxj
(x) dx (16)

In other words, GEAN is the weighted sum of generalization error on the augmented neighborhood,
whose weights are the measure of the corresponding augmented neighborhood of each sample point.
With Assumption 2, we can ignore the influence caused by these weights.

A.4 PROOF FOR COSINE SIMILARITY

Injection proof of projection into hypersphere metric space

Theorem 3. Cosine similarity loss Sim(·, ·) can be regarded as the objective function to project the
model output results to the unit hypersphere for metric learning

Proof: When the output layer of model f is softmax, all the output of the model lies in ∆n−1 ={
x = (x1, x2, · · · , xn)

∣∣∣∣ n∑
i=1

xi = 1, xi ⩾ 0

}
, the n−1-dimensional simplex as it is shown in Figure

5.

13
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(a)
 

(b)

Figure 5: The Multidimensional Simplex

And normalized mapping ϕ(x) =
x

∥x∥
, ∀x ∈ Rn, are mapped into Sn−1 ={

(y1, y2, · · · , yn)
∣∣∣∣ n∑
i=1

y2i = 1

}
, the unit hypersphere in the n dimension space as it is shown

in picture 2, which means that ∀x ∈ Rn, ϕ(x) ∈ Sn−1. Then ∀xa, xb ∈ Rn, if ϕ(xa) = ϕ(xb), we

have that xa =
∥xa∥
∥xb∥

xb ⇔ xa, xb belongs to the same set HFa = {x|x = α · xa, α ⩾ 0}.

Now let’s prove that ϕ(x) : ∆n−1 → Sn−1 is an injection: If xa ̸= xb ∈ E, ϕ(xa) = ϕ(xb),
then xa ̸= xb ∈ HFa ⇒ xa = α · xb, α ̸= 1 ⇒ xa = (xa1, xa2, · · · , xan) = α · xb =

(α ·xb1, α ·xb2, · · · , α ·xbn). Then since xa, xb ∈ E ⇒
n∑

i=1

xai = 1 ⇒ α ·
n∑

i=1

xbi = 1 ⇒ α = 1,

then the contradiction arises, we finished the proof. Then ϕ(x) now an injection.

A unit hypersphere space with vector inner product < Sn−1, · >is a metric space, so cosine similar-
ity loss can be regarded as the objective function of projecting the output of the model results to the
unit hypersphere for metric learning.

A.5 PROOF FOR OUR THEOREM

Theorem 4.
n∑

j=1

(∫
O∗

xj

L(F (x), F (xj))pxj
(x) dx+

∫
O∗

xj

L(F (xj), f(xj))pxj
(x) dx+

∫
O∗

xj

L(f(x), f(xj))pxj
(x) dx

)
(17)

is an upper bound of the generalization error (4), which is called UBGEAN (upper bound of gener-
alization error on augmented neighborhood) for short.

Proof: Since L is a metric, according to the triangle inequality, for each sample pointxj the follow-
ing inequality holds:

L(f(x), F (x)) ⩽ L(F (x), F (xj)) + L(F (xj), f(xj)) + L(f(x), f(xj)) (18)

Calculate the expectation of both sides simultaneously on the augmented neighborhood of sample
point xj , and sum both sides of the inequality concerning the index j, then the following inequality
is obtained:

n∑
j=1

∫
O∗

xj

L(f(x), F (x))pxj (x) dx ⩽
n∑

j=1

(∫
O∗

xj

L(F (x), F (xj))pxj (x) dx+

∫
O∗

xj

L(F (xj), f(xj))pxj
(x) dx+

∫
O∗

xj

L(f(x), f(xj))pxj
(x) dx

) (19)

And that completes the proof.
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B EXPERIMENTAL SETUP

B.1 DATASETS

Table 4: Dataset Partitioning

Dataset Train examples Test examples Valid. examples Classes Evaluation criterion

Food101 68175 25250 7575 101 Top-1 accuracy
SVHN 65937 26032 7320 10 Top-1 accuracy

CIFAR-10 45000 10000 5000 10 Top-1 accuracy
CIFAR-100 45000 10000 5000 100 Top-1 accuracy

DTD 1880 1880 1880 47 Top-1 accuracy
Aircraft 3334 3333 3333 100 Top-1 accuracy

Pets 3312 3669 368 37 Top-1 accuracy

DTD Cimpoi et al. (2014) and Aircraft Maji et al. (2013) have test set and validation set on Torchvi-
sion, so we directly use their test set and validation set. On Food101 Bossard et al. (2014), SVHN
Netzer et al. (2011), CIFAR-10 Krizhevsky et al. (2009), CIFAR-100 Krizhevsky et al. (2009), Pets
Parkhi et al. (2012) datasets, we divide the validation set from the original test set by stratified
sampling with the proportion shown in the table.

B.2 PART I

B.2.1 RANDOM INITIALIZATION

Task Backbone LR BS Optimizer Loss Decoder LR-decay UBGEAN
3rd weight

Food101 resnet50 0.001 225 AdamW CS Linear cosine 0.3
SVHN resnet50 0.001 256 AdamW CS Linear cosine 0.3

CIFAR-10 resnet50 0.003 200 AdamW CS Linear cosine 0.3
CIFAR-100 resnet50 0.003 200 AdamW CS Linear cosine 0.3

Table 5: Training Hyperparameters and Details of Random Initialization Considered in This Bench-
mark. CS represents CosineSimilarity loss and BS represents BatchSize. All the tasks use a cosine
annealing with a linear warm-up learning rate scheduler Loshchilov & Hutter (2016); Goyal et al.
(2017) and a UBGEAN weight of 0.3.

We choose a dataset with a relatively large amount of data for random initialization experiments. We
use the AdamW optimizer, which weight decay is 0.0001. The decoder consists of only one linear
layer, without connecting the dropout or BatchNorm layers. During the training process, we need
to calculate the comparison loss between the original image data and the augmented image data, so
we only resized the original image data to 224x224 and normalize the color channels (the average
color and the standard deviation is computed on ImageNet). No other methods of data augmentation
were used. It’s the same to test set and val set. Finally, the test set accuracy of the model with the
best performance on the validation set is selected as our final accuracy. The Settings used for both
UBGEAN loss and experience loss are the same as those in Table 4.

15



Under review as a conference paper at ICLR 2023

B.2.2 FINE-TUNING

Task Backbone LR BS Optimizer Loss Decoder LR-decay UBGEAN
3rd weight

Food101 resnet50 0.00005 225 AdamW CS Linear cosine 0.3
SVHN resnet50 0.00005 256 AdamW CS Linear cosine 0.3

CIFAR10 resnet50 0.00005 200 AdamW CS Linear cosine 0.3
CIFAR100 resnet50 0.00005 200 AdamW CS Linear cosine 0.3

DTD resnet50 0.00005 188 AdamW CS Linear cosine 0.3
Aircraft resnet50 0.00005 200 AdamW CS Linear cosine 0.3

Pets resnet50 0.00005 196 AdamW CS Linear cosine 0.3

Table 6: Training Hyperparameters and Details of Fine-tuning Considered in this Benchmark. CS
represents CosineSimilarity loss and BS represents BatchSize. We use AdamW with a weight decay
value of 1e-4, linear warm-up for the first 5 epochs and decay the learning rate with the cosine decay
schedule Loshchilov & Hutter (2016); Goyal et al. (2017). The decoder consists of a simple linear
layer and doesn’t connect the Dropout and BatchNorm layers

We select all datasets for fine-tuning experiments. We use the AdamW optimizer, which weight
decay is 0.0001. The decoder consists of only one linear layer, without connecting the dropout or
BatchNorm layers. During the training process, as mentioned in the random initialization experi-
ment, we only resized the original image data to 224x224 and normalize the color channels. It’s the
same to test set and val set.Finally, the test set accuracy of the model with the best performance on
the validation set is selected as our final accuracy. The Settings used for both UBGEAN loss and
experience loss are the same as those in Table 5.
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