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Abstract

A challenge in fair algorithm design is that, while there are compelling notions of individual
fairness, these notions typically do not satisfy desirable composition properties, and down-
stream applications based on fair classifiers might not preserve fairness. To study fairness
under composition, Dwork & Ilvento (2019) introduced an archetypal problem called fair-
cohort-selection problem, where a single fair classifier is composed with itself to select a
group of candidates of a given size, and proposed a solution to this problem. In this work
we design algorithms for selecting cohorts that not only preserve fairness, but also maximize
the utility of the selected cohort under two notions of utility that we introduce and motivate.
We give optimal (or approximately optimal) polynomial-time algorithms for this problem
in both an offline setting, and an online setting where candidates arrive one at a time and
are classified as they arrive.

1 Introduction

The rise of algorithmic decision making has created a need for research on the design of fair algorithms,
especially for machine-learning tasks like classification and prediction. Beginning with the seminal work of
Dwork et al. (2012), there is now a large body of algorithms that preserve various notions of fairness for
individuals. These notions of individual fairness capture the principle that similar people should be treated
similarly, according to some task-specific measure of similarity.

While these algorithms satisfy compelling notions of individual fairness in isolation, they will often be used
as parts of larger systems. To address this broader context, Dwork & Ilvento (2019) initiated the study of
fairness under composition, where one or more fair classifiers will be combined to make multiple decisions,
and we want these decisions to preserve the fairness properties of those underlying classifiers. Their work
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introduced a number of models where fair mechanisms must be composed, demonstrated that naïve methods
of composing fair algorithms do not preserve fairness, and identified strategies for preserving fairness in these
settings. Importantly, these strategies treat the underlying classifiers as a black-box so that composition can
be modular, eliminating the need to redesign the underlying classifier for every possible use.

Our work studies the archetypal fair cohort selection problem introduced by Dwork & Ilvento (2019). In this
problem, we would like to select k candidates for a job from a universe of n possible candidates. We are
given a classifier that assigns a score si ∈ [0, 1] to each candidate,1 with the guarantee that the scores are
individually fair with respect to some similarity metric D. We would like to select a set of k candidates such
that the probability pi of selecting any candidate should be fair with respect to the same metric.

Preserving Fairness. Since our goal is to treat the scores s1, . . . , sn as a black-box, without knowing the
underlying fairness metric, we posit that the scores are fair with respect to some D, i.e. they satisfy

∀i, j, |si − sj | ≤ D(i, j), (1)

but that this metric is unknown. Thus, we will design our cohort selection algorithm so that its output
probabilities p1, . . . , pn will satisfy

∀i, j, |pi − pj | ≤ |si − sj | ≤ D(i, j) (2)

as this guarantees that we preserve the underlying fairness constraint. Without further assumptions about
the fairness metric, the only way to preserve fairness is to satisfy (2).

We can trivially solve the fair cohort selection problem by ignoring the scores and selecting a uniformly
random set of k candidates, so that every candidate is chosen with the same probability k/n. Thus, in
this paper we propose to study algorithms for fair cohort selection that produce a cohort with optimal (or
approximately optimal) utility subject to the fairness constraint. Specifically, we consider two variants of
the problem:

Linear Utilities. For the linear utility model, we assume that

1. the utility for selecting a cohort is the sum of independently assigned utilities for each member, and

2. the scores given by the original classifier accurately reflect the utility of each member of the cohort.

Assumption 1 essentially says that members of the cohort are not complements or substitutes and assumption
2 makes sense if the task that we designed the classifier to solve and the task that the cohort is being used
for are closely related. Under these assumptions, it is natural to define the utility for a cohort selection
algorithm to be

∑
i pisi, which is the expectation over the choice of the cohort of the sum of the scores

across members in the cohort.

Ratio Utilities. For the ratio utility model, we continue to rely on assumption 1, but we now imagine that
the expected utility for the cohort is some other linear function

∑
i piui where the variables ui are some

unknown measure of utility in [0, 1]. Assuming that for every candidate i the score si is generally correlated
with the utility ui even if they are not exactly the same, we normalize by

∑
i siui, as the original scores can

still be a reasonable choice of selection probabilities that satisfy the fairness constraint. Since the utility
function is unknown, our goal is now to produce a cohort that maximizes the utility in the worst case over
possible utility functions. As we show (Lemma 2.1), maximizing the worst-case utility amounts to assigning
probabilities that maximize the quantity mini pi/si. Optimizing the ratio utility implies a lower bound on
the cohort utility under any utility function that satisfies assumption 1, including our linear utility above.
However, it does not necessarily optimize the linear utility, thus the two utility models are distinct.

Our technical contributions are polynomial-time algorithms for fair and useful cohort selection with both
linear and ratio utilities, in two different algorithmic models.

1In the model of Dwork et al. (2012), fairness requires that the classifier be randomized, so we can think of the output of
the classifier as continuous scores rather than binary decisions.
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Offline Setting. In this setting, we are given all the scores s1, . . . , sn at once, and must choose the optimal
cohort. We present a polynomial-time algorithm for each model that computes a fair cohort with optimal
expected utility.

Online Setting. In this setting, we are given the scores s1, s2, . . . as a stream. Ideally, after receiving si, we
would like to immediately accept candidate i to the cohort or reject them from the cohort. However, this goal
is too strong (Dwork & Ilvento, 2019), so we consider a relaxation where candidate i can be either rejected at
any point during the online process, or kept on hold until later, and we would like to output a fair cohort at
the end of the stream with optimal expected utility while minimizing the number of candidates who are kept
on hold. We must keep at least k candidates pending in order to fill our cohort. For ratio utilities we give a
fair and optimal algorithm in this setting that keeps at most O(k) candidates on hold. For linear utilities, we
give an approximately fair and optimal algorithm. Specifically, we present a polynomial-time algorithm for
this online setting where the fairness constraints are satisfied with an ε additive error and utility is optimized
up to an additive error of O(k

√
ε), for any desired ε > 0, while ensuring that the number of users on hold

never exceeds O(k + 1/ε). To interpret our additive error guarantee, since the fairness constraint applies
to the probabilities p1, . . . , pn, allowing the fairness constraint to be violated by an additive error of, say,
ε = 0.01 means that every candidate is selected with probability that is within ±1% of the probability that
candidate would have been selected by some fair mechanism.

1.1 Techniques

We start with a brief overview of the key steps in our algorithms for each setting. The formal description of
the algorithms can be found in Sections 3 and 4. All omitted proofs are in the appendix.

Offline Setting. Our offline algorithm is based on two main properties of the fair cohort selection problem.
First, we use a dependent-rounding procedure that takes a set of probabilities p1, . . . , pn such that

∑n
i=1 pi =

k and outputs a random cohort C, represented by indicator random variables p̃1, . . . , p̃n ∈ {0, 1} with∑n
i=1 p̃i = k such that E (p̃u) = pu for every candidate u. Thus, it is enough for our algorithm to come up

with a set of marginal probabilities for each candidate to appear in the cohort, and then run this rounding
process, rather than directly finding the cohort.

To find the marginal probabilities that maximize the linear utility with respect to the scores s1, . . . , sn ∈ [0, 1],
we would like to solve the linear program (LP)

maximize
∑n
i=1 pisi

s.t.
∑n
i=1 pi ≤ k

∀i, j, |pi − pj | ≤ |si − sj |
∀i, 0 ≤ pi ≤ 1

In this LP, the first and third constraints ensure that the variables pu represent the marginal probability of
selecting candidate u in a cohort of size k. The second constraint ensures that these probabilities p are fair
with respect to the same measure D as the original scores s (i.e. |pu − pv| ≤ |su − sv| ≤ D(u, v)). Although
we could have used the stronger constraint |pu − pv| ≤ D(u, v), writing the LP as we do means that our
algorithm does not need to know the underlying metric, and that our solution will preserve any stronger
fairness that the scores s happen to satisfy.

While we could use a standard linear program solver, we can get a faster solution that is also useful for
extending to the online setting by noting that this LP has a specific closed form solution based on “water-
filling”. Specifically, if

∑n
i=1 si ≤ k, then the optimal solution simply adds some number c ≥ 0 to all scores

and sets pu = min{su + c, 1}, and an analogous solution works when
∑n
i=1 si > k.

For the ratio utility, although computing the optimal marginal probabilities does not correspond to solving a
linear program, the solutions for the two utility functions are the same when

∑n
i=1 si ≤ k. When

∑n
i=1 si > k,

we maximize the ratio of marginal probability over score by scaling all the scores down by the same factor
k/
∑n
i=1 si.
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Online Setting. In the online setting we do not have all the scores in advance, thus for the linear utility
we cannot solve the linear program, and do not even know the value of the constant c that determines the
solution. We give two algorithms for addressing this problem. The basic algorithm begins by introducing
some approximation, in which we group users into 1/ε groups based on their scores, where group g contains
users with scores in ((g − 1)ε, gε]. This grouping can only reduce utility by O(k

√
ε), and can only lead to

violating the fairness constraint by ε. Since users in each bucket are treated identically, we know that when
we reach the end of the algorithm, we can express the final cohort as containing a random set of ng members
from each group g. Thus, to run the algorithm we use reservoir sampling to maintain a random set of at
most k candidates from each group, reject all other members, and then run the offline algorithm at the end
to determine how many candidates to select from each group.

The drawback of this method is that it keeps as many as k/ε candidates on hold until the end. Thus, we
develop an improved algorithm that solves the linear program in an online fashion, and uses the information
it obtains along the way to more carefully choose how many candidates to keep from each group. This final
algorithm reduces the number of candidates on hold by as much as a quadratic factor, down to 2k + 1

ε .

For ratio utility, we are able to fully maximize the utility due to the way we decrease scores when the sum is
greater than k. When the sum of scores is less than k, we must be careful in order to avoid being unfair to
candidates eliminated early on. Thus, we maintain three groups; the top candidates, candidates undergoing
comparisons, and candidates given uniform probability. The groups are dynamic and candidates can move
from the first to the second and then the third group before getting rejected. Once the sum of scores exceeds
k the groups are no longer needed. The algorithm considers at most O(k) candidates at any time.

1.2 Related Work

Individual Fairness and Composition. Our work fits into the line of work initiated by Dwork et al.
(2012) on individual fairness, which imposes constraints on how algorithms may distinguish specific pairs of
individuals. Within this framework, difficulties associated with composing fair algorithms were first explored
by Dwork & Ilvento (2019), which introduced the fair-cohort-selection problem that we study. Issues of
composition in pipelines were further studied by Dwork et al. (2020).

Because the scores figure into both our fairness constraint and utility measure, our work has some superficial
similarity to work on meritocratic fairness. At a high-level meritocratic fairness (Joseph et al., 2016; Kearns
et al., 2017; Joseph et al., 2017; Kleine Buening et al., 2022) is a kind of individual fairness where we assume
there exists an intrinsic notion of merit and requires that candidates with higher merit be given no less
reward than candidates with lower merit. In this work, we study a notion of individual metric fairness
that, intuitively, tries to preserve the distances between the scores and not necessarily their order. Our
algorithms turn out to also preserve the ordering, but meritocratically fair algorithms will not, in general,
preserve the distances. We note that in our cases the scores s1, . . . , sn might or may not be reflective of
true merit, since we assume that these scores satisfy individual fairness with respect to some underlying
metric D, which may or may not reflect meritocratic values. The work by Kleine Buening et al. (2022) on
set selection under meritocratic fairness is the most related to our work. Yet, their setting is different as
the authors make the assumption that the utility function is non-linear and it depends on the combination
of the selected candidates. One of our main assumptions is that every individual contributes to the cohort
utility separately. The differences between the two problems are also highlighted in their work.

Individually Fair Ranking and Cohort Selection. Our problem has some similarity to fair ranking,
where we have to produce a permutation over all n candidates instead of just selecting a small cohort of
k � n candidates. Any algorithm for ranking implies an algorithm for cohort selection, since we can select
the top k elements in the ranking as our cohort, and a cohort selected this way may inherit some notion of
fairness from the ranking. However, we do not know of any ranking algorithms that can be used in this way
to satisfy the notions of fairness and optimality we study in this work. In particular, the most closely related
work on individually fair ranking by Bower et al. (2021) uses an incomparable formulation of the ranking
problem, and it is not clear how to express our constraints in their framework. In addition to the difference
in how fairness and utility are defined, we are not aware of any fair ranking papers that work in an online
model similar to the one we study.
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Group Fairness. A complementary line of work, initiated by Hardt et al. (2016) considers notions of group
fairness, which imposes constraints on how algorithms may distinguish in aggregate between individuals from
different groups. While our work is technically distinct from work on group fairness, cohort/set selection
has also been studied from this point of view (Zehlike et al., 2017; Stoyanovich et al., 2018) and different
approaches for fair ranking have been proposed (Yang & Stoyanovich, 2017; Celis et al., 2018; Singh &
Joachims, 2018; Yang et al., 2019; Zehlike & Castillo, 2020). Issues of composition also arise in this setting,
as noted by several works (Bower et al., 2017; Kannan et al., 2019; Arunachaleswaran et al., 2021).

2 Preliminaries

2.1 Models

We consider the problem of selecting a cohort using the output of an individually fair classifier as defined in
Dwork & Ilvento (2019).
Definition 2.1 (Individual Fairness (Dwork et al., 2012)). Given a universe of individuals U and a metric
D, a randomized binary classifier C : U → {0, 1} is individually fair if and only if for all u, v ∈ U , |P(C(u) =
1)− P(C(v) = 1)| ≤ D(u, v).

We restate the formal definition of the problem for convenience.
Definition 2.2 (Fair Cohort Selection Problem). Given a universe of candidates U , an integer k and a
metric D, select a set S of k individuals such that the selection is individually fair with respect to D, i.e. for
all pairs of candidates u, v ∈ U , |P(u ∈ S)− P(v ∈ S)| ≤ D(u, v).

In this work, we are interested in the setting of fairness under composition, and designing algorithms that
exploit the fairness properties of their components instead of having direct access to D. An algorithm which
solves this problem will either preserve or shrink the pairwise distances between the selection probabilities
of candidates. We can think of the probability of C selecting a candidate u as a continuous score su.
Definition 2.3 (Fairness-Preserving Cohort Selection Problem). Given a classifier C who assigns score si
to candidate i, select a cohort of k individuals where each individual i has marginal selection probability pi
such that for any pair of individuals i, j, |pi − pj | ≤ |si − sj |.

In some contexts that we define below, we consider a relaxation of this definition by adding a small error ε
to the pairwise distances.
Definition 2.4 (ε-Approximate Fairness-Preserving Cohort Selection Problem). Given a classifier C who
assigns score si to any individual i and a parameter ε ∈ (0, 1], select a cohort of k individuals where each
individual i has marginal selection probability pi such that for all pairs of individuals i, j |pi−pj | ≤ |si−sj |+ε.

When the initial classifier C is individually fair and the cohort selection algorithm preserves fairness ε-
approximately, then the cohort selection probabilities satisfy ε-individual fairness.
Definition 2.5 (ε-Individual Fairness). Given a universe of individuals U , a metric D and an ε in [0, 1], a
randomized binary classifier C : U → {0, 1} is ε-individually fair if and only if for all u, v ∈ U , |P(C(u) =
1)− P(C(v) = 1)| ≤ D(u, v) + ε.

The problem of fairness-preserving cohort selection may be studied in an offline setting, where the universe
of candidates is known in advance, as well as in an online setting, in which candidates arrive one-at-a-
time. Dwork & Ilvento (2019) prove that making immediate selection decisions while preserving fairness is
impossible, so we relax this to a setting in which we do not need to give immediate decisions as candidates
arrive. To control the degree of relaxation, we consider the number of candidates who wait for a response
during the selection stage; we seek to minimize the number of these pending candidates.

Individual fairness can be achieved by making uniform random selections among candidates, which is trivially
possible in the offline case, and can be implemented in the online setting using reservoir sampling (Vitter,
1985). Therefore, it is important to consider an extension to the cohort selection problem in which we also
want to maximize the utility of the selected cohort. We consider two measures of utility and construct
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algorithms for cohort selection which optimize these measures. Let the selection scores for individuals under
classifier C be s1, . . . , sn, and let their marginal probabilities of selection under an algorithm A be p1, . . . , pn.

Utilities Correlated with Classifier Output. We may consider that the classifier scores s directly
indicate the qualifications of an individual and that the utility of a cohort is the sum of the scores of each
member. Then, our evaluation measure becomes the expected utility of the selected cohort.
Definition 2.6 (Linear Utility). Consider a set of n candidates whose scores from classifier C are s1, . . . , sn
and whose selection probabilities by algorithm A are p1, . . . , pn. We define the linear utility of A to be
Utilitylinear (A, {si}) =

∑n
i=1 sipi.

As seen in Example 2.1, the maximum linear utility under the fairness-preserving constraint is not a monotone
function of the input scores; as the score si increases, the maximum linear utility may either increase,
decrease, or stay constant. Yet, we show in Lemma 3.1 that it is robust to small input perturbations.
Therefore, it can handle minor noise or errors in the input value. We exploit this property to develop an
ε-individually fair algorithm for online cohort selection.
Example 2.1. Suppose we want to select 2 people from a set of 4 candidates and classifier C assigns scores
s1 = 0.1, s2 = 0.3, s3 = 0.6 and s4 = 0.9. The optimal fairness-preserving solution has marginal selection
probabilities p1 = 0.125, p2 = 0.325, p3 = 0.625 and p4 = 0.925 and utility

∑4
i=1 pisi = 1.3175. By increasing

the score of the first individual to s′1 = 0.3, the cohort selection probabilities become p′1 = 0.275, p′2 =
0.275, p′3 = 0.575 and p′4 = 0.875. The new utility is

∑4
i=1 p

′
is
′
i = 1.2975, which is lower than the previous

one.

Arbitrary Utilities. Alternatively, we may consider the case where there exists an arbitrary, unknown
utility value for each candidate u1, . . . , un in [0, 1], which may differ from the scores s. Given si and ui, a
simple quantity to study is the ratio utility achieved by an algorithm A:

∑
i
piui∑

i
siui

. Since we do not know the
distribution of utility, we must consider the utility achieved by an algorithm A for a worst-case utility vector
~u.
Lemma 2.1. The worst case ratio utility is equal to the minimum ratio of selection probability and classifier
score of one candidate min~u

∑
i
piui∑

i
siui

= mini pi

si
.

We use this equivalence to redefine the ratio utility as follows.
Definition 2.7 (Ratio Utility). Given n candidates with scores si and a cohort selection algorithm A
with marginal selection probabilities pi, let the ratio utility of an algorithm A be defined according to the
coordinate with the minimum ratio: Utilityratio (A, {si}) = mini pi

si
.

Of course other utility measures exist; we study the measures defined above because they capture a natural
intuition about real world scenarios. We present an example to demonstrate the properties of these two
utility functions and the performance of pre-existing cohort selection algorithms.
Example 2.2. Consider the case where we would like to select 2 out of 3 candidates with scores s1 = 0.5,
s2 = 0.5, s3 = 1. The optimal solution in terms of ratio and linear utility is to pick {1, 3} and {2, 3}, each with
probability 0.5. This solution achieves ratio utility 1 and linear utility 1.5. The weighted sampling algorithm
by Dwork & Ilvento (2019) selects each subset with probability proportional to its weight, and would select
{1, 2} with probability 1/4, {1, 3} with probability 3/8, and {2, 3} with probability 3/8. The ratio utility of
this solution is 3/4 and its linear utility is 11/8. PermuteThenClassify by Dwork & Ilvento (2019) selects
{1, 2} with probability 1/12 and {1, 3} or {2, 3} with probability 11/24 each. This solution achieves ratio
utility 11/12 and linear utility 35/24. Hence, we see that weighted sampling and PermuteThenClassify are
sub-optimal for both utility definitions.

2.2 Dependent Rounding

Our cohort selection algorithms for ratio and linear utility in the offline and online settings are based on a
simple dependent rounding algorithm described in the appendix. This algorithm makes one pass over a list
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of numbers in [0,m], where m ∈ R, and rounds them so that their sum is preserved and the expected value
of each element after rounding is equal to its original value. The algorithm operates on two entries at a time
- call these a and b. If a+ b ≤ m, the algorithm randomly rounds one of them to a+ b and the other one to
0 with the appropriate probabilities. If a+ b > m, it rounds one to m and the other to the remainder.

This rounding procedure is a special case of rounding a fractional solution in a matroid polytope (in this
case, we have a uniform matroid). This problem has been studied extensively with rounding procedures
satisfying additional desirable properties (see e.g. Chekuri et al. (2010)). Here we use a simple and very
efficient rounding algorithm for the special case of the problem arising in our work.
Lemma 2.2. Let a1, . . . , an be a list of numbers in [0,m] with x =

∑n
i=1 ai. There is a randomized algorithm

that outputs ã1, . . . , ãn ∈ [0,m] such that b xmc of the ai will be equal to m, one ai will be x−b xmcm, the rest
will be equal to 0, and for all i ∈ {1, . . . , n}, E[ãi] = ai. When m = 1, we call this algorithm round-pr and
when a1, . . . , an are natural numbers we call it round-nat.

We use the rounding procedure in two ways. We call round-pr when we want to round a list of real numbers
in [0, 1] which represent selection probabilities and round-nat to round natural numbers which correspond
to counts.
Corollary 2.1. If m = 1 and

∑n
i=1 ai = k ∈ N, then after the dependent rounding of round-pr k elements

will be equal to 1 and the rest will be equal to 0.

3 Linear Utility

The first definition of utility we study is that of linear utility. In this setting, the aim of the cohort selection
is to maximize the expected sum of scores of the group of k people selected while preserving fairness. We
can formulate this problem as a linear program, as shown in Section 1.1.

The key idea of the solution is to move all the selection scores up or down by the same amount, depending
on the value of their sum, and clip the probabilities that are less than zero or over one. The algorithm
we propose for the online setting solves approximately a relaxation of the cohort selection problem, where
the probabilities of two candidates can differ by at most the given metric plus a small constant ε. The
new problem is defined as the linear program presented in Section 1.1, where the second constraint, ∀i, j ∈
[n], |pi − pj | ≤ |si − sj |, is replaced by ∀i, j ∈ [n], |pi − pj | ≤ |si − sj |+ ε.

3.1 Offline Cohort Selection

In the offline setting, the algorithm has full access to the set of candidates and their scores from classifier C.
By Corollary 2.1, if the classifier’s scores sum up to k, then the rounding algorithm can form a cohort by
simply using the input scores as the marginal probabilities of selection. Yet, the sum of the scores assigned by
C might not be k. If it is less than k, Algorithm 1 moves all the probabilities up by the same amount and clips
those that exceed 1, so that their sum becomes equal to k. In more detail, the marginal selection probability
of candidate i becomes pi = min{si + c, 1}, where constant c is such that

∑n
i=1 pi = k. This adjustment

preserves the probability differences between the pairs of candidates, unless some candidate gets assigned
probability 1, in which case some differences decrease. As a result, the differences of the new probabilities
will be bounded by the same metric as the scores. The case where the sum of scores is greater than k is
treated similarly. More specifically, the new marginal probabilities are of the form pi = max{0, si−c}. After
the adjustment, Algorithm 1 selects the cohort by running the dependent rounding procedure.
Theorem 3.1. For any classifier C that assigns scores s1, . . . , sn to n candidates, Algorithm 1 solves the
fairness-preserving cohort selection problem by selecting k candidates with marginal probabilities p1, . . . , pn
which achieve optimal linear utility

∑n
i=1 pisi.

Corollary 3.1. If C is individually fair, then Algorithm 1 is individually fair.

3.2 Online Cohort Selection

For the online setting of the problem with linear utility, we present Algorithm 2 which reads C’s output from
a stream and selects a cohort with high utility while deferring the decision for a small number of candidates.
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Alg. 1: Offline Cohort Selection for Linear Utility
Input: scores s1, . . . , sn ∈ [0, 1] from C, cohort size k
Output: set of accepted candidates

1 sum←
∑n
i=1 si

2 if sum < k then
// move scores up

3 c← k−sum
n ; pi ← si + c, ∀i ∈ [n]

4 while ∃pi > 1 do
5 S<1 ← {j : pj < 1}
6 pj ← pj + pi−1

|S<1| , ∀j ∈ S<1

7 pi ← 1
8 else

// move scores down
9 c← sum−k

n ; pi ← si − c, ∀i ∈ [n]
10 while ∃pi < 0 do
11 S>0 ← {j : pj > 0}
12 pj ← pj + pi

|S>0| , ∀j ∈ S>0

13 pi ← 0

// Now list sums to k and all pi ∈ [0, 1]
14 {p̃i} ←round-pr(p1, . . . , pn, 1) // select cohort of size k
15 return candidates with non-zero p̃i

While processing the stream, this algorithm only rejects candidates and releases all the acceptances at the end
of the stream. The main difference in comparison to the offline cohort selection algorithm is that Algorithm
2 splits the candidates into groups with similar scores, within an ε interval, and treats any member of a
group as equivalent. Hence, the final probability of being selected in the cohort is equal for any candidate of
the same group. This leads to a relaxation of the problem, which we call ε-approximate fairness-preserving
cohort selection problem.

As we mentioned, the algorithm splits the candidates from the stream into groups according to their score
from C. Particularly, the interval (0, 1] is divided into m intervals of size ε each, where m = d 1

εe. The i-th
candidate gets assigned to group 0 if si = 0 or group g ∈ {1, . . . ,m} if si ∈ ((g−1)ε, gε]. Once candidate i is
in the group, their score gets rounded up and their new score ŝi is the same as that of all the other members
of the group, ŝg = gε. The use of the groups affects the performance of the algorithm in terms of not only
individual fairness, but also utility. Lemma 3.1 shows that the decrease in utility is caused only by the use
of rounding, as Algorithm 2 achieves the same linear utility as the corresponding offline algorithm when the
scores are rounded to multiples of ε.

Lemma 3.1. Given selection scores s1, . . . , sn from C, for a set of n candidates and a parameter ε ∈ (0, 1],
we split (0, 1] into m = d 1

εe intervals of length ε and for all i ∈ [n] we set ŝi = gε, where g is such that
si ∈ ((g− 1)ε, gε]. When Algorithm 1 runs for input ŝ1, . . . , ŝn and cohort size k it solves the ε-approximate
fairness-preserving cohort selection problem with marginal selection probabilities p1, . . . , pn, and it achieves
linear utility

∑n
i=1 pisi ≥

∑n
i=1 p

∗
i si − k(ε + 2

√
ε), where p∗1, . . . , p∗n is the optimal solution for the offline

fairness-preserving problem for input s1, . . . , sn.

Since for each group we keep only some people on hold, we preserve the probability information of the
rejected candidates by considering that each pending candidate represents themselves and a fraction of the
rejected people from their group. The fraction of people represented by the i-th candidate is denoted by
ni. One approach is to maintain at most k people pending per group uniformly at random and have every
candidate within a certain group represent the same fraction of people. This basic algorithm keeps k/ε
candidates on hold. Our algorithm reduces the number of people pending by allowing candidates of the

8
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Alg. 2: Online Cohort Selection for Linear Utility
Input: stream of scores s1, . . . , sn ∈ [0, 1] from C, cohort size k, constant ε ∈ (0, 1]
Output: set of accepted candidates

1 n← 0; sum← 0// number of candidates and sum of scores
2 ng ← 0, for all groups g ∈ [d 1

εe]// size of group g
3 for candidate i in stream do
4 add i to group g where si ∈ ((g − 1)ε, gε]
5 ng ← ng + 1
6 ŝi ← gε; sum← sum + ŝi
7 ni ← 1; n← n+ 1

// Compute group scores for this input
8 if sum < k then
9 c← k−sum

n
10 sg ← gε+ c, for all groups g
11 while ∃ group g with sg > 1 do
12 F<1 ← {group f : sf < 1}
13 n<1 ←

∑
f∈F<1

nf

14 sf ← sf + ng (sg−1)
n<1

,∀f ∈ F<1

15 sg ← 1
16 else if sum > k then
17 c← sum−k

n
18 sg ← gε− c, for all groups g
19 while ∃ group g with sg < 0 do
20 F>0 ← {group f : sf > 0}
21 n>0 ←

∑
f∈F>0

nf

22 sf ← sf + ng sg

n>0
,∀f ∈ F>0

23 sg ← 0
24 else sg ← gε, for all groups g
25 for group g do
26 if sg > 0 then
27 {ni : i in g} ← round-nat({ni : i in g}, v = b 1

sg c)
// we ensure niv ≤ 1

28 reject candidate i if ni = 0
29 else
30 reject all candidates in g

31 s̃i ← nis
g, for all groups g and candidates i in g

// Now candidate scores sum up to k and all s̃i in [0, 1]
32 {s̃i} ← round-pr({s̃i : i in any group}, 1)// select cohort of size k
33 return candidates with non-zero s̃i

same group to represent varying fractions of people. Procedure round-nat is used to eliminate candidates
and determine what fraction of people’s selection probabilities each candidate represents.

Theorem 3.2. For any classifier C that assigns scores s1, . . . , sn to n candidates, Algorithm 2 solves the
online ε-approximate fairness-preserving cohort selection problem for any ε ∈ (0, 1] by selecting a cohort
of size k with marginal probabilities p1, . . . , pn, achieves linear utility

∑n
i=1 pisi ≥

∑n
i=1 p

∗
i si − k(ε + 2

√
ε)

(where p∗1, . . . , p∗n is the optimal solution for the offline fairness-preserving problem for input s1, . . . , sn), and
keeps at most O(k + 1

ε ) candidates pending.

Corollary 3.2. If C is individually fair, then Algorithm 2 is ε-individually fair.

9
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4 Ratio Utility

In Definition 2.7 we consider the ratio utility obtained by a selection algorithm, and show that this is
controlled by the minimum ratio of pi and si.

4.1 Offline Cohort Selection

We begin with the scenario of selecting k of n individuals when all candidates are known in advance. Dwork
& Ilvento (2019) give a solution to this scenario (with non-optimal utility, as shown in Example 2.2); we
present Algorithm 3, an alternate one that achieves the optimal ratio utility. Notice that the sum of classifier
scores

∑
i si need not add up to k. If the sum exceeds k, the algorithm simply scales down all probabilities

so that the new sum is k. It is not hard to show that this operation preserves fairness and gives optimal
utility. This multiplicative scaling will not work when the sum is smaller than k, however, since it increases
the probability difference among candidates and can be unfair. Intuitively, the solution in this case is to
additively increase all probabilities by the same amount, thus preserving fairness. However, some care is
needed, as no probability can exceed 1.

Alg. 3: Offline Cohort Selection for Ratio Utility
Input: scores s1, . . . , sn ∈ [0, 1] from C, cohort size k
Output: set of accepted candidates

1 sum←
∑n
i=1 si

2 if sum < k then
// move scores up

3 c← k−sum
n ; pi ← si + c,∀i ∈ [n]

4 while ∃pi > 1 do
5 S<1 ← {j : pj < 1}
6 pj ← pj + pi−1

|S<1| ,∀j : pj < 1
7 pi ← 1
8 else

// move scores down
9 pi ← si · k

sum ,∀i ∈ [n]
// Now list sums to k and all pi ∈ [0, 1]

10 {p̃i} ←round-pr(p1, . . . , pn, 1) // select cohort of size k
11 return candidates with non-zero p̃i

Lemma 4.1. If sum < k, Algorithm 3 increases each input score si to a final output pi = si + αi ≥ si such
that all of the candidates j with pj < 1 receive the same cumulative adjustment value αj = v.
Theorem 4.1. For any classifier C that assigns scores s1, . . . , sn to n candidates, Algorithm 3 solves the
fairness-preserving cohort selection problem by selecting k candidates with marginal probabilities p1, . . . , pn
that achieve the optimal value of ratio utility mini pi

si
.

Corollary 4.1. If C is individually fair, then Algorithm 3 is individually fair.

4.2 Online Cohort Selection

We now consider the online scenario, in which our goal is to keep as few candidates pending as possible.
It is clear that the number of candidates on hold must be at least k since we need to accept k candidates
at the end. We provide an algorithm that achieves optimal ratio utility for the online fairness-preserving
cohort selection problem, while leaving only O(k) candidates pending. We use a parameter α ∈ [0, 1/2],
which controls the number of candidates pending, with α = 1/2 by default. The update procedure depends
on the sum of scores of the candidates seen so far. We maintain a set of k/α candidates with highest scores
called top, and two sets rest and rand of the remaining candidates. A new candidate i is added to either
top (and thus bumps some other candidate from top to rest), or they are added to rest. We make sure
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Alg. 4: Online Cohort Selection for Ratio Utility
Input: stream of scores s1, . . . , sn ∈ [0, 1] from C, cohort size k, constant α ∈ [0, 1/2]
Output: set of accepted candidates

1 sum← 0
2 top← ∅; rest← ∅; rand← ∅
3 for candidate i in stream do
4 sum← sum + si; pi ← si
5 if sum < k then
6 if |top| < dk/αe then add i to top
7 else if min(sj) in top < si then
8 move min element from top to rest
9 add i to top

10 else add i to rest
11 {pi : i ∈ rest} ←round-pr({pi : i ∈ rest }, 1− α)
12 for j in rest with pj = 0 do
13 remove j from rest
14 add j to unif. reservoir sample of size k
15 reject candidate that was eliminated from the unif. reservoir sample
16 set rand to unif. reservoir sample
17 else
18 if first occurrence of sum ≥ k then
19 reject all candidates in rand and remove rand
20 store top and rest in pending
21 incr← k

sum ; scale← k
sum

22 else
23 incr← sum−si

sum ; scale← scale · incr
24 pi ← pi · scale
25 pj ← pj · incr, ∀j ∈ pending
26 add i to pending
27 {pi : i ∈ pending} ←round-pr({pi : i ∈ pending}, 1)
28 reject j and remove it from pending if pj = 0

29 if sum < k then
30 c← k−sum

n ; pi ← pi + c, ∀i ∈ top ∪ rest

31 pi ←
k−
∑

i∈top∪rest
pi

|rand| , ∀i ∈ rand
32 while ∃pi > 1 do
33 S(≥1) ← {i : pi ≥ 1}; c← pi−1

n−|S(≥1)|

34 pj ← pj + c, ∀j ∈ top ∪ rest with pj < 1
35 set nmodified to number of modified people
36 pj ← pj + c·(n−|S(≥1)|−nmodified)

|rand| , ∀j ∈ rand
37 pi ← 1
38 {pi : i ∈ top ∪ rest ∪ rand} ←round-pr({pi : i ∈ top ∪ rest ∪ rand}, 1)
39 set pending to indices of nonzero pi
40 return pending

the list rest is not too big by rounding and eliminating candidates. Eliminated candidates are sampled
uniformly to enter rand, which has size k.

During the online phase, it is tempting to use the idea from the offline case to eliminate candidates; take
two candidates from rest with scores a and b and round them to a+ b and 0. However, we must be careful
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when rounding rest to ensure that probabilities will not later exceed 1 if the stream ends with sum < k.
The key idea (and motivation for having top) is that candidates not in top have increments at most α,
which we can see as follows. For rest to be non-empty, we must have at least n > k/α candidates. Let x be
the number of candidates who are in top when the algorithm finishes and achieve probability 1. For each
of the other candidates, the increment pi − si is less than (k − x)/(n − x) < k/n, since k < n. Thus that
cumulative increment is at most α, and it is safe to round probabilities in rest to 0 and 1− α.

If the stream ends with
∑
i si < k, we will increase the scores of everyone pending, and use rand to

compensate for already eliminated candidates. Let A be the set of candidates in top and rest and Ā be
the set of all others seen. As in the offline case, we will evenly increase the probabilities of all candidates
by adding the appropriate c to each candidate, and using water-filling where some candidates reach 1. For
candidates in A, this proceeds exactly as in the offline case. For candidates in Ā, we increase the probabilities
without explicitly storing all of them by maintaining a set called rand consisting of k uniformly random
candidates. Each member of rand receives probability equal to 1/k times the sum of the probabilities of the
candidates in Ā. Since everyone in Ā has the same probability, this rounding clearly preserves the marginal
probabilities. Finally, we use the offline algorithm to select the cohort from the union of rand and A.

The case where the sum of probabilities exceeds k is simpler. The algorithm always scales down all proba-
bilities so that they add up to exactly k. When a new candidate appears, they receive a probability equal
to what C gives them, times the current scaling factor, and get added to top ∪ rest. The algorithm then
scales down all probabilities so that the sum is exactly k and reduces the size of top ∪ rest by repeatedly
rounding pairs of candidate as in the offline setting. In this case, the set rand is not used.
Theorem 4.2. For any classifier C that assigns scores s1, . . . , sn to n candidates, Algorithm 4 solves the
fairness-preserving cohort selection problem by selecting k candidates with marginal probabilities p1, . . . , pn
that achieve the optimal value of ratio utility. The algorithm leaves no more than O(k) candidates pending
at any time.
Corollary 4.2. If C is individually fair, then Algorithm 4 is individually fair.

5 Conclusion

In this work, we defined two notions of utility for the problem of cohort selection, linear and ratio utility, and
designed polynomial time algorithms that optimize them (or approximately optimize them) while preserving
the fairness of the given classifier. This means that if the given classifier is individually fair, then our cohort
selection algorithms are also individually fair with respect to the same metric. We studied two settings, the
standard offline setting and an online setting where we can reject candidates at any stage of the process and
accept candidates only at the end, keeping the number of candidates that are waiting for the decision low.
While our algorithms for ratio utility and offline linear utility are optimal in terms of fairness and utility,
our online algorithm for linear utility achieves ε-individual fairness with an additive error in the utility and
the number of candidates kept on hold.

Overall, our approach is based on the assumptions that every candidate contributes to the utility of the
cohort separately and that the candidate utilities are correlated with their selection scores given by the
individually fair classifier. As the linear utility requires the assumption that the utilities of the candidates
are their classification scores, we tried to relax it by defining the ratio utility in which the utilities are
unknown but still correlated with the classification scores. The natural extension of this work would be to
design algorithms that optimize a utility function where the candidate utilities are known and decoupled
from the classification scores. Another interesting direction would be to relax our first assumption and study
utility functions where the candidates do not contribute separately, but the cohort utility depends on the
combination of candidates selected.
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A Proofs and Algorithm from Section 2

A.1 Proof of Lemma 2.1

Lemma 2.1. The worst case ratio utility is equal to the minimum ratio of selection probability and classifier
score of one candidate min~u

∑
i
piui∑

i
siui

= mini pi

si
.

Proof. Let j be the index of the candidate with the smallest ratio of model output and classifier score, i.e.
pj

sj
≤ pi

si
,∀i 6= j. Compare the minimum over all utility vectors to a particular choice of utility vector u∗

satisfying u∗j = 1, and u∗i 6=j = 0. We know that the ratio for any particular vector will be at least as large as

the minimum: min~u
∑

i
piui∑

i
siui
≤
∑

i
piu
∗
i∑

i
siu∗i

= pju
∗
j

sju∗j
= pj

sj
= mini pi

si
.

We can also obtain a bound from the other direction. Let m be the smallest ratio between model output
and classifier score m = mini pi/si and u ∈ [0, 1]n be any utility vector with

∑
i ui > 0. Then, for all i ∈ [n]

we have piui ≥ msiui. Therefore, min~u
∑

i
piui∑

i
siui
≥ mini pi

si

A.2 Dependent Rounding Algorithm

Here we include a detailed description of the dependent rounding algorithm (Algorithm 5) mentioned in
Section 2.2.

A.3 Proof of Lemma 2.2

Lemma 2.2. Let a1, . . . , an be a list of numbers in [0,m] with x =
∑n
i=1 ai. There is a randomized algorithm

that outputs ã1, . . . , ãn ∈ [0,m] such that b xmc of the ai will be equal to m, one ai will be x − b xmcm, the
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Algorithm 5: Rounding
Input: a list of n numbers a1, a2, . . . , an ∈ R≥0 and the maximum value of a rounded number m ∈ R≥0
Output: list of rounded numbers ã1, ã2, . . . , ãn ∈ R≥0

1 pendingIndex← 1
2 for i from 2 to n do
3 if ai = 0 and apendingIndex = 0 then continue to next i
4 a← ai ; b← apendingIndex
5 choose u randomly from Unif (0, 1)
6 if a+ b ≤ m then
7 if u < a

a+b then
8 ai ← a+ b ; apendingIndex ← 0 ; pendingIndex← i
9 else

10 ai ← 0 ; apendingIndex ← a+ b
11 end
12 else
13 if u < m−b

2m−a−b then
14 ai ← m ; apendingIndex ← a+ b−m
15 else
16 ai ← a+ b−m ; apendingIndex ← m ; pendingIndex← i
17 end
18 end
19 end
20 return a1, a2, . . . , an

rest will be equal to 0, and for all i ∈ {1, . . . , n}, E[ãi] = ai. When m = 1, we call this algorithm round-pr
and when a1, . . . , an are natural numbers we call it round-nat.

Proof. We begin by showing that for all i ∈ [n], E[ãi] = ai. At step i, we have two numbers a and b which
get rounded and obtain new values denoted by ã and b̃, respectively. The rounding depends on the value of
a+ b. If a+ b is less than or equal to β, then E[ã] = (a+ b) a

a+b = a. If a+ b is greater than β and at most
2β, then E[ã] = v β−b

2β−a−b + (a+ b− β) β−a
2β−a−b = a. Similarly, we obtain E[b̃] = b. Since the expected values

remain constant throughout the process, we conclude that for all i ∈ [n], E[ãi] = ai.

We notice that for any step i of the algorithm and for all j that are smaller than i but are not the pendingIn-
dex, aj = 0 or aj = β. As a result, at the end of the algorithm all elements with index j such that j < n
and j 6= pendingIndex and one of the n-th or the pendingIndex elements are rounded to either 0 or β. The
remaining element is the only one that can have a value in all [0, β]. Since

∑n
i=1 ai = sum, b sumβ c elements

are β and if the remainder sum− b sumβ cβ is non-zero, it is assigned to the remaining element.

A.4 Proof of Corollary 2.1

Corollary 2.1. If m = 1 and
∑n
i=1 ai = k ∈ N, then after the dependent rounding of round-pr k elements

will be equal to 1 and the rest will be equal to 0.

Proof. The proof follows directly from Lemma 2.2.
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B Proofs from Section 3

B.1 Proof of Theorem 3.1

Theorem 3.1. For any classifier C that assigns scores s1, . . . , sn to n candidates, Algorithm 1 solves the
fairness-preserving cohort selection problem by selecting k candidates with marginal probabilities p1, . . . , pn
which achieve optimal linear utility

∑n
i=1 pisi.

Proof. Algorithm 1 consists of two parts. In the first part, it modifies the input scores so that they sum up
to k, which is the size of the cohort, and for the second part it randomly selects k individuals by calling the
round-pr subroutine. We can simplify the first part by rewriting it in a more concise way. If the sum of C’s
scores s1, . . . , sn is less than k, then for any candidate i ∈ [n] we set pi = min{si + b, 1}, with b in [0, 1] such
that

∑n
i=1 pi = k. More specifically, pi are initially set to si + c so that their sum is equal to k. Their sum

will remain equal to k, because the following loop only redistributes probability mass among candidates. If
at any iteration some candidate i has pi > 1, then their marginal selection probability is set to 1 and the
excess probability mass is redistributed evenly to all candidates with marginal probabilities less than 1. At
the end, any probability pi that is less than 1 is equal to si plus a constant b that consists of the initial c and
the fractions of the probabilities that exceeded 1. Similarly, we have that if the sum of C’s scores is greater
than k, then for any candidate i, pi = max{si − b, 0} for a real number b ∈ [0, 1] such that

∑n
i=1 pi = k. If

the sum is equal to k, the cohort selection marginal probabilities are equal to C’s scores. Finally, by Lemma
2.2 we obtain that for any i ∈ [n] the expected value of indicator p̃i is pi, and since p̃i is either 0 or 1, the
i-th candidate is selected with probability pi.

First, we want to show that the cohort formed by Algorithm 1 preserves fairness. Depending on the value
of
∑n
i=1 si, we have three cases.

1.
∑n
i=1 si = k. The input scores are used unaltered as the marginal probabilities for the cohort

selection and, thus, we have that for any pair of indices i, j, |pi − pj | = |si − sj |.

2.
∑n
i=1 si < k. The cohort selection marginal probabilities are of the form pi = min{si + b, 1}. For

any pair of individuals i, j, if both have probability of being selected 1, then |pi − pj | = 0. Else, if
pi = 1 and pj = sj + b, we have |pi − pj | < |si − sj | because si + b ≥ 1. Finally, if pi = si + b and
pj = sj + b, then it holds that |pi − pj | = |si − sj |. As a result, we conclude that for any pair of
individuals i, j, we have |pi − pj | ≤ |si − sj |.

3.
∑n
i=1 si > k. In this case, the cohort selection probabilities are of the form pi = max{si− b, 0}. For

any pair of individuals i, j, if both have zero probability of being selected then |pi − pj | = 0. Else,
if pi = 0 and pj = sj − b, we have |pi − pj | < |si − sj |. Finally, if pi = si − b and pj = sj − b, then it
holds that |pi − pj | = |si − sj |. Thus, for any pair of individuals i, j, we have |pi − pj | ≤ |si − sj |.

Second, we show that this cohort optimizes linear utility. The fairness-preserving solution that optimizes
linear utility solves the linear program defined in Section 1.1 and satisfies the first constraint with equality,
i.e.

∑n
i=1 pi = k. This holds because otherwise we would be able to increase pi by setting p′i = min{pi+d, 1},

for some d ∈ (0, 1], so that
∑n
i=1 p

′
i = k and obtain greater utility while not violating any constraint.

We assume that there exists a different fairness-preserving solution p′1, . . . , p′n which achieves higher utility,
i.e.

∑n
i=1 p

′
isi >

∑n
i=1 pisi. Without loss of generality we can assume that the original probabilities si are

sorted in increasing order. Specifically, we have s1 ≤ s2 ≤ . . . ≤ sn. The solution of Algorithm 1 maintains
the same order, i.e. p1 ≤ p2 ≤ . . . ≤ pn. Let i be the individual with the smallest index for whom the two
solutions differ. There are two possible cases. If p′i < pi, then since

∑n
i=1 pi =

∑n
i=1 p

′
i = k there exists

an individual with j > i such that p′j > pj . In addition, we see that pi > 0 and pj < 1. The values of
the probabilities depend on the sum of the input scores in comparison to k. If the sum is greater than k,
all pi that are not zero are of the form pi = si − b. Hence, considering that p′i < pi ≤ pj < p′j we obtain
|p′i−p′j | = p′j−p′i > sj−b−(si−b) = sj−si = |si−sj |. Similarly, if the sum is less than k, the values of pi that
are not one are of the form pi = si+b, therefore giving |p′i−p′j | = p′j−p′i > sj+b−(si+b) = sj−si = |si−sj |.
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If the sum is equal to k, we have |p′i − p′j | = p′j − p′i > pj − pi = sj − si = |si − sj |. In all three cases the
constraints of the optimization are violated.

If p′i > pi, then there exists an individual with j > i such that p′j < pj . Let j be the smallest such index.
If there exists another index l > j such that p′l ≥ pl, then by the previous argument the constraints are
not satisfied. Therefore, for any candidate l after j p′l < pl. This solution achieves non-optimal utility
because there exist candidates with h < l and p′h > ph, such that we can move probability mass from
candidates h to individuals l without violating the constraints. By constructing a solution p′′1 , . . . , p′′n which
gives a greater utility than p′1, . . . , p′n, we arrive at a contradiction. Therefore, Algorithm 1 finds the optimal
fairness-preserving solution.

B.2 Proof of Corollary 3.1

Corollary 3.1. If C is individually fair, then Algorithm 1 is individually fair.

Proof. The individual fairness condition for Algorithm 1 is satisfied by the assumption that the input scores
are individually fair. More specifically, if the individual scores from C are individually fair with respect to
a metric D, we obtain that ∀i, j ∈ [n], |pi − pj | ≤ |si − sj | ≤ D(i, j).

B.3 Proof of Lemma 3.1

Lemma 3.1. Given selection scores s1, . . . , sn from C, for a set of n candidates and a parameter ε ∈ (0, 1],
we split (0, 1] into m = d 1

εe intervals of length ε and for all i ∈ [n] we set ŝi = gε, where g is such that
si ∈ ((g− 1)ε, gε]. When Algorithm 1 runs for input ŝ1, . . . , ŝn and cohort size k it solves the ε-approximate
fairness-preserving cohort selection problem with marginal selection probabilities p1, . . . , pn, and it achieves
linear utility

∑n
i=1 pisi ≥

∑n
i=1 p

∗
i si − k(ε + 2

√
ε), where p∗1, . . . , p∗n is the optimal solution for the offline

fairness-preserving problem for input s1, . . . , sn.

Proof. We have that for all individuals i in [n], 0 ≤ ŝi − si ≤ ε. Therefore, we obtain that for any pair of
individuals i, j, |ŝi − ŝj | ≤ |si − sj |+ ε. By Theorem 3.1 we have that |pi − pj | ≤ |ŝi − ŝj |. Combining the
two inequalities, we obtain that fairness is preserved ε-approximately.

Note that Algorithm 1 always adjusts the scores of candidates such that its final output probabilities sum
to k. For any candidate i we observe that since the rounded score ŝi is greater than si by at most ε, the two
output probabilities, pi and p∗i are also close, at most ε apart. Depending on the sum of the input scores
there are three cases.

1. If
∑n
i=1 si ≤ k and

∑n
i=1 ŝi ≤ k, then Algorithm 1 shifts all the probabilities up. More specifically,

we have that p∗i = min{1, si + x} and pi = min{1, ŝi + y}, for some non-negative x and y. Suppose
that y > x, then for any candidate i whose marginal selection probability pi has not been clipped
to 1, pi = ŝi + y > si + x = p∗i . By summing up for all candidates we obtain that k =

∑n
i=1 p

∗
i <∑n

i=1 pi = k, which is not feasible. Similarly, suppose that x > y+ε, then for any candidate i whose
marginal selection probability p∗i is has not been clipped, p∗i = si + x > ŝi + y = pi. As a result, we
get that

∑n
i=1 p

∗
i >

∑n
i=1 pi, which is again false. Hence, we see that y ≤ x ≤ y + ε.

2. If
∑n
i=1 si ≥ k and

∑n
i=1 ŝi ≥ k, then Algorithm 1 shifts all the probabilities down, so that both sums

become equal to k. Thus, p∗i = max{0, si−x} and pi = max{0, ŝi−y}, for some non-negative x and
y. Suppose that y < x, then for any candidate i who has non-zero marginal selection probability
p∗i , we have that p∗i = si − x < ŝi − y = pi. By summing up for all candidates we obtain that
k =

∑n
i=1 p

∗
i <

∑n
i=1 pi = k, which is not feasible. Similarly, suppose that y > x + ε, then for any

candidate i whose marginal selection probability pi is not 0, pi = ŝi − y < si − x = p∗i . As a result,
we get that

∑n
i=1 p

∗
i >

∑n
i=1 pi, which is false. Thus, we see that x ≤ y ≤ x+ ε.

3. If
∑n
i=1 si ≤ k and

∑n
i=1 ŝi ≥ k, then Algorithm 1 sets p∗i = min{1, si +x} and pi = max{0, ŝi− y},

for some non-negative x and y. Suppose that x+ y > ε, then for any candidate i who has non-zero
marginal selection probability pi, we have that pi = ŝi − y < si + x and pi < 1; therefore pi < p∗i .
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By summing up the selection probabilities of all the candidates we obtain that k =
∑n
i=1 pi <∑n

i=1 p
∗
i = k, which is not feasible. Similarly, suppose that x + y < 0, then for any candidate i

whose marginal selection probability p∗i is not 1, p∗i = si + x < ŝi − y = p∗i . As a result, we get that∑n
i=1 p

∗
i <

∑n
i=1 pi, which is false. Therefore, we know that 0 ≤ x+ y ≤ ε.

In all three cases we see that for any candidate i the selection probabilities of the two solutions satisfy
|pi − p∗i | ≤ ε. Now, consider any coordinate i for which p∗i ≥

√
ε. Since pi ≥ p∗i − ε, we have that

pi ≥ (1−
√
ε)p∗i and, thus, pisi ≥ (1−

√
ε)p∗i si. Let E be the set of all individuals who have p∗i <

√
ε.

1. If
∑n
i=1 si ≤ k, then p∗i = min{1, si + x}. Thus, 0 ≤ si + x <

√
ε because both si and x are

non-negative. Since both pi and p∗i sum up to k, we obtain that −kx ≤
∑
i∈E pisi ≤ k

√
ε− kx and

−kx ≤
∑
i∈E p

∗
i si ≤ k

√
ε− kx. Therefore,

∑
i∈E pisi ≥

∑
i∈E p

∗
i si − k

√
ε.

2. If
∑n
i=1 si ≥ k and

∑n
i=1 ŝi ≥ k, then p∗i = max{0, si−x} and pi = max{0, ŝi−y}. Thus, si−x <

√
ε.

Furthermore, both solutions assign zero probability to candidates with si − x < −ε. As a result, all
individuals in E whose si − x > −ε, have si within an interval of length

√
ε + ε. Similarly to case

1, we have that
∑
i∈E pisi ≥

∑
i∈E p

∗
i si − k(

√
ε+ ε).

If we split the linear utility to the utility of individuals in E and not in E, we see that

n∑
i=1

pisi =
∑
i/∈E

pisi +
∑
i∈E

pisi ≥ (1−
√
ε)
∑
i/∈E

p∗i si +
∑
i∈E

p∗i si − k(ε+
√
ε) ≥

n∑
i=1

p∗i si − k(ε+ 2
√
ε)

B.4 Proof of Theorem 3.2

Theorem 3.2. For any classifier C that assigns scores s1, . . . , sn to n candidates, Algorithm 2 solves the
online ε-approximate fairness-preserving cohort selection problem for any ε ∈ (0, 1] by selecting a cohort
of size k with marginal probabilities p1, . . . , pn, achieves linear utility

∑n
i=1 pisi ≥

∑n
i=1 p

∗
i si − k(ε + 2

√
ε)

(where p∗1, . . . , p∗n is the optimal solution for the offline fairness-preserving problem for input s1, . . . , sn), and
keeps at most O(k + 1

ε ) candidates pending.

Proof. We want to prove that Algorithm 2 and the algorithm described in Lemma 3.1 compute the same
solution. In other words, we show that the probability pi that individual i is selected by Algorithm 2 is equal
to the probability qi that i is selected by Algorithm 1 applied to the modified individual scores ŝ1, . . . , ŝn,
where ŝi = gε if si ∈ ((g − 1)ε, gε]. The first step is to prove that the scores s̃1, s̃2, . . . , s̃n which are the
input of the final rounding in line 28 satisfy the following properties:

1.
∑n
i=1 s̃i = k

2. E[s̃i] = qi, ∀i ∈ [n].

We saw in the proof of Theorem 3.1 that for the offline algorithm all candidates of the same group have
the same selection probability qi. We will show that for any person i we have qi = sg, where sg is the final
calculated probability of any member of group g to which i belongs. The sg we are referring to is calculated
by the final execution of lines 6-22. These lines of Algorithm 2 describe the same procedure as lines 2-15 of
Algorithm 1, but from the point of view of groups instead of individual candidates. We consider three cases
that depend on the value of the sum of scores from C.

Case 1:
∑n
i=1 ŝi = k. The offline algorithm considers the scores as selection probabilities and, thus, assigns

probability qi = ŝi = gε to candidate i of group g. Similarly, Algorithm 2 assigns probability sg = gε to
group g and in line 27 sets s̃i = nis

g = nigε = niqi for the people who have not been rejected.
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Case 2:
∑n
i=1 ŝi < k. The process that calculates sg starts by setting sg = gε + c. The offline algorithm

initializes the probability of i who is a member of g as qi = ŝi+c = gε+c. If for all groups g, gε+c ≤ 1, then
the adjustment stops for both algorithms and we have that for any group g, any member i of g has qi = sg.
If there exists g such that qi > 1, then the corresponding sg exceeds 1 by the same amount. Additionally,
at this point the probabilities of all people in the same group as i will exceed 1 by this amount. Therefore,
the n<1 of the two algorithms is the same. The offline algorithm runs the loop for all members of all groups
that have individuals with qi > 1. The online version aggregates the excess mass from all ng members of
group g and redistributes it all at once instead of running separate iterations for every member of the group
as the offline does. No extra mass is added after the initialization but it is only moved from group to group.
Hence, we obtain that at the end of this process qi = sg.

Case 3:
∑n
i=1 ŝi > k. Similar to case 2, if candidate i is a member of group g, then qi = sg. Those who were

rejected have s̃i = 0 and ni = 0. As a result, we see that for any person i, s̃i = niqi. From this we can infer
that

n∑
i=1

s̃i =
n∑
i=1

niqi =
m∑
g=0

∑
i∈g

nis
g =

m∑
g=0

ngsg =
m∑
g=0

∑
i∈g

qi = k.

As new people are added to the groups, the group probabilities sg become smaller in order for the sum of
probabilities ngsg to be equal to k. Therefore, the maximum number v of people that can be represented
by a candidate in a given group either stays the same or increases after every iteration. By Lemma 2.2,
we obtain that the rounding process maintains the expected value of the number of people each candidate
represents equal to their initial value. Since every person begins by representing only themselves, we have
that for the i-th candidate E[ni] = 1. Finally, we obtain E[ŝi] = E[niqi] = E[ni]qi = qi, because the
calculation of sgs is deterministic. The final rounding procedure makes the final decisions and outputs 0 if
the candidate is rejected and 1 if the candidate is selected. Due to properties 1 and 2, the probability of
candidate i being selected by the online algorithm is qi. Thus, Algorithm 2 and the offline algorithm with
input scores rounded to multiples of ε have the same selection probabilities. By Lemma 3.1, Algorithm 2
preserves fairness ε-approximately and achieves linear utility

∑n
i=1 pisi ≥

∑n
i=1 p

∗
i si − k(ε + 2

√
ε), where

p∗1, . . . , p
∗
n is the optimal solution for the offline fairness-preserving problem for input s1, . . . , sn.

Because of the online probability adjustments, we have that for n ≥ k the sum of all the probabilities is
equal to k at the end of each loop. Therefore, we have

∑m
g=0 ngs

g = k. If sf > 0, each person can represent
at most b 1

sg c candidates. By Lemma 2, the number of representatives per group is at most⌈
ng

b 1
sg c

⌉
≤ ng

b 1
sg c

+ 1 ≤ 2ngsg + 1,

since ng

b 1
sg c
≤ 2ngsg. If we sum up the number of representatives for all groups we obtain

m∑
g=0

⌈
ng⌊ 1
sg

⌋⌉ ≤ m∑
g=0

(2ngsg + 1) = 2k +
⌈

1
ε

⌉
+ 1.

This completes the proof.

B.5 Proof of Corollary 3.2

Corollary 3.2. If C is individually fair, then Algorithm 2 is ε-individually fair.

Proof. If the individual probabilities of selection by C are individually fair with respect to a metric D, we
obtain that ∀i, j ∈ [n]

|pi − pj | ≤ |si − sj |+ ε ≤ D(i, j) + ε.
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C Proofs from Section 4

C.1 Proof of Lemma 4.1

Lemma 4.1. If sum < k, Algorithm 3 increases each input score si to a final output pi = si +αi ≥ si such
that all of the candidates j with pj < 1 receive the same cumulative adjustment value αj = v.

Proof. First we observe that pi ≥ si,∀i. At each step of the algorithm the value of pi either increases, or is
clipped at 1. Since si ∈ [0, 1],∀i, we therefore know that pi ≥ si.

Algorithm 3 initially adds a constant amount c to every candidate, then repeatedly redistributes overflow
evenly across all candidates with si+αi < 1. We prove by induction that for all candidates i with pi < 1, their
increment αi are the same. Consider two candidates i, j such that their final pi, pj < 1. As argued above,
both pi, pj are smaller than 1 throughout the execution of the algorithm. At the beginning, αi = αj = c so
the claim holds.

Given that these candidates are equal at a certain step d, we also know they will remain equal at the next
step d + 1. By assumption, neither candidate reaches 1 on either of these steps; therefore they will both
receive an adjustment. When an adjustment is made, all candidates are affected equally.

C.2 Proof of Theorem 4.1

Theorem 4.1. For any classifier C that assigns scores s1, . . . , sn to n candidates, Algorithm 3 solves the
fairness-preserving cohort selection problem by selecting k candidates with marginal probabilities p1, . . . , pn
that achieve the optimal value of ratio utility mini pi

si
.

Proof. We first show that Algorithm 3 either preserves or decreases the difference between any pair of
individuals. Let pi denote the probability that candidate i is selected by Algorithm 3. Thus we must show,
for all i, j, |pi − pj | ≤ |si − sj |. We apply Algorithm 3 to a set of candidates and obtain two disjoint sets
of output candidates: let T(=1) be the set of candidates whose output pi = 1, and let T(<1) be the set of
candidates whose output pi < 1. Let Tall be the union of these two disjoint sets. The algorithm behaves
differently depending on the value of

∑
i si.

1. First, consider when
∑
i si < k. Let αi be the cumulative adjustment received by candidate i during

the algorithm. The adjustments are exactly chosen such that
∑
i(si + αi) = k. Then we apply

round-pr, where we know by Lemma 2.2 that the probability of being selected is preserved during
rounding Pr[round-pr selects i] = pi = si + αi We thus need to cover three cases:

(a) First, we consider two elements si, sj ∈ T(=1), |pi − pj | = |1− 1| ≤ |si − sj |.
(b) Next, we have si, sj ∈ T(<1) By Lemma 4.1, these candidates all receive the same adjustment.

Let this adjustment be called b, |pi − pj | = |si + b− (sj + b)| = |si − sj |.
(c) Finally we have si ∈ T(=1), sj ∈ T(<1). Note that αi ≤ αj , and si > sj . We see that |pi − pj | =
|si + αi − (sj + αj)| = |si − sj + αi − αj | ≤ |si − sj |.

2. Next, consider
∑
i si ≥ k. Here we know k∑

i
si
≤ 1. By Lemma 2.2, pi = k∑

l
sl
si. Then, for

candidates i and j, we have:

|pi − pj | =
∣∣∣∣ k∑

l sl
si −

k∑
l sl

sj

∣∣∣∣ =
∣∣∣∣ k∑

l sl
(si − sj)

∣∣∣∣ ≤ |si − sj |
Thus we see that |si − sj | ≥ |pi − pj |.

We next show that among fairness-preserving solutions to the cohort selection problem, Algorithm 3 achieves
the maximum value of mini pi

si
. Let T(<1) and T(=1) be defined as above, and note that T(=1) may be empty.

Consider for contradiction an arbitrary algorithm A′ with probabilities of selection p′i which also preserves
fairness while achieving better utility: mini p

′
i

si
> mini pi

si
.
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1. First, consider the case where
∑
i si < k and T(=1) is nonempty. Let individual j have the most

extreme ratio: pj

sj
= mini pi

si
. Consider how to make this ratio minimal. For all individuals in T(<1),

increasing si will reduce this ratio: pi

si
= si+b

si
= 1 + b

si
. If any individuals j are in T(=1), they will

have received some adjustment αj ≤ b, and thus they will have an even smaller ratio. Therefore,
we know that individual j must have sj ≥ si,∀i and be a member of T(=1), and we have that for
Algorithm A, mini pi

si
= pj

sj
= 1

sj
.

By our definition of A′, there is some potentially different most extreme element l providing better
utility: p′l

sl
= mini p

′
i

si
>

pj

sj
.

(a) If sl = sj , the largest minimum ratio p′l
sl

that A′ can achieve is 1
sl

= 1
sj
, which is the same ratio

as Algorithm A and contradicts our assumption.
(b) If sl 6= sj , we know sl < sj , since we already know that sj is at least as big as all other elements.

Since pj is 1, we know that pj

sj
≥ p′j

sj
>

p′l
sl
. This contradicts our assumption that A′ has greater

utility than A.

2. Next, consider the case where
∑
i si < k and T(=1) group is empty. Again, let element j be the

most extreme element for algorithm A, i.e. mini pi

si
= pj

sj
. Consider A′ on its most extreme element

l constructed as in Item 1.

(a) This time, if sl = sj , we may have p′l > pl, achieving greater utility. To preserve the distances,
if A′ adjusts element l by a certain amount, it must adjust all smaller elements by at least the
same amount. However, we know that

∑
i pi = k, so this required extra adjustment will mean

that
∑
i p
′
i > k, and A′ will not be selecting exactly k candidates.

(b) If sl < sj , then person j has the largest score, and similar to (2a), if p′j > pj we see that∑
i p
′
i > k. If p′j ≤ pj we have the contradiction in (1b).

3. Finally, consider the case where
∑
i si ≥ k. In Algorithm 3, all elements will be multiplied by

a factor of k∑
i
si
, and then by Lemma 2.2, any element will satisfy pi = k∑

l
sl
si, so we have

mini pi/si = mini
(

k∑
l
sl
si

)
/si = k∑

i
si

Notice that in this case, all elements are adjusted by

the same constant ratio. Using extreme element l for algorithm A′ as constructed previously, and
again supposing that this element is more extreme than any element in algorithm A, we derive that
p′l > sl

k∑
i
si
. Since element l was the minimum ratio for algorithm A′, it follows that for all i,

p′i > si

(
k∑
i
si

)
. Taking the sum on both sides we see

∑
i p
′
i >

∑
i si

(
k∑
i
si

)
= k. As before, the

number of elements chosen by algorithm A′ will be more than k, which is a contradiction.

Thus we conclude that A′ cannot exist.

C.3 Proof of Corollary 4.1

Corollary 4.1. If C is individually fair, then Algorithm 3 is individually fair.

Proof. The proof is analogous to that of Corollary 3.1.

C.4 Proof of Theorem 4.2

Theorem 4.2. For any classifier C that assigns scores s1, . . . , sn to n candidates, Algorithm 4 solves the
fairness-preserving cohort selection problem by selecting k candidates with marginal probabilities p1, . . . , pn
that achieve the optimal value of ratio utility. The algorithm leaves no more than O(k) candidates pending
at any time.
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Proof. We first show that, for a list of candidate scores s1, . . . , sn, the selection probability given by the
offline Algorithm 3 for any candidate i is the same as that given by Algorithm 4, and therefore provides
an optimal utility solution to the problem. Let Algorithm 4 be denoted A and let A have probability pi
of selecting candidate i. Let Algorithm 3 be denoted B with probability qi selecting candidate i. A never
accepts candidates until the end of the stream, thus there are two major cases.

1. The stream ends with sum ≥ k, and A selects all candidates in pending. A candidate i is added to
pending in one of three ways:

(a) Candidate i was in top when the sum reached k. At each round after the sum exceeded k,
they must survive round-pr, which by Lemma 2.2 always preserves their marginal probability.
Therefore we only need to consider the effect of the incremental scaling adjustments. First, let
scalet, sumt, and incrt, represent the values of these variables at some step t when the sum first
exceeds k. We initialized scalet ← k

sumt
. Consider the value of scalet+1:

scalet+1 = incrt · scalet = sumt+1 − st+1

sumt+1
· scalet = sumt

sumt+1
· k

sumt
= k

sumt+1

Thus, we can see by induction that for all time steps t, scalet = k
sumt

. Furthermore, we can
express the final value of a single element si, which by definition is at position i in the stream,
as:

pi = si · scalei ·
n∏

t=i+1
incrt = si ·

k

sumi
·

n∏
t=i+1

sumt − st
sumt

= si ·
k

sumi
·

n∏
t=i+1

sumt−1

sumt
= si ·

k

sumn

Thus we see that the final pi is adjusted exactly the same way as it would be in the offline case.
(b) Candidate i was already in rest or arrived at the moment when the sum reached k. For each

iteration, they must survive round-pr, which respects their marginal by Lemma 2.2. From that
point forward, they are part of pending and treated the same as in 1a.

(c) Candidate i was encountered when sum ≥ k. In this case, they are treated the same as in part
1a above.

In either case, when A ends, a subset of candidates are selected from pending using round-pr, which
again preserves their marginal probability. Thus pi = qi in these cases.

2. The stream ends with sum < k. A has three sets at this point: top (the greatest dk/αe elements
of the stream), rest (at most dk/αe elements rounded to 1 − α) and rand (a randomly selected
group of k candidates, disjoint from top and rest).
No acceptances are made until the stream ends. The top candidates are placed into top, and
elements are added to rest via round-pr, which preserves original marginal probabilities exactly
by Lemma 2.2. The only change in probabilities then comes from the additive adjustments made
when the stream ends. The main difference between the additive adjustments here and the water-
filling behavior in B is how we treat the people in rand.
For the purpose of proof, consider a conceptual algorithm A′ that behaves exactly the same as A,
except instead of rand it has zeros, a list of all candidates outside of top and rest. When this
conceptual algorithm ends, all the mass from water-filling in zeros will be collected into a set of k
random candidates, which becomes the equivalent of the list rand in A.
In more detail, at the end of A′, each member of top, rest, and zeros is given k−sum

n , and
any overflow is redistributed using water-filling. Any candidate i now has the same probability of
selection by both A′ and B: si + αi. A′ then performs a final round-pr step to select the outputs.
Thus, in A′, top, rest, and zeros are given the same treatment they would receive in B. Before
the final step of selecting candidates by round-pr, A′ collects all of the mass accumulated in zeros
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from water-filling into a random subset of k members from zeros. Thus the only difference between
A and A′ is that, A′ first kept everyone and later uniformly sampled a subset of k people, whereas
A immediately keeps a random subset of k. This subsampling step does not change the marginal
probabilities of any element in zeros; their probability before and after collecting the mass of zeros
At the end, A selects candidates using round-pr on the entire set top ∪ rest ∪ rand, which does
not affect the adjusted marginals si + αi. Thus pi = si + αi = qi∀i.

Next, we show that the algorithm keeps at most O(k) candidates pending. Any candidate not in one of:
top, rest, rand, pending is considered rejected. The sizes of top and rand are explicitly bounded by
dk/αe. rest is not bounded in size explicitly, but note that the set is maintained by constantly applying
round-pr({pi}i∈rest, 1 − α). After rounding, at most 1 person in rest has a value < (1 − α). If we
ever have more than dk/(1 − α)e elements, we have sum ≥ dk/(1 − α)e(1 − α) > k. This goes to the
sum ≥ k case, which no longer adds elements to rest, thus it is bounded in length by dk/(1−α)e. pending
is created initially by adding top and rest (dk/(1 − α)e + dk/αe pending), but for subsequent steps is
never longer than k by Lemma 2.2. Thus the worst we can do is remain under a sum of k for the entire
stream. top, rest, and rand will all be kept pending until the end of the stream, but still we have at most
dk/αe+ dk/(1− α)e+ dk/αe = O(k) candidates pending.

C.5 Proof of Corollary 4.2

Corollary 4.2. If C is individually fair, then Algorithm 4 is individually fair.

Proof. The proof is analogous to that of Corollary 4.1.
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