
Constrained Monotonic Neural Networks

Davor Runje 1 2 Sharath M Shankaranarayana 1

Abstract
Wider adoption of neural networks in many crit-
ical domains such as finance and healthcare is
being hindered by the need to explain their pre-
dictions and to impose additional constraints on
them. Monotonicity constraint is one of the most
requested properties in real-world scenarios and
is the focus of this paper. One of the oldest ways
to construct a monotonic fully connected neural
network is to constrain signs on its weights. Un-
fortunately, this construction does not work with
popular non-saturated activation functions as it
can only approximate convex functions. We show
this shortcoming can be fixed by constructing two
additional activation functions from a typical un-
saturated monotonic activation function and em-
ploying each of them on the part of neurons. Our
experiments show this approach of building mono-
tonic neural networks has better accuracy when
compared to other state-of-the-art methods, while
being the simplest one in the sense of having the
least number of parameters, and not requiring
any modifications to the learning procedure or
post-learning steps. Finally, we prove it can ap-
proximate any continuous monotone function on
a compact subset of Rn.

1. Introduction
Deep Learning has witnessed widespread adoption in many
critical real-world domains such as finance, healthcare, etc
(LeCun et al., 2015). Incorporating prior knowledge such
as monotonicity in trained models helps in improving the
performance and generalization ability of the trained models
(Mitchell, 1980; Dugas et al., 2000). The introduction of
structural biases such as monotonicity makes models also
more data-efficient, enabling a leap in predictive power on

1Airt Research, Zagreb, Croatia 2Algebra University
College, Zagreb, Croatia. Correspondence to: Davor
Runje <davor@airt.ai>, Sharath M Shankaranarayana
<sharathms@alumni.iitm.ac.in>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

smaller datasets (Veličković, 2019). Apart from the require-
ments of having models with high accuracy, there is also a
need for transparency and interpretability, and monotonicity
helps in partially achieving the above requirements (Gupta
et al., 2016). Due to legal, ethical and/or safety concerns,
monotonicity of predictive models with respect to some in-
put or all the inputs is required in numerous domains such
as financial (house pricing, credit scoring, insurance risk),
healthcare (medical diagnosis, patient medication) and legal
(criminal sentencing) to list just a few. For example, when
using machine learning to predict admission decisions, it
may seem unfair to select student X over student Y, if Y has
a higher score than X, while all other aspects of the two are
identical (Liu et al., 2020). In another example, one would
expect an individual with a higher salary to have a higher
loan amount approved, all else being equal (Sivaraman et al.,
2020). A model without such a monotonic property would
not, and certainly should not, be trusted by society to pro-
vide a basis for such important decisions.

Monotonicity has been an active area of research and the
existing methods on the subject can be broadly categorized
into two types:

1. Monotonic architectures by construction: neural ar-
chitectures guaranteeing monotonicity by construction
(Archer & Wang, 1993; Sill, 1997; Daniels & Velikova,
2010; Milani Fard et al., 2016; You et al., 2017).

2. Monotonicity by regularization: enforcing monotonic-
ity in neural networks during training by employing
a modified loss function or a heuristic regularization
term (Sill & Abu-Mostafa, 1996; Gupta et al., 2019).

The simplest method to achieve monotonicity by construc-
tion is to constrain the weights of the fully connected neural
network to have only non-negative (for non-decreasing vari-
ables) or only non-positive values (for non-ascending) vari-
ables when used in conjunction with a monotonic activation
function, a technique known for 30 years (Archer & Wang,
1993). When used in conjunction with saturated (bounded)
activation functions such as the sigmoid and hyperbolic tan-
gent, these models are difficult to train, i.e. they do not
converge to a good solution. On the other hand, when used
with non-saturated (unbounded) convex activation functions
such as ReLU (Nair & Hinton, 2010), the resulting models

1

Constrained Monotonic Neural Networks

are always convex (Liu et al., 2020), severely limiting the
applicability of the method in practice.

Our main contribution is a modification of the method above
which, in conjunction with non-saturated activation func-
tions, is capable of approximating non-convex functions
as well: when the original activation function is used with
additional two monotonic activation functions constructed
from it in a neural network with constrained weights, it can
approximate any monotone continuous functions.

The resulting model is guaranteed to be monotonic, can be
used in conjunction with popular convex monotonic non-
saturated activation function, doesn’t have any additional
parameters compared to a non-monotonic fully-connected
network for the same task, and can be trained without any
additional requirements on the learning procedure. Experi-
mental results show it is exceeding the performance of all
other state-of-the-art methods, all while being both simpler
(in the number of parameters) and easier to train.

Our contributions can be summarized as follows:

1. A modification to an existing constrained neural net-
work layer enabling it to model arbitrary monotonic
function when used with non-saturated monotone con-
vex activation functions such as ReLU, ELU, SELU,
and alike.

2. Experimental comparisons with other recent works
showing that the proposed architecture can yield equal
or better results than the previous state-of-the-art and
with significantly fewer parameters.

3. A proof showing that the proposed architecture can
approximate any monotone continuous function on a
compact subset of Rn for a large class of non-saturated
activation functions.

2. Related work
2.1. Activation functions

Right from its inception in perceptron (Rosenblatt, 1958),
non-linear activation functions have historically been one of
the most important components of neural networks. Previ-
ously, the saturated functions such as the sigmoid (Rumel-
hart et al., 1986), the hyperbolic tangent (Neal, 1992), and
its variants were the most common choice of activation
functions. Currently, one of the most important factors for
state-of-the-art results accomplished by modern neural net-
works is the use of non-saturated activation functions. The
use of Rectified Linear Unit (ReLU) (Nair & Hinton, 2010;
Glorot et al., 2011) as activation function was instrumen-
tal in achieving good performance in newer architectures.
The ReLU has since become a de facto choice of activa-
tion in most practical implementations and continues to be

widely used because of its advantages such as simple com-
putation, representational sparsity, and linearity. Later, a
number of activation functions were proposed to deal with
solving problems of dead neurons and aid in faster conver-
gence (Maas et al., 2013), (Clevert et al., 2016) (He et al.,
2015), (Zheng et al., 2015), (Hendrycks & Gimpel, 2016),
(Ramachandran et al., 2017), (Klambauer et al., 2017).

The idea of using both the original activation function and
its point reflection in the same layer has been proposed in
(Shang et al., 2016) where both outputs of ReLU and the
negative value of its point reflection were used in the con-
struction of concatenated ReLU (CReLU) activation func-
tion. The proposed modification outputs two values instead
of one and therefore increases the number of parameters. In
(Zagoruyko & Komodakis, 2017), the authors propose neg-
ative concatenated ReLU (NCReLU) flip the sign and use
the point reflection directly. In (Eidnes & Nøkland, 2018),
the authors propose bipolar ReLU which consists of using
ReLU on the half of the neurons in the layer and the point
reflection of ReLU on the other half.

2.2. Monotonicity by construction

Apart from the approaches mentioned in the introduction,
another approach to building monotonic neural architecture
is Min-Max networks where monotonic linear embedding
and max-min-pooling are used (Sill, 1997). In (Daniels
& Velikova, 2010), authors generalized this approach to
handle functions that are partially monotonic and proved
that the resulting networks have the universal approximation
property. However, such networks are very difficult to train
and not used in practice.

Deep lattice networks (DLN) (You et al., 2017) use a com-
bination of linear calibrators and lattices (Milani Fard et al.,
2016) for learning monotonic functions. This is the most
widely used method in practice today, but not without its
limits. Lattices are structurally rigid thereby restricting the
hypothesis space significantly. They also require a very
large number of parameters to obtain good performance.

Given a model with a convex output function, it is possible
to use backpropagation (Rumelhart et al., 1986) to make a
monotonic model by computing the derivation of the output
function. One simple way to construct a convex function
is to use an unsaturated monotonic activation function in a
fully connected layer as mentioned above or a more elabo-
rate architecture such as the input convex neural networks
(Amos et al., 2017). These constructions are computation-
ally more complex than the simple solution proposed here.

2.3. Monotonicity by regularization

Monotonicity can be enforced during the training by modi-
fying the loss function or adding a regularization term.

2

Constrained Monotonic Neural Networks

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Unconstrained ReLU
Ground truth
#Neurons-2
#Neurons-32

(a) Unconstrained ReLU

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Constrained ReLU
Ground truth
#Neurons-2
#Neurons-32

(b) Constrained ReLU

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Constrained bipolar ReLU
Ground truth
#Neurons-2
#Neurons-32

(c) Constrained ReLU based activations

Figure 1: Approximations of the cubic function f(x) = x3

In (Sill & Abu-Mostafa, 1996), the authors propose a mod-
ified loss function that penalizes the non-monotonicity of
the model. The algorithm models the input distribution as
a joint Gaussian estimated from the training data and sam-
ples random pairs of monotonic points that are added to the
training data. In (Gupta et al., 2019), the authors propose
a point-wise loss function that acts as a soft monotonicity
constraint. These methods are straightforward to implement
and can be used with any neural network architecture, but
they do not guarantee the monotonicity of the trained model.

Recently, there is an increasing number of proposed meth-
ods to certify or verify monotonicity obtained by regulariza-
tion methods. In (Liu et al., 2020), the authors propose an
optimization-based technique for mathematically verifying,
or rejecting, the monotonicity of an arbitrary piece-wise
linear (e.g., ReLU) neural network. The method consists of
transforming the monotonicity verification problem into a
mixed integer linear programming (MILP) problem that can
be solved using an off-the-shelf MILP solver.

In (Sivaraman et al., 2020), the authors propose an approach
that finds counterexamples (defined as the pair of points
where the monotonicity constraint is violated) by employ-
ing satisfiability modulo theories (SMT) solver (Barrett &
Tinelli, 2018). To satisfy the monotonicity constraints, these
counterexamples are included in the training data with ad-
justments to their target values to enforce the next iterations
of the model to be monotonic.

Both methods (Liu et al., 2020; Sivaraman et al., 2020) have
been shown to support ReLU as the activation function only
and there is no obvious way how to extend them to other
activation functions. More precisely, they rely on piece-
wise linearity of ReLU to work, the property not satisfied
by other variants such as ELU, SELU, GELU, etc. Last
but not least, the procedure for certifying/verifying using
MILP or SMT solvers is computationally very costly. These
approaches also require multiple reruns or iterations to arrive
at certified/verified monotonic networks.

3. Constrained neural networks
Most of the commonly used activation functions such as
ReLU, ELU, SELU, etc. are monotonically increasing zero-
centred, convex, lower-bounded non-polynomial functions.
When used in a fully-connected, feed-forward neural net-
work with at least one hidden layer and with unconstrained
weights, they can approximate any continuous function on
a compact subset. The simplest way to construct a mono-
tonic neural network is to constrain its weights when used
in conjunction with a monotone activation function. How-
ever, when the activation function is convex as well, the
constrained neural network is not able to approximate non-
convex functions.

To better illustrate this, and to propose a simple solution
in this particular example, we refer the readers to Figure 1
where the goal is to approximate a simple cubic function
x3 using a neural network with a single hidden layer with
either 2 or 32 neurons and with ReLU activation. A cubic
function is apt for our illustration since it is concave in the
considered interval [−1, 0] and convex in the interval [0, 1]:

1a. An unconstrained ReLU network with n neurons can
approximate both concave and convex segments of the
cubic function using at most n + 1 piecewise linear
segments. Increasing the number of neurons will pro-
vide a better fit with the function being approximated.
Notice that even though the cubic function is mono-
tone, there is no guarantee that the trained model will
be monotone as well.

1b. If we constrain the weights of the network to be non-
negative while still employing ReLU activation, the
resulting model is monotone and convex. We can no
longer approximate non-convex segments such as the
cubic function on [−1, 0] in the figure, and increasing
the number of neurons from 2 to 32 does not yield any
significant improvement in the approximation.

1c. Our proposed solution uses a combination of three ac-

3

Constrained Monotonic Neural Networks

2 0 2

2

0

2
(x)
(x)
(x)

(a) ReLU based activations

2 0 2

2

0

2
(x)
(x)
(x)

(b) ELU based activations

2 0 24

2

0

2
(x)
(x)
(x)

(c) SELU based activations

Figure 2: Activation functions construction

tivation functions in the hidden layer in order to gain
the ability to model non-convex, monotone continuous
functions. Notice that increasing the number of neu-
rons increases the number of piecewise linear segments
to approximate the cubic function. The resulting net-
work is monotone by construction even when trained
on noisy data.

The schematic block diagram of our proposed solution
(which we refer to as Constrained Monotone Fully Con-
nected Layer or Monotonic Dense Unit interchangeably)
is shown in the figure Fig. 3. The individual components
of the proposed solution are defined and described in the
subsequent subsection.

3.1. Constrained monotone fully connected layer

We say that a multivariate function f : Rn → R is partially
monotonically increasing with respect to xi if

x0
i > x1

i ⇒ f
(
x1, . . . , x

0
i , . . . xn

)
≥ f

(
x1, . . . , x

1
i , . . . xn

)
.

Similarly, f is partially monotonically decreasing with re-
spect to xi if

x0
i > x1

i ⇒ f
(
x1, . . . , x

0
i , . . . xn

)
≤ f

(
x1, . . . , x

1
i , . . . xn

)
.

A set S ⊆ R is compact if every sequence in S has a
subsequence that converges to a point in S. One can easily
show that closed intervals [a, b] are compact, and compact
sets can be thought of as generalizations of such closed
bounded intervals.

Our construction is preconditioned on a priori knowledge of
(partial) monotonicity of a multivariate, multidimensional
function f . Let f : K 7→ Rm be defined on a compact
segment K ⊆ Rn. Then we define its n-dimensional mono-
tonicity indicator vector t = [t1, . . . , tn] element-wise as

follows:

tj =


1 if

∂f(x)i

∂xj
≥ 0 for each i ∈ {1, . . . ,m}

−1 if
∂f(x)i

∂xj
≤ 0 for each i ∈ {1, . . . ,m}

0 otherwise

(1)

Given an (m×n)-dimensional matrix M and n-dimensional
monotonicity indicator vector t, we define the operation |.|t
assigning an (m × n)-dimensional matrix M′ = |M|t to
M element-wise as follows:

m′
j,i =


|mj,i| if ti = 1

−|mj,i| if ti = −1

mj,i otherwise
(2)

Definition 1 (Constrained linear layer). Let W ∈ Rn×m,
t ∈ {−1, 0, 1}n, x ∈ Rn and b ∈ Rm. The output h ∈ Rm

of the constrained linear layer with monotonicity indicator
vector t, weights W, biases b and input x is:

h = |WT|t · x+ b (3)

Lemma 1. For each i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}
we have:

• if ti = 1, then
∂hj

∂xi
≥ 0, and

• if ti = −1, then
∂hj

∂xi
≤ 0.

We use Ă to denote the set of all zero-centred, monotonically
increasing, convex, lower-bounded functions.

Definition 2. Let ρ̆ ∈ Ă. Then

ρ̂(x) = −ρ̆(−x) (4)

ρ̃(x) =

{
ρ̆(x+ 1)− ρ̆(1) if x < 0

ρ̂(x− 1) + ρ̆(1) otherwise
(5)

4

Constrained Monotonic Neural Networks

s = (s̆, ŝ, s̃)

x

t

W

W′

b

ysplit concat

ρ̆(.)

ρ̂(.)

ρ̃(.)

|.|t

Figure 3: Proposed Monotonic Dense Unit or Constrained Monotone Fully Connected Layer

The main idea of our construction is use of three zero-
centred, monotonically increasing activation functions, each
applied to a part of neurons in a layer:

• the original activation function ρ̆ ∈ A,

• concave upper-bounded function ρ̆, and

• bounded function ρ̃.

Plots of such constructed activation functions for popular ac-
tivation functions are given in Figure 2. Using only convex
and concave activation functions is sufficient for approxi-
mating many functions such as the cubic function in Figure
1, but not for e.g. the sigmoid function. As we will show
below, the saturated activation function is crucial for the
universal property of our construction.

Definition 3 (Combined activation function). Let ρ̆ ∈ Ă,
h ∈ Rm and s = (s̆, ŝ, s̃) ∈ N3 such that s̆ + ŝ + s̃ = m.
Then the output of the combined activation function ρs :
Rm → Rm is defined element-wise as follows:

ρs(h)j =


ρ̆(hj) if j ≤ s̆

ρ̂(hj) if s̆ < j ≤ s̆+ ŝ

ρ̃(hj) otherwise
(6)

Lemma 2. Let y = ρs(h). Then for each j ∈ {1, . . . ,m}

we have
∂yj

∂hj
≥ 0. Moreover

• if s = (m, 0, 0), then ρsj is convex; and

• if s = (0,m, 0), then ρsj is concave.

Definition 4 (Monotone constrained fully connected layer).
Let n,m ∈ N, ρ̆ ∈ Ă, t ∈ {−1, 0, 1}n, s = (s̆, ŝ, s̃) ∈ N3

such that s̆+ŝ+s̃ = m, W ∈ Rn×m, x ∈ Rn and b ∈ Rm.

Then the output y of the monotone constrained fully con-
nected layer with monotonicity indicator vector t, weights
W, biases b and input x is

y = ρs
(
|WT|t · x+ b

)
(7)

From Lemma 1 and 2 directly follows:

Corollary 3. For each i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} we
have:

• if ti = 1, then
∂yj

∂xi
≥ 0,

• if ti = −1, then
∂yj

∂xi
≤ 0,

• if s = (m, 0, 0), then yj is convex; and

• if s = (0,m, 0), then yj is concave.

On the layer level, we can control both monotonicity, con-
vexity and concavity of the output with respect to chosen
input variables. The following section discuss how we can
use such layers to build practical neural networks with the
same properties.

3.2. Composing monotonic constrained dense layers

As mentioned before, the main advantage of our proposed
monotonic dense unit is its simplicity. We can build deep
neural nets with different architectures by plugging in our
monotonic dense blocks. Figures 4 and 5 show two ex-
amples of neural architectures that can be built using the
proposed monotonic dense block.

The first example shown in the Figure 4, corresponds to the
standard MLP type of neural network architecture used in

5

Constrained Monotonic Neural Networks

Monotonic
Dense
Block

Monotonic
Dense
Block

x

t1

s1

Final Monotonic
Dense Block

yFinal

Activation

t2 = 1 tk = 1

s2 sk

Figure 4: Neural architecture type 1

general, where each of the input features is concatenated
to form one single input feature vector x and fed into the
network, with the only difference being that instead of stan-
dard fully connected or dense layers, we employ monotonic
dense units throughout. For the first (or input layer) layer,
the indicator vector t, is used to identify the monotonic-
ity property of the input feature with respect to the output.
Specifically, t is set to 1 for those components in the input
feature vector that are monotonically increasing and is set
to −1 for those components that are monotonically decreas-
ing and set to 0 if the feature is non-monotonic. For the
subsequent hidden layers, monotonic dense units with the
indicator vector t always being set to 1 are used in order
to preserve monotonicity. Finally, depending on whether
the problem at hand is a regression problem or a classifica-
tion problem (or even a multi-task problem), an appropriate
activation function (such as linear activation or sigmoid or
softmax) to obtain the final output.

Figure 5 shows another example of a neural network ar-
chitecture that can be built employing proposed monotonic
dense blocks. The difference when compared to the archi-
tecture described above lies in the way input features are
fed into the hidden layers of neural network architecture. In-
stead of concatenating the features directly, this architecture
provides flexibility to employ any form of complex feature
extractors for the non-monotonic features and use the ex-
tracted feature vectors as inputs. Another difference is that
each monotonic input is passed through separate monotonic
dense units. This provides an advantage since depending on
whether the input is completely concave or convex or both,
we can adjust the activation selection vector s appropriately
along with an appropriate value for the indicator vector t.
Thus, each of the monotonic input features has a separate
monotonic dense layer associated with it. Thus as the major
difference to the above-mentioned architecture, we concate-
nate the feature vectors instead of concatenating the inputs
directly. The subsequent parts of the network are similar
to the architecture described above wherein for the rest of
the hidden monotonic dense units, the indicator vector t is

always set to 1 to preserve monotonicity.

3.3. Universal approximation

The classical Universal Approximation Theorem (Cybenko,
1989; Hornik, 1991; Pinkus, 1999) states that any continu-
ous function on a closed interval can be approximated with
a feed-forward neural network with one hidden layer if and
only if its activation function is nonpolynomial. In (Kidger
& Lyons, 2020), authors prove the approximation property
holds for arbitrary deep neural networks with bounded num-
ber of neurons in each layer holds if the activation function
is nonaffine and differential at at least one point.

In (Daniels & Velikova, 2010), authors show the universal
approximation property for constrained multivariate neural
networks using sigmoid as the activation functions: any
multivariate continuous monotone function on a compact
subset of Rk can be approximated with a constrained neural
network with the sigmoid activation function of at most k
layers (Theorem 3.1), reproduced here for completeness:

Theorem 4. For any continuous monotone nondecreasing
function f : K −→ R, where K is a compact subset of Rk,
there exists a feedforward neural network using the sigmoid
as the activation function with at most k hidden layers,
positive weights, and output O such that |Ox − f(x)| < ϵ,
for any x ∈ K and ϵ > 0.

However, the proof of the theorem uses only the fact that
the Heavyside function H defined as

H(x) =

{
1 if x ≥ 0
0 otherwise

can be approximated with the sigmoid function on a closed
interval (since lim

a→∞
σ(ax) = H(x)).

By construction, we have:

Lemma 5. Let ρ̆ ∈ Ă. Then the Heavyside function can be
approximated with ρ̃H on R, where

ρ̃H(x) = αρ̃(x) + β

6

Constrained Monotonic Neural Networks

Monotonic
Dense
Block

x0

t10

s10

Monotonic
Inputs

Non-
monotonic

Inputs

Monotonic
Dense
Block

xm-1

t1m-1

s1m-1

Arbitrary Neural
Network

C
oncatenate

xm

xn-1

Monotonic
Dense
Block

Final Monotonic
Dense Block

yFinal

Activation

t2 = 1 tk = 1

s2 sk

Figure 5: Neural architecture type 2

for some α, β ∈ R and α > 0.

Lemma 6. Let ρ̃α,β be an activation function for some
α, β ∈ R, α > 0 such that for every x ∈ R

ρ̃α,β(x) = αρ̃(x) + β.

Then for every constrained monotone neural network Nα,β

using ρ̃α,β as an activation function (s = (0, 0, s̃)), there is
a constrained monotone neural network N using ρ̃ as an
activation function such that for every x ∈ Rn:

N (x) = Nα,β(x).

Finally, from Theorem 4, Lemma 5 and Lemma 6, we have
the universal approximation property:

Theorem 7. Let ρ̆ ∈ Ă. Then any multivariate continuous
monotone function on a compact subset of Rk can be ap-
proximated with a monotone constrained neural network of
at most k layers using ρ as the activation function.

The Theorem 7 gives us the upper bound on the number of
layers needed for approximating an arbitrary function. In
practice, the number and width of layers for a given func-
tion and given dataset are found by hyperparameter search.
The best results in our experiments were achieved by neural
networks with a significantly smaller number of layers. The
proof shows that the saturated activation functions are suf-
ficient for the universal approximation property. However,
experimental results show that the networks with predom-
inately unsaturated activation functions are easier to train
and achieve better results.

4. Experiments
In order to analyze the practical utility of the proposed
method, we experiment with various datasets and compare
them with the recent state-of-the-art. For the first set of

experiments, we use the datasets employed by authors in
(Liu et al., 2020) and use the exact train and test split for
proper comparison. We perform experiments on 3 datasets:
COMPAS (J. Angwin & Kirchner, 2016), which is a classi-
fication dataset with 13 features of which 4 are monotonic;
Blog Feedback Regression (Buza, 2014), which is a regres-
sion dataset with 276 features of which 8 are monotonic;
Loan Defaulter1, which is a classification dataset with 28
features of which 5 are monotonic. The dataset contains half
a million data points. For comparison with other methods,
we compare with Certified monotonic networks (Certified)
(Liu et al., 2020) and other methods described in it.

For the second set of experiments, we use 2 datasets: Auto
MPG (which is a regression dataset with 3 monotonic fea-
tures) and Heart Disease (which is a classification dataset
with 2 monotonic features) as employed in the work (Sivara-
man et al., 2020) and once again use the exact train and test
split for proper comparison. We compare with the method
COMET described in (Sivaraman et al., 2020) along with
Min-Max Net (Daniels & Velikova, 2010) and Deep Lattice
Network (DLN) (You et al., 2017) as described in (Sivaraman
et al., 2020), and also more details regarding the datasets
have been provided in the supplementary.

We use cross-entropy for the classification tasks and we use
mean-squared-error for the regression tasks as loss functions.
We employ Bayesian optimization tuning with Gaussian pro-
cess (Snoek et al., 2012) to find the optimal hyperparameters
such as the number of neurons, network depth or layers, ini-
tial learning rate etc.

The code for experiments was written in the Keras frame-
work (Chollet et al., 2015) and KerasTuner (O’Malley et al.,
2019) via integration from the Tensorflow framework, ver-
sion 2.11 (Abadi et al., 2015). All experiments were per-
formed using a Google Colaboratory instance with NVidia

1https://www.kaggle.com/wendykan/lending-club-loan-data

7

Constrained Monotonic Neural Networks

Method
COMPAS Blog Feedback Loan Defaulter

Parameters Test Acc ↑ Parameters RMSE ↓ Parameters Test Acc ↑
Isotonic N.A. 67.6% N.A. 0.203 N.A. 62.1%
XGBoost (Chen & Guestrin, 2016) N.A. 68.5% ± 0.1% N.A. 0.176 ± 0.005 N.A. 63.7% ± 0.1%
Crystal (Milani Fard et al., 2016) 25840 66.3% ± 0.1% 15840 0.164 ± 0.002 16940 65.0% ± 0.1%
DLN (You et al., 2017) 31403 67.9% ± 0.3% 27903 0.161 ± 0.001 29949 65.1% ± 0.2%
Min-Max Net (Daniels & Velikova, 2010) 42000 67.8% ± 0.1% 27700 0.163 ± 0.001 29000 64.9% ± 0.1%
Non-Neg-DNN 23112 67.3% ± 0.9% 8492 0.168 ± 0.001 8502 65.1% ± 0.1%
Certified (Liu et al., 2020) 23112 68.8% ± 0.2% 8492 0.158 ± 0.001 8502 65.2% ± 0.1%
Ours 2317 69.2% ± 0.2% 1101 0.156 ± 0.001 177 65.3% ± 0.01%

Table 1: Comparison of our method with other methods described in (Liu et al., 2020)

Method Auto MPG Heart Disease
MSE ↓ Test Acc ↑

Min-Max Net (Daniels & Velikova, 2010) 10.14 ± 1.54 0.75 ± 0.04
DLN (You et al., 2017) 13.34 ± 2.42 0.86 ± 0.02
COMET (Sivaraman et al., 2020) 8.81 ± 1.81 0.86 ± 0.03
Ours 8.37 ± 0.08 0.89 ± 0.00

Table 2: Comparison of our method with other methods described in (Sivaraman et al., 2020)

Tesla T4 GPU (Bisong, 2019). The code is publicly avail-
able at (Runje & Shankaranarayana, 2023a), while the pre-
processed datasets for experiments are available at (Runje
& Shankaranarayana, 2023b).

4.1. Results

The results for the datasets above are summarized in Ta-
bles 1 and 2. It shows that our method outperforms other
methods in terms of test accuracy for classification tasks
and mean squared error and root mean squared error (MSE
and RMSE) for regression tasks. For each of the datasets,
we run the experiments ten times after finding the optimal
hyperparameters and report the mean and standard deviation
of the best five results. Experiment results show that net-
works learned by our method can achieve better results with
fewer parameters, than the best-known algorithms for mono-
tonic neural networks, such as Min-Max Network (Daniels
& Velikova, 2010) and Deep Lattice Network (You et al.,
2017). It should be noted that the recent state-of-the-art
works- Certified (Liu et al., 2020) and COMET (Sivaraman
et al., 2020) require multiple runs in order to even satisfy
monotonic constraints whereas monotonicity is guaranteed
by simply employing the proposed monotonic dense units.

The most important advantage of our solution is simplicity
and computational complexity. Our models have slightly
better performance on all datasets we tested them on, but it
is important to note they have significantly fewer parameters
and the simplest training procedure. As such, they have the

potential to significantly reduce the carbon footprint when
used at scale:

• The number of parameters of our model is an order or
even two orders of magnitude smaller than alternatives.
At prediction time, this translates roughly into 1-2 or-
ders of magnitude less computation (most parameters
are used in multiplications)

• At training time, we do not use any additional com-
putationally expensive procedures apart from gradient
descent, unlike alternative approaches such as COMET
(Sivaraman et al., 2020) and Certified (Liu et al., 2020).

5. Conclusion
In this paper, we proposed a simple and elegant solution to
build constrained monotonic networks which can approxi-
mate any continuous partially monotonic function. Specifi-
cally, we introduced a constrained monotone fully connected
layer which can be used as a drop-in replacement for a fully
connected layer to enforce monotonicity. We then employed
our constrained monotone fully connected layer to build
neural network models and showed that we can achieve
better results to the recent state-of-the-art (Sivaraman et al.,
2020; Liu et al., 2020) in addition to the well-known works
such as Min-Max networks (Daniels & Velikova, 2010) and
DLNs (You et al., 2017). However, the main advantage of
the proposed solution is not higher accuracy but its computa-
tional and memory complexity: we use orders of magnitude

8

Constrained Monotonic Neural Networks

fewer parameters and computation which makes the result-
ing neural networks more energy efficient. Last but not least,
we proved such networks can approximate any multivariate
monotonic function.

Extending these results to other types of neural network lay-
ers is straightforward, but we leave it for future work. E.g.
convolutional layer can be made monotonic with respect to
a subset of features by replacing its fully-connected filters
with monotone constrained fully connected layers. As long
as such layers are combined with other monotonic convolu-
tional and fully connected layers and monotone activation
functions, the resulting neural network would be monotone.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015.
URL https://www.tensorflow.org/. Software
available from https://tensorflow.org.

Amos, B., Xu, L., and Kolter, J. Z. Input convex neural
networks. In Precup, D. and Teh, Y. W. (eds.), Proceed-
ings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learn-
ing Research, pp. 146–155. PMLR, 06–11 Aug 2017.
URL https://proceedings.mlr.press/v70/
amos17b.html.

Archer, N. P. and Wang, S. Application of the back propa-
gation neural network algorithm with monotonicity con-
straints for two-group classification problems. Decision
Sciences, 24(1):60–75, 1993.

Barrett, C. and Tinelli, C. Satisfiability modulo theories.
In Handbook of model checking, pp. 305–343. Springer,
2018.

Bisong, E. Google Colaboratory, pp. 59–64. Apress,
Berkeley, CA, 2019. ISBN 978-1-4842-4470-8.
doi:10.1007/978-1-4842-4470-8_7. URL https://
doi.org/10.1007/978-1-4842-4470-8_7.

Buza, K. Feedback prediction for blogs. In Data analysis,
machine learning and knowledge discovery, pp. 145–152.
Springer, 2014.

Chen, T. and Guestrin, C. XGBoost: A scalable tree
boosting system. In Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’16, pp. 785–794, New
York, NY, USA, 2016. ACM. ISBN 978-1-4503-4232-
2. doi:10.1145/2939672.2939785. URL http://doi.
acm.org/10.1145/2939672.2939785.

Chollet, F. et al. Keras. https://keras.io, 2015.

Clevert, D., Unterthiner, T., and Hochreiter, S. Fast and ac-
curate deep network learning by exponential linear units
(ELUs). In Bengio, Y. and LeCun, Y. (eds.), 4th Inter-
national Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, 2016.

Cybenko, G. Approximation by superpositions of a sig-
moidal function. Mathematics of Control, Signals, and
Systems (MCSS), 2(4):303–314, December 1989. ISSN
0932-4194. doi:10.1007/BF02551274. URL http:
//dx.doi.org/10.1007/BF02551274.

Daniels, H. and Velikova, M. Monotone and partially mono-
tone neural networks. IEEE Transactions on Neural Net-
works, 21(6):906–917, 2010.

Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C., and Garcia,
R. Incorporating second-order functional knowledge for
better option pricing. Advances in neural information
processing systems, 13, 2000.

Eidnes, L. H. and Nøkland, A. Shifting mean activation
towards zero with bipolar activation functions. In 6th
International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Workshop Track Proceedings, 2018.

Gennari, J. H., Langley, P., and Fisher, D. Models of incre-
mental concept formation. Artificial intelligence, 40(1-3):
11–61, 1989.

Glorot, X., Bordes, A., and Bengio, Y. Deep sparse recti-
fier neural networks. In Proceedings of the fourteenth
international conference on artificial intelligence and
statistics, pp. 315–323. JMLR Workshop and Conference
Proceedings, 2011.

Gupta, A., Shukla, N., Marla, L., Kolbeinsson, A., and
Yellepeddi, K. How to incorporate monotonicity in deep
networks while preserving flexibility? arXiv preprint
arXiv:1909.10662, 2019.

Gupta, M., Cotter, A., Pfeifer, J., Voevodski, K., Canini, K.,
Mangylov, A., Moczydlowski, W., and Van Esbroeck, A.
Monotonic calibrated interpolated look-up tables. The
Journal of Machine Learning Research, 17(1):3790–3836,
2016.

9

https://www.tensorflow.org/
https://tensorflow.org
https://proceedings.mlr.press/v70/amos17b.html
https://proceedings.mlr.press/v70/amos17b.html
https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
https://keras.io
https://doi.org/10.1007/BF02551274
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1007/BF02551274

Constrained Monotonic Neural Networks

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-
national conference on computer vision, pp. 1026–1034,
2015.

Hendrycks, D. and Gimpel, K. Bridging nonlinearities and
stochastic regularizers with Gaussian error linear units.
CoRR, abs/1606.08415, 2016.

Hornik, K. Approximation capabilities of multilayer
feedforward networks. Neural Networks, 4(2):251–257,
Mar 1991. doi:10.1016/0893-6080(91)90009-T. URL
https://doi.org/10.1016/0893-6080(91)
90009-T.

J. Angwin, J. Larson, S. M. and Kirchner, L. Machine bias:
There’s software used across the country to predict future
criminals. and it’s biased against blacks. ProPublica,
2016.

Kidger, P. and Lyons, T. Universal approximation with deep
narrow networks. In Proceedings of the 33rd Annual
Conference on Learning Theory (COLT 2020), pp. 2306–
2327, 2020.

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter,
S. Self-normalizing neural networks. Advances in neural
information processing systems, 30, 2017.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. Na-
ture, 521(7553):436–444, May 2015. ISSN 1476-4687.
doi:10.1038/nature14539.

Liu, X., Han, X., Zhang, N., and Liu, Q. Certified mono-
tonic neural networks. Advances in Neural Information
Processing Systems, 33:15427–15438, 2020.

Maas, A. L., Hannun, A. Y., Ng, A. Y., et al. Rectifier
nonlinearities improve neural network acoustic models.
In ICML Workshop on Deep Learning for Audio, Speech
and Language Processing. Citeseer, 2013.

Milani Fard, M., Canini, K., Cotter, A., Pfeifer, J., and
Gupta, M. Fast and flexible monotonic functions with
ensembles of lattices. Advances in neural information
processing systems, 29, 2016.

Mitchell, T. M. The need for biases in learning generaliza-
tions. Technical report, Department of Computer Science,
Laboratory for Computer Science Research, Rutgers Univ.
New Jersey, 1980.

Nair, V. and Hinton, G. E. Rectified linear units improve
restricted Boltzmann machines. In ICML, pp. 807–814,
2010.

Neal, R. M. Connectionist learning of belief networks.
Artificial intelligence, 56(1):71–113, 1992.

O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H.,
Invernizzi, L., et al. Kerastuner. https://github.
com/keras-team/keras-tuner, 2019.

Pinkus, A. Approximation theory of the mlp model in
neural networks. Acta Numerica, 8:143–195, 1999.
doi:10.1017/S0962492900002919.

Quinlan, J. R. Combining instance-based and model-based
learning. In Proceedings of the tenth international con-
ference on machine learning, pp. 236–243, 1993.

Ramachandran, P., Zoph, B., and Le, Q. V. Swish:
a self-gated activation function. arXiv preprint
arXiv:1710.05941, 7(1):5, 2017.

Rosenblatt, F. The perceptron: a probabilistic model for
information storage and organization in the brain. Psy-
chological review, 65(6):386, 1958.

Rudin, C., Wang, C., and Coker, B. The age of secrecy
and unfairness in recidivism prediction. Harvard Data
Science Review, 2(1), 3 2020.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing representations by back-propagating errors. Nature,
323(6088):533–536, 1986.

Runje, D. and Shankaranarayana, S. M. Code of the experi-
ments in the paper "Constrained Monotonic Neural Net-
works", May 2023a. URL https://github.com/
airtai/mono-dense-keras.

Runje, D. and Shankaranarayana, S. M. Preprocessed
datasets for experiments in the paper "Constrained Mono-
tonic Neural Networks", May 2023b. URL https:
//doi.org/10.5281/zenodo.7968969.

Shang, W., Sohn, K., Almeida, D., and Lee, H. Un-
derstanding and improving convolutional neural net-
works via concatenated rectified linear units. CoRR,
abs/1603.05201, 2016. URL http://arxiv.org/
abs/1603.05201.

Sill, J. Monotonic networks. Advances in neural information
processing systems, 10, 1997.

Sill, J. and Abu-Mostafa, Y. Monotonicity hints. Advances
in neural information processing systems, 9, 1996.

Sivaraman, A., Farnadi, G., Millstein, T., and Van den
Broeck, G. Counterexample-guided learning of mono-
tonic neural networks. Advances in Neural Information
Processing Systems, 33:11936–11948, 2020.

Snoek, J., Larochelle, H., and Adams, R. P. Practical
bayesian optimization of machine learning algorithms.
In Pereira, F., Burges, C., Bottou, L., and Weinberger,

10

https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1038/nature14539
https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner
https://doi.org/10.1017/S0962492900002919
https://github.com/airtai/mono-dense-keras
https://github.com/airtai/mono-dense-keras
https://doi.org/10.5281/zenodo.7968969
https://doi.org/10.5281/zenodo.7968969
http://arxiv.org/abs/1603.05201
http://arxiv.org/abs/1603.05201

Constrained Monotonic Neural Networks

K. (eds.), Advances in Neural Information Process-
ing Systems, volume 25. Curran Associates, Inc.,
2012. URL https://proceedings.neurips.
cc/paper_files/paper/2012/file/
05311655a15b75fab86956663e1819cd-Paper.
pdf.

Veličković, P. The resurgence of structure in deep neural
networks. PhD thesis, University of Cambridge, 2019.

You, S., Ding, D., Canini, K., Pfeifer, J., and Gupta, M.
Deep lattice networks and partial monotonic functions.
Advances in neural information processing systems, 30,
2017.

Zagoruyko, S. and Komodakis, N. Diracnets: Training very
deep neural networks without skip-connections. CoRR,
abs/1706.00388, 2017. URL https://arxiv.org/
abs/1706.00388.

Zheng, H., Yang, Z., Liu, W., Liang, J., and Li, Y. Im-
proving deep neural networks using softplus units. In
2015 International Joint Conference on Neural Networks
(IJCNN), pp. 1–4. IEEE, 2015.

11

https://proceedings.neurips.cc/paper_files/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://arxiv.org/abs/1706.00388
https://arxiv.org/abs/1706.00388

Constrained Monotonic Neural Networks

A. Detailed proofs
We restate all lemmas from the main text here are give detailed proofs of them.

The following is well known result, proved here for completeness only:

Lemma 1. For each i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} we have:

• if ti = 1, then
∂hj

∂xi
≥ 0, and

• if ti = −1, then
∂hj

∂xi
≤ 0.

Proof. From equation 3, we have

h = |WT |t · x+ b (8)

hj =
∑
i

w′
i,jxi + bj (9)

∂hj

∂xi
= w′

i,j (10)

Finally, from equation 2 we have
∂hj

∂xi
=

{
|wi,j | ≥ 0 if ti = 1

−|wi,j | ≤ 0 if ti = −1

Lemma 2. Let y = ρs(h). Then for each j ∈ {1, . . . ,m} we have
∂yj

∂hj
≥ 0. Moreover

• if s = (m, 0, 0), then ρsj is convex; and

• if s = (0,m, 0), then ρsj is concave.

Proof. From equation 4,5 and 6:

ρ̂(x) = −ρ̆(−x)

ρ̃(x) =

{
ρ̆(x+ 1)− ρ̆(1) if x < 0

ρ̂(x− 1)− ρ̂(1) otherwise

ρs(hj) =


ρ̆(hj) if j ≤ s̆

ρ̂(hj) if s̆ < j ≤ ŝ

ρ̃(hj) otherwise

we have:

∂yj

∂hj
=


ρ̆′(hj) ≥ 0 if j ≤ s̆

ρ̆′(−hj) ≥ 0 if s̆ < j ≤ ŝ

ρ̆′(hj + 1) ≥ 0 if s̆+ ŝ < j and hj < 0

ρ̆′(1− hj) ≥ 0 if s̆+ ŝ < j and hj ≥ 0

if s = (m, 0, 0), we have:
ρs(hj) = ρ̆(hj)

which is a convex function.

12

Constrained Monotonic Neural Networks

Similarly, if s = (0,m, 0), we have:
ρs(hj) = ρ̂(hj)

which is a concave function.

Corollary 3. For each i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} we have:

• if ti = 1, then
∂yj

∂xi
≥ 0,

• if ti = −1, then
∂yj

∂xi
≤ 0,

• if s = (m, 0, 0), then yj is convex; and

• if s = (0,m, 0), then yj is concave.

For completeness, we repeat the Theorem 3.1 from (Daniels & Velikova, 2010) and its proof here:

Theorem 4. For any continuous monotone nondecreasing function f : K −→ R, where K is a compact subset of Rk, there
exists a feedforward neural network using the sigmoid as the activation function with at most k hidden layers, positive
weights, and output O such that |Ox − f(x)| < ϵ, for any x ∈ K and ϵ > 0.

Proof. The proof is derived by induction on the number of input variables k. Without loss of generality, we may assume that
f > 0 (otherwise, we add a constant C and approximate f + C with the network output O, then modify O with a negative
bias at the output node). First, we assume that f is strictly increasing and C∞. In case of k = 1, we write

f(x) =

∫ ∞

0

H (f(x)− u) du (11)

where H is the Heavyside function:

H(x) =

{
1 if x ≥ 0
0 otherwise

Since f is continuous and increasing, it is invertible and therefore the right-hand side of 11 can be written as

f(x) =

∫ ∞

0

H
(
x− f−1(v)

)
dv (12)

The integral can be approximated arbitrarily well by a Riemann sum

N∑
i=1

(vi+1 − vi)H
(
x− f−1(vi)

)
(13)

where [vi]
N
i=1 is a partition of the interval [f(a), f(b)]. This expression corresponds to a neural network with input x, one

hidden layer with N neurons all connected to the input with weight of 1, bias term in the hidden neurons f−1(vi), and the
weights connecting the hidden layer with the output vi+1 − vi > 0. Note that the Heavyside function H can be replaced by
a sigmoid activation function using a standard approximation argument.

Assume that Theorem 3.1 holds for k − 1 input variables. We now combine the integral representation in 11 with the
induction assumption. For a given v, we may solve the equation of the level set corresponding to to v for xk

f(x1, . . . , xk) = v.

By the implicit function theorem, there exists a function gv such that

f(x1, . . . , gv(x1, . . . , xk−1)) = v. (14)

13

Constrained Monotonic Neural Networks

Note that gv is decreasing in all arguments xi. This can be seen by taking the partial derivative of 14 with respect to xi. We
will now show that

H (f(x)− v) = H (xk − gv(x1, . . . , xk−1))

analogously to 12 for the 1-D case. Note that it is sufficient to show that

f(x) < v if and only if xk < gv(x1, . . . , xk−1)

and
f(x) > v if and only if xk > gv(x1, . . . , xk−1).

But this follows easily from 14 and the fact that f is increasing in all its arguments. We now approximate the integral in 11
with a Riemann sum, leading to the following equation analogously to 13:

R =

N∑
i=1

(vi−1 − vi)H (xk − gvi (x1, . . . , xk−1)) (15)

Since gvi is decreasing in all its arguments −gvi is increasing. By the induction assumption, we can approximate −gvi with
a feedforward neural network Oi with x1, . . . , xk−1 as inputs, k − 1 hidden layers, and nonnegative weights, such that∣∣∣∣∣

N∑
i=1

(vi−1 − vi)H (xk −Oi (x1, . . . , xk−1))−R

∣∣∣∣∣ < ϵ

because the sum is finite. Expression 15 corresponds to a feedforward neural network with k inputs and k hidden layers.
Here k − 1 hidden layers are needed to represent −gvi and the k-th hidden layer is needed to combine N neural networks
with outputs Oi and the input xk. The weights on the connections between the last hidden layer and the final output are
(vi+1 − vi) > 0. The input xk is directly (skip-layer) connected to the k-th hidden layer.

We can now easily generalize the proof to continuous nondecreasing functions. For continuous functions, we define the
convolution of f with a mollifier Kδ by

fδ = f ⊗Kδ

Then, fδ is C∞ and fδ −→ f as δ ↓ 0 uniform on compact subsets. Furthermore, fδ is also increasing since Kδ > 0. Now
choose δ such that |f − fδ| < ϵ

2 and approximate fδ with a feedforward neural network O such that |fδ −O| < ϵ
2 . Then,

|f −O| < ϵ.

If f is nondecreasing, then approximate f by fδ

fδ = f + δ(x1 + · · ·+ xk)

which is strictly increasing and let δ ↓ 0.

Lemma 5. Let ρ̆ ∈ Ă. Then the Heavyside function can be approximated with ρ̃H on R, where

ρ̃H(x) = αρ̃(x) + β

for some α, β ∈ R and α > 0.

Proof. Since ρ̆ is bounded from below, then it has a limit

c = lim
x→−∞

ρ̆(x) = − lim
x→∞

ρ̂(x) < 0

From equation 5, we have

lim
x→−∞

ρ̃(x) = lim
x→−∞

ρ̆(x)− ρ̆(1) = c− ρ̆(1)

lim
x→+∞

ρ̃(x) = lim
x→∞

ρ̂(x) + ρ̆(1) = −(c− ρ̆(1))

14

Constrained Monotonic Neural Networks

Let ρ̃H be defined as follows:

ρ̃H(x) =
ρ̃(x)− c+ ρ̆(1)

2 (−c+ ρ̆(1))

Then
lim
a→∞

ρ̃H(a · x) = H(x)

Lemma 6. Let ρ̃α,β be an activation function for some α, β ∈ R, α > 0 such that for every x ∈ R

ρ̃α,β(x) = αρ̃(x) + β.

Then for every constrained monotone neural network Nα,β using ρ̃α,β as an activation function (s = (0, 0, s̃)), there is a
constrained monotone neural network N using ρ̃ as an activation function such that for every x ∈ Rn:

N (x) = Nα,β(x).

Proof. Let hk be the output of the k-th constrained linear layer of Nα,β evaluated on input x. For every k > 1, we have

h1 = |W1|t1 · x+ b1

hk = |Wk|tk · yk−1 + bk

yk = ρ̃α,β(hk)

y = hl

where l is the total number of layers of Nα,β . We can rewrite hk as follows:

hk = |Wk|tk · yk−1 + bk

= |Wk|tk · ρ̃α,β(hk−1) + bk

= |Wk|tk · (αρ̃(hk−1) + β1) + bk (with |1| = |hk−1|)
= α|Wk|tk · ρ̃(hk−1) + β|Wk|tk1+ bk

= |αWk|tk · ρ̃(hk−1) + β|Wk|tk1+ bk (from α > 0)

= |W′
k|tk · ρ̃(hk−1) + b′

k

for W′
k = αWk and b′

k = β|Wk|tk1+ bk.

Hence, for every x ∈ Rn, the output of the neural network N with weights W1,W
′
2, . . . ,W

′
l and biases b1,b

′
2, . . . ,b

′
l is:

N (x) = Nα,β(x)

Theorem 7. Let ρ̆ ∈ Ă. Then any multivariate continuous monotone function f on a compact subset of Rk can be
approximated with a monotone constrained neural network of at most k layers using ρ as the activation function.

Proof. The proof of the Theorem 4 uses only the fact that the Heavyside function H defined as

H(x) =

{
1 if x ≥ 0
0 otherwise

can be approximated with the sigmoid function on a closed interval (since lim
a→∞

σ(ax) = H(x)).

From the Theorem 4 and the Lemma 5, any continuous monotone function f on a compact subset of Rk can be approximated
with a monotone constrained neural network with at most k layers using ρ̃H as the activation function.

From Lemma 6, we can replace ρ̃H with ρ̃. Hence, any continuous monotone function f on a compact subset of Rk can
be approximated with a monotone constrained neural network with at most k layers using ρ as the activation function and
si = (0, 0, s̃i).

15

Constrained Monotonic Neural Networks

B. Datasets Description
The descriptions of datasets used for comparison are detailed below. As mentioned in the section 4, the datasets are chosen
from (Liu et al., 2020) and (Sivaraman et al., 2020) for proper evaluation. The train-test splits of 80%− 20% are used for all
comparison experiments.

1. COMPAS (J. Angwin & Kirchner, 2016) is a binary classification dataset, where the task is to predict risk
score of an individual committing crime again two years, based on the criminal records of individuals ar-
rested in Florida. The risk score needs to be monotonically increasing with respect to the following at-
tributes number of prior adult convictions, number of juvenile felony, number of
juvenile misdemeanor, and number of other convictions. It should be noted that there have been
ethical concerns with the dataset (J. Angwin & Kirchner, 2016; Rudin et al., 2020)

2. Blog Feedback (Buza, 2014) is a regression dataset where the task is to predict the number of comments in the
upcoming 24 hours from a feature set containing 276 features of which 8 (A51, A52, A53, A54, A56, A57, A58, A59)
are monotonic features. The readers are suggested to refer to link 2 for more details. As mentioned by the authors of
(Liu et al., 2020), only the data points with targets smaller than the 90th percentile are used since the outliers could
dominate the mean-squared-error metric.

3. Lending club loan data3 is a classification dataset, where the task is to predict whether the individual would default
on loan, from a feature set having 28 features containing data such as the current loan status, latest payment infor-
mation etc,. The probability of default should be non-decreasing with respect to number of public record
bankruptcies, Debt-to-Income ratio, and non-increasing with respect to credit score, length
of employment, annual income.

4. Auto MPG4 (Quinlan, 1993) is a regression dataset where the task is to predict city-cycle fuel consumption in
miles per gallon (MPG) from a feature set containing 7 features of which the monotonic features are weight (W),
displacement (D), and horse-power (HP)

5. Heart Disease5 (Gennari et al., 1989) is a classification dataset, where the task is to predict the presence of heart disease
from a feature set containing 13 features of which the risk associated with heart disease needs to be monotonically
increasing with respect to the features trestbps (T), cholestrol (C))

2https://archive.ics.uci.edu/ml/datasets/BlogFeedback
3https://www.kaggle.com/wendykan/lending-club-loan-data
4https://archive.ics.uci.edu/ml/datasets/auto+mpg
5https://archive.ics.uci.edu/ml/datasets/heart+disease

16

