Under review as a conference paper at ICLR 2025

DISC: DYNAMIC DECOMPOSITION IMPROVES LLLM
INFERENCE SCALING

Anonymous authors
Paper under double-blind review

ABSTRACT

Inference scaling methods often rely on decomposing problems into steps (or
groups of tokens), followed by sampling and selecting the best next steps. However,
these steps and their sizes are often predetermined or manually designed based on
domain knowledge. We propose dynamic decomposition, a method that adaptively
and automatically fractions solution and reasoning traces into manageable steps
during inference. By more effectively allocating compute — particularly through
subdividing challenging steps and prioritizing their sampling — dynamic decom-
position significantly improves inference efficiency. Experiments on benchmarks
such as APPS, MATH, and LiveCodeBench demonstrate that dynamic decompo-
sition outperforms static approaches, including token-level, sentence-level, and
single-step decompositions. These findings highlight the potential of dynamic
decomposition to improve a wide range of inference scaling techniques.

1 INTRODUCTION

Scaling inference efficiency remains a fundamental challenge for large language models (LLMs).
Many existing approaches improve inference by decomposing problems into smaller steps and
systematically exploring different solutions (Feng et al., 2023; Zeng et al., 2024; Wu et al., 2024,
Nori et al., 2024; Snell et al., 2024; Brown et al., 2024; Gandhi et al., 2024; Lee et al., 2025; Light
et al., 2024a; Wang et al., 2025).

Some decomposition methods rely on domain-specific heuristics and hand-crafted rules (Yao et al.,
2024; Zelikman et al., 2023; Zhou et al., 2022). However, manually partitioning problems or designing
task-specific heuristics is costly and lacks generalization. Moreover, identifying critical steps for
an LLM can be non-trivial for humans. As shown in Sec. 3.5, LLMs may assign importance to
seemingly trivial words (e.g., therefore or which), which, while counterintuitive to humans, play a
crucial role in autoregressive generation (Lin et al., 2025). Other approaches employ fixed, uniform
step sizes, such as token- or sentence-level decomposition (Feng et al., 2023; Guo et al., 2025). All
these methods rely on static decomposition strategies, where step sizes are predefined or determined
via heuristics. Such rigidity wastes compute on steps that are easy for the LLM (but potentially
difficult for humans) while undersampling more challenging steps.

To overcome these limitations, we propose DISC (Dynamic decomposition Improves Scaling
Compute), a recursive inference algorithm that dynamically partitions solution steps based on
difficulty. Unlike prior methods, DISC adapts decomposition granularity during inference based
on both the available budget and problem complexity, ensuring finer granularity for more difficult
steps. By leveraging the autoregressive nature of LLMs, DISC efficiently locates difficult steps
through binary partitioning, focusing compute on challenging regions rather than wasting resources
on trivial steps. DISC is generalizable and requires no human supervision, domain-specific heuristics,
prompt engineering, or process annotations, making it widely applicable across tasks.

Our main contributions are:

* We introduce DISC, a method for recursive partitioning and decomposing solutions during infer-
ence without human supervision, domain-specific heuristics, or process reward models.

* We demonstrate how DISC integrates decomposition with inference-time search, allocating
compute to high-impact, difficult steps.

* We show that DISC improves inference scaling in terms of both sample efficiency and token
efficiency.

Under review as a conference paper at ICLR 2025

/ Single step generation \

The train travels at 60 mph. \n In 3.5 hours, the distance it travels is:\n 60miles/hourx3.5hours=210miles.

Entire generation is a single step
Token level decomposition

The train travels at 60 mph. \n In 3.5 hours, the distance it travels is:\n 60miles/hourx3.5hours=210miles.

1 2 . «. Y19 y20 y21
Yoyl v Each token is a step YEYSy

Sentence level decomposition
The train travels at 60 mph. \n In 3.5 hours, the distance it travels is:\n 60miles/hourx3.5hours=210miles.

yo y1 y2
Period or newline character marks end of step
Dynamic decomposition

The train travels at 60 mph. \n In 3.5 hours, the distance it travels is:\n 60miles/hourx3.5hours=210miles.

1 2
\ o Dynycmicclly adjusted steps and step sizes Y /

Figure 1: Comparison of different automatic decomposition methods based on step size determination.

* We provide insights into how LLMs reason and plan by identifying critical steps in their generation
process.

2 PRELIMINARIES

2.1 PROBLEM SETTING

We consider a reasoning and code generation setting where a dataset X' = {w(i)}ivzl consists
of problem prompts «, and a reward model R : X -)Y — [0, 1] evaluates generated solutions
y € Y. This includes program synthesis, where correctness is verified using ground-truth tests (Chen
et al., 2021; Austin et al., 2021), and mathematical reasoning, where solutions are validated nu-
merically (Hendrycks et al., 2021a; Cobbe et al., 2021). The reward model can be a ground-truth
verifier, a trained heuristic (Zhang et al., 2024), self-consistency (Wang et al., 2023a), or an LLM-
as-a-judge (Zheng et al., 2023). Since our focus is on step decomposition rather than verification,
we use the ground-truth reward model where available. We assume access to a pretrained language
model 7 that generates text autoregressively. A generated response y consists of both the final
solution and the reasoning chain leading to it, and can be represented as a sequence of tokens
Yy = (Yo, .-, ¥L,). Additionally, solutions can be partitioned into solution steps y = (yo, ..., Yx).
where each step y; is a contiguous string of tokens. A partial solution up to step k is defined as
Yi..k = Y1 Y2 ... Yk, and its rollout or completion, denoted y; . x, is the continuation generated
by 7 until an end-of-sequence token (EOS). The size of a solution step, |y;|, refers to its length in
tokens or characters.

2.2 PRIOR AUTOMATIC DECOMPOSITION METHODS

Single-step generation. In a single-step generation, the entire solution is generated in one pass
from the prompt to the EOS token, treating it as a single action. This approach underlies the widely
used inference scaling method best of n (BoN) (Cobbe et al., 2021; Lightman et al., 2023; Snell
et al., 2024; Liang et al., 2024), where n complete solutions are sampled, and the highest-scoring one
is selected. Single-step generation also plays a role in alignment and fine-tuning methods such as
DPO (Rafailov et al., 2024) and RLOO (Ahmadian et al., 2024).

Token-level decomposition. At the opposite end of the spectrum, token-level decomposition treats
each atomic token as an individual step. While this approach dramatically increases search complexity,
it enables fine-grained search that can yield higher performance gains given sufficient compute (Feng
etal., 2023).

Newline and sentence-level decomposition. A commonly used decomposition method segments
LLM generations into sentences or lines based on delimiters such as periods or newlines (Hao et al.,
2023; Feng et al., 2023; Yao et al., 2024). Typically, each newline corresponds to a new paragraph,
equation, or line of code, which often encapsulates a distinct reasoning step.

See App. C for more discussion of prior methods and related works.

Under review as a conference paper at ICLR 2025

Problem: Automatic and scalable decomposition

Existing decomposition methods are task-specific, manual, and static, limiting their adaptability and
scalability.

2.3 STEP SAMPLING

Inference-time scaling methods must balance exploration at the current step with exploration of future
steps. We implement a simple dynamic sampling process, referred to as negative binomial sampling,
where we continue sampling completions until the sum of their rewards exceeds a predefined threshold
o. More formally, the number of samples M drawn from a partial solution y; . j is the smallest integer

satisfying Zi\il R(x - yy) k +) > o. Here, ygl) ». represents the i-th sampled completion from the
partial solution. This process ensures efficient allocation of compute by dynamically adjusting the
number of samples per step. It achieves this by either: (a) continuing to sample until a sufficiently
high-reward completion is found, or (b) stopping early when additional sampling is unlikely to yield
significant improvements, thus redirecting the compute to future steps. The stopping criterion is
governed by o: when accumulated reward from completions surpasses o, the method assumes further
sampling is unnecessary. For a fair comparison, we apply this sampling method uniformly across all
decomposition methods in our experiments.

2.4 INFERENCE SCALING METHODS AND DECOMPOSITION

Since our study focuses on decomposition rather than search, we primarily use greedy step search
as the search method. In greedy step search, multiple candidate steps are sampled at each iteration,
but only the highest-scoring step is retained, while the rest are discarded. The process then repeats,
conditioning future steps on the best step found so far. We also perform ablation studies comparing
Monte Carlo Tree Search (MCTS) (Feng et al., 2023; Light et al., 2024b) and beam search (Xie
et al., 2024), two commonly used inference scaling methods. These comparisons, presented in
Sec. 4.2, highlight how different search strategies interact with decomposition. Additional details on
MCTS and beam search are provided in App. F.

3 METHODOLOGY e N\
3.1 DISC ALGORITHM §

&

prompt
prompt

The DISC algorithm employs recursive binary decompo-

sition to iteratively break down complex solutions into /

smaller, more manageable steps. Given a problem prompt P N
N

- prompt
- prompt

x, the algorithm outputs a decomposition of a solution,
y = (y1,Y2,- -, Yx), such that the concatenation y; i
forms a complete solution to .

&/&
N A

The algorithm operates in two key stages: s

1. Solution sampling. Starting from = and yq = 0, Low metric " High metric
the algorithm generates complete solutions yi ~ 7(+|x \ /
Y1...(1—k)) using a policy like in single step generation.

The best solution, y;;, is selected based on the reward Figure 2: D¥SC recurgvely part1t1ops the
model R. most challenging step —i.e., the one with the

lowest priority metric h — to progressively
2. Recursive partitioning. The selected solution 7, is refine and find the optimal solution.
partitioned into two segments, y;, = Y, - y;, based on a predefined partition fraction o, where

ly:| ~ aly;|. For each part, a priority metric A is estimated: E(y(ﬂw “Y1...(k—1)) and E(y,’;kv Y7)
usually through rollouts of the step using 7. The part with the lower priority is further partitioned.

« It h(y!|e - Y1..(k-1)) = iAz(ylf |z - yi). additional samples are sampled for y;, with the process
repeating on the new best solution, y;*.

« Conversely, if h(y}|x - Y1..(h—1)) < ﬁ(yl’f |z - yi), the first segment y* is further partitioned.
The first step corresponds to the « fraction of y/*, with the remaining part of the full solution
forming the second step.

Under review as a conference paper at ICLR 2025

This recursive process is illustrated in Fig. 2. The pseudocode for DISC is provided in Alg. 1, with
an annotated Python implementation in App. A.

The priority metric h serves as the central heuristic for determining which solution steps to prioritize.
It estimates the “difficulty” or “potential for improvement” of a step yy, given the context -y (x—1),
computed via rollouts of the policy 7. Specifically, h(yx | - y1...(x—1)) is estimated by sampling
continuations and evaluating their outcomes.

In practice, estimating h and generating new samples occur simultaneously, as both rely on rollout-
based computations (Sec. 3.2). Unlike standard decomposition methods, DISC does not process
steps in strict temporal order, resembling goal-directed planning (Parascandolo et al., 2020) and
backtracking.

Intuition and Benefits. DISC partitions difficult steps into smaller, simpler sub-steps, allocating
additional resources to refine them. This approach is particularly effective for inference scaling, where
computing must be used judiciously. A binary decomposition strategy enables fast identification of
difficult or high-potential steps.

Key Insight: Recursive partitioning

Top-down, recursive partitioning means that we can both efficiently locate critical steps and also dynami-
cally determine step sizes based on our budget.

Dynamic Compute Allocation. A key advantage of DISC is its ability to prioritize challenging
or high-potential steps, improving solution quality while minimizing compute waste. By iteratively
refining steps with low priority scores, DISC adaptively allocates more resources to difficult steps
and less to simpler ones, optimizing inference efficiency.

Key Insight: Adaptive compute allocation

DISC dynamically allocates inference compute to harder steps, optimizing solution quality and resource
efficiency.

3.2 PRIORITY METRIC (

prompt

We consider two intuitive priority metrics for step selec-
tion: Q-value priority and Z-score priority, which are o
visualized in Fig. 4. ®,

Q-value based priority (DISC-Q). Given a partial solu-
tionyy . = Y7 (4_1) Ya Y. Weaim to prioritize either

Policy rollouts
00000000
aatatatatataty
00000 00
sttty

y,, or y; for refinement. The core intuition behind Q-value
prioritization is that steps with lower Q-values indicate |U 7,
areas needing refinement, directing compute toward the ool
most challenging parts of the solution. More formally, we -
define the Q-priority metric under policy 7 as: Split metric

K Vs for step 2 j

Here, y, represents alternative steps sampled from 7, and F1gure 3: Priority metric estimation.
Q" (yk | T y1._(1—1)) denotes the Q-value of yy, con- Wf.: can estimate the priority metric h
ditioned on the partial solution @ - y;_(,_1). Equiva- using Monte Carlo rollouts of the LLM
lently, ho(y;) can be interpreted as the value function policy 7 for each step.

V7™(x - y1..(k—1)), where V™ represents the expected re-

ward achievable from the given partial solution. The expectation is taken over sampled candidates
Yr ~ (- | - Y1 (k—1)), constrained by |yx| = |y;|. This metric helps identify difficult steps that
the LLM is likely to get wrong, guiding partitioning toward the most critical refinements.

o]
x
£
o
=
o
o
°o
o

ho(ye | T-y1. (k—1)) = Eq, [Qﬂ(yk | - yl...(k—l))} :

To estimate h¢ for the second step y;, we sample y;, from 7, generate rollouts ¥, 1), compute
rewards, and average the outcomes. For the previous step y, we reuse rollouts from earlier par-
titioning, as the mean of these previously generated samples provides an unbiased estimate of the
Q-priority metric:

ho(i | @yl i) = B[RO irs)]

4

Under review as a conference paper at ICLR 2025

By leveraging existing rollouts, DISC avoids redundant sampling, improving computational efficiency.

Once the rollouts for yZ‘k 41 are available, the best completion yz*k 1)+ is selected as the next step to

partition. This dual use of rollouts optimizes both metric estimation and inference sampling.
Takeaway: Combining step priority estimation and inference-time search

By integrating LLM policy sampling for both metric estimation and search, we can significantly enhance
computational efficiency.

Z-score based priority (DISC-Z). To allocate more compute to steps with higher potential for
improvement, we estimate the probability of sampling a better step given existing samples. Assuming
the Q-values of sampled steps follow a normal distribution, we model this probability using the
cumulative distribution function (CDF). Given a mean pu, and standard deviation o, of sampled
Q-values, the probability of sampling better than the best-observed step y;; with Q-value ¢* is:

1 - CDF (q_”> —1- CDF(z"),
oy

where z* is the Z-score. Since the CDF is monotonic, we compare steps based on their Z-scores.
We formally define the Z-score priority metric as:

—EQ"(yx | - Y1...(k-1))]
Std[Q@™ (yx | - y1...(k—1))]

Since ¢* — p, represents the advantage of step 7, the Z-score metric can be interpreted as a standard
deviation-scaled advantage. Lower hy values indicate steps with greater room for improvement,
guiding decomposition toward those with higher variance in performance.

* q
hz(yi | - yl..‘(kfl)) =

3.3 DISC AND SEARCH METHODS /

Mean
DISC can also be used to enhance Monte Carlo Tree Grmeric 4 Best
Search (MCTS) and other inference scaling and search Samples —_ | o
methods. Recall that in our partition step, we greedily || oo feere
partition the best solution step y*. Instead of greedily

partitioning the best step, we can partition the top k best Reward distribution for step 1
steps instead, and select which step to partition using the
upper confidence tree (UCT) formula. We can also use
beam search to prune out steps we do not want to partition

Q-metric \ Y Besf r

. . O Sampl Area=Z-
further. We explain MCTS and beam search in detail in P es\l | :‘ D
App. F and present results of combining DISC with search _ .
in Sec._4.9. . n . Reward distribution for step 2
Takeaway: Dynamic step sizes can improve search K /

DISC can enhance search based inference scaling meth-
ods by determining what step size to search across.

Figure 4: Different priority metrics.
Sampled rewards of different steps can
be visualized as a distribution.

We use the Wiener process W (¢) as an example where there are intractably many actions and steps.
Suppose we start at ¢ = 0 with W (0) = 0. At each round k, the algorithm can choose one of the two
options:

3.4 A MOTIVATING EXAMPLE ON DISC-Z

1. samples a trajectory and observe the final value W (T') at time ¢ = T', as the reward signal. Denote
the whole trajectory as wg/(+).

2. chooses one trajectory from the previous rounds (denoted as w,(t) for round s), and time ¢¢; then
sample a trajectory at t = to with W (tg) = ws(to). Denote the concatenated trajectory as wy(-)
with wy, (1) = ws(t) when t < ¢.

Note that we are only able to observe the final reward W (t). At any intermediate time ¢ € (0,7, the
current value T (t) is not observable. The goal is to design an algorithm that can reach the highest
reward among the K trajectories. Formally speaking, we aim to maximize the maximum:

max w (7).
kekK

Under review as a conference paper at ICLR 2025

One naive solution is to call option 1 for K times and return the best-of- K reward, each following:

W(T) ~ N(0,T).

Alternatively, suppose there is a promising path w(-) with a high final reward w(7") = R. It is natural
to consider starting at some midpoint o7 (0 < o < 1) and perform more completions to obtain an
even higher reward than R. The reward distribution sampled this way is

W/(T) ~ N (w(aT), (1 — a)T).

The remaining question is which o we should choose. One option is to maximize the probability that
the newly sampled reward is higher than R:

P(W/(T) > R) = 1 — @(IM(QT)).

(1-a)T

3.5 EXAMPLE DECOMPOSITION

With sample budget 100, the decomposition of a MATH problem is as follows, where color indicates
the value of the priority metric h of each step (yellow low, purple high).

DISC example decomposition

and the width of the rectangle be w. Since the perimeter of the rectangle is 24 inches, we have that
2l + 2w = 24,50l + w = 12. We wish to maximize the area of the rectangle, is A = lw. Let] = 12 — w and plug into

the area:
A=(12 - ww = A=12w — v’

Now, we differentiate A with respect to w:
A'(w) =12 — 2w

We wish to maximize A, so we set A’ (w) = 0, and solve for w:
12 — 2w =0 = w =206

Since Il = 12 — w, we have that | = 12 — 6 = 6. Therefore, the area of the rectangleis A = lw = 6 - 6 = A

Once the LLM generates the first three steps, the rest is easy. Interestingly, ‘which’ is an important
decision point which helps decide how the LLM will complete the solution.
Takeaway: Autoregressive models require autoregressive decomposition

While words such as ‘which’, ‘therefore’, etc. may not seem like important steps to humans, they actually
represent important steps for autoregressive LLMs which are trained on next token prediction.

4 EXPERIMENTAL RESULTS

4.1 BENCHMARKS

We evaluate DISC on three benchmarks: APPS, MATH, and LiveCodeBench, to assess its impact
on inference scaling for both coding and reasoning. APPS (Hendrycks et al., 2021a) consists of
5000 competitive programming problems across three difficulty levels, with the competition-level
subset being the hardest. We evaluate on a 200-problem subset due to computational constraints.
MATH (Hendrycks et al., 2021b) comprises 12,500 math problems. Since the ground-truth veri-
fier provides only binary rewards, we use a pretrained ORM (Xiong et al., 2024), trained via the
method in (Wang et al., 2024b), with Llama-3.1-8B-Instruct as the base model. We test on a 500-
problem subset (MATHS00), identical to prior work (Wang et al., 2024b; Lightman et al., 2023).
LiveCodeBench (Jain et al., 2024) is a continuously updated dataset from Leetcode, AtCoder, and
CodeForces, ensuring LLMs have not been exposed to test problems. We evaluate on the 108
problems uploaded between 10/01/2024 and 12/01/2024 to prevent contamination.

4.2 DECOMPOSITION COMPARISON

We compare DISC against three prior decomposition methods from Sec. 2.2: TokenSplit (token-level
decomposition), LineSplit (newline-based decomposition), and BoN (treating the entire solution as a
single step). Across all benchmarks, DISC achieves superior scaling and performance under both
fixed token budgets (Fig. 5) and sample budgets (Fig. 10). We evaluate two key metrics: Pass@Kk,

Under review as a conference paper at ICLR 2025

Pass@token Scaling curves on APPS

Pass@token Scaling curves on MATH

4/—’—’/

— Dpisc

—— TokenSplit
LineSplit
BoN

Proportion correct (Pass@token)

©
=
S

° ° °
* 9 m
3 2 g

o
®
S

Proportion correct (Pass@token)

2 Irr
i
7
#

— DpIsc

—— TokenSplit
LineSplit
BoN

5000 10000 15000 20000
Number of output tokens used (tokens)

25000

2000 4000 6000 8000 10000 12000

Number of output tokens used (tokens)

Proportion correct (Pass@token)

Pass@token scaling curves on LiveCodeBench
0.50

— DisC

— BoN
TokensSplit
LineSplit

5000 10000 15000 20000 25000

Number of output tokens used (tokens)

Figure 5: Token-level comparisons across benchmarks. (Left) APPS competition level (Middle)
MATHS500 (Right) LiveCodeBench. DISC achieves superior inference scaling over baselines on all
three benchmarks.

the proportion of problems solved within a sample budget k£, and Pass@token, the proportion
solved within a given token budget. Notably, DISC consistently outperforms static decomposition
methods on APPS, MATH, and LiveCodeBench (Fig. 5), demonstrating its ability to allocate compute
adaptively for improved inference efficiency. Extended results and analyses for each benchmark are
provided in App. E.1, E.4, and E.5.

4.3 DECOMPOSITION ANALYSIS AND INTERPRETATION

Our results strongly indicate that decomposition—whether line-based, token-based, or DISC —im-
proves sample quality. Fig. 6 illustrates how the mean and variance of sampled rewards evolve
with the step number, which represents the order in which a step is explored. Higher step numbers
correspond to deeper search levels, where solutions are partitioned into finer-grained steps. As
shown in Fig. 6, increasing step number correlates with higher-quality solutions, demonstrating that
finer-grained decomposition improves sample quality. Additionally, Fig. 6 shows that reward variance
decreases as step count increases, highlighting how decomposition enhances sampling precision.

Furthermore, DISC achieves better performance with fewer partitions under a fixed sampling budget
(Fig. 7). We distinguish between actual partitions, the number of steps effectively explored, and
planned partitions, the number of partitions intended by the method. Token and line split methods
generate a large number of planned partitions (Fig. 7) but search over at most 15 steps due to budget
constraints. In contrast, DISC dynamically adjusts the number of partitions based on available budget,
efficiently identifying and focusing on critical steps.

Takeaway: Decomposition and sample quality

Finer-grained decomposition improves sampled solution quality and reduces reward variance.

Mean reward per step

Standard deviation of rewards per step

0] —DISC / 012 1 — DISC
—— TokenSplit /\ —— TokenSplit
o LineSplit Ve 0.10 A LineSplit
<5 0.71 B
g @ 0.08q N
g e e
c 0.6 g 0.06 -
] Q
= -4]
s \ J/ 0.04
0.5 A
\ Z 0.02 A
0.4 0.00 - T T T T T

2 4 6 8 10 12

Step number

14

2 4 6 8 10 12 14

Step number

Figure 6: Analysis of rewards per step on APPS. (Left) Average reward per step: From step
3 onward, higher step counts strongly correlate with increased average reward, demonstrating
the effectiveness of decomposition. The dip between steps 1 and 3 likely occurs because simple
problems are solved early, preventing further search. (Right) Standard deviation of rewards per step:
Decomposition reduces sampling variance, improving precision at deeper search depths.

4.4 INTERACTION BETWEEN TEMPERATURE AND DISC

We perform ablation studies to analyze the impact of temperature on DISC. Typically, inference
scaling methods achieve optimal performance at temperatures around 0.6-0.8, as increased tempera-

Under review as a conference paper at ICLR 2025

Frequency of (actual) partitons Frequency of (planned) partitons
\ — bisc 054 — DIsC
5 0577 —— TokenSplit > —— TokenSplit
= . . . §
5 0.4 LineSplit 5 0.4 LineSplit
= >
o
L 0.3 @ 0.3 A
b= L=
S o2 S o2
= =]
Fs £
& 0.1+ & 0.1
\/\ —— "
0.0 A 0.0 A
2 4 6 8 10 12 14 10° 10! 102 103
Number of partitions Number of partitions

Figure 7: Comparison of actual and planned partitions on APPS. DISC outperforms other
methods with fewer partitions by efficiently identifying critical steps. Unlike token and line split
methods, which plan many partitions but search only a subset, DISC dynamically adjusts partitioning
based on budget.

Pass@k scaling for open source models Pass@k for different search methods

)

It
n
o

—

bt

u

o
L

°

IS

a
L

=}
w
v
‘\‘

—8— DISC+Greedy
—8— DISC+Beam
DISC+MCTS

—— Mistral-7B-v0.3
Llama-3.1-8B

Proportion correct (Pass@k)
o
o
w

Proportion correct (Pass@k
o
B
o

o
w
<]

T T T T T T T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25
Number of solutions generated (k) Number of solutions generated (k)

Figure 8: Pass@k scaling on APPS. (Left) Open-source models: DISC substantially improves performance
across different LLMs, including Llama and Mistral. (Right) Search methods: MCTS scales best, followed by
greedy search, then beam search (beam size 2) when combined with DISC on APPS with gpt-40-mini.

ture promotes sample diversity (Wang et al., 2024a). Surprisingly, however, DISC performs better
at lower temperatures, as shown in Fig. 9. This trend is in stark contrast to BoN (Fig. 16), where
higher temperatures are generally beneficial. We believe this phenomenon arises because DISC
depends on accurately estimating the priority metric h at each step. Lower temperatures reduce
sample variance, leading to more reliable estimates of &, which in turn improves step selection. This
is further supported by Fig. 14, which shows that lower temperatures yield lower standard deviations
per step, indicating increased sampling consistency. Additional details and analyses can be found in
App. D.1.

4.5 SELF-GENERATED VALIDATION TESTS

We also evaluate DISC in a more practical setting where a ground-truth reward model is unavailable
for code generation (Chen et al., 2022; 2023b; Zhou et al., 2024). Instead of relying on predefined
test cases, we prompt the LLM to generate validation test cases based on the problem prompt. In
real-world applications, manually curated ground-truth test cases are often costly to obtain, making
self-generated validation a more scalable approach. The results, shown in Fig. 10, indicate that DISC
continues to scale better than other methods in this setting. Additional results and details are provided
in App. E.3.

4.6 INTERACTION BETWEEN PRIORITY METRIC AND DISC

We conduct an ablation study to examine how the choice of priority metric affects DISC performance.
In addition to the Q-based and Z-based priority metrics (DISC-Q and DISC-Z) introduced in
Sec. 3.2, we evaluate three baselines: DISC-R (random step selection), DISC-negQ, and DISC-
negZ (which prioritize the opposite steps of DISC-Q and DISC-Z, respectively). As shown in
Fig. 9, the selection of a priority metric significantly impacts performance. Both DISC-Q and
DISC-Z significantly outperform random selection and their inverse counterparts, demonstrating the
effectiveness of their priority heuristics. Additional details and analysis are in App. D.2.

Under review as a conference paper at ICLR 2025

Pass@k scaling curves by temperature Pass@k scaling for different priority metrics Ablation on partition fraction

o2

< 0.55 2055 2 0.55 + asttih

© © © i P 1

% 050 BRARER 08 —F @ 0.50 @ A

go o &0 &os0 /._...01

Y o0.4s i g -

g —8— DISC-0.2temp 2 045 g 045 -4

S 0.40 —e— DISC-0.4temp 8 .40 —e— DISC-R S of” —e— DISC alpha=0.30

§ 7 —8— DISC-0.6temp s —e— DISC-Q § 0407 —8— DISC alpha=0.25

g 035 /f ~s— DISC-0.8temp £ 035 / ~8- DISCZ H ! ~e— DISC alpha=0.20

§0.304 DISC-1.0temp 3 DISC-negQ go3s 4 DISC alpha=0.15

< A DISC-1.2temp %0304 ¢ DISC-negZ < H DISC alpha=0.10

0254, 0.304

0 5 10 15 20 25 30 25 50 75 100 125 150 17.5 20.0 0 5 10 15 20 25 30

Number of solutions generated (k) Number of solutions generated (k) Number of solutions generated (k)

Figure 9: Analysis of factors affecting DISC performance on APPS with gpt-4o-mini. (Left) Effect of
temperature: Unlike BoN and other inference scaling methods, DISC achieves higher performance at lower
temperatures. (Middle) Effect of priority metrics: Both Q-based and Z-based priority metrics outperform random
selection and their inverses, highlighting their effectiveness. (Right) Effect of partition fraction a: The range
0.15 < o < 0.25 appears optimal.

Scaling curves by number of samples Different decomposition methods on APPS (comp)

= < 0.55
© ©
© 0.50 1 o S M
2 (o £ 0501 g
o [} LA
= 0.45 o
g o 9 0.45 4 /
E | S)
g 0.40 ¥ g /
5 —e— DISC s 0.40 1 —o— BoN
£ 0351 —e— LineSplit 5 —e— LineSplit
s TokenSplit 5 0351 TokenSplit
& 0.30 4 BoN e < DISC
2 4 6 8 10 12 14 25 50 7.5 100 125 150 17.5 20.0
Number of solutions generated (k) Number of solutions generated (k)

Figure 10: Comparison of Pass @k performance on APPS with ground truth tests (right) and
self generated validation tests (left) using gpt-40-mini. DISC scales more effectively in both.

4.7 ABLATION ON BASE LLM MODEL

We evaluate DISC across different LLMs, including open-source models. As shown in Fig. 8 and
Fig. 21, DISC significantly enhances performance even for weaker models. Specifically, it improves
Llama’s pass rate from 1% to 5.5%, a 550% relative increase, and Mistral’s from 0% to 3.5%,
demonstrating substantial gains even from a nonzero baseline. Additional details and analyses are in
App. D.3.

4.8 ABLATION ON PARTITION FRACTION «

We conduct an ablation study to analyze the effect of the partition fraction o on DISC performance.
As shown in Fig. 9 and 25, the optimal range appears to be 0.15 < a < 0.25. Lower partition
fractions (o < 0.5) tend to perform better due to the asymmetric cost of sampling from different
halves of the partition. Sampling from the first half requires generating more tokens, while the
second half requires fewer, making it crucial to partition the first half more conservatively. Additional
analysis are in App. D.4.

4.9 SEARCH AND DISC

We demonstrate that search methods such as MCTS and beam search can be combined with DISC.
As shown in Fig. 41 in the Appendix, greedy search explores deeper partitions given the same search
budget due to its greedy nature, while MCTS and beam search reach similar, shallower depths.
However, MCTS allocates the search budget more effectively than beam search, leading to higher
performance, as seen in Fig. 8. Additional details and analysis are in App. F.

5 CONCLUSION

We introduce DISC, a dynamic decomposition framework that adaptively partitions solution steps
based on difficulty, improving inference scaling by directing compute toward critical steps while
balancing exploration and resource allocation. DISC seamlessly integrates with search-based methods
such as MCTS and beam search, further enhancing performance. It also identifies challenging steps for
LLM:s, aiding curriculum learning, fine-tuning, and dataset augmentation. By dynamically adjusting
partitioning based on available compute, DISC enables more adaptive and efficient reasoning in large
language models, with broad implications for both training and inference optimization.

Under review as a conference paper at ICLR 2025

REFERENCES

Arash Ahrpadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Ustiin, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning
from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Alexandra Carpentier and Michal Valko. Extreme bandits. Advances in Neural Information Processing
Systems, 27, 2014.

Tristan Cazenave. Nested monte-carlo search. In Twenty-First International Joint Conference on
Artificial Intelligence, 2009.

Angelica Chen, David Dohan, and David So. Evoprompting: Language models for code-level neural
architecture search. Advances in neural information processing systems, 36:7787-7817, 2023a.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen.
Codet: Code generation with generated tests. arXiv preprint arXiv:2207.10397, 2022.

Jingchang Chen, Hongxuan Tang, Zheng Chu, Qianglong Chen, Zekun Wang, Ming Liu, and Bing
Qin. Divide-and-conquer meets consensus: Unleashing the power of functions in code generation.
arXiv preprint arXiv:2405.20092, 2024a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi
Liu, Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu.
Do not think that much for 2+3=? on the overthinking of ol-like llms, 2024b. URL https:
//arxiv.org/abs/2412.21187.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and Denny Zhou. Teaching large language models to
self-debug. arXiv preprint arXiv:2304.05128, 2023b.

Vincent A Cicirello and Stephen F Smith. The max k-armed bandit: A new model of exploration
applied to search heuristic selection. In The Proceedings of the Twentieth National Conference on
Artificial Intelligence, volume 3, pp. 1355-1361, 2005.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Dheeru Dua, Shivanshu Gupta, Sameer Singh, and Matt Gardner. Successive prompting for decom-
posing complex questions. arXiv preprint arXiv:2212.04092, 2022.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun
Wang. Alphazero-like tree-search can guide large language model decoding and training. arXiv
preprint arXiv:2309.17179, 2023.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and
Noah D Goodman. Stream of search (sos): Learning to search in language. arXiv preprint
arXiv:2404.03683, 2024.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
rstar-math: Small llms can master math reasoning with self-evolved deep thinking, 2025. URL
https://arxiv.org/abs/2501.04519.

10

https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2501.04519

Under review as a conference paper at ICLR 2025

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reasoning
with language model is planning with world model. In Empirical Methods in Natural Language
Processing, pp. 8154-8173, 2023.

Erik Hemberg, Stephen Moskal, and Una-May O’Reilly. Evolving code with a large language model.
Genetic Programming and Evolvable Machines, 25(2):21, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021a.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021b.

Sergio Herndndez-Gutiérrez, Minttu Alakuijala, Alexander V Nikitin, and Pekka Marttinen. Recursive
decomposition with dependencies for generic divide-and-conquer reasoning. In The First Workshop
on System-2 Reasoning at Scale, NeurIPS’24, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. arXiv
preprint arXiv:2210.02406, 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199-22213, 2022.

Kuang-Huei Lee, Ian Fischer, Yueh-Hua Wu, Dave Marwood, Shumeet Baluja, Dale Schuurmans,
and Xinyun Chen. Evolving deeper llm thinking, 2025. URL https://arxiv.org/abs/
2501.09891.

Kuang-Huei Leea, Ian Fischera, Yueh-Hua Wuc, Dave Marwood, Shumeet Baluja, Dale Schuurmans,
and Xinyun Chen. Evolving deeper 1lm thinking. Gen, 2:3, 2025.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O Stanley.
Evolution through large models. In Handbook of Evolutionary Machine Learning, pp. 331-366.
Springer, 2023.

Kyla H Levin, Kyle Gwilt, Emery D Berger, and Stephen N Freund. Effective llm-driven code
generation with pythoness. arXiv preprint arXiv:2501.02138, 2025.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
language models better reasoners with step-aware verifier. In Proceedings of the 61st Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5315-5333,
2023.

Zhenwen Liang, Ye Liu, Tong Niu, Xiangliang Zhang, Yingbo Zhou, and Semih Yavuz. Improving
1lm reasoning through scaling inference computation with collaborative verification. arXiv preprint
arXiv:2410.05318, 2024.

Jonathan Light, Min Cai, Weiqin Chen, Guanzhi Wang, Xiusi Chen, Wei Cheng, Yisong Yue, and

Ziniu Hu. Strategist: Learning strategic skills by llms via bi-level tree search. arXiv preprint
arXiv:2408.10635, 2024a.

11

https://arxiv.org/abs/2501.09891
https://arxiv.org/abs/2501.09891

Under review as a conference paper at ICLR 2025

Jonathan Light, Yue Wu, Yiyou Sun, Wenchao Yu, Xujiang Zhao, Ziniu Hu, Haifeng Chen, Wei
Cheng, et al. Scattered forest search: Smarter code space exploration with llms. arXiv preprint
arXiv:2411.05010, 2024b.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Zicheng Lin, Tian Liang, Jiahao Xu, Qiuzhi Lin, Xing Wang, Ruilin Luo, Chufan Shi, Siheng Li,
Yujiu Yang, and Zhaopeng Tu. Critical tokens matter: Token-level contrastive estimation enhances
llm’s reasoning capability, 2025. URL https://arxiv.org/abs/2411.19943.

Vadim Liventsev, Anastasiia Grishina, Aki Hirma, and Leon Moonen. Fully autonomous program-
ming with large language models. In Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 1146-1155, 2023.

Rohin Manvi, Anikait Singh, and Stefano Ermon. Adaptive inference-time compute: LIms can predict
if they can do better, even mid-generation. arXiv preprint arXiv:2410.02725, 2024.

Harsha Nori, Naoto Usuyama, Nicholas King, Scott Mayer McKinney, Xavier Fernandes, Sheng
Zhang, and Eric Horvitz. From medprompt to ol: Exploration of run-time strategies for medical
challenge problems and beyond, 2024. URL https://arxiv.org/abs/2411.03590.

Giambeattista Parascandolo, Lars Buesing, Josh Merel, Leonard Hasenclever, John Aslanides, Jes-
sica B Hamrick, Nicolas Heess, Alexander Neitz, and Theophane Weber. Divide-and-conquer
monte carlo tree search for goal-directed planning. arXiv preprint arXiv:2004.11410, 2020.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468-475, 2024.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann
Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot? chain-of-
thought helps mainly on math and symbolic reasoning, 2024. URL https://arxiv.org/
abs/2409.12183.

Evan Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, Will Song, Vaskar Nath, Ziwen Han,
Sean Hendryx, Summer Yue, and Hugh Zhang. Planning in natural language improves llm search
for code generation. arXiv preprint arXiv:2409.03733, 2024a.

Evan Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, Will Song, Vaskar Nath, Ziwen Han,
Sean Hendryx, Summer Yue, and Hugh Zhang. Planning in natural language improves LLM search
for code generation. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=48WAZhwHHw.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9426-9439, 2024b.

Xuezhi Wang and Denny Zhou. Chain-of-thought reasoning without prompting, 2024. URL
https://arxiv.org/abs/2402.10200.

12

https://arxiv.org/abs/2411.19943
https://arxiv.org/abs/2411.03590
https://arxiv.org/abs/2409.12183
https://arxiv.org/abs/2409.12183
https://openreview.net/forum?id=48WAZhwHHw
https://arxiv.org/abs/2402.10200

Under review as a conference paper at ICLR 2025

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023a. URL
https://openreview.net/forum?id=1PLINIMMrw.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In International Conference on Learning Representations, 2023b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. NeurIPS, 35:
24824-24837, 2022.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws: An
empirical analysis of compute-optimal inference for problem-solving with language models, 2024.
URL https://arxiv.org/abs/2408.00724.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and Michael
Xie. Self-evaluation guided beam search for reasoning. Advances in Neural Information Processing
Systems, 36, 2024.

Wei Xiong, Hanning Zhang, Nan Jiang, and Tong Zhang. An implementation of generative prm.
https://github.com/RLHFlow/RLHF-Reward-Modeling, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Eric Zelikman, Qian Huang, Gabriel Poesia, Noah Goodman, and Nick Haber. Parsel: Algorithmic
reasoning with language models by composing decompositions. Advances in Neural Information
Processing Systems, 36:31466-31523, 2023.

Zhiyuan Zeng, Qinyuan Cheng, Zhangyue Yin, Bo Wang, Shimin Li, Yunhua Zhou, Qipeng Guo,
Xuanjing Huang, and Xipeng Qiu. Scaling of search and learning: A roadmap to reproduce ol from
reinforcement learning perspective, 2024. URL https://arxiv.org/abs/2412.14135.

Janis Zenkner, Lukas Dierkes, Tobias Sesterhenn, and Chrisitan Bartelt. Abstractbeam: Enhancing
bottom-up program synthesis using library learning. arXiv preprint arXiv:2405.17514,2024.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction, 2024. URL https://arxiv.
org/abs/2408.15240.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging 1lm-as-a-judge with mt-bench and chatbot arena, 2023. URL https://arxiv.org/
abs/2306.05685.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models. I[CML, 2024.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning
in large language models. arXiv preprint arXiv:2205.10625, 2022.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, et al. Least-to-most prompting enables complex
reasoning in large language models. In International Conference on Learning Representations,
2023.

13

https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2408.00724
https://github.com/RLHFlow/RLHF-Reward-Modeling
https://arxiv.org/abs/2412.14135
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
77
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
41
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

14

Under review as a conference paper at ICLR 2025

A CODE IMPLEMENTATION OF DISC

Python implementation of DISC

def dynamic_decomposition(problem, model, reward model, split_str, complete_solution, fraction,
solution_budget, split_metric, stop_threshold=-float ("inf"), stop_sum score=1.0, stop_ if solved=
False,):

nun

Decomposes the solution using a dynamic binary search approach

A

problem (Problem): The problel solve

model (Model): The model to use generation
reward model (function): The reward model to use for
it_str (function): The function to use for splitting a string

1 solution (function): The function to use for completing a solution

o)
Hh O

fraction (float): The fraction to split the strin

solution_budget (int): The maximum number of solutions to generate
split_metric (fu : The metric to use for splitting

stop_t hold (fl : The threshold to stop splitting

stop_sum _score (float): The sum score to stop generating completions
stop_if solved (bool): Whether to stop if the problem is solved

nun

Initialize results and decomposition steps
decomp_return = {
"generated solutions": [],
"decomposition": []

}

while len(decomp_return["generated solutions"]) < solution budget:
Combine all previous steps into intermediate solution
intermediate_solution = "".join([step["step_str"] for step in decomp_return["decomposition"]])
new_scores = []
best_solution = None
best_completion = None
best_score = —float ("inf")
sum_score = 0.0

1) Generate completions until we generate enough samples to estimate the split metric
while sum _score < stop_sum score:
proposed_completion = complete_solution(problem, intermediate solution, model)
proposed_solution = intermediate solution + proposed completion
decomp_return|["generated solutions"] .append (proposed_solution)

Update scores

proposed_score = reward model (proposed_solution)
new_scores.append (proposed_score)

sum_score += proposed_score

Track the best solution

if proposed_score > best_score:
best_solution = proposed _solution
best_score = proposed_score
best_completion = proposed completion

Stop early if problem is solved

if stop if solved and proposed score >= 1.0:
decomp_return|"decomposition"] .append({"step_str": proposed completion})
return decomp_return

new_metric = split_metric(new_scores)
last_metric = decomp_return["decomposition"] [-1] ["metric"] if decomp_return["decomposition"]
else None

Determine the split target. We always split the step with the highest metric

is split_new step = last_metric is None or new_metric >= last_metric

split_target = decomp_return["decomposition"] [-1] ["step_str"] if not is_split_new_step else
best_completion

3) Attempt to split the tar

split_result = split_str(split_target, fraction)

if not split result: # If we can’t split the target, we’re done
decomp_return|["decomposition"] .append({"step_str": best_completion, "metric": new_metric})
return decomp_return

Update decomposition based on split
partl, part2 = split_result
if is_split_new_step:
decomp_return["decomposition"] .append({"step_str": partl, "metric": new_metric})
Stopping condition based on threshold
if new_metric < stop_threshold:
decomp_return|"decomposition"] .append({"step_str": part2})
return decomp_return
else:
decomp_return["decomposition"] [-1] = {"step_str": partl, "metric": last_metric}

15

return decomp_return

Under review as a conference paper at ICLR 2025

B PSEUDOCODE FOR DISC

Algorithm 1 Dynamic Decomposition

Input: Problem instance x, reward model r, partition function /, LLM policy model 7,
partition fraction «v, solution budget /3, priority metric /., metric stopping precision ¢, sampling
stopping threshold o, is inference mode biyference Output: Final decomposition /) Initialize

<+ {generated_solutions : &, decomposition : @} # Decompose the solution recursively
until we reach the desired precision ¢ or run out of budget /3 |).generated_solutions| <

Yintermediate — Concatenate([step.step_str V step € /).decomposition])
— I

beSt'!/ﬁmll < NOIIC, beSt-ycompletion — NOIIC, &~ —00

Step 1:

Generate completions until we have enough samples to estimate the splitting metric. Here we use

a geometric Sampling distribution Sum() < Yecompletion — ('|'/1«'7 yimermediute) Yproposed —

Yintermediate @:Ucmnplclion Append Yproposed to .generated_solutions — (Uproposcd) Append

to > beStV]/ﬁnul <~ Yproposed s beStUcmnplclion — Yecompletion —

binference and = 1.0 Append {step_str : Ycompletion } t0 /).decomposition Return

Step 2: Compute splitting

metric 2., <+ /i) Zlas < D.decomposition[—1].z if 1.decomposition # & else —

oo # Step 3: Split the step with the higher metric bgplic new step = Znew = Zlast Ytareet step <

best. Yeompletion I Psplit new step €lse /).decomposition[—1].step_str i1, y> <= [(Yiaroet siep,) Y1 =

None or 7> = None Append {step_str : Jcompletion, Metric : z,., } to /).decomposition Return

Dypiit new step Append {step_str : y;, metric : ., } to

.decomposition Znew < O Append {step_str : 12} to [).decomposition
Return
.decomposition[—1] < {step_str : y;, metric : =, } Return

16

Under review as a conference paper at ICLR 2025

C RELATED WORK

Inference scaling. Inference scaling has emerged as a dominant paradigm, driven by the introduction
of ol- and rl-like chain-of-thought reasoning models (Snell et al., 2024; Brown et al., 2024; Manvi
et al., 2024; Leea et al., 2025). Several works examine the trade-off between inference compute
and training compute (Guan et al., 2025; Chen et al., 2024b). LLM inference often relies on
decomposing complex problems into intermediate reasoning steps, as seen in chain-of-thought (CoT)
prompting (Wei et al., 2022; Sprague et al., 2024; Wang & Zhou, 2024) and its variants (Kojima
et al., 2022; Zhou et al., 2023; Wang et al., 2023b; Li et al., 2023). We extend inference scaling by
introducing a new approach for adaptive compute allocation (Manvi et al., 2024).

LLM reasoning and code generation. LLM reasoning and code generation are central tasks
for inference scaling. Evolutionary inference scaling methods have been explored in program
generation (Liventsev et al., 2023; Chen et al., 2023a; Romera-Paredes et al., 2024; Lehman et al.,
2023; Hemberg et al., 2024). Domain-specific decomposition strategies have been applied in code
generation, such as function-based decomposition (Chen et al., 2024a; Zenkner et al., 2024; Levin
et al., 2025). More broadly, decomposition often involves prompting LLMs to generate subtask
completions (Hernandez-Gutiérrez et al., 2024; Khot et al., 2022; Dua et al., 2022), which differs
from methods that refine a single LLM generation.

Reinforcement learning and Monte Carlo methods. Unlike standard RL, our setting resembles
a search problem where the goal is to identify the single highest-reward path. Cazenave (2009)
demonstrated that nested Monte Carlo search can accelerate optimal pathfinding. Under the bandit
setting, this can be formulated as identifying the arm with the highest maximum reward rather than
the highest mean reward (Cicirello & Smith, 2005; Carpentier & Valko, 2014).

17

Under review as a conference paper at ICLR 2025

D ABLATION STUDIES

D.1 ABLATION ON TEMPERATURE

We conduct an ablation study to analyze the effects of temperature on DISC and BoN. Temperature
controls the randomness of token sampling in autoregressive models, influencing both exploration
and consistency. Higher temperatures encourage more diverse outputs, whereas lower temperatures
yield more deterministic generations. To examine its impact, we evaluate DISC and BoN on a
100-problem subset of APPS (the first 100 problems) using gpt-4o0-mini.

Fig. 11 presents the Pass@token scaling curve for DISC across different temperatures. The results
indicate that lower temperatures lead to improved performance, as DISC benefits from more deter-
ministic step selection. Unlike BoN, which relies on broad solution sampling, DISC dynamically
refines steps, making stable token probabilities advantageous.

Fig. 12 illustrates the frequency of actual partitions made by DISC at different temperatures. As
temperature increases, the number of partitions fluctuates more, suggesting that high temperature
introduces instability in step selection. Lower temperatures provide more structured decomposition,
reducing unnecessary subdivisions.

In Fig. 13, we visualize the mean reward per step. The trend shows a linear increase in reward as
step number grows, demonstrating that deeper decomposition results in progressively better solutions.
This reinforces that DISC effectively allocates computation towards refining difficult steps.

The mean standard deviation per step is shown in Fig. 14. Lower temperatures yield lower standard
deviations, confirming that DISC benefits from reduced variability in sample quality. This consistency
allows for more reliable prioritization of difficult steps, enhancing overall inference efficiency.

For comparison, Fig. 16 and Fig. 15 display Pass@token and Pass @k scaling curves for BoN across
different temperatures. Unlike DISC, BoN achieves peak performance at a temperature around
0.6-0.8, balancing diversity and consistency. Higher temperatures increase exploration but degrade
precision, while lower temperatures hinder sample diversity, reducing the probability of obtaining
high-quality completions.

These findings highlight the fundamental difference between DISC and BoN: DISC benefits from
lower variance and stable decomposition, while BoN relies on broader exploration facilitated by
moderate temperature settings. As a result, optimal temperature settings differ significantly between
these methods, with DISC favoring deterministic sampling and BoN requiring a balance between
diversity and coherence.

Pass@token scaling curves

=

9

S 0.55

% 0.50)

go.

g ‘J.{/r/ —— DISC-0.2temp

£ 0.45 1 ~ —— DISC-0.4temp

g 4 —— DISC-0.6temp

S 0.40 —— DISC-0.8temp

‘g 3 DISC-1.0temp

g 0.35 11 DISC-1.2temp
5000 10000 15000 20000

Number of output tokens used (tokens)

Figure 11: Pass@token scaling curve for different temperatures on APPS using gpt-40-mini.
The lower the temperature, the stronger the DISC performance.

18

Under review as a conference paper at ICLR 2025

Frequency of (actual) partitons

—— DISC-0.2temp
> 0.5 - —— DISC-0.4temp
g —— DISC-0.6temp
3 0.4+ —— DISC-0.8temp
g 0 DISC-1.0temp
‘E DISC-1.2temp
202+
£
S 0.1

S O
0.0 T —
2 4 6 8 10 12 14

Number of partitions

Figure 12: Partition frequency of DISC with different temperatures on APPS using gpt-40-mini

Mean reward per step

0.9
—— DISC-0.2temp

0sd ™ DISC-0.4temp {
o °] — DpIsc-0.6temp /
H —— DISC-0.8temp
£ 071 DISC-1.0temp
E DISC-1.2temp
© 0.6
= _;/{

0.5 P <

2 4 6 8 10 12 14

Step number

Figure 13: Mean reward per step of DISC with different temperatures on APPS using gpt-4o-
mini. The mean reward scales linearly with step number.

D.2 ABLATION ON PRIORITY METRIC h

We analyze the effect of different priority metrics on DISC performance. We evaluate DISC using
the first 200 competition-level APPS problems with gpt-40-mini, setting the temperature to 0.8 for all
experiments. The priority metric determines which steps are refined during recursive decomposition,
impacting both efficiency and final solution quality.

Fig. 17 presents a token-level comparison of different priority metrics. Both DISC-Q and DISC-Z
significantly outperform random selection and their inverse counterparts, demonstrating the impor-
tance of prioritizing high-value steps.

Fig. 18 illustrates the partition frequency under different priority metrics. We observe that effective
metrics such as DISC-Q and DISC-Z lead to fewer, more meaningful partitions, whereas suboptimal
strategies result in excessive, redundant partitioning.

The relationship between mean reward and step number is shown in Fig. 19. All tested metrics exhibit
a strong correlation between increasing step depth and mean reward, indicating that decomposition
progressively refines solutions. However, DISC-Q and DISC-Z achieve higher reward gains at earlier
stages, suggesting that they prioritize the most impactful refinements.

Finally, Fig. 20 reports the standard deviation of rewards per step. Lower standard deviation suggests
more stable solution quality, a property that DISC-Q and DISC-Z maintain better than random
selection methods. This highlights their effectiveness in identifying and refining challenging steps
efficiently.

Overall, these results confirm that choosing an appropriate priority metric is crucial for DISC. While
DISC-Q and DISC-Z consistently enhance inference efficiency and quality, random or inverse
strategies lead to poorer performance due to misallocation of compute resources.

19

Under review as a conference paper at ICLR 2025

Standard deviation of rewards per step

DISC-0.2temp
DISC-0.4temp
DISC-0.6temp
DISC-0.8temp
DISC-1.0temp
DISC-1.2temp

4

N

%
L

Reward std
o
=
o

o

o

a
L

0.00 1

6 8 10 12 14
Step number

N A
IS

Figure 14: Mean standard deviation per step of DISC with different temperatures on APPS
using gpt-4o-mini. Lower temperature means lower average standard deviation.

Pass@k scaling curves

—~ 0.551 e — N —t
©
——vv—>

@ 0.50] ry =
& (e
= 0.45 A
(%)
g —&— BoN-0.2temp
& 0.40 1
8] —&— BoN-0.4temp
5 0.35 —e— BoN-0.6temp
g —o— BoN-0.8temp
g 0.30 A BoN-1.0temp
Q- -

0.25 - BoN-1.2temp

0 5 10 15 20 25

Number of solutions generated (k)

Figure 15: Pass@k scaling curve for different temperatures on APPS using gpt-40-mini for
BoN. A temperature around 0.6-0.8 leads to the best performance and balance between diversity and
consistency.

D.3 MODEL ABLATION

We investigate how different LLMs perform when used with DISC on 200 competition-level APPS
problems, given a sample budget of 30. The groundtruth reward model was used to evaluate
correctness, and all models were set to a temperature of 0.8. Due to the challenging nature of the
benchmark, open-source models struggled to achieve strong performance independently. However,
when paired with DISC, their performance significantly improved.

Figure 21 presents the Pass@token scaling curve for open-source models using DISC. The results
demonstrate that DISC substantially enhances the capabilities of these models, closing the gap
between them and proprietary alternatives.

Figure 22 visualizes the partition frequency of DISC with different open-source models. Compared
to their standalone performance, the use of DISC led to more structured and effective decomposition,
highlighting its adaptability to different architectures.

The mean reward per step is shown in Figure 23. Similar to prior findings, we observe that deeper
decomposition leads to increasingly higher rewards. Notably, even lower-capacity models benefit
from DISC ’s ability to iteratively refine their solutions.

Finally, Figure 24 presents the mean standard deviation per step. With DISC, the variance in
performance is significantly reduced, resulting in more stable and reliable inference.

Overall, these findings emphasize that DISC is a robust framework capable of enhancing inference
performance across diverse LLMs, particularly those with limited standalone capabilities.

20

Under review as a conference paper at ICLR 2025

Pass@token scaling curves

§ 0.55 -

X ———
2 P i —
© 0.50

w

©

e

= 0.45 1 —— BoN-0.2temp
g —— BoN-0.4temp
o 0.40 4 —— BoN-0.6temp
.g —— BoN-0.8temp
s 0.35 1 BoN-1.0temp
o BoN-1.2temp
% 0.30

2500 5000 7500 100001250015000175002000022500
Number of output tokens used (tokens)

Figure 16: Pass@token scaling curve for different temperatures on APPS using gpt-40-mini for

BoN. A temperature around 0.6-0.8 leads to the best performance and balance between diversity and
consistency.

Pass@token scaling for different priority metrics

0.55 A
Y
] ﬁ—é
r’,—/

Proportion correct (Pass@token)

0.45 4 —— DISC-R
—— DISC-Q
0.40 1 —— DISC-Z
DISC-negQ
DISC-negZ
0.35

T T T T T T T
2000 4000 6000 8000 10000 12000 14000
Number of output tokens used (tokens)

Figure 17: Token level comparison of different priority metrics on DISC in the APPS setting
with gpt-4o-mini. Both Q and Z based priority metrics perform well.

D.4 ABLATION ON PARTITION FRACTION «

We include some more analysis on the partition fraction here.

21

Under review as a conference paper at ICLR 2025

Frequency of (actual) partitons

—— DISC-R
> 051 —— DISC-Q
= — DISC-Z
=] DISC-negQ
o
@ 0.3 DISC-negZ
&
C
.2 0.2
=
=
S \\\\
=\
0.0 1 e————e
10° 10!

Number of partitions

Figure 18: Partition frequency of DISC with different priority metrics on APPS using gpt-4o-
mini

Mean reward per step

—— DISC-R
0.84 — DISC-Q L
—— DISC-Z A
©
5 DISC-negQ //fg(
z 0.71 DISC-negZ /,—-—-
L
5 0.6 7
[} 7
= /
0.5 - /14’
N o
0.4 ; i ; ; ; . .
2 a4 6 8 10 12 14

Step number

Figure 19: Mean reward per step of DISC with different priority metrics on APPS using
gpt-4o-mini. All metrics display strong correlation between step depth and the mean reward.

E EXPERIMENTAL RESULTS EXTENDED

E.1 APPS

22

Under review as a conference paper at ICLR 2025

Standard deviation of rewards per step

0.12 1
0.10 1
0.08 1

Reward std

0.06 A

0.04{ — DISCQ
—— DISC-Z

0.02 A DISC-negQ

0.00 DISC-negZ

2 4 6 8 10 12 14
Step number

Figure 20: Mean standard deviation per step of DISC with different priority metrics on APPS
using gpt-4o-mini. All metrics display correlation between step depth and the standard deviation.

Token scaling for open source models

0.05 A

0.04 4

0.03 4

0.02 —— Mistral-7B-v0.3
Llama-3.1-8B

Proportion correct (Pass@token)

5000 10000 15000 20000 25000
Number of output tokens used (tokens)

Figure 21: Pass@token scaling curve for open source models with DISC on APPS. DISC also
demonstrates strong performance gains with open source models.

E.2 ADDITIONAL EXAMPLES
Below is another computed decomposition for the same problem as the one shown in the main text:

Let = be the length and y be the width of the rectangle. Since the perimeter is 24
inches, we have 2x + 2y =24 = x4+ y = 12. we must maximize the
area zy subject to this constraint.

We use the method of Lagrange multipliers. The Lagrangian is

L(xz,y,\) =2y — NMa+y—12).
We differentiate with respect to x, i, and A to obtain
oc oc

oL
B 3y z— =0, T4y 0

-A=0
Y) N

We findthatz =y = A\, soz =y = % = 6. Therefore, the maximum area of the

rectangle is 6 - 6 = .

23

Under review as a conference paper at ICLR 2025

Frequency of (actual) partitons

—— Mistral-7B-v0.3
Llama-3.1-8B

o
)
L

°
IS
L

Partition frequency
o o
N w

=4
-
L

o
o
L

2 3 4 5
Number of partitions

-
o

Figure 22: Partition frequency of DISC with open source models on APPS

Mean reward per step

047 Mistral-7B-v0.3
Llama-3.1-8B

- 0.3
—_
©
2
2 0.2
c
©
Q
Z O.l'

0.0 1

1 2 3 4 5 6 7 8 9

Step number

Figure 23: Mean reward per step of DISC with open source models on APPS

E.3 APPS WITH SELF-GENERATED VALIDATION TESTS

We examine DISC performance on APPS when using self-generated validation tests. All methods
utilized the same set of self-generated validation tests to ensure fair comparisons. Each problem
received 5-10 validation tests, with the exact number determined dynamically by the LLM. We
evaluated a subset of 100 APPS problems, generating samples until the sample budget was exhausted
or a correct solution was found.

Figure 27 illustrates the Pass@token scaling curve, showing that DISC maintains strong scaling
performance in this setting, though at a slightly lower rate compared to ground-truth verification.

Figure 28 and Figure 29 compare actual and planned partition frequencies, respectively. The results
indicate that DISC continues to make structured decompositions even with self-generated validation,
preserving its efficiency.

The mean reward per step, shown in Figure 30, follows a similar trend as in previous experiments,
reinforcing that DISC effectively allocates compute resources for iterative refinement.

Lastly, Figure 31 demonstrates that DISC maintains lower standard deviations in performance,
indicating stable quality improvements across steps.

24

Under review as a conference paper at ICLR 2025

Standard deviation of rewards per step

—— Mistral-7B-v0.3
Llama-3.1-8B

d

e ©
NN
o w

Reward st
o
=
wv

°© o o
o o =
o w o

1 2 3 4 5 6 7 8 9
Step number

Figure 24: Mean standard deviation per step of DISC with open source models on APPS

Ablation on partition fraction

=

2055 P

s =

% 0.50 —

©

S

5 0.45 _,_/

S of —— DISC alpha=0.10

o 0.40 1 —— DISC alpha=0.15

.8 03 —— DISC alpha=0.20

5§ 5 DISC alpha=0.25

;) DISC alpha=0.

2030 SC alpha=0.30
0 5000 10000 15000 20000

Number of output tokens used (tokens)

Figure 25: Token level comparison of different DISC splitting fraction & on APPS competition
level. 0.15 < a < 0.25 seems to be optimal.

E.4 MATHS500

Completions for MATHS500 include both the reasoning steps and the final answer. Since MATH500
contains more problems than APPS200 and MATH problems tend to be relatively easier, solution
quality saturates quickly. Therefore, we use a lower sample budget of 10 for these experiments.

Figure 32 presents the Pass @k performance for different decomposition methods on MATH500. We
observe that all decomposition-based approaches achieve similar Pass @k performance, consistently
outperforming BoN. This indicates that the structured nature of MATH problems allows multiple
decomposition strategies to be effective.

Despite similar Pass@k results, the true advantage of DISC lies in its token efficiency, as shown
in Figure 5. DISC significantly reduces the number of tokens required to reach correct solutions
compared to alternative methods, demonstrating its ability to allocate computational effort efficiently
in mathematical reasoning tasks.

Additionally, we analyze the partitioning behavior of DISC on MATHS500. Figure 33 illustrates the
actual partition frequency for different decomposition methods. The planned partitioning behavior,
shown in Figure 34, further highlights how DISC effectively balances exploration and refinement.

Finally, we present the mean standard deviation per step in Figure 35. Lower variance suggests that
DISC produces more stable and reliable decompositions over multiple runs, reinforcing its robustness
in both mathematical and program synthesis domains.

25

Under review as a conference paper at ICLR 2025

Frequency of sampling different steps

o
c — DISC
% 0.4+ —— TokenSplit
g LineSplit
< 03
S0
£
a
£021 |
a
9 0.1+ \
8 = —
Z 0.0
2 4 6 8 10 12 14

Step number

Figure 26: Sampling frequency of each step averaged over the problems on APPS with gpt-4o-
mini. DISC seems to have a preferences for spending more compute on earlier found steps.

Scaling curves by output tokens

0.525 4 —

<

(7]

X

®

0.500 1 ,

K — 1/

< 0.475

k9]

g 0.450 T

o ’// —— DISC
504251, —— LineSplit
£ |)
8 0.400 - L TokenSplit
<] BoN

a

o
W
N
a

2000 3000 4000 5000 6000 7000 8000 9000
Number of output tokens used (tokens)

Figure 27: Token level comparison of different decomposition methods on APPS with gpt-4o-
mini and self-generated validation tests. DISC still scales better than other methods in this setting,
albeit at a lower rate.

E.5 LivECODEBENCH

We evaluate DISC on LiveCodeBench, a benchmark designed for code generation tasks with a focus
on real-world software development challenges. LiveCodeBench presents a unique set of problems
requiring both reasoning and structured decomposition, making it a suitable testbed for evaluating
DISC’s ability to refine and improve intermediate steps.

Figure 36 shows the Pass @k comparison of different decomposition methods on LiveCodeBench.
DISC consistently scales better than other decomposition methods, highlighting its ability to refine
intermediate steps more effectively in complex coding scenarios.

Figure 37 illustrates the observed partition frequency of different decomposition methods. The struc-
tured approach of DISC results in well-balanced decomposition across steps, reducing unnecessary
partitioning while maintaining sufficient granularity for improved solution refinement.

Figure 38 displays the planned partition frequency across methods. DISC dynamically determines the
most effective partitions based on the evolving problem state, leading to more targeted and efficient
decompositions.

Finally, Figure 39 presents the mean standard deviation per step across decomposition methods. Lower
variance in DISC suggests that it produces more stable and reliable decompositions, reinforcing its
robustness for solving LiveCodeBench problems.

26

Under review as a conference paper at ICLR 2025

Frequency of (actual) partitons

0.5
—— DISC

> —— LineSplit
204 TokenSplit
9]
S
T 0.3 A
@
=]
=
=
c 0.1
o

0.0 N~ —— —

2 4 6 8 10 12 14

Number of partitions

Figure 28: Actual partition frequency of different decomposition methods on APPS with gpt-4o-
mini and self-generated validation tests.

Frequency of (planned) partitons

—— DISC

v.>)' 0.4 —— LineSplit
5 TokenSplit
o 0.3 1
= 0.
9]
=
c 0.2 A
e
=
£ 0.1
@©
o

0.0 4 ~ e E—— — —

10° 10t 102 103

Number of partitions

Figure 29: Planned partition frequency of different decomposition methods on APPS with
gpt-4o0-mini and self-generated validation tests.

F SEARCH AND SCALING

F.1 MONTE CARLO TREE SEARCH (MCTS)

Monte Carlo Tree Search (MCTS) is a widely used algorithm for sequential decision-making in large
search spaces, particularly in applications such as game playing, planning, and inference scaling. The
algorithm builds a search tree incrementally by simulating different sequences of actions and updating
estimates of state quality. A key advantage of MCTS is its ability to balance exploration (discovering
new states) and exploitation (refining promising ones) using a data-driven search process. The MCTS
pipeline consists of four fundamental steps: selection, expansion, simulation, and backpropagation.

F.1.1 SELECTION

Starting from the root node representing the current state s, MCTS iteratively traverses the search
tree by selecting child nodes based on a selection policy. The most commonly used selection criterion
is the Upper Confidence Bound for Trees (UCT), which balances exploration and exploitation:

UCT(s,d) = Q(s,d) +c ()

where Q (s, d) represents the estimated value of selecting action d from state s, n(s, d) is the visit
count for this action, and c is a hyperparameter controlling the trade-off between exploring new
actions and favoring those with high past rewards.

27

Under review as a conference paper at ICLR 2025

Mean reward per step

0.70 ~
0.65 /\ <
- ‘
©
0.60 -
E’ /\\
c 0.55 1
g A
= 0.501 — DISC
—— LineSplit
0.45 1 TokenSplit

2 4 6 8 10 12 14
Step number

Figure 30: Mean reward per step of different decomposition methods on APPS with gpt-4o-mini
and self-generated validation tests.

Standard deviation of rewards per step

0.14

0.10 A

0.08

0.06 4 —— DISC
—— LineSplit

0.04 A TokenSlet

Reward std

2
Step number

Figure 31: Mean standard deviation different decomposition methods on APPS with gpt-40-mini
and self-generated validation tests.

F.1.2 EXPANSION

Once a leaf node (a previously unexplored state) is reached, the algorithm expands the tree by adding
one or more new nodes. These new nodes represent potential future states s’ generated by sampling
an action d from a predefined policy. This step broadens the search space and allows MCTS to
evaluate new possibilities.

F.1.3 SIMULATION

Following expansion, the algorithm conducts a simulation (or rollout) from the newly added state.
This step involves generating a sequence of actions according to a predefined policy until reaching a
terminal state or an evaluation horizon. The outcome of the simulation, denoted as v(s’), provides an
estimate of the quality of the new state. Depending on the application, this could represent a game
result, an optimization score, or an inference accuracy metric.

F.1.4 BACKPROPAGATION

The final step involves propagating the results of the simulation back up the search tree to refine the
estimated values of prior states and actions. Each node along the trajectory 7 = [sg, dy, Sa, ..., S_1]
is updated iteratively:

Q(si, dit) T — (1 — a,)Q(ss,dig1)® + ap, max{Q(ss, diy1) P, Q(sit1, diy2) VY, 2)

where o, is a learning rate that depends on the visit count, and the maximum function ensures that
the best-performing trajectories are emphasized.

MCTS has been widely adopted in inference scaling techniques due to its ability to efficiently
allocate computational resources, focusing more on high-reward states while avoiding unnecessary

28

Under review as a conference paper at ICLR 2025

Pass@k scaling curves on MATH

. —e— DISC /

—@— TokenSplit o——Y—0
0.84 7 LineSplit
BoN

o
©
o

0.82

0.80 -

0.78 1 7

Proportion correct (Pass@k)

2 4 6 8 10
Number of solutions generated (k)

Figure 32: Pass@k performance comparison for different decomposition methods on MATH500.
DISC consistently outperforms BoN across different sampling budgets.

Frequency of (actual) partitons

0.8 —— DISC
5, —— TokenSplit
c LineSplit
D 0.6
=]
o
(7]
& 0.4
c 0.
©
'J;J Y,
bl]
o 0.2 /
[an

0.0 1 s S S

0 1 2 3 4 5

Number of partitions

Figure 33: Observed partition frequency of different decomposition methods on MATHS500.
DISC effectively segments problems into meaningful subcomponents.

exploration of unpromising regions. In later sections, we explore how MCTS can be combined with
dynamic decomposition to further optimize inference scaling.

F.1.5 COMBINING DYNAMIC DECOMPOSITION WITH MCTS

MCTS can be enhanced by integrating dynamic decomposition, where each node in the search tree
represents a decomposition of the problem into steps. Instead of treating states as atomic decisions,
we recursively decompose reasoning steps, dynamically adjusting granularity based on difficulty.

In this framework:

* Each node in the MCTS tree represents a partial decomposition of the problem, with child
nodes corresponding to alternative step partitions.

* Branching occurs by generating candidate next steps using dynamic decomposition, allowing
finer steps for complex regions while maintaining efficiency for simpler ones.

* The selection step prioritizes nodes that represent more promising decompositions, dynami-
cally refining challenging areas through recursive subdivision.

* The backpropagation step ensures that decompositions leading to high-quality solutions are
reinforced, helping the search tree converge toward optimal inference paths.

By integrating dynamic decomposition with MCTS, we efficiently allocate compute to the most
critical reasoning steps, improving inference quality while maintaining computational efficiency.

29

Under review as a conference paper at ICLR 2025

Frequency of (planned) partitons

0.06 - ===.DI5C

> —— TokenSplit

e LineSplit

8 0.04

[on

2

c 0.02

°

B

ﬁ ST

& 0.00 Vi | 1 l
10t 10?2 103

Number of partitions

Figure 34: Planned partitioning strategy of different decomposition methods on MATHS500.
DISC ’s structured approach leads to more efficient problem breakdowns.

Standard deviation of rewards per step

0.12 —— DISC
—— TokenSplit

LineSplit
0.08 1 \
0.06 - .
0.04 1 \\
0.02 A

\\"___
0.00 A

1.0 15 20 25 30 35 40 45 50
Step number

Reward std

Figure 35: Mean standard deviation per step for different decomposition methods on MATHS00.
Lower variance in DISC suggests more stable and reliable problem-solving steps.

F.2 BEAM SEARCH

Beam search is a heuristic search algorithm commonly used in inference tasks where computational
efficiency is a priority. Unlike exhaustive search methods, beam search maintains only the top k
best candidates at each step, making it an effective strategy for structured prediction problems and
sequential decision-making.

At each iteration:

Pass@k scaling curves on LiveCodeBench

0.50 A

=

g) 0.45 A

%]

&

= 0.40

[}

L

5 0.35 1

v

3 0.30 4 —e— DISC

£ —o— BoN

? 0.25 4 —o— TokenSplit

o LineSplit
0.20 + T T T T T T

0 5 10 15 20 25 30

Number of solutions generated (k)

Figure 36: Pass@k performance comparison for different decomposition methods on Live-
CodeBench. DISC consistently outperforms other methods in structured problem refinement.

30

Under review as a conference paper at ICLR 2025

Frequency of (actual) partitons

0.8
— DISC
> —— TokenSplit
£ 0.6 LineSplit
[0}
=}
(o
(0]
& 0.4
C
°
=
£ 0.2
©
[«
0.0 1 — S —
2 4 6 8 10 12 14

Number of partitions

Figure 37: Observed partition frequency of different decomposition methods on LiveCodeBench.
DISC effectively balances problem segmentation while avoiding excessive partitioning.

Frequency of (planned) partitons

0.8
— DISC
> —— TokenSplit
2 0.6 LineSplit
3
o
Loa
c
°
= 0.2
£
©
o
004 - NS VDY
10° 10t 102 103

Number of partitions

Figure 38: Planned partitioning strategy of different decomposition methods on LiveCodeBench.
DISC dynamically adapts its partitioning to optimize search efficiency.

* The algorithm selects the k£ most promising partitions from the previous step based on an
evaluation metric.

» Each selected partition is expanded by generating possible next-step samples.

* The newly generated partitions are ranked, and only the top k candidates are retained for the
next iteration.

* This process continues until a stopping criterion is met, such as reaching a predefined depth
or finding a sufficiently high-quality solution.

Beam search provides a computationally efficient way to explore structured solution spaces while
maintaining high-quality search trajectories. By integrating beam search with dynamic decomposition,
we ensure that inference computation is allocated efficiently, focusing on the most promising reasoning
paths at each step.

F.3 ADDITIONAL RESULTS AND ANALYSIS

Experiments comparing different search methods were conducted on a 100-problem subset of the
APPS dataset (first 100 problems) using GPT-40-mini. All methods used a temperature of 0.2, with
a = 0.15, Q priority metric, and o = 1.0.

Token-level comparison: As shown in Figure 40, MCTS scales best among the tested methods,
demonstrating superior efficiency in identifying promising partitions. Greedy search follows closely,
while beam search exhibits the slowest scaling.

31

Under review as a conference paper at ICLR 2025

Standard deviation of rewards per step

0.30 A
0.25 A /\
20 WA
N W
0.10 A -
—— TokenSplit \/\/ /\

0.05 4 —— DISC
LineSplit

Reward std

0.00 A

25 50 75 100 125 150 17.5
Step number

Figure 39: Mean standard deviation per step for different decomposition methods on Live-
CodeBench. Lower variance in DISC suggests more stable and reliable problem-solving steps.

Partition frequency analysis: Figure 41 reveals that greedy search explores to greater depths within
the same sampling budget. This suggests that greedy search prioritizes deep refinements, whereas
MCTS and beam search balance depth with breadth.

Step variance analysis: Figure 42 illustrates that all search methods display decreasing standard
deviation with increasing search depth. This trend indicates that deeper searches converge towards
stable, high-quality partitions, reinforcing the benefits of dynamic decomposition.

These results highlight the trade-offs between search methods: MCTS offers robust exploration-
exploitation balance, greedy search favors depth-first refinement, and beam search provides a struc-
tured yet computationally constrained approach. The integration of dynamic decomposition further
enhances these search strategies by adaptively allocating computational resources to critical reasoning
steps.

Pass@token for different search methods

@ 0.550 <L

0.425 A —— DISC+Greedy
0.400 1 1 —— DISC+Beam
DISC+MCTS

2500 5000 7500 10000 12500 15000 17500
Number of output tokens used (tokens)

Figure 40: Token level comparison of different decomposition search methods combined with

DISC on APPS with gpt-40-mini. MCTS scales best, followed by greedy search, followed by beam
search.

32

Under review as a conference paper at ICLR 2025

Frequency of (actual) partitons

0.7 —— DISC+Greedy
> 0.6 1 —— DISC+Beam
I DISC+MCTS
@ 0.5 A
=}

2 0.4

£

c 0.3

o \
B~ J

£ 02

©

& 0.1

0.0 ——

100 10!

Number of partitions
Figure 41: Actual partition frequency of different decomposition search methods combined

with DISC on APPS with gpt-4o-mini. Greedy is able to search to higher depths given the same
sampling budget.

Standard deviation of rewards per step

0.15 4 —— DISC+Greedy
—— DISC+Beam
DISC+MCTS
B 0101 /
® \V
= 0.05 1
& \- '*\
0.00 L NN

2 4 6 8 10 12 14 16
Step number

Figure 42: Mean standard deviation of different decomposition search methods combined with

DISC on APPS with gpt-40-mini. All search methods display decreasing standard deviation with
search depth.

33

	Introduction
	Preliminaries
	Problem Setting
	Prior Automatic Decomposition Methods
	Step Sampling
	Inference Scaling Methods and Decomposition

	Methodology
	DISC Algorithm
	Priority Metric
	DISC and Search Methods
	A Motivating Example on DISC-Z
	Example Decomposition

	Experimental Results
	Benchmarks
	Decomposition Comparison
	Decomposition Analysis and Interpretation
	Interaction Between Temperature and DISC
	Self-Generated Validation Tests
	Interaction Between Priority Metric and DISC
	Ablation on Base LLM Model
	Ablation on Partition Fraction
	Search and DISC

	Conclusion
	Code implementation of DISC
	Pseudocode for DISC
	Related Work
	Ablation studies
	Ablation on Temperature
	Ablation on Priority Metric h
	Model Ablation
	Ablation on partition fraction

	Experimental results extended
	APPS
	Additional examples
	APPS with self-generated validation tests
	MATH500
	LiveCodeBench

	Search and scaling
	Monte Carlo Tree Search (MCTS)
	Selection
	Expansion
	Simulation
	Backpropagation
	Combining Dynamic Decomposition with MCTS

	Beam Search
	Additional Results and Analysis

