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ABSTRACT

Unsupervised learning aims to learn meaningful representations from unlabeled
data which can capture its intrinsic structure, that can be transferred to down-
stream tasks. Meta-learning, whose objective is to learn to generalize across tasks
such that the learned model can rapidly adapt to a novel task, shares the spirit
of unsupervised learning in that the both seek to learn more effective and effi-
cient learning procedure than learning from scratch. The fundamental difference
of the two is that the most meta-learning approaches are supervised, assuming
full access to the labels. However, acquiring labeled dataset for meta-training
not only is costly as it requires human efforts in labeling but also limits its ap-
plications to pre-defined task distributions. In this paper, we propose a princi-
pled unsupervised meta-learning model, namely Meta-GMVAE, based on Varia-
tional Autoencoder (VAE) and set-level variational inference. Moreover, we in-
troduce a mixture of Gaussian (GMM) prior, assuming that each modality repre-
sents each class-concept in a randomly sampled episode, which we optimize with
Expectation-Maximization (EM). Then, the learned model can be used for down-
stream few-shot classification tasks, where we obtain task-specific parameters by
performing semi-supervised EM on the latent representations of the support and
query set, and predict labels of the query set by computing aggregated posteriors.
We validate our model on Omniglot and Mini-ImageNet datasets by evaluating its
performance on downstream few-shot classification tasks. The results show that
our model obtains impressive performance gains over existing unsupervised meta-
learning baselines, even outperforming supervised MAML on a certain setting.

1 INTRODUCTION

Unsupervised learning is one of the most fundamental and challenging problems in machine learn-
ing, due to the absence of target labels to guide the learning process. Thanks to the enormous
research efforts, there now exist many unsupervised learning methods that have shown promising
results on real-world domains, including image recognition (Le, 2013) and natural language un-
derstanding (Ramachandran et al., 2017). The essential goal of unsupervised learning is obtaining
meaningful feature representations that best characterize the data, which can be later utilized to im-
prove the performance of the downstream tasks, by training a supervised task-specific model on
the top of the learned representations (Reed et al., 2014; Cheung et al., 2015; Chen et al., 2016) or
fine-tuning the entire pre-trained models (Erhan et al., 2010).

Meta-learning, whose objective is to learn general knowledge across diverse tasks, such that the
learned model can rapidly adapt to novel tasks, shares the spirit of unsupervised learning in that
both seek more efficient and effective learning procedure over learning from scratch. However,
the essential difference between the two is that most meta-learning approaches have been built on
the supervised learning scheme, and require human-crafted task distributions to be applied in few-
shot classification. Acquiring labeled dataset for meta-training may require a massive amount of
human efforts, and more importantly, meta-learning limits its applications to the pre-defined task
distributions (e.g. classification of specific set of classes).

Two recent works have proposed unsupervised meta-learning that can bridge the gap between unsu-
pervised learning and meta-learning by focusing on constructing supervised tasks with pseudo-labels
from the unlabeled data. To do so, CACTUs (Hsu et al., 2019) clusters data in the embedding space
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Figure 1: During meta-training, Meta-GMVAE learns multi-modal latent space that can best explain the unla-
beled data using EM algorithm. At meta-test time, we use semi-supervised EM to map both the support (labeled
data) and queries (unlabeled data) to each mode learned during meta-training.

learned with several unsupervised learning methods, while UMTRA (Khodadadeh et al., 2019) as-
sumed that each randomly drawn sample represents a different class and augmented each pseudo-
class with data augmentation (Cubuk et al., 2018). After constructing the meta-training dataset with
such heuristics, they simply apply supervised meta-learning algorithms as usual. Despite the suc-
cess of the existing unsupervised meta-learning methods, they are fundamentally limited, since 1)
they only consider unsupervised learning for heuristic pseudo-labeling of unlabeled data, and 2) the
two-stage approach makes it impossible to recover from incorrect pseudo-class assignment when
learning the unsupervised representation space.

In this paper, we propose a principled unsupervised meta-learning model based on Variational Au-
toencoder (VAE) (Kingma & Welling, 2014) and set-level variational inference using self-attention
(Vaswani et al., 2017). Moreover, we introduce multi-modal prior distributions, a mixture of Gaus-
sians (GMM), assuming that each modality represents each class-concept in any given tasks. Then
the parameter of GMM is optimized by running Expectation-Maximization (EM) on the observations
sampled from the set-dependent variational posterior. In this framework, however, there is no guar-
antee that each modality obtained from EM algorithm corresponds to a label. To realize modality as
label, we deploy semi-supervised EM at meta-test time, considering the support set and query set as
labeled and unlabeled observations, respectively. We refer to our method as Meta-Gaussian Mixture
Variational Autoencoders (Meta-GMVAE) (See Figure 1 for high-level concept). While our method
can be used as a full generative model for generating the samples (images), the ability to general-
ize to generate samples may not be necessary for capturing the meta-knowledge for non-generative
downstream tasks. Thus, we propose another version of Meta-GMVAE that reconstructs high-level
features learned by unsupervised representation learning approaches (e.g. Chen et al. (2020)).

To investigate the effectiveness of our framework, we run experiments on two benchmark few-
shot image classification datasets, namely Omiglot (Lake et al., 2011) and Mini-Imagenet (Ravi &
Larochelle, 2017). The experimental results show that our Meta-GMVAE obtains impressive per-
formance gains over the relevant unsupervised meta-learning baselines on both datasets, obtaining
even better accuracy than fully supervised MAML (Finn et al., 2017) while utilizing as small as
0.1% of the labeled data on one-shot settings in Omniglot dataset. Moreover, our model can gen-
eralize to classification tasks with different number of ways (classes) without loss of accuracy. Our
contribution is threefold:

• We propose a novel unsupervised meta-learning model, namely Meta-GMVAE, which meta-
learns the set-conditioned prior and posterior network for a VAE. Our Meta-GMVAE is a princi-
pled unsupervised meta-learning method, unlike existing methods on unsupervised meta-learning
that combines heuristic pseudo-labeling with supervised meta-learning.

• We propose to learn the multi-modal structure of a given dataset with the Gaussian mixture prior,
such that it can adapt to a novel dataset via the EM algorithm. This flexible adaptation to a new
task, is not possible with existing methods that propose VAEs with Gaussian mixture priors for
single task learning.

• We show that Meta-GMVAE largely outperforms relevant unsupervised meta-learning baselines
on two benchmark datasets, while obtaining even better performance than a supervised meta-
learning model under a specific setting. We further show that Meta-GMVAE can generalize to
classification tasks with different number of ways (classes).
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2 RELATED WORK

Unsupervised learning Many prior unsupervised learning methods have developed proxy objec-
tives which is either based on reconstruction (Vincent et al., 2010; Higgins et al., 2017), adver-
sarially obtained image fidelity (Radford et al., 2016; Salimans et al., 2016; Donahue et al., 2017;
Dumoulin et al., 2017), disentanglement (Bengio et al., 2013; Reed et al., 2014; Cheung et al., 2015;
Chen et al., 2016; Mathieu et al., 2016; Denton & Birodkar, 2017; Kim & Mnih, 2018; Ding et al.,
2020), clustering (Coates & Ng, 2012; Krähenbühl et al., 2016; Bojanowski & Joulin, 2017; Caron
et al., 2018), or contrastive learning (Chen et al., 2020). In the unsupervised learning literature,
the most relevant work to ours are methods that use Gaussian Mixture priors for variational autoen-
coders. Dilokthanakul et al. (2016); Jiang et al. (2017) consider single task learning and therefore,
the learned prior parameter is fixed after training, and thus cannot adapt to new tasks. CURL (Rao
et al., 2019) learns a network that outputs Gaussian mixture priors over a sequence of tasks for un-
supervised continual learning. However CURL cannot adapt to a new task without training on it,
while our framework can generalize to a new task without any training, via amortized inference with
a dataset (task) encoder. Also, our model does not learn Gaussian mixture priors but rather obtain
them on the fly using the expectation-maximization algorithm.

Meta-learning Meta-learning (Thrun & Pratt, 1998) shares the intuition of unsupervised learning
in that it aims to improve the model performance on an unseen task by leveraging prior knowledge,
rather than learning from scratch. While the literature on meta-learning is vast, we only discuss
relevant existing works for few-shot image classification. Metric-based meta-learning (Koch et al.,
2015; Vinyals et al., 2016; Snell et al., 2017; Oreshkin et al., 2018; Mishra et al., 2018) is one of
the most popular approaches, where it learns to embed the data instances of the same class to be
closer in the shared embedding space. One can measure the distance in the embedding space by
cosine similarity (Vinyals et al., 2016), or Euclidean distance (Snell et al., 2017). On the other
hand, gradient-based meta-learning (Finn et al., 2017; 2018; Li et al., 2017; Lee & Choi, 2018; Ravi
& Beatson, 2019; Flennerhag et al., 2020) aims at learning a global initialization of parameters,
which can rapidly adapt to a novel task with only a few gradient steps. Moreover, some previous
works (Hewitt et al., 2018; Edwards & Storkey, 2017; Garnelo et al., 2018) tackle meta-learning
by modeling the set-dependent variational posterior with a single global latent variable, however,
we model the variational posterior conditioned on each data instances. Moreover, while all of these
works assume supervised learning scenarios where one has access to full labels in meta-training
stage, we focus on unsupervised setting in this paper.

Unsupervised meta-learning One of the main limitations of conventional meta-learning methods is
that their application is strictly limited to the tasks from a pre-defined task distribution. A few works
(Hsu et al., 2019; Khodadadeh et al., 2019) have been proposed to resolve this issue by combining
unsupervised learning with meta-learning. The main idea is to construct meta-training dataset in
an unsupervised manner by leveraging existing supervised meta-learning models. CACTUs (Hsu
et al., 2019) deploy several deep metric learning (Berthelot et al., 2019; Donahue et al., 2017; Caron
et al., 2018; Chen et al., 2016) to episodically cluster the unlabeled dataset, and then train MAML
(Finn et al., 2017) and Prototypical Networks (Snell et al., 2017) on the constructed data. UMTRA
(Khodadadeh et al., 2019) assumes that each randomly drawn sample is from a different class from
others, and use data augmentation (Cubuk et al., 2018) to construct synthetic task distribution for
meta-training. Instead of only deploying unsupervised learning for constructing meta-training task
distributions, we propose an unsupervised meta-learning model that meta-learns set-level variational
posterior by matching the multi-modal prior distribution representing latent classes.

3 UNSUPERVISED META-LEARNING WITH META-GMVAES

In this section, we describe our problem setting with respect to unsupervised meta-learning, and
demonstrate our approach. The graphical illustration of our model for unsupervised meta-training
and supervised meta-test is depicted in Figure 2.

3.1 PROBLEM STATEMENT

Our goal is to learn unsupervised feature representations which can be transferred to wide range
of downstream few-shot classification tasks. As suggested by Hsu et al. (2019); Khodadadeh et al.
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(a) Unsupervised Meta-training (b) Supevised Meta-test
Figure 2: The graphical illustration of Meta-GMVAE. The dotted lines denote either variational inference or
Expectation Maximization. (a): We introduce the multimodal distribution pψ(z) into prior distribution, and its
optimal task-specific parameter ψ∗

i is obtained by EM in an episodic manner. (b): For meta-test, we obtain
task-specific parameter ψ∗

i by semi-supervised EM using xs, ys, and xq .

(2019), we only assume an unlabeled dataset Du = {xu}Uu=1 in the meta-training stage. We aim
toward applying the knowledge learned during unsupervised meta-training stage to novel tasks in
meta-test stage, which comes with a modest amount of labeled data (or as few as a single example
per class) for each task. As with most meta-learning methods, we further assume that the labeled data
are drawn from the same distribution as that of the unlabeled data, with a different set of classes.
Specifically, the goal of a K-way S-shot classification task T is to correctly predict the labels of
query data points Q = {xq}Qq=1, using S support data points and labels S = {(xs, ys)}Ss=1 per
class, where S is relatively small (i.e. between 1 and 50).

3.2 META-LEVEL GAUSSIAN MIXTURE VAE

Unsupervised meta-training We now describe the meta-learning framework for learning unsuper-
vised latent representations that can be transferred to human-designed few-shot image-classification
tasks. In particular, we aim toward learning multi-modal latent spaces for Variational Autoen-
coder (VAE) in an episodic manner. We use the Gaussian mixture for the prior distribution
pψ(z) =

∑K
k=1 pψ(y = k)pψ(z|y = k), where ψ is the parameter of the prior network. Then

the generative process can be described as follows:

• y ∼ pψ(y), where y corresponds to the categorical L.V. for a single mode.
• z ∼ pψ(z|y), where z corresponds to the Gaussian L.V. responsible for data generation.
• x ∼ pθ(x|z), where θ is the parameter of the generative model.

The above generative process is similar to those from the previous works (Dilokthanakul et al.,
2016; Jiang et al., 2017) on modeling the VAE prior with Gaussian mixtures. However, they target
single-task learning and the parameter of the prior network is fixed after training such as equation
1c in Dilokthanakul et al. (2016) and equation 5 in Jiang et al. (2017), which is suboptimal since a
meta-learning model should be able to adapt and generalize to a novel task.

To learn the set-dependent multi-modalities, we further assume that there exists a parameter ψi for
each episodic datasetDi = {xj}Mj=1, which is randomly drawn from the unlabeled datasetDu. Then
we derive the variational lower bound for the marginal log-likelihood of Di as follows:

log pθ(Di) =
M∑
j=1

log pθ(xj) =

M∑
j=1

log

∫
pθ(xj |zj)pψi(zj)

qφ(zj |xj ,Di)
qφ(zj |xj ,Di)

dzj (1)

≥
M∑
j=1

[
Ezj∼qφ(zj |xj ,Di) [log pθ(xj |zj) + log pψi(zj)− log qφ(zj |xj ,Di))]

]
(2)

≈
M∑
j=1

1

N

N∑
n=1

[
log pθ(xj |z(n)j ) + log pψi(z

(n)
j )− log qφ(z

(n)
j |xj ,Di)

]
(3)

=: L(θ, φ, ψi,Di), z
(n)
j

i.i.d∼ qφ(zj |xj ,Di). (4)

Here the lower bound for each datapoint is approximated by Monte Carlo estimation with the sample
size N . Following the convention of the VAE literature, we assume that the variational posterior
qφ(zj |xj ,Di) follows an isotropic Gaussian distribution.
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Algorithm 1 Meta-training
Require: An unlabeled dataset Du
1: Initialize parameters θ, φ
2: while not done do
3: Sample B episode datasets {Di}Bi=1 from Du
4: for all i ∈ [1, B] do
5: Draw n MC samples from qφ(zj |xj ,Di)
6: Initialize πk as 1/K and randomly choose K

different points for µk.
7: Compute optimal parameter ψ∗

i using Eq 7
8: end for
9: Update θ, φ using L(θ, φ, {Di}Bi=1) in Eq 9.

10: end while

Algorithm 2 Meta-test for an episode
Require: A test task T = S ∪ Q
1: Set D = {xs}Ss=1 ∪ {xq}Qq=1

2: Draw n MC samples from qφ(zj |xj ,D)

3: Initialize µk =

∑S,N
s,n=1 1

y(n)s =k
z
(n)
s∑S,N

s,n=1 1
y(n)s =k

and σ2
k = I

4: Compute optimal parameter ψ∗ using Eq 10
5: Compute p(yq|xq,D) using Eq 11
6: Infer the label yq = argmax

k
p(yq = k|xq,D)

7:
8:

Set-dependent variational posterior Our derivation of the evidence lower bound in Eq 4 is similar
to that of the hierarchical VAE framework, such as equation 3 in Edwards & Storkey (2017) and
equation 4 in Hewitt et al. (2018), in that we use the i.i.d assumption that the log likelihood of a
dataset equals the sum over the log-likelihoods of each individual data point. Yet, previous works
assume that each input set consists of data instances from a single concept (e.g. a class), therefore,
they encode the dataset into a single global latent variable (e.g. qφ(z|D)). This is not appropriate
for unsupervised meta-learning where labels are unavailable. Thus we learn a set-conditioned vari-
ational posterior qφ(zj |xj ,Di), which models a latent variable to encode each data xj within the
given datasetDi into the latent space. Specifically, we model the variational posterior qφ(zj |xj ,Di)
using the self-attention mechanism (Vaswani et al., 2017) as follows:

H = TransformerEncoder(f(Di))
µj =WµHj + bµ, σ2

j = exp(Wσ2Hj + bσ2)

qφ(zj |xj ,Di) = N (zj ;µj ,σ
2
j )

(5)

Here we deploy TransformerEncoder(·), a neural network based on the multi-head self-attention
mechanism proposed by Vaswani et al. (2017), to model the dependency between data instances, and
f is a convolutional neural network (or an identity function for the Mini-ImageNet) which takes each
data in Di as an input. Moreover, we use the reparameterization trick (Kingma & Welling, 2014) to
train the model with backpropagation since the stochastic sampling process z(n)j

i.i.d∼ qφ(zj |xj ,Di)
is non-differentiable.

Expectation Maximization As discussed before, we assume that the parameter ψi of the prior
Gaussian Mixture is task-specific and characterizes the given dataset Di. To obtain the task-specific
parameter that optimally explain the given dataset, we propose to locally maximize the lower bound
in Eq 4 with respect to the prior parameter ψi. We can obtain the optimal parameter ψ∗i by solving
the following optimization problem:

ψ∗i = argmax
ψi

L(θ, φ, ψi,Di) = argmax
ψi

M,N∑
j,n=1

log pψ(z
(n)
j ), z

(n)
j

i.i.d∼ qφ(zj |xj ,Di), (6)

where we only consider the term related to the task-specific parameter ψi, and eliminate the nor-
malization term 1

N since it does not change the solution of the optimization problem. The above
formula implies that the optimal parameter maximizes the log-likelihood of observations which can
be drawn from the variational posterior distribution. However, we do not have an analytic solution
for Maximum Likelihood Estimation (MLE) of a GMM.

The most prevalent approach for estimating the parameters for the mixture of Gaussian is solving
it with Expectation Maximization (EM) algorithm. To this end, we propose to optimize the task-
specific parameter of GMM prior distribution using EM algorithm as follows:

(E-step) Qj,n(k) := p(y(n)j = k|z(n)j ) =
πkN (z

(n)
j ;µk, I)∑

k πkN (z
(n)
j ;µk, I)

(M-step) µk :=

∑M,N
j,n=1Qj,n(k)z

(n)
j∑M,N

j,n=1Qj,n(k)
, πk :=

∑M,N
j,n=1Qj,n(k)∑K

k=1

∑M,N
j,n=1Qj,n(k)

ψi := {(µk, I, πk)}Kk=1,

(7)
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where πk, µk, and N (·) denote the mixing probability of k-th component, mean parameter, and
normal distribution, respectively. We assume that the covariance matrix of Gaussian distribution is
fixed with the identity matrix I , following the assumption of original VAE on the prior distribution.
We initialize {πk}Kk=1 and {µk}Kk=1 as 1

K and randomly drawn K different points, respectively. We
can obtain MLE solution for the parameters of GMM, by iteratively performing E-step and M-step
until the log-likelihood converges. We found that using a fixed number of iterations for the EM
algorithm does not degrade the performance, and consider it as a hyperparameter of our framework.

Training objective Note that we want to maximize the variational lower bound of the marginal log-
likelihood over all the episode datasets Di that can be sampled from Du. We use stochastic gradient
ascent with respect to the variational parameter φ and the generative parameter θ, to maximize the
following objective:

L(θ, φ, {Di}Bi=1) :=
1

B

B∑
i=1

[
max
ψi
L(θ, φ, ψi,Di)

]
(8)

=
1

B

B∑
i=1

M∑
j=1

1

N

N∑
n=1

[
log pθ(xj |z(n)j ) + log pψ∗

i
(z

(n)
j )− log qφ(z

(n)
j |xj ,Di)

]
.

(9)

Here we use B mini-batch of episode datasets, where each dataset consists of M datapoints. The
task-specific parameter ψ∗i for each episode dataset Di is obtained by EM algorithm in Eq 7.

Supervised meta-test By introducing the multi-modal prior distribution into a generative learning
framework, our model learns pseudo-class concepts by clustering latent features with EM algorithm.
However, there is no guarantee that each modality obtained by EM algorithm corresponds to the
label we are interested in at the meta-test stage. To realize modality as label in downstream few-
shot image classification tasks, we deploy semi-supervised EM algorithm instead. Given a task T
consisting of support set S = {(xs, ys)}Ss=1 and query set Q = {xq}Qq=1, we use both the support
set and query set as an episode dataset D = {xs}Ss=1 ∪ {xq}

Q
q=1 and draw latent variables from the

variational posterior qφ(zj |xj ,D). Note that we abbreviate the index i since we consider a single
task for now. We then perform semi-supervised EM algorithm as follows:

(E-step) Qq,n(k) := p(y(n)q = k|z(n)q ) =
N (z

(n)
q ;µk,σ

2
k)∑

kN (z
(n)
q ;µk,σ2

k)

(M-step)

µk :=

∑S,N
s,n=1 1y(n)s =k

z
(n)
s +

∑Q,N
q,n=1Qq,n(k)z

(n)
q∑S,N

s,n=1 1y(n)s =k
+
∑Q,N
q,n=1Qq,n(k)

,

σ2
k :=

∑S,N
s,n=1 1y(n)s =k

(z
(n)
s − µk)2 +

∑Q,N
q,n=1Qq,n(k)(z

(n)
q − µk)2∑S,N

s,n=1 1y(n)s =k
+
∑Q,N
q,n=1Qq,n(k)

ψ := {(µk,σ2
k ,

1

K
)}Kk=1,

(10)

where 1 denotes an indicator function. We fix the mixing probability as 1
K since the labels in

each task T are uniformly distributed. Moreover, we utilize diagonal covariance σ2
k to obtain more

accurate statistics for the inference. We initialize µk and σ2
k as the average value of support latent

representations and the identity matrix I , respectively. Similar to the meta-training stage, we obtain
the MLE solution for the parameters of GMM, by performing E-step and M-step for a fixed number
of iterations. Finally, we compute the conditional probability of p(yq|xq,D) using the obtained
parameters ψ∗ as follows:

p(yq|xq,D) = Eqφ(zq|xq,D)

[
pψ∗(yq|zq)

]
≈ 1

N

N∑
n=1

pψ∗(yq|z(n)q ), z(n)q
i.i.d∼ qφ(zq|xq,D). (11)

Here we compute pψ∗(yq|z
(n)
q ) with Bayes rule, and we reuseN different Monte Carlo samples that

is drawn for Eq 10, where the prediction of query ŷq = argmax
k

p(yq = k|xq,D). We present the

pseudo-code of the algorithm for training and inference of Meta-GMVAE in the Algorithm 1 and 2.
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Visual feature reconstruction While our method is a generative model that can generate samples
from output distribution, the ability to generate samples may not be necessary for discriminative
downstream tasks (Chen et al., 2020). Moreover, we found that VAEs almost fail to learn in Mini-
ImageNet dataset with the architecturally limited constraints of the meta-learning literature. Thus,
we propose a high-level feature reconstruction objective instead for Mini-ImageNet dataset. We
experimentally find that the recently proposed constrastive learning framework, namely SimCLR
(Chen et al., 2020), is the most effective for our settings. Specifically, SimCLR learns high-level
representation by performing a constrastive prediction task on pairs of augmented examples derived
from a minibatch. We train SimCLR on the unsupervised datasetDu = {xu}Uu=1, and use high-level
features extracted by SimCLR as an input for our framework.

4 EXPERIMENT

In this section, we now validate the effectiveness of our Meta-GMVAE on several downstream few-
shot classification tasks. The source codes are available at https://github.com/db-Lee/
Meta-GMVAE.

4.1 EXPERIMENTAL SETUPS

Baselines and ours We now describe two supervised meta-learning approaches which we consider
as “oracles”, unsupervised meta-learning baselines, and the proposed Meta-GMVAE. 1) MAML
(oracle): Model Agnostic Meta Learning by Finn et al. (2017). We compare against its performance
reported in Hsu et al. (2019). 2) ProtoNets (oracle): Euclidean distance-based meta-learning ap-
proach by Snell et al. (2017). We also compare against it using its performance reported in Hsu et al.
(2019). 3) CACTUs: Clustering to Automatically Construct Tasks for Unsupervised meta-learning
by Hsu et al. (2019). It automatically constructs tasks by clustering the unsupervised dataset in em-
bedding space learned by ACAI (Berthelot et al., 2019), BiGAN (Donahue et al., 2017), and Deep-
Cluster (Caron et al., 2018). Then they train either MAML or ProtoNets using the cluster indices
as pseudo-labels. 4) UMTRA: Unsupervised Meta-learning with Tasks constructed by Random
sampling and Augmentation by Khodadadeh et al. (2019). For constructing a K-way 1-shot task, it
randomly samples K-way datapoints from unsupervised dataset and augments each datapoint. Then
MAML is trained on the constructed tasks. 5) Meta-GMVAE: Our proposed Meta-level Gaussian
Mixture VAE. It learns a latent representation by matching set-level amortized variational posterior
and task-specific multimodal prior optimized by EM algorithm.

Datasets We validate all the models on two benchmark datasets for few-shot classification. 1)
Omniglot: This is a collection of 28 × 28 gray-scale hand-written characters that describe 1623
different alphabets, each of which contains 20 instances. Following the experimental setup of Hsu
et al. (2019), we use 1200 classes for unsupervised meta-training, 100 classes for meta-validation
and the remaining 323 classes for meta-test. We further augment each class by rotating the images
90, 180, and 270 degrees, such that the total number of classes is 1623 × 4, following the con-
vention. 2) Mini-ImageNet: This is a subset of ILSVRC-2012 (Deng et al., 2009) introduced by
Ravi & Larochelle (2017), consisting of 100 classes that comes with 600 images of size 84 × 84
that describe different instances. We use 64 classes for unsupervised meta-training, 16 classes for
meta-validation, and the remaining 20 classes for meta-test, following the standard protocol.

Implementation details We now introduce the specific implementation details of Meta-GMVAE on
the two benchmark datasets. 1) Variational posterior network qφ(z|x,Di): we use the standard
Conv4 architecture on Omniglot dataset for a fair comparison against relevant baselines. On top
of the Conv4 architecture, we stack two TransformerEncoder layers and an affine transformation
layer to predict the mean and log-variance of Gaussian distribution. For Mini-ImageNet dataset,
we only utilize two TransformerEncoder layers and an affine transformation layer since the input
used for Mini-ImageNet is already a high-level visual representation extracted from the Conv5 ar-
chitecture trained with SimCLR. For both datasets, we set the dimensionality of the latent variable
to 64. 2) Generative network pθ(x|z): For Omniglot dataset, the architecture of generative net-
work is symmetric to the Conv4 architecture of variational posterior network. The last layer outputs
the parameter of output Bernoulli distribution. For Mini-ImageNet dataset, we use 3-layer MLP
with ReLU activation to predict the mean of output Gaussian distribution. 3) Other details: we
utilize Adam optimizer (Kingma & Ba, 2015) with a constant learning rate of 0.001 and 0.0001
for Omniglot and MiniImageNet experiments, respectively. We set the number of iterations for EM
algorithm as 10 for all the experiments. For the more details, please see the Appendix.
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Omniglot (way, shot) Mini-ImagNet (way, shot)

Method Clustering (5,1) (5,5) (20,1) (20,5) (5,1) (5,5) (5,20) (5,50)

Training from Scratch N/A 52.50 74.78 24.91 47.62 27.59 38.48 51.53 59.63

CACTUs-MAML BiGAN 58.18 78.66 35.56 58.62 36.24 51.28 61.33 66.91
CACTUs-ProtoNets BiGAN 54.74 71.69 33.40 50.62 36.62 50.16 59.56 63.27
CACTUs-MAML ACAI/DC 68.84 87.78 48.09 73.36 39.90 53.97 63.84 69.64
CACTUs-ProtoNets ACAI/DC 68.12 83.58 47.75 66.27 39.18 53.36 61.54 63.55
UMTRA N/A 83.80 95.43 74.25 92.12 39.93 50.73 61.11 67.15

Meta-GMVAE (ours) N/A 94.92 97.09 82.21 90.61 42.82 55.73 63.14 68.26

MAML (oracle) N/A 94.46 98.83 84.60 96.29 46.81 62.13 71.03 75.54
ProtoNets (oracle) N/A 98.35 99.58 95.31 98.81 46.56 62.29 70.05 72.04

Table 1: The few-shot classification results (way, shot) on the Omniglot and Mini-ImageNet datasets. DC
denotes DeepCluster. We report the average of accuracies evaluated over 1000 episodes. All the values are
based on the reported performance in Hsu et al. (2019) and Khodadadeh et al. (2019), except for ours.

(a) Meta-train (Real) (b) Meta-train (Generated) (c) Meta-test (Real) (d) Meta-test (Generated)
Figure 3: The samples obtained and generated for each mode at unsupervised meta-training and supervised
meta-test step of Meta-GMVAE. Samples in each row are in the same modality obtained by EM.

4.2 EXPERIMENTAL RESULTS

Few-shot classification Table 1 shows the few-shot classification results obtained by supervised
meta-learning baselines (oracle), the two unsupervised meta-learning baselines, and our Meta-
GMVAE. For the Omniglot dataset, the Meta-GMVAE outperforms all the baselines that only utilize
unsupervised-learning for constructing meta-training tasks, except for the UMTRA on the 20-shot
5-shot classification. Meta-GMVAE also outperforms baselines on Mini-ImageNet 1-shot, and 5-
shot settings which are the most widely used settings, while it matches the performance of baselines
in 20-shot, and 50-shot settings. This shows that meta-learning the posterior network can capture
the multi-modal distribution of any given tasks with Meta-GMVAE, is indeed more effective over
unsupervised meta-learning baselines which simply trains supervised meta-learning models with
pseudo-labels obtained from unlabeled data. Moreover, our Meta-GMVAE obtains better perfor-
mance than supervised MAML on Omniglot 5-way 1-shot classification, while utilizing as small as
0.1% of the labeled data. This matches the observation in Chen et al. (2020) that well-calibrated
unsupervised learning approaches with a modest amount of labels can obtain a performance compa-
rable to or even better than supervised approaches.

Visualization To better understand how our Meta-GMVAE learns and realizes class-concepts in few-
shot classification tasks, we visualize the actual samples in an episode classified by Meta-GMVAE
and ones generated by generative network pθ(x|z), during unsupervised meta-training and super-
vised meta-testing. We visualize the actual samples and generated ones that have a same modality
in a same row. In Figure 3-a, b, we can observe that our Meta-GMVAE captures the similar visual
structure in each modality during meta-training, but the modalities are not the class-concepts. How-
ever, as shown Figure 3-c, d, our Meta-GMVAE easily realizes each modality as each class-concept
at meta-test time.

Ablation study Furthermore, we compare the performance of our model variants by eliminating
each of the most important components for our model. We describe the each variant as follows: 1)
LR (SimCLR): This performs the logistic regression using support set on top of features pretrained
by SimCLR. 2) Vanilla VAE: We train Vanilla VAE onDu and predict labels using semi-supervised
EM with fixed identity covariance I . 3) Vanilla VAE (SimCLR): This is same as 2) Vanilla VAE
except that it is trained on features pretrained by SimCLR. 4) Ep: Meta-GMVAE with an episodic
training with task specific parameter ψ∗i obtained by EM. 5) Set: Meta-GMM whether having set-
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Method Ep Set σ2 O M

Training From Scratch 24.91 27.59

LR (SimCLR) N/A 40.11
Vanilla VAE 69.68 N/A
Vanilla VAE (SimCLR) N/A 38.40

Meta-GMVAE

X 78.64 40.51
X X 81.65 41.13
X X 80.94 40.92
X X X 82.21 42.82

MAML (oracle) X 84.60 46.81
ProtoNets (oracle) X 95.31 46.56

Training (way, shot)

Test way (5, 1) (5, 5) (20, 1) (20, 5)

2-way 98.26 98.00 98.36 98.23
5-way 94.92 94.57 93.93 94.01
10-way 89.87 89.99 89.10 89.30
15-way 85.11 85.12 85.36 85.33
20-way 81.38 81.11 82.21 81.98
30-way 77.80 77.42 78.40 77.24
40-way 73.76 73.15 74.03 73.56
50-way 70.92 70.85 69.86 70.02

Table 2: Left: The results of the ablation study on Meta-GMVAE (O: 20-way 1-shot classification on Om-
niglot, M: 5-way 1-shot classification on Mini-ImageNet). Right: The results of cross-way 1-shot experiments
on Omniglot. The values in the parenthesis indicate that a model is trained based on the (way, shot) setting.

level variational posterior (i.e. qφ(z|x,Di)) or not (i.e. qφ(z|x)). 6) σ2: Meta-GMM performs
semi-supervised EM algorithm whether using diagonal covariance matrix or fixing it with identity
matrix I . Table 2-Left shows that all the components we consider are critical for the performance
on the few-shot classification tasks as expected. The best performance gain comes from Ep, which
supports our proposal on meta-learning the set-level variational posterior by matching it with the
multi-modal prior, where the task-specific parameter is obtained with EM.

(a) 20-way Meta-training (b) 5-way Meta-test

Figure 4: The visualization of the latent space for the
cross-shot generalization experiment.

Cross-way classification We then experiment
our Meta-GMVAE by varying the number of
way (between 2 and 50) and fixing the number
of shot as 1. In particular, we set the number of
component k as the Test way for the meta-test
and perform semi-supervised EM algorithm in
Eq 10. Table 2-Right shows that the differ-
ence in the number of way used for training
and test does not significantly affect the perfor-
mance, which demonstrates the robustness of
Meta-GMVAE on varying number of way. We
also visualize the latent space for the cross-shot experiment using t-SNE (Rauber et al., 2016), in
Figure 4, which shows that Meta-GMVAE trained with 20-way can cluster 5-way meta-test task.

5 CONCLUSION

We proposed a novel unsupervised meta-learning model, namely Meta-GMVAE, which can gener-
ate a task-dependent posterior for a given unseen task with multi-modal Gaussian Mixture priors.
Given a random episode that consists of samples from diverse classes, we optimize the task-specific
parameter of the mixture of Gaussian prior with Expectation-Maximization algorithm, such that
each mode can capture intrinsic groupings in the given data. We meta-train the variational posterior
network over such data-driven prior obtained over large number of episodes. Then, at the meta-
test step, we realize each modality with a label by deploying semi-supervised EM algorithm with
both the support and the query set. We validate our method on two few-shot image classification
benchmark datasets, and show that Meta-GMVAE largely outperforms the relevant unsupervised
meta-learning baselines, even achieving better performance than supervised MAML on Omniglot
5-way 1-shot experiments.
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Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 7645–7655,
2019.

Paulo E. Rauber, Alexandre X. Falcão, and Alexandru C. Telea. Visualizing time-dependent data
using dynamic t-sne. In Enrico Bertini, Niklas Elmqvist, and Thomas Wischgoll (eds.), 18th Euro-
graphics Conference on Visualization, EuroVis 2016 - Short Papers, Groningen, The Netherlands,
June 6-10, 2016, pp. 73–77. Eurographics Association, 2016.

Sachin Ravi and Alex Beatson. Amortized bayesian meta-learning. In 7th International Confer-
ence on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net, 2019.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In 5th Interna-
tional Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017.

Scott E. Reed, Kihyuk Sohn, Yuting Zhang, and Honglak Lee. Learning to disentangle factors
of variation with manifold interaction. In Proceedings of the 31th International Conference on
Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, volume 32 of JMLR Workshop
and Conference Proceedings, pp. 1431–1439. JMLR.org, 2014.

Oleh Rybkin, Kostas Daniilidis, and Sergey Levine. Simple and effective VAE training with cali-
brated decoders. CoRR, abs/2006.13202, 2020.

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg,
Isabelle Guyon, and Roman Garnett (eds.), Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pp. 2226–2234, 2016.

Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning. In
Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017,
Long Beach, CA, USA, pp. 4077–4087, 2017.

Sebastian Thrun and Lorien Y. Pratt (eds.). Learning to Learn. Springer, 1998.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pp.
5998–6008, 2017.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol.
Stacked denoising autoencoders: Learning useful representations in a deep network with a local
denoising criterion. J. Mach. Learn. Res., 11:3371–3408, 2010.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-
ing networks for one shot learning. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg,
Isabelle Guyon, and Roman Garnett (eds.), Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pp. 3630–3638, 2016.

13



Published as a conference paper at ICLR 2021

A OMNIGLOT EXPERIMENTS

A.1 TRAINING PROCEDURE

Omniglot is a collection of 28 × 28 gray-scale hand-written characters that describe 1623 different
alphabets, each of which contains 20 instances. Following the experimental setup of Hsu et al.
(2019), we use 1200 classes for unsupervised meta-training, 100 classes for meta-validation and the
remaining 323 classes for meta-test. We further augment each class by rotating the images 90, 180,
and 270 degrees, such that the total number of classes is 1623 × 4, following the convention. We
evaluate the trained model using 1000 randomly selected tasks from test set. During evaluation,
K×S data instances are used as support inputs and K× 15 data instances are used as query inputs.
We use the Adam (Kingma & Ba, 2015) optimizer with a constant learning rate of 0.001 to train all
models. All models are trained for 60,000 iterations. For the 5-way experiments (i.e. K = 5), we
set the mini-batch size, the number of datapoints, and Monte Carlo sample size as 4, 200, and 32,
respectively (i.e. B = 4,M = 200, and N = 32). For the 20-way experiments (i.e. K = 20), we
set them as 4, 300, and 32 (i.e. B = 4,M = 300, and N = 32). We set the number of EM iterations
as 10.

A.2 NETWORK ARCHITECTURE

We summarize the network architecture in the following Table 3, and 4. We assume that the out-
put follows Bernoulli distribution, therefore, the output of generative network pθ(x|z) is the mean
parameter.

Set-level variational posterior network qφ(z|x,Di)
Output Size Layers

1× 28× 28 Input Images
64× 14× 14 conv2d(3× 3, stride 1, padding 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride 2)
64× 7× 7 conv2d(3× 3, stride 1, padding 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride 2)
64× 4× 4 conv2d(3× 3, stride 1, padding 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride 2)
64× 2× 2 conv2d(3× 3, stride 1, padding 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride 2)
256 Flatten
256 TransformerEncoder(dmodel = 256, dff = 256, h = 4, ELU, LayerNorm = False)
256 TransformerEncoder(dmodel = 256, dff = 256, h = 4, ELU, LayerNorm = False)
64× 2 Linear(256, 64× 2)

Table 3: Set-level variational posterior network used for Omniglot dataset. We refer the hyperpa-
rameter notation of TransformerEncoder to Vaswani et al. (2017).

Generative network pθ(x|z)
Output Size Layers

64 Latent code
256 Linear(64,256), ELU
256 Linear(256, 256), ELU
256 Linear(256, 256), ELU
64× 2× 2 Unflatten
64× 4× 4 deconv2d(4× 4, stride 2, padding 1), BatchNorm2D, ReLU
64× 7× 7 deconv2d(3× 3, stride 2, padding 1), BatchNorm2D, ReLU
64× 14× 14 deconv2d(4× 4, stride 2, padding 1), BatchNorm2D, ReLU
1× 28× 28 deconv2d(4× 4, stride 2, padding 1), Sigmoid

Table 4: Generative Network for pθ(x|z) for Omniglot dataset.

A.3 95% CONFIDENCE INTERVAL

We provide the standard errors of our model’s performance at 95% confidence interval over 1000
episodes on the Omniglot dataset in Table 5.
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Omniglot (5,1) (5,5) (20,1) (20,5)

Meta-GMVAE 94.92± 0.42 97.09± 0.20 82.21± 0.44 90.61± 0.19

Table 5: The few-shot classification results (way, shot) with 95% confidence interval on the Omniglot.

B MINI-IMAGENET EXPERIMENTS

B.1 TRAINING PROCEDURE

Mini-ImageNet is a subset of ILSVRC-2012 (Deng et al., 2009) introduced by Ravi & Larochelle
(2017), consisting of 100 classes that comes with 600 images of size 84 × 84 that describe different
instances. We first train Conv5 feature extractor using SimCLR objective with temperature term
τ = 0.5, on Mini-ImageNet unsupervised meta-training dataset. We train the feature extractor using
Adam optimizer with learning rate of 0.0001 for 400 epochs. We use 64 classes for unsupervised
meta-training, 16 classes for meta-validation, and the remaining 20 classes for meta-test, following
the standard protocol. We evaluate the trained model using 1000 randomly selected tasks from test
set. During evaluation, 5 × S data instances are used as support inputs and 5 × 15 data instances
are used as query inputs. For all the experiments, we use the Adam (Kingma & Ba, 2015) optimizer
with a constant learning rate of 0.0001, and set the mini-batch size, the number of datapoints, and
Monte Carlo sample size as 16, 5, and 256, respectively (i.e. B = 16,M = 5, and N = 256) for the
1, 5, and 20-shot experiments. For the 50-shot experiment, we set them 4, 200, and 256, respectively
(i.e. B =,M = 200, and N = 256). We train the models for 5K, 10K, 15k, 25K, and 30K for 1, 5,
20, and 50-shot experiments, respectively. We set the number of EM iterations as 10.

B.2 NETWORK ARCHITECTURE

We summarize the network architecture in the following Table 6, 7, and 8. We assume that the
output follows Gaussian distribution, therefore, the output of generative network pθ(x|z) is the
mean parameter. Moreover, the variance of output Gaussian distribution is obtained as suggested in
Rybkin et al. (2020).

Feature Extractor for SimCLR

Output Size Layers

3× 84× 84 Input Images
64× 42× 42 conv2d(3× 3, stride 1, padding 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride 2)
64× 21× 21 conv2d(3× 3, stride 1, padding 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride 2)
64× 10× 10 conv2d(3× 3, stride 1, padding 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride 2)
64× 5× 5 conv2d(3× 3, stride 1, padding 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride 2)
64× 2× 2 conv2d(3× 3, stride 1, padding 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride 2)
256 Flatten

Table 6: Feature Extractor trained on Mini-ImageNet dataset using SimCLR objective.

Set-level variational posterior network qφ(z|x,Di)
Output Size Layers

256 Input Features
256 TransformerEncoder(dmodel = 256, dff = 256, h = 4, ReLU, LayerNorm = False)
256 TransformerEncoder(dmodel = 256, dff = 256, h = 4, ReLU, LayerNorm = False)
64× 2 Linear(256, 64× 2)

Table 7: Set-level variational posterior network used for Mini-ImageNet dataset. We refer the hy-
perparameter notation of TransformerEncoder to Vaswani et al. (2017).
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Generative network pθ(x|z)
Output Size Layers

64 Latent code
512 Linear(64, 512), ReLU
512 Linear(512, 512), ReLU
256 Linear(512, 256), ReLU

Table 8: Generative Network for pθ(x|z) for Mini-ImageNet dataset.

B.3 95% CONFIDENCE INTERVAL

We provide the standard errors at 95% confidence interval over 1000 episodes on the Mini-ImageNet
dataset in Table 9.

Mini-ImageNet (5,1) (5,5) (20,1) (20,5)

Meta-GMVAE 42.82± 0.56 55.73± 0.48 63.14± 0.47 68.26± 0.42

Table 9: The few-shot classification results (way, shot) with 95% confidence interval on the Mini-ImageNet.

B.4 ADDITIONAL COMPARISON USING SIMCLR

To further understand where the improvement of Meta-GMVAE on the Mini-ImageNet dataset, we
ran experiment on baselines with SimCLR pretrained features. For CACTUs, we cluster in the em-
bedding space pretrained by SimCLR. For UMTRA, we follow the exact same procedure to generate
training episode, which is proposed by the authors. Moreover, we fix the pretrained SimCLR fea-
tures as the setting of Meta-GMVAE for the both of baselines. Table 10 shows that Meta-GMVAE
outperforms the baselines with SimCLR, which supports the effectiveness of Meta-GMVAE com-
bined with SimCLR pretrained features.

Mini-ImageNet (5,1) (5,5) (20,1) (20,5)

CACTUs-MAML (SimCLR) 40.39 52.35 61.09 64.89

UMTRA (SimCLR) 40.85 51.47 61.03 67.30

Meta-GMVAE 42.82 55.73 63.14 68.26

Table 10: The comparison on the few-shot classification results (way, shot) using SimCLR.
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