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ABSTRACT

Unsupervised learning aims to learn meaningful representations from unlabeled
data which can capture its intrinsic structure, that can be transferred to down-
stream tasks. Meta-learning, whose objective is to learn to generalize across tasks
such that the learned model can rapidly adapt to a novel task, shares the spirit
of unsupervised learning in that the both seek to learn more effective and effi-
cient learning procedure than learning from scratch. The fundamental difference
of the two is that the most meta-learning approaches are supervised, assuming
full access to the labels. However, acquiring labeled dataset for meta-training
not only is costly as it requires human efforts in labeling but also limits its ap-
plications to pre-defined task distributions. In this paper, we propose a princi-
pled unsupervised meta-learning model, namely Meta-GMVAE, based on Varia-
tional Autoencoder (VAE) and set-level variational inference. Moreover, we in-
troduce a mixture of Gaussian (GMM) prior, assuming that each modality repre-
sents each class-concept in a randomly sampled episode, which we optimize with
Expectation-Maximization (EM). Then, the learned model can be used for down-
stream few-shot classification tasks, where we obtain task-specific parameters by
performing semi-supervised EM on the latent representations of the support and
query set, and predict labels of the query set by computing aggregated posteriors.
We validate our model on Omniglot and Mini-ImageNet datasets by evaluating its
performance on downstream few-shot classification tasks. The results show that
our model obtains impressive performance gains over existing unsupervised meta-
learning baselines, even outperforming supervised MAML on a certain setting.

1 INTRODUCTION

Unsupervised learning is one of the most fundamental and challenging problems in machine learn-
ing, due to the absence of target labels to guide the learning process. Thanks to the enormous
research efforts, there now exist many unsupervised learning methods that have shown promising
results on real-world domains, including image recognition (Le, 2013) and natural language un-
derstanding (Ramachandran et al., 2017). The essential goal of unsupervised learning is obtaining
meaningful feature representations that best characterize the data, which can be later utilized to im-
prove the performance of the downstream tasks, by training a supervised task-specific model on
the top of the learned representations (Reed et al., 2014; Cheung et al., 2015; Chen et al., 2016) or
fine-tuning the entire pre-trained models (Erhan et al., 2010).

Meta-learning, whose objective is to learn general knowledge across diverse tasks, such that the
learned model can rapidly adapt to novel tasks, shares the spirit of unsupervised learning in that
both seek more efficient and effective learning procedure over learning from scratch. However,
the essential difference between the two is that most meta-learning approaches have been built on
the supervised learning scheme, and require human-crafted task distributions to be applied in few-
shot classification. Acquiring labeled dataset for meta-training may require a massive amount of
human efforts, and more importantly, meta-learning limits its applications to the pre-defined task
distributions (e.g. classification of specific set of classes).

Two recent works have proposed unsupervised meta-learning that can bridge the gap between unsu-
pervised learning and meta-learning by focusing on constructing supervised tasks with pseudo-labels
from the unlabeled data. To do so, CACTUs (Hsu et al., 2019) clusters data in the embedding space
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