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Abstract

In real-world applications, one often encounters ambiguously labeled data, where different
annotators assign conflicting class labels. Partial-label learning allows training classifiers in
this weakly supervised setting, where state-of-the-art methods already show good predictive
performance. However, even the best algorithms give incorrect predictions, which can
have severe consequences when they impact actions or decisions. We propose a novel
risk-consistent nearest-neighbor-based partial-label learning algorithm with a reject option,
that is, the algorithm can reject unsure predictions. Extensive experiments on artificial and
real-world datasets show that our method provides the best trade-off between the number and
accuracy of non-rejected predictions when compared to our competitors, which use confidence
thresholds for rejecting unsure predictions. When evaluated without the reject option, our
nearest-neighbor-based approach also achieves competitive prediction performance.

1 Introduction

Real-world data is often noisy, for example, human annotators might assign different class labels to the same
instance. In partial-label learning (PLL; Hüllermeier & Beringer 2005; Liu & Dietterich 2012; Zhang & Yu
2015; Xu et al. 2023), training instances can have multiple labels, known as candidates, of which only one is
correct. While in some cases it is possible to sanitize such data, cleaning is costly, especially for large-scale
datasets. Instead, one wants to predict the class labels of unseen instances having sets of candidates only, that
is, without knowing the exact ground-truth labels of the training data. PLL algorithms allow for handling
such ambiguously labeled data.

However, even the best algorithms give incorrect predictions. These errors can have severe consequences when
they impact actions or decisions. Consider, for example, safety-critical domains such as the classification of
medical images (Yang et al., 2009; Lambrou et al., 2011; Senge et al., 2014; Kendall & Gal, 2017; Reamaroon
et al., 2019) or the control of self-driving cars (Xu et al., 2014; Varshney & Alemzadeh, 2017; Hubmann et al.,
2017; Shafaei et al., 2018; Michelmore et al., 2020). One option to limit fallacies is to employ so-called reject
options, which allow one to abstain from certain predictions if unsure and, instead, let humans decide on the
label of an instance or the actions to take (Mozannar et al., 2023). Naturally, there is a trade-off arising
between the number and accuracy of non-rejected predictions. In the supervised setting, reject options have
already been studied, both, for multi-class classification (Charoenphakdee et al., 2021; Cao et al., 2022; Mao
et al., 2024; Narasimhan et al., 2024) and regression tasks (Zaoui et al., 2020; Cheng et al., 2023).

In the weakly supervised PLL setting, obtaining sensible reject options is more challenging than in the
supervised case as ground truth is not available. Still, a reject option allows for mitigating misclassifications
and improving prediction quality. Determining whether to reject a prediction of a PLL algorithm is difficult
as the uncertainty involved in prediction-making originates from multiple sources (Hora, 1996; Sale et al.,
2023; Wimmer et al., 2023). On the one hand, there is inherent uncertainty due to ambiguously labeled
data (aleatoric uncertainty). This ambiguity is influenced by both instances and classes: In some regions
of the instance space, annotators are more likely to mislabel instances than in others. Additionally, some
class labels are inherently more similar than others. On the other hand, there is uncertainty due to the lack
of knowledge regarding the relevance of each candidate label (epistemic uncertainty). To the best of our
knowledge, we are the first to study reject options in the context of PLL.
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We propose a novel partial-label learning approach based on Dempster-Shafer theory (DST; Dempster 1967;
Shafer 1986). In contrast to existing PLL approaches, which use point estimates of the candidate label
weights (Hüllermeier & Beringer, 2005; Liu & Dietterich, 2012; Zhang & Yu, 2015; Ni et al., 2021; Xu et al.,
2023), our method maintains a feasible region, also known as credal set. Maintaining such a credal set is
beneficial in assessing the certainty of predictions as our experiments show.

Contributions. We summarize our contributions as follows.

• Algorithm with reject option. We introduce Dst-Pll, a novel nearest-neighbor-based partial-label
learning algorithm with a reject option that learns from ambiguously labeled data. The algorithm
effectively determines whether to reject a prediction and provides the best trade-off between the
number and accuracy of non-rejected predictions when compared to the state-of-the-art PLL methods.

• Experiments. Extensive experiments on artificial and real-world data support our claims. We make
our code and data openly available.1

• Theoretical analysis. We analyze Dst-Pll, give a closed-form expression of its expected decision
boundary under mild assumptions, and prove its risk consistency. The runtime analysis shows that
the proposed method’s runtime is dominated by k-nearest-neighbor search, which has an average
time complexity of O(dk log n), with d features and n training instances.

Structure of the paper. We discuss related work in Section 2, define the problem setting in Section 3, and
propose our method in Section 4. Section 5 features experiments and Section 6 concludes. All proofs and
additional experiments are in the appendices.

2 Related Work

Imperfect data often renders the application of supervised methods challenging. Weakly supervised learning
tackles this setting and encompasses a variety of problem formulations (Bylander, 1994; Hady & Schwenker,
2013; Ishida et al., 2019) including PLL. We discuss related work regarding PLL in Section 2.1. Section 2.2
elaborates on related work in dealing with uncertainty in ML through the lens of reject options.

2.1 Partial-Label Learning

The early PLL approaches transfer common supervised learning frameworks to the PLL context: Grand-
valet (2002) proposes a logistic regression formulation, Jin & Ghahramani (2002) propose an expectation-
maximization strategy, Hüllermeier & Beringer (2005) propose a k-nearest-neighbors method, Nguyen &
Caruana (2008) propose an extension of support-vector machines, and Cour et al. (2011) introduce an average
loss formulation allowing for the use of any supervised method. However, these approaches (i) cannot model
the relevance of candidate labels in the labeling process or (ii) are not robust to non-uniform noise in the
candidate sets. We emphasize that (i) and (ii) stem from two different sources of uncertainty: (i) arises from
the lack of knowledge about the candidate label relevancies of the PLL model (epistemic uncertainty) and
(ii) arises from the random label noise in the candidate sets and is inherent to the PLL problem (aleatoric
uncertainty).

More recent approaches address (i) and (ii) in the following ways: Zhang & Yu (2015); Zhang et al. (2016);
Xu et al. (2019); Wang et al. (2019); Feng & An (2019); Ni et al. (2021) leverage ideas from representation
learning (Bengio et al., 2013), Yu & Zhang (2017); Wang et al. (2019); Feng & An (2019); Ni et al. (2021)
extend the maximum-margin idea, Liu & Dietterich (2012); Lv et al. (2020) propose extensions of the
expectation-maximization strategy, Zhang et al. (2017); Tang & Zhang (2017); Wu & Zhang (2018) propose
stacking and boosting ensembles for more robust prediction-making, Lv et al. (2020); Cabannes et al. (2020)
introduce a minimum loss formulation to iteratively remove noise, and Feng et al. (2020); Lv et al. (2020); Xu
et al. (2021); Wang et al. (2022); He et al. (2022); Xu et al. (2023); Fan et al. (2024) employ deep-learning
techniques such as auto-encoders, data augmentation, and transformers in the context of PLL. These methods

1https://github.com/anon1248/pll-with-a-reject-option.
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address (i) and (ii), featuring already good performance. However, considering a reject option of those
methods based on a confidence threshold, as proposed in the supervised setting (Ni et al., 2019), yields
sub-optimal results as all of the listed methods mix uncertainty stemming from (i) and (ii). We claim that
keeping both separate provides a better trade-off for the number and accuracy of non-rejected predictions
(Section 5).

In the PLL context, we consider (Hüllermeier & Beringer, 2005; Zhang & Yu, 2015; Zhang et al., 2016;
Xu et al., 2019; Wang et al., 2019) as most closely related to our proposed method as these approaches
consider an instance’s neighborhood to infer its class label. To the best of our knowledge, we are the first to
propose an extension of the k-NN classifier that keeps uncertainty from (i) and (ii) separate by leveraging
Dempster-Shafer theory.

2.2 Reject Options

Recently, much attention has been given to the study of reject options (Mozannar et al., 2023; Mao et al.,
2024; Narasimhan et al., 2024). A reject option allows one to abstain from predictions and defer them to
humans rather than making uncertain and possibly harmful decisions.

There are two common strategies in rejecting predictions in the supervised setting: The confidence-based
and the classifier-rejector approach (Ni et al., 2019; Cao et al., 2022). The confidence-based strategy uses
a threshold on the models’ confidence in order to accept or reject predictions. Common model choices for
quantifying the confidences are Bayesian methods (Kingma & Welling, 2014; Kendall & Gal, 2017) and
ensembles (Lakshminarayanan et al., 2017; Wimmer et al., 2023). In contrast, the classifier-rejector approach
jointly learns the classifier and rejector (Ni et al., 2019; Mao et al., 2024), which can have beneficial theoretical
properties. However, the classifier-rejector approach is less flexible than the confidence-based strategy as it is
coupled with the concrete loss formulation of the classifier. We propose an extension of the confidence-based
strategy for partial-label learning in Section 4.2.

Calibration methods (Naeini et al., 2015; Guo et al., 2017; Ao et al., 2023) are also related to the confidence-
based rejection strategy as both are used to make statements about the certainty of predictions. While reject
options provide a binary decision, calibration methods modify the predicted confidences such that they align
with the observed accuracies. In this sense, both approaches are orthogonal and cannot directly be compared.
In our work, we focus on reject options.

3 Problem Statement and Notations

This section formally defines the partial-label learning problem with reject option, establishes notations used
throughout this work, and summarizes Dempster-Shafer theory.

3.1 Partial-Label Learning (PLL) with Reject Option

Let X = Rd denote a d-dimensional real-valued feature space and Y = [l] := {1, . . . , l} the finite set of
3 ≤ l ∈ N classes. A partial-label learning training dataset D = {(xi, si) | i ∈ [n]} of n instances contains
feature vectors xi ∈ X and a set of candidate labels si ⊆ Y for each i ∈ [n]. All instances i have an unknown
ground-truth label yi ∈ Y , and yi ∈ si. Further, the candidate labels si can be partitioned into si = {yi} ∪ zi

with yi /∈ zi, that is, zi ⊆ Y \ {yi} are the false-positive labels.

The sample space is Ω = X ×Y ×2Y . It is equipped with the Borel σ-algebra B(Ω), yielding the measurable
space (Ω,B(Ω)) with respect to which the set of all probability measures M+

1 (Ω,B(Ω)) is defined. Let
(X, Y, S) ∼ P ∈M+

1 (Ω,B(Ω)), where the random variables X : Ω→ X , Y : Ω→ Y, and S : Ω→ 2Y govern
an instance’s features, true label, and candidate labels, respectively. We denote the corresponding marginal
measures by associating the corresponding index to P, for example, PX is the distribution of X. PXY denotes
the joint distribution of (X, Y ).

PLL aims to train a classifier g : X → Y that, given a measurable loss function L : Y ×2Y → R≥0, minimizes
the risk R(g) = E(X,S)∼PXS

L(g(X), S). Common choices for L include the average loss (Nguyen & Caruana,
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2008; Cour et al., 2011) and the minimum loss (Lv et al., 2020; Xu et al., 2021). The empirical version of the
risk substitutes the expectation with a sample mean, that is, R̂(g) = 1

n

∑n
i=1 L(g(xi), si).

As misclassifications can be quite harmful, we look at the possibility of rejecting predictions, that is,
abstaining from making these predictions and, instead, deferring the decisions to humans. In the PLL setting,
a reject option Γg : X → 2Y associated with a trained classifier g either returns g’s prediction (accept) or
abstains from making any prediction at all (reject), that is, Γg(x) ∈ {∅, {g(x)}} for x ∈ X , with Γg(x) = ∅
denoting a reject. We then define the rejection probability r(Γg) = PX(Γg(X) = ∅) and the expected error
err(Γg) = E(X,S)∼PXS

[L(g(X), S)1{Γg(X )̸=∅}] of accepted predictions. Naturally, a trade-off arises between
the number and accuracy of accepted predictions, which leads us to the risk

Rλ(Γg) = E(X,S)∼PXS
[L(g(X), S)1{Γg(X) ̸=∅} + λ1{Γg(X)=∅}] = err(Γg) + λ r(Γg), (1)

for λ ≥ 0; L characterizes the cost of misclassification and parameter λ the cost of rejecting a prediction. In
order to make well-informed decisions about when to reject, we are using Dempster-Shafer theory, which we
elaborate on in the following.

3.2 Dempster-Shafer Theory (DST)

Dempster-Shafer theory (DST; Dempster 1967; Shafer 1986) allows for dealing with uncertainty by assigning
probability mass to sets of events without specifying the probabilities of individual labels; incorrect labels do
not obtain any probability mass. In contrast, existing PLL approaches (Hüllermeier & Beringer, 2005; Cour
et al., 2011; Liu & Dietterich, 2012; Zhang & Yu, 2015; Ni et al., 2021; Xu et al., 2023) initially attribute
some probability to each label candidate and subsequently refine them. By doing so, most probability mass is
initially allocated to labels that are certainly incorrect, as only one candidate is the true label.

In DST, a basic probability assignment (bpa) m : 2Y → [0, 1] assigns probability mass to subsets of Y.
m satisfies m(∅) = 0 and

∑
A⊆Y m(A) = 1. This differs from standard probability as P(Y) = 1 for any

P ∈ M+
1 (Y, 2Y) but m(Y) ≤ 1. Also, mass allocated to non-intersecting sets does not necessarily add up

to the mass allocated to the union, that is, one can have m({1, 2}) ̸= m({1}) + m({2}). In this sense, DST
allows for more flexibility as one can allocate mass on the set {1, 2} without needing to specify any mass for
{1} and {2} if uncertain.

The sets A ⊆ Y with m(A) ̸= 0 are called focal sets of m. The mass allocated to the set of all possible
alternatives m(Y) can be interpreted as the degree of ignorance; it is the mass not supporting a specific
alternative within Y.

Given the belief and plausibility of m,

belm(A) :=
∑

B⊆A

m(B) and plm(A) :=
∑

B⊆Y,A∩B ̸=∅

m(B) for A ∈ 2Y , (2)

the set of all probability measures supporting m is

Cm(Y, 2Y) :=
{
P ∈M+

1 (Y, 2Y) | belm(A) ≤ P(A) ≤ plm(A) for all A ⊆ Y
}
⊆M+

1 (Y, 2Y), (3)

where Cm(Y, 2Y) is called a credal set (Abellán et al., 2006; Cuzzolin, 2021). Here, the belief and plausibility
restrict the permissible P-s by imposing lower and upper bounds, which we will later exploit to inform our
reject option. Further, DST provides rules to combine m-s from multiple sources (Dempster, 1967; Yager,
1987a;b).

Several methods already leverage DST in supervised learning (Mandler & Schümann, 1988; Denoeux, 1995;
Tabassian et al., 2012; Sensoy et al., 2018; Denoeux, 2019; Tong et al., 2021). We consider the nearest neighbor
approach by Denoeux (1995) to be most closely related to our approach. Basic probability assignments are
constructed from the nearest neighbors of an instance. Then, Dempster’s rule is used to combine them into a
single bpa. Their analysis is, however, not transferable to our case because they only have singletons or the
full label space as focal sets making set intersections in the combination rule easy to handle. We examine a
more general setting since probability mass is allocated to arbitrary subsets.
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Algorithm 1 DST-PLL (Our proposed method)

Input: Partially-labeled dataset D = {(xi, si) ∈ X ×2Y | i ∈ [n]}, number of nearest neighbors k, instance
x̃ ∈ X for inference with candidate labels s̃ ⊆ Y (s̃ = Y if x̃ is an unseen test instance);

Output: Prediction g(x̃) and reject option Γg(x̃) for instance x̃;
1: E ← ∅
2: for (xi, si) ∈ NNk(x̃) do
3: if s̃ ⊆ si or s̃ ∩ si = ∅ then

4: mi : 2Y → [0, 1], A 7→

{
1 if A = s̃,
0 else

5: else

6: mi : 2Y → [0, 1], A 7→

{
1/2 if A = s̃ or A = s̃ ∩ si,
0 else

7: end if
8: E ← E ∪ {mi}
9: end for

10: m̃← yager_combination(s̃, E)

11: g(x̃)←
{

arg maxy∈s̃ m̃({y}) if maxy∈s̃ m̃({y}) > 0,
Randomly pick from arg maxA⊆s̃ m̃(A) else;

12: Γg(x̃)←
{
{g(x̃)} if ∆m̃ > 0 as defined in (5),
∅ else;

13: return (g(x̃), Γg(x̃))

4 Our Method: DST-PLL

This section introduces our novel partial-label learning method Dst-Pll. Based on the labeling information
of an instance’s nearest neighbors, we construct basic probability assignments within Dempster-Shafer
theory. These bpas inform the prediction and rejection decisions as discussed in Section 4.1 and Section 4.2,
respectively. Regarding the reject option, we propose a novel variation of the confidence-based rejection
strategy: The confidence threshold is adaptively selected on a per-instance basis dependent on the amount of
incorrect label noise. The more noise from incorrect labels there is, the more confident the model needs to be
to accept a prediction.

Algorithm 1 outlines Dst-Pll, which we summarize in the following. We denote by NNk(x̃) ⊆ X ×2Y the
set of the k-nearest neighbors of instance x̃ with their associated candidate labels. To predict the class label
of an instance x̃ (Line 11), the algorithm first transforms information from x̃’s neighbors NNk(x̃) into bpas
mi (Lines 3–7), collects these into evidence set E (Line 8), and combines the bpas into m̃ using Yager’s rule
(Line 10; Yager 1987a;b). Section 4.1 elaborates on these steps. Section 4.2 elaborates on how we extract our
reject option from m̃ (Line 12). Section 4.3 shows that the resulting classification rule is risk-consistent. We
analyze our algorithm’s runtime in Section 4.4.

4.1 Making Predictions

Basic probability assignments. Following the standard assumption that neighboring instances in feature
space are also close in label space, we combine the evidence from the k-nearest neighbors (xi, si) ∈ NNk(x̃) of
a given instance x̃ ∈ X with its candidate labels s̃ ⊆ Y (s̃ = Y if x̃ is a test instance).

When looking at a neighboring instance (xi, si) ∈ NNk(x̃), there are generally two cases: either (i) (xi, si)
provides information about the correct label of x̃ or (ii) (xi, si) is irrelevant for finding the correct label of x̃.
To address (i), we allocate probability mass on the candidates si of neighbor xi. To address (ii), we allocate
probability mass on the full label space Y indicating uncertainty about the correct label of x̃.
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More formally, for fixed i ∈ [k], the candidate labels si do not provide any valuable information if they support
all (s̃ ⊆ si) or none (s̃ ∩ si = ∅) of the labels in s̃; we use a bpa of mi(s̃) = 1 (Line 4). We set mi(A) = 1/2 if
A = s̃ or A = s̃ ∩ si, else mi(A) = 0 (Line 6), where 1/2 equally weights evidence. We later elaborate further
on this choice and demonstrate the application of the proposed classification rule in Example 4.1. Note that
we make the common assumption that the true label of instance x̃ is always in s̃ (Cour et al., 2011; Liu &
Dietterich, 2012; Lv et al., 2020; Ni et al., 2021). While our definition of the mi-s is similar to (Denoeux,
1995), we target a more general setting as our focal sets can be arbitrary subsets instead of only singletons or
the full label set.

The bpa mi has the following four effects on belief and plausibility as defined in (2): (i) A set of candidates A
has maximal belief, that is, belmi(A) = 1, if it covers s̃, that is, s̃ ⊆ A. (ii) A set of candidates A is plausible,
that is, plmi

(A) > 0, if it supports at least one of the candidate labels in s̃, that is, A ∩ s̃ ̸= ∅. (iii) There is a
gap, that is, belmi(A) < plmi

(A), if A supports some candidate in s̃ ∩ si but does not cover all candidates in
s̃ ∩ si or supports some candidate in s̃ but does not cover all candidates of s̃. (iv) Class labels y ∈ s̃ ∩ si are
maximally plausible, that is, plmi

({y}) = 1.

Evidence weighting. Our definition of the mi-s (Algorithm 1, Line 6) also permits a more general view,
that is, mi(A) = α if A = s̃, mi(A) = 1 − α if A = s̃ ∩ si, and mi(A) = 0 otherwise, for some α ∈ (0, 1).
However, without further assumptions, one cannot know how relevant the information from a particular
neighbor is. The setting of α = 1/2, which we use, weights supporting and conflicting evidence of all neighbors
equally. In other words, if a neighbor’s evidence excludes some candidate labels from consideration, it is of
equal importance compared to supporting some candidate labels. Therefore, we set α = 1/2.

Evidence combination. Given the set E = {mi | i ∈ [k]}, we combine all mi-s using Yager’s rule (Yager,
1987a;b). Dempster’s original rule (Dempster, 1967) enforces m̃(∅) = 0 by normalization, which is criticized for
its unintuitive results when facing high conflict (Zadeh, 1984). Instead, Yager’s rule first collects overlapping
evidence in q : 2Y → [0, 1] and creates a valid bpa m̃ : 2Y → [0, 1] by

q(A) :=
∑

A1,...,Ak⊆Y⋂k

i=1
Ai=A

k∏
j=1

mj(Aj) and m̃(A) :=


0 if A = ∅,
q(Y) + q(∅) if A = Y,
q(A) else.

(4)

We implement this efficiently with hash maps storing only the focal sets.1

Classification rule. After the combination into m̃ by (4), we extract a prediction g(x̃) for instance x̃
(Line 11). We predict the class label with the highest probability mass arg maxy∈s̃ m̃({y}) if any has non-zero
mass, or else randomly pick from the subset with the most mass arg maxA⊆s̃ m̃(A). When tied, we use the
subset with the smallest cardinality. In the following, we present an example of our classification rule.
Example 4.1 (Classification rule). Let k = 3, x̃ an unseen test instance, (xi, si) ∈ NNk(x̃), Y = {1, 2, 3},
s1 = {1}, s2 = {1, 2}, and s3 = {1, 3}. Then, m1({1}) = m1(Y) = 1/2, m2({1, 2}) = m2(Y) = 1/2, and
m3({1, 3}) = m3(Y) = 1/2. All other subsets receive a mass of zero. Using Yager’s combination rule, we
obtain m̃({1}) = 5/8, m̃({1, 2}) = m̃({1, 3}) = m̃(Y) = 1/8, and m̃(A) = 0 for the remaining A ⊆ Y.
Therefore, we predict label 1.

4.2 Proposed Reject Option

To limit the impact of misclassification, our method provides a reject option Γg, that is, the algorithm
can abstain from individual predictions if unsure (Algorithm 1, Line 12). Our formulation builds on the
confidence-based rejection strategy (Section 2.2), that is, ∆ := conf(g) − θ with conf(g) ∈ [0, 1] being the
model’s confidence and θ ∈ [0, 1] the confidence threshold. We adapt this setting to the PLL context by
changing the confidence threshold θm̃ based on the amount of noise present.

Recall from (3) that the belief and plausibility regarding m̃ act as a lower and upper bound of the probability
mass, respectively. The intuition of our reject option is as follows. If the lower bound (belief) on the
probability mass of our predicted label exceeds the maximal upper bound (plausibility) on the probability
mass regarding any other label, we can safely make the prediction.
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In other words, if there is a class label different from the predicted one that is quite plausible (high
maxy∈s̃\{ŷ} plm̃({y})), we require a high belief mass in order to be certain about the prediction, that is, the
belief must satisfy belm̃({ŷ}) > maxy∈s̃\{ŷ} plm̃({y}). If, instead, there is no other plausible candidate label,
we can be sure of our prediction with less belief mass.

We formalize this intuition in the following. Let m̃ be the resulting bpa as determined by Algorithm 1 and

∆m̃ := belm̃({ŷ})︸ ︷︷ ︸
(=conf(g))

− max
y∈s̃\{ŷ}

plm̃({y})︸ ︷︷ ︸
(=θm̃)

with ŷ := arg max
y∈s̃

m̃({y}). (5)

In other words, we instantiate the model’s confidence with the model’s belief mass conf(g) = belm̃({ŷ}) of
the predicted instance ŷ and the confidence threshold θm̃ based on the amount of noise regarding other labels
y ̸= ŷ, that is, θm̃ = maxy∈s̃\{ŷ} plm̃({y}). Note that the dependence on m̃ allows for setting the threshold
adaptively.

(5) satisfies several desirable properties, which we collect in Theorem 4.2 and elaborate on in the following.
Theorem 4.2. Let Y be the label space, x̃ ∈ X the instance of interest, s̃ ⊆ Y its candidate labels (s̃ = Y if
x̃ is a test instance), g(x̃) our algorithm’s prediction, and m̃ the resulting probability mass as determined by
Algorithm 1. Then, the following hold:

(i) If g(x̃) has been picked randomly (Algorithm 1, Line 11, second case), then ∆m̃ ≤ 0,

(ii) if ∆m̃ > 0, then P({g(x̃)}) > P({y}) for all P ∈ Cm̃(Y, 2Y) and y ∈ s̃ \ {g(x̃)}, and

(iii) if m̃({g(x̃)}) > 1/2, then ∆m̃ > 0. The converse of (iii) does not hold.

Based on these considerations, we define the accept and reject regions of our method as follows.

1. Accept. When ∆m̃ > 0, we are in the accept region and Γg(x̃) = {ŷ}: The lower-bound probability
of the class label ŷ is greater than the upper-bound probability of any other class label y ≠ ŷ, that is,
P({ŷ}) > P({y}) for all P ∈ Cm̃(Y, 2Y) and y ̸= ŷ.

2. Reject. When ∆m̃ ≤ 0, we are in the reject region and Γg(x̃) = ∅: The lower-bound probability of
the class label ŷ is less than or equal to the upper-bound probability of another class label y ≠ ŷ.
There exists P ∈ Cm̃(Y, 2Y) and y ̸= ŷ with P({ŷ}) ≤ P({y}).

We remark that Theorem 4.2 (iii) implies that Dst-Pll rejects fewer predictions than the k-nearest neighbor
reject option by Hellman (1970), which requires more than 1/2 of all votes to be certain. Our method can
accept predictions with less than 1/2 of all probability mass on a single class label, while still satisfying
Theorem 4.2 (ii), that is, if a prediction is accepted, the decision remains unchanged independent of
P ∈ Cm̃(Y, 2Y). It follows that having fewer rejections does not come at the expense of an increase in the
expected error. In the following, we provide an example of the proposed reject option.
Example 4.3 (Reject option). Assume the setting and result of Example 4.1: m̃({1}) = 5/8, m̃({1, 2}) =
m̃({1, 3}) = m̃(Y) = 1/8, and m̃(A) = 0 for the remaining A ⊆ Y . Our prediction is ŷ = arg maxy∈s̃ m̃({y}) =
1 with s̃ = Y. Hence, ∆m̃ = belm̃({ŷ}) −maxy∈s̃\{ŷ} plm̃({y}) = belm̃({1}) − plm̃({2}) = 5/8 − 2/8 = 3/8.
Since ∆m̃ = 3/8 > 0, we accept the prediction ŷ = 1.

4.3 Consistency

Our classification rule yields a risk-consistent classifier, which we demonstrate in the following. As is common
in the literature (Cour et al., 2011; Liu & Dietterich, 2012; Feng et al., 2020; Lv et al., 2020) and required to
obtain statistical guarantees in the PLL setting, we fix a label (noise) distribution (Assumption 4.4) that
permits further analysis of the proposed algorithm. Appendix D experimentally verifies that Assumption 4.4
is satisfied on real-world datasets.
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Assumption 4.4. Let x̃ ∈ X be the instance of interest with hidden true label ỹ ∈ Y and l = | Y | ≥ 3
classes. Its k partially-labeled neighbors are (xi, si) ∈ NNk(x̃). Label ỹc ∈ Y \{ỹ} denotes the class label that
co-occurs most frequently with label ỹ in x̃’s neighborhood. We assume that the true label dominates the
neighborhood, that is,

P(S = s︸︷︷︸
= {y} ∪ z

Partitioning valid in cases (ii) – (iv).

, Y = y | X = xi) =


0 if s = Y, s = ∅, y /∈ s, y ∈ z, or ỹ ∈ z, (i)

1
2l−2−1 p1 if y = ỹ, ỹc ∈ z, and s ̸= Y, (ii)

1
2l−2 p2 if y = ỹ and ỹc /∈ z, (iii)

1
2l−1−1

1
|s| p3 if y ̸= ỹ, ỹ /∈ z, y /∈ z, and s ̸= ∅, (iv)

with p1, p2, p3 ∈ (0, 1), p1 + p2 + p3 = 1, and p1 ≥ p2 ≥ p3 > 0.

Because p1 + p2 > p3, Assumption 4.4 implies PXY (Y = ỹ | X = xi) > PXY (Y ≠ ỹ | X = xi), that is, points
that are close in feature space are likely to have similar class labels. We note that this assumption is related
to the ambiguity degree condition by Cour et al. (2011) as both make sure that the noise labels do not
overwhelm the PLL algorithm. Assumption 4.4 enforces this as p1 ≥ p2 ≥ p3 > 0. Having all cases spelled
out as in Assumption 4.4 benefits the proof of Lemma 4.5.

In the following, we elaborate on the four cases (i) – (iv).

• If a candidate set contains all labels (s = Y), no labels (s = ∅), or does not allow to be partitioned
into true label y and false-positive labels z, it is not a valid candidate set (Hüllermeier & Beringer,
2005; Cour et al., 2011; Liu & Dietterich, 2012; Zhang & Yu, 2015). (i) handles this pathological
setting by assigning zero probability.

• In (ii), x̃’s label ỹ is also the label of neighbor xi and ỹc, with which ỹ is most commonly confused,
is also part of the candidate set si. There are 2l−2 − 1 sets s that contain ỹ and ỹc and are not Y.

• In (iii), x̃’s label ỹ is also the label of neighbor xi. Label ỹc is not part of the candidate set si of
neighbor xi. There are 2l−2 sets s that contain ỹ but not ỹc.

• In (iv), neighbor xi has different labels altogether and is irrelevant for explaining the class label of
instance x̃. There are 2l−1 − 1 sets that do not contain the label ỹ (excluding the empty set). Each
of the |s| candidates can be the neighbor’s correct label.

Theorem 4.6, which establishes risk-consistency, hinges on the following intermediate results in Lemma 4.5.
The fact that the mi-s can have arbitrary focal sets renders the direct application of Yager’s rule (4) in our
analysis challenging. The proof of Lemma 4.5 mediates this issue by providing a closed-form solution for the
resulting bpa m̃.
Lemma 4.5. Assume the setting of Assumption 4.4, let x̃ ∈ X be the instance of interest, ỹ ∈ Y its hidden
true label, ỹc ∈ Y \{ỹ} the incorrect label with which ỹ is most often confused, and m̃ the resulting probability
mass as determined by Algorithm 1. Then, the following hold:

(i) EP[m̃({ỹ}) | X = x̃] > 0, and

(ii) EP[m̃({ỹ}) | X = x̃] > EP[m̃({ỹc}) | X = x̃].

As the probability mass of the hidden true label ỹ is positive in expectation by (i), we can reduce our analysis
to the first case of our decision rule (Algorithm 1, Line 11). (ii) shows how Assumption 4.4 propagates when
applying Yager’s rule on all k neighbors’ mi-s. The label that dominates the neighborhood obtains the highest
probability mass. To our knowledge, it is the first time that such a result has been shown for arbitrary focal
sets in m̃. Denoeux (1995) analyze the special case when all focal sets are singletons or the full label space.

To put Theorem 4.6 into context, we recall the concept of risk consistency (Devroye et al., 1996). The Bayes
classifier is defined by g∗ = arg ming:X →Y R(g); it has the least overall risk. Let gn be the classifier trained
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by Alg. 1 with n instances. Its empirical risk R̂(gn) can be computed by substituting the expectation with a
sample mean. It is risk-consistent if R̂(gn)→ R(g∗) for n→∞ almost surely. Theorem 4.6 establishes the
risk consistency of the proposed classifier.
Theorem 4.6. Assume the setting of Assumption 4.4, let gn : X → Y be the classifier trained by Algorithm 1
with n training instances, g∗ : X → Y the Bayes classifier, and x̃ ∈ X a fixed instance with unknown true
label ỹ. Then, the following hold:

(i) E
(xi,si)n

i=1
i.i.d.∼ PXS

gn(x̃) = ỹ, and

(ii) limn→∞
(
R̂(gn)−R(g∗)

)
= 0 almost surely.

4.4 Runtime Complexity

We decompose the overall runtime of our approach in Algorithm 1 into k-times querying one nearest neighbor
and creating its bpa (Lines 2–9), the cost of Yager’s rule (Line 10), as well as extracting predictions in
Lines 11-12. Using the ball-tree data structure (Omohundro, 1989), querying one neighbor takes O(d log n)
time on average. In the worst case, query time is O(dn). One builds a ball-tree in O(dn log n) time. We
construct a bpa mi by storing its focal sets within a hash map and combine all mi-s as defined in (4). There
are at most min

(
2k, 2l

)
focal sets of m̃: Each mi has at most two focal sets producing 2k combinations

and there are at most 2l possible subsets of Y. We take the minimum as both are upper bounds. Looking
up a focal set in the hash-map requires O(l) time as the key length is variable. Extracting a prediction
and the reject option then requires O

(
l2) time. Combining the above yields a worst-case complexity of

O
(
dkn + l

(
min

(
2k, 2l

)
+ max(k, l)

))
. Since k and l are constant, the nearest-neighbor search dominates.

The average total runtime of the search is O(dk log n).

5 Experiments

Section 5.1 lists the tested methods, Section 5.2 shows our experimental setup, and Section 5.3 collects our
main findings. Additional results and a description of all hyperparameters can be found in Appendix D.

5.1 Algorithms for Comparison

While many PLL algorithms exist (see Section 2), we focus on state-of-the-art methods commonly used in the
literature. We consider ten methods: Pl-Knn (Hüllermeier & Beringer, 2005), Pl-Svm (Nguyen & Caruana,
2008), Ipal (Zhang & Yu, 2015), Pl-Ecoc (Zhang et al., 2017), Proden (Lv et al., 2020), Cc (Feng et al.,
2020), Valen (Xu et al., 2021), Pop (Xu et al., 2023), CroSel (Tian et al., 2024), and Dst-Pll (our
proposed method). Note that we decided to not consider PiCO (Wang et al., 2022) as it is only applicable to
image data. In our experiments, however, we consider various image and non-image datasets as discussed in
Section 5.2.

We choose the parameters of all methods as recommended by their respective authors and use the same base
models for all of the neural network approaches. Appendix D.2 discusses the choices of all hyperparameters
in more detail. As base models, we pick the LeNet architecture (LeCun et al., 1998) for the MNIST datasets
and a d-300-300-300-l MLP (Werbos, 1974) for all other datasets. For Pl-Knn and our method, we use
variational auto-encoders (Kingma & Welling, 2014) to reduce the feature space dimensionality of the MNIST
datasets and compute the nearest neighbors on the hidden representations. As our competitors do not provide
a reject option, we use a threshold on their model’s confidences, that is, the maximum probability outputs, to
evaluate the trade-off between the fraction and accuracy of non-rejected predictions.

5.2 Experimental Setup

Data. Following the default protocol (Cour et al., 2011; Zhang & Yu, 2015; Lv et al., 2020; Xu et al., 2023),
we conduct several experiments using datasets for supervised learning with added artificial noise as well as
experiments on real-world partially-labeled data. We repeat all experiments five times to report averages and

9



Under review as submission to TMLR

Table 1: Average test-set accuracies (± std.) on the UCI, MNIST, and real-world datasets. The UCI and
MNIST datasets are artificially augmented with class-dependent and instance-dependent noise. The best
algorithms (highest accuracy) as well as algorithms with non-significant differences are emphasized. The
significance analysis uses a paired student t-test with level α = 0.05.

Algorithms
UCI datasets MNIST-like datasets

Real-world
Class-dep. Inst.-dep. Class-dep. Inst.-dep.

Pl-Knn (2005) 81.2 (± 13.9) 75.8 (± 11.1) 92.2 (± 4.1) 84.8 (± 7.2) 53.4 (± 10.9)
Pl-Svm (2008) 62.3 (± 16.3) 43.8 (± 16.4) 67.5 (± 9.8) 47.8 (± 8.2) 39.1 (± 9.6)
Ipal (2015) 79.3 (± 17.1) 75.3 (± 18.3) 92.9 (± 4.3) 88.5 (± 6.6) 58.7 (± 9.8)
Pl-Ecoc (2017) 63.7 (± 13.1) 66.5 (± 12.5) 64.3 (± 14.3) 51.7 (± 10.7) 46.2 (± 10.2)
Proden (2020) 81.6 (± 14.0) 78.1 (± 13.2) 93.9 (± 4.4) 88.2 (± 6.0) 64.2 (± 8.2)
Cc (2020) 81.3 (± 14.2) 78.8 (± 13.6) 93.9 (± 4.5) 89.6 (± 5.7) 49.2 (± 29.7)
Valen (2021) 79.7 (± 15.3) 75.6 (± 12.7) 91.8 (± 4.2) 83.4 (± 8.4) 63.6 (± 9.7)
Pop (2023) 81.5 (± 14.0) 78.1 (± 13.1) 93.9 (± 4.5) 88.1 (± 6.0) 63.6 (± 8.4)
CroSel (2024) 79.9 (± 17.2) 78.4 (± 14.5) 94.2 (± 4.5) 88.9 (± 6.7) 46.3 (± 28.9)

Dst-Pll (ours) 80.8 (± 14.1) 75.4 (± 10.7) 92.0 (± 4.2) 84.5 (± 7.2) 52.0 (± 11.6)

Table 2: Average empirical reject option risk R̂λ(Γg) as defined in (1) for various values of λ. The best
algorithms (smallest risk) as well as algorithms with non-significant differences are emphasized. The significance
analysis uses a paired student t-test with level α = 0.05.

Algorithms
Average R̂λ(Γg) (± std.) across all experimental settings

λ = 0.00 λ = 0.05 λ = 0.10 λ = 0.15 λ = 0.20

Pl-Knn (2005) 0.11 (± 0.17) 0.15 (± 0.18) 0.18 (± 0.19) 0.21 (± 0.20) 0.25 (± 0.21)
Pl-Svm (2008) 0.19 (± 0.27) 0.23 (± 0.28) 0.27 (± 0.29) 0.31 (± 0.30) 0.35 (± 0.31)
Ipal (2015) 0.19 (± 0.17) 0.20 (± 0.18) 0.21 (± 0.19) 0.22 (± 0.20) 0.23 (± 0.21)
Pl-Ecoc (2017) 0.25 (± 0.27) 0.29 (± 0.27) 0.34 (± 0.28) 0.38 (± 0.28) 0.43 (± 0.28)
Proden (2020) 0.12 (± 0.11) 0.13 (± 0.11) 0.14 (± 0.12) 0.15 (± 0.12) 0.16 (± 0.13)
Cc (2020) 0.16 (± 0.18) 0.16 (± 0.19) 0.17 (± 0.20) 0.18 (± 0.20) 0.19 (± 0.21)
Valen (2021) 0.20 (± 0.14) 0.20 (± 0.14) 0.20 (± 0.14) 0.20 (± 0.14) 0.21 (± 0.14)
Pop (2023) 0.12 (± 0.11) 0.13 (± 0.11) 0.14 (± 0.12) 0.15 (± 0.12) 0.16 (± 0.13)
CroSel (2024) 0.15 (± 0.20) 0.16 (± 0.21) 0.17 (± 0.21) 0.18 (± 0.21) 0.19 (± 0.22)

Dst-Pll (ours) 0.05 (± 0.07) 0.07 (± 0.08) 0.10 (± 0.10) 0.12 (± 0.11) 0.15 (± 0.12)

Table 3: Fraction of rejects and non-rejected test-set accuracy of all methods with standard deviations across
all experimental settings and five repetitions with different random seeds. To obtain the results, we tune the
thresholds θ such that each competitor has a number of rejects that is comparable to that of our method.

Algorithms Fraction of rejects (± std.) Non-rejected test accuracy (± std.)

Pl-Knn (2005) 50.19 % (± 20.98 %) 91.23 % (± 10.12 %)
Pl-Svm (2008) 50.19 % (± 20.98 %) 74.40 % (± 19.77 %)
Ipal (2015) 50.19 % (± 20.98 %) 83.52 % (± 16.08 %)
Pl-Ecoc (2017) 50.19 % (± 20.98 %) 73.92 % (± 17.11 %)
Proden (2020) 50.19 % (± 20.98 %) 94.03 % (± 8.23 %)
Cc (2020) 50.19 % (± 20.98 %) 90.13 % (± 17.89 %)
Valen (2021) 50.19 % (± 20.98 %) 86.81 % (± 13.04 %)
Pop (2023) 50.19 % (± 20.98 %) 94.02 % (± 8.20 %)
CroSel (2024) 50.19 % (± 20.98 %) 89.71 % (± 18.67 %)

Dst-Pll (ours) 50.15 % (± 21.16 %) 95.49 % (± 7.01 %)
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Figure 1: Trade-off between the fraction of rejected predictions and the accuracy of non-rejected predictions
for three experiments: Ecoli with instance-dependent noise, KMNIST with instance-dependent noise, and
the real-world dataset msrc-v2. We show the trade-off curves for varying confidence (0 to 1) and ∆m̃ (-1 to 1)
thresholds. We highlight the points corresponding to a threshold of ∆m̃ = 0 for our method, a confidence
threshold of 90 % for methods with a probability output, and a threshold of 50 % of all votes for Pl-Knn.
We refer to Appendix D.4 for all reject trade-off curves across all experimental settings.

standard deviations. For the supervised datasets, we use the ecoli (Horton & Nakai, 1996), multiple-features
(Duin, 2002), pen-digits (Alpaydin & Alimoglu, 1998), semeion (Buscema & Terzi, 2008), solar-flare (Dodson
& Hedeman, 1989), statlog-landsat (Srinivasan, 1993), and theorem datasets (Bridge et al., 2013) from the
UCI repository (Bache & Lichman, 2013). These datasets contain between 336 and 10 992 instances each.
Also, we use the popular MNIST (LeCun et al., 1999), KMNIST (Clanuwat et al., 2018), and FMNIST
datasets (Xiao et al., 2018), which contain 60 000 images each similar to other datasets like Cifar-10 and
Cifar-100 (Krizhevsky, 2009). For the partially labeled data, we use the bird-song (Briggs et al., 2012),
flickr (Huiskes & Lew, 2008), yahoo-news (Guillaumin et al., 2010), and msrc-v2 datasets (Liu & Dietterich,
2012). They contain between 1755 and 22 762 instances.

Noise Generation. We use three noise generation strategies to partially label the supervised datasets:
uniform, class-dependent, and instance-dependent noise. Uniform noise (Liu & Dietterich, 2012) adds three
uniform random noise labels to a fraction of 70 % of all instances. Class-dependent noise (Cour et al.,
2011) randomly partitions all class labels into pairs and adds the partner label as noise to 70 % of all
instances having the other label. Instance-dependent noise (Zhang et al., 2021) first trains a supervised
classifier g : X → M+

1
(
Y, 2Y). Given an instance x with true label y, a flipping probability of ξȳ(x) :=

gȳ(x)/ maxy′∈Y \{y} gy′(x) for ȳ ̸= y determines which noise labels to randomly pick.

5.3 Results

Prediction Performance. Table 1 shows the average test-set accuracies and standard deviations over all
UCI datasets with class- and instance-dependent noise, MNIST datasets with class- and instance-dependent
noise, and the real-world datasets. The algorithms with the highest accuracies as well as the algorithms with
non-significant differences using a paired t-test with level α = 0.05 are emphasized. Our approach (Dst-Pll)
performs comparably to the other methods. We note that none of the methods is best across all settings. For
example, Cc performs best in four out of five settings but is significantly outperformed by our approach on
the real-world experiments.

Reject Option. To compare our reject option with the other methods, we use a threshold of ∆m̃ > 0 for
our proposed approach (Algorithm 1, Line 12), a confidence threshold of 90 % for classifiers outputting a
probability distribution over the class labels, and a threshold of 50 % of all votes for Pl-Knn to not reject a
prediction, which is in line with the reject option by Hellman (1970).
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Table 2 shows the average empirical reject-option risk and standard deviation across all experiments for
varying λ. We compute R̂λ(Γg) = êrr(Γg) + λr̂(Γg) by using ground-truth information to calculate the
non-reject error êrr(Γg) and counting the number of rejects to calculate the reject rate r̂(Γg). The algorithms
with the lowest risks as well as the algorithms with non-significant differences using a paired t-test with level
α = 0.05 are emphasized. When misclassification is costly (λ ≤ 0.2), our method provides the significantly
best trade-off compared to our competitors. In contrast, when rejecting predictions is costly (λ > 0.2), the
methods in Table 1 are to be preferred.

Table 3 shows the non-rejected test accuracy of all methods across all experimental settings for a fixed fraction
of rejects. To obtain the results, we tune the confidence thresholds θ ∈ [0, 1] such that each competitor rejects
a similar number of instances as our proposed approach. Our approach uses the threshold ∆ > 0, for which
we have proved several desirable guarantees in Theorem 4.2. Our method achieves superior test-set accuracy
on the non-rejected predictions.

Figure 1 shows the reject trade-off for varying confidence (0 to 1) and ∆m̃ (-1 to 1) thresholds on the ecoli
and KMNIST datasets with instance-dependent noise as well as on the msrc-v2 real-world dataset. The
x-axes show the fractions of predictions that are rejected. The y-axes show the accuracies of predictions that
are not rejected. The plots show (fraction of rejects, non-rejected test-set accuracy)-pairs corresponding to
different settings of the thresholds. Most methods have monotonic growth: The more predictions are rejected,
the more accurate are non-rejected predictions. Also, it is desirable to be close to the top-left corner of the
plots as one wants to achieve high accuracy while rejecting as few predictions as possible. Note that the point
(1, 1) cannot be observed as the test-set accuracy is undefined if all predictions are rejected.

Given a desired rejection rate r̂(Γg), Figure 1 also allows for numerically finding the appropriate value of
λ that minimizes R̂λ(Γg). Varying λ in (1), while having êrr(Γg) and r̂(Γg) fixed, yields a straight line in
Figure 1 showing all possible trade-offs.

Our method provides the significantly best trade-offs compared to competitors (Table 2). These results
empirically demonstrate our method’s superiority in reliably rejecting unsure predictions.

6 Conclusions

When misclassification is costly, reject options provide a principled way of alleviating the consequences of
incorrect predictions. In this work, we have presented a novel nearest-neighbor-based partial-label learning
algorithm that can reject predictions if uncertain. We have demonstrated the desirable properties of the
proposed reject option both from a theoretical (Theorem 4.2) and practical perspective. Our wide range of
experiments showed the effectiveness of our classification rule and reject option on supervised datasets with
added artificial noise and partially labeled real-world datasets.
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A Proofs

This section collects our proofs. Appendix A.1 contains the proof of Theorem 4.2. The proof of Lemma 4.5 is
in Appendix A.2. We prove our main statement, Theorem 4.6, in Appendix A.3.

A.1 Proof of Theorem 4.2

Part (i). Given an instance x̃ ∈ X with its candidate set s̃ ⊆ Y and its associated prediction g(x̃) as described
in Algorithm 1, we assume that g(x̃) has been picked randomly from arg maxA⊆s̃ m̃(A) (Algorithm 1, Line 11,
second case), so maxy∈s̃ m̃({y}) must be zero because we are not in the first case in Line 11. Therefore,
belm̃({y}) (2)= m̃({y}) = 0 for all y ∈ Y. Substitution in ∆m̃ yields

∆m̃ = belm̃({y})− max
y′∈s̃\{y}

plm̃({y′}) = 0− max
y′∈s̃\{y}

plm̃({y′}) ≤ 0,

independent of the choice of y ∈ Y. Therefore, ∆m̃ ≤ 0.

Part (ii). Given an instance x̃ ∈ X with its candidate set s̃ ⊆ Y and its associated prediction g(x̃)
as described in Algorithm 1, we assume that ∆m̃ > 0. By the contraposition of part (i), g(x̃) = ŷ
with ŷ = arg maxy∈s̃ m̃({y}). From (5) and ∆m̃ > 0, it follows that belm̃({ŷ}) > maxy∈s̃\{ŷ} plm̃({y}),
which is equivalent to belm̃({ŷ}) > plm̃({y}) for all y ∈ s̃ \ {ŷ}. For all P ∈ Cm̃(Y, 2Y), it holds that
belm̃(A) ≤ P(A) ≤ plm̃(A) for all A ⊆ Y by (3). Therefore, P({y}) ≤ plm̃({y}) < belm̃({ŷ}) ≤ P({ŷ}) for all
y ∈ s̃ \ {ŷ}.

Part (iii). (⇒): Given an instance x̃ ∈ X with its candidate set s̃ ⊆ Y and its associated prediction
g(x̃) as described in Algorithm 1, we assume that m̃({g(x̃)}) > 1/2. Because maxy∈s̃ m̃({y}) > 0, we
are in the first case in Line 11 of Algorithm 1. Therefore, g(x̃) = ŷ with ŷ = arg maxy∈s̃ m̃({y}). As∑

A⊆Y m̃(A) = 1 and m̃({ŷ}) > 1/2, it holds that
∑

A⊆Y, A ̸={ŷ} m̃(A) < 1/2. Then, for all y ∈ s̃ with y ̸= ŷ,
plm̃({y}) =

∑
A⊆Y, A∩{y}̸=∅ m̃(A) < 1/2. Hence, plm̃({y}) < belm̃({ŷ}) for all y ∈ s̃ with y ̸= ŷ. Therefore,

∆m̃ = belm̃({ŷ})−maxy∈s̃\{ŷ} plm̃({y}) > 0.

(⇍): In the following, we provide a counter-example. Let s̃ = Y = {1, 2, 3} and m̃ be defined by m̃(A) = 0.4
if A = {1}, m̃(A) = 0.3 if A = {1, 2} or A = {1, 3}, else m̃(A) = 0. Then, y = 1 is our prediction since it has
the highest probability mass. The prediction is not rejected because ∆m̃ = 0.4− 0.3 = 0.1 > 0. However,
m̃({y}) < 1/2.

A.2 Proof of Lemma 4.5

Part (i). The expected probability mass of ỹ is given by (7). The non-negativity of the binomial coefficients
implies that it is sufficient to show that(

k − h

i

) l−2∏
a=1

(
k − h

ja

)
≥

min(i,j1,...,jl−2)∑
b=1

(−1)b+1
(

k − h

b

)(
k − h− b

i− b

) l−2∏
c=1

(
k − h− b

jc − b

)
, (6)

where k ∈ N, h, i, ja ∈ N0 with 0 ≤ i < k − h and 0 ≤ ja < k − h with a ∈ [l − 2], and that the inequality is
strict in at least one case.

The proof of (6) proceeds by induction over k. Note that the choices of i and ja are interchangeable (see
Appendix B). Hence, w.l.o.g., we assume for the remainder of this proof that i ≤ ja for all a ∈ [l − 2]. Further,
we set k′ = k − h ∈ N.

Proposition. For k′ ∈ N, it holds that(
k′

i

) l−2∏
a=1

(
k′

ja

)
≥

i∑
b=1

(−1)b+1
(

k′

b

)(
k′ − b

i− b

) l−2∏
c=1

(
k′ − b

jc − b

)
,

with 0 ≤ i ≤ ja < k′ for all a ∈ [l − 2].
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Base case. For k′ = 1, it holds that h = i = ja = 0 (a ∈ [l − 2]). Then, all binomial coefficients on the l.h.s.
are 1. The sum on the r.h.s. is empty and thus 0. Hence, l.h.s. > r.h.s. (1 > 0), which also renders (7) strictly
positive.

Induction step. Let k′ = k′ + 1. The l.h.s. yields(
k′ + 1

i

) l−2∏
a=1

(
k′ + 1

ja

)
(i)=
(

k′ + 1
k′ + 1− i

l−2∏
a=1

k′ + 1
k′ + 1− ja

)(
k′

i

) l−2∏
a=1

(
k′

ja

)
(ii)
≥

(
k′ + 1

k′ + 1− i

l−2∏
a=1

k′ + 1
k′ + 1− ja

)
i∑

b=1
(−1)b+1

(
k′

b

)(
k′ − b

i− b

) l−2∏
c=1

(
k′ − b

jc − b

)
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(−1)b+1 k′ + 1
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b

)(
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i− b
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c=1
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k′ + 1− jc

(
k′ − b

jc − b
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(iv)=

i∑
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where (i) holds as (
k′ + 1

i

)
= (k′ + 1)!

i!(k′ + 1− i)! = k′ + 1
k′ + 1− i

k′!
i!(k′ − i)! = k′ + 1

k′ + 1− i

(
k′

i

)
,

the proposition yields (ii), in (iii) we rearrange the sum and collect both products, and (iv) expands the
fractions. In (v), we rearrange the factor within the product and apply the (i′)-s, which hold by similar
calculations as (i), and Lemma B.1 with k = k′ + 1 implies (vi). These derivations and the observation that
the base case guarantees the inequality to be strict conclude the proof.

Part (ii). By comparing the closed-form expressions (with m = i = t) of ỹ and ỹc given in (7) and (8),
respectively, we obtain

EP[m̃({ỹ}) | X = x̃] > EP[m̃({ỹc}) | X = x̃]

⇔
(

1
2l−2 p2

)k−h−m

>

(
1

2l−1 − 1p3

)k−h−m

⇔ 1
2l−2 p2 >

1
2l−1 − 1p3

(i)⇔ 2l−1 − 1
2l−2 > 1 ⇔ 2l−2 > 1,

where (i) holds as Assumption 4.4 guarantees that p2 ≥ p3 > 0. The last statement is satisfied for l ≥ 3,
which shows that the dominance assumption w.r.t. the label distribution propagates through the computation
of belief when using Yager’s rule. We note that the result is independent of p1 as a candidate set can not
distinguish the belief in ỹ and ỹc when these co-occur.

A.3 Proof of Theorem 4.6

With Assumption 4.4, Theorem 4.6 is a consequence of Lemma 4.5. We detail this in the following.

Part (i). Let x̃ ∈ X be a fixed instance with unknown true label ỹ. Our algorithm is trained with n samples
((xi, si))n

i=1
i.i.d.∼ PXS that satisfy the label distribution in Assumption 4.4. Especially, the dominance of the
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true label ỹ within x̃’s neighborhood of k instances xi holds. Since the expected probability mass of ỹ is
positive (Lemma 4.5; part (i)), that is, EP[m̃({ỹ}) | X = x̃] > 0, we are, in expectation, in the first case of our
two-case decision rule (Algorithm 1, Line 11). Furthermore, label ỹ receives, in expectation, the maximum
probability mass among all labels because the dominance of label ỹ in the neighborhood propagates to the
label masses by Lemma 4.5 (part (ii)), that is, EP[m̃({ỹ}) | X = x̃] > EP[m̃({ỹc}) | X = x̃]. Therefore,
in expectation, it must hold that, given an instance x̃, we consistently predict the true label ỹ, that is,
E

((xi,si))n
i=1

i.i.d.∼ PXS

gn(x̃) = ỹ.

Part (ii). Given n samples ((xi, si))n
i=1

i.i.d.∼ PXS , the classifier gn trained by Algorithm 1 from the n samples,
and the minimum loss L(g(x), s) = miny∈s 1{g(x)̸=y} (Lv et al., 2020; Feng et al., 2020), the expected empirical
risk is

EP[R̂(gn)] = EP

[
1
n

n∑
i=1
L(gn(xi), si)

]
= 1

n

n∑
i=1

EP[L(gn(xi), si)]
(i)= 0,

which is zero by part (i) of the statement as, in expectation, we consistently predict the true label yi for any
fixed label xi.

By the law of large numbers, we have

lim
n→∞

R̂(gn) = lim
n→∞

1
n

n∑
i=1
L(gn(xi), si) = 0 almost surely,

because EP[R̂(g)] = 0 as stated above. As R(g∗) ≥ 0, we conclude

0 ≤ lim
n→∞

(
R̂(gn)−R(g∗)

)
≤ lim

n→∞
R̂(gn) = 0 almost surely,

which establishes (ii).

B Auxiliary Results

This section lists results underpinning the findings in Appendix A. Section B.1 introduces a closed-form
expression of the expected probability mass. Section B.2 presents Lemma B.1, which is needed in the proof
of Lemma 4.5.

B.1 Expected Probability Mass

This section, first, presents a closed-form expression for the expected probability mass of ỹ and ỹc. Second,
we compare the computation with a simulation to numerically validate our closed-form expression and the
results in Appendix A.

Closed-form expression. Let x̃ ∈ X be the instance of interest with hidden true label ỹ ∈ Y and k
associated neighbors (xi, si) ∈ NNk(x̃). We recall that our label space Y has l ≥ 3 classes. Then, the expected

20



Under review as submission to TMLR

probability mass of ỹ given instance x̃ is

E(X,Y,S)∼P
[

m̃({ỹ}) | X = x̃
] (i)= E(X,Y,S)∼P

[
q({ỹ}) | X = x̃

]
(ii)= E(X,Y,S)∼P

[ ∑
A1,...,Ak⊆Y⋂k

i=1
Ai={ỹ}

k∏
j=1

mj(Aj) | X = x̃
]

(iii)=
k−1∑
h=0

k−h−1∑
i=0

k−h−1∑
j1=0

k−h−1∑
j2=0

· · ·
k−h−1∑
jl−2=0

∑
A1,...,Ak⊆Y ;
B1,...,Bl⊆[k]

with |B1|=h,|B2|=i,
|Bq+2|=jq for q∈[l−2];

ỹ ∈ Ar for r ∈ [k];
Ar = Y for r ∈ B1;
ỹc∈ Ar for r ∈ B2;

ỹq+2∈ Arq for rq ∈ Bq+2
and q ∈ [l−2]︸ ︷︷ ︸

(iv)

( k∏
j=1

mj(Aj)
)

︸ ︷︷ ︸
(v)

( k∏
j=1

P(S = Aj , Y = ỹ | X = xj)
)
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=
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A1,...,Ak⊆Y ;
B1,...,Bl⊆[k]

with |B1|=h,|B2|=i,
|Bq+2|=jq for q∈[l−2];

ỹ ∈ Ar for r ∈ [k];
Ar = Y for r ∈ B1;
ỹc∈ Ar for r ∈ B2;

ỹq+2∈ Arq for rq ∈ Bq+2
and q ∈ [l−2]︸ ︷︷ ︸
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1
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(
1

2l−2 − 1p1

)i( 1
2l−2 p2
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(vi)

=
k−1∑
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i
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(
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ja
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−
(

k

k − h

)min(i,j1,j2,...,jl−2)∑
b=1

(−1)b+1
(
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b

)(
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(vii)

]

× 1
2k

(
1

2l−2 − 1p1

)i( 1
2l−2 p2

)k−h−i

. (7)

In the following, we show that transformations (i) – (viii) hold.

• In (i), we apply (4). For any y ∈ Y, it holds that m({y}) = q({y}) as {y} ≠ ∅ and {y} ≠ Y.

• In (ii), we insert (4), that is, how all mi-s as defined by Algorithm 1 are combined into q using
Yager’s rule (4).

• In (iii), we then compute the expected value by taking into account all possible combinations of sets
A1, . . . , Ak ⊆ Y producing the intersection {ỹ}.

• Term (iv) enumerates all cases where
⋂k

r=1 Ar = {ỹ}. To produce this intersection, label ỹ needs
to be contained in all sets Ar. At most k − 1 sets can be the full label space, that is, h sets satisfy
Ar = Y. The label ỹc with which ỹ is most often confused has to be missing in at least one set Ar,
that is, i sets Ar satisfy ỹc ∈ Ar. All remaining labels ỹ3, . . . , ỹl ∈ Y also have to be missing in at
least one set Ar each, that is, ja sets Ar satisfy ỹa+2 ∈ Ar, respectively.
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• Term (v) calculates the value that a given instantiation of all A1, . . . , Ak has. Because we only sum
over focal elements of the mj-s (j ∈ [k]) by the construction of the sum in (v), term (vi) simplifies to
1/2k. Recall that all focal sets have a value of 1/2 (Algorithm 1, Line 6).

• Expression (vi) computes the probability that a given instantiation of all A1, . . . , Ak has. The variables
h, i, j1, . . . , jl−2 directly allow to quantify the probabilities in a way to apply Assumption 4.4, which
allows to simplify the expression.

• As the summands within (vii) do not depend on the A1, . . . , Ak anymore, we can simplify by counting
their possible instantiations. We first count the possible combinations of sets where we pick to
intersect h-times with the full label space and (k − h)-times with the neighbors’ candidate sets of
which i contain label ỹc and ja contain the remaining labels for all a ∈ [l − 2]. Second, we need to
subtract all combinations that produce the whole label space within at least one candidate set as the
probability of s′ = Y is zero per Assumption 4.4. We do this using an inclusion-exclusion strategy.
We have k − h sets with which we intersect and that are not the full label space. Out of those k − h
sets, at least one set ought to contain all possible labels leaving

(
k−h−1

i−1
)

and
(

k−h−1
jc−1

)
possibilities

for the other sets. This overcounts combinations though as multiple sets can contain all labels. We
employ the inclusion-exclusion strategy to remove combinations that produce the same allocations of
labels to sets.

Similar to (7), we also express the expected mass of the most frequently co-occurring label ỹc as

E(X,Y,S)∼P
[

m̃({ỹc}) | X = x̃
]

= E(X,Y,S)∼P
[

q({ỹc}) | X = x̃
]

= E(X,Y,S)∼P
[ ∑

A1,...,Ak⊆Y⋂k

i=1
Ai={ỹc}

k∏
j=1

mj(Aj) | X = x̃
]

=
k−1∑
h=0

k−h−1∑
t=0

k−h−1∑
j1=0

k−h−1∑
j2=0

· · ·
k−h−1∑
jl−2=0

[(
k

k − h

)(
k − h

t

) l−2∏
a=1

(
k − h

ja

)

−
(

k

k − h

)min(t,j1,j2,...,jl−2)∑
b=1

(−1)b+1
(

k − h

b

)(
k − h− b

t− b

) l−2∏
c=1

(
k − h− b

jc − b

)]

× 1
2k

(
1

2l−2 − 1p1

)t( 1
2l−1 − 1p3

)k−h−t

. (8)

To produce the intersection {ỹc} in Yager’s rule, all k − h sets with which we intersect need to contain ỹc.
The variable t denotes how many out of k− h sets contain the true label ỹ. Therefore, ỹ and ỹc co-occur in a
set in t cases, with which the probability ( 1

2l−2−1 p1)t is associated. In k − h− t sets, the true label is not
contained, with which the probability ( 1

2l−1−1 p3)k−h−t is associated according to Assumption 4.4.

Simulation. To simulate the expected probability masses, we randomly draw k candidate sets si according
to the label distribution in Assumption 4.4, apply Algorithm 1, and report the belief of ỹ and ỹc. We repeat
this 100 000 times and average the results. For l = 3, ỹ = 1, and ỹc = 2, we obtain the label distribution

P(S = {1, 2} , Y = 1 | X = xi) = p1,

P(S = {1} , Y = 1 | X = xi) = P(S = {1, 3} , Y = 1 | X = xi) = 1
2 p2,

P(S = {2} , Y = 2 | X = xi) = P(S = {3} , Y = 3 | X = xi) = 1
3 p3,

P(S = {2, 3} , Y = 2 | X = xi) = P(S = {2, 3} , Y = 3 | X = xi) = 1
6 p3,

regarding a neighboring instance xi with i ∈ [k]. All other probabilities that are not listed are zero. Naturally,∑
s′⊆Y

∑
y′∈Y P(S = s′, Y = y′ | X = xi) = p1 + 2 1

2 p2 + 2 1
3 p3 + 2 1

6 p3 = 1.
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Figure 2 compares the computation and simulation of the expected probability masses. The values of the
computation and simulation are indiscernible. Note that the expected probability mass of any single-item
set converges towards zero as k increases. The more sets one intersects with in (4), the more likely it is to
produce the empty set. As shown in Lemma 4.5 (part (ii)), the expected probability mass of ỹ is greater
than the mass of ỹc, independently from the number of neighbors k ∈ N.

B.2 Auxiliary Lemma to the Proof of Lemma 4.5

This section presents an auxiliary inequality, which is used in the proof of Lemma 4.5.
Lemma B.1. Let l ∈ N with l ≥ 3 denote the number of class labels and k ∈ N the number of neighbors. Let
further i, ja ∈ N0 with 0 ≤ i ≤ ja < k for all a ∈ [l − 2]. Then, it holds that

i∑
b=1

(−1)b+1
(

k

k − b

)l−2(
k

b

)(
k − b

i− b

) l−2∏
c=1

(
k − b

jc − b

)
≥

i∑
b=1

(−1)b+1
(

k

b

)(
k − b

i− b

) l−2∏
c=1

(
k − b

jc − b

)
.

Proof. We first transform the statement as

i∑
b=1

(−1)b+1
(

k

k − b

)l−2(
k

b

)(
k − b

i− b

) l−2∏
c=1

(
k − b

jc − b

)
≥

i∑
b=1

(−1)b+1
(

k

b

)(
k − b

i− b

) l−2∏
c=1

(
k − b

jc − b

)

⇔
i∑

b=1
(−1)b+1

((
k

k − b

)l−2
− 1
)(

k

b

)(
k − b

i− b

) l−2∏
c=1

(
k − b

jc − b

)
≥ 0.

We then write the latter as
i∑

b=1
(−1)b+1

((
k

k − b

)l−2
− 1
)

︸ ︷︷ ︸
(i)

(
k

b

)(
k − b

i− b

) l−2∏
c=1

(
k − b

jc − b

)

=
i∑

b=1
(−1)b+1

(
l−3∑
c=0

(
k

k − b

)c
)

b

k − b

(
k

b

)(
k − b

i− b

) l−2∏
c=1

(
k − b

jc − b

)
︸ ︷︷ ︸

(ii)

=
i∑

b=1
(−1)b+1

(
l−3∑
c=0

(
k

k − b

)c
)

b

k − b

(
k

b

)(
k − b

i− b

)(
k − b

j1 − b

)
︸ ︷︷ ︸

(iii)

l−2∏
c=2

(
k − b

jc − b

)

=
i∑

b=1
(−1)b+1

(
l−3∑
c=0

(
k

k − b

)c
)

i

k − j1

(
k

i

)(
i− 1
b− 1

)(
k − b− 1

j1 − b

) l−2∏
c=2

(
k − b

jc − b

)
(iv)= i

k − j1

(
k

i

) i∑
b=1

(−1)b+1

(
l−3∑
c=0

(
k

k − b

)c
)(

i− 1
b− 1

)(
k − b− 1

j1 − b

) l−2∏
c=2

(
k − b

jc − b

)
(v)= i

k − j1

(
k

i

) i−1∑
b=0

(−1)b

(
l−3∑
c=0

(
k

k − b− 1

)c
)(

i− 1
b

)(
k − b− 2
j1 − b− 1

)
︸ ︷︷ ︸

(vi)

l−2∏
c=2

(
k − b− 1
jc − b− 1

)

= i

k − j1

(
k

i

) i−1∑
b=0

(−1)b

(
l−3∑
c=0

(
k

k − b− 1

)c
)

(−1)−b

(
k − i− 1

j1 − 1

) l−2∏
c=2

(
k − b− 1
jc − b− 1

)
(vii)= i

k − j1

(
k

i

)(
k − i− 1

j1 − 1

) i−1∑
b=0

(
l−3∑
c=0

(
k

k − b− 1

)c
)

l−2∏
c=2

(
k − b− 1
jc − b− 1

)
≥ 0,
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which shows the statement to be demonstrated as the last term is a sum of products whose factors are all
non-negative. Recall that 0 ≤ i ≤ ja < k for all a ∈ [l − 2]. In the following, we show that all transformations
are sound.

• Using Theorem C.2, (i) holds as(
k

k − b

)l−2
− 1 =

((
k

k − b

)l−2
−
(

k

k − b

)l−3
)

+
((

k

k − b

)l−3
−
(

k

k − b

)l−4
)

+ · · ·+
(

k

k − b
− 1
)

=
(

k

k − b
− 1
)((

k

k − b

)l−3
+
(

k

k − b

)l−4
+ · · ·+ 1

)

=
(

k

k − b
− 1
) l−3∑

c=0

(
k

k − b

)c

= b

k − b

l−3∑
c=0

(
k

k − b

)c

.

• In (ii), we extract the first factor of the product such that it starts with c = 2.

• Subsequently, we transform the binomial coefficients (iii) as

b

k − b

(
k

b

)(
k − b

i− b

)(
k − b

j1 − b

)
(C.4)= b

k − b

(
k

i

)(
i

b

)(
k − b

j1 − b

)
(C.1)= b

k − b

i!
b! (i− b)!

(k − b)!
(j1 − b)! (k − j1)!

(
k

i

)
(viii)= i

k − j1

(i− 1)!
(b− 1)! (i− b)!

(k − b− 1)!
(j1 − b)! (k − j1 − 1)!

(
k

i

)
(C.1)= i

k − j1

(
k

i

)(
i− 1
b− 1

)(
k − b− 1

j1 − b

)
,

where (viii) rearranges terms.

• Then, in (iv), we move terms that are independent of b outside of the summation.

• In (v), we shift the summation to start at b = 0.

• Finally, by defining r = j1 − b− 1 ∈ N0, we express (vi) as(
i− 1

b

)(
k − b− 2
j1 − b− 1

)
=
(

i− 1
b

)(
r + k − j1 − 1

r

)
(C.3)= (−1)r

(
i− 1

b

)(
j1 − k

r

)
(ix)= (−1)r

∑
b′, r′∈ N0

b′+r′=j1−1

(
i− 1

b′

)(
j1 − k

r′

)

(C.5)= (−1)j1−b−1
(

i + j1 − k − 1
j1 − 1

)
(C.3)= (−1)j1−b−1 (−1)j1−1

(
k − i− 1

j1 − 1

)
= (−1)−b

(
k − i− 1

j1 − 1

)
.
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Figure 2: Comparison of simulating and calculating the expected belief of the true label ỹ and of the most
frequently co-occurring label ỹc for k ∈ [100], l = 3, p1 = 0.4, p2 = 0.35, and p3 = 0.25.

Thereby, (ix) holds as all summands that are introduced by
∑

b′+r′=j1−1
(

i−1
b′

)(
j1−k

r′

)
are zero. The

only non-zero summand is for b′ = b and r′ = r, that is, b + r = j1 − 1. In general,
(

m
n

)
= 0 if

0 ≤ m < n for m ∈ R and n ∈ N0.

C External Theorems

This section collects identities and theorems that we use in the proofs of our statements.
Definition C.1. (Binomial coefficients; Graham et al. 1994, p. 154). When both arguments of a binomial
coefficient are natural, one defines (

n

k

)
= n!

k! (n− k)! ,

for n, k ∈ N0 with n ≥ k ≥ 0. One extends this definition using falling factorials rm :=
∏m−1

i=0 (r − i) for any
r ∈ R and m ∈ N0. Binomial coefficients are then expressed as(

r

m

)
= rm

m! ,

which allows for real arguments r.
Theorem C.2. (Binomial theorem; Graham et al. 1994, p. 162). Given x, y ∈ R and n ∈ N0, the binomial
theorem states

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk.

Theorem C.3. (Graham et al. 1994, p. 164). As a special case of the binomial theorem, one obtains

(−1)k

(
−r

k

)
=
(

r + k − 1
k

)
,

for r ∈ R and k ∈ N0.
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Theorem C.4. (Graham et al. 1994, p. 168). Given r ∈ R and m, k ∈ N0 with m ≥ k, it holds that(
r

m

)(
m

k

)
=
(

r

k

)(
r − k

m− k

)
.

Theorem C.5. (Chu-Vandermonde identity; Graham et al. 1994, p. 169). Given s, t ∈ R and n ∈ N0, the
Chu-Vandermonde identity states (

s + t

n

)
=

n∑
k=0

(
s

k

)(
t

n− k

)
.

D Additional Experiments

This section contains additional experiments and details their hyperparameters. Section D.1 provides
experiments justifying Assumption 4.4, Section D.2 lists the values of all relevant hyperparameters, the
parameter sensitivity of our approach is discussed in Section D.3, and Section D.4 contains reject trade-off
plots for all experimental settings considered.

D.1 Applicability of Assumption 4.4

Given a fixed instance x̃, Assumption 4.4 describes the label distribution of the neighbors’ candidate sets.
Thereby, we assume that the true label ỹ dominates the neighborhood and that label ỹc co-occurs most often
with the true label ỹ. Otherwise, we assume uniform noise among the remaining noise labels.

Figure 3 demonstrates that those assumptions are largely satisfied on the four real-world datasets (see
Section 5.3). In most cases, the true label ỹ occurs most often in the neighborhood of instance x̃. There are
one or two other labels with which ỹ is commonly confused, which we model by ỹc. Apart from that, all
remaining noise labels are distributed uniformly.

D.2 Hyperparameters

As mentioned in Section 5.1, we consider ten commonly used PLL approaches. We choose their parameters
as recommended by the respective authors.

• Pl-Knn (Hüllermeier & Beringer, 2005): For all non-MNIST datasets, we use k = 10 neighbors
as recommended by the authors. For the MNIST datasets, we use the hidden representation of a
variational auto-encoder as instance features and use k = 20. The variational auto-encoder has a
768-dimensional input layer (flat MNIST input), a 512-dimensional second layer, and 48-dimensional
bottleneck layers for the mean and variance representations. The decoder uses a 48-dimensional first
layer, a 512-dimensional second layer, and a 768-dimensional output layer with sigmoid activation.
Otherwise, we use ReLU activations between all layers. Binary cross-entropy is used as a reconstruction
loss. We choose the AdamW optimizer for training.

• Pl-Svm (Nguyen & Caruana, 2008): We use the Pegasos optimizer (Shalev-Shwartz et al., 2007)
and λ = 1.

• Ipal (Zhang & Yu, 2015): We use k = 10 neighbors, α = 0.95, and 100 iterations.

• Pl-Ecoc (Zhang et al., 2017): We use L = ⌈10 log2(l)⌉ and τ = 0.1 as recommended.

• Proden (Lv et al., 2020): For a fair comparison, we use the same base models for all neural-network-
based approaches. We use a standard d-300-300-300-l MLP (Werbos, 1974) for the non-MNIST
datasets with ReLU activations, batch normalizations, and softmax output. For the MNIST datasets,
we use the LeNet-5 architecture (LeCun et al., 1998). We choose the Adam optimizer for training.

• Cc (Feng et al., 2020): We use the same base models as mentioned above for Proden.
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(b) Dataset mir-flickr.
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(c) Dataset msrc-v2.
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Figure 3: Counts of the class labels in the candidate sets si of instance x̃’s 10-nearest neighbors xi.

• Valen (Xu et al., 2021): We use the same base models as mentioned above for Proden.

• Pop (Xu et al., 2023): We use the same base models as mentioned above for Proden. Also, we set
e0 = 0.001, eend = 0.04, and es = 0.001. We abstain from using the data augmentations discussed in
the paper for a fair comparison.

• CroSel (Tian et al., 2024): We use the same base models as mentioned above for Proden. We use
10 warm-up epochs using Cc and λcr = 2. We abstain from using the data augmentations discussed
in the paper for a fair comparison.

• Dst-Pll (our proposed approach): Similar to Pl-Knn and Ipal, we use k = 10 neighbors for the
non-MNIST datasets. For the MNIST datasets, we use the hidden representation of a variational
auto-encoder as instance features and use k = 20. The architecture of the variational auto-encoder is
the same as described above for Pl-Knn.

We have implemented all approaches in Python using the Pytorch library. All experiments need two to
three days on a machine with 48 cores and one NVIDIA GeForce RTX 3090.

D.3 Parameter Sensitivity

Figure 4 shows the sensitivity of the number of neighbors k regarding the test-set performance, the fraction of
confident / non-rejected predictions, and the non-rejected prediction performance. The shaded areas indicate
the standard deviation regarding the 5-fold cross-validation. As for default k-nearest neighbor classification,
changes of k have a relatively large impact. We show parameter sensitivity for each of the real-world datasets
separately. Naturally, different datasets have different optimal parameter settings. The configuration k = 10,
which is also recommended within Pl-Knn (Hüllermeier & Beringer, 2005) and Ipal (Zhang & Yu, 2015),
provides a good trade-off between the number of confident predictions and how accurate confident predictions
are. Indeed, this setting produces a good number of confident predictions on most datasets (Figure 4; center
plot). At the same time, it produces a good MCC performance of confident predictions on most datasets
(Figure 4; right plot).
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Figure 4: Sensitivity of k regarding the test-set MCC score, the fraction, and the MCC score of confident /
non-rejected predictions.

When increasing k, our method’s behavior on different datasets can be assembled into two groups. On the
bird-song, mir-flickr, and yahoo-news datasets, increasing k past ten neighbors also increases the amount
of irrelevant labeling information from those neighbors. Therefore, our approach produces less confident
predictions. At the same time, the MCC score of confident predictions remains at roughly the same level.
This is because irrelevant labeling information from neighbors increases at most at the same rate as k.
In contrast, on the lost and msrc-v2 datasets, the MCC score of confident predictions drops sharply at a
certain point while the number of confident predictions decreases similarly. This is because irrelevant labeling
information increases more rapidly than k: The decrease of confidence in predictions is slower than the
increase of irrelevant candidate labels.

D.4 Reject Trade-off Curves

Figure 5 (i) – (xxxiv) shows the reject trade-off for varying confidence (0 to 1) and ∆m̃ (-1 to 1) thresholds
and augments Figure 1 by considering all datasets and noise generation strategies. The x-axes show the
fractions of predictions that are rejected. The y-axes show the accuracies of predictions that are not rejected.
The plots show (fraction of rejects, non-rejected test-set accuracy)-pairs corresponding to different settings
of the thresholds. In most cases, our method provides a better trade-off between the number of rejected
predictions and the accuracy of the non-rejected predictions. Table 2 summarizes all plots by showing the
average empirical risks across all experimental settings and for different trade-off parameters λ. We recall
that our method provides the significantly best trade-offs for λ ∈ [0, 0.2].
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Figure 5: Trade-off between the fraction of rejected predictions and the accuracy of non-rejected predictions.
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