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Abstract

In this study, we introduce a novel, probabilistic viewpoint on adversarial examples,1

achieved through box-constrained Langevin Monte Carlo (LMC). Proceeding from2

this perspective, we develop an innovative approach for generating semantics-aware3

adversarial examples in a principled manner. This methodology transcends the4

restriction imposed by geometric distance, instead opting for semantic constraints.5

Our approach empowers individuals to incorporate their personal comprehension6

of semantics into the model. Through human evaluation, we validate that our7

semantics-aware adversarial examples maintain their inherent meaning. Experi-8

mental findings on the MNIST and SVHN datasets demonstrate that our semantics-9

aware adversarial examples can effectively circumvent robust adversarial training10

methods tailored for traditional adversarial attacks.11

1 Introduction12

The purpose of generating adversarial examples is to deceive a classifier by making minimal changes13

to the original data’s meaning. In image classification, most existing adversarial techniques ensure the14

preservation of adversarial example semantics by limiting their geometric distance from the original15

image [18, 6, 2, 12]. These methods are able to deceive classifiers with a very small geometric based16

perturbation. However, when targeting robust classifiers trained using adversarial methods, an attack17

involving a relatively large geometric distance may be necessary. Unfortunately, these considerable18

distances can be so vast that they ultimately undermine the original image’s semantics, going against19

the core objective of creating adversarial examples. As illustrated in the left portion of Figure 1, when20

applying the PGD attack [12] constrained by L2 norm on a robust classifier, the attacked images that21

successfully deceive the classifier consistently lose their original meaning, which is undesirable.22

To counter this problem, we propose an innovative approach for generating semantics-aware adver-23

sarial examples. Instead of being limited by geometric distance, our approach hinges on a proposed24

semantic divergence. Specifically, we treat generating adversarial examples as a box-constrained25

non-convex optimization problem. We employ box-constrained Langevin Monte Carlo (LMC) to26

find near-optimal solutions for this complex problem. As LMC samples converge to a stationary27

distribution, we gain a probabilistic understanding of the adversarial attack. Within this probabilistic28

perspective, the geometric constraint of the adversarial attack can be viewed as a distribution. By29

replacing this geometric-based distribution with a semantic-based distribution, we can define a30

semantics-aware adversarial attack in a principled manner. The corresponding divergence induced by31

the semantic-based distribution is called semantic divergence. Our semantics-aware adversarial attack32

is capable of deceiving robust classifiers while preserving most of the original image’s semantics, as33

demonstrated in the right section of Figure 1.34
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Figure 1: Top left: Targeted attack on an adversarially trained MadryNet [12] for MNIST using
Projected Gradient Descent (PGD) with L2 norm. To ensure successful targeted attacks in most
cases, we increased the ϵ to 5. Bottom left: Targeted attack on an adversarially trained ResNet18
[8] for SVHN using PGD with L2 norm and ϵ = 5. Top right & Bottom right: Our proposed
method applied to targeted attacks on the same MadryNet and ResNet18 for MNIST and SVHN,
respectively. A green border signifies a successful deception of the victim classifier, while a red
border indicates failure. Notably, with PGD, a successful attack often results in the alteration of
the source image’s semantics, which is undesirable. Additional PGD attack examples are provided
in Appendix E.

2 Preliminaries35

2.1 Adversarial examples36

The notion of adversarial examples was first introduced by Szegedy et al. [18]. Let’s assume we have37

a classifier C : [0, 1]n → Y , where n represents the dimension of the input space and Y denotes the38

label space. Given an image xori ∈ [0, 1]n and a target label ytar ∈ Y , the optimization problem for39

finding an adversarial instance for xori can be formulated as follows:40

minimize D(xori,xadv) such that C(xadv) = ytar and xadv ∈ [0, 1]n

Here, D is a distance metric employed to assess the difference between the original and perturbed41

images. This distance metric typically relies on geometric distance, which can be represented by L0,42

L2, or L∞ norms.43

However, solving this problem is challenging. As a result, Szegedy et al. [18] propose a relaxation of44

the problem:45

minimize L(xadv, ytar) := c1 · D(xori,xadv) + c2 · f(xadv, ytar) such that xadv ∈ [0, 1]n (1)
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where c1, c2 are constants, and f is an objective function closely tied to the classifier’s prediction. For46

example, in [18], f is the cross-entropy loss function, while Carlini and Wagner [2] suggest several47

different choices for f . Szegedy et al. [18] recommend solving (1) using box-constrained L-BFGS.48

2.2 Adversarial training49

Adversarial training, a widely acknowledged method for boosting adversarial robustness in deep50

learning models, has been extensively studied [18, 6, 10, 12]. This technique uses adversarial samples51

as (part of) the training data, originating from Szegedy et al. [18], and has evolved into numerous52

variations. In this paper, we apply the min-max problem formulation by Madry et al. [12] to determine53

neural network weights, denoted as θ. They propose choosing θ to solve:54

min
θ

E(x,y)∼pdata

[
max

∥δ∥p≤ϵ
LCE(θ,x+ δ, y)

]
(2)

where pdata represents the data distribution, LCE is the cross-entropy loss, ∥·∥p denotes the Lp norm,55

and ϵ specifies the radius of the corresponding Lp ball. In what follows, we will use the term “robust56

classifier” to refer to classifiers that have undergone adversarial training.57

2.3 Energy-based models (EBMs)58

An Energy-based Model (EBM) [9, 4] involves a non-linear regression function, represented by59

Eθ, with a parameter θ. This function is known as the energy function. Given a data point, x, the60

probability density function (PDF) is given by:61

pθ(x) =
exp(−Eθ(x))

Zθ
(3)

where Zθ =
∫
exp(−Eθ(x))dx is the normalizing constant that ensures the PDF integrates to 1.62

2.4 Langevin Monte Carlo (LMC)63

Langevin Monte Carlo (also known as Langevin dynamics) is an iterative method that could be used64

to find near-minimal points of a non-convex function g [13, 25, 20, 14]. It involves updating the65

function as follows:66

x0 ∼ p0, xt+1 = xt −
ϵ2

2
∇xg(xt) + ϵzt, zt ∼ N (0, I) (4)

where p0 could be a uniform distribution. Under certain conditions on the drift coefficient ∇xg, it67

has been demonstrated that the distribution of xt in (4) converges to its stationary distribution [3, 14],68

also referred to as the Gibbs distribution p(x) ∝ exp(g(x)). This distribution concentrates around69

the global minimum of g[5, 24, 14]. If we choose g to be −Eθ, then the stationary distribution70

corresponds exactly to the EBM’s distribution defined in (3). As a result, we can draw samples from71

the EBM using LMC. By replacing the exact gradient with a stochastic gradient, we obtain Stochastic72

Gradient Langevin Dynamics (SGLD) [23, 19].73

2.5 Training EBM74

To train an EBM, we aim to minimize the minus expected log-likelihood of the data , represented by75

LEBM = EX∼pd [− log pθ(X)] = EX∼pd [Eθ(X)]− logZθ

where pd is the data distribution. The gradient is76

∇θLEBM = EX∼pd [∇θEθ(X)]−∇θ logZθ = EX∼pd [∇θEθ(X)]− EX∼pθ [∇θEθ(X)] (5)

(see [16] for derivation). The first term of ∇θLEBM can be easily calculated as pd is the distribution77

of the training set. For the second term, we can use LMC to sample from pθ [9].78

Effective training of an energy-based model (EBM) typically requires the use of techniques such as79

sample buffering and regularization. For more information, refer to the work of Du and Mordatch [4].80
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Figure 2: (a) and (b) display samples drawn from pvic(·; ytar) with the victim classifier being non-
adversarially trained and adversarially trained, respectively. (c) showcases samples from pdis(·;xori)
when D is the square of L2 norm. (d) illustrates t(xori) for t ∼ T , where T represents a distribution
of transformations, including TPS (see Section 4.2), scaling, rotation, and cropping. The xoris in (c)
and (d) consist of the first 36 images from the MNIST test set.

3 Generating semantics-aware adversarial examples81

In this section, we introduce a probabilistic approach to understanding adversarial examples. Through82

this lens, we establish the concept of semantic divergence, offering an alternative to conventional83

geometric distance. This concept of semantic divergence enables individuals to integrate their unique84

understanding of semantics into the model, thereby facilitating the creation of semantics-aware85

adversarial examples.86

3.1 A probabilistic perspective on adversarial examples87

LMC and SGLD are not directly applicable to the optimization problem presented in (1) due to their88

incompatibility with box-constrained optimization problems. To overcome this limitation, Lamperski89

[11] proposed Projected Stochastic Gradient Langevin Algorithms (PSGLA). By employing PSGLA90

to generate samples near the solution of the optimization problem specified in (1), we obtain the91

subsequent update rule:92

x0 ∼ p0, xt+1 = Π[0,1]n

(
xt −

ϵ2

2
∇xL(xt, ytar) + ϵzt

)
, zt ∼ N (0, I) (6)

where Π[0, 1]n is a clamp projection that enforces the constraints within the [0, 1]n interval.93

We refer to the stationary distribution of PSGLA as the adversarial distribution padv(x; ytar) ∝94

exp(−L(x, ytar)), since samples drawn from this distribution are in close proximity to the optimal95

value of the optimization problem presented in (1).96

Then by definition of L, the adversarial distribution can be represented as a product of expert97

distributions [9]:98

padv(xadv;xori, ytar) ∝ pvic(xadv; ytar)pdis(xadv;xori) (7)
where pvic(xadv; ytar) ∝ exp(−c2 · f(xadv, ytar)) denote the victim distribution and pdis(xadv;xori) ∝99

exp(−c1 · D(xori,xadv)) represent the distance distribution.100

The victim distribution pvic is dependent on the victim classifier. As suggested by Szegedy et al.101

[18], f could be the cross-entropy loss of the classifier. We can sample from this distribution using102

Langevin dynamics. Figure 2(a) presents samples drawn from pvic when the victim classifier is103

subjected to standard training, exhibiting somewhat indistinct shapes of the digits. This implies104

that the classifier has learned the semantics of the digits to a certain degree, but not thoroughly.105

In contrast, Figure 2(b) displays samples drawn from pvic when the victim classifier undergoes106

adversarial training. In this scenario, the shapes of the digits are clearly discernible. This observation107

suggests that we can obtain meaningful samples from adversarially trained classifiers, indicating that108

such classifiers depend more on semantics, which corresponds to the fact that an adversarially trained109

classifier is more difficult to attack. A similar observation concerning the generation of images from110

an adversarially trained classifier has been reported by Santurkar et al. [15].111

The distance distribution pdis relies on D(xori,xadv), representing the distance between xadv and112

xori. By its nature, samples that are closer to xori may yield a higher padv, which is consistent with113
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78.3 79.6 95.4 84.1 72.9 96.0

78.0 80.8 83.8 83.8 79.0 81.1

76.1 79.4 97.0 77.2 73.8 81.4

77.7 74.5 82.4 79.3 82.2 79.7

75.6 82.4 78.8 80.6 81.1 95.5

85.0 92.2 83.6 71.2 79.7 80.9

(c) (d)

38.9 27.9 94.6 17.1 23.2 95.7

28.6 24.0 20.9 27.0 17.4 34.0

21.9 16.4 96.5 20.7 22.5 36.2

27.9 25.3 31.1 21.1 40.4 30.4

26.4 16.2 33.6 27.5 18.7 94.8

40.9 90.6 38.7 17.0 43.6 38.9

Figure 3: (a): Samples from padv(·;xori, ytar) ∝ exp(−c1 · D(xori,xadv)) exp(−c2 · f(xadv, ytar)),
where D is the L2 norm, f is the cross-entropy fCE, xori are the first 36 images from the MNIST test
set, ytar are set to 1, c1 is 10−3, and c2 is 10−2. (c): Similar to (a), but with f replaced by fCW, as
introduced in section 4.1. Essentially, this case applies the L2 CW attack [2] using LMC instead of
Adam optimization. A green border indicates successful deception of the victim classifier, while a
red border signifies failure. (b) & (d): the predictive probability (softmax probability) of the target
class, corresponding to each digit of Figures (a) and (c) on a one-to-one basis.

the objective of generating adversarial samples. Moreover, if D represents the square of the L2114

norm, then pdis becomes a Gaussian distribution with a mean of xori and a variance determined by115

c1. Figure 2(c) portrays samples drawn from pdis when D is the square of the L2 distance. The116

samples closely resemble the original images, xoris, from the MNIST testset, because each sample is117

positioned near an optimal point, and these optimal points are the original images, xoris.118

3.2 From Geometric Distance to Semantic Divergence119

Based on the probabilistic perspective, we propose a semantic divergence, denoted by a non-symmetric120

divergence Dsem(xadv,xori) := E(xadv;xori), where E(·;xori) represents the energy of an energy-121

based model trained on a dataset consisting of {t1(xori), t2(xori), . . . }. Here, ti ∼ T , and T is122

a distribution of transformations that do not alter the original image’s semantics. In practice, the123

choice of T depends on human subjectivity related to the dataset. Individuals are able to incorporate124

their personal comprehension of semantics into the model by designing their own T . For instance,125

in the case of the MNIST dataset, the transformations could include scaling, rotation, distortion,126

and cropping, as illustrated in Figure 2(d). We assume that such transformations do not affect the127

semantics of the digits in the MNIST dataset. Consequently, our proposed semantic divergence128

induces the corresponding distance distribution pdis(xadv;xori) ∝ exp(−c1 · E(xadv;xori)).129

We claim that, given an appropriate T , semantic divergence can surpass geometric distance. Empiri-130

cally, maintaining the semantics of the original image by limiting the geometric distance between the131

adversarial image and the original image when deceiving a robust classifier is challenging: as shown132

in Figure 1 and Figure 3, it is difficult to preserve the semantics of the original images. The attacked133

images either display a ‘shadow’ of the target digits or reveal conspicuous tampering traces, such as134

in Figure 3(c), where the attacked digit turns gray. This phenomenon was empirically observed and135

tested by Song et al. [17] through an A/B test. Conversely, as depicted in Figure 4, the samples from136

padv neither exhibit the ‘shadow’ of the target digits nor any obvious traces indicating adversarial137

attack. While semantic divergence can’t entirely prevent the generation of a sample resembling138

the target class, as shown in Figure 4(a), we discuss certain techniques to mitigate this issue in139

Section 4.1.140

A plausible explanation for this is that the utilization of geometric distance causes pdis(·,xori) to141

overly focus on xori. However, when applying semantic divergence induced by a suitable T , the142

density of the distance distribution pdis(·,xori) spreads out relatively more, resulting in a higher143

overlap between pdis(·,xori) and pvic. This, in turn, provides more opportunities for their product padv144

to reach a higher value.145
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(a) (b)

75.0 80.5 78.7 78.6 79.2 80.5

77.9 81.3 78.2 75.5 78.4 80.3

77.7 77.5 79.3 73.7 78.1 73.1

82.1 69.6 86.0 63.5 76.4 80.7

77.4 79.9 74.3 83.9 74.6 79.6

78.7 79.2 81.5 84.2 77.0 77.6

(c) (d)

22.7 36.9 23.9 38.5 38.6 35.6

35.3 40.5 35.8 24.5 38.6 21.5

26.3 21.9 32.9 43.0 19.9 14.6

30.1 23.6 23.8 16.6 40.3 42.6

22.9 22.9 40.5 24.3 24.1 34.0

35.3 29.1 21.8 35.8 22.2 38.8

Figure 4: (a) & (c): Samples from padv(·;xori, ytar) ∝ exp(−c1·D(xori,xadv)) exp(−c2·f(xadv, ytar)),
where xori refers to the original image of digit “7” shown in Figure 1 and ytar refers to class 9. D
represents our proposed semantic divergence. In (a), f is the cross-entropy fCE, while in (c), f is fCW.
Constants are set as c1 = 1.0 and c2 = 10−2. A green border indicates successful deception of the
victim classifier, whereas a red border denotes failure. (b) & (d): The predictive probability (softmax
probability) of the target class, corresponding to each digit in Figures (a) and (c) on a one-to-one
basis.

4 Deceiving robust classifiers146

In this section, we present several techniques that enhance the performance of our proposed method147

in generating high-quality adversarial examples.148

4.1 Victim distributions149

The victim distribution pvic ∝ exp(c2 · f(xadv, ytar)) is influenced by the choice of function f . Let150

gϕ : [0, 1]n → R|Y| be a classifier that produces logits as output with ϕ representing the neural151

network parameters, n denoting the dimensions of the input, and Y being the set of labels (the output152

of gϕ are logits). Szegedy et al. [18] suggested using cross-entropy as the function f , which can be153

expressed as154

fCE(x, ytar) := −gϕ(x)[ytar] + log
∑

y

exp(gϕ(x)[y]) = − log σ(gϕ(x))[ytar]

where σ denotes the softmax function.155

Carlini and Wagner [2] explored and compared multiple options for f . They found that, empirically,156

the most efficient choice of their proposed fs is:157

fCW(x, ytar) := max(max
y ̸=ytar

gϕ(x)[y]− gϕ(x)[ytar], 0).

From Figure 3 and Figure 4, we observe that fCW outperforms fCE when the pdis depends on either158

geometric distance or semantic divergence. A potential explanation for this phenomenon is that,159

according to its definition, fCW becomes 0 if the classifier is successfully deceived during the iteration160

process. This setting ensures that the generator does not strive for a relatively high softmax probability161

for the target class; it simply needs to reach a point where the victim classifier perceives the image as162

belonging to the target class. Consequently, after the iteration, the victim classifier assigns a relatively163

low predictive probability to the target class σ(gϕ(xadv))[ytar], as demonstrated in Figure 3(d) and164

Figure 4(d).165

In this study, we introduce two additional choices for the function f . Although these alternatives are166

not as effective as fCW, we present them in Appendix C for further exploration.167

4.2 Data Augmentation by Thin Plate Splines (TPS) Deformation168

Thin-plate-spline (TPS) [1] is a commonly used image deforming method. Given a pair of control169

points and target points, TPS computes a smooth transformation that maps the control points to the170

target points, minimizing the bending energy of the transformation. This process results in localized171

deformations while preserving the overall structure of the image, making TPS a valuable tool for data172

augmentation.173
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Psou Ptar

xori tTPS(xori,Psou,Ptar)

Figure 5: TPS as a data augmentation.
Left: The original image xori superim-
posed with a 5× 5 grid of source control
points Psou. Right: The transformed im-
age overlaid with a grid of target control
points Ptar.

As introduced in Section 3.2, we aim to train an energy-174

based model on transformations of a single image xori.175

In practice, if the diversity of the augmentations of xori,176

represented as t(xori), is insufficient, the training of the177

probabilistic generative model is prone to overfitting.178

To address this issue, we use TPS as a data augmen-179

tation method to increase the diversity of t(xori). For180

each xori, we set a 5 × 5 grid of source control points,181

Psou = {(x(i), y(i))}5×5
i=1 , and defining the target points as182

Ptar = {(x(i) + ϵ
(i)
x , y(i) + ϵ

(i)
y )}5×5

i=1 , where ϵ
(i)
x , ϵ

(i)
y ∼183

N (0, σ2) are random noise added to the source control184

points. We then apply TPS transformation to xori with185

Psou and Ptar as its parameters. This procedure is depicted186

in Figure 5. By setting an appropriate σ, we can substan-187

tially increase the diversity of the one-image dataset while188

maintaining its semantic content.189

4.3 Rejection Sampling190

Directly sampling from padv(·;xori, ytar) does not guarantee the generation of samples capable of effec-191

tively deceiving the classifier. To overcome this issue, we adopt rejection sampling [22], which elimi-192

nates unsuccessful samples and ultimately yields samples from padv(xadv| argmaxy gϕ(xadv)[y] =193

ytar;xori, ytar).194

4.4 Sample Refinement195

After rejection sampling, the samples are confirmed to successfully deceive the classifier. However,196

not all of them possess high visual quality, as demonstrated in Figure 4(c). To automatically obtain N197

semantically valid samples1, we first generate M samples from the adversarial distribution. Following198

rejection sampling, we sort the remaining samples and select the top κ percent based on the softmax199

probability of the original image’s class, as determined by an auxiliary classifier. Finally, we choose200

the top N samples with the lowest energy E, meaning they have the highest likelihood according to201

the energy-based model.202

The auxiliary classifier is trained on the data-augmented training set. We do not use the energy of203

the samples as the sole criterion for selection because some low-visual quality samples may also204

have a high likelihood. This occurrence is further explained and examined in Appendix D. The entire205

process of rejection sampling and sample refinement is portrayed in Algorithm 1.206

Algorithm 1 Rejection Sampling and Sample Refinement

Input: A trained energy based model E(·;xori) based on the original image xori, the victim classifier
gϕ, an auxiliary classifier gψ, number of initial samples M , number of final samples N , the
percentage κ.

Output: N adversarial samples x.
x = ∅
for 0 ≤ i < M do

xadv ∼ padv(·;xori, ytar) ▷ Sample from the adversarial distribution.
if argmaxy gϕ(xadv)[y] = ytar then ▷ Accept if xadv deceive the classifier.

x = x ∪ {xadv}
end if

end for
Sort x by σ(gψ(xi))[yori] for i ∈ {1, . . . , |x|} in descent order
x = (xi)

⌊κ|x|⌋
i=1 ▷ Select the first κ percent elements from x.

Sort x by E(xi;xori) for i ∈ {1, . . . , |x|} in ascent order
x = (xi)

N
i=1 ▷ Select the first N elements from x.

1In practice, we could select adversarial samples by hand, but we focus on automatic selection here.
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Figure 6: The success rates (%) of our targeted unrestricted adversarial attack. Corresponding sample
examples for each grid are depicted in the top right and bottom right sections of Figure 1. Refer to
Table 1 for overall success rate.

5 Experiment207

5.1 Implementation208

We implemented our proposed semantics-aware adversarial attack on two datasets: MNIST and209

SVHN. For the MNIST dataset, the victim classifier we used was an adversarially trained MadryNet210

[12]. For the SVHN dataset, we utilized an adversarially trained ResNet18, in accordance with211

the methodology outlined by Song et al. [17]. On the distance distribution side, for every original212

image denoted as xori, we trained an energy-based model on the training set, which is represented213

as {t1(xori), t2(xori), . . . }. In this case, ti follows a distribution of transformations, T , that do not214

change the semantics of xori. For the MNIST dataset, we characterized TMNIST as including Thin215

Plate Spline (TPS) transformations, scaling, and rotation. For the SVHN dataset, we defined TSVHN as216

comprising Thin Plate Spline (TPS) transformations and alterations in brightness and hue. Detailed217

specifics related to our implementation can be found in Appendix A.218

5.2 Evaluation219

Our method generates adversarial samples that can deceive classifiers, but it does not guarantee the220

preservation of the original label’s semantic meaning. As such, we consider an adversarial example221

successful if human annotators perceive it as having the same meaning as the original label, in line222

with the approach by Song et al. [17]. To enhance the signal-to-noise ratio, we assign the same image223

to five different annotators and use the majority vote as the human decision, as done in [17]. The224

screenshot of the annotator’s interface is in Appendix B.225

In detail, we begin with an original image xori, its label yori, and a target class ytar. We draw226

M = 2000 samples from padv(·;xori, ytar), rejecting those that fail to deceive the victim classifier.227

After sample refinement, we obtain N = 100 adversarial examples, x(i)
adv for i ∈ {1, . . . , N}. We228

express the human annotators’ decision as function h and derive the human decision y
(i)
hum = h(x

(i)
adv).229

As previously mentioned, an adversarial example x(i)
adv is considered successful if y(i)hum is equal to yori.230

We then compute the success rate s as follows:231

s =

∑N
i=1 1(y

(i)
hum = yori)

N

where 1 represents the indicator function.232

We randomly select 10 digits, each representing a different class, from the MNIST/SVHN test set233

to serve as the original image xori. These are depicted on the left side of Figure 1. For each xori,234

we iterate through the target class ytar ranging from 0 to 9, excluding the class yori that signifies235
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Table 1: Success rate comparison between the method proposed by Song et al. [17] and ours. The
results presented in this table are for reference only, as Song’s results are taken directly from their
paper, and we did not use the same group of annotators for our evaluation.

Robust Classifier Success Rate of Our Success RateSong et al. [17]

MadryNet [12] on MNIST 85.2 96.2
ResNet18 [8] (adv-trained) on SVHN 84.2 86.3

the ground-truth label of xori. As previously described, for every pair of xori and ytar, we generate236

N = 100 adversarial examples post sample refinement. The result of each pair is illustrated in237

Figure 6. The overall success rate is illustrated in Figure 1.238

5.3 Results239

As depicted in Figure 6 and Table 1, our proposed method often succeeds in fooling robust classifiers,240

all the while preserving the original semantics of the input. It should be noted, however, that this241

does not occur in every instance.242

6 Related work243

Unrestricted adversarial examples Song et al. [17] proposed generating unrestricted adversarial244

examples from scratch using conditional generative models. In their work, the term “unrestricted”245

indicates that the generated adversarial samples, xadv, are not restricted by a geometric distance246

such as the L2 norm or L∞ norm. The key difference between their approach and ours is that their247

adversarial examples xadv are independent of any specific xori, while our model generates xadv based248

on a given xori. By slightly modifying (7), we can easily incorporate Song’s “unrestricted adversarial249

examples” into our probabilistic perspective:250

padv(xadv; ysou, ytar) := pvic(xadv; ytar)pdis(xadv; ysou) (8)

where ysou is the source class. It becomes evident that the adversarial examples generated by our251

padv(·;xori, ytar) adhere to Song’s definition when xori is labeled as ysou.252

TPS as a Data Augmentation Technique To the best of our knowledge, Vinker et al. [21] were253

the first to employ TPS as a data augmentation method. They utilized TPS as a data augmentation254

strategy in their generative model for conditional image manipulation based on a single image.255

7 Limitation256

This work’s foremost limitation pertains to the inherent difficulties in training energy-based models257

(EBMs), as underscored in the earlier studies by Du and Mordatch [4] and Grathwohl et al. [7]. The258

EBM training process is notoriously challenging, and a notable gap persists between the generation259

quality of EBMs and that of other widely-used probabilistic generative models, such as variational260

autoencoders and diffusion models. Consequently, we are currently unable to generate adversarial261

samples for images with higher resolution.262

8 Conclusion263

In this work, we present a probabilistic perspective on adversarial examples by employing Langevin264

Monte Carlo. Building on this probabilistic perspective, we introduce semantic divergence as an265

alternative to the commonly used geometric distance. We also propose corresponding techniques for266

generating semantically-aware adversarial examples. Human participation experiments indicate that267

our proposed method can often deceive robust classifiers while maintaining the original semantics of268

the input, although not in all cases.269
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