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Abstract

Designing protein sequences of both high fitness and novelty is a challenging task
in data-efficient protein engineering. Exploration beyond wild-type neighborhoods
often leads to biologically implausible sequences or relies on surrogate models that
lose fidelity in novel regions. Here, we propose PROSPERO, an active learning
framework in which a frozen pre-trained generative model is guided by a surrogate
updated from oracle feedback. By integrating fitness-relevant residue selection
with biologically-constrained Sequential Monte Carlo sampling, our approach
enables exploration beyond wild-type neighborhoods while preserving biological
plausibility. We show that our framework remains effective even when the surrogate
is misspecified. PROSPERO consistently outperforms or matches existing methods
across diverse protein engineering tasks, retrieving sequences of both high fitness
and novelty.

1 Introduction

Proteins are essential macromolecules that play a central role in virtually all biological processes.
The ability to design novel protein sequences with desired functional properties is crucial for a wide
range of applications, including drug design, industrial biotechnology, and beyond [1-3]. Despite this
promise, optimization of protein sequences remains a grand challenge in computational biology. The
protein fitness landscape [4], mapping between the space of sequences and fitness, their corresponding
functional levels, is typically rugged, sparse, and highly non-convex [5, 6]. Moreover, upon proposing
a candidate sequence from the combinatorially large search space, evaluation requires querying an
expensive black-box objective function. To alleviate this, machine learning models are often used as
inexpensive surrogate models that approximate the costly black-box oracle [7-9]. To further facilitate
navigation of the landscape, optimization commonly begins from a wild-type sequence, preserved
through natural evolution and, as such, exhibiting reasonable fitness [6, 10].

Numerous strategies have emerged to traverse protein fitness landscapes. Ren et al. [6] introduced
PEX, an evolutionary algorithm that exploits the wild-type neighborhood. While highly effective
and favoring biologically plausible sequences thanks to its local focus, this approach limits broader
exploration of the fitness landscape, potentially missing advantageous sequences that are inaccessible
through local mutations. To overcome this, reinforcement learning (RL) methods [8, 10] and
Generative Flow Networks (GFNs) [9] have been employed to target novel regions of the search
space. However, these global exploration strategies often encounter issues with surrogate model
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Figure 1: Overview of PROSPERO. Each active learning iteration begins with training a surrogate
model on the current dataset (A). The surrogate is then used to identify fitness-relevant residues
within the top sequence (B), which are subsequently masked, yielding partially masked sequences
(C). EvoDiff, guided by the surrogate, completes these sequences to generate new candidates (D),
which are evaluated by the oracle and added to the dataset (E).

misspecification when evaluating sequences substantially different from the surrogate’s original
training distribution [11]. To address this and balance exploration with robustness, GFN-AL-6CS
[12] learns an unmasking policy that reconstructs partially masked sequences. Yet, since masking is
applied at random, this approach may modify conserved residues, potentially degrading structural
and functional integrity and yielding biologically implausible proteins. Pre-trained generative models
offer a compelling alternative, inherently encoding rich biological priors that greatly reduce the risk
of generating implausible sequences [13]. However, effectively incorporating such models in iterative
optimization workflows presents a challenge, as each iteration would require impractical task-specific
fine-tuning on limited oracle-annotated data or low-fidelity surrogate-annotated data [14, 15]. The
shortcomings of existing approaches point to the need for a protein design framework capable of
generating high-fitness sequences beyond the wild-type neighborhood, while addressing the surrogate
misspecification and loss of biological plausibility that often arise from exploring such novel regions.

To meet these challenges, we introduce PROSPERO. Our main contributions are:

(i) A robust exploration framework, to our knowledge the first to formulate iterative design of
protein sequences as inference-time guidance of a pre-trained generative model by a surrogate
updated in an active learning loop. This enables straightforward incorporation of biological
priors encoded by the generative model, helping preserve biological plausibility even when
surrogate-guided exploration extends beyond wild-type neighborhoods.

(ii) A targeted masking strategy, which focuses edits on fitness-relevant residues while preserv-
ing structurally and functionally important sites. In contrast, prior approaches risk disrupting
essential residues through random or uninformed masking.

(iii) Biologically-constrained Sequential Monte Carlo (SMC) sampling, offering a novel
strategy to incorporate explicit biological priors into inference-time guidance in discrete se-
quence space. Restricting proposals to amino acids with properties similar to their wild-type
counterparts increases the likelihood of retrieving high-fitness sequences in novel regions of the
search space, where the surrogate may be misspecified.

We conduct extensive experiments across diverse protein fitness landscapes and demonstrate that
PROSPERO consistently approaches the Pareto frontier between candidate sequence fitness and
novelty, while preserving biological plausibility. We perform ablation studies under varying degrees
of proxy misspecification to assess the contribution of individual components to the overall robustness
of our method. Code is available at https://github.com/szczurek-lab/ProSpero.
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2 Related Work

Evolutionary Algorithms Evolutionary algorithms are a common approach in protein sequence
design [16, 7, 6]. Notably, Sinai et al. [7] proposed a greedy algorithm, AdalL.ead, which adaptively
mutates and recombines high-fitness sequences selected by a threshold-based filter to balance explo-
ration and exploitation. Ren et al. [6] introduced an exploration method, PEX, designed to exploit the
local neighborhood of the wild-type by prioritizing variants with fewer mutations.

Machine-Learning-Assisted Directed Evolution (MLDE) To enhance traditional directed evo-
lution [17], MLDE leverages machine learning models to predict sequence fitness and guide the
selection of promising mutants for screening [1]. Qin et al. [15] iteratively fine-tune ESM-1b [18]
with data annotated by a surrogate model. Tran and Hy [13] mask k-mers of a wild-type sequence
and use ESM-2 [19] to propose new candidate sequences. The work of Qiu et al. [20], Qiu and Wei
[21] and Wang et al. [22] explores clustering amino acids with similar properties; however, it differs
from our approach by assuming a small number of fixed mutational sites.

Reinforcement Learning and Generative Flow Networks (GFNs) DyNaPPO uses an ensemble
of surrogate models with varying architectures to train a generative policy that constructs candidate
sequences amino acid by amino acid [8]. Rather than acting in the sequence space, LatProtRL [10]
learns a generative policy operating in the latent space of ESM-2 [19]. GFNs use a surrogate model
to learn a stochastic policy that samples sequences proportionally to their predicted fitness values
[9]; however, when the proxy is misspecified, they can perform poorly [11, 12]. To address this, Kim
et al. [12] proposed GFN-AL-JCS, a strategy enabling to control a trade-off between novelty and
robustness based on uncertainty of the proxy.

Bayesian Optimization (BO) BO is a commonly used framework for optimizing expensive black-
box functions and has been widely applied to the design of biological sequences under limited
evaluation budgets [23-26]. Among these approaches, Amin et al. [26] optimize antibodies by
sampling from a LLM trained on clonal families, using a twisted SMC procedure to incorporate
knowledge about previous experimental measurements. A detailed comparison of PROSPERO and
Amin et al. [26] can be found in Appendix E.

Generative and Energy-Based Models Frey et al. [27] use Langevin Markov-Chain Monte Carlo
to sample from smoothed data distributions for antibody discovery. Kirjner et al. [28] construct a
smoothed version of the fitness landscape prior to training a surrogate model, whose gradients are then
used to guide the design of new sequences. However, the approach depends on a smoothing-strength
hyperparameter, which is highly sensitive to the underlying fitness landscape and difficult to tune
in practice. Frameworks introduced by Brookes et al. [14] or Song and Li [29] can propose new
candidate sequences by sampling from generative models like VAEs [30]. Ghaffari et al. [31] present
a VAE with a fitness-structured latent space, enabling robust optimization despite the sparsity and
ruggedness of the underlying fitness landscape.

3 Problem formulation

We aim to discover protein sequences x1.;, € A% with high fitness y € R, where A denotes the
vocabulary of 20 natural amino acids and L represents the length of the sequence. Unless emphasis
on sequential structure is needed, we simply write x for brevity. The fitness value y measures a given
property of a protein, such as binding affinity or fluorescence intensity. Designed sequences are
evaluated by a black-box oracle f : A — R. Since oracle evaluations—such as wet-lab experiments
or costly computational simulations—are expensive and time-consuming, queries are limited to a
batch of K sequences per a small number of rounds N. We assume access to an initial dataset
Do = {(=, y)}M | which allows to train a cheap and fast to query surrogate model fy : AX — R,
approximating the oracle. Additionally, let Zy.x = argmax,ep, y correspond to the wild-type
sequence. The main goal is to design protein sequences with high fitness values assigned by the
oracle across NV active learning iterations. Desirably, generated sequences should also be biologically
plausible, novel, and diverse.
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4 Proposed framework

Algorithm 1: Active Learning with PROSPERO
Input: Oracle f, proxy fy, initial dataset Dy, active learning rounds N, pre-trained generative
model P, oracle budget K, SMC batch size B
for n < 1to N do
Fit fy on dataset D,,_1:
0 < argming Exp,_, [(f(z) — fo(x))?]
Select starting sequence:
Tstart <— ArgMaxgzep,, f(!L‘)
Get masked variants of Zgy:

{:E(i)}f; < TARGETEDMASKING (Zgtart, fo) // Algorithm 2
Propose new candidate sequences:
{x(i)}iK:1 <+ CONSTRAINEDSMC ({i(i)}il ,P,fg) // Algorithm 3

Evaluate candidates with the oracle:
DBy « {9, fe)} 1,
Update dataset:
D, « Dp_1 UD,

PROSPERO follows the active learning loop illustrated in Figure 1 and outlined in Algorithm 1,
consisting of: (i) training the surrogate model fy on the current dataset D,, 1 by minimizing the loss
L(0) =Egop, , [(f(z) — fo(x))?]; (i) identifying and masking fitness-relevant residues in Zarn
with targeted masking; (iii) sampling new candidate sequences using biologically-constrained SMC;
(iv) evaluating candidates with the oracle f and augmenting D,,_;. As demonstrated by Antoniuk
et al. [32], the use of the active learning loop is expected to expand the support of the surrogate model,
thereby providing a more reliable guiding signal to the pre-trained generative model. In the remainder
of this section, we describe two core innovations of our framework: the targeted masking and the
biologically-constrained SMC (line 4 and line 5 of Algorithm 1, respectively), which represent the
key methodological advances of PROSPERO over prior approaches.

4.1 Targeted masking

Our targeted masking strategy is inspired by alanine scanning, a mutagenesis technique used both
experimentally and in silico to identify functionally important residues by substituting each position
with alanine—a neutral amino acid that disrupts side-chain interactions [33-36]. Traditionally,
alanine scanning aims to locate critical residues one at a time based on wet-lab experiments or in
silico structural modeling. In PROSPERO, we propose a batched strategy that operates purely in
sequence space to identify positions within x, that are fitness-relevant but at the same time tolerant
to mutation. Specifically, we construct .S batches of B mutated sequences (denoted collectively
as {z(V}£:9) by randomly substituting a subset of residues at locations Z(") C {1,..., L} with
alanine. Each such mutated sequence is scored by the surrogate model fy, which returns a predictive
mean and uncertainty estimate: fp(z(?) = (ug(z?), 59(x?)). We select the top B sequences
according to the Upper Confidence Bound (UCB) [37] acquisition function, identifying substitutions
that are not immediately harmful yet exhibit uncertainty suggestive of functional relevance of the
affected residues. For each selected sequence, we construct a partially masked sequence (") by
replacing previously substituted positions with a mask token: #(¥)[j] = [MASK] if j € Z(), and
#[j] = xganlj] otherwise. The resulting batch {Z(V}2 | is then used as input to the guided
generative procedure described next.

4.2 Biologically-constrained Sequential Monte Carlo

To design sequences with high fitness, one aims to sample from the posterior p(x | y) x p(y | ) p(x).
Since querying the true fitness function given by an oracle f is assumed to be expensive, p(y | x) is



typically approximated using a surrogate fy. This yields the following target posterior distribution:

() = 2P (1)

where P(x) denotes a prior over sequences and Z is a normalization constant. P(z) can be modeled
in various ways; here, we use EvoDiff-OADM [38]. This formulation poses two key challenges: (i)
surrogate models may exhibit low fidelity on out-of-distribution sequences, and (ii) direct sampling
from ~(z) is infeasible due to the intractability of Z. Next, we describe how PROSPERO overcomes
these challenges.

Addressing surrogate misspecification with biologically constrained exploration To encourage
biologically plausible exploration even under potential surrogate misspecification, we constrain
candidate sampling in PROSPERO by leveraging the charge class of wild-type residues as an ex-
plicit biological prior. This draws inspiration from reduced amino acid alphabets (RAAs), which
simplify sequence space by grouping residues with similar physicochemical and functional prop-
erties, exploiting the many-to-one relationship between sequence and structure [39, 40]. Biasing
exploration toward substitutions within the same class favors alternative sequences that are more
likely to preserve wild-type fitness, irrespective of the surrogate quality. We select charge as the
grouping criterion, given its both fundamental and universal role in stabilizing protein structure via
salt bridges, hydrogen bonding, and electrostatic interactions [41]. Specifically, for each partially
masked sequence #(%), we further divide the set of masked positions Z(*) into three disjoint subsets:
positive (), = {j € T | zyunlj] € {R, K, H}}: negative 7)) = {j € T | zynlj) € {D, E}};
and neutral I((o ={j € IO | zgu[j] ¢ {R,K,H,D,E}}. We formalize constrained sampling as
sampling from the conditional distribution Pra4(- | -), defined over normalized logits of the base
model P restricted to amino acids in the same charge class as the wild-type residues at positions Z*).

Sampling from an intractable distribution using Sequential Monte Carlo To sample from the
intractable target distribution (), in PROSPERO we perform approximate inference using SMC.
Rather than directly sampling from complex, high-dimensional v(x1.7,) defined over full sequences,
SMC decomposes the problem into sequential sampling from a series of simpler, unnormalized
intermediate target distributions {%,(z1./)}~,, relying on a tractable proposal distribution and
resampling based on intermediate importance weights (for background, refer to Appendix C). This
allows us to sample sequences from the approximate target posterior in a residue-by-residue manner.
We start by capitalizing on EvoDiff’s order-agnostic nature by defining the sampling permutation

order for each #() as 7(Y) = concat({j ¢ Z(}, I(i) I(( )) I(((z)))) For simplicity, we assume that all

sequences in the batch share the same number of masked positions |Z| = max?_ | |Z()|. In practice,
for sequences with fewer masked tokens, no new proposals are made once all masked positions have
been filled, but these sequences remain in the population and are still included in weighting and
resampling (see Algorithm 3). We proceed by performing the following operations at each unmasking
stept =L—|Z|+1,...,L:

(i) Constrained proposal: for each #(*), we sample an amino acid at position 7(* )( ) from the

~ (%)

~(4)
constrained base model: (t) NPRAA( ﬂ(t) | & <t))

(i) Weighting: since the surrogate model fy operates only on fully unmasked sequences,
intermediate targets ¥;(%r(<)) are defined only implicitly and cannot be used directly
to compute importance weights w;. Instead, we approximate w; by first rolling out the
remainder of each sequence with the base model:

unroll H PRAA CL‘ ) i xﬂ—(<5)) (2)

s=t+1
followed by scoring it with the surrogate model () = 119 (xﬁ;)mu) +k- O’g(itl(j;)mu). As the
logits of the base model are constrained to charge-compatible amino acids, samples from
Praa do not reflect the true prior over sequences. We therefore compute the perplexity of
the unconstrained model P, compensating for cases where Pr 44 assigns uniformly low



likelihoods across all available choices:
1 T
(i) _ (4)
Perp(xunroll) = exp _m Z 1Og,P(xunroll.,,(s)
s=T—|Z|+1
Finally, the unnormalized importance weights for each sequence #(") are computed as

wgi) = g/ Perp(xl(l?m”), with the perplexity term correcting bias introduced by the
constrained sampling.

2 )| 3)

unroll . (<)

(iii) Resampling: we sample a new population of partially masked sequences based on their
normalized weights, effectively discarding sequences improbable under ;(Z(<¢)):

(i) B

~ (3 7)1 B wt

0~ Cat [ {zW}E, {B(g)} ' @
Zj:l Wy i=1

After all sequences have been fully unmasked, we select the top K candidates for oracle evaluation
by ranking both the final population and intermediate rollouts from the last 1c., unmasking steps
according to their predicted UCB scores 7.

5 Experiments

We show that PROSPERO successfully balances generation of high-fitness sequences with exploration,
while maintaining both diversity (Section 5.1) and biological plausibility (Section 5.2). In Section 5.3
and Section 5.4, we demonstrate the robustness of our approach under different forms of surrogate
misspecification, namely covariate shift and surrogate noise. Finally, Section 5.5 investigates the
contribution of individual components of our framework to overall performance. We evaluate
PROSPERO based on the following general setup, which serves as the basis for all subsequent
experiments.

Datasets and oracles We evaluate our method on eight diverse protein engineering tasks, details of
which can be found in Appendix A.l. For the AAV landscape, we use ground-truth fitness scores
provided in FLEXS [7]. For all other tasks, following Ren et al. [6], we use TAPE [42] as the oracle f
to simulate wet-lab experiments. Similarly to Kim et al. [12], we replace experimental measurements
in each initial dataset with scores assigned by the oracle model.

Baselines We compare our approach against a suite of established methods for iterative biological
sequence design, covering diverse algorithmic paradigms: (i) evolutionary algorithms—Adal ead,
PEX and CMA-ES [7, 6, 16]; (ii) on-policy reinforcement learning—DyNaPPO and LatProtRL [8,
10]; (iii) GFlowNets—GFN-AL and GFN-AL-JCS [9, 12]; (iv) evolutionary Bayesian Optimization
(BO) [71]; (v) probabilistic framework CbAS [14]; and (vi) the machine-learning-assisted directed
evolution (MLDE) approach of Tran and Hy [13]. Further details are provided in Appendix A.4.

Implementation details We employ PROSPERO with [V = 10 active learning rounds, each ending
with a batch of K = 128 sequences evaluated by the oracle f. To model the proxy fy, we follow
Sinai et al. [7] and Kim et al. [12], and use an ensemble of three one-dimensional convolutional neural
networks. This architecture is shared across all baselines to ensure a fair comparison. Sequence
selection is guided by the UCB acquisition function fp(z) = pg(x) + k - og(x), where k = 1 for the
targeted masking and k = 0.1 for the biologically-constrained SMC. The SMC batch size is set to
B = 256, and during generation we retain rollouts from the last nyeep = 10 unmasking steps. In the
targeted masking, the number of alanine scans S = 16, with 3—10 mutations for shorter sequences
(L ~ 100) as in the AAV, E4B, and Pab1 landscapes, and 5-15 for longer ones.

Evaluation metrics We evaluate performance of all methods using four primary metrics, with
particular emphasis on (i) maximum fitness, defined as the highest fitness value achieved among all
generated sequences. This reflects the primary objective of discovering high-performing candidates.
We also report: (ii) mean fitness of the top 100 generated sequences; (iii) novelty, measured as the
average Hamming distance between the top 100 sequences and the starting sequence Tgyy; and (iv)
diversity, defined as the average pairwise Hamming distance among the top 100 sequences.



Table 1: Maximum fitness values achieved by each method. Reported values are the mean and
standard deviation over 5 runs. denotes fitness improvement over wild-type xg,. Bold: the
best overall fitness per each task. Underline: second-best. PROSPERO improves fitness on every task,
ranking first on 5 out of 8 and second on the remaining 3.

Method AMIE TEM E4B Pabl AAV GFP UBE2I LGK

CMA-ES -6.857 £0.257 0.037+£0.01  -0.429£0.252 0.553 £0.038 0.000 +0.000 1.972+£0.135 0.135+£0.178  -1.337 £0.021
DyNaPPO -3.683 £0.575 0.067 = 0.008 3.924 £0.883  0.783 £0.036  0.009 +0.018 3.550 £0.012 2.796 +0.059  -0.007 £ 0.015
BO 0.168 £0.056  0.682 +0.369 7.442+0.242 0.814 =0.081 = 0.667 +0.024 3.584 £0.007 2.883 +0.069 = 0.026 £ 0.003

PEX 0.248 £ 0.007  1.232+0.000 8.099 £0.017 1499 +0.343 0.665 £0.022 3.603 4+ 0.003 2.991 +£0.001  0.037 & 0.001

AdalLead 0.235 £0.002 1228 £0.002 8.034 £0.036 1.978 +0.188 0.683 +0.037 3.581 £0.003 2.98540.002  0.038 £ 0.001

CbAS -8.202 £0.032  0.019+0.002 -0.569 £0.092 0.351 £0.043 0.000 + 0.000 1.858 £0.067 -0.056 4 0.003 -1.492 £ 0.035
GFN-AL -7.853 £0.270  0.027 £0.020 0.160 £ 0.228  0.507 £ 0.025 0.000 + 0.000 2.004 £0.022 0.271 +0.443  -1.164 £0.118

GFN-AL-0CS  0.203 +0.005  0.701 £0.148 = 7.930 £ 0.055 1.297 £0.337 0.686 & 0.021 3.589 +0.006 2.984 £0.002  0.033 & 0.001
LatProtRL 0.224 £0.000  1.229 +0.000  7.902 + 0.086  1.122 £0.152 0.593 +0.018 3.590 £ 0.003  2.983 £ 0.000  0.020 + 0.000
MLDE 0.241 £0.003  1.229 +£0.000 7.934 £0.077 0.896 £0.015 0.555 4 0.000 3.596 £ 0.003 2.984 4 0.003  0.038 + 0.002

PROSPERO 0.246 £ 0.006  1.231 +0.002 8.114 +£0.037  1.527 £0.254 0.720 = 0.027 3.617 £ 0.002 2.993 £ 0.003  0.043 + 0.002

5.1 Protein design evaluation

Fitness optimization PROSPERO consistently achieves superior or comparable performance to
the baselines in generating candidate sequences with high fitness, irrespective of the underlying
fitness landscape (Table 1). Our approach obtains the highest maximum fitness values on 5 out of 8
protein engineering tasks and ranks second on the remaining 3. Notably, among the 11 evaluated
methods, only PROSPERO and PEX are able to achieve fitness improvements over wild-type X
across all landscapes, highlighting their reliability in diverse optimization scenarios. In contrast, 4
methods fail to achieve improvements on any task. We report further results only for 6 out of 11
methods that managed to improve fitness on at least half of the tasks. Results in Table 2 demonstrate
that PROSPERO is consistently able to generate a broad set of high-fitness candidates, achieving the
highest mean fitness among the top 100 sequences on 5 out of 8 landscapes and ranking second on
2. Notably, mean fitness fell below that of .« on only a single task. Additionally, Figure 2 shows
that our method discovers high-fitness sequences at earlier active learning rounds than competing
approaches on half of the evaluated tasks. A detailed comparison of early-round performance across
all benchmarks is provided in Appendix D.2.

Exploration and diversity As showcased in Table 3, PROSPERO attains high-fitness solutions with
substantially greater novelty compared to other leading approaches, outperforming them on 6 out of 8
tasks. Remarkably, PROSPERO frequently breaks the conventional Pareto frontier between sequence
fitness and novelty, achieving levels of both that remain mutually constraining for the competing
methods (Figure 3). In particular, although PEX—the second-best performing in terms of maximum
fitness—is designed to exploit the local neighborhood of the wild-type, our method often matches
or exceeds its fitness while achieving approximately 2 to 9 times greater novelty. Importantly, the
exceptional performance of PROSPERO in both fitness and novelty does not come at the expense
of diversity. As shown in Table 9 in Appendix D.1, among leading approaches, only GFN-AL-§CS
exceeds our method in diversity. However, it generates lower fitness sequences across all tasks,
highlighting PROSPERO’s ability to maintain diversity without compromising performance.

5.2 Biological plausibility

Setup We assess biological plausibility on the E4B task, where a large reference dataset of over
80,000 sequences not included in Dy is available (see Appendix A.1). Following the approach

Table 2: Mean fitness of top 100 sequences generated by leading methods. Reported values are the
mean and standard deviation over 5 runs. fitness improvement over wild-type ;. Bold: the
best overall fitness per each task. Underline: second-best. PROSPERO improves fitness on 7 out of 8
tasks, ranking first on 5 and second on 2.

Method AMIE TEM E4B Pabl AAV GFP UBE2I LGK
PEX 0.238 +0.004  1.227 £0.002 7.948 +0.046 1.307 £0.258 0.620 +0.017 3.597 +0.003 2.987 £ 0.001 0.033 + 0.001
AdaLead 0.229 +£0.001  1.201 £0.002 = 7.846 +0.040 1.836 £ 0.266 0.644 +0.031 3.563 £0.007 2.976 +0.003  0.037 &+ 0.001

GFN-AL-6CS  -0.244 £0.137  0.192+0.027 7.653 £0.136  1.070 £ 0.113  0.648 £ 0.020 3.569 4 0.009 2.968 + 0.006 = 0.024 £ 0.004
LatProtRL 0217 £0.001  1.222 £0.000 7.562£0.06  0.888 +0.072 0.563 £0.009 3.582 4 0.003 2.975+0.001 0.019 £ 0.000
MLDE 0.231 £0.004 1.131 £0.021 7.843 £0.122 0.877 +0.024 0.555 £0.000 3.591 & 0.003 2.975+0.005 0.036 £ 0.002

PROSPERO 0.236 +0.007  1.176 £0.029 8.017 & 0.054 1401 +£0.202 0.679 & 0.025 3.613 + 0.002 2.987 £ 0.003  0.040 + 0.002
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Figure 2: Maximum fitness recovered over 10 active learning rounds. Only methods that improved
OVer Ty, are shown. Shaded regions indicate standard deviation across 5 runs. PROSPERO retrieves
high-fitness sequences in earlier rounds than baselines on 4 out of 8 tasks.

Table 3: Average novelty of top 100 sequences generated by leading methods. Reported values are
the mean and standard deviation over 5 runs. Bold: the best overall novelty. Underline: second-best.
PROSPERO ranks first on 6 out of § tasks and second on 1.

Method AMIE TEM E4B Pabl AAV GFP UBE2I LGK
PEX 5.19 +1.08 1.79 £ 0.21 396 +054 5294+074 729+138 623+134 455+082 8454139
AdalLead 421+0.89 293+£0.07 392+062 847+158 9.86+1.55 33.79+£5.84 392+047 14.75 £ 8.02

GFN-AL-0CS 829 +042  10.10 +0.65 494 +1.59 10294+ 1.29 9.70+£0.33 3483 +3.77 8.01+£3.69 63.16 +4.24
LatProtRL 1.09 £0.04 1.10£0.01 3.11+£049 385+1.19 3.03+040 1273 +£221 1.69+0.05 1.71 £ 0.01
MLDE 19.02+£2.69 4.28+0.55 11.88+349 9.67+3.12 448+025 23.65+540 9.60+2.58  50.09 & 8.08

PROSPERO 2099 +£3.32 337+053 881+098 11.83+£3.52 15.03+1.59 39.85+3.95 1645+511 74.33+7.75

of Surana et al. [11], we define validity as the percentage of top 100 generated sequences whose
key physicochemical properties fall within the central 99% quantiles of the corresponding property
distributions in the reference set. Additionally, for landscapes where g, folds reliably, we further
assess structural quality of generated sequences using pTM and pLDDT scores from ESMFold [19],
as well as scPerplexity [38] computed after inverse folding with ESM-IF1 [43]. More information
about the metrics is provided in Appendix A.S.

Results Figure 4A demonstrates that PROSPERO maintains biological plausibility while proposing
sequences that are over twice as novel as those generated by baselines with comparable validity, such
as PEX and LatProtRL. Moreover, it achieves this while also attaining higher fitness. Sequences
generated by PROSPERO exhibit strong folding confidence, with pTM and pLDDT scores consistently
above 70 (Figure 4B). Notably, this performance remains comparable to that of the wild-type even on
the LGK landscape, where candidate sequences differ from the wild-type by over 70 amino acids.
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Figure 3: Comparison of fitness-novelty trade-offs among leading methods. Each dot represents the
outcome of a single run. PROSPERO achieves both higher fitness and novelty than the baselines.



5.3 Out-of-distribution robustness

Setup For the simulation of distribution shifts, we used UBE2I variants and predicted their pTM
scores with ESMFold [19] as the oracle. The surrogate model was trained only on sequences close to
the wild-type, and optimization was then initiated from increasingly distant starting sequences Zsart.
We considered three cases: (i) a moderate covariate shift with x, differing by 35 mutations from the
wild-type; (ii) a severe covariate shift with x, differing by 75 mutations (approximately half of the
sequence length); (iii) low-data regime, where the 35-mutation case was repeated with the surrogate
trained only on a small subset of the available data. Full details are provided in Appendix A.2.

Results  Across all settings, PROSPERO consistently outperforms competing approaches, generating
sequences with the highest pTM scores (Table 4), while simultaneously exploring more novel
regions of the sequence space (Appendix D.3). The performance advantage over the baselines
was especially pronounced under the severe shift, highlighting the effectiveness of our approach
in the most challenging conditions. Even in the low-data regime, our method maintained strong
performance, thereby demonstrating robustness to both distribution shifts and data scarcity. Taken
together, these results show that PROSPERO remains effective in the challenging OOD settings,
commonly faced when exploring sequence space beyond wild-type neighborhoods.

5.4 Noise robustness study

Setup We evaluate the robustness of exploration strategies to surrogate model misspecification
by introducing increasingly noisy surrogates on the AAV landscape, where ground-truth fitness is
available. Specifically, we replaced the surrogate fy with an ensemble of noisy oracles f,, each
defined by adding zero-mean Gaussian noise to the ground-truth oracle and truncating negative
outputs to zero, following the perturbation scheme of Sinai et al. [7]. The magnitude of the injected
noise was determined by the Signal-to-Noise Ratio (SNR), with the noise scale given by opeise =
v/ Var(Dy) - 10-SNR/10_ where Var(Dj) denotes the variance of fitness scores in the initial dataset.
This setup introduces both stochastic noise and systematic shift, as the truncation flattens low-fitness
regions and biases predictions upward, making it a strong test of robustness to surrogate error.

Results As shown in Figure 4C, PROSPERO maintains an advantage over the majority of the base-
lines even at low SNR levels, demonstrating strong robustness to surrogate noise. The performance
gap between our method and competing approaches widens as the noise levels decrease, highlight-
ing PROSPERO’s ability to increasingly capitalize on informative signal. Notably, our method and
Adal_ead exhibit a sharp performance improvement earlier than other methods, suggesting greater
robustness to surrogate misspecification and ability to guide exploration toward promising regions of
the search space more effectively than competing approaches.

5.5 Ablation

Setup To assess the contribution of individual components in PROSPERO, we conduct ablation
studies under the same noisy surrogate setting as in the robustness analysis (Section 5.4). We compare
the full method to the following ablations: (i) without SMC, corresponding to sampling from EvoDiff

Table 4: Maximum and mean pTM scores of top 100 sequences generated by leading methods under
distribution shifts. Reported values are the mean and standard deviation over 5 runs. Bold: the
best overall pTM score. Underline: second-best. PROSPERO demonstrates the highest robustness to
covariate shifts.

Moderate shift Severe shift Low-data shift
Method Max Mean Max Mean Max Mean
PEX 0.807 +0.023 0.760 +0.012 0.578 £ 0.014 0.518 +0.003 0.806 & 0.013  0.752 + 0.005
Adalead 0.796 +0.013  0.755+£0.011 0.593 +0.028 0.526 +0.007 0.781 +0.016 0.742 + 0.004

GFN-AL-0CS  0.791 £0.010 0.729 £0.005 0.630 £0.024 0.542 £0.006 0.782 £ 0.006 0.731 £ 0.006
LatProtRL 0.787 £0.013  0.743 +0.003  0.560 4 0.000  0.508 & 0.003  0.792 £ 0.013  0.743 £ 0.001
MLDE 0.810 £0.020 0.7524+0.004 0.652 +0.059 0.572 +0.035 0.782 £0.022 0.735 £ 0.025

PROSPERO 0.822 +0.027 0.777 £0.020  0.672 £ 0.031 0.599 + 0.014 0.808 = 0.017 0.763 £ 0.017
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Figure 4: (A) Trade-offs between validity, fitness and novelty across leading methods; each dot
represents the outcome of a single run. (B) Structural quality of top 100 sequences generated by
PROSPERO across 5 runs compared to xg,; average novelty of generated sequences is shown below
each task. (C) Performance of leading methods on the AAV landscape under varying levels of
surrogate noise. (D) Ablation of PROSPERO components under the same setting as in (C). In both (C)
and (D), shaded regions represent the standard deviation across 5 runs. PROSPERO generates highly
biologically plausible sequences and remains robust to surrogate misspecification.

with the resampling steps omitted; (ii) without targeted masking, where masked positions are selected
at random; (iii) without both SMC and targeted masking; and (iv) without SMC, without targeted
masking, and without restricting SMC proposals to charge-compatible amino acids (without RAA).

Results Results of the ablation are depicted in Figure 4D. Notably, PROSPERO with all components
intact outperforms all ablated versions, with performance degrading only under extremely low SNR
conditions. The advantage of our method over the baselines at low SNR levels, as seen in the noise
robustness study in Section 5.4, is most likely supported by PROSPERO’s constraint that limits
candidate generation to sequences containing residues of the same charge class as their wild-type
counterparts. This steers the generation process toward sequences with wild-type fitness regardless
of the surrogate quality, providing substantial performance gains. The sharp fitness improvement at
higher SNR levels likely reflects the increasing effectiveness of the SMC guidance and the targeted
masking as the surrogate signal improves, while at very low SNR levels, guidance appears to slightly
hinder the performance. Further ablations are provided in Appendix F.

6 Conclusion

In this paper, we introduced PROSPERO, an active learning framework for iterative protein sequence
design based on inference-time guidance of a pre-trained generative model. Our targeted masking
strategy enables edits focused on fitness-relevant residues while preserving functionally critical
sites. Biologically-constrained SMC sampling allows incorporating biological prior knowledge while
traversing fitness landscapes, increasing the likelihood of retrieving high-fitness sequences even under
surrogate misspecification. By combining these innovations, PROSPERO enables robust exploration
beyond wild-type neighborhoods while maintaining biological plausibility, achieving performance
that matches or exceeds state-of-the-art approaches across diverse protein engineering tasks.
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A Experimental details

A.1 Protein design tasks

We evaluated PROSPERO across eight diverse protein fitness landscapes. Among these, AAV and GFP
were created by Kim et al. [12] (Apache-2.0 license), while the remaining datasets were collected
by Tran and Hy [13] (GPL-3.0 license). For AAV and GFP, we used oracles available in FLEXS [7]
(Apache-2.0 license), while for the remaining datasets oracles provided by Ren et al. [6] (Apache-2.0
license).

(i) Aliphatic Amide Hydrolase (AMIE). The objective is to optimize amidase sequences
for high enzymatic activity [44]. The initial dataset D includes 6417 sequences of length
L = 341, making the search space span across 203*! possible variants. The fitness of
the starting sequence is f(xsar) = 0.224, while the average distance between the starting
sequence and Dy is Novelty (Do, Zstart) = 2.

(ii) TEM-1 g-Lactamase (TEM). The goal is to identify TEM-1 (-lactamase variants with
improved thermodynamic stability [45]. Dy consists of 5199 sequences with L = 286,
f(zstarr) = 1.229, and Novelty (Do, Zgart) = 2.

(iii) Ubiquitination Factor Ubed4b (E4B). The goal is to enhance the activity of the E4B
ubiquitination enzyme [46]. The dataset consists of 91,032 sequences with L = 102, from
which we randomly select 10,000 for the initial dataset Dy. The fitness of the starting
sequence f(Zsar) = 7.743, with Novelty (Do, Zgar) = 5.42.

(iv) Poly(A)-binding Protein (Pabl). The aim is to improve the binding fitness of Pabl variants
in the RNA recognition motif region [47]. The dataset contains 36,389 mutants of length
L = 75. Similarly to E4B, we restrict Dy to 10,000 randomly selected sequences. The
fitness of the starting sequence f(Zu) = 0.843, with Novelty (Dg, Zgar) = 3.95.

(v) Adeno-associated Viruses (AAV). The objective is to discover VP1 protein sequence
fragments(positions 450-540) with improved gene therapy efficiency [48]. The dataset Dy,
of size 15,307, was created by Kim et al. [12] through random mutations of the wild-type and
scoring with the oracle. Here, L = 90, f(2gur) = 0.500, and Novelty (Do, Zgarr) = 5.05.

(vi) Green Fluorescent Proteins (GFP). The goal is to identify protein sequences with high
log-fluorescence intensity [49]. Dy includes 10200 sequences mutated by Kim et al. [12],
as with AAV. In this case, L = 238, f () = 3.572, and Novelty (Do, Zarr) = 42.87.

(vii) SUMO E2 conjugase (UBE2I). The aim here is to optimize variants of SUMO E2 conjugase
for functional mapping applications [50]. Dy consists of 3022 sequences with L = 159,
f(zstanr) = 2.978, and Novelty (Do, Zgart) = 2.

(viii) Levoglucosan Kinase (LGK). The objective is to optimize levoglucosan kinase variants for
improved enzymatic activity [51]. Dy contains 7633 sequences with L = 439, f(Zgur) =
0.020, and Novelty (Do, Tgart) = 2.

A.2 Out-of-distribution robustness

In this experiment, we used candidate sequences generated by different exploration methods during
UBE2I optimization task in Section 5.1. We employed ESMFold [19] as the oracle to predict pTM
scores, as protein structure prediction models provide highly reliable feedback, better suited for
assessing performance in challenging OOD settings [52]. From all UBE2I candidates, we selected
those within a Hamming distance < 5 from the wild-type to construct the initial dataset Dy, consisting
of 2624 sequence—pTM pairs, and with the average pTM score of 0.860 £ 0.029. The surrogate
model fy was trained on Dy, and optimization was performed for 4 iterations starting from sequences
increasingly distant from the wild-type. We considered three cases:

(i) Moderate covariate shift. Optimization was initiated from a starting sequence gy
differing by 35 mutations from the wild-type, and with an initial pTM of approximately
0.70.

(ii) Severe covariate shift. Optimization was initiated from a starting sequence g, differing
by 75 mutations from the wild-type, and with an initial pTM of approximately 0.50.
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(iii) Low-data regime shift. The moderate shift experiment was repeated with the surrogate
trained on only 200 randomly selected points from Dy, resulting in a reduced training set
with an average pTM score of 0.860 = 0.023.

Across all three cases, the exploration algorithms were run with their configurations corresponding to
shorter sequences, as detailed in Section 5 for PROSPERO and in Appendix A.4 for the baselines.

A.3 Surrogate training

Following Kim et al. [12], we trained surrogate models using the Adam optimizer [53], with both
the learning rate and L2 penalty set to 0.0001, and a batch size of 256. The maximum number of
proxy updates was set to 3000, but we employed early stopping with 10% of the dataset reserved for
validation, terminating training if the validation loss failed to improve for 10 consecutive iterations.

A.4 Baselines implementation

For the following baselines, we employed the open-source implementations provided by the FLEXS
benchmark [7], available at https://github.com/samsinai/FLEXS/tree/master under the
Apache-2.0 license.

(i) AdaLead [7]: We followed the default hyperparameter settings provided by the authors.
Specifically, we used a recombination rate of 0.2, a mutation rate of 1/L, where L is the
sequence length, and a threshold 7 = 0.05.

(ii) DyNaPPO [8]: We altered the implementation of DyNaPPO from FLEXS following the
approach of Kim et al. [12]. Specifically, we replaced originally proposed proxy architectures
with the same one-dimensional CNN ensembles used for other methods.

(iii)) CbAS [14]: We implemented CbAS using a VAE [30] as the generator, retraining it at each
cycle using top 20% of sequences weighted by the density ratio between the ground-truth-
conditioned distribution and current sampling distribution.

(iv) BO [7]: We select starting sequences via Thompson sampling and use UCB to select local
mutations based on surrogate model’s predicted mean and uncertainty.

(v) CMA-ES [16]: Following Sinai et al. [7], we convert the continuous outputs from CMA-ES
to one-hot representations by taking the argmax at each sequence position.

We adapted the implementation of MLDE [13] from https://github.com/HySonLab/
Directed_Evolution under the GPL-3.0 license. We run 10 surrogate-based optimization steps
with a population size of 128 and a beam size of 4. The random-to-importance masking ratio was set
to 0.6:0.4, and we used ESM-2 [19] with 35 million parameters for unmasking.

For comparisons with LatProtRL [10], we used the code available at https://github.com/
haewonc/LatProtRL under the MIT license. We employed a pre-trained ESM-2 [19] for both
the encoder and decoder components of VED. For tasks involving shorter sequences (AAV, E4B,
Pabl) we set: (i) VED latent dimension R = 16; (ii) action perturbation magnitude 6 = 0.1; (iii)
episode length T, = 4; (iv) constrained decoding term mgecode = 8. For tasks involving longer
sequences (GFP, AMIE, TEM, UBE2I, LGK), we used: (i) R = 32; (ii) 0 = 0.3; (iii) T¢p = 6; (iv)
Mdecode = 18.

In our GFlowNet setup, we employed the implementation available at https://github.com/
hyeonahkimm/delta_cs under the Apache-2.0 license [12]. For the conservative strategy GFN-
AL-§CS proposed by Kim et al. [12], we used an adaptive 6 with maximum masking radius set to
0.05 and rank-based proxy training with reweighting factor £k = 0.01. For AAV, E4B and Pabl we set
the scaling factor A = 0.1, whereas for GFP, AMIE, TEM, UBE2I and LGK X\ = 1. For comparisons
with GFN-AL [9] we modified the above configuration by removing rank-based proxy training and
using a fixed masking radius of 1.

We implemented PEX [6] using the code in https://github.com/HeliXonProtein/
proximal-exploration/tree/main under the Apache-2.0 license, with the default setting of
2 random mutations and a frontier neighbor size of 5.
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A.5 Evaluation metrics

Protein fitness optimization metrics Let Dy = {(z(?, f(2(?))}12 denote the set of the 100
highest-ranking sequence-fitness pairs generated across [V active learning rounds. The evaluation of
exploration algorithms in our experiments was based on the following metrics:

(i) Maximum fitness. The primary evaluation criterion, representing the ability of an explo-
ration algorithm to recover highly functional protein sequences:

MaxFitness(Dpest) = max f(z). %)
2 € Dpest
(i) Mean fitness. The mean fitness values of the top 100 candidate sequences:
1
MeanFitness(D, = — T). (6)
( best) |Dbest‘ mezpzlf( )

(iii) Novelty. The average Hamming distance between top 100 candidates and a starting sequence,
characterizing the extent of divergence from the wild-type protein:

1

Novelty (Dpest; Ttart) = W
best

d(x, Tsar)- @)
L€ Dhest

(iv) Diversity. Defined as the mean pairwise Hamming distance between the top 100 candidate
sequences, reflecting the exploration algorithm’s ability to explore diverse regions of the
fitness landscape:

1
Diversity (Dpest) = d(z,x’ 8
1versl y( best) |Dbest|("Dbest| — 1) ; (J;’ z )) ( )
z,r best

x#x

Biological plausibility measures To evaluate biological plausibility of candidate sequences gener-
ated by various exploration algorithms we used the following measures:

(1) Validity. Defined following Surana et al. [11] as a diagnostic measure to assess whether
high fitness scores correspond to biologically plausible sequences. Specifically, it checks
whether physicochemical properties of the top 100 candidates all fall within the 0.5th to
99.5th percentile range of the reference property distribution. This provides high-confidence
indication of whether elevated fitness scores reflect genuine biological plausibility or rather
result from surrogate and oracle misspecification. The considered properties were:

* molecular weight
* aromaticity
* isoelectric point
 grand average of hydropathy (GRAVY)
* instability index
(i) pLDDT and pTM. Both pLDDT and pTM are structure confidence scores predicted by
ESMFold, scaled between 0 and 100 [19]. pLDDT measures the local per-residue confidence

in structural accuracy, while pTM reflects the predicted global topology confidence. In both
cases, values greater than 70 are indicative of high-confidence predictions.

(iii) self-consistency Perplexity (scPerplexity). scPerplexity [38] quantifies how well a gener-
ated sequence can be recovered from its predicted structure. Specifically, it is defined as
the negative log-likelihood of the original sequence conditioned on the structure predicted
by a folding model. Lower scPerplexity values indicate that the sequence is more plausible
under the inverse folding model given its predicted structure. For sequence folding we used
ESMFold [19]; for inverse folding we used ESM-IF1 [43]

A.6 Evodiff

To model the prior over protein sequences in PROSPERO we used EvoDiff-OADM with 38 million
parameters, introduced by Alamdari et al. [38] and available under the MIT license.
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B Discussion

B.1 Limitations

PROSPERO utilizes EvoDiff as its backbone, a model built upon a ByteNet-style CNN architecture
[54]. Without enforcing reproducibility the approach remains computationally efficient and exhibits
reasonable runtime. However, ensuring deterministic runs with CNNs typically leads to substantially
longer runtimes, representing a practical limitation. Specifically, we conducted all experiments on a
NVIDIA Tesla V100 32GB GPU, with the total runtime across all tasks being approximately 3 hours
under non-deterministic setting and around 30 hours when enforcing reproducibility. For the noise
robustness study in Section 5.4, the total runtime across all signal-to-noise ratio levels took approxi-
mately 30 minutes under non-deterministic configuration and around 12 hours in the reproducible
setting. We note, however, that (i) reproducibility is not a strict requirement for practitioners, and (ii)
even under deterministic configuration, the computational cost remains negligible compared to the
burden of wet-lab experiments—which PROSPERO is designed to help alleviate.

PROSPERO performs well in maintaining diversity of generated sequences, as shown in Section 5.1.
However, approximate inference using Sequential Monte Carlo carries an inherent risk of reduced
diversity, which could potentially arise depending on design choices and remains a possible limitation
of the approach.

B.2 Future work

An interesting direction for future work is the development of adaptive strategies for reducing the
amino acid alphabet. While our charge-based grouping offers broad applicability, more tailored
schemes could further enhance performance on specific proteins. Another promising extension would
be to apply PROSPERO in a lab-in-the-loop setting, using experimental validation as the oracle and
integrating structure-based alanine scanning into targeted masking to more effectively identify critical
residues.

B.3 Broader impact

PROSPERO can advance protein engineering for therapeutics, enzymes, and sustainable materials
by improving data efficiency and reducing experimental burden associated with wet-lab screening.
However, as with any general-purpose protein design tool, there is a risk of misuse for designing
harmful proteins or contributing to biosecurity concerns.

C Background

Sequential Monte Carlo (SMC). Sequential Monte Carlo (SMC) is a class of approximate infer-
ence methods for sampling from complex, high-dimensional target distributions ~v(x1.7), where z1.1
denotes a sequence of variables or partial states [55-57]. Rather than directly sampling from ~(z1.7),
SMC simplifies the inference by constructing a sequence of unnormalized intermediate target distribu-
tions {¢(1.¢)}L_,, that progressively approximate the target. At each step ¢, a collection of weighted
samples (i.e., particles) is propagated by sampling from proposal distributions {q;(z; | 1.¢—1) }7—o,
and corrected using importance weights {w;(z1.¢)}71_;, to account for discrepancies between the
proposal and the intermediate target. At the initial step ¢ = 1, IV particles are sampled independently
from the proposal distribution ¢; (1), and initial importance weights wgn) are assigned for each
particle n:

~ (n)
n n T

2w g(ay), wl® = 0@ ©)
()

Subsequently, each step ¢t = 2,...,T consists of the following three operations [56]:

(i) Optional resampling:

(n) N
n n N Wy
wg:t)—l ~ Cat {m(lzt)—l}nzl ; {ZN : m) } : (10)
i=1

m=1 We—1

21



(ii) Proposing:
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Table 5: Mean fitness of top 100 sequences generated by each method. Reported values are the mean

and standard deviation over 5 runs.

Method AMIE TEM E4B Pabl AAV GFP UBE2I LGK
CMA-ES -8.317 £0.029  0.013£0.000 -1.009 £0.029 0.232 £0.012 0.000 £ 0.000 1.593 £0.008 -0.072 4+ 0.004 -1.538 £ 0.008
DynaPPO -6.493 £0.155 0.027 £0.002 0.574 £0.148  0.481 £0.013  0.000 + 0.000 2.064 £ 0.068 1.600 4 0.101  -1.020 £ 0.045
BO -0.849 £0.474  0.606 +0.352 5.909 £0.785 0.510£0.047 0.618+£0.010 3.538 £0.036 2.69540.148  -0.017 £ 0.020
PEX 0238 £0.004  1.227 £0.002 7.948 £0.046  1.307 £0.258 0.620 £0.017 3.597 £0.003 2.987 £0.001  0.033 & 0.001
AdaLead 0.229 £0.001  1.201 £0.002 7.846 £ 0.040  1.836 +0.266 0.644 +0.031 3.563 = 0.007 2.976 4+ 0.003  0.037 £ 0.001
CbAS -8.361 £0.025 0.010 £0.001 -0.820 £0.068 0.162 £ 0.082  0.000 + 0.000 1.666 £ 0.021 -0.072 +0.003 -1.659 £ 0.023
GFN-AL -8.268 £0.010 0.015+0.001 -0.415+£0.091 0.276 +0.036  0.000 + 0.000 1.776 £0.009 0.172 +0.396  -1.345 £ 0.037
GFN-AL-0CS  -0.244 £0.137 0.192£0.027 7.653+0.136  1.070 £0.113  0.648 =0.020 3.569 +0.009 2.968 £ 0.006  0.024 & 0.004
LatProtRL 0217 £0.001  1.222 +£0.000 7.562 £ 0.06 0.888 £0.072  0.563 £0.009 3.582+0.003 2.975£0.001  0.019 & 0.000
MLDE 0231 £0.004  1.131 £0.021 7.843 £0.122  0.877 £0.024 0.555 £0.000 3.591 £0.003 2.975+0.005  0.036 £ 0.002

PROSPERO 0.236 £0.007  1.176 £0.029 8.017 £0.054  1.401 £0.202 0.679 = 0.025

3.613 + 0.002

2.987 +0.003

0.040 & 0.002

Table 6: Median fitness of top 100 sequences generated by each method. Reported values are the

mean and standard deviation over 5 runs.

Method AMIE TEM E4B Pabl AAV GFP UBE2I LGK

CMA-ES -8.392 £0.006 0.011 £0.000 -1.046 £0.027 0.206 £ 0.013  0.000 + 0.000 1.578 £0.006 -0.079 4 0.002 -1.563 £ 0.008
DyNaPPO -6.731 £0.125 0.025+0.001 0.333 £0.167 0.465+0.012 0.000 +0.000 1.769 £0.033 1.577 +0.108  -1.198 £ 0.032
BO -0.919 £0.591  0.600 +0.352 5779 £0.851  0.489 +0.043 0.613 £0.009 3.543 £0.034 2.681 £0.169  -0.009 & 0.028
PEX 0.237 £0.004  1.228 £0.000 7.937 £0.050  1.298 £0.257 0.616 +0.017 3.597 £0.003 2.986 4-0.001  0.033 £ 0.001

AdaLead 0.228 £0.001  1.198 £0.001 7.832+£0.042 1.830£0.271 0.641 +£0.031 3.561 £0.007 2.976 +0.003  0.037 £ 0.001

CbAS -8.371 £0.023  0.009 +0.001 -0.841 £0.065 0.152 +0.084 0.000 +0.000 1.655 £ 0.021 -0.073 +0.004 -1.670 £ 0.024
GFN-AL -8.287 £0.007 0.014 £0.001  -0.458 £0.083 0.257 £0.043  0.000 £ 0.000 1.758 £0.009 0.169 £ 0.396  -1.353 & 0.045
GFN-AL-0CS  -0.184 £0.150  0.145 £0.026 7.6334+0.143  1.064 £0.113  0.645+0.020 3.568 +0.009 2.967 £0.006  0.024 & 0.005

LatProtRL 0.218 £0.001  1.222+0.000 7.523 £0.062 0.876 £0.070 0.560 + 0.010 3.582 £0.003 2.975 £+ 0.001  0.018 £ 0.000

MLDE 0.231 £0.004  1.117 £ 0.038 7.834 £0.130  0.874 £0.027 0.55540.000 3.591 £0.003 2.97540.006  0.036 £ 0.002

PROSPERO 0.235+0.007 1.187 £0.041 8.013+£0.055 1.3924+0.200 0.676 £0.024 3.613 £0.002 2.987 +0.003  0.040 £ 0.002

Table 7: Average diversity between top 100 sequences generated by each method. Reported values

are the mean and standard deviation over 5 runs.

Method AMIE TEM E4B Pabl AAV GFP UBE2I LGK
CMA-ES 24797 £1.96 20340 £4.60 7523+£083 49.51+1.67 6034+£089 163.734+2.44 108.01 £1.72 316.96 £ 5.31
DynaPPO 116.31 £0.82  98.68 £1.83  28.14+£0.31 22.00+0.83 27.96+0.44 79.06 & 1.63 49.53 £ 0.81 157.11 £7.56
BO 21.46 +3.10 29.16 £24.73 15.65+3.80 3582+480 692+0.29 3492+3.13 3233£7.00 7697 £57.70
PEX 7.06 £ 0.61 3.354+0.32 465+036 488+087 7.00£1.05 6.66+0.86 6.24 + 0.69 8.17 £ 147
AdaLead 6.37 £ 0.93 3.96 + 0.06 582+041 383+£072 8.09+281 26.58+12.68 6.04 £0.62 6.59 + 1.17
CbAS 236.10 £2520 232.03 £538 7631 £8.05 53471469 5421+559 14539+48.19 12598 £6.49 349.88 +33.82
GFN-AL 32377 £0.07 27079+ 0.25 96.13+£0.66 70.61 £0.16 79.70+7.08 225.07 £0.12 7826 £72.16 423.68 & 0.70
GFN-AL-6CS  14.68 & 0.79 1797127 555+096 5.68+1.60 833+1.14 2420+1447 8.12+3.73 65.68 & 10.56
LatProtRL 1.10 £ 0.07 1.27 +£0.01 4.02 £0.41 3844034 3294029 1997 +£3.07 2.24 4 0.09 1.70 & 0.00
MLDE 10.10 4+ 1.23 6.87 + 0.96 465+124 235+140 1.71+£022 8804 1.62 8.86 + 1.61 7.52 +2.06
PROSPERO 12.20 &+ 1.15 5.104+0.58 412+£028 355+£026 511+£058 9904 2.01 9.54 £2.35 17.25 £+ 5.64
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Table 8: Average novelty of top 100 sequences generated by each method. Reported values are the
mean and standard deviation over 5 runs.

Method AMIE TEM E4B Pabl AAV GFP UBE2I LGK
CMA-ES 169.18 £ 1.96  136.79 =4.91 51.75£0.96 32.37 £ 1.81 40.17£098 107.96 £2.41 71.26+1.62 21241 +5.63
DynaPPO 6478 £0.55 5497+ 1.13 15404020 12.13+0.48 1540 £0.28 4388+0.99 27.39+0.51 91.65 £ 12.56
BO 1927 £1.94 3537 +£36.86 14.69+238 4894+16.18 7.19+£0.68 41.55+£9.56 3558 +£12.95 90.62 4+ 62.22
PEX 5.19 £ 1.08 1.79 £0.21 396 £0.54  5.29+0.74 729£138 623 +£1.34 4.55 £0.82 8.45+1.39
AdaLead 421+£0.89 2.93 £0.07 392+£062 847+158 986 £1.55 3379+£584 392+047 14.75 £8.02
CbAS 323724+ 1.16 27122+ 143 9641 +098 71.56+1.08 86.56 =048 225.15+1.94 150.19+0.36 423.30+1.96
GFN-AL 323.194+0.28 27281 +0.22 97.494+0.28 71.404+0.04 8406+ 1.17 226.60+0.16 152.03 £0.60 425.16 £ 0.62
GFN-AL-0CS 829 4 0.42 10.10 £ 0.65  4.94 £ 1.59 1029+£129 9.70+£033 34834377 8.01 £3.69 63.16 £ 4.24
LatProtRL 1.09 + 0.04 1.10 £ 0.01 311+£049 385+1.19 3.03 +£0.40 1273 £2.21 1.69 £ 0.05 1.71 £ 0.01
MLDE 19.02 £2.69 428 £0.55 11.88 £3.49 9.67 £3.12 448 £0.25 23.65+£540 9.60 £2.58 50.09 £ 8.08
PROSPERO 20.99 £332 3374053 8.81 £0.98 11.83 +£3.52 15.03 £1.59 39.85+3.95 1645 +5.11 7433 +£7.75

Table 9: Average diversity between top 100 sequences generated by leading methods. Reported
values are the mean and standard deviation over 5 runs. Bold: the best overall diversity. Underline:
second-best. PROSPERO maintains a viable level of sequence diversity.

Method AMIE TEM E4B Pabl AAV GFP UBE2I LGK

PEX 7.06 £ 0.61 335+£032 465+036 488+£0.87 7.00+1.05 6.66+0.86 6.24 £0.69 8.17 + 1.47
AdaLead 637+093 396+0.06 582+041 383+0.72 8.09+281 26.58+12.68 6.04+062 6.59 +1.17
GFN-AL-6CS  14.68 +0.79 1797 £1.27 5.55+0.96 5.68+1.60 833 +1.14 2420+ 1447 8.12+3.73 65.68 & 10.56
LatProtRL 1.10 & 0.07 1.27 £ 0.01 4.02+041 384+£034 3294029 1997+£3.07 2244009 1.70+£0.00
MLDE 1010 £1.23 6.874+096 4.65+124 235+140 1.71+022 8.80+1.62 886 £1.61 7.52+2.06
PROSPERO 1220+ 1.15 5.10+0.58 412+£0.28 3.55+026 5.11+0.58 9.90+2.01 9.54 £2.35 17.2545.64

D.2 Early-round protein design

Table 10: Maximum fitness of top 100 sequences generated by leading methods limited to 4 rounds.
Reported values are the mean and standard deviation over 5 runs. Bold: the best overall fitness.
Underline: second-best.

Method AMIE TEM E4B Pabl AAV GFP UBE2I LGK

PEX 0.242+£0.001 1.231+0.001 7.97140.078 1.064 +0.071 0.604 £ 0.018 3.597 £ 0.002 2.987 £ 0.002 0.030 £ 0.001
Adalead 0.232 £ 0.003 1.227 £+ 0.004 7.962+0.071 1.397+0.329 0.596 £0.014 3.580 £ 0.003 2.982 £ 0.002 0.032 £ 0.002
GFN-AL-6CS  0.160 + 0.048 0.563 £ 0.119 7.859 £0.047 1.035+0.094  0.596 £ 0.010 3.584 £ 0.005 2.972 £0.013 0.032 £ 0.002
LatProtRL 0.224 £ 0.000 1.229 + 0.000 7.751 £0.016 1.031 £0.129 0.565 £ 0.011 3.589 £ 0.003 2.982 £ 0.001 0.020 £ 0.000
MLDE 0.231 £ 0.006 1.229 + 0.000 7.821 +0.063 0.866 £ 0.024 0.555 £ 0.000 3.589 £ 0.003 2.978 £ 0.000 0.028 £ 0.003
PROSPERO 0.236 £ 0.007 1.2294+0.001 7.978+0.055 1.202+0.129 0.635+0.019 3.602+£0.002 2.989+0.002 0.036=+0.001

Table 11: Mean fitness of top 100 sequences generated by leading methods limited to 4 rounds.
Reported values are the mean and standard deviation over 5 runs. Bold: the best overall fitness.
Underline: second-best.

Method AMIE TEM E4B Pabl AAV GFP UBE2I LGK

PEX 0.230 £0.001  1.176 £ 0.008 7.686 £ 0.035 0.891 £ 0.036 0.553 £ 0.012 3.589 £0.002  2.982+0.001  0.026 £ 0.001
AdalLead 0.224 £ 0.002 1.185 £ 0.011 7.682+£0.038 1.118+0.222 0.554 £0.010 3.557 £0.007 2.964 £ 0.007 0.029 £ 0.002
GFN-AL-6CS  —0.936 £0.411  0.108 +0.017 7.271£0.232 0.865 £ 0.065 0.549 £ 0.006 3.562 £ 0.007 2.772 £ 0.141 0.017 £ 0.005
LatProtRL 0.200£0.001  1.2134+0.000 6.794 £ 0.125 0.743 £ 0.044 0.525 £ 0.004 3.571 £ 0.005 2.960 + 0.006 0.018 £ 0.000
MLDE 0.212 £ 0.011 1.060 £ 0.024 7.538 £0.109 0.786 + 0.059 0.551 £ 0.000 3.585 £ 0.003 2.911 £0.019 0.025 £ 0.004
PROSPERO 0.221 £0.010 1.014+0.104 7.781+0.048 1.009+0.072 0.576 £0.017 3.595+0.002 2.976 +£0.006 0.033 4+ 0.002

Table 12: Average diversity between top 100 sequences generated by leading methods limited to 4
rounds. Reported values are the mean and standard deviation over 5 runs. Bold: the best overall
diversity. Underline: second-best.

Method AMIE TEM E4B Pabl AAV GFP UBE2IL LGK
PEX 5.02£0.50 3.07+£0.22 3.55+£036 3.93+£0.46 5.27+0.76 5.85£0.99 4.61+0.63 725+£1.29
AdaLead 4.34£0.34 4.04 £0.07 419+£0.26 3.12+0.50 7.00+0.43 32.04+10.76 538+0.77 4.36 £1.29
GFN-AL-0CS  21.22+5.12 2039+0.75 5214147 549+0.85 6.534+0.52 21.134+13.93 13.14+3.75 62.52+9.11
LatProtRL 1.60 £ 0.04 1.81 £0.01 4.24£0.14  4.02%£0.55 3.34+£0.12 27.93 £ 6.33 2.32+£0.01 1.79 4+ 0.00
MLDE 10.99 £ 1.45 6.93+£0.62 553+0.75 3.98+098 1.63+£0.40 8.06 £1.27 7.36 £1.88 8.29+£1.82
PROSPERO 11.84 +1.82 6.09+1.19 411+£048 3.65+0.25 4.88+045 9.18 £0.88 9.08 £0.78 21.18+2.40
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Table 13: Average novelty of top 100 sequences generated by leading methods limited to 4 rounds.
Reported values are the mean and standard deviation over 5 runs. Bold: the best overall novelty.
Underline: second-best.

Method AMIE TEM E4B Pabl AAV GFP UBE2I LGK
PEX 2.83+£0.24 1.57+0.12 1.97+£0.27 233+£041 3.68+0.17 4.01£0.78 2.67+£0.48 4.45+1.00
AdaLead 2.77+£0.44 3.01£0.05 241£0.19 412£0.89 482+£0.36 34.94+419 3.411+0.54 8.30 £8.37
GFN-AL-6CS  11.684+2.71 11.454+0.40 3.52+1.71 4.99+0.81 452+0.26 30.61+344 13.14+1.98 45.70+3.31
LatProtRL 1.36 4 0.034 1.61£0.01 3.19+£0.18 287+£0.45 1.88£0.06 16.44 4 3.56 1.75+0.07 1.854+0.01
MLDE 11.854+246 4.71+050 7.11+£1.21 576+0.67 410£0.39 13.494+1.48 6.36 £0.67 18.90 & 5.66
PROSPERO 10.67 £ 1.62 3.40 £0.58 3.95+0.88 6.162.36 6.60+0.78 17.164+3.23 9.02 £ 3.48 37.09 +4.32

D.3 Out-of-distribution robustness

Table 14: Results under moderate covariate shift. Reported values are the mean and standard deviation
over 5 runs. Bold: the best overall value. Underline: second-best.

Method Maximum pTM Mean pTM Diversity Novelty
PEX 0.807 £0.023  0.760 4+ 0.012 6.14 +0.89 4.45+0.38
Adalead 0.796 £ 0.013  0.755 £ 0.011 8.83 £2.54 8.36 +2.97
GFN-AL-6CS  0.791£0.010  0.729 £0.005 16.92+0.88  9.56 + 0.60
LatProtRL 0.787 £0.013  0.743 £0.003 6.32 £0.32 5.90 £0.53
MLDE 0.810 £0.020  0.752 £ 0.004 9.89+1.11 20.88+2.98
PROSPERO 0.822 £0.027 0.777+0.020 11.50+1.62 17.74 +3.20

Table 15: Results under severe covariate shift. Reported values are the mean and standard deviation
over 5 runs. Bold: the best overall value. Underline: second-best.

Method Maximum pTM Mean pTM Diversity Novelty
PEX 0.578 £0.014  0.518 +0.003 3.40 £ 0.07 1.724+0.04
Adalead 0.593 £0.028  0.526 £0.007  14.26 £1.91 7.66 = 1.08
GFN-AL-6CS  0.630 £0.024  0.542£0.006 24.13+1.47 14.63+£1.16
LatProtRL 0.560 £0.000  0.508 4+ 0.003 2.244+0.14 1.78 £0.16
MLDE 0.652 £ 0.059  0.572 £ 0.035 13.10+1.18  21.68 £ 3.85
PROSPERO 0.672+0.031 0.599+0.014 14514+199 22.03+1.69

Table 16: Results under low-data covariate shift. Reported values are the mean and standard deviation
over 5 runs. Bold: the best overall value. Underline: second-best.

Method Maximum pTM Mean pTM Diversity Novelty
PEX 0.806 4+ 0.013 0.752 4 0.005 6.77 £0.45 4.39 £ 0.51
Adalead 0.781 £0.016  0.742 +0.004 7.99 +£1.39 5.95+2.04
GFN-AL-6CS  0.782£0.006  0.731 £0.006 15.82+1.77 9.46 +1.69
LatProtRL 0.792 £0.013  0.743 £ 0.001 6.25 £0.23 5.57£0.20
MLDE 0.782+£0.022  0.735 +0.025 9.39£288 16.97+3.78
PROSPERO 0.808 £0.017 0.763+0.017 11.254+2.51  15.874+1.17

E Extended related work

Inference-time guidance methods Several methods have been proposed to steer generative models
during inference. Dhariwal and Nichol [58] introduced classifier guidance, where the sampling is
biased toward desired properties by adjusting the generative score with the gradient of an auxiliary
classifier. However, this approach is not directly applicable in the discrete data domain, where
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gradients with respect to inputs are not well-defined. To address this, Nisonoff et al. [59] developed a
framework that enables classifier guidance in discrete diffusion and flow matching models. Their
approach leverages a continuous-time Markov chain formulation of the forward process and corre-
sponding reverse-time generative process [60], where only one coordinate changes at each transition,
making exact guidance tractable.

Guidance can also be realized through SMC-based approaches, applicable in both discrete and
continuous domains [61-63]. These methods steer generation by maintaining a population of particles
that represent partial trajectories and resampling them according to their likelihood under a target
distribution. Ekstrom Kelvinius and Lindsten [64] extend discriminator guidance [65], originally
developed for score-based diffusion models, to Autoregressive Diffusion Models (ARDMs) [66] (such
as leveraged in our work EvoDiff-OADM [38]), and further employ SMC to correct for discriminator
errors at intermediate sampling steps. Li et al. [67] take a similar approach that resembles SMC in
the use of importance sampling, but instead of resampling across the entire batch of particles, they
generate and reweight multiple candidates from each individual sample at the previous step. Building
on this idea, Uehara et al. [68] combine it with a noising policy, iteratively alternating between
re-noising and reward-guided denoising to progressively refine samples.

Similarities to CloneBO [26] PROSPERO and CloneBO by Amin et al. [26] share similarities in
guiding a generative model at inference time using SMC. However, the approaches differ meaningfully
in both scope and mechanism. First, in CloneBO, the generative model (CloneLM) has been trained
specifically for the optimization task by fitting to a distribution of clonal families. In contrast,
our method uses a general-purpose, task-agnostic pre-trained generative model, enabling effortless
optimization regardless of the protein family. As for the differences in the use of SMC, in CloneBO
the authors compute intermediate importance weights directly, as a likelihood ratio between the base
ClonelLM and a twisted variant incorporating high value sequences (i.e. sequences with experimental
measurements) in the conditioned clonal family. In PROSPERO, we approximate the intermediate
importance weights using the surrogate model, which serves as a tractable proxy for the true likelihood.
Moreover, our biologically-constrained SMC restricts proposals to charge-compatible amino acids,
making certain residues impossible to sample. In contrast, CloneBO does not enforce such constraints;
although twisting reduces the probability of sampling undesirable residues, it does not eliminate them
entirely.

Connections between SMC and pseudo-marginal MCMC Pseudo-marginal MCMC [69] and
SMC differ in the way they approximate the target distribution. In pseudo-marginal MCMC, within a
single Markov chain, a single collection of samples is generated whose marginal stationary distribution
is exactly the target distribution. The approximation improves with the number of steps 7" and is
exact in the limit of inifite 7". In contrast, SMC maintains a population of [V samples that evolve
over a sequence of 7" intermediate distributions. The empirical distribution formed by these samples
converges to the target distribution in the limit of infinite V.

F Further ablations

Influence of the number of starting sequences on candidate generation We investigated how
varying the number of best starting sequences x,y affects the proposed candidates by conducting
experiments on the LGK landscape, which requires generating the longest sequences (L = 439). The
results in Table 17 demonstrate that fewer starting points drive deeper, more directed exploration,
resulting in higher novelty and fitness but lower diversity. In contrast, more starting points promote
broader, more diffuse exploration, increasing diversity but limiting how far any single trajectory
moves from the wild-type across subsequent optimization rounds.

Influence of reducing the amino acid alphabet To further analyze the isolated effect of constrain-
ing the proposals to charge-compatible amino acids, we directly compare the performance of the
full PROSPERO with its ablated counterpart lacking this restriction (without RAA). We followed the
setup detailed in Section 5.5. The results in Table 18 highlight the relevance of this feature, showing
consistent improvements across all signal-to-noise ratio levels.

Influence of the charge-class permutation order The sampling permutation order in biologically-
constrained SMC was chosen to prioritize charge classes with fewer valid options (negatively charged
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residues first, followed by positively charged, and finally neutral), as resolving the most constrained
decisions early should help prevent suboptimal completions later in the sequence. To assess this, we
conducted an ablation comparing PROSPERO with its standard permutation order (ascending) to both
areversed (descending) order and a random order. The results presented in Table 19 show that the
reasoning behind this choice appears correct, though the performance benefits are modest.

Table 17: Results on the LGK landscape for varying numbers of starting sequences. Reported values
are then mean and standard deviation over 5 runs. The best overall values are highlighted in bold.

Teart  Maximum fitness Mean fitness Diversity Novelty
1 0.043 +-0.002 0.040+0.002 17.25+5.64 74.33+7.75
4 0.041 £ 0.001 0.039 4+ 0.001 19.30 + 4.58 70.20 £+ 6.05

16 0.038 = 0.002 0.037 £ 0.002 19.09 £5.80  64.86 & 5.44
64 0.037 £ 0.002 0.034 £ 0.001 29.13£6.97  56.38 £7.06
128 0.033 £ 0.002 0.030 £0.002 33.89 +£9.54  50.45 £ 5.52

Table 18: Results on the AAV landscape across different signal-to-noise ratio levels (SNR). Reported
values are then mean and standard deviation over 5 runs. The best overall values are highlighted in
bold.

SNR level -25 -20 -15 -10 -5 0

PROSPERO 0.566 + 0.030  0.586 + 0.026 0.651 £ 0.032 0.679 = 0.047 0.704 & 0.016  0.706 + 0.022
PROSPERO w/o RAA  0.507 £0.025 0.555 4+ 0.040 0.588 +0.029 0.605 £0.032 0.653 £0.042 0.666 & 0.029

Table 19: Results on all the landscapes with different permutation orderings. Reported values are
then mean and standard deviation over 5 runs. The best overall values are highlighted in bold.

Ordering AMIE TEM E4B Pabl AAV GFP UBE2I LGK

Ascending  0.246 £ 0.006 1.231 +0.002 8.114 4+ 0.037 1.527 +0.254 0.720 £ 0.027 3.617 £ 0.003  2.993 + 0.003  0.043 + 0.002
Descending  0.244 +0.005 1.232 4+ 0.003 8.139 4 0.037 1.363 £0.141  0.706 £ 0.035 3.614 £ 0.003 2.991 +0.003  0.041 £ 0.003
Random 0243 £0.005 1.2324+0.002 8.164+0.015 1.338+0.113 0.708 £0.029 3.614 £0.003 2.993 + 0.002 0.042 4 0.003

G Algorithms

Algorithm 2: Targeted Masking

Input: Starting sequence X, proxy fo, SMC batch size B, scans .S, min substitutions 7.y,
max substitutions n,,x, exploitation-exploration coefficient k
Output: Masked sequences {Z#(")}2 |, substitution locations {Z(V}5 |
fori < 1to B x Sdo
n@
sub

I ~ UniformSubset([1, |zgan|], n7)
) ¢ zyan, where 29 [5] « A for j € ()

~ u[nminv

Mmax]

J « arg maxfe{w)}iﬁs po(z) + k- og(x)

for (V) € 7 do
| 2@ « 2, where 2V[j] - [MASK] for j € Z(*)

return {3015 (T}B
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Algorithm 3: ConstrainedSMC

Input: Partially masked sequences {z )}B 1> mask locations {Z'* () B |, pre-trained generative
model P, proxy fy, oracle budget K, exploitation-exploration coefficient k, kept rollouts
threshold nyeep,

Output: Candidate sequences {2V} X

1 RolloutBuffer < {}
2 fori < 1to B do

3 L 7() = concat(Z? I((l)yz((?)yz((o)))

4 T < argmaxze(zomys |Z|
5 fort +— 1toT do
6 | forz® e {zW}E do

7 if £ = 1 then
8 | LLOY «0
9 ift < |Z(] then

(i) ) -
10 Lr(t+z0]) ~ Praa(@ fr(t+|I< ) |z 7r(<t(+\z< >|))
11 LL® « [L® —i—log?’( Tr(tHI”I | & <t+\I(>\))
12 (#tmos LL{gon) = ROLLOUT(#), 7, LLO, P, s =t +1)  // Algorithm 4
13 y( K - /1“9( Em)roll) +k- 09( Sz)roll)

()

14 invPPL® « exp ( L“y"’">
15 if T — t < nyeep then
16 | RolloutBuffer + RolloutBuffer U{ ({01, 5*))}

B

v | e ()

18 for i < 1to B do '

19 Resample

ide™® ~ Cat(w)
20— zlida]

7r(i) — wlidz®)]

LL® « LL[idz®]

K

K .
20 return {z(V} 5« arg MAX(, o Rollout Buf fer U

Algorithm 4: Rollout

Input: Partially masked sequences {#(")}2 |, sampling permutations {7(")}2 |, log-likelihoods
{LLC )} -1, pre-trained generatlve model P, unmaskmg step S
Output: Unrolled sequences {xunm“}i:l, log-likelihoods {LLu“m”}i:1
T « argmaxze(7())5
fort < sto1 do
for () € {z(V}B | do
if t < |Z()| then

~( ) ~
Tierizop ~ Praal@ w<t+|z<>|>| w(<t+\z<>|))

6 LL® « LLO 4 1log P(z" | 20

[P TR SR

(tHI( ) (<t ZC >\))

7 {xunroll} =1 «— {'T( )}B
8 {LLunroll}B p  {LLC )}B

9 return {‘runmll}7 15 {LLunroll}
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction reflect the paper’s contribu-
tions and scope. Section 5.1 presents our method’s protein fitness optimization capabilities;
Section 5.2 demonstrates the biological plausibility of the generated sequences; Section 5.4
shows robustness to surrogate misspecification.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of our work are discussed in Section B.1.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: We do not include any theoretical results or formal proofs in this work.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We detail the approach in Section 4, provide the algorithms in Section G and
include code to reproduce our results in Section 1.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include code to reproduce our results in Section 1 and provide details on
the implementation of the baselines in Section A.4.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We detail our experimental setup in Section 5 and describe the surrogate model
training procedure in Section A.3.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard deviation for all figures and tables in Section 5, as noted in
each caption.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detail the compute resources used, including GPU type and runtimes, in
Section B.1.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our work conforms with the NeurIPS Code of Ethics
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss broader impacts of our work in Section B.3.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This work does not involve the release of pre-trained models or datasets.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All asset owners are properly credited, and licenses explicitly mentioned and
respected.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We include documented code implementing our method in Section 1, which
we will release under the GPL-3.0 license.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This work does not involve LLMs as an important, original, or non-standard
component of the core methodology.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

34


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Problem formulation
	Proposed framework
	Targeted masking
	Biologically-constrained Sequential Monte Carlo

	Experiments
	Protein design evaluation
	Biological plausibility
	Out-of-distribution robustness
	Noise robustness study
	Ablation

	Conclusion
	Experimental details
	Protein design tasks
	Out-of-distribution robustness
	Surrogate training
	Baselines implementation
	Evaluation metrics
	Evodiff

	Discussion
	Limitations
	Future work
	Broader impact

	Background
	Full results
	Protein design 
	Early-round protein design
	Out-of-distribution robustness

	Extended related work
	Further ablations
	Algorithms

