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Abstract

Autotuning dominates the compilation budget for deep-learning
models: profiling 5,000-30,000 candidate schedules per operator can
burn tens of GPU-hours and delay deployment by days. TVM’s
Meta-Schedule mitigates this cost with a learned latency predictor,
yet its existing models output only point estimates, causing two
chronic pathologies: (i) over-exploitation, where the tuner locks onto
an early but mediocre schedule, and (ii) over-exploration, where it
thrashes in poorly modelled regions. We introduce CALO-GNN,
the first evidential graph-neural cost model for TVM. CALO-GNN
provides single-pass predictions of latency and calibrated epis-
temic uncertainty, enabling a new uncertainty-decaying UCB rule
(UEC-UCB). A two-stage transfer procedure reuses 4M historical
schedules to warm-start new devices with just 2k measurements.
Across seven fused operators and five heterogeneous accelera-
tors—including NVIDIA H100 and a 32-core Xeon—CALO-GNN
cuts end-to-end tuning time by 32.4% and reaches within 5% of
oracle performance 1.74x faster than state-of-the-art baselines, all
while respecting a strict 20 ms inference budget.
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« Software and its engineering — Just-in-time compilers; «
Computing methodologies — Machine learning; Uncertainty
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1 Introduction

Modern compilers for machine-learning models face a daunting
search problem: a single transformer layer, once lowered to low-level
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TensorlR [2], can admit O(10%-10%) legal schedules. Each schedule
instantiates concrete loop tilings, thread bindings, vector widths,
shared-memory layouts, and unroll factors—design choices that in-
teract non-linearly with device caches and tensor shapes. Brute-force
measurement is prohibitive: profiling 30k schedules on an H100 at
1ms per kernel already costs 8.3GPU-hours.

Meta-Schedule and its limitations. TVM Meta-Schedule [14] tack-
les this space with an evolutionary search guided by a latency
cost model. The original XGBoost model and its GNN successor
MetaTune [13] make point predictions; they cannot express epis-
temic uncertainty. Consequently, early “lucky” predictions dominate
exploitation (over-exploit), while unexplored but risky regions con-
sume many probes (over-explore). Our empirical results show that
more than 40% of total measurements on depthwise convolutions
are wasted in this manner.

Our thesis. Well-calibrated uncertainty is as valuable as accuracy
in a compiler cost model. If the tuner knows where its predictions are
uncertain, it can steer probes strategically—yet any viable solution
must keep model inference under 20 ms to avoid dominating the
inner loop.

Contributions.

(1) CALO-GNN: a 480-line evidential GNN that returns mean
latency and variance in one forward pass.

(2) UEC-UCB: an uncertainty-decaying exploration rule de-
rived from empirical variance scaling, eliminating exhaustive
Kk grid search.

(3) Two-stage transfer: pre-train on 4M A100 schedules, then
fine-tune 5epochs on 2k warm-up probes, trimming 38% of
cold-start cost.

(4) Extensive validation: seven operators, five devices, 35
workload/device pairs, plus ablation, calibration, and transfer
studies.

2 Related Work

Compiler autotuning. TVM’s AutoTVM [3] and Ansor [19] au-
tomate search but rely on tabular Bayesian models that falter on
fused operators. Meta-Schedule [14] replaced simulated anneal-
ing with evolution plus XGBoost; MetaTune GNN [13] improved
accuracy but remained deterministic. AdaTune [9] adds UCB explo-
ration to AutoTVM, yet its Bayesian linear regressor underfits high-
dimensional schedule graphs. TENET [11] offers cross-operator
transfer via reweighted trees but cannot quantify uncertainty.
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Uncertainty estimation. MC-Dropout [5] and deep ensembles [8]
are accurate but require multiple passes. Evidential deep learn-
ing [1] uses a Normal-Inverse-Gamma output to produce closed-
form mean/variance—ideal for compiler inference budgets. Recent
diffusion-based cost models [17] explore sequence priors but remain
orders of magnitude slower.

Transfer learning. Proxy transfer via cost-model averages [18]
and device-agnostic embeddings [4] lower cold-start cost but often
miscalibrate uncertainty. We instead fine-tune the evidential head,
achieving calibrated variance within three minutes (§6).

3 Problem Formulation

Consider an operator o on device d with legal schedule space S.
Evaluating a schedule s € S returns latency y(s) at hardware cost
Cmeas ~ 0.8 ms—2.0 ms (GPU) or 3 ms—5ms (CPU). A learned cost
model with parameters 6 predicts jy(s) in <20 ms for an evolution
generation of N candidates.

Let y* = ming¢ 5 y(s) be the oracle latency. The tuner seeks the
minimal time-to-quality (TTQ):

T
TTQ(e) = ) [emeas (51) + eprea(P)], st miny(se) < (1+€)y*,

=1
1

where P is the candidate population at round ¢ and ¢preq (Pr) <20 ms.

We fix € = 0.05 (5% of oracle) following Meta-Schedule practice [14].
The optimisation thus decomposes into (i) reducing the probe count
T via uncertainty-aware exploration and (ii) keeping prediction run-
time negligible relative to measurement.

In the next section, we describe how CALO-GNN achieves both
goals via evidential regression and an uncertainty-decaying UCB
rule.

4 Methodology

Our design goal is to inject trustworthy uncertainty into TVM’s
evolutionary search while respecting a tight inference-time budget.
Figure 1 outlines the four key modules: (1) evidential graph regres-
sion, (2) UEC-UCB acquisition, (3) two-stage cross-device transfer,
and (4) low-overhead system integration.

4.1 Evidential Graph Regression

Schedule graph encoding. A schedule s is represented as a di-
rected multi-graph G = (V, E), where each node encodes a loop or
memory scope and edges capture data, fusion, or reorder depen-
dencies. Node features are a 16-dimensional vector concatenating
(loop extent, tile size, parallel scope ID, vector width, shared-mem
bank count, unroll flag, etc.); edge types are one-hot. We normalise
continuous features to zero mean and unit variance per workload
to stabilise training.

GraphSAGE layer choice. GraphSAGE [6] achieved the best
accuracy-latency trade-off among GCN [7], GAT [16], and Graph-
SAGE variants. Two layers suffice: deeper stacks over-smooth node
embeddings and add >2 ms to inference. Hidden size 64 is the Pareto
knee; 128 improves RMSE by only 0.3% but doubles FLOPs.

Evidential head and calibration. The four evidence parame-
ters (y, v, @, f) are constrained by softplus or sigmoid activations
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to keep the Normal-Inverse-Gamma posterior valid (a, f > 0, v >
0) [1]. We append a scalar temperature 7 learned on the last epoch
via BFGS to minimise validation ECE. At test time, o 1= 7242,
Training schedule. We use AdamW [10], batch size 512, initial
learning rate 0.001 with cosine decay and lepoch warm-up. Early
stopping at 2 epochs patience on validation NLL. Full pre-training

takes 21 minutes on a single A100 (82 W TDP).

4.2 UEC-UCB: Uncertainty-Decaying UCB

Classical GP-UCB [15] sets k; = +/B;, where f; depends on kernel
smoothness and dimensionality—constants unknown for heteroge-
neous schedule graphs. Practitioners instead tune x by grid search,
an option we found brittle: the same x that excels on Conv2D can
stall attention kernels.

We therefore derive a data-driven decay schedule. Let 5; be the
mean epistemic variance over the current population; empirically,
&: ~ ¢/\t with ¢ ~ 1.5. Substituting this empirical law into the

GP-UCB regret bound yields our closed form: x; = \/%. The

offset 50 avoids over-exploration during the warm-up window.

4.3 Two-Stage Cross-Device Transfer

We hypothesise that operator semantics dominate device semantics
for predictor accuracy, whereas variance calibration is device-sensitive.
Stagel therefore maximises coverage by packing 38 operators across
vision, language, and recommender workloads on a single donor
GPU (A100). Stage2 fine-tunes for only 5 epochs (~3 min) using
the warm-up probes that the autotuner would measure anyway,
incurring no extra hardware cost. This strategy draws inspiration
from proxy-based transfer in AutoTVM [18] and device-agnostic
embeddings in Daphne [4], but adapts them to evidential models.

Why not zero-shot? Zero-shot variance can be miscalibrated by
up to 3X on H200 due to cache-hierarchy mismatch, leading to
premature exploitation and 54% slower convergence.

4.4 System-Level Optimisations

Batching granularity. We accumulate candidate graphs until we
hit 4096 nodes total, then perform one TorchScript call-maximising
vectorisation on AVX-512 without exceeding L3 cache. For CPU-only
workloads (e.g., LayerNorm) we drop batch size to 2048 to avoid
LLC thrash.

Quantisation. Weights are quantised to FP16 with symmetric
rounding, following mixed-precision guidelines [12]; we measured
<0.2% RMSE rise and 17% inference speed-up versus FP32.

Thread pinning. A simple numactl -C 0-3 pin reduces jitter
on the Xeon cluster by 9%.

5 Experimental Setup

This section elaborates on workloads, datasets, hyper-parameter
grids, and statistical methodology.

5.1 Workloads and Input Shapes

Table 1 details tensor shapes. Shapes follow PyTorch 2.3 defaults for
BERT-Large, ResNet-50, and EfficientNet-B4, ensuring relevance to
production inference.
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Figure 1: Pipeline overview: CALO-GNN evidential graph regression produces calibrated uncertainty estimates, enabling
UEC-UCB acquisition, two-stage cross-device transfer, and low-latency online deployment.

Table 1: Workloads and tensor shapes.

Operator Shape(s)
GeLU-MLP (B=128, d=4096)
Attention (SDP) (B=32, h=16, L=128, d;.=64)
Conv2D (N=64, C=64, H=224, W=224)
Depthwise Conv MobileNet-V3 shapes
MatMul (M=4096, N=1024, K=4 096)
LayerNorm BERT hidden state
GroupConv ResNeXt bottleneck

5.2 Hyper-Parameter Grids
We sweep three knobs per model:
e Learning rate € {le-3, 5e-4, le-4}
e Weight decay € {0, le-4}
e Evidence penalty 1 € {5e-3, le-2, 2e-2}

We retain the best validation NLL setting for each device. For
baselines, we reproduce the authors’ recommended grids.

5.3 Statistical Testing

We treat each (operator, device, seed) triple as an independent
sample. Normality holds under the Shapiro-Wilk test (p > 0.15), al-
lowing Welch’s t-test. We report p < 0.01 as significant and annotate
significant gains in bold in all tables.

6 Results

We report three complementary perspectives: (1) overall time-to-quality

across all workloads, (2) the quality of uncertainty calibration,

and (3) ablation evidence that each design choice matters. A sum-
mary occupies less than one page, keeping the section compact yet
self-contained.

Overall performance. Table2 compares CALO-GNN with three
state-of-the-art cost models on five representative operator-device
pairs (results for the full 7operators x 5devices matrix are omitted
for space). CALO-GNN wins 34 of 35 pairs, shaving a geometric-mean
32% off TTQ and delivering an average absolute latency reduction
of 11.8% relative to MS-XGB. Gains are largest on the depthwise
convolution and CPU LayerNorm, two notoriously hard-to-model
kernels where calibrated exploration avoids early traps.

Uncertainty calibration. Well-calibrated predictive variance is
critical for any UCB-style acquisition. Table3 shows that CALO-GNN
cuts Expected Calibration Error (ECE) by 51% versus MetaTune
and lowers negative log-likelihood (NLL) by 36%. Crucially, this
improved reliability comes at no extra inference cost because the
evidential head produces mean and variance in a single pass.

Design ablations. To isolate each component’s impact, we reran
Conv2D/A100 with variants that (i) fix the exploration coefficient,
(ii) remove evidential uncertainty, or (iii) skip fine-tune transfer.
Table4 confirms that every ingredient matters: constant x slows con-
vergence by 23%, dropping the evidential head adds 35% overhead,
and zero-shot transfer nearly doubles TTQ. These deltas validate
the methodological choices outlined in Section 4.

Take-away. Across diverse operators and hardware back-ends,
calibrated evidential uncertainty paired with an adaptive explo-
ration schedule delivers consistent, statistically significant speed-ups
without violating the 20ms inference budget. The ablation confirms



Inference Optimization for GenAl °25, August 2025, Toronto, Canada

Patnala

Table 2: Time-to-quality (TTQ, minutes) for ¢ = 5% — lower is better.

Operator Device MS-XGB MetaTune AdaTune CALO-GNN
GeLU-MLP H100 GPU 38.6 31.2 29.8 213+ 1.1
MatMul V100 GPU 52.1 45.8 41.4 34.7 + 0.9
Conv2D A100 GPU 33.4 27.1 25.9 18.4 £ 0.7
Depthwise Conv  H200 GPU 41.7 36.3 34.9 250+ 1.4
LayerNorm 32—core Xeon 71.2 64.0 59.8 43.5 £ 2.2

Table 3: Calibration metrics — lower is better.

Model ECE NLL # Passes
MS-XGB 0.210 1.92 1
MetaTune 0.142 1.36 1
AdaTune 0.118 1.21 1
CALO-GNN 0.058 0.87 1

Table 4: Ablation study on Conv2D/A100 (TTQ, min).

Variant TTQ A vs.Full
Full CALO-GNN 18.4 —
constant k 22.7 +23%
deterministic head  24.9 +35%
zero-shot transfer ~ 32.8 +78%

this is a synergistic effect: strip away any single piece and most of
the benefit disappears.

7 Discussion

Why single-pass variance? Uncertainty estimation methods for
neural predictors span a spectrum from cheap but coarse heuris-
tics (e.g., mean-variance propagation) to expensive Monte-Carlo
samplers. MC-Dropout with N=10 forward passes adds 110 ms on
our Xeon host, tripling per-round overhead and violating the 20 ms
budget in Eq. (1). Evidential regression offers a pragmatic middle
ground: the Normal-Inverse-Gamma head injects just 0.6 ms extra
latency yet delivers calibration on par with 10-sample ensembles
(ECE 0.06 vs. 0.05).

Sensitivity to hyper-parameters. We swept A (evidence penalty),
learning rate, and hidden size. TTQ varied by < 2.5% for 1 €
[10_3, 10_1] and hidden size € {32, 64,128}, indicating a broad
plateau. Learning rate is the only mildly sensitive knob; values
> 0.002 destabilise variance early in training. Consequently, we
fix A = 1072 and hidden size 64 globally—removing yet another
per-workload tuning burden.

Transfer versus MetaTune. MetaTune’s deterministic encoder
generalises poorly across GPUs with dissimilar cache hierarchies.
When porting an A100-trained model to H200, TTQ degrades by
57% because the model over-confidently ranks schedules with high
L2-reuse on A100 that miss L2 on H200. CALO-GNN’s five-epoch

fine-tune (Stage2) re-calibrates variance in three minutes and re-
stores full performance—highlighting the importance of lightweight
adaptation.

Exploration coefficient versus manual tuning. Practitioners often
grid-search a constant x (e.g., {0.5, 1, 2, 4}) per workload. This grid
search can overshoot badly: k = 4 wastes probes on LayerNorm,
while x = 0.5 under-explores MatMul. Our UEC schedule achieves
within 5% of the best per-kernel k yet requires no trial runs, saving
7-12 GPU-hours in pre-tuning.

Threats to validity. Internal. Latency noise is mitigated by 200 me-
dian runs, but power-state transitions on H100 can still inject 1-2%
jitter. External. We benchmark fused operators only; dynamic-shape
kernels, sparse tensors, and tensor parallelism remain unexplored.
Construct. TTQ focuses on latency; real-world schedulers may
co-optimise energy or memory footprint, requiring a multi-task
extension of our evidential head.

Broader impact. Faster autotuning reduces compute-hours—and
thus carbon emissions—during model deployment. Conversely,
lower optimisation cost may accelerate the rate at which propri-
etary accelerators appear, challenging open-source ecosystems.

8 Conclusion & Future Work

We have introduced CALO-GNN, the first calibrated-uncertainty
graph cost model for TVM Meta-Schedule. By coupling a light-
weight evidential head with an uncertainty-decaying UCB rule and
a two-stage transfer scheme, CALO-GNN:

e Reduces geometric-mean time-to-quality by 32% across seven
operators and five devices,

o Achieves state-of-the-art calibration (ECE 0.058) with a sin-
gle forward pass,

e Maintains cost-model runtime below 15 ms, just 7.3% of each
evolutionary step, and

e Cuts warm-up probes on new GPUs by 38% through rapid
fine-tuning.

Future directions include (i) extending evidential heads to
multi-objective optimisation of latency and energy, (ii) integrating
diffusion priors for zero-warm-up transfer, and (iii) exploring hier-
archical evidential GNNs that embed whole computational graphs,
not just single operators, enabling end-to-end schedule search for
full networks.

We hope these results encourage broader use of calibrated un-
certainty in systems-ML cost models and spark community efforts
toward truly hardware-agnostic autotuning.
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