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ABSTRACT

Navigating dynamic physical environments without obstructing or hurting hu-
mans is of quintessential importance for social robots. In this work, we solve
autonomous drone navigation’s sub-problem of predicting out-of-domain human
and agent trajectories using a deep generative model. Here, we introduce General-
PECNet that improves 9.5% on the Final Displacement Error (FDE) on 2020’s
benchmark: PECNet (Mangalam et al., 2020b) through a combination of archi-
tectural improvements inspired by periodic activation functions (Sitzmann et al.,
2020) and synthetic trajectory (data) augmentations using Hidden Markov Mod-
els (HMMs) and Reinforcement Learning (RL). Additionally, we propose a simple
geometry-inspired loss and evaluation metric for trajectory non-linearity analysis.

1 INTRODUCTION

Multimodal human or pedestrian trajectory prediction is an ill-posed problem of predicting the fi-
nal and intermediate steps of some or all pedestrians when only a limited context of their previous
trajectories and the scene is known. This is further complicated by implicit personal values and
social rules that pre-define the pedestrians’ interaction. Autonomous navigation for robots or social
agents (Bennewitz et al., 2002), can only be enabled by accurate predictions for further downstream
planning tasks. For the prediction problem, we contribute a) a novel reinforcement learning-based
synthetic dataset and b) a variational autoencoder (Kingma & Welling, 2013) based pedestrian pre-
diction network, which achieves state-of-the-art performance on the goal-point or final destination
prediction error (FDE). G-PECNet is an improved adaptation of PECNet (Mangalam et al., 2020b).

2 METHOD

2.1 AUGMENTING WITH RL SYNTHETIC TRAJECTORIES

Synthetic trajectories were created using traditional Newtonian equations of motion and interaction
modeling using a Hidden Markov Model. Finally, we train RL-based bots/agents deployed in the
aforementioned interaction (HMM) model using Deep Policy Gradients (DPG). DPG agents were
modeled with two major goals: reaching the destination quickly and avoiding collisions with fellow
agents/pedestrians. Apart from acceleration, stopping for another crossing pedestrian (being consid-
erate) was implicitly decided by the agent’s randomly pre-defined sociability, fitness, and patience
attributes. We add a circular proximity (fixed radius) detection mechanism to penalize agents that
collide with others in the playground. Mathematically, the reward function at time step t: Rt for the
agents to finally reach the goal G is defined by Rt = AF t (nICS +1)(AS+AP )/ t2 (1+∥G−xt∥2)
where AF , AP , and AS ϵ [0, 1]. xt is the agent’s current position, and nICS is the number of
impending collision states. AS and AP are its sociability and patience respectively, determining
its recklessness. AF : Agent’s Fitness enforces reaching the goal quickly. Finally, the loss function
is the one used in standard deep-policy gradients methods: J(ϕ) = −

∑t=N
t=1 log(Pϕ(at|st))Rt

where, P (.) is parameterized by ϕ, a simple neural network that emulates the agent’s action and
state space at any time t. Training evolution is shown in figure 1.

† This work was done at the Indian Institute of Technology, Mandi. Code: Github
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Figure 1: The RL agent is inserted and trained in an HMM interaction playground. Agent’s trajectory
is turquoise. Evolution of the samples produced. First, the agent learns to turn. The second depicts
a complicated scene where the agent learns to avoid multiple collisions. The last scene depicts the
agent successfully avoiding a collision and reaching its goal.

2.2 PERIODIC ACTIVATION: SIREN IMPROVEMENT

We adapt PECNet to capture finer spatial and temporal details (Sitzmann et al., 2020) by replacing
all ReLU (Agarap, 2018) activations with a simple sinusoidal function: xi → ϕ(xi) = sin(Wixi+
bi), where i denotes the ith layer of the neural network. This choice is motivated by the finding
from Sitzmann et al. (2020) that current neural network activations are insufficient for modeling
high-frequency signals. They fail to represent a signal’s spatial and temporal derivatives which are
essential for the solution to the implicitly defined partial differential equations. We notice significant
gains when SIRENs are added after our data augmentation. FDE improves by 41.4% when SIREN-
infused PECNet is trained with the 6% augmented dataset compared to PECNet on our augmented
dataset. See the ablation Tab. 6. Furthermore, we present a quantitative comparison in 3.

Learning Rate ADE FDE Best FDE epoch

0.001 22.20 9.32 915
0.0005 29.91 9.05 834
0.0003 25.92 9.37 998
0.0002 26.75 9.04 908
0.0001 25.57 9.05 235

Table 1: State-of-the-art FDE of GPECNet: Trained on 6% augmented SDD with no standardization
and decoupled ADE and FDE for 1000 epochs. We observe that no social pooling results in higher
ADE.

2.3 NOVEL LOSS AND EVALUATION METRIC: AbScore

We introduce a simple criterion: Abruptness Score or AbScore to measure the turns and variability
or non-linearity in each trajectory. An areal-scaled (bounding box area) of the metric is used for
outlier detection (data cleaning) and assisted our synthetic dataset creation process. The AbScore
statistics for SDD trajectories are in Tab. 2. Note that we do not use AbScore for training GPECNet.
See A.6 for further mathematical formulation and motivations.

Statistic Value

Max. AbScore 494866.37
Min. AbScore 0.0
Mean 3430.665
Std. Deviation 11987.34

Table 2: Abruptness Score statistics of SDD: A novel loss and evaluation metric for quantifying
trajectories’ non-linearity.
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A APPENDIX

The code is available at Anonymous-Github-repo. All datasets, created and augmented, will be
released upon publication.

A.1 QUANTITATIVE COMPARISON

We present a concise summary of previous seminal pedestrian prediction networks in Tab 3. All
previous works use the following 3 datasets: ETH (Pellegrini et al., 2009), UCY (Lerner et al.,
2007), and Stanford Drone dataset or SDD (Robicquet et al., 2016).

Method ADE FDE

DESIRE (Lee et al., 2017) 19.25 34.05
Social GAN (Gupta et al., 2018) 27.23 41.44
Sophie (Sadeghian et al., 2018) 16.27 29.38
CGNS (Li et al., 2019) 15.6 28.2
CF-VAE (Bhattacharyya et al., 2020) 12.60 22.30
P2TIRL (Deo & Trivedi, 2021) 12.58 22.07
PECNet (Mangalam et al., 2020b) 9.96 15.88
Y-Net (Mangalam et al., 2020a) 7.85 11.85
V 2-Net (Wong et al., 2022) 7.12 11.39
NSP-SFM (Yue et al., 2023) 6.52 10.61

G-PECNet 26.75 9.04

Table 3: ADE is the average displacement error and FDE is the final displacement error. All net-
works are evaluated on original SDD (Robicquet et al., 2016), with the total number of pedestrians
to consider for predictions as 20 (K = 20), except ours. Our ADE (26.75) is not low as we use
a decoupled PECNet; not using the social pooling layers (Alahi et al., 2016). We primarily focus
on predicting the goal point of pedestrians. The intuition is that all intermediate steps could then
be refined from coarser estimates after the endpoint is fixed, similar to the training procedure of
denoising diffusion probabilistic models (Ho et al., 2020).

A.2 STANFORD DRONE DATASET: DATA ANALYSIS

Based on the unique quantitative (table: 4), we augmented the training dataset to keep the statistical
properties of the training dataset intact. We perform a classification of the training dataset based on
the number of unique points in each trajectory. See table 4.

Then we manually identify 7 qualitative classes for each trajectory as follows:

• Type 1: Stationary pedestrians
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• Type 2: 3-8 unique points in trajectory bounded in a 5x5 box
• Type 2F: F means category Flying: A straight line trajectory will be shifted into the line

starting from a new point if the perspective of the viewer (here: drone) changes. We call
this scenario the flying category trajectory. The drone usually translates along an axis here.

• Type 3: 3-9 unique points loosely bounded in a 100x100 box
• Type 3F: (Flying) Same as 2F
• Type 4: Start and Goal points are within a 5x5 box
• Type 5: Flying randomly. This is different from 2F and 3F in the sense that the drone

translated haphazardly here.
• Type 6: Backtracker: The pedestrian re-traces his steps after a while. Usually after 6-7

steps.
• Type 7: Perfectly Linear to Moderately linear trajectories that could be modelled by simple

Newtonian mechanics.

These two classifications were done to emulate the statistical properties of the training dataset for
augmentation purposes. Based on this data analysis and classifications (Tab. 4 and Sec. A.2 re-
spectively), we augmented the training dataset using a Deep Policy Gradient Network A.3 + HMM
interaction model and some Newtonian trajectories to keep the statistical properties of the train-
ing dataset intact. We manually discard any trajectories that did not fit the 7 types of trajectories
identified in A.2.

A.3 DEEP POLICY GRADIENT NETWORK

We use a simple fully connected ReLU-activated neural network (nodes: 8 → 16 → 8 → 4) with 8
inputs: current x-coordinate, current y-coorinate, x-goal, y-goal, fitness, patience, sociability, and
distance to nearest person/agent and 4 output nodes defining the action space: the speed, direction,
acceleration magnitude and acceleration direction to take another step. An overview of the whole
workflow can be found in Fig 2.

HMMs were considered for the interaction modeling due to their high success in spatiotemporal
tasks (Brand et al., 1997).

Unique Points Trajectories % dataset
1 145 5.13%
2 62 2.19 %
3 71 2.51 %
4 69 2.44%
5 57 2.01%
6 41 1.45%
7 51 1.80%
8 28 0.99%
9 26 0.92%
10 24 0.85%
11 22 0.78%
12 25 0.88%
13 17 0.60%
14 24 0.85%
15 22 0.78%
16 22 0.78%
17 39 1.38%
18 30 1.06%
19 76 2.69%
20 1978 69.92%

Table 4: SDD: Trajectories’ unique points. 145 trajectories had 1 unique point, i.e, the goal and
starting point as the same with all other points being sampled there itself: Stationary
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Figure 2: RL modeling

A.4 ARCHITECTURE BRIEF

PECNet integrates a Conditional Variational Autoencoder (CVAE) while infusing probabilistic el-
ements into the trajectory generation process. PECNet is equipped with specialized components,
including 3 dedicated encoders for a) the past trajectories, b) the destination c) a latent space en-
coder, and finally a predictor for forecasting future trajectories. We depart from PECNet by using
custom sinusoidally activated multi-layer perceptrons (MLPs). The incorporation of sine activations
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is a departure from traditional ReLU and variants to capture high frequency spatial and temporal de-
tails of a signal, as also demonstrated in (Sitzmann et al., 2020). Notably, PECNet employs non-local
social pooling mechanisms facilitated by three critical MLPs named: non-local-theta, non-local-phi,
and non-local-g. They capture intricate long-range interactions among pedestrians. Since we do not
use these networks or decouple the system, we see a high average displacement error.

During training, the model utilizes destination information to produce diverse and probabilistic fu-
ture trajectories. During inference, it predicts future trajectories given historical context only. Please
refer to our codebase for exact parameters and layer definitions.

A.5 FURTHER EXPERIMENTS

A.5.1 ABLATION: DECOUPLED ADE & FDE OR NO SOCIAL POOLING IN PECNET

We performed two ablation studies. First, by decoupling the ADE and the FDE metrics. See table 5.

Learning Rate ADE FDE Best FDE epoch
0.001 >50 15.68 457
0.0005 >50 15.76 301
0.0003 >50 15.9 541
0.0002 >50 15.65 420
0.0001 >50 15.92 391

Table 5: Decoupled or without social pooling - PECNet (ADE and FDE) trained on original SDD
with different learning rates. Here, ADE is independent of FDE. No SIREN improvement or data
augmentations were applied either.

A.5.2 EFFECTS OF DATA AUGMENTATIONS

We sample the RL and Newtonian trajectories in a fashion to keep the statistics in Tab.4 similar. We
report the ADE and FDE metrics of various levels of augmentations from 1% to 18% in table 6.

We also observe that PECNet heavily overfits on the SDD dataset and it is probable that Adam
Kingma & Ba (2017) finds a deep crevice in the gradient surface. An evolutionary optimization
strategy like Covariance Matrix Adaptation (CMA-ES) Hansen (2016) would highlight the short-
comings of the robustness of PECNet.

Augment % Total Trajectories ADE FDE

1% 18328 64.34 19.18
3% 19048 53.22 15.63
5% 19766 45.17 15.72
6% 20126 51.73 15.43
8% 20844 46.37 15.75
10% 21564 51.51 15.54
13% 22642 40.76 15.90
15% 23360 51.40 18.36
18% 24438 56.56 15.90

Table 6: Effects of augmenting SDD with our synthetic trajectories in varying proportions and train-
ing PECNet with it. Standard learning rate: 3e − 4, 1000 epochs, and no social pooling were
used across runs. Note that the training dataset has ∼18k trajectories due to simple augmenta-
tions(rotations & translations) also saved. This was introduced by Mangalam et al. (2020b). Since
the agent simulations and Newtonian trajectory simulators are inherently random, we decided to
sample 18k trajectories at once and subsequently used that purely synthetic dataset to sample &
augment SDD. The sampling is deterministic as we always select the first k% from the fixed order-
ing.
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Figure 3: SDD training dataset. Frobenius norm-based clustering of trajectories, with black trajec-
tories representing the cluster.
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Figure 4: Defining Turns

A.5.3 BASELINE METRICS’ REPRODUCTION (PECNET)

Learning Rate Best ADE Best FDE
0.001 11.01 15.62
0.0005 12.52 15.68
0.0003 10.47 15.60
0.0002 10.65 15.78
0.0001 10.65 15.78

Table 7: Sanity Run on different learning rates on original Stanford Drone Dataset, with social
pooling. Bold represents benchmark reproduction.

A.6 NON-LINEARITY ANALYSIS: ABRUPTNESS-SCORE

We clustered SDD’s trajectories (3) based on the bounding boxes to get an estimate of the maximal
displacement and turn in each trajectory. Based on this information, we introduce a novel and simple
metric: Abruptness Score to measure the turns and variability or non-linearity in each trajectory. An
areal-scaled and an unscaled version of the metric is used for analysis and outlier detection. The
intuition and mathematical formulation are as follows:

In the example figure 4, the trajectories ζ1 = {A,B,C1} and ζ2 = {A,B,C2} are shown. The
dotted blue line is normal to the red danger zone. Points that fall under this danger zone will form
an obtuse turn trajectory like ζ2. Naturally, we want the score to assign a larger value to ζ2 than ζ1
since the turn is huge and the trajectory (more) abruptly changes direction.

Mathematically,

AbScore =

⌈
180.θ

10π

⌉
|⃗a× b⃗| (1)

where
a⃗ = A⃗B, b⃗ = B⃗C (2)

θ = | arcsin a⃗× b⃗

|⃗a||⃗b|
| (3)

If θ is obtuse, we add pi/2 to θ before sending it to equation 1.

For scaling we simply divide the abruptness score by the area of the tightest-bounding-box of the
trajectory or divide by (max(ζx)−min(ζx))∗(max(ζy)−min(ζy). For perfectly linear trajectories,
we use the length of the trajectory for scaling.
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We need areal-scaling to get an unbiased estimate of trajectories’ non-linearity that spans widely
different sizes or regions. Based on this metric we analyze SDD and report that the trajectories
are not non-linear on average however the distribution contains outliers with huge non-linearity
scores. This analysis provided us with an estimate of the dataset’s non-linearity for synthetic dataset
generation purposes. See table 2 and figure 5.

Figure 5: SDD’s Non-Linearity Distribution Tail. (Thresholded to remove outliers)

A.7 DISCUSSION

We demonstrated state-of-the-art final displacement errors on the Stanford Drone Dataset with our
method GPECNet. The core improvements originate from our rich synthetic data augmentations
coupled with SIRENs (Sitzmann et al., 2020) that can capture better high-frequency spatial and
temporal dependencies. Even though our method achieves the best FDE results, the critical nature
of systems that could employ our algorithm necessitates introducing a confidence metric for larger
controllability and explainability. Another avenue to extend our work is generating multi-modal
predictions simultaneously to move towards a real deployable system.
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