
Revisiting Chain-of-Thought in Code Generation:
Do Language Models Need to Learn Reasoning before Coding?

Ren-Biao Liu 1 2 Anqi Li 1 2 Chaoding Yang 1 2 Hui Sun 1 2 Ming Li 1 2

Abstract
Large Language Models (LLMs) have demon-
strated exceptional performance in code genera-
tion, becoming increasingly vital for software en-
gineering and development. Recently, Chain-of-
Thought (CoT) has proven effective for complex
tasks by prompting LLMs to reason step-by-step
and provide a final answer. However, research
on how LLMs learn to reason with CoT data for
code generation remains limited. In this work,
we revisit classic CoT training, which typically
learns reasoning steps before the final answer. We
synthesize a dataset to separate the CoT process
from code solutions and then conduct extensive
experiments to study how CoT works in code
generation empirically. We observe counterintu-
itive phenomena, suggesting that the traditional
training paradigm may not yield benefits for code
generation. Instead, training LLMs to generate
code first and then output the CoT to explain rea-
soning steps for code generation is more effective.
Specifically, our results indicate that a 9.86% rel-
ative performance improvement can be achieved
simply by changing the order between CoT and
code. Our findings provide valuable insights into
leveraging CoT to enhance the reasoning capabil-
ities of CodeLLMs and improve code generation.

1. Introduction
Code generation (Jiang et al., 2024; Roziere et al., 2023;
Hui et al., 2024) aims to automatically generate high-quality,
executable programs that satisfy specific problem specifica-
tions. Recently, Large Language Models (LLMs), trained
on vast amounts of natural language and code, have demon-

1National Key Laboratory for Novel Software Technology, Nan-
jing University, Nanjing, China 2School of Artificial Intelligence,
Nanjing University, Nanjing, China. Correspondence to: Ming Li
<lim@lamda.nju.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

0 200 400 600 800 1000 1200

0.1

0.2

0.3

0.4

0.5

0.6
Training Loss with Smooth

200 400 600 800 1000 1200

60

62

64

66

68

70

72
Average Performance (Pass@1)

Seed Dataset Code without CoT Code follow CoT Code precede CoT

Figure 1: The smoothed training loss curve and the average
performance across benchmarks of different SFT strategies.

strated significant potential in understanding and generating
complex programs (Brown et al., 2020; Askell et al., 2021;
Dubey et al., 2024; Guo et al., 2025), thereby attracting
considerable attention. However, training large-scale LLMs
with many learnable parameters is often highly time- and
resource-intensive (Han et al., 2024). As a result, LLMs
need to improve computational efficiency and task perfor-
mance when adapting to specific downstream domains (Zhu
et al., 2024), including code generation (Austin et al., 2021).

Supervised Fine-Tuning (SFT) (Bai et al., 2022; Stiennon
et al., 2020) offers a promising solution to enhance the spe-
cific capabilities of pre-trained LLMs for downstream tasks.
Prior studies (Zhou et al., 2023; Gunasekar et al., 2023)
suggest that high-quality training datasets for SFT can lead
to significant performance gains with fewer time and re-
source requirements. Specifically, Zelikman et al. (2022)
and Hsieh et al. (2023) emphasize that detailed Chain-of-
Thought (CoT) (Wei et al., 2022) can improve data qual-
ity, leading to enhanced performance in complex reasoning
tasks, including math (Guan et al., 2025; Ho et al., 2023),
logic (Xu et al., 2024; Huang & Chang, 2023), and com-
monsense (Li et al., 2024a; 2023b; 2022). CoT is an ef-
fective technique proposed to encourage LLMs to generate
intermediate reasoning steps before outputting the final an-
swer. SFT with CoT data enables the model to provide
more reliable answers through thoughtful consideration and
explanation, as empirically (Ye et al., 2024; Yu, 2024) and
theoretically (Feng et al., 2023; Liu et al., 2024b) confirmed.

Code generation task also relies on the model’s rigorous and
complex reasoning ability (Petty et al., 2024; Shen & Zhang,

1

Revisiting Chain-of-Thought in Code Generation: Do Language Models Need to Learn Reasoning before Coding?

2024). However, the research about how LLMs learn to
reason with CoT data for code generation in SFT remains
limited. Therefore, this work revisits classic CoT training,
which typically organizes reasoning steps before the final
answer. We aim to investigate how CoT reasoning affects
the code generation performance of models in the SFT stage
and identify the underlying reasons for these effects.

Due to the absence of datasets in a unified format, we first
construct a diverse, high-quality, and compact dataset that
includes natural language descriptions of program ques-
tions, reasoning processes, and code solutions. This dataset
enables an analysis of the behavior and capabilities of lan-
guage models during the SFT phase, providing a robust
foundation for our study. We conduct SFT experiments
using different base models with the enriched dataset of
50K data pairs. This approach enables independent and ob-
jective conclusions unaffected by any specific pre-training
dataset. Additionally, we examine key parameters during
the SFT process to ensure consistency in our findings across
different configurations. Our result in Figure 1 shows that
we can significantly improve performance by changing the
order between CoT and code. The findings suggest that
high-quality code is already suitable to act as CoT. At the
same time, traditional CoT should be regarded as an expla-
nation of the code rather than a description of the reasoning
process. We provide a comprehensive analysis to investigate
the behavioral patterns of LLM in code generation and fur-
ther examine the proposed findings. In summary, the main
contributions of this work are as follows:

• Synthetic Dataset We build a high-quality and well-
organized dataset of 50K pairs optimized for code gen-
eration through seed collecting and data synthesis.

• Strategies Study We demonstrate that high-quality
code can serve as a practical CoT, while traditional
CoT should be considered an explanation.

• Key Insights We uncover how CoT position and
dataset pattern influence performance, providing es-
sential insights and confirming our findings.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews recent studies relevant to our work. Sec-
tion 3 presents the preliminaries required to understand the
background. Section 4 provides detailed information about
implementing our empirical study, including data collec-
tion and training strategies. Sections 5 and 6 present the
main results and further discussion, respectively. Section 7
concludes the paper and outlines future work.

2. Related Work
Large language models Large Language Models (LLMs)
(Brown et al., 2020; Achiam et al., 2023; Zhao et al., 2023)

have emerged as powerful tools in Natural Language Pro-
cessing (NLP), advancing language understanding and gen-
eration. LLMs (Radford et al., 2019; Askell et al., 2021; Bai
et al., 2022) exhibit robust generalization capabilities due
to large-scale pre-training. However, due to the distribution
gap between code data and the general text corpora (Huang
et al., 2024), their code generation performance remains
limited, leading to difficulties in logical reasoning and syn-
tactic precision (Jimenez et al., 2024; Dou et al., 2024).
Consequently, CodeLLMs (Roziere et al., 2023; Bai et al.,
2023) are trained for programming tasks through specific
optimizations such as syntax-aware learning (Gong et al.,
2024), specialized tokenization (Bavarian et al., 2022), and
program translation (Du et al., 2025; Li et al., 2025).

Code Generation with LLMs CodeLLMs, such as Star-
Coder (Li et al., 2023c), StarCoder2 (Lozhkov et al.,
2024), DeepSeek-Coder (Guo et al., 2024), and Qwen2.5-
Coder (Hui et al., 2024) exhibit strong foundational pro-
gramming capabilities and excel in code generation. To fur-
ther enhance these models, Supervised Fine-Tuning(SFT)
has been employed to improve task-specific performance
and model alignment (Luo et al., 2024; Wei et al., 2023;
Zheng et al., 2024). For example, Code Alpaca (Chaud-
hary, 2023) adopts the Self-Instruct method (Wang et al.,
2023), a technique that utilizes ChatGPT to generate high-
quality instruction datasets. In contrast, Vicuna (Peng et al.,
2023) is fine-tuned on daily conversational datasets collected
from a data-sharing platform. Similarly, WizardLM (Luo
et al., 2024) utilizes the Evol-Instruct method to enhance
instruction datasets iteratively, leading to more complex
and diverse tasks. Meanwhile, SelfCodeAlign (Wei et al.,
2024) employs a base model to infer aligned data. SFT for
code generation is gaining significant attention (Zhu et al.,
2024) as it enables models to adapt to specialized tasks and
generate more precise and context-aware outputs.

Chain of thought The performance of LLMs heavily de-
pends on the quality of input prompts (Gao et al., 2023b).
Inspired by the success of Chain-of-Thought (CoT) tech-
niques (Wei et al., 2022) in logical reasoning, researchers
are exploring their applications in code generation. For
example, (Li et al., 2023a) proposes a structured CoT ap-
proach to help models understand complex intentions and
solve challenging problems. Jiang et al. (2023) introduces
a self-planning method consisting of distinct planning and
implementation phases. Additionally, Yang et al. (2024a)
develops a technique that automatically uses lightweight lan-
guage models to generate CoTs for code generation. Chen
et al. (2023), Gao et al. (2023a), and Hu et al. (2023) use
LLMs to output text and programming language statements,
and finally, an answer. Current research primarily focuses
on exploring various CoT prompting strategies and their
underlying mechanisms (Madaan et al., 2023; Yang et al.,

2

Revisiting Chain-of-Thought in Code Generation: Do Language Models Need to Learn Reasoning before Coding?

2024d; Chen et al., 2024a; Kudo et al., 2024; Feng et al.,
2023). Some recent studies have explored knowledge dis-
tillation of CoT from LLMs to smaller language models
(Magister et al., 2023; Hsieh et al., 2023). However, these
studies primarily focus on traditional logical tasks, paying
limited attention to code generation.

3. Preliminaries
Decoder-only LLM In this work, we focus on a decoder-
only large language model (LLM) as the base model
for downstream tasks. Given an input sequence x =
(x1, x2, . . . , xl) of length l, the model processes x through
multiple transformer-based decode layers to produce hidden
states h. The final hidden state hl is projected by a language
modeling head Linear into logits z, which are normalized
via Softmax function to yield the probability distribution p
over the vocabulary for the next token:

p = Softmax(z) and pj =
exp(zj)∑|V|
k=1 exp(zk)

where |V| is the vocabulary size, and zj denotes the j-th
logit. This mechanism enables LLM to generate the next
token based on the input context, supporting various tasks.

Supervised Fine-Tuning Supervised Fine-Tuning (SFT)
is essential for adapting LLM to specific applications. The
SFT process can be described as follows: Given a labeled
dataset D = {(x(i), y(i))}|D|

i=1, where x(i) is the input se-
quence and y(i) is the corresponding output with length li,
the goal is to minimize the loss function L over the dataset:

θ∗ = argmin
θ

|D|∑
i=1

|li|∑
t=1

L
(
y
(i)
t+1,Softmax(Linear(h

(i)
t ; θ))

)

where θ represents the model parameters, h(i)
t is the final

hidden state for the context sequence
(
x(i) + y

(i)
t

)
, and

yt+1 is the encoded token at timestamp t. The loss function
L(y, p) = −

∑|V|
j=1 yj log(pj) is typically a cross-entropy

loss, which measures the difference between the predicted
probability distribution p and the true one-hot label y.

Pass@k For evaluating CodeLLM performance, we
mainly measure the likelihood that a model generates at
least one correct code sample out of k attempts for a given
problem with the metric Pass@k = 1− (1− p)k, where p
represents the probability of generating a correct sample,
from (Chen et al., 2021; Kulal et al., 2019). To mitigate the
computational challenges of directly calculating Pass@k,
an unbiased estimation method is used:

Pass@k = 1−
(
n−c
k

)(
n
k

) (1)

where
(
n
k

)
denotes the binomial coefficient, which repre-

sents the number of ways to choose k items from n, while(
n−c
k

)
represents the number of ways to select k incorrect

samples from the n− c incorrect samples. Under the setup
of greedy decoding, Pass@1 corresponds to the proportion
of problems in the benchmark successfully solved when the
model generates a single deterministic output per problem
with a temperature of 0.0.

4. Method
In existing open-source SFT datasets, CoT and Code com-
ponents are commonly integrated into responses to code
generation tasks. Inconsistent formats hinder the evalua-
tion of different components’ contributions to model perfor-
mance. This section outlines our synthetic dataset to address
these limitations. Our objective is to develop well-organized
datasets designed to enable controlled experiments and ana-
lyze the impact of SFT on CodeLLM’s performance.

4.1. Data collection

Previous studies often use code snippets from GitHub (Wei
et al., 2023) or Common Crawl (Yang et al., 2024c) as seed
data during the SFT stage of large code models, guiding
the models in generating instruction-answer pairs. How-
ever, taking raw code snippets as seed data is often un-
likely to create problems that are sufficiently challenging,
diverse, and representative of instruction distributions (Song
et al., 2024). Consequently, the solutions usually lack
comprehensive reasoning steps and high-quality code solu-
tions. To address this issue, we collect and filter program
tasks from open-source datasets to construct a seed set, in-
cluding Magicoder-OSS-Instruct (ISE-UIUC, 2024), the
Python Code subset of ShareGPT (Innovations, 2023), Evol-
CodeAlpaca (Tam, 2024), Evol-Instruct-Code (Roshdieh,
2023), CodeExercise-Python (CodeFuse-AI, 2023a), and
Codefuse-Evol-Instruct (CodeFuse-AI, 2023b), as recom-
mended by prior research. We put the detailed statistical
information of these used datasets in Appendix C.

4.2. High-Quality CoT and Code

We start with an initial seed dataset consisting of program
questions x and their corresponding responses y, repre-
sented as S = {(xi, yi)}|S|

i=1. As outlined in (Bai et al.,
2022; Snell et al., 2022), we adopt the method of context
distillation, which takes a general model Mt as teacher to
synthetic data, using it to SFT a base student model Ms. The
teacher model can follow instructions to generate contextu-
ally relevant outputs and align them with specific behavioral
objectives. It reduces the time and cost of labeling super-
vised data, requiring minimal human intervention.

Our technique starts with a small set P of examples where

3

Revisiting Chain-of-Thought in Code Generation: Do Language Models Need to Learn Reasoning before Coding?

|P| = 3 ≪ |S|. By drawing inspiration from (Zelikman
et al., 2022), we provide the original (xi, yi) as the hint to
prompt teacher model Mt, sample multiple times and then
select the best CoT and Code to include in the few shots set
P̂ . Building on the In-Context Learning method proposed in
(Huang et al., 2022), we use a few-shot prompt from P̂ and
each seed from S , calling Mt to generate detailed reasoning
steps ri and a high-quality code solution ci for (xi, yi). The
prompt template is in Appendix B. We assume incorrect
reasoning or solutions may introduce noise into synthetic
datasets, potentially hindering model learning. Therefore,
we use the Self-Consistency (Wang et al., 2023) to drop part
of the generated data, retaining only those that produce the
correct answer. Specifically, we prompt the model Mt to
generate multiple test cases, selecting only the ci that suc-
cessfully pass the test code. We use the most powerful open-
source model currently available, DeepSeek-V2.5-1210 1,
as the teacher to construct our synthetic dataset. This pro-
cess ensures that code snippets are syntactically valid and
consistent, with reasoning standardized and aligned to the
code content. The details can be found in Appendix A.

4.3. Different Strategies for SFT

We consider a base model Ms with a filtered dataset D =
(xi, yi, ri, ci)

|D|
i=1, and design four distinct data strategies

and utilize them. During SFT, the model takes the problem
description as input, with output varying by dataset format.

Seed Dataset The initial dataset consists of questions
x and their corresponding response y, represented as
{(xi, yi)}|D|

i=1. This dataset forms the foundation for training
and can serve as the baseline, denoted as Seed.

Code without CoT In the dataset {(xi, ci)}|D|
i=1 where

CoT is excluded, the data format is more standardized as
generated by the same model Mt. The model is specifically
trained to output the Code, denoted as Cw/o.

Code follow CoT In the dataset {(xi, ri + ci)}|D|
i=1, the

model is fine-tuned first to generate the CoT based on the
problem, followed by the corresponding code solution. This
approach adheres to the CoT prompting methodology com-
monly used in LLMs and is denoted as Cfollow.

Code precede CoT In contrast to the previous approach,
the dataset {(xi, ci + ri)}|D|

i=1 is used to fine-tune the model
first to generate the code solution, followed by the corre-
sponding CoT. This less conventional method takes CoT as
an explanation and is denoted as Cprecede.

1https://platform.deepseek.com

5. Experiments
We conduct experiments on several code generation bench-
marks to evaluate the performance under different SFT
strategies. The benchmarks used in our experiments are
exhaustively described in Appendix D. We use OpenCodeE-
val (Liu, 2024) as our evaluation framework. Most experi-
mental results are derived from training DeepSeek-Coder-
Base-6.7B (Guo et al., 2024) for 3 epochs. The learning
rate is dynamically adjusted using a cosine decay scheduler
with a warm-up ratio of 0.1 and a peak value of 1e− 5. The
maximum sequence length is fixed at 4096 tokens during
training. More information can be found in Appendix E.

5.1. Evaluation Results

We use the EvalPlus benchmark (Liu et al., 2023) to evaluate
the code generation capabilities of fine-tuned models under
different strategies. As shown in Table 1, Cprecede has 9.86%
relative performance improvement compared with Cfollow.

Table 1: The performance of different SFT models on code
generation by HumanEval, MBPP, and extended versions.

Method HumanEval(+) MBPP(+) Average

Seed 68.29(62.20) 77.51(65.61) 68.40
Cw/o 70.73(64.63) 80.42(67.72) 70.88
Cfollow 67.07(59.75) 74.33(60.58) 65.43
Cprecede 71.95(67.68) 80.69(67.20) 71.88

We further benchmark our SFT models using Live-
CodeBench (Jain et al., 2024) to ensure a fair comparison.
Notably, this benchmark enables evaluation of the models’
out-of-distribution (OOD) generalization, including evolv-
ing test subsets reflecting temporal shifts in data. Table 2
presents Pass@1 results for subsets generated after different
start dates to analyze temporal performance trends.

Table 2: The performance of different SFT models on Live-
CodeBench. Newer Start Dates Reflect Lower Contamina-
tion for Evaluating OOD Generalization.

Method Contest Start date
2023-09-01 2023-07-01 2023-05-01

Seed 20.12 21.77 23.89
Cw/o 20.47 21.67 23.51
Cfollow 20.69 22.31 23.07
Cprecede 21.08 22.56 24.16

To deeply understand the advanced capabilities of our
fine-tuned model, we extend our evaluation by using Big-
CodeBench (Zhuo et al., 2024). This allows us to specif-
ically examine its performance in two crucial areas: fol-
lowing complex natural language instructions and calling

4

https://platform.deepseek.com

Revisiting Chain-of-Thought in Code Generation: Do Language Models Need to Learn Reasoning before Coding?

200 400 600 800 1000 1200

60

62

64

66

68

70

72
DeepSeek-Coder-6.7B

200 400 600 800 1000 1200
46

48

50

52

54

56

58

60

62
Llama-3.1-8B

200 400 600 800 1000 1200

68

70

72

74

76
Qwen2.5-Chat-7B

200 400 600 800 1000 1200

74

76

78

80

Average Pass@
1(%

)
Qwen2.5-Coder-7B

Seed Dataset Code without CoT Code follow CoT Code precede CoT

Figure 2: The average performance of various base models fine-tuned under different strategies across steps (x-axis).

external function tools. As shown in Table 3, the primary re-
sults are explicitly derived from the benchmark’s instruction
split, isolating the model’s ability to interpret and execute
given instructions accurately.

Table 3: The performance of different SFT models on Big-
CodeBench. Different task results are obtained for the Full
set and a more challenging Hard subset.

Method Task Set
Full Hard

Seed 37.71 13.51
Cw/o 38.25 15.54
Cfollow 36.05 15.54
Cprecede 38.33 16.22

We place the other results in Appendix F and significance
analysis in Appendix G. Our experimental results show that
teaching the model to write CoT before code does not benefit
downstream tasks, but if we treat CoT as an explanation
of the code, the model performs better. The classic CoT
training method, which typically organizes reasoning steps
before generating a solution, does not work well on code
generation tasks. The code is a reasoning process, while
the latter CoT helps to understand. These findings highlight
the importance of the CoT position and verify that the code
itself is a reasoning process.

5.2. Study of SFT Configurations

This study examines whether our conclusions hold across
different pre-training datasets and model architectures by
varying the base models. The choice of the base model is
critical, as it determines the initial capabilities and founda-
tional architecture of language models, which in turn affects
downstream task performance. The experiment involves
fine-tuning various base models of different sizes and archi-
tectures while keeping all other hyperparameters constant.

Model performance is evaluated at checkpoints every 100
training steps. The results on EvalPlus, as shown in Fig-
ure 2, reveal that the base model has a notable effect on
SFT outcomes; this observation aligns with findings widely
reported in the literature. Although a distributional gap may
inevitably exist between our high-quality SFT data and the
pre-training data, different models still benefit from explana-
tion after coding and avoiding overthinking. We also discuss
other key hyperparameters of SFT in Appendix H.

5.3. Study of Teacher Model

To examine whether our conclusions remain valid when
synthetic data is generated using different teacher models,
we employ GPT-4o-0806 as an alternative teacher model to
regenerate the dataset to validate our approach further. We
then fine-tuned the same student model using the methodolo-
gies outlined above. The models are subsequently fine-tuned
and evaluated under the same settings described above. The
results, detailed in Table 6, demonstrate a consistent trend.

Table 4: The performance of different SFT models on the
EvalPlus benchmark. These models are fine-tuned on an-
other dataset synthesized by GPT-4o-0806.

Method HumanEval(+) MBPP(+) Average

Cw/o 71.95(65.85) 77.77(67.46) 70.76
Cfollow 65.24(59.14) 76.45(62.96) 65.95
Cprecede 72.56(66.46) 78.57(67.72) 71.33

5.4. Study of Synthesis Order

To mitigate the bias introduced by providing reference code
during data synthesis, we modify our data generation ap-
proach to investigate the synthetic order’s impact and ensure
that the teacher model must generate CoT reasoning without
access to code-related information. Instead of providing a
reference solution, we directly utilize educational instruc-
tions from the SelfCodeAlign (Wei et al., 2024) dataset to

5

Revisiting Chain-of-Thought in Code Generation: Do Language Models Need to Learn Reasoning before Coding?

synthesize data. The results are listed in Table 5.

Table 5: The performance of different SFT models on the
EvalPlus benchmark. These models are fine-tuned on an-
other dataset synthesized by a different order.

Method HumanEval(+) MBPP(+) Average

Cw/o 67.07(60.97) 76.71(60.31) 66.27
Cfollow 62.19(54.87) 71.95(57.93) 61.74
Cprecede 68.29(60.36) 78.57(62.16) 67.35

5.5. Study of Data Source

To investigate whether our conclusions can be applied to the
pre-training stage, we utilize Stack (Kocetkov et al., 2022)
to synthesize data as an additional data source, which is
a 3.1 TB dataset of permissively licensed source code in
30 programming languages, designed to foster open and
responsible research on CodeLLMs. Subsequently, the mod-
els are trained and tested following the previously outlined
setup. Table 6’s results reveal a clear and consistent pattern.

Table 6: The performance of different SFT models on the
EvalPlus benchmark. These models are fine-tuned on an-
other dataset synthesized from the Stack’s codes.

Method HumanEval(+) MBPP(+) Average

Cw/o 68.29(61.58) 76.98(62.43) 67.32
Cfollow 61.58(55.48) 75.13(60.31) 63.13
Cprecede 69.51(64.63) 77.24(63.22) 68.65

6. Discussions
This section analyzes several key aspects of model behavior
under different strategies: 1. The factors influencing perfor-
mance variations when changing the position of CoT in the
training. 2. The specific data components that enhance the
model’s capability in code generation tasks during the SFT
process. 3. The generalizability of our proposed conclusions
across different scenarios. 4. The distinctive characteristics
of outputs generated by various SFT models.

6.1. Model Behavior Analysis

Conditional Perplexity Gap In our experiments, we an-
alyze how the order of information affects the difficulty of
learning data (Li et al., 2024c;b) by examining the distribu-
tions of perplexity across two strategies: Cprecede and Cfollow.
We visualize the perplexity of the preceding part in both
setups and analyze the conditional perplexity of the latter
part, considering the former as its context. As shown in
Figure 3, while the overall perplexity distributions are simi-
lar, placing the Code first reduces the gap between the two
distributions. The result suggests that the model can better

balance the learning in the two parts. These differences
arise because source code has stricter syntax and semantics
than CoT. Therefore, some tokens are easily inferred based
on grammatical rules when generating Code. In contrast,
CoT permits greater flexibility and may cause overthinking
behavior (Chen et al., 2024b) when generated first.

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.750

1

2

3

4 Probability Density
Code = 0.31
 CoT = 0.55

Code
Total
CoT

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.000

1

2

3

4

5

Probability Density

Code = 0.38
 CoT = 0.68

Code
Total
CoT

Figure 3: Conditional PPL Distribution Histogram with
Gaussian Fit: Cprecede (left) and Cfollow (right), representing
learning difficulty gap on different parts in the dataset.

Memorization and Generalization To further investi-
gate the impact of different orders of context on learning
efficiency, we analyze the model’s memorization and gener-
alization before and after training. Figure 4 compares two
SFT strategies by evaluating them on the validation set. The
left plot depicts the KL divergence between the fine-tuned
models (after training) and the base model (before training)
under two distinct data strategies. The minor difference in
KL divergence suggests that both SFT strategies modify the
base model similarly. Conversely, the right plot shows the
validation loss, reflecting the accuracy of the next-token pre-
dictions. The notable difference in this plot shows that the
two SFT strategies leverage the data in distinct ways. The
results suggest that while both strategies fit the training set
similarly, the Cprecede strategy exhibits significantly better
generalization, as reflected in code generation ability.

0.5 1.0 1.5 2.0 2.50.0

0.2

0.4

0.6

0.8

1.0

1.2

Density

KL = 0.13

Cprecede
Cfollow

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.350

2

4

6

8

Density

Loss = 0.07

Cprecede
Cfollow

Figure 4: The Distribution Histogram Plot with Gaussian
Fit lines: the KL Divergence between Base and SFT Mod-
els (left) and the Validation Loss (right).

Context Attention Weight In our experiments, we in-
vestigate the effect of information ordering on the model’s
attention weights, specifically examining the influence of
natural language instructions, CoT, and Code. We apply
bilinear interpolation to downsample the average attention
weight matrix from the model’s final layer to a fixed spatial
resolution, ensuring consistent comparison across inputs
with different orderings. The visualization in Figure 5 indi-

6

Revisiting Chain-of-Thought in Code Generation: Do Language Models Need to Learn Reasoning before Coding?

cates that Code exhibits no distinct attention bias towards
CoT, with attention values evenly distributed across the re-
gions corresponding to Code segments. However, when
Code precedes CoT, we observe that the model allocates in-
creased attention to Code, potentially indicating an attempt
to better comprehend its relationship with CoT. These re-
sults suggest that employing the Cfollow strategy during SFT
alters the model’s expectations regarding the underlying
data distribution. Consequently, enforcing a fixed attention
order between CoT and Code might hinder the model’s abil-
ity to adapt to these constraints. This misalignment could
subsequently impair the model’s generalization capabilities
on downstream tasks.

To
ke

n
In

de
x

In
cr

ea
se

 fr
om

 To
p

to
 B

ot
to

m

Split between NLP and Code
Split between Code and CoT

Split between NLP and CoT
Split between CoT and Code

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: The Visualization Results of Compressed At-
tention Weight Matrices in the last layer under Different
Strategies: Cprecede (left) and Cfollow (right).

Layer Gradient Norm In this subsection, we aim to ana-
lyze the gradients in the dynamic training process of LLMs,
particularly their scaling and distribution across layers. We
investigate the gradient across different LLM layers under
various data parts while maintaining the same initial model
state. We primarily analyze the gradients of attention-related
layers, including QProj, KProj, VProj, and OProj. Given the im-
mense number of layers and parameters in current LLMs, it
is computationally infeasible to analyze these large gradient
matrices directly. Therefore, we use the ℓ2 norm to capture
the gradient characteristics of each layer, particularly its
strength. Figure 6 shows that different data have different
impacts on the parameters, and as we mentioned earlier, the
overall impact of the code part is relatively weak. These
findings highlight the significant effect of training order on
gradient contributions.

6.2. Data Pattern Discussion

Inconsistent Data Analysis In our experiments, we ana-
lyze the impact of inconsistent Code, defined as Code that
fails to pass its self-generated test cases, on model perfor-
mance under various strategies. As depicted in the left plot
of Figure 7, the results indicate that conclusions from our
previous study on various data strategies remain valid; the
model exhibits only a marginal decrease in performance

0 10 20 30
0.0

0.2

0.4

0.6

Qproj
Kproj
Vproj
Oproj

0 10 20 30

Gradient Norm
 Value

Qproj
Kproj
Vproj
Oproj

Figure 6: The ℓ2 norm of gradients across different layers (x-
axis) under two parts: CoT (left) and Code (right).

when compared to models trained on self-consistent data.
These results suggest that consistency is not the sole deter-
minant of code quality, particularly given that LLMs often
exhibit limited proficiency in generating accurate test cases.
Even Code containing errors can offer valuable insights and
direction for the model’s learning process. These findings
underscore that high-quality Code, even if imperfect, accom-
panied by a detailed generation process, serves as a valuable
training signal for CodeLLMs.

200 400 600 800 1000 1200
60

62

64

66

68

70

72

Average Pass@
1(%

)Seed Dataset
Code without CoT
Code follow CoT
Code precede CoT

200 400 600 800 1000 1200

64

66

68

70

72

Average Pass@
1(%

)

Remove All
Remove Comment
Remove Signature
No Removal

Figure 7: The average performance on the EvalPlus bench-
mark of two studies: inconsistent data study (left) and sig-
nature removal study (right).

Signature Removal Analysis Our experiments in this sub-
section investigate whether annotation components within
the Code significantly affect the model’s understanding and
learning capabilities. Specifically, we examine two forms
of annotations: function or class signatures and inline code
comments. We analyze how removing these annotation ele-
ments from the dataset impacts model performance across
various benchmarks. The right plot of Figure 7 illustrates
that removing signatures leads to the most significant perfor-
mance decline throughout training, highlighting the critical
role of signatures in facilitating the model’s learning process.
These findings suggest that function or class signatures are
crucial in code generation, as they bridge the gap between
natural language and programming languages (Yang et al.,
2024b). Conversely, removing inline comments does not
appear to have a significant impact, likely due to different
code styles of LLMs.

7

Revisiting Chain-of-Thought in Code Generation: Do Language Models Need to Learn Reasoning before Coding?

Mixed Pattern Analysis This study examines whether
LLMs can benefit from a mixed-data strategy, specifically
investigating whether diverse data distributions enhance
model generalization. To this end, we combine the Cfollow
and Cprecede strategies and fine-tune the base model for one
epoch. For a fair comparison, we apply these strategies
separately for two epochs, ensuring an equivalent number
of training steps. The results presented in the left plot of
Figure 8 reveal that the mixed-data strategy yields lower
performance than a single strategy. The experiment suggests
that the mixed-data strategy may be more challenging for the
model to learn, implying an increase in the overall difficulty
of the dataset from the model’s perspective. Presenting
an LLM with two different answers for the same problem
establishes two distinct optimization objectives.

100 200 300 400 500 600 700 800

60

62

64

66

68

70

Average Pass@
1(%

)Mix Code and CoT
Code without CoT
Code follow CoT
Code precede CoT

200 400 600 800 1000
58

60

62

64

66

68

70

Average Pass@
1(%

)
Attacked Code Solution
Original Code Solution

Figure 8: The average performance on the EvalPlus bench-
mark of two studies: mixed pattern dataset (left) and at-
tacked code dataset (right).

Adversarial Code Robustness Previous studies suggest
that LLMs learn programming languages by processing
Code as sequences of tokens and are easy to attack due to
their strong dependence on lexical features. Therefore, we
design a lexical-level attack on code snippets that preserves
syntax and semantics to investigate the impact of training a
model on manipulated data. Specifically, we replace all vari-
able names in the Code with random, meaningless strings,
thereby limiting the model’s access to lexical information.
The right plot of Figure 8 illustrates an assessment of model
robustness under adversarial conditions by comparing per-
formance on original solutions with that on the attacked
Code. Although an upward trend is observed with increas-
ing training steps, performance on the attacked solutions
remains consistently lower, suggesting that the model has
difficulty mitigating the effects of adversarial noise, a find-
ing consistent with (Yan & Li, 2021).

6.3. Generalization Discussion

Generalization Across Sizes To assess the robustness of
our findings, we extend the experimental setup to include
two larger language models: DeepSeek-Coder-33B-Base
and Qwen2.5-Coder-32B-Base. The results presented in
Figure 9 demonstrate that the conclusions drawn from our

initial analysis remain consistent across these larger archi-
tectures. These findings highlight the scalability and general
applicability of the insights derived from our experiments,
thereby reinforcing the importance of thoughtful dataset con-
struction for maximizing performance in large-scale models.

50 100 150 200 250 300 350 400

70

71

72

73

74

Average Pass@
1(%

)

Seed Dataset
Code without CoT
Code follow CoT
Code precede CoT

50 100 150 200 250 300 350 400

79

80

81

82

83

Average Pass@
1(%

)

Seed Dataset
Code without CoT
Code follow CoT
Code precede CoT

Figure 9: The average performance on the EvalPlus bench-
mark of large size: DeepSeek-Coder-33B-Base (left) and
Qwen2.5-Coder-32B-Base (right).

Generalization Across Difficulties To explore whether
the Cprecede approach generalizes effectively to more com-
plex problems, we design an experiment to assess the robust-
ness of this data strategy in challenging scenarios. Table 7
reveals that incorporating CoT explanation consistently im-
proves model performance, particularly for tasks requiring
higher logical complexity. Furthermore, the relative posi-
tioning of the CoT part demonstrates a measurable impact
on outcomes, underscoring the importance of data strategy.
These findings suggest that considering the CoT position
into SFT is effective and exhibits strong potential for scal-
ability to more complex problems. Our method offers a
robust framework for enhancing reasoning in code genera-
tion tasks.

Table 7: The performance of different strategies on the
LeetCode Contest Benchmark with three difficulty levels.

Method Easy(45) Medium(91) Hard(44) Overall(180)

Seed 42.2%(19) 15.4%(14) 9.1%(4) 20.6%(37)
Cw/o 42.2%(19) 16.5%(15) 2.3%(1) 19.4%(35)
Cfollow 31.1%(14) 14.3%(13) 4.5%(2) 16.1%(29)
Cprecede 44.4%(20) 24.2%(22) 6.8%(3) 25.0%(45)

Discuss Pass@k Impact Different k values reflect differ-
ent aspects of model performance, which reveals different
evaluations of model behavior and potential. Figure 10 left
illustrates the effect of varying k in Eq. 1 on the average per-
formance across different benchmarks. As k increases, all
strategies demonstrate an improvement in accuracy, indicat-
ing models exploring more possibilities and increasing the
chances of producing correct outputs. The results show that
Cprecede almost outperforms all other strategies, highlighting
the importance of positioning the CoT explanations.

8

Revisiting Chain-of-Thought in Code Generation: Do Language Models Need to Learn Reasoning before Coding?

2 4 6 8 10

65

70

75

80

85

Average Pass@
1(%

)Seed Dataset
Code without CoT
Code follow CoT
Code precede CoT

0.2 0.4 0.6 0.8 1.0
63

64

65

66

67

68

69

70

Average Pass@
1(%

)Seed Dataset
Code without CoT
Code follow CoT
Code precede CoT

Figure 10: The average performance on the EvalPlus bench-
mark of different k in Pass@k (left) and temperature (right).

Discuss Temperature Impact When LLMs generate the
answers, the temperature affects the model’s performance,
with low temperatures tending to make the model’s out-
put more fixed and high temperatures encouraging more
exploration in action. In the right plot of Figure 10, we
aim to show the effect of varying the temperature parame-
ter. As the temperature increases, the overall performance
tends to decline across all strategies, with the steepest drop
observed in Cprecede. The result highlights the trade-off be-
tween diversity and accuracy, as higher temperatures lead
to more diverse but less precise outputs. Cprecede maintains
a relatively stable performance, reinforcing its robustness.

6.4. Model Outputs Discussion

LLM-as-a-Judge To address the high cost of collecting
human preferences (Chiang et al., 2024), we adopt a pair-
wise comparison approach, where an LLM evaluates a ques-
tion alongside two answers and determines which response
is of higher quality. We prompt GPT-4o-0806 to assess dif-
ferent parts of the responses based on specific criteria. Each
row represents a different evaluation part, and each column
represents the winner, the response the evaluator thinks is
better. We change the response order and conduct evalua-
tions twice to enhance effectiveness. The results in Table 8
indicate that the Cprecede approach aligns more closely with
real-world preference on all three parts.

Table 8: Result of LLM-as-a-Judge of different strategies.

Winner Cfollow Tie Cprecede

CoT 22.1%(242) 52.8%(577) 25.1%(274)
Code 20.1%(228) 51.0%(557) 28.2%(308)
Total 23.2%(254) 51.2%(560) 25.5%(279)

Length and Quality The study presents a comparative
analysis of the outputs generated by Cfollow and Cprecede
concerning the CoT and the Code in outputs. Besides the
number of tokens and steps, we report the BLEU score for
CoT, which measures alignment with the teacher output

in Table 9. Similarly, we report the CodeBLEU score for
code outputs to assess their syntactic and semantic similarity
to the expected Code. The results indicate minimal differ-
ences between the two models in terms of BLEU. However,
Cprecede can achieve a marginally higher CodeBLEU score
for the code outputs with fewer steps and tokens, which
means it gets better results with less inference cost.

Table 9: Comparison of CoT and Code parts’ length and
quality under different SFT strategies.

Method CoT Code
Steps Tokens BLEU Steps Tokens CodeBLEU

Cfollow 5.05 197.99 60.34 13.02 258.94 68.19
Cprecede 5.02 195.46 60.22 12.02 256.97 68.96

Response Match Instruction We analyze the similarity
between the instruction and two other components: the
Code and the CoT. Specifically, we use OpenAI’s embed-
ding model text-embedding-3-large to obtain the represen-
tation of the text and then compute the cosine similarity
between them. This evaluation assesses the alignment and
coherence between the instructions and the corresponding
outputs, including the executable Code and the reasoning
processes in the CoT. By comparing these similarities in
Figure 11, we aim to gain insight into the degree of semantic
match correspondence and the extent to which the generated
outputs adhere to the given instructions.

0.65 0.70 0.75 0.80 0.85 0.900

2

4

6

8

10 Probability Density

= 0.01

Cprecede
Cfollow

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.850

1

2

3

4

5

Probability Density

Cprecede
Cfollow

Figure 11: Cosine Similarity Distribution with Gaussian Fit:
Instruction and Code (left), Instruction and CoT (right).

7. Conclusion
In this study, we investigate the impact of incorporating
CoT reasoning into the SFT process to improve code gen-
eration in LLMs. By constructing a high-quality dataset,
we facilitate comprehensive experimentation across a range
of base models and configurations. Our results show that
high-quality code can already serve as a reasoning process,
while traditional CoT should be regarded as an explana-
tion of the code. Additionally, we gain key insights into
how CoT strategies and data patterns influence fine-tuning
outcomes, providing practical guidelines for future studies.
These findings highlight the effectiveness and scalability of
CoT strategies in SFT for the code generation model.

9

Revisiting Chain-of-Thought in Code Generation: Do Language Models Need to Learn Reasoning before Coding?

Acknowledgements
This paper is supported by NSFC (62076121) and the Major
Program (JD) of Hubei Province (2023BAA024). The au-
thors thank Dr. Wang-Zhou Dai and Hao-Yuan He for their
insightful discussions regarding this work.

Impact Statement
Our work provides critical insights into how LLMs learn to
reason through CoT in code generation, challenging conven-
tional training paradigms. Beyond immediate performance
gains, we offer novel insights into how LLMs learn to reason
with CoT data for code generation, revealing that restructur-
ing the order significantly improves performance. Further-
more, our exploration of the properties of CoT training and
data strategies contributes to advancing reasoning method-
ologies in LLMs, potentially shaping the development of
effective and scalable AI-driven software engineering.

References
Abuduweili, A. and Liu, C. Revisiting the initial steps in

adaptive gradient descent optimization. ArXiv Preprint,
abs/2412.02153, 2024.

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. ArXiv Preprint,
abs/2303.08774, 2023.

Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D.,
Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma,
N., et al. A general language assistant as a laboratory for
alignment. ArXiv Preprint, abs/2112.00861, 2021.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., et al.
Program synthesis with large language models. ArXiv
Preprint, abs/2108.07732, 2021.

Bai, J., Bai, S., Chu, Y., Cui, Z., Dang, K., Deng, X., Fan,
Y., Ge, W., Han, Y., Huang, F., et al. Qwen technical
report. ArXiv Preprint, abs/2309.16609, 2023.

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., Das-
Sarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T.,
et al. Training a helpful and harmless assistant with rein-
forcement learning from human feedback. ArXiv Preprint,
abs/2204.05862, 2022.

Bavarian, M., Jun, H., Tezak, N., Schulman, J., McLeavey,
C., Tworek, J., and Chen, M. Efficient training of lan-
guage models to fill in the middle. ArXiv Preprint,
abs/2207.14255, 2022.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Proc. of NeurIPS, 2020.

Cassano, F., Gouwar, J., Nguyen, D., Nguyen, S., Phipps-
Costin, L., Pinckney, D., Yee, M.-H., Zi, Y., Anderson,
C. J., Feldman, M. Q., et al. Multipl-e: A scalable and
extensible approach to benchmarking neural code genera-
tion. ArXiv Preprint, abs/2208.08227, 2022.

Chaudhary, S. Code alpaca: An instruction-following llama
model for code generation. GitHub repository, 2023.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. ArXiv Preprint, abs/2107.03374, 2021.

Chen, Q., Qin, L., Wang, J., Zhou, J., and Che, W. Unlock-
ing the capabilities of thought: A reasoning boundary
framework to quantify and optimize chain-of-thought. In
Proc. of NeurIPS, 2024a.

Chen, W., Ma, X., Wang, X., and Cohen, W. W. Program
of thoughts prompting: Disentangling computation from
reasoning for numerical reasoning tasks. Transactions on
Machine Learning Research, 2023.

Chen, X., Xu, J., Liang, T., He, Z., Pang, J., Yu, D., Song,
L., Liu, Q., Zhou, M., Zhang, Z., et al. Do not think
that much for 2+ 3=? on the overthinking of o1-like llms.
ArXiv Preprint, abs/2412.21187, 2024b.

Chiang, W., Zheng, L., Sheng, Y., Angelopoulos, A. N., Li,
T., Li, D., Zhu, B., Zhang, H., Jordan, M. I., Gonzalez,
J. E., and Stoica, I. Chatbot arena: An open platform for
evaluating llms by human preference. In Proc. of ICML.
PMLR, 2024.

CodeFuse-AI. Codeexercise-python-27k, 2023a.
URL https://huggingface.co/datasets/
codefuse-ai/CodeExercise-Python-27k.
Accessed: 2023-12-20.

CodeFuse-AI. Evol-instruction-66k, 2023b. URL
https://huggingface.co/datasets/
codefuse-ai/Evol-instruction-66k. Ac-
cessed: 2023-11-30.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. In Proc. of NeurIPS, 2022.

10

https://huggingface.co/datasets/codefuse-ai/CodeExercise-Python-27k
https://huggingface.co/datasets/codefuse-ai/CodeExercise-Python-27k
https://huggingface.co/datasets/codefuse-ai/Evol-instruction-66k
https://huggingface.co/datasets/codefuse-ai/Evol-instruction-66k

Revisiting Chain-of-Thought in Code Generation: Do Language Models Need to Learn Reasoning before Coding?

Defazio, A., Cutkosky, A., Mehta, H., and Mishchenko,
K. When, why and how much? adaptive learn-
ing rate scheduling by refinement. ArXiv Preprint,
abs/2310.07831, 2023.

Dou, S., Jia, H., Wu, S., Zheng, H., Zhou, W., Wu, M.,
Chai, M., Fan, J., Huang, C., Tao, Y., et al. What’s wrong
with your code generated by large language models? an
extensive study. ArXiv Preprint, abs/2407.06153, 2024.

Du, Y., Sun, H., and Li, M. Post-incorporating code struc-
tural knowledge into llms via in-context learning for code
translation. ArXiv Preprint, abs/2503.22776, 2025.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. ArXiv Preprint,
abs/2407.21783, 2024.

Feng, G., Zhang, B., Gu, Y., Ye, H., He, D., and Wang, L.
Towards revealing the mystery behind chain of thought:
A theoretical perspective. In Proc. of NeurIPS, 2023.

Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang, Y.,
Callan, J., and Neubig, G. Pal: Program-aided language
models. In Proc. of ICML. PMLR, 2023a.

Gao, S., Wen, X.-C., Gao, C., Wang, W., Zhang, H., and
Lyu, M. R. What makes good in-context demonstra-
tions for code intelligence tasks with llms? In 2023
38th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 761–773. IEEE, 2023b.

Gong, L., Elhoushi, M., and Cheung, A. AST-T5: structure-
aware pretraining for code generation and understanding.
In Proc. of ICML. PMLR, 2024.

Guan, X., Zhang, L. L., Liu, Y., Shang, N., Sun, Y., Zhu, Y.,
Yang, F., and Yang, M. rstar-math: Small llms can master
math reasoning with self-evolved deep thinking. ArXiv
Preprint, abs/2501.04519, 2025.

Gunasekar, S., Zhang, Y., Aneja, J., Mendes, C. C. T.,
Del Giorno, A., Gopi, S., Javaheripi, M., Kauffmann,
P., de Rosa, G., Saarikivi, O., et al. Textbooks are all you
need. ArXiv Preprint, abs/2306.11644, 2023.

Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K., Zhang, W.,
Chen, G., Bi, X., Wu, Y., Li, Y., et al. Deepseek-coder:
When the large language model meets programming–the
rise of code intelligence. ArXiv Preprint, abs/2401.14196,
2024.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. ArXiv Preprint, abs/2501.12948, 2025.

Han, Z., Gao, C., Liu, J., Zhang, J., and Zhang, S. Q.
Parameter-efficient fine-tuning for large models: A com-
prehensive survey. ArXiv Preprint, abs/2403.14608, 2024.

Ho, N., Schmid, L., and Yun, S.-Y. Large language models
are reasoning teachers. In Proc. of ACL, pp. 14852–14882.
Association for Computational Linguistics, 2023.

Hoffer, E., Hubara, I., and Soudry, D. Train longer, general-
ize better: closing the generalization gap in large batch
training of neural networks. In Proc. of NeurIPS, pp.
1731–1741, 2017.

Hsieh, C.-Y., Li, C.-L., Yeh, C.-k., Nakhost, H., Fujii, Y.,
Ratner, A., Krishna, R., Lee, C.-Y., and Pfister, T. Distill-
ing step-by-step! outperforming larger language models
with less training data and smaller model sizes. In Proc.
of ACL Findings, pp. 8003–8017. Association for Com-
putational Linguistics, 2023.

Hu, Y., Yang, H., Lin, Z., and Zhang, M. Code prompting:
a neural symbolic method for complex reasoning in large
language models. ArXiv Preprint, abs/2305.18507, 2023.

Huang, J. and Chang, K. C.-C. Towards reasoning in large
language models: A survey. In Proc. of ACL Findings, pp.
1049–1065. Association for Computational Linguistics,
2023.

Huang, S., Cheng, T., Liu, J. K., Hao, J., Song, L., Xu, Y.,
Yang, J., Liu, J., Zhang, C., Chai, L., et al. Opencoder:
The open cookbook for top-tier code large language mod-
els. ArXiv Preprint, abs/2411.04905, 2024.

Huang, Y., Chen, Y., Yu, Z., and McKeown, K. In-context
learning distillation: Transferring few-shot learning abil-
ity of pre-trained language models. ArXiv Preprint,
abs/2212.10670, 2022.

Hui, B., Yang, J., Cui, Z., Yang, J., Liu, D., Zhang, L.,
Liu, T., Zhang, J., Yu, B., Lu, K., et al. Qwen2.5-coder
technical report. ArXiv Preprint, abs/2409.12186, 2024.

Innovations, F. Python-code-23k-sharegpt, 2023.
URL https://huggingface.co/datasets/
ajibawa-2023/Python-Code-23k-ShareGPT.
Accessed: 2023-11-11.

ISE-UIUC. Magicoder-oss-instruct-75k, 2024. URL
https://huggingface.co/datasets/
ise-uiuc/Magicoder-OSS-Instruct-75K.
Accessed: 2024-05-25.

Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F., Zhang, T.,
Wang, S., Solar-Lezama, A., Sen, K., and Stoica, I.
Livecodebench: Holistic and contamination free eval-
uation of large language models for code. ArXiv Preprint,
abs/2403.07974, 2024.

11

https://huggingface.co/datasets/ajibawa-2023/Python-Code-23k-ShareGPT
https://huggingface.co/datasets/ajibawa-2023/Python-Code-23k-ShareGPT
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K

Revisiting Chain-of-Thought in Code Generation: Do Language Models Need to Learn Reasoning before Coding?

Jiang, J., Wang, F., Shen, J., Kim, S., and Kim, S. A survey
on large language models for code generation. ArXiv
Preprint, abs/2406.00515, 2024.

Jiang, X., Dong, Y., Wang, L., Zheng, F., Shang, Q., Li, G.,
Jin, Z., and Jiao, W. Self-planning code generation with
large language models. ACM Transactions on Software
Engineering and Methodology, 2023.

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press,
O., and Narasimhan, K. Swe-bench: Can language mod-
els resolve real-world github issues? In Proc. of ICLR.
OpenReview.net, 2024.

Kocetkov, D., Li, R., Allal, L. B., Li, J., Mou, C., Ferrandis,
C. M., Jernite, Y., Mitchell, M., Hughes, S., Wolf, T.,
et al. The stack: 3 tb of permissively licensed source
code. ArXiv Preprint, abs/2211.15533, 2022.

Kudo, K., Aoki, Y., Kuribayashi, T., Sone, S., Taniguchi, M.,
Brassard, A., Sakaguchi, K., and Inui, K. Think-to-talk
or talk-to-think? when llms come up with an answer in
multi-step reasoning. ArXiv Preprint, abs/2412.01113,
2024.

Kulal, S., Pasupat, P., Chandra, K., Lee, M., Padon, O.,
Aiken, A., and Liang, P. S. Spoc: Search-based pseu-
docode to code. In Proc. of NeurIPS, volume 32, 2019.

Li, J., Li, G., Li, Y., and Jin, Z. Structured chain-of-
thought prompting for code generation. ArXiv Preprint,
abs/2305.06599, 2023a.

Li, J., Cao, P., Wang, C., Jin, Z., Chen, Y., Zeng, D., Liu, K.,
and Zhao, J. Focus on your question! interpreting and
mitigating toxic cot problems in commonsense reasoning.
ArXiv Preprint, abs/2402.18344, 2024a.

Li, L. H., Hessel, J., Yu, Y., Ren, X., Chang, K.-W., and
Choi, Y. Symbolic chain-of-thought distillation: Small
models can also “think” step-by-step. In Proc. of ACL, pp.
2665–2679. Association for Computational Linguistics,
2023b.

Li, M., Zhang, Y., He, S., Li, Z., Zhao, H., Wang, J.,
Cheng, N., and Zhou, T. Superfiltering: Weak-to-strong
data filtering for fast instruction-tuning. ArXiv Preprint,
abs/2402.00530, 2024b.

Li, M., Zhang, Y., Li, Z., Chen, J., Chen, L., Cheng, N.,
Wang, J., Zhou, T., and Xiao, J. From quantity to qual-
ity: Boosting LLM performance with self-guided data
selection for instruction tuning. In Proc. of NAACL, pp.
7602–7635. Association for Computational Linguistics,
2024c.

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D.,
Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., et al.

Starcoder: may the source be with you! ArXiv Preprint,
abs/2305.06161, 2023c.

Li, S., Chen, J., Shen, Y., Chen, Z., Zhang, X., Li, Z., Wang,
H., Qian, J., Peng, B., Mao, Y., et al. Explanations from
large language models make small reasoners better. ArXiv
Preprint, abs/2210.06726, 2022.

Li, X.-Y., Du, Y.-L., and Li, M. Enhancing llms in long
code translation through instrumentation and program
state alignment. ArXiv Preprint, abs/2504.02017, 2025.

Liu, J., Xia, C. S., Wang, Y., and Zhang, L. Is your code
generated by chatgpt really correct? rigorous evaluation
of large language models for code generation. In Proc. of
NeurIPS, 2023.

Liu, J., Xie, S., Wang, J., Wei, Y., Ding, Y., and Zhang, L.
Evaluating language models for efficient code generation.
ArXiv Preprint, abs/2408.06450, 2024a.

Liu, R.-B. Opencodeeval: An extensible, efficient, and easy-
to-use evaluation framework for code generation tasks on
large language models, 2024. URL https://github.
com/richardodliu/OpenCodeEval.

Liu, Z., Liu, H., Zhou, D., and Ma, T. Chain of thought em-
powers transformers to solve inherently serial problems.
In Proc. of ICLR. OpenReview.net, 2024b.

Lozhkov, A., Li, R., Allal, L. B., Cassano, F., Lamy-Poirier,
J., Tazi, N., Tang, A., Pykhtar, D., Liu, J., Wei, Y., et al.
Starcoder 2 and the stack v2: The next generation. ArXiv
Preprint, abs/2402.19173, 2024.

Luo, Z., Xu, C., Zhao, P., Sun, Q., Geng, X., Hu, W., Tao, C.,
Ma, J., Lin, Q., and Jiang, D. Wizardcoder: Empowering
code large language models with evol-instruct. In Proc.
of ICLR. OpenReview.net, 2024.

Madaan, A., Hermann, K., and Yazdanbakhsh, A. What
makes chain-of-thought prompting effective? a counter-
factual study. In Proc. of EMNLP Findings, pp. 1448–
1535. Association for Computational Linguistics, 2023.

Magister, L. C., Mallinson, J., Adamek, J., Malmi, E., and
Severyn, A. Teaching small language models to reason.
In Proc. of ACL, pp. 1773–1781. Association for Compu-
tational Linguistics, 2023.

Peng, B., Li, C., He, P., Galley, M., and Gao, J. Instruction
tuning with gpt-4. ArXiv Preprint, abs/2304.03277, 2023.

Petty, J., van Steenkiste, S., and Linzen, T. How does
code pretraining affect language model task performance?
ArXiv Preprint, abs/2409.04556, 2024.

12

https://github.com/richardodliu/OpenCodeEval
https://github.com/richardodliu/OpenCodeEval

Revisiting Chain-of-Thought in Code Generation: Do Language Models Need to Learn Reasoning before Coding?

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1:9, 2019.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. Zero:
Memory optimizations toward training trillion parameter
models. In SC20: International Conference for High Per-
formance Computing, Networking, Storage and Analysis,
pp. 1–16. IEEE, 2020.

Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. Deep-
speed: System optimizations enable training deep learn-
ing models with over 100 billion parameters. In Proc. of
KDD, pp. 3505–3506. ACM, 2020.

Roshdieh, N. Evol-instruct-code-80k, 2023. URL
https://huggingface.co/datasets/
nickrosh/Evol-Instruct-Code-80k-v1.
Accessed: 2023-07-11.

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I.,
Tan, X. E., Adi, Y., Liu, J., Sauvestre, R., Remez, T., et al.
Code llama: Open foundation models for code. ArXiv
Preprint, abs/2308.12950, 2023.

Shen, W. and Zhang, C. Policy filtration for rlhf to mitigate
noise in reward models. ArXiv Preprint, abs/2409.06957,
2024.

Snell, C., Klein, D., and Zhong, R. Learning by distilling
context. ArXiv Preprint, abs/2209.15189, 2022.

Song, Z., Wang, Y., Zhang, W., Liu, K., Lyu, C., Song, D.,
Guo, Q., Yan, H., Lin, D., Chen, K., and Zhao, C. Al-
chemistcoder: Harmonizing and eliciting code capability
by hindsight tuning on multi-source data. In Proc. of
NeurIPS, 2024.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D. M., Lowe, R.,
Voss, C., Radford, A., Amodei, D., and Christiano, P. F.
Learning to summarize with human feedback. In Proc. of
NeurIPS, 2020.

Tam, Z. R. Evol-codealpaca-110k, 2024. URL
https://huggingface.co/datasets/
theblackcat102/evol-codealpaca-v1.
Accessed: 2024-03-11.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A.,
Khashabi, D., and Hajishirzi, H. Self-instruct: Aligning
language models with self-generated instructions. In Proc.
of ACL, pp. 13484–13508. Association for Computational
Linguistics, 2023.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F., Chi, E. H., Le, Q. V., and Zhou, D. Chain-of-
thought prompting elicits reasoning in large language
models. In Proc. of NeurIPS, 2022.

Wei, Y., Wang, Z., Liu, J., Ding, Y., and Zhang, L. Magi-
coder: Source code is all you need. ArXiv Preprint,
abs/2312.02120, 2023.

Wei, Y., Cassano, F., Liu, J., Ding, Y., Jain, N., Mueller,
Z., de Vries, H., von Werra, L., Guha, A., and Zhang, L.
Selfcodealign: Self-alignment for code generation. In
Proc. of NeurIPS, 2024.

Xu, J., Fei, H., Pan, L., Liu, Q., Lee, M.-L., and Hsu, W.
Faithful logical reasoning via symbolic chain-of-thought.
ArXiv Preprint, abs/2405.18357, 2024.

Yan, F. and Li, M. Towards generating summaries for lexi-
cally confusing code through code erosion. In Proc. of
IJCAI, pp. 3721–3727. ijcai.org, 2021.

Yang, G., Zhou, Y., Chen, X., Zhang, X., Zhuo, T. Y., and
Chen, T. Chain-of-thought in neural code generation:
From and for lightweight language models. IEEE Trans-
actions on Software Engineering, 2024a.

Yang, G., Zhou, Y., Yang, W., Yue, T., Chen, X., and Chen,
T. How important are good method names in neural
code generation? a model robustness perspective. ACM
Transactions on Software Engineering and Methodology,
33:1–35, 2024b.

Yang, J., Yang, J., Jin, K., Miao, Y., Zhang, L., Yang, L.,
Cui, Z., Zhang, Y., Hui, B., and Lin, J. Evaluating and
aligning codellms on human preference. ArXiv Preprint,
abs/2412.05210, 2024c.

Yang, S., Gribovskaya, E., Kassner, N., Geva, M., and
Riedel, S. Do large language models latently perform
multi-hop reasoning? ArXiv Preprint, abs/2402.16837,
2024d.

Ye, T., Xu, Z., Li, Y., and Allen-Zhu, Z. Physics of language
models: Part 2.1, grade-school math and the hidden rea-
soning process. ArXiv Preprint, abs/2407.20311, 2024.

Yu, Y. Llms do not think step-by-step in implicit reasoning.
ArXiv Preprint, abs/2411.15862, 2024.

Zelikman, E., Wu, Y., and Goodman, N. D. Star: Self-taught
reasoner. ArXiv Preprint, abs/2203.14465, 2022.

Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y.,
Min, Y., Zhang, B., Zhang, J., Dong, Z., et al. A survey of
large language models. ArXiv Preprint, abs/2303.18223,
2023.

Zheng, T., Zhang, G., Shen, T., Liu, X., Lin, B. Y., Fu, J.,
Chen, W., and Yue, X. Opencodeinterpreter: Integrating
code generation with execution and refinement. ArXiv
Preprint, abs/2402.14658, 2024.

13

https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1
https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1
https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1
https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1

Revisiting Chain-of-Thought in Code Generation: Do Language Models Need to Learn Reasoning before Coding?

Zhou, C., Liu, P., Xu, P., Iyer, S., Sun, J., Mao, Y., Ma, X.,
Efrat, A., Yu, P., Yu, L., Zhang, S., Ghosh, G., Lewis, M.,
Zettlemoyer, L., and Levy, O. LIMA: less is more for
alignment. In Proc. of NeurIPS, 2023.

Zhu, X., Li, J., Liu, Y., Ma, C., and Wang, W. A survey on
model compression for large language models. Transac-
tions of the Association for Computational Linguistics,
12:1556–1577, 2024.

Zhuo, T. Y., Vu, M. C., Chim, J., Hu, H., Yu, W., Widyasari,
R., Yusuf, I. N. B., Zhan, H., He, J., Paul, I., et al. Big-
codebench: Benchmarking code generation with diverse
function calls and complex instructions. ArXiv Preprint,
abs/2406.15877, 2024.

14

Revisiting Chain-of-Thought in Code Generation: Do Language Models Need to Learn Reasoning before Coding?

Appendix

A. Synthetic Dataset Process
To select suitable seed data, we established specific rules to choose questions that have educational value and are worth
reasoning. After that, we use AST to parse the Python code in the answer, ensuring that we do not provide answers with
errors that would prompt the model to reject them. The overall process is illustrated in Figure 12.

Raw Dataset
<NL, Code>

Rule filtered

AST Parser

Teacher
Generator

Seed Dataset
<NL, Code>

prompt

Reference Solution

Chain of Thought

Unit Tests

Consistent?
No

CoT Dataset
<NL, CoT, Code>

Figure 12: Synthetic Dataset Process

B. Prompts Template
Here is the prompt for synthetic self-consistent code generation:

Prompt for Instruction Synthesis

You are a teaching assistant helping to create a Python programming task from a given code snippet. You
will respond best to the Python programming task, including the reasoning process, reference solutions, and test code.

[Code Snippet]
{Code}

The response must have these parts:
[Analysis]
{Analyze the task and reason about the given task step by step}
[Solution]
{Write a high-quality reference solution in a self-contained script that solves the task}
[Test]
{Provide ten assert statements to check the correctness of your solution}

C. Dataset statics
In this section, we present the details of the datasets in Table 10. Finally, we obtain a comprehensive dataset comprising
52,293 samples. We randomly select 51,200 as the training set and the rest as the validation set.

D. Benchmark
HumanEval The HumanEval dataset(Chen et al., 2021), proposed by OpenAI, comprises 164 handwritten programming
problems that cover areas such as algorithms, mathematical computations, and string manipulation. Each programming
problem includes a natural language description of the requirements, a function signature, and test cases.

15

Revisiting Chain-of-Thought in Code Generation: Do Language Models Need to Learn Reasoning before Coding?

Table 10: Dataset statics

Dataset Total Filtered Self-Consistent Ratio

CodeExercise-Python 27,224 147,36 6,963 27.56%
Codefuse-Evol-Instruct 66,862 16,176 8,000 11.96%
Evol-Instruct-Code 78,264 23,175 12,003 15.34%
Evol-CodeAlpaca 111,272 27,566 13,529 12.16%
Python ShareGPT 22,608 14,061 6,131 27.11%
Magicoder-OSS-Instruct 75,197 14,499 5,667 7.54%

MBPP MBPP (Mostly Basic Programming Problems) (Austin et al., 2021) is a benchmark dataset proposed by Google. It
consists of 974 programming tasks written by humans and reviewed by experts, involving simple numeric manipulations or
basic usage of standard libraries.

HumanEval+ and MBPP+ HumanEval+ and MBPP+ (Liu et al., 2023) are advanced benchmarks designed to provide
more challenging evaluations for CodeLLMs. They combine LLM-based and mutation-based input generation to provide
diverse test inputs for accurately evaluating the correctness of LLM-generated code. These two benchmarks provide a more
comprehensive assessment of a model’s coding capabilities, enabling a more thorough examination of CodeLLMs.

LiveCodeBench LiveCodeBench (Jain et al., 2024) is a contamination-free benchmark for evaluating code generation
models. These tasks are curated from online judge websites, such as Codeforces and LeetCode, and feature an average of
over 20 test cases per task. Although LiveCodeBench is a comprehensive benchmark addressing four problem types, the
present study focuses on the code generation task to assess the function generation capabilities of LLMs.

BigCodeBench BigCodeBench (Zhuo et al., 2024) is a benchmark that challenges LLMs to invoke multiple functions as
tools across 1,140 fine-grained tasks spanning 139 libraries and seven domains. In addition, the benchmark introduces a
variant, BigCodeBench-Instruct, which automatically converts original docstrings into concise instructions. BigCodeBench
also features a subset named BigCodeBench-Hard, which comprises 148 challenging programming tasks.

MultiPL-E MultiPL-E (Cassano et al., 2022) serves as a benchmark to evaluate the effectiveness of CodeLLMs in
programming languages other than Python. MultiPL-E extends unit test-based evaluations to numerous languages by
translating two established Python benchmarks into 18 different programming languages. This diverse set of languages
enables a detailed analysis of how language frequency and structural features impact model performance.

EvalPerf EvalPerf (Liu et al., 2024a) demonstrates the effectiveness of the Differential Performance Evaluation (DPE)
framework and provides valuable insights into program efficiency. The DPE framework addresses these limitations by
focusing on computationally intensive tasks and implementing more stringent performance evaluation criteria. It provides a
structured approach for evaluating the code generation efficiency of LLM.

E. Experiment setup
The experiments are conducted on eight NVIDIA A100-SXM4-80GB GPUs, utilizing mixed-precision training (BF16)
to enhance computational efficiency and reduce memory usage. We use ZeRO-3 (Rajbhandari et al., 2020) from Deep-
Speed (Rasley et al., 2020) to minimize memory consumption during training. In our experiments, the micro-batch size is
fixed at 4 per GPU to ensure consistent data processing across devices. At the same time, the gradient accumulation steps
are varied based on the training configurations. To accelerate the training process, we employ FlashAttention-2 (Dao et al.,
2022), a memory-efficient attention mechanism, to be the implementation for LLMs. The optimizer used was AdamW.

We monitored performance trends on specified benchmarks during training to systematically evaluate fine-tuned CodeLLMs
under different SFT strategies. The models are initialized using a variety of pre-trained base models. To ensure the robustness
and consistency of our findings, we systematically studied key hyperparameters, including batch size, learning rate, and
total epochs, under controlled experimental conditions. In various experiments, we adjusted the save step during training to
ensure a comparable number of checkpoints were available to monitor model performance trends.

16

Revisiting Chain-of-Thought in Code Generation: Do Language Models Need to Learn Reasoning before Coding?

F. Benchmark results
We use EvalPerf to evaluate the efficiency of code generated by LLMs. Since efficiency is only essential when the generated
code is correct, we focus our analysis on models with a pass rate of over 50%. Specifically, we utilize default settings, where
each model generates 100 samples for each task at a temperature of 1.0. For tasks that produce at least 10 correct outputs,
we analyze up to 20 correct samples from each model. Model rankings are based on win rates, with pairwise comparisons
conducted using the DPS method on a standardized set of valid tasks. The result is shown in Table 11.

Table 11: EvalPerf results.

Method DPS Pass@1 Task Win Rate Model Win Rate

Seed 81.8% 69.4% 45.1% 40.5%
Cw/o 82.5% 67.8% 46.2% 45.9%
Cfollow 80.8% 70.9% 44.0% 16.2%
Cprecede 84.0% 69.8% 50.2% 70.3%

To explore whether the knowledge acquired from Python can be transferred to other programming languages, we compare
the pass@1 accuracy of different fine-tuned models on MultiPL-E. Results in Table 12 show that the model series have
different multilingual coding proficiency. Moreover, we find that the reasoning abilities the model acquired from training
on synthetic Python datasets can be transferred to other programming languages, and our conclusion remains valid across
different programming languages.

Table 12: MultiPL-E. results.

Method C++ Java PHP Bash Average

Seed 54.04% 51.90% 50.93% 26.58% 45.86%
Cw/o 54.04% 52.53% 52.17% 32.28% 47.76%
Cfollow 53.42% 52.53% 51.55% 31.65% 47.29%
Cprecede 54.66% 54.43% 56.52% 34.81% 50.11%

G. Significance Analysis
We evaluate the model’s performance on the EvalPlus benchmark and use a t-test to show the statistical significance. We
re-run five experiments on the synthetic dataset with different random seeds and fine-tune the DeepSeek-Coder-6.7B-Base
model. The results in Table 13 show that Cprecede has a significant performance improvement over the Cfollow strategy.

Table 13: Significance Analysis Results.

Random Seed 0 1 2 3 4 Average

Cw/o 69.19 70.06 70.34 70.48 70.83 70.17±0.62
Cfollow 64.88 66.54 66.03 66.38 65.84 65.93±0.65
Cprecede 71.49 71.18 71.82 71.14 70.96 71.31±0.34

H. SFT Configurations Study
Study of Batch Size This study investigated whether varying the batch size during fine-tuning significantly affects the
change in model performance, which in turn influences computational efficiency and memory usage. This experimental
setup aims to enhance the adaptability of the conclusion to varying batch sizes, thereby supporting training scenarios with
limited GPUs. Model performance was assessed at checkpoints occurring every 10% of the training steps to enable fair
comparisons across batch sizes. The results, shown in Figure 13, indicate that varying batch sizes do not affect our findings.

17

Revisiting Chain-of-Thought in Code Generation: Do Language Models Need to Learn Reasoning before Coding?

1000 2000 3000 4000 5000

60

62

64

66

68

70

72
Batch Size=32

500 1000 1500 2000 2500

Batch Size=64

200 400 600 800 1000 1200

Batch Size=128

100 200 300 400 500 600

Average Pass@
1(%

)
Batch Size=256

Figure 13: Average Performance of base models fine-tuned under different batch sizes across four benchmarks.

Study of Train Epoch This study investigated whether varying the number of training epochs affects the conclusion in
SFT. Previous work (Hoffer et al., 2017) has shown that the epoch count is a crucial parameter in closing the generalization
gap during large-batch training of neural networks, including LLMs. It determines the number of dataset passes and
significantly influences memorization and generalization. The performance of the SFT checkpoints is evaluated at every
10% of the training steps to ensure comparability across configurations. The results in Figure 14 can also verify our findings.

50 100 150 200 250 300 350 400

60

62

64

66

68

70

72
Total Train Epochs=1

100 200 300 400 500 600 700 800

Total Train Epochs=2

200 400 600 800 1000 1200

Total Train Epochs=3

200 400 600 800 1000 1200 1400 1600

Average Pass@
1(%

)

Total Train Epochs=4

Figure 14: Average Performance of base models fine-tuned under different total epochs across four benchmarks.

Study of Learning Rate This study investigated whether varying the learning rate during fine-tuning has a significant
impact on model performance change. The learning rate is crucial for the speed and stability of convergence, both of
which are critical for optimizing LLMs (Defazio et al., 2023; Abuduweili & Liu, 2024). Model performance is assessed at
checkpoints spaced every 10% of the total training steps to ensure fair comparisons across learning rates. The results, shown
in Figure 15, indicate that variations in learning rate do not change the validity of our conclusions.

200 400 600 800 1000 1200

60

62

64

66

68

70

72
Learning Rate=5e-6

200 400 600 800 1000 1200

Learning Rate=1e-5

200 400 600 800 1000 1200

Learning Rate=2e-5

200 400 600 800 1000 1200

Average Pass@
1(%

)

Learning Rate=5e-5

Figure 15: Average Performance of base models fine-tuned under different learning rates across four benchmarks.

18

