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Abstract
Adversarial robustness has attracted much at-001
tention recently, and the mainstream solution002
is adversarial training. However, the tradition003
of generating adversarial perturbations for each004
input embedding (in the settings of NLP) scales005
up the training computational complexity by006
the number of gradient steps it takes to ob-007
tain the adversarial samples. To address this008
problem, we leverage Flooding method which009
primarily aims at better generalization and we010
find promising in defending adversarial attacks.011
We further propose an effective criterion to012
bring hyper-parameter-dependent flooding into013
effect with a narrowed-down search space by014
measuring how the gradient steps taken within015
one epoch affect the loss of each batch. Our016
approach requires zero adversarial sample for017
training, and its time consumption is equiva-018
lent to fine-tuning, which can be 2-15 times019
faster than standard adversarial training. We020
experimentally show that our method improves021
Bert’s resistance to textual adversarial attacks022
by a large margin, and achieves state-of-the-art023
robust accuracy on various text classification024
and GLUE tasks.025

1 Introduction026

Despite their impressive performances on various027

NLP tasks, deep neural networks such as BERT028

(Devlin et al., 2019) suffer a sharp decline facing029

deliberately constructed adversarial attacks (Zeng030

et al., 2021; Nie et al., 2020; Zang et al., 2020;031

Ren et al., 2019; Zhang et al., 2019). A line of032

works attempt to alleviate this problem by creating033

adversarially robust models via defense methods,034

including adversarial data augmentation (Chen035

et al., 2021; Si et al., 2021), regularizing (Wang036

et al., 2020a), and adversarial training (Wang et al.,037

2020b; Zhu et al., 2019; Madry et al., 2018). Data038

augmentation and adversarial training rely on extra039

adversarial examples generated either by hand-040

crafting or conducting gradient ascent on the clean041

data for virtual adversarial samples.042

However, generating adversarial examples scales 043

up the cost of training computationally, which 044

makes vanilla adversarial training almost impracti- 045

cal on large-scale NLP tasks like QNLI (Question- 046

answering NLI). Increasing researches express 047

their concern of the time-consuming property of 048

standard adversarial training and offer cheaper but 049

competitive alternatives by (i) replacing the pertur- 050

bation generation with an extra generator network 051

(Baluja and Fischer, 2017; Xiao et al., 2018), or by 052

(ii) combining the gradient computation of clean 053

data and perturbations into one backward pass 054

(Shafahi et al., 2019). These approaches still rely 055

on extra adversarial examples generated either by 056

the model itself or by an extra module. 057

In this work, we propose a novel method, 058

Flooding-X, to largely improve adversarial robust- 059

ness without any adversarial examples, maintain- 060

ing the same computational cost as conventional 061

BERT fine-tuning. The vanilla Flooding (Ishida 062

et al., 2020) method is a practical regularization 063

technique to boost model generalization by pre- 064

venting further reduction of the training loss when 065

it reaches a reasonably small value. It results 066

in a model performing normal gradient descent 067

when training loss is above the decided value but 068

gradient ascent when below. By continuing to 069

“random walk” with the same non-zero value as 070

a “virtual loss”, the model drifts into an area with a 071

flat loss landscape that is claimed to lead to better 072

generalization (Ishida et al., 2020). Interestingly, 073

we find that Flooding method is also promising in 074

increasing models’ resistance to adversarial attacks. 075

Despite the significant rise in robust accuracy, the 076

so-called reasonably small value, which is a hyper- 077

parameter, takes effort to be found and varies for 078

each dataset, which requires an overly extensive 079

search among the numerous candidates. 080

In an attempt to narrow down the candidates of 081

hyper-parameter, we propose gradient accordance 082

as an informative criterion for optimal values that 083
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bring Flooding into effect, which is used as a084

building-block in Flooding-X. We measure how085

accordant the gradients of the batches are by086

analyzing how the gradient descent steps based on087

part of an epoch affect the loss of each batch. Gra-088

dient accordance is computationally friendly and089

is tractable during training process. Experiments090

on various tasks show a close relation between091

gradient accordance and overfitting. As a result, we092

propose gradient accordance as a reliable flooding093

criterion to make the training loss flood around the094

level when the model has nearly overfitted. That is095

to say, we leverage the training loss of the model096

right before overfitting as the value of flood level.097

Flooding-X is especially useful and shows great098

advantage over adversarial training in terms of099

computational cost when the training dataset is100

relatively large. Experimental results demonstrate101

that our method achieves stated-of-the-art robust102

accuracy with BERT on various tasks and improves103

its robust accuracy by 100 to 400% without using104

any adversarial example, consuming any extra105

training time, or conducting overly extensive search106

for hyper-parameter. Our main contributions are as107

follows.108

1) We propose a novel method, Flooding-X, that109

achieves state-of-the-art robust accuracy for BERT110

on various tasks, which is adversarial-example-free111

and takes no more training time than fine-tuning.112

2) We propose a promising indicator, i.e. gradi-113

ent accordance, to alleviate Flooding method from114

tedious search of the hyper-parameter.115

3) We conduct comprehensive experiments on116

NLP tasks to illustrate the potential of Flooding for117

improving BERT’s adversarial robustness.118

2 Why Does Flooding Boost Adversarial119

Robustness?120

2.1 Vanilla Flooding121

We first describe the vanilla Flooding regulariza-122

tion method (Ishida et al., 2020) for alleviating123

overfitting via keeping training loss from reducing124

to zero. Under the main assumption that learning125

until zero loss is harmful, Ishida et al. (2020)126

propose Flooding to intentionally prevent further127

reduction of the training loss when it reaches a128

reasonably small value, which is called the flood129

level. Intuitively, this approach makes the training130

loss float around the pre-defined flood level and131

alter from normal mini-batch gradient descent to132

gradient ascent if the loss is below the flood level.133

Figure 1: Input loss landscape of vanilla BERT and
different adversarial training algorithms under Gaussian
random noise of standard deviation α on SST-2 dataset.

With the constraint of flood level, the model will 134

continue to “random walk” around the non-zero 135

training loss, which is expected to reach a flat loss 136

landscape. 137

The algorithm of Flooding is defined as follow: 138

J̃(θ) = |J(θ)− b|+ b, (1) 139

where J denotes the original learning objective, 140

and J̃ represents the modified learning objective 141

with flooding. The positive value b is the flood level 142

specified by user, and θ is the model parameter. 143

Accordingly, the flooded empirical risk is then 144

defined as 145

R̃(f) = |R̂(f)− b|+ b, (2) 146

within which R̂(f) / R̃(f) denotes the original / 147

flooded empirical risk respectively, and f refers 148

to the score function to be learned by the model. 149

During the back propagation process, the gradient 150

of R̂(f) w.r.t. model parameters and R̃(f) point 151

to the same direction when R̃(f) is above b but 152

to the opposite direction when it is below b. As 153

a result, model performs normal gradient descent 154

when the learning objective is above the flood level, 155

and gradient ascent when below. 156

2.2 Smooth Parameter Landscape Leads to 157

Better Robustness 158

According to the definition described in the previ- 159

ous section, Flooding does not make any difference 160

to the training process when the loss is beyond the 161

flood level. When the training loss approaches the 162

flood level, on closer inspection, gradient descent 163

and gradient ascent begin to alternate. Assume that 164

the model with learning rate ε performs gradient 165

descent for the n-th batch and then gradient ascent 166
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for batch n+ 1, which results in:167

θn = θn−1 − εg(θn−1),

θn+1 = θn + εg(θn).
(3)168

In the equations above, g(θ) = ∇θJ(θ) is the169

gradient of J(θ) w.r.t. model parameters. We can170

then get171

θn+1 =θn−1 − εg(θn−1) + εg
(
θn−1

− εg(θn−1)
)
,

(4)172

which is, by Taylor expansion, approximately173

equivalent to174

≈θn−1 − εg(θn−1) + ε
(
g(θn−1)

− ε∇θg(θn−1)g(θn−1)
)

=θn−1 −
ε2

2
∇θ∥g(θn−1)∥2.

(5)175

Thus, theoretically, when the training loss is rela-176

tively low, the model alters into a new learning177

mode where the learning rate is ε2/2 and the178

objective is to minimize ∥g(θ)∥2. Generally, the179

flooded model is guided into an area with a smooth180

parameter landscape that leads to better adversarial181

robustness (Prabhu et al., 2019; Yu et al., 2018;182

Li et al., 2018a). As is demonstrated in Figure 1,183

adversarial training brings about a smoother loss184

change to the model when the input embedding is185

perturbed by Gaussian random noise.186

2.3 Achilles’ Heel of Flooding187

Despite its potential in boosting model’s resistance188

to adversarial attacks, the optimal flood level has189

to be searched by performing exhaustive search190

within a wide range at tiny steps, which is not easily191

at hand. A relatively large value of flood level192

lengthens the gradient steps and keeps the model193

from convergence, while a tiny value causes hardly194

any difference to the training process. The effect of195

Flooding deeply relies on the flood level, which, at196

the same time, is also sensitive to the subtle change197

of this hyper-parameter. Figure 2 reveals that even198

a slight change on the value of flood level can make199

a huge difference on the adversarial robustness of200

the so-trained model. In an attempt to ease the201

effort of searching and make the best of Flooding,202

we propose a promising and reliable criterion to203

narrow down the search space, which is described204

in detail in the next section.205

Figure 2: Influence of different flood levels on perfor-
mance of the trained BERT on SST-2. The range marked
in yellow is lined out by our proposed criterion , i.e.,
gradient accordance. The optimal value of flood level is
guaranteed within the narrowed-down space.

3 Gradient Accordance as a Criterion for 206

Flooding 207

Since Flooding is proposed as an attempt to avoid 208

overfitting, we intuitively suppose that the optimal 209

flood level would be found at the stage when the 210

model is about to overfit. That is, we leverage 211

the training loss before overfitting as the flood 212

level. Inspired by influence function (Koh and 213

Liang, 2017), we propose gradient accordance 214

as a criterion for flooding, which is empirically 215

proved to be reliable and indicative. We consider 216

the effect of the model updated w.r.t. one epoch 217

on each of its batches as a signal of overfitting. As 218

is indicated by its name, this criterion measures 219

the relation among the gradients of each batch on 220

epoch level, evaluating whether the model updated 221

on an epoch has the same positive effect on the 222

batches on average. Now we provide the formal 223

definition of gradient accordance. 224

3.1 Preliminaries 225

We denote a model as a functional approximation 226

f which is parameterized by θ. Consider a training 227

data point x with the ground truth label y, which 228

results in a loss L(f(θ, x), y). The gradient of the 229

loss w.r.t. the parameters is thus 230

g = ∇θL(f(θ, x), y), (6) 231

whose negation denotes the direction in which 232

the parameters θ are updated to better correspond 233

to the desired outputs on the training data (Fort 234

et al., 2019). Now let’s consider two data points 235

x1 and x2 with their corresponding labels y1 and 236

y2. According to the definition above, the gradient 237

of sample 1 is g1 = ∇θL(f(θ, x1), y1). We try to 238
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inspect how the small change of θ in the direction239

−g1 influences the loss on sample x1 or x2:240

∆L1 =L(f(θ − εg1, x1), y1)

− L(f(θ, x1), y1),
(7)241

where f(θ, x1) can be expanded by Taylor expan-242

sion to be:243

f(θ, x1) = f(θ − εg1, x1) + εg1
∂f

∂θ
+O(ε2).

(8)244

Here, we refer to (εg1
∂f
∂θ +O(ε2)) as T (x1); and245

by repeating the similar expansion we can get246

L(f(θ, x1), y1)
= L(f(θ − εg1, x1) + T (x1), y1)

= L(f(θ − εg1, x1), y1)

+
∂L
∂f

T (x1) +O(T 2(x1)).

(9)247

Equation (7) is thus equal to248

∆L1 = −∂L
∂f

T (x1)−O(T 2(x1))

= −∂L
∂f

(εg1
∂f

∂θ
+O(ε2))

= −εg1 · g1 −O(ε2).

(10)249

Similarly, the change of the loss on x2 caused by250

the gradient update by x1 is ∆L2 = −εg1 · g2 −251

O(ε2). Notably, ∆L1 is negative by definition252

since the model is updated with respect to x1 and253

naturally leads to a decrease on its loss. The model254

updated on x1 is considered to have a positive effect255

on x2 if ∆L2 is also negative while an opposite256

effect if positive. The equations above demonstrate257

that this co-relation is equivalent to the overlap258

between the gradients of the two data points g1 ·g2,259

which we hereafter refer to as gradient accordance.260

3.2 Coarse-Grained Gradient Accordance261

Data-point-level gradient accordance is too fine-262

grained to be tractable in practice. Thus, we263

attempt to scale it up and result in coarse-grain264

gradient accordance at batch level, which is compu-265

tationally tractable and still reliable as a criterion266

for overfitting.267

Consider a training batch B0 with n268

samples X = {x1, x2, . . . , xn} and labels269

y = {y1, y2, . . . , yn} of k classes {c1, c2, . . . , ck}.270

These samples can be divided into k groups271

according to their labels X = X1∪X2∪· · ·∪Xk,272

and so are the labels y =
⋃k

i=1 yi, where all the 273

samples in Xm belong to class cm. Thus, we have 274

the sub-batch B1
0 = {X1,y1}. We then define 275

class accordance score of two sub-batches B1
0 and 276

B2
0 of classes c1 and c2 as: 277

C(B1
0 , B

2
0) = E[cos(g1, g2)], (11) 278

where g1 is the gradient of the training loss of 279

sub-batch B1
0 w.r.t. the model parameters, and 280

cos(g1, g2) = (g1/|g1|) · (g2/|g2|). Class ac- 281

cordance measures whether the gradient taken with 282

respect to a sub-batch B1
0 of class c1 will also 283

decrease the loss for samples in another sub-batch 284

B2
0 of class c2 (Fort et al., 2019; Fu et al., 2020). 285

Further consider that there are N batches in 286

one training epoch and the training samples are 287

of k classes. The batch accordance score between 288

batches Bs and Bt is defined as 289

Sbatch accd(Bs, Bt)

=
1

k(k − 1)

k∑
j=1

k∑
i=1
i ̸=j

C(Bi
s, B

j
t ).

(12) 290

Batch accordance quantifies the learning consis- 291

tency of two batches by evaluating how the model 292

updated on one batch affects the other. To be 293

more specific, a positive batch accordance denotes 294

that the measured two batches are under the same 295

learning pace since the model updated according 296

to each batch benefits them both. The gradient 297

accordance of certain epoch (or a part of an epoch, 298

namely the sub-epoch) is finally defined as 299

Sepoch accd =

1

N(N − 1)

N∑
j=i+1

N−1∑
i=1

Sbatch accd(Bs, Bt).
(13) 300

Gradient accordance scales the batch accordance 301

score up from a measure of two batches to that of a 302

sub-epoch. 303

Criterion for Flooding A positive gradient ac- 304

cordance means that the model performed gradient 305

descent w.r.t. the certain epoch decreases the loss of 306

its batches on average, indicating that the learning 307

pace of most batches are in line with each other. A 308

negative one means that the model has overfitted 309

to some of the training batches since the update 310

of one epoch increases the loss of its batches on 311

average, which is right the stage we would like to 312
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identify for the model by gradient accordance. We313

assume that the optimal flood level lies in the range314

of the training loss of a model when it is about to315

overfit. In the following section, we empirically316

prove that gradient accordance is a reliable and317

promising criterion for flooding.318

4 Experiments319

In this section, we provide comprehensive analysis320

on Flooding-X through extensive experiments on321

five text classification datasets of various tasks and322

scales: SST (Socher et al., 2013), MRPC (Dolan323

and Brockett, 2005), QNLI (Rajpurkar et al., 2016),324

IMDB (Maas et al., 2011) and AG News (Zhang325

et al., 2015). We conduct experiments on BERT-326

base (Devlin et al., 2019) and compare robust327

accuracy of Flooding-X with other adversarial328

training algorithms to demonstrate its strength.329

4.1 Baseline Methods330

We compare our proposed Flooding-X with three331

adversarial training algorithms and one regulariza-332

tion method.333

PGD Projected gradient descent (PGD, Madry334

et al., 2018) formulates adversarial training algo-335

rithms into solving a minimax problem that mini-336

mizes the empirical loss on adversarial examples337

that can lead to maximized adversarial risk.338

FreeLB Zhu et al. (2019) propose FreeLB to339

improve the generalization of language models.340

By adding adversarial perturbations to word em-341

beddings, FreeLB generates virtual adversarial342

samples inside the region around input samples.343

TAVAT Token-Aware Virtual Adversarial Train-344

ing (TAVAT, Li and Qiu, 2021) aims at fine-grained345

perturbations, leveraging a token-level accumu-346

lated perturbation vocabulary to initialize the per-347

turbations better and constraining them within a348

token-level normalization ball.349

InfoBERT InfoBERT (Wang et al., 2020a) lever-350

ages two mutual-information-based regularizers for351

robust model training, suppressing noisy mutual352

information while increasing mutual information353

between local stable features and global features.354

4.2 Attack Methods and Evaluation Metrics355

Three well-received attack methods are leveraged356

via TextAttack (Morris et al., 2020) for an extensive357

comparison between our proposed method and 358

baseline algorithms. 359

TextFooler (Jin et al., 2020) identifies the impor- 360

tant words for target model and repeats replacing 361

them with synonyms until the prediction of the 362

model is altered. Similarly, TextBugger (Li et al., 363

2018b) also searches for important words and 364

modifies them by choosing an optimal perturbation 365

from the generated several kinds of perturbations. 366

BERTAttack (Li et al., 2020) applies BERT in a 367

semantic-preserving way to generate substitutes for 368

the vulnerable words detected in the given input. 369

We consider four evaluation metrics to measure 370

BERT’s resistance to the mentioned adversarial 371

attacks under different defence algorithms. 372

Clean% The clean accuracy refers to the model’s 373

test accuracy on the original clean dataset. 374

Aua% Accuracy under attack measures the 375

model’s prediction accuracy on the adversarial data 376

deliberately generated by certain attack method. A 377

higher Aua% means a more robust model and a 378

better defender. 379

Suc% Attack success rate is evaluated by the 380

ratio of the number of texts successfully perturbed 381

by a specific attack method to the number of all 382

the involved texts. Robust models are expected to 383

score low at Suc%. 384

#Query Number of queries denotes the average 385

attempts the attacker queries the target model. The 386

larger the number is, the harder the model is to be 387

attacked. 388

4.3 Implementation Details 389

All the baseline methods are re-implemented based 390

on their open-released codes and the results are 391

competing to those reported. We train our models 392

on NVIDIA RTX 3090 and RTX 2080Ti GPUs, 393

depending on the volume of the dataset involved. 394

Most of the parameters such as learning rate and 395

warm-up step are in line with vanilla BERT (Devlin 396

et al., 2019) and the baseline methods. For all of 397

the adversarial methods we set the training step 398

to be 5 for a fair comparison, which is a trade-off 399

between training cost and model performance . The 400

clean accuracy (Clean%) is tested on the whole test 401

dataset. The other three metrics (e.g., Aua%, Suc% 402

and #Query) are evaluated on the whole test dataset 403

for SST-2 and MRPC, and 800 randomly chosen 404

samples for IMDB, AG NEWS, and QNLI. We 405
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Datasets Methods Clean% TextFooler BERT-Attack TextBugger
Aua% Suc% #Query Aua% Suc% #Query Aua% Suc% #Query

IMDB

BERT 95.0 24.5 74.2 1533.15 20.3 76.1 2237.38 48.7 47.7 1160.35
PGD 95.0 26.3 72.1 1194.08 21.3 77.2 1465.83 52.3 46.7 982.02
FreeLB 97.0 29.5 69.9 1816.26 27.6 69.7 1975.21 51.6 45.9 921.35
TAVAT 95.5 27.6 71.9 1205.80 23.1 75.1 2244.77 54.1 44.1 1022.56
InfoBERT 96.3 27.4 72.3 1094.55 20.8 78.3 1428.67 49.8 49.3 1215.39
Flooding-X 97.5 40.5 58.5 2315.35 32.3 65.8 2248.71 62.3 35.8 2987.95

AG NEWS

BERT 97.0 20.5 78.9 372.14 6.5 93.1 477.34 42.7 54.6 192.75
PGD 94.8 37.2 60.8 428.13 32.8 65.7 704.78 58.2 39.1 252.87
FreeLB 94.7 32.3 65.9 405.66 12.7 86.7 573.38 48.8 49.1 210.17
TAVAT 95.2 39.7 58.3 441.11 23.7 75.2 672.52 55.9 41.5 234.01
InfoBERT 94.6 29.2 69.1 406.32 15.6 83.3 598.25 50.7 46.7 201.66
Flooding-X 94.9 42.4 54.9 451.35 27.4 71.0 690.27 62.2 34.0 222.49

SST-2

BERT 92.7 10.8 88.4 111.81 8.8 90.6 149.84 41.3 55.8 54.37
PGD 92.8 16.6 82.1 129.33 11.7 87.7 158.80 43.7 53.8 52.49
FreeLB 92.2 15.4 83.3 128.19 12.1 87.1 160.81 45.1 51.9 53.32
TAVAT 93.0 19.6 79.0 132.85 14.4 85.4 122.95 43.4 54.6 48.46
InfoBERT 92.9 18.6 79.5 114.67 16.6 82.8 138.74 43.2 53.6 50.97
Flooding-X 93.1 34.9 62.4 149.61 27.7 70.7 199.37 51.7 45.3 60.55

QNLI

BERT 91.6 5.3 94.2 161.88 3.5 96.1 216.46 10.9 88.0 98.39
PGD 90.6 28.1 68.9 269.38 24.0 73.6 399.91 33.8 62.8 154.55
FreeLB 90.7 23.3 74.3 243.24 14.6 83.9 294.14 17.1 81.3 136.85
InfoBERT 90.4 23.1 76.5 250.87 11.05 88.8 268.91 12.8 86.9 127.93
Flooding-X 90.8 27.9 69.27 251.17 26.2 71.2 364.06 29.5 67.5 137.12

MRPC

BERT 87.8 6.4 92.8 167.59 7.4 91.5 186.97 12.0 86.2 96.82
PGD 84.3 6.9 92.2 169.01 11.5 86.3 207.90 14.5 82.9 99.90
FreeLB 83.8 8.2 91.0 150.23 10.3 87.7 193.67 12.5 85.1 96.61
InfoBERT 87.7 9.1 86.6 178.16 15.0 77.9 201.26 15.9 76.5 98.87
Flooding-X 88.9 19.9 77.1 263.05 19.4 77.7 251.44 22.3 74.3 114.23

Table 1: Experimental results of different models’ defense performances on five datasets. The best performance is
marked in bold. Clean% stands for the accuracy tested on the original clean dataset. Aua% is short for accuracy
under attack, and Sus% is the attack success rate of the textual attack methods. Notably, a lower Sus% is expected
for a more robust model.

train 10 epochs for each model on each dataset,406

among which the last epochs are selected for the407

comparison of adversarial robustness.408

4.4 Experimental Results409

The extensive results of all the above mentioned410

methods are summarized in Table 1. Generally, our411

Flooding-X method improves BERT by a large412

margin in terms of its resistance to adversarial413

attacks, surpassing the baseline adversarial training414

algorithms on most datasets under different attack415

methods.416

Under TextFooler attack (Jin et al., 2020), our417

algorithm reaches the best robust performance on418

four datasets: IMDB, AG News, SST-2, and MRPC.419

We observe that Flooding is more effective on420

smaller datasets than larger ones, since the smaller421

datasets with shorter training sentences are easier to422

be memorized by the neural network and are more423

likely to cause overfitting. On QNLI dataset where424

Flooding-X fails to win, the accuracy under attack425

is only 0.2 points lower than the 5-step PGD. This426

might be explained by the mild change in gradient427

accordance during training on QNLI dataset, in428

which case the precise stage of overfitting is hard 429

to be identified. Though we believe that a better 430

value of flood level exists and can further boost 431

the performance, we refuse to take on the pattern 432

of extensive hyper-parameter searching which is 433

against the original purpose of Flooding-X. 434

Notably, our method performs better than the 435

baseline adversarial training methods by 5 to 20 436

points on average even without using any adver- 437

sarial examples as training source, not to men- 438

tion the vanilla BERT. Under most cases, our 439

method remains the best performing algorithm fac- 440

ing BERTAttack (Li et al., 2020) and TextBugger 441

(Li et al., 2018b). This proves that our method 442

maintains effectiveness under different kinds of 443

adversarial attacks. As a byproduct, the clean accu- 444

racy of our method is also the best among all the 445

baseline methods, which is inherent to the vanilla 446

Flooding that aims at better generalization. In the 447

cases of AG News and QNLI, our re-implement 448

the results of BERT fine-tuning to 97.0 and 91.6 449

respectively so Flooding-X does not surpass the 450

reported performance, but still outperforming the 451

baselines of our implementation. 452
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5 Analysis and Discussion453

In this section, we construct supplementary ex-454

periments to further analyze the effectiveness of455

Flooding-X and its building block, i.e., gradient456

accordance.457

5.1 Does Gradient Accordance Capture458

Overfitting?459

Influence function (Koh and Liang, 2017) inspects460

the influence of one single training data on the461

model prediction and stiffness (Fort et al., 2019)462

measures how the model updated according to one463

sample affects the model prediction on another.464

Based on these two works, gradient accordance465

is proposed as a means for identifying model466

overfitting at sub-epoch level.467

As seen in Figure 3, during training process, the468

turning point of gradient accordance from negative469

to positive closely matches the point when the test470

loss is about to increase, which is well received as471

a signal of overfitting. Since it is computationally472

intractable to calculate gradient accordance after473

trained on every single batch, we can only figure474

out the range where the model is about to overfit by475

computing gradient accordance at sub-epoch level.476

Figure 3: Gradient accordance and training/test loss
of each BERT epoch finetuned on SST-2 and MRPC
datasets. The grey dashed line represents zero gradient
accordance, above which is the model considered to
be overfitted. The region marked in yellow and green
are the ranges of training iterations where the gradient
accordance changes from positive to negative for MRPC
and SST-2 respectively.

5.2 How does Flooding-X Help with477

Robustness?478

Despite its outstanding performance of the last479

training epoch, we find that Flooding-X boosts the480

robustness of model at an earlier stage than stan-481

dard fine-tuning and adversarial training methods482

like FreeLB. As is shown in Figure 4, Flooding-X483

Figure 4: Loss and Aua% (accuracy under attack) of
BERT trained on SST-2 under different methods. Flood-
ing prevents the training loss from approaching zero and
results in great improvement of BERT’s resistance to
adversarial attacks.

improves BERT’s adversarial robustness to a rela- 484

tively high level at epoch 5, which is competitive 485

with that of standard fine-tuning at the last epoch. 486

Besides, Flooding-X accelerates the increase of 487

robustness at late training stage. Starting from 488

epoch 7 our method enables a steep increment on 489

the accuracy under attack, which is due to the effect 490

of Flooding that forces the model to perform a more 491

fierce “random walk” since the training loss of most 492

batches are going below the flooding level. It is also 493

demonstrated that the training loss stops approach- 494

ing zero under the constraint of Flooding-X, while 495

the standard fine-tuning and adversarial training 496

continues to decrease the training loss towards zero 497

which brings about the risk of overfitting. 498

Method SST-2 QNLI IMDB

Finetune 260 1, 193 1, 059

Flooding-X 272 1,222 1,087

TAVAT 967 4, 105 4, 609

FreeLB 1, 041 4, 340 4, 457

PGD 1, 305 5, 571 5, 664

InfoBERT 2, 174 12, 077 19, 279

Table 2: GPU time consumption (seconds) of training
one epoch on the whole dataset. Flooding-X costs nearly
the same as fine-tuning and 2-15 times less than the
baseline adversarial training algorithms.

5.3 Time Consumption 499

To further reveal the strength of Flooding-X besides 500

its robustness performance, we compare its GPU 501

training time consumption with baseline methods 502
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on several datasets of different sizes. For a fair503

comparison, every model of each dataset is trained504

on single NVIDIA RTX 2080Ti GPU with the same505

batch size, among which models on SST-2 are506

trained with a batch size of 32 while QNLI and507

IMDB are trained with 8 and 4 respectively since508

the training sentences are way longer than SST-2.509

As is demonstrated in Table 2, the time consump-510

tion (seconds) of Flooding-X is competitive with511

standard fine-tuning, which is far less than that of512

adversarial training algorithms.513

6 Related Work514

Adversarial Training Adversarial training (AT)515

is a well-received method for defending adversarial516

attacks. As an attempt against adversarial attacks,517

AT generates gradient-based adversarial samples518

and leverage them for further training (Goodfellow519

et al., 2014). A line of works try different means520

for the generation of adversarial examples. The521

PGD algorithm (Madry et al., 2018), compared522

as a baseline method in our experiments, involves523

multiple projected gradient ascent steps to find the524

adversarial perturbations which are then used for525

updating the model parameters. However, it is526

computationally expensive and has aroused many527

attempts to cut down on the cost. Shafahi et al.528

(2019) and Zhu et al. (2019) focus on finding better529

adversarial sample while maintaining a low cost.530

Despite gradient-based methods which generates531

adversarial perturbations on the continuous input532

embedding, some works tailor AT for NLP fields.533

The adversarial examples are generated by replac-534

ing the original texts based on certain rules such as535

semantic similarity (Alzantot et al., 2018; Jin et al.,536

2020; Li et al., 2020). Ebrahimi et al. (2018) pro-537

pose a perturbation strategy that conducts character538

insertion, deletion, and replacement. Jia and Liang539

(2017) mislead MRC models via a human-involved540

phrase generation method.541

The mentioned algorithms of AT generates ad-542

ditional adversarial examples either by calculating543

gradients or by human force, which is computation-544

ally expensive and effort taking.545

Overfitting and Criterion Deep neural networks546

are shown to suffer from overfitting to training547

configurations and memorise training scenarios548

(Takeoka et al., 2021; Rodriguez et al., 2021;549

Roelofs et al., 2019; Werpachowski et al., 2019),550

which leads to poor generalization and vulnerabil-551

ity towards adversarial perturbations.552

One way of identifying overfitting is to see 553

whether the generalization gap, i.e., the test minus 554

the training loss, is increasing or not (Goodfellow 555

et al., 2016). Ishida et al. (2020) further decompose 556

the situation of the generalization gap increasing 557

into two stages: The first stage is when training and 558

test losses are both decreasing, but the former is 559

decreasing faster then the latter. The next stage 560

is when the training loss is decreasing but the 561

test loss is increasing, after which the training 562

loss continues to approach zero and memorize the 563

training data completely (Zhang et al., 2021; Belkin 564

et al., 2018; Arpit et al., 2017). Derived from 565

influence function (Koh and Liang, 2017), Fort 566

et al. (2019) propose the concept of Stiffness as a 567

new perspective of generalization. They measure 568

how stiff a network is by looking at how a small 569

gradient step in the network parameters on one 570

example affects the loss on another example. This 571

criterion carries is theoretically proved to have a 572

close relation with generalization and overfitting. 573

However, from the practical perspective, it is com- 574

putationally intractable to compute the stiffness 575

between every single sample during the process of 576

standard training where thousands of samples are 577

involved in one batch. 578

7 Conclusion 579

In this work, we propose Flooding-X as an ef- 580

ficient and computational-friendly algorithm for 581

improving BERT’s resistance to adversarial attacks. 582

We first theoretically prove that the vanilla Flood- 583

ing method is able to boost model’s adversarial 584

robustness by leading it into a smooth parameter 585

landscape. We further propose a promising and 586

computationally tractable criterion, Gradient Ac- 587

cordance, to detect when the model is about to 588

overfit and accordingly narrow down the hyper- 589

parameter space for Flooding with an optimal flood 590

level guaranteed. Experimental results prove that 591

gradient accordance is closely related with the 592

phenomenon of overfitting, equipped with which 593

Flooding-X beats the well-received adversarial 594

training methods and achieves state-of-the-art per- 595

formances on various NLP tasks facing different 596

textual attack methods. This implies that adversar- 597

ial examples, either generated by gradient-based 598

algorithms or human efforts, are not a must for the 599

improvement of adversarial robustness. We call for 600

further exploring and deeper understanding in the 601

nature of adversarial robustness and attacks. 602
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