
kNN-ICL: Compositional Task-Oriented Parsing Generalization with
Nearest Neighbor In-Context Learning

Anonymous ACL submission

Abstract

Task-Oriented Parsing (TOP) enables conversa-001
tional assistants to interpret user commands ex-002
pressed in natural language, transforming them003
into structured outputs that combine elements004
of both natural language and intent/slot tags.005
Recently, Large Language Models (LLMs) have006
achieved impressive performance in synthe-007
sizing computer programs based on a natural-008
language prompt, mitigating the gap between009
natural language and structured programs. Our010
paper focuses on harnessing the capabilities of011
LLMs for semantic parsing tasks, addressing012
the following three key research questions: 1)013
How can LLMs be effectively utilized for seman-014
tic parsing tasks? 2) What defines an effective015
prompt? and 3) How can LLM overcome the016
length constraint and streamline prompt design017
by including all examples as prompts? We intro-018
duce k Nearest Neighbor In-Context Learning019
(kNN-ICL), which simplifies prompt engineer-020
ing by allowing it to be built on top of any de-021
sign strategy while providing access to all demo022
examples. Extensive experiments show that: 1)023
Simple ICL without kNN search can achieve024
a comparable performance with strong super-025
vised models on the TOP tasks, and 2) kNN-026
ICL significantly improves the comprehension027
of complex requests by seamlessly integrating028
ICL with a nearest-neighbor approach. Notably,029
this enhancement is achieved without the need030
for additional data or specialized prompts.031

1 Introduction032

Task-Oriented Parsing (TOP), which aims to trans-033

late the natural-language commands from users034

into specific actions, such as booking a restaurant,035

is an essential component in conversational sys-036

tems (Chen et al., 2020; Budzianowski et al., 2018;037

Wu et al., 2023). Over the past few years, a wide038

range of methods have been developed, ranging039

from rule-based methods (Zelle and Mooney, 1996;040

Dong and Lapata, 2018) to neural program syn-041

thesis methods (Shin et al., 2019; Mansimov and042

Utterance: Driving directions to the Eagles game
Semantic Parse Tree Representation:

API:
GET_DIRECTIONS (DESTINATION =
 GET_EVENT (NAME_EVENT = “ Eagles “),
 CAT_EVENT = “ game “)

Driving directions to SL:DESTINATION

IN:GET_EVENT

SL:NAME_EVENT

Eagles

SL:CAT_EVENT

game

IN: GET_DIRECTIONS

the

Figure 1: Reduction of an utterance from Topv2 with
semantic parse tree to Python style API.

Zhang, 2022; Drozdov et al., 2022). 043

The recent advancements in TOP involve for- 044

mulating the task as a sequence-to-sequence prob- 045

lem, relying on a wealth of labeled data. This pro- 046

cess typically entails feeding user utterances into 047

Transformer models (Liu et al., 2019; Devlin et al., 048

2018; Raffel et al., 2020) and designing specialized 049

Transformer architectures to generate structured 050

outputs that combine natural language with intent 051

and slot tags like "IN:" and "SL:". Some alternative 052

approaches attempt to reframe TOP as conventional 053

tasks, such as canonical paraphrasing (Shin et al., 054

2021) and abstractive question answering (Zhao 055

et al., 2022). These approaches aim to reduce the 056

model’s burden by eliminating the need to ratio- 057

nalize non-linguistic labels that were not part of 058

pre-training. However, in real-world scenarios, ob- 059

taining high-quality training examples with expert 060

annotations can be challenging. Additionally, API 061

documentation, which contains valuable informa- 062

tion, often remains underutilized within the fine- 063

tuning paradigm. 064

On the contrary, Large Language Models (LLMs) 065

excel in challenging few-shot scenarios, where they 066

only need a few examples to generate the desired 067

output and can also understand extensive API doc- 068

1

umentation. In this paper, we delve into an exam-069

ination and analysis of the performance of ICL070

in the context of TOP. Besides, following a com-071

prehensive review of prompt design strategies, we072

introduce kNN-ICL, which offers adaptable inte-073

gration with any prompt design strategy, further074

augmenting model performance.075

We conducted experiments using three repre-076

sentative models: GPT-Neox-20B (Black et al.,077

2022), CodeGen-16B-Multi (Shin et al., 2019), and078

Codex (Chen et al., 2021) code-davinci-002 to as-079

sess the performance of LLMs in TOP. Our re-080

search revolves around three key questions:081

Question 1: How can we effectively leverage082

LLMs for TOP tasks? We transform TOP into083

a code generation task, mapping semantic parse084

trees to Python code (referred to as ‘API’ hereafter)085

to align with LLMs’ output format, as shown in086

Figure 1.087

Question 2: What constitutes proper prompt088

design for TOP using LLMs? We analyze ICL089

performance under various prompt design strate-090

gies, including factors: API documentation and ex-091

emplar selection methods. Our findings include:092

API documentation benefits the more powerful093

CODEX model but can be distracting for the less-094

capable CODEGEN and GPT-NEOX models. Un-095

supervised demo selection proves most effective096

with ICL, thanks to its flexibility in capturing se-097

mantically similar examples holistically.098

Question 3: How can we overcome the LLM’s099

length constraint and simplify prompt design by100

including all examples as prompts? Instead of101

solely focusing on LLM performance through com-102

plex prompt design strategies, we draw inspiration103

from the retrieval language model approach (Khan-104

delwal et al., 2019, 2021) and introduce kNN-ICL.105

kNN-ICL enables LLMs to access all available106

demo exemplars during inference, harnessing syn-107

ergy between the copy mechanism and the labeling108

task. We tackle two key challenges. First, how to in-109

fuse TOP knowledge into LLMs, considering their110

limited domain expertise due to the scarcity of la-111

beled data? We address this by including a few112

demos as kNN-ICL prompts, guiding LLMs to113

follow the desired output pattern. Second, how to114

retrieve the nearest neighbor when there’s a repre-115

sentation discrepancy between the kNN-ICL data-116

store and the LLM prompt? To address this chal-117

lenge, instead of using the hidden state ht directly118

from the LLM as the current step representation,119

we utilize a combination of the target utterance and 120

previously generated words from the LLM at time 121

step t. This ensures consistency in representation 122

between the kNN-ICL datastore and LLMs, offer- 123

ing flexibility in adapting to various prompt design 124

strategies. 125

In summary, our contributions can be distilled 126

into three key aspects: 1). We examine prompt de- 127

sign strategies for LLMs in the context of TOP 128

by framing TOP as a code generation task. We 129

conclude that similarity-based demo selection is ef- 130

fective for both black-box and open-source models, 131

with stronger LLMs benefiting more from docu- 132

mentation; 2). We introduce kNN-ICL to address 133

the length constraints of LLMs, offering flexibility 134

to integrate with any prompt design strategy; and 135

3). Extensive experimental results showcase that 136

kNN-ICL can enhance the generation of better- 137

nested API structures by leveraging guidance from 138

nearest neighbors. 139

2 Methodology 140

In this section, we outline the methodology em- 141

ployed in this study. Our approach consists of two 142

key components: (1) Prompt Design for Seman- 143

tic Parsing (Section 2.3): We begin by crafting an 144

effective prompt for TOP. This involves varying 145

two crucial elements within the prompt: API doc- 146

umentation and exemplar selection strategies. (2) 147

Integration with kNN-ICL (Section 2.4): we then 148

integrate all the exemplars to LLM in kNN-ICL. 149

This integration allows us to harness the collective 150

knowledge from all exemplars within the demo 151

pool, enhancing the generation of the semantic 152

parse API. 153

2.1 Preliminaries 154

In-Context Learning (ICL), which involves no pa- 155

rameter updates or fine-tuning for downstream 156

tasks, has demonstrated competitiveness across 157

multiple Natural Language Understanding (NLU) 158

and Natural Language Generation (NLG) tasks. 159

Typically, prompts are designed as task instruc- 160

tions, often comprising a few exemplars paired with 161

input-output examples retrieved from a demo pool. 162

However, due to the limited input length of LLMs, 163

the number of exemplars is constrained. 164

More recently, the concept of retrieval language 165

models (Khandelwal et al., 2019; Borgeaud et al., 166

2022) has emerged. In this paradigm, language 167

models have access to extensive corpora and em- 168

2

LLM

Datastore kNN Search Normalization Aggregation

[Input] ;
[Input] ; GET_DISTANCE (
[Input] ; GET_DISTANCE (UNIT_DISTANCE =
[Input] ; GET_DISTANCE (UNIT_DISTANCE =
miles,
…

GET_DISTANCE
UNIT_DISTANCE
miles
SOURCE
…

Training Contexts Target Token
GET_EVENT
UNIT_DISTANCE
SOURCE
GET_EVENT
GET_DISTANCE

3.3
0.9
0.5
2.3
1.5

GET_EVENT
UNIT_DISTANCE
SOURCE
GET_EVENT
GET_DISTANCE

0.39
0.11
0.06
0.27
0.18

GET_EVENT
UNIT_DISTANCE
SOURCE
GET_DISTANCE

0.66
0.11
0.06
0.18

Next Token Prob

GET_EVENT
GET_DISTANCE
…

0.30
0.10
…

Interpolation

GET_EVENT
GET_DISTANCE
…

0.41
0.12
…

next token
embedding

Driving directions to the Eagles game; GET_DIRECTIONS (DESTINATION =

Input: How many miles between Cleveland and Dallas
Label: GET_DISTANCE (UNIT_DISTANCE=miles,SOURCE=...

Demo
Pool

✔

Figure 2: An illustration of kNN-ICL at decoding time step t. The input to LLM is the user utterance “Driving di-
rections to the Eagles game” combined with the previously generated output “GET_DIRECTIONS (DESTINATION
=”. The target token “GET_EVENT” is generated as output.

ploy explicit memory mechanisms for text gener-169

ation. This approach has proven to enhance the170

capabilities of language models significantly.171

2.2 Reduction to Code Generation172

We utilize pre-trained code style knowledge, as173

found in models like CODEX, CODEGEN, and174

GPT-NEOX, trained on extensive code style cor-175

pora. We transform the API representations into176

Python code style, mapping the root node’s intent177

name from the TOP semantic parse tree to the out-178

ermost Python function name. The tree branches179

serve as variable-value pairs within the Python180

function structure, enabling effective use of pre-181

trained code style knowledge.182

2.3 Prompt Design for Semantic Parsing183

The fundamental prompt design for TOP184

consists of three core elements: “[API185

documentation]+[exemplars]+[target186

utterance].” The target utterance represents187

the expected prediction by the LLMs, based on the188

provided prompt. We will delve into the first two189

components in the subsequent discussion.190

2.3.1 API Documentation191

In each domain, the API name, which includes192

intent and slot names from the TOP dataset, is rep-193

resented symbolically, like GET_LOCATION. The194

API document or description offers natural lan-195

guage explanations of the domain service, aiding196

pre-trained LLMs in comprehension.197

2.3.2 Demo Selection198

We explore three exemplar selection strategies.199

Random Selection Exemplars are randomly drawn200

from the demo pool to create the prompt.201

Unsupervised Selection with SentenceBERT Uti-202

lizing SentenceBERT, we generate sentence-level203

embeddings for both the target utterance and all 204

exemplar utterances. We rank the cosine similar- 205

ity scores for all demos in the pool and select the 206

top-k most similar exemplars. In experiments, we 207

set the number of exemplars (m) to 10 for all three 208

models. 209

Supervised Selection with Paraphrasing In con- 210

trast to SentenceBERT, we train a more precise 211

classifier to rank utterances based on the similarity 212

at the outermost intent level. We frame the simi- 213

larity ranking as a paraphrasing task. To construct 214

pairwise data for the paraphrase model, we label 215

[a, b] as True if a and b share the same intent 216

name from a parent node of the semantic parse tree, 217

where b is sampled from the demo pool. For each 218

utterance a, the ratio of constructed True pairs to 219

False pairs is 1 to 5. During inference, we use 220

the probability of predicting the label True as the 221

ranking score. 222

2.4 k-Nearest Neighbour In-Context Learning 223

LLMs face a limitation in fully utilizing the exem- 224

plar information from the demo pool, making the 225

demo selection strategy a critical factor influenc- 226

ing generation quality for ICL. Here, we introduce 227

a comprehensive model, kNN-ICL, designed to 228

enable ICL to consider all demo exemplars from 229

the demo pool, irrespective of the length constraint 230

imposed by LLMs. 231

An Overview of kNN-ICL is shown in Figure 2: 232

kNN-ICL leverages both LLMs’ predictions and k 233

nearest neighbor search to generate the final predic- 234

tion. This involves probability distribution over the 235

LLMs’ vocabulary during the decoding process and 236

the retrieval of the top-k nearest neighbors from the 237

datastore. 238

A challenge for kNN-ICL arises from the need 239

to copy a span from the target utterance as a slot 240

3

value, a requirement of the TOP task. Unfortu-241

nately, traditional kNN-LM (Khandelwal et al.,242

2019) or kNN-MT (Khandelwal et al., 2020) meth-243

ods do not naturally support this. Furthermore, the244

constrained size of the demonstration pool may245

not encompass all potential slot values during the246

inference process. To tackle these challenges, we247

undertake the following steps:248

LLM prompt kNN-ICL bridges the informa-249

tion formality gap between LLM and the data-250

store. ICL has demonstrated promising copying251

ability from target utterances. Hence, we prompt252

the LLMs with a combination of exemplars and253

the target utterance to compensate for the limited254

datastore records, ensuring that the slot value is255

grounded in the target utterance.256

Datastore Creation We create a datastore offline,257

comprising multiple key-value pairs. The key repre-258

sents the contextualized representation of the input259

sentence encoded by LLM, and the value corre-260

sponds to the subsequent token of the input sen-261

tence. Given a set of training contexts denoted as262

C and a target represented as T , the formulation of263

the datastore D is as follows:264

D
def
= (K,V) = {(f(ci), ti)|
∀ci ∈ C,∀ti ∈ T, (ci, ti) ∈ (C, T)}

(1)265

For each example in the training set, we store multi-266

ple datastore records containing only tokens corre-267

sponding to the semantic parsing labels as targets.268

Similarity Search Another challenge arises be-269

cause the hidden state produced by LLM at time270

step t resides in a different representation space271

than the datastore. To address this, at time step t272

when generating token yt, we calculate the current273

hidden state representation as a combination of the274

target utterance s and the previously generated API275

tokens y1...i−1. This alignment ensures compatibil-276

ity with the datastore representation space. Given277

the limited size of the datastore in TOP, the distri-278

bution of retrieved k nearest neighbors tends to be279

skewed. To mitigate overfitting to the most simi-280

lar retrieval, we introduce a temperature parameter281

Temp to flatten the distribution.282
283

pkNN (yt|c, y1:t−1) ∝284 ∑
(kj ,vj)∈N

1yt=vj exp

(
−Dis(kj , f(c, y1:t−1))

Temp

)
(2)

285

Interpolation The decoding process involves in- 286

terpolating the k nearest neighbor from the datas- 287

tore with the language model distribution. To en- 288

able the model to accurately predict slot values by 289

copying spans from the target utterance, we employ 290

the full vocabulary from LLM rather than restrict- 291

ing it to the intersection between LLM vocabulary 292

and the k nearest neighbor vocabulary. 293
294

p(yt|x, y1:t−1) = λpkNN (yt|c, y1:t−1) 295

+ (1− λ)plm(yt|x, y1:t−1) (3) 296

kNN-ICL vs. kNN-MT kNN-ICL is a generaliza- 297

tion of kNN-MT for conditional generation tasks 298

using In-Context Learning (ICL), seamlessly inte- 299

grating with LLMs. It introduces some significant 300

differences compared to kNN-MT. First, the LLM 301

conditions not only on the source sequence but also 302

on the provided prompt, which typically includes 303

a few selected demonstrations. This enables the 304

LLM to align more closely with the pattern of the 305

target demonstration. Second, while the datastore 306

in kNN-MT is constructed solely from the source 307

and target mappings, the LLM produces representa- 308

tions that are conditioned on the entire prompt and 309

target. This results in a discrepancy when selecting 310

the k nearest neighbors. To address this, we rely 311

on representations derived from both the source 312

and the previously generated tokens in the target to 313

ensure consistency during similarity search. 314

3 Experiments 315

In this section, we address the following key 316

research questions through our experiments: (1) 317

What constitutes an effective prompt design to en- 318

hance the performance of LLMs? (2) How does 319

ICL compare to state-of-the-art supervised models 320

on TOP tasks? (3) What impact does kNN-ICL, 321

which incorporates all available demo examples 322

from the demo pool through interpolation, have on 323

prediction quality? 324

3.1 Dataset, LLMs, and Evaluation 325

We conduct experiments on the TOPv2 326

dataset (Chen et al., 2020), an extension of 327

the TOP (Gupta et al., 2018) dataset designed for 328

voice assistants. TOPv2 encompasses 8 domains, 329

including 6 new additions, providing a diverse 330

range of task-oriented semantic parsing examples. 331

Due to the resource-intensive nature of running 332

LLMs, we select 4 representative domains for 333

our testing: Navigation, Reminder, Alarm, and 334

4

Exemplars Doc GPT-NEOX CODEGEN CODEX

Random ✗ 2.02 3.54 19.20
Unsupervised ✗ 6.23 10.27 36.03

Supervised ✗ 4.04 9.60 37.54

Random ✓ 1.68 3.37 26.43
Unsupervised ✓ 4.04 7.91 39.23

Supervised ✓ 4.04 9.43 41.25

Table 1: Exact Match results for TOPv2 dataset on
Navigation domain using LLMs with varying prompt
components.

Weather. These domains were chosen based on335

their complexity, with Navigation and Reminder336

representing more intricate domains with complex337

nested semantic parses and a larger number of338

intent slot names, while Alarm and Weather339

offer relatively simpler examples with fewer340

complexities in terms of intent and slot names.341

For our experiments, we employ GPT-342

Neox-20B (Black et al., 2022), CodeGen-16B-343

Multi (Shin et al., 2019), and Codex (Chen et al.,344

2021) (code-davinci-002) to assess the345

performance of LLMs in ICL. GPT-Neox and346

CodeGen models are publicly available and can be347

hosted locally, whereas Codex is accessible solely348

through a commercial API provided by OpenAI.349

Codex cannot be downloaded and implemented350

directly with our proposed method kNN-ICL.351

Hence, we employ CodeGen and GPT-Neox for352

experimenting with kNN-ICL.353

We evaluate model performance using exact354

match criteria, where a prediction is considered355

correct (scored as 1) if it matches the ground-truth356

precisely and incorrect (scored as 0) if there is any357

discrepancy between the prediction and the ground-358

truth. This evaluation metric disregards the order359

of the semantic parse tree branches, focusing solely360

on the correctness of the prediction.361

3.2 Baselines362

We consider three sets of baselines. Supervised363

State-of-the-Art Models: To establish a perfor-364

mance benchmark for LLMs on TOP, we include365

supervised state-of-the-art models. RINE (Man-366

simov and Zhang, 2022) introduces a recursion367

insertion-based encoder tailored for TOP, breaking368

the task into smaller steps where each step predicts369

either an intent or slot name along with its starting370

and ending positions. CodeT5 (Wang et al., 2021),371

a unified pre-trained encoder-decoder model based372

on T5, showcases strong performance in code gen-373

eration tasks. ICL: Unless specified otherwise, we 374

will use ICL with randomly selected demos as the 375

prompt. kNN-LM: In this baseline, we use kNN- 376

LM without the inclusion of exemplar prompts for 377

LLMs. 378

3.3 Implementation Details 379

For ICL, we utilize 10 exemplars to construct the 380

prompt for LLMs. In the case of kNN-ICL, we 381

explore a range of parameter values, including tem- 382

perature (chosen from 50, 100, 200, 300, 400, 500), 383

interpolation weight (selected from 0.1, 0.3, 0.5, 384

0.7), and the number of neighbors (picked from 385

20, 100, 1000). We conduct an exhaustive search 386

for the best parameter combinations within each 387

domain. We use FAISS (Johnson et al., 2019), an 388

open-source library for fast nearest-neighbor re- 389

trieval in high dimensional spaces. 390

Our experiments are conducted on machines 391

equipped with 8 Tesla V100 GPUs, each with 392

16GB of memory. In the context of kNN-ICL, the 393

inference batch size is set to 3 for CODEGEN and 394

1 for GPT-NEOX, respectively. 395

To assess kNN-ICL’s performance, we estab- 396

lish the SPIS10 data split for each domain, where 397

each domain comprises a maximum of 10 exam- 398

ples for intent or slot labels, simulating a few-shot 399

setting. Additionally, we evaluate kNN-ICL on 400

a larger data setting with a demo pool containing 401

2000 randomly sampled examples. 402

3.4 Prompt Design Results (RQ1) 403

Table 1 presents the exact match scores achieved 404

through the ablation of different prompt compo- 405

nents, including the presence of API documentation 406

and the use of three exemplar selection strategies. 407

Due to resource constraints, we randomly selected 408

20% of the validation data from the Navigation 409

domain, resulting in 596 examples. Additionally, 410

we include the results obtained using RINE and 411

CodeT5 to provide a benchmark for ICL by compar- 412

ing them with fine-tuning state-of-the-art results. 413

To summarize, first, the best performance for 414

GPT-NeoX and CodeGen is achieved with prompts 415

that do not include API documentation and utilize 416

similarity-based selection strategies. This suggests 417

that these two models struggle to leverage the doc- 418

umentation due to the input sequence length lim- 419

itations, making it challenging to extract useful 420

information. However, Codex benefits from API 421

documentation when combined with the Sentence- 422

BERT similarity strategy. This difference may be 423

5

LLM Method Navigation Reminder Alarm Weather Avg

CODET5
FINE-TUNE

10.02 6.61 15.72 6.60 9.74
RINE 42.28 36.87 32.09 32.53 35.94

GPT-NEOX
ICL 1.81 5.28 9.54 16.56 8.30
kNN-LM 1.22 3.48 6.54 2.28 3.38
kNN-ICL 5.69 8.48 19.40 24.52 14.52

CODEGEN

ICL 3.94 5.99 10.88 13.84 8.66
kNN-LM 0.51 0.14 5.07 1.01 1.68
kNN-ICL 8.37 10.49 19.10 25.19 15.79

CODEX
ICL 18.78 30.46 45.08 45.70 35.01
kNN-ICL ∗ 35.74 41.36 57.56 53.35 47.00

Table 2: Results of Exact Match on SIPS10 demo pool. We selected four domains using three LLMs: GPT-NEOX,
CODEGEN, and CODEX on TOP. ICL refers to vanilla LM using randomly selected examples as demo; kNN-LM
uses the external dataset as retrieval pool while no demo is used as prompt; and kNN-ICL is the proposed method
using retrieved demo and external datastore. ∗ indicates an estimated result from the black-box CODEX model using
retrieved semantic similar demo examples.

attributed to Codex’s stronger capacity to handle424

longer prompts and effectively utilize API docu-425

mentation.426

When comparing the SentenceBERT and para-427

phrase similarity-based selection strategies, Sen-428

tenceBERT yields a better prompt when documen-429

tation is not included. The paraphrased model pro-430

vides higher-quality exemplars in terms of outer-431

most intent name similarity, but it falls short of432

capturing the nested semantic parse tree structure,433

which is crucial for predicting the correct API.434

3.5 ICL vs. Supervised Methods (RQ2)435

Table 2 reports the results for supervised models:436

RINE and CODET5 on the few-shot setting. We cre-437

ate SPIS10 data split for each domain in which each438

domain contains at most 10 examples for intent or439

slot label.440

We compare ICL with fine-tuned SOTA mod-441

els. Since CODEX is a black-box model, we use442

the top-k most similar examples as prompt to esti-443

mate its kNN-ICL performance, as shown in Ta-444

ble 2. We observed that the CODEX model consis-445

tently outperforms RINE by an average margin of446

11.06 across four domains, with notable improve-447

ments of 4.5%, 25.5%, and 20.8% in the Reminder,448

Alarm, and Weather domains, respectively. How-449

ever, RINE shows better performance on the most450

challenging domain Navigation. To summarize, the451

CODEX model demonstrates superior performance452

over SOTA models especially on flattener domains,453

while slightly under-performs on the domain with454

more challenging examples. Although GPT-NEOX455

and CODEGEN models lag behind CODET5 and456

RINE model, CODEX results show the potential of 457

ICL from the high capacity model. 458

3.6 kNN-ICL Results (RQ3) 459

Few-shot setting In Table 2, we showcase the re- 460

sults for our novel approach, kNN-ICL, alongside 461

the baseline method, kNN-LM. From this table, 462

we can observe that kNN-ICL outperforms kNN- 463

LM across all domains, demonstrating its effec- 464

tiveness in leveraging prompts for TOP. Notably, 465

kNN-ICL achieves improvements of 11.1% and 466

14.1% when compared to kNN-LM, using GPT- 467

NEOX and CODEGEN, respectively. 468

We also compare kNN-ICL with its ICL coun- 469

terpart. The results show that for GPT-NEOX and 470

CODEGEN, kNN-ICL provides a boost in perfor- 471

mance across an average of four domains, with 472

gains of 6.22% and 7.13% in exact match scores. 473

It’s worth noting that our datastore size is limited, 474

containing approximately 100 examples, which 475

matches the size of the demo pool. Therefore, kNN- 476

ICL effectively leverages all available example in- 477

formation to achieve these improved results. 478

Scale Up We conducted experiments to test the 479

performance of kNN-ICL on a larger datastore, 480

which includes 2000 examples. The goal was to 481

determine if kNN-ICL could benefit more from 482

a larger datastore compared to kNN-LM. When 483

comparing kNN-ICL with kNN-LM, we found 484

that the performance gap between the two models 485

becomes larger in the presence of the larger data- 486

store. Notably, kNN-ICL outperforms kNN-LM 487

by 20.3% and 19.0% using CODEGEN and GPT- 488

NEOX as backbone models respectively. Further- 489

6

LLM Method Navigation Reminder Alarm Weather average

CODEGEN

ICL-Retrieve 37.00 23.40 48.10 65.80 43.58
kNN-LM 21.30 3.10 26.99 46.60 24.50
kNN-ICL 38.20 24.20 50.40 66.60 44.85

GPT-NEOX
ICL-Retrieve 33.40 24.10 46.70 65.70 42.48
kNN-LM 14.30 6.70 33.50 40.00 23.63
kNN-ICL 33.30 24.00 46.90 66.30 42.63

Table 3: Results for Exact Match on a randomly sampled pool of 2000 demonstrations, illustrating the scalability of
kNN-ICL.

Depth
GPT-NEOX CODEGEN

ICL kNN-ICL ICL kNN-ICL

1 2.53 6.42 5.90 10.16
2 1.14 5.72 1.72 6.45
3 0.00 1.93 0.16 4.98

Table 4: Analysis of accuracy with respect to nesting
depth (1/2/3) for the TOPv2 dataset in the Navigation
domain using different models.

more, we compared kNN-ICL to ICL-Retrieve, a490

method that retrieves the most semantically similar491

example from the demo. In this comparison, kNN-492

ICL outperforms CODEGEN by 1.2%, 0.8%, 2.3%,493

and 0.8% on the Navigation, Reminder, Alarm, and494

Weather domains, respectively. This improvement495

highlights that even when a demo selection strat-496

egy is fixed, kNN-ICL can still bring about perfor-497

mance enhancements.498

For GPT-NEOX, the kNN-ICL shows similar499

performance on the Navigation and Reminder do-500

mains, with a slight improvement observed in the501

Alarm and Weather domain.502

3.7 Additional Analysis: Depth vs. Accuracy503

Table 4 illustrates the model’s performance con-504

cerning the semantic depth in the Topv2 dataset.505

Our analysis focuses on the Navigation domain,506

which contains the most complex average semantic507

parse tree depth. Notably, ICL on GPT-NEOX and508

CODEGEN exhibits a consistent performance drop509

with increasing depth. On the other hand, kNN-510

ICL significantly enhances the performance of ex-511

amples compared to its ICL counterpart.512

3.8 Case Study513

In order to assess the performance of state-of-the-514

art models, specifically ICL, kNN-LM, and kNN-515

ICL, we present a case study in Figure 3. This516

case study provides examples of utterances, corre-517

sponding ground-truth APIs, and model predictions.518

Utterance: How long will it take to drive to New Orleans if I leave
my house at 3 am
GroundTruth: GET_ESTIMATED_DURATION
(METHOD_TRAVEL = " drive " , DESTINATION = " New Orleans
" , SOURCE = GET_LOCATION_HOME (CONTACT = " my ") ,
DATE_TIME_DEPARTURE = " at 3 am ")

CodeT5: GET_ESTIMATED_DURATION (METHOD_TRAVEL =
" drive ", DESTINATION = GET_LOCATION (POINT_ON_MAP =
" New Orleans "), DATE_TIME_DEPARTURE = " at 3 am ")

ICL: "GET_ESTIMATED_DURATION (METHOD_TRAVEL =
“ drive " , SOURCE = GET_LOCATION_HOME
(CONTACT_RELATED = " my ") , DESTINATION =
GET_LOCATION_WORK (CONTACT = " my ") ,
DATE_TIME_ARRIVAL = " at 3 am ")

kNN-LM: GET_INFO_TRAFFIC (LOCATION = GET_LOCATION
())

kNN-ICL: GET_ESTIMATED_DURATION (METHOD_TRAVEL
= " drive ", DESTINATION = " New Orleans ", SOURCE =
GET_LOCATION_HOME (CONTACT = " my “),
DATE_TIME_DEPARTURE = " at 3 am ")

Figure 3: A case study from Topv2. The wrong intent
and slot name from prediction are marked in red, and
the hallucinated nested API call is marked in blue. The
ICL, kNN-ICL, kNN-LM uses GPT-NEOX model.

The showcased example includes a nested semantic 519

parse tree structure with a depth of 3. 520

First, CODET5 exhibits overall good qual- 521

ity, except for hallucinating the slot name 522

POINT_ON_MAP on the deepest tree branch. 523

However, ICL had a hard time generating 524

API calls for deeper-level APIs, such as hallu- 525

cinating GET_LOCATION_WORK (CONTACT 526

= " my ") for slot DESTINATION. kNN- 527

LM suffers from the wrong outermost intent name 528

prediction as well as the slot name prediction be- 529

cause no prompt is provided, causing severe devi- 530

ation from the expected output. In contrast, kNN- 531

ICL performs best on this complex example with 532

the aid of both prompting, producing an accurate 533

utterance span as a slot value, and the k nearest 534

neighbor guidance, choosing the proper nested API 535

structure. 536

7

4 Related Work537

Semantic Parsing Semantic parsing plays a vi-538

tal role in developing commercial personal as-539

sistants for understanding spoken language. Su-540

pervised models, including sequence-to-sequence541

models (Mesnil et al., 2013; Liu and Lane, 2016)542

and pretrained language models (Devlin et al.,543

2018; Chen et al., 2019), have demonstrated com-544

petitive performance. In structured semantic pars-545

ing, recent approaches break down semantic tree546

construction into multiple steps. For instance,547

RINE (Mansimov and Zhang, 2022) recursively in-548

serts predicted labels at predicted positions to con-549

struct the semantic parse tree. Additionally, some550

methods, like (Zhao et al., 2022), transform seman-551

tic parsing into multi-turn abstractive question an-552

swering. In few-shot scenarios, techniques such as553

meta-learning (Chen et al., 2020) and label seman-554

tics (Paolini et al., 2021; Desai et al., 2021) enhance555

neural semantic parsers. Furthermore, (Shu et al.,556

2022) simplifies semantic parsing to program syn-557

thesis and integrates the predicted program into an558

executable environment.559

In-Context Learning With the emergence of560

Large Language Models (Nijkamp et al., 2022b;561

Black et al., 2022; Brown et al., 2020; Scao et al.,562

2022; Chen et al., 2021; Chowdhery et al., 2022),563

model parameters have scaled from 16 billion to564

over 500 billion. The substantial resource require-565

ments for hosting LLMs have made it challeng-566

ing to fine-tune them for downstream tasks. As a567

result, the paradigm for utilizing language mod-568

els has shifted from traditional pre-training and569

fine-tuning to more efficient approaches, such as570

parameter-efficient fine-tuning(Lester et al., 2021;571

Li and Liang, 2021; He et al., 2021) and in-context572

learning (Dong et al., 2022; Liu et al., 2022). ICL573

has demonstrated its reasoning capabilities in both574

plain text (Wei et al., 2022; Zhang et al., 2022) and575

structured text formats (Chen, 2022; Chen et al.,576

2022). Researchers have also analyzed the factors577

contributing to the effectiveness of ICL (Dai et al.,578

2022; Min et al., 2022; von Oswald et al., 2022) in579

general tasks. However, existing literature primar-580

ily focuses on the overall performance of ICL in581

generic tasks. Our work, on the other hand, falls582

within a specific domain, where we investigate the583

performance of ICL in the context of task-oriented584

semantic parsing problems.585

Retrieval-Augmented Large Language Model 586

Recent advancements in Retrieval-Augmented Lan- 587

guage Models (RALMs) have garnered significant 588

attention within the NLP community. LLMs face 589

challenges in terms of scaling (Khandelwal et al., 590

2019) and acquiring long-tail knowledge (Mallen 591

et al., 2023; Izacard et al., 2022). RALMs (Guu 592

et al., 2020; Liu et al., 2023) present a promising 593

solution by seamlessly integrating non-parametric 594

data stores with their parametric counterparts. To 595

enhance the adaptability of RALMs for down- 596

stream tasks, researchers have devised strategies 597

such as zero or few-shot prompting (Shi et al., 2022; 598

Xu et al., 2023) and fine-tuning (Shi et al., 2023). 599

To the best of our knowledge, our work stands 600

as the pioneering effort to combine the k nearest 601

neighbor retrieval language model with in-context 602

learning on generative tasks. 603

Code Generation Automated code generation 604

dates back as far as a few decades ago (Backus 605

et al., 1957; Manna and Waldinger, 1971). Re- 606

cently, the code generation has been dominated 607

by the LLMs, including the closed-source models 608

AlphaCode (Li et al., 2022) and ChatGPT (Ope- 609

nAI, 2022), as well the open-source models such 610

as CodeT5 (Wang et al., 2021), CodeT5+ (Wang 611

et al., 2023), CodeGen (Nijkamp et al., 2022a), 612

InCoder (Fried et al., 2022), StarCoder (Li et al., 613

2023), and Code Llama (Rozière et al., 2023). In- 614

spired by this line of research, our work extends 615

the scope of TOP to encompass code generation. 616

5 Conclusion 617

In this paper, we delved into the intricacies of 618

prompt design and introduced kNN-ICL to in- 619

clude all demo examples on the Task-Oriented se- 620

mantic parsing task, addressing input length chal- 621

lenges during decoding and lessening prompt en- 622

gineering efforts. Our findings highlight the sub- 623

stantial impact of prompt design on TOP, with 624

models like CODEX deriving more benefits from 625

structured documentation than less capable mod- 626

els. The similarity-based exemplar retrieval strat- 627

egy enhanced model performance significantly. Fur- 628

thermore, kNN-ICL’s integration with a large lan- 629

guage model and k Nearest Neighbor search en- 630

sures comprehensive use of training data, offering 631

more consistent results across tasks. This study un- 632

derscores the critical role of prompt design, point- 633

ing to promising avenues for future research. 634

8

6 Limitations635

Generalization of Prompt Design This study high-636

lights the varying impact of prompt design on dif-637

ferent models based on their capacities. Instead of638

advocating a universal prompt design strategy, the639

optimal choice should be model-agnostic. A poten-640

tial avenue for future research is enabling models641

to autonomously select their preferred prompt de-642

signs (Zamfirescu-Pereira et al., 2023; Zhou et al.,643

2022). Depending on the LLM’s chosen strategy,644

kNN-ICL can serve as a plugin to further enhance645

model performance by harnessing all available ex-646

amples.647

Generalization to High-Capacity Models This pa-648

per offers an initial exploration of kNN-ICL with649

LLMs. While CODEX is not publicly accessible650

and the resource limitation, we have used GPT-651

NEOX and CODEGEN as representative models for652

kNN-ICL experiments. Nevertheless, given the653

substantial performance disparity between GPT-654

NEOX, CODEGEN, and CODEX, future research655

should delve into assessing the influence of kNN-656

ICL on more robust models.657

References658

John W Backus, Robert J Beeber, Sheldon Best, Richard659
Goldberg, Lois M Haibt, Harlan L Herrick, Robert A660
Nelson, David Sayre, Peter B Sheridan, Harold Stern,661
et al. 1957. The fortran automatic coding system.662
In Papers presented at the February 26-28, 1957,663
western joint computer conference: Techniques for664
reliability, pages 188–198.665

Sid Black, Stella Biderman, Eric Hallahan, Quentin666
Anthony, Leo Gao, Laurence Golding, Horace He,667
Connor Leahy, Kyle McDonell, Jason Phang, et al.668
2022. Gpt-neox-20b: An open-source autoregressive669
language model. arXiv preprint arXiv:2204.06745.670

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-671
mann, Trevor Cai, Eliza Rutherford, Katie Milli-672
can, George Bm Van Den Driessche, Jean-Baptiste673
Lespiau, Bogdan Damoc, Aidan Clark, Diego674
De Las Casas, Aurelia Guy, Jacob Menick, Ro-675
man Ring, Tom Hennigan, Saffron Huang, Loren676
Maggiore, Chris Jones, Albin Cassirer, Andy Brock,677
Michela Paganini, Geoffrey Irving, Oriol Vinyals,678
Simon Osindero, Karen Simonyan, Jack Rae, Erich679
Elsen, and Laurent Sifre. 2022. Improving language680
models by retrieving from trillions of tokens. In681
Proceedings of the 39th International Conference682
on Machine Learning, volume 162 of Proceedings683
of Machine Learning Research, pages 2206–2240.684
PMLR.685

Tom Brown, Benjamin Mann, Nick Ryder, Melanie686
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind687

Neelakantan, Pranav Shyam, Girish Sastry, Amanda 688
Askell, et al. 2020. Language models are few-shot 689
learners. Advances in neural information processing 690
systems, 33:1877–1901. 691

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang 692
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra- 693
madan, and Milica Gašić. 2018. MultiWOZ - a large- 694
scale multi-domain Wizard-of-Oz dataset for task- 695
oriented dialogue modelling. In Proceedings of the 696
2018 Conference on Empirical Methods in Natural 697
Language Processing, pages 5016–5026, Brussels, 698
Belgium. Association for Computational Linguistics. 699

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 700
Henrique Ponde de Oliveira Pinto, Jared Kaplan, 701
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg 702
Brockman, et al. 2021. Evaluating large lan- 703
guage models trained on code. arXiv preprint 704
arXiv:2107.03374. 705

Qian Chen, Zhu Zhuo, and Wen Wang. 2019. Bert 706
for joint intent classification and slot filling. arXiv 707
preprint arXiv:1902.10909. 708

Wenhu Chen. 2022. Large language models are 709
few (1)-shot table reasoners. arXiv preprint 710
arXiv:2210.06710. 711

Wenhu Chen, Xueguang Ma, Xinyi Wang, and 712
William W. Cohen. 2022. Program of thoughts 713
prompting: Disentangling computation from reason- 714
ing for numerical reasoning tasks. arXiv preprint 715
arXiv:2211.12588. 716

Xilun Chen, Asish Ghoshal, Yashar Mehdad, Luke 717
Zettlemoyer, and Sonal Gupta. 2020. Low-resource 718
domain adaptation for compositional task-oriented 719
semantic parsing. arXiv preprint arXiv:2010.03546. 720

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 721
Maarten Bosma, Gaurav Mishra, Adam Roberts, 722
Paul Barham, Hyung Won Chung, Charles Sutton, 723
Sebastian Gehrmann, et al. 2022. Palm: Scaling 724
language modeling with pathways. arXiv preprint 725
arXiv:2204.02311. 726

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Zhifang Sui, 727
and Furu Wei. 2022. Why can gpt learn in-context? 728
language models secretly perform gradient descent as 729
meta optimizers. arXiv preprint arXiv:2212.10559. 730

Shrey Desai, Akshat Shrivastava, Alexander Zotov, and 731
Ahmed Aly. 2021. Low-resource task-oriented se- 732
mantic parsing via intrinsic modeling. arXiv preprint 733
arXiv:2104.07224. 734

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 735
Kristina Toutanova. 2018. Bert: Pre-training of deep 736
bidirectional transformers for language understand- 737
ing. arXiv preprint arXiv:1810.04805. 738

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de- 739
coding for neural semantic parsing. arXiv preprint 740
arXiv:1805.04793. 741

9

https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong742
Wu, Baobao Chang, Xu Sun, Jingjing Xu, and Zhi-743
fang Sui. 2022. A survey for in-context learning.744
arXiv preprint arXiv:2301.00234.745

Andrew Drozdov, Nathanael Schärli, Ekin Akyürek,746
Nathan Scales, Xinying Song, Xinyun Chen, Olivier747
Bousquet, and Denny Zhou. 2022. Compositional748
semantic parsing with large language models. arXiv749
preprint arXiv:2209.15003.750

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,751
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih,752
Luke Zettlemoyer, and Mike Lewis. 2022. Incoder:753
A generative model for code infilling and synthesis.754
arXiv preprint arXiv:2204.05999.755

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Ku-756
mar, and Mike Lewis. 2018. Semantic parsing for757
task oriented dialog using hierarchical representa-758
tions. In Proceedings of the 2018 Conference on759
Empirical Methods in Natural Language Processing,760
pages 2787–2792, Brussels, Belgium. Association761
for Computational Linguistics.762

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-763
pat, and Mingwei Chang. 2020. Retrieval augmented764
language model pre-training. In International confer-765
ence on machine learning, pages 3929–3938. PMLR.766

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-767
Kirkpatrick, and Graham Neubig. 2021. Towards a768
unified view of parameter-efficient transfer learning.769
arXiv preprint arXiv:2110.04366.770

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lu-771
cas Hosseini, Fabio Petroni, Timo Schick, Jane772
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and773
Edouard Grave. 2022. Few-shot learning with re-774
trieval augmented language models. arXiv preprint775
arXiv:2208.03299.776

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.777
Billion-scale similarity search with gpus. IEEE778
Transactions on Big Data, 7(3):535–547.779

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke780
Zettlemoyer, and Mike Lewis. 2020. Nearest781
neighbor machine translation. arXiv preprint782
arXiv:2010.00710.783

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke784
Zettlemoyer, and Mike Lewis. 2021. Nearest neigh-785
bor machine translation. In International Conference786
on Learning Representations (ICLR).787

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke788
Zettlemoyer, and Mike Lewis. 2019. Generalization789
through memorization: Nearest neighbor language790
models. arXiv preprint arXiv:1911.00172.791

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.792
The power of scale for parameter-efficient prompt793
tuning. arXiv preprint arXiv:2104.08691.794

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 795
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc 796
Marone, Christopher Akiki, Jia Li, Jenny Chim, 797
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, 798
Thomas Wang, Olivier Dehaene, Mishig Davaadorj, 799
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, 800
Nicolas Gontier, Nicholas Meade, Armel Zebaze, 801
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, 802
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo 803
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp 804
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, 805
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, 806
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo 807
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel 808
Romero, Tony Lee, Nadav Timor, Jennifer Ding, 809
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri 810
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, 811
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan- 812
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry 813
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, 814
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro 815
von Werra, and Harm de Vries. 2023. Starcoder: may 816
the source be with you! 817

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: 818
Optimizing continuous prompts for generation. arXiv 819
preprint arXiv:2101.00190. 820

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, 821
Julian Schrittwieser, Rémi Leblond, Tom Eccles, 822
James Keeling, Felix Gimeno, Agustin Dal Lago, 823
et al. 2022. Competition-level code generation with 824
alphacode. Science, 378(6624):1092–1097. 825

Bing Liu and Ian Lane. 2016. Attention-based recurrent 826
neural network models for joint intent detection and 827
slot filling. arXiv preprint arXiv:1609.01454. 828

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, 829
Lawrence Carin, and Weizhu Chen. 2022. What 830
makes good in-context examples for GPT-3? In 831
Proceedings of Deep Learning Inside Out (DeeLIO 832
2022): The 3rd Workshop on Knowledge Extraction 833
and Integration for Deep Learning Architectures, 834
Dublin, Ireland and Online. 835

Ye Liu, Semih Yavuz, Rui Meng, Meghana Moor- 836
thy, Shafiq Joty, Caiming Xiong, and Yingbo Zhou. 837
2023. Exploring the integration strategies of re- 838
triever and large language models. arXiv preprint 839
arXiv:2308.12574. 840

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 841
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 842
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 843
Roberta: A robustly optimized bert pretraining ap- 844
proach. arXiv preprint arXiv:1907.11692. 845

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, 846
Daniel Khashabi, and Hannaneh Hajishirzi. 2023. 847
When not to trust language models: Investigating 848
effectiveness of parametric and non-parametric mem- 849
ories. In Proceedings of the 61st Annual Meeting of 850
the Association for Computational Linguistics (Vol- 851
ume 1: Long Papers), pages 9802–9822, Toronto, 852
Canada. Association for Computational Linguistics. 853

10

https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2305.06161
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546

Zohar Manna and Richard J Waldinger. 1971. Toward854
automatic program synthesis. Communications of855
the ACM, 14(3):151–165.856

Elman Mansimov and Yi Zhang. 2022. Semantic pars-857
ing in task-oriented dialog with recursive insertion-858
based encoder. In Proceedings of the AAAI Con-859
ference on Artificial Intelligence, volume 36, pages860
11067–11075.861

Grégoire Mesnil, Xiaodong He, Li Deng, and Yoshua862
Bengio. 2013. Investigation of recurrent-neural-863
network architectures and learning methods for spo-864
ken language understanding. In Interspeech, pages865
3771–3775.866

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,867
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-868
moyer. 2022. Rethinking the role of demonstra-869
tions: What makes in-context learning work? arXiv870
preprint arXiv:2202.12837.871

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan872
Wang, Yingbo Zhou, Silvio Savarese, and Caiming873
Xiong. 2022a. Codegen: An open large language874
model for code with multi-turn program synthesis.875
arXiv preprint arXiv:2203.13474.876

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan877
Wang, Yingbo Zhou, Silvio Savarese, and Caiming878
Xiong. 2022b. A conversational paradigm for pro-879
gram synthesis. arXiv preprint arXiv:2203.13474.880

OpenAI. 2022. ChatGPT. https://openai.com/881
blog/chatgpt/.882

Giovanni Paolini, Ben Athiwaratkun, Jason Krone,883
Jie Ma, Alessandro Achille, Rishita Anubhai, Ci-884
cero Nogueira dos Santos, Bing Xiang, and Stefano885
Soatto. 2021. Structured prediction as translation be-886
tween augmented natural languages. arXiv preprint887
arXiv:2101.05779.888

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine889
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,890
Wei Li, Peter J Liu, et al. 2020. Exploring the limits891
of transfer learning with a unified text-to-text trans-892
former. J. Mach. Learn. Res., 21(140):1–67.893

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten894
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,895
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.896
Code llama: Open foundation models for code. arXiv897
preprint arXiv:2308.12950.898

Teven Le Scao, Angela Fan, Christopher Akiki, El-899
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman900
Castagné, Alexandra Sasha Luccioni, François Yvon,901
Matthias Gallé, et al. 2022. Bloom: A 176b-902
parameter open-access multilingual language model.903
arXiv preprint arXiv:2211.05100.904

Weijia Shi, Julian Michael, Suchin Gururangan, and905
Luke Zettlemoyer. 2022. Nearest neighbor zero-shot906
inference. In Proceedings of the 2022 Conference on907
Empirical Methods in Natural Language Processing,908

pages 3254–3265, Abu Dhabi, United Arab Emirates. 909
Association for Computational Linguistics. 910

Weijia Shi, Sewon Min, Michihiro Yasunaga, Min- 911
joon Seo, Rich James, Mike Lewis, Luke Zettle- 912
moyer, and Wen-tau Yih. 2023. Replug: Retrieval- 913
augmented black-box language models. arXiv 914
preprint arXiv:2301.12652. 915

Eui Chul Shin, Miltiadis Allamanis, Marc 916
Brockschmidt, and Alex Polozov. 2019. Pro- 917
gram synthesis and semantic parsing with learned 918
code idioms. Advances in Neural Information 919
Processing Systems, 32. 920

Richard Shin, Christopher Lin, Sam Thomson, Charles 921
Chen, Subhro Roy, Emmanouil Antonios Platanios, 922
Adam Pauls, Dan Klein, Jason Eisner, and Benjamin 923
Van Durme. 2021. Constrained language models 924
yield few-shot semantic parsers. In Proceedings of 925
the 2021 Conference on Empirical Methods in Natu- 926
ral Language Processing, pages 7699–7715, Online 927
and Punta Cana, Dominican Republic. Association 928
for Computational Linguistics. 929

Raphael Shu, Elman Mansimov, Tamer Alkhouli, Niko- 930
laos Pappas, Salvatore Romeo, Arshit Gupta, Saab 931
Mansour, Yi Zhang, and Dan Roth. 2022. Dialog2api: 932
Task-oriented dialogue with api description and ex- 933
ample programs. arXiv preprint arXiv:2212.09946. 934

Johannes von Oswald, Eyvind Niklasson, Ettore Ran- 935
dazzo, João Sacramento, Alexander Mordvintsev, An- 936
drey Zhmoginov, and Max Vladymyrov. 2022. Trans- 937
formers learn in-context by gradient descent. arXiv 938
preprint arXiv:2212.07677. 939

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, 940
Nghi DQ Bui, Junnan Li, and Steven CH Hoi. 2023. 941
Codet5+: Open code large language models for 942
code understanding and generation. arXiv preprint 943
arXiv:2305.07922. 944

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH 945
Hoi. 2021. Codet5: Identifier-aware unified pre- 946
trained encoder-decoder models for code understand- 947
ing and generation. In Proceedings of the 2021 Con- 948
ference on Empirical Methods in Natural Language 949
Processing, pages 8696–8708. 950

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 951
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022. 952
Chain of thought prompting elicits reasoning in large 953
language models. arXiv preprint arXiv:2201.11903. 954

Qingyang Wu, James Gung, Raphael Shu, and Yi Zhang. 955
2023. DiactTOD: Learning generalizable latent di- 956
alogue acts for controllable task-oriented dialogue 957
systems. In Proceedings of the 24th Meeting of the 958
Special Interest Group on Discourse and Dialogue, 959
pages 255–267, Prague, Czechia. Association for 960
Computational Linguistics. 961

Benfeng Xu, Quan Wang, Zhendong Mao, Yajuan Lyu, 962
Qiaoqiao She, and Yongdong Zhang. 2023. k nn 963

11

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://doi.org/10.18653/v1/2022.emnlp-main.214
https://doi.org/10.18653/v1/2022.emnlp-main.214
https://doi.org/10.18653/v1/2022.emnlp-main.214
https://doi.org/10.18653/v1/2021.emnlp-main.608
https://doi.org/10.18653/v1/2021.emnlp-main.608
https://doi.org/10.18653/v1/2021.emnlp-main.608
https://aclanthology.org/2023.sigdial-1.24
https://aclanthology.org/2023.sigdial-1.24
https://aclanthology.org/2023.sigdial-1.24
https://aclanthology.org/2023.sigdial-1.24
https://aclanthology.org/2023.sigdial-1.24

prompting: Beyond-context learning with calibration-964
free nearest neighbor inference. arXiv preprint965
arXiv:2303.13824.966

JD Zamfirescu-Pereira, Richmond Y Wong, Bjoern Hart-967
mann, and Qian Yang. 2023. Why johnny can’t968
prompt: how non-ai experts try (and fail) to design969
llm prompts. In Proceedings of the 2023 CHI Con-970
ference on Human Factors in Computing Systems,971
pages 1–21.972

John M Zelle and Raymond J Mooney. 1996. Learning973
to parse database queries using inductive logic pro-974
gramming. In Proceedings of the national conference975
on artificial intelligence, pages 1050–1055.976

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex977
Smola. 2022. Automatic chain of thought prompt-978
ing in large language models. arXiv preprint979
arXiv:2210.03493.980

Wenting Zhao, Konstantine Arkoudas, Weiqi Sun, and981
Claire Cardie. 2022. Compositional task-oriented982
parsing as abstractive question answering. In Pro-983
ceedings of the 2022 Conference of the North Amer-984
ican Chapter of the Association for Computational985
Linguistics: Human Language Technologies, pages986
4418–4427, Seattle, United States. Association for987
Computational Linguistics.988

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,989
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy990
Ba. 2022. Large language models are human-level991
prompt engineers.992

12

https://doi.org/10.18653/v1/2022.naacl-main.328
https://doi.org/10.18653/v1/2022.naacl-main.328
https://doi.org/10.18653/v1/2022.naacl-main.328
http://arxiv.org/abs/2211.01910
http://arxiv.org/abs/2211.01910
http://arxiv.org/abs/2211.01910

