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ABSTRACT

A key challenge in decentralized optimization is determining the optimal conver-
gence rate and designing algorithms that can achieve it. While this issue has been
thoroughly addressed for doubly-stochastic and column-stochastic mixing matri-
ces, the row-stochastic setting remains largely unexplored. This study establishes
the first convergence lower bound for decentralized learning over row-stochastic
networks. However, developing algorithms to achieve this lower bound is highly
challenging due to several factors: (i) the widely used ROW-ONLY gossip pro-
tocol, PULL-DIAG, suffers from significant instability in achieving average con-
sensus; (ii) PULL-DIAG-based algorithms are sensitive to data heterogeneity; and
(iii) there has been no analysis in nonconvex and stochastic settings to date. This
work addresses these deficiencies by proposing and analyzing a new gossip pro-
tocol called PULL-SUM, along with its gradient tracking extension, Pull-Sum-GT.
The PULL-SUM protocol mitigates the instability issues of PULL-DIAG, while
PULL-SUM-GT achieves the first linear speedup convergence rate without rely-
ing on data heterogeneity assumptions. Additionally, we introduce a multi-step
strategy that enables PULL-SUM-GT to match the established lower bound up to
logarithmic factors, demonstrating its near-optimal performance and the tightness
of our established lower bound. Experiments validate our theoretical results.

1 INTRODUCTION

Scaling machine learning tasks to large datasets and models requires efficient distributed computing
across multiple nodes. This paper investigates decentralized stochastic optimization over a network
of m nodes:

1 n
min  flz):=— Z;fi(l‘) where  fi(x) = E¢,wp, [F(x;&)]. (1)
Here, &; is a random data vector supported on =; C R? with some distribution D;, and F' :
R? x R? — R is a Borel measurable function. Each loss function f; is accessible only by node i
and is assumed to be smooth and potentially non-convex. Note that data heterogeneity typically ex-
ists, i.e., the local data distributions {D;}?_; vary across nodes. The decentralized communication
among nodes is represented as a strongly connected directed graph, which is practically valuable in
real applications. For example, bidirectional communication may be infeasible due to nodes having
different power ranges (Yang et al., |2019) or experiencing channel disruptions. In distributed deep
learning model training, well-designed directed topologies often result in sparser and faster commu-
nication compared to undirected ones, thus accelerating training in terms of wall-clock time (Bottou
et al., 2018 |Assran et al., 2019; |Yuan et al.,[2021).

Network topology and mixing matrix. A key challenge in decentralized optimization is to deter-
mine the optimal convergence rate and design algorithms that achieve it. Addressing this challenge
requires a theoretical characterization of how network topologies influence decentralized algorithms.
For a given connected network, we represent the topology using a mixing matrix that follows its
connectivity pattern, serving as an effective tool for evaluating the network’s impact. For undirected
networks, a symmetric and doubly-stochastic matrix can be easily constructed. However, in directed
networks, constructing a doubly-stochastic mixing matrix is generally impossible. Instead, mixing
matrices are typically either column-stochastic (Nedi¢ & Olshevsky, 2014} [Nedi¢ et al., [2017) or
row-stochastic (Sayed, 2014; Mai & Abed, [2016)), but not both.
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Optimal complexity over doubly-stochastic networks is well-established. The connectivity of a
doubly-stochastic mixing matrix can be effectively evaluated through a metric called spectral gap,
which measures how closely the decentralized network approximates a fully connected network.
Building on this metric, a series of works have established the optimal convergence rates for de-
centralized algorithms. For instance, the studies in (Scaman et al.,|2017; 2018; |Sun & Hongl 2019;
Kovalev et al.,|2021) provide optimal convergence rates for convex or non-stochastic decentralized
optimization. |Lu & De Sal (2021)) establishes the optimal complexity for non-convex and stochastic
decentralized optimization over a specific type of linear networks, while (Yuan et al., 2022) extends
this optimal complexity to a much broader class of networks.

Optimal complexity over column-stochastic networks is established recently. If out-degree in-
formation is available prior to communication, a column-stochastic matrix can be easily constructed.
When only column-stochastic matrices are used in decentralized algorithms, this is referred to as
the COL-ONLY setting. The foundation of COL-ONLY algorithms is the PUSH-SUM gossip pro-
tocol (Kempe et al., [2003}; [Tsianos et al.l 2012). Many algorithms based on PUSH-SUM achieve
superior convergence rates, e.g., Nedi¢ & Olshevsky| (2015); [Tsianos et al.| (2012); Zeng & Yin
(2017); X1 & Khan| (2017); X1 et al.| (2017); Nedic et al.| (2017); |Assran et al.| (2019); Qureshi et al.
(2020). However, these works do not precisely capture the influence of column-stochastic networks
and, therefore, cannot clarify the optimal complexity in the COL-ONLY setting. This open question
has been addressed in a recent study by [Liang et al.[| (2023)), which establishes effective metrics to
evaluate the influence of column-stochastic networks and provides the optimal lower bound for the
CoOL-ONLY setting. Additionally, it proposes algorithms that achieve this lower bound.

Optimal complexity over row-stochastic networks remains unclear yet. If out-degree infor-
mation is unavailable, column-stochastic matrices cannot be directly constructed. However, row-
stochastic matrices can be formed using in-degree information, which can be obtained by counting
received messages. This is referred to as the ROW-ONLY setting. Similar to how PUSH-SUM serves
as the basis for COL-ONLY algorithms, the foundation of ROW-ONLY methods is the PULL-DIAG
gossip protocol (Mai & Abed| [2016). Building on PULL-DIAG, Mai & Abed|(2016) adapted the dis-
tributed gradient descent (DGD) algorithm for the ROW-ONLY setting, while |Li1 et al.[ (2019); |Xin
et al| (2019c) extended gradient tracking methods, and |Ghaderyan et al.| (2021); |Lii et al.| (2020);
Xin et al.|(2019a)) introduced momentum-based ROW-ONLY gradient tracking. However, the con-
vergence analysis for ROW-ONLY algorithms is still quite limited. Current analyses focus only on
deterministic and strongly convex loss functions, leaving the performance of ROW-ONLY algorithms
in non-convex and stochastic settings unknown. More importantly, the impact of row-stochastic net-
works on the convergence rate of ROW-ONLY algorithms remains unclear. These gaps present sig-
nificant obstacles to determining the optimal complexity in the ROW-ONLY setting. The following
fundamental open problems then naturally arise:

Q1. What are the effective metrics that can fully capture the impact of row-stochastic networks
on decentralized stochastic optimization, and how do they influence the convergence of
prevalent ROW-ONLY algorithms?

Q2. Given these metrics, what is the lower bound on the convergence rate for ROW-ONLY
algorithms in the non-convex and stochastic setting?

Q3. Can existing ROW-ONLY algorithms readily achieve the optimal convergence rate? If not,
what limitations do they face?

4. Can we develop new ROW-ONLY algorithms that overcome the limitations of existing al-
P g g
gorithms and attain the aforementioned lower bound?

Main contributions. This paper provides an in-depth understanding of decentralized optimization
over row-stochastic networks by addressing the above open questions. Our contributions are:

C1. We find that the metrics generalized spectral gap and equilibrium skewness, proposed by
Liang et al.| (2023) to characterize the influence of column-stochastic networks, can also
effectively capture the impact of row-stochastic networks on decentralized algorithms.

C2. Using these metrics, we establish the first lower bound on the convergence rate for any non-
convex decentralized stochastic first-order algorithm with a row-stochastic mixing matrix.
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This bound reflects the optimal influence of gradient noise, the mixing matrix, the number
of nodes, and problem smoothness on the algorithm.

C3. We find that existing ROW-ONLY algorithms cannot attain the aforementioned lower bound
due to two limitations. First, the PULL-DTAG protocol involves the inversion of small val-
ues during its operation, leading to instability in ROW-ONLY algorithms. Second, improper
algorithmic construction makes current ROW-ONLY algorithms highly sensitive to data het-
erogeneity. However, neither the instability nor data heterogeneity affects our lower bound,
suggesting that these issues can be eliminated with improved algorithm design.

C4. We develop novel ROW-ONLY algorithms to achieve the established lower bound. First,
we propose a PULL-SUM gossip protocol that avoids the inversion of small values. Next,
we introduce a new row-stochastic gradient tracking structure that removes the impact of
data heterogeneity. Together with a multi-step gossip protocol, these techniques will yield
an effective algorithm that nearly attains the established lower bound, demonstrating its
near-optimal performance and the tightness of the established lower bound.

Notations. Let 1,, denote the n-dimensional all-ones vector, and I,, € R™*" the identity matrix.
We let matrix A denote the row-stochastic matrix (A1,, = 1,,) and B denote the column-stochastic
(1) B = 1,7) matrix. The set [n] represents the indices {1, 2, ...,n}. Diag(A) refers to the diagonal
matrix formed by A’s diagonal entries, and diag(v) is the diagonal matrix formed from vector v. The
Perron vectors of A and B are 74 and 7, respectively, with II4 = diag(m4) and I1 5 = diag(mpg).

We define ||v|, = ||H114/2vH and ||v]|r, = ||H];1/2vH, with corresponding induced matrix norm

W le, = ||H}4/2WH;21)/2||2 and |W |, = |T5"*WIIY?|l2. We define Ao, = 1,7 and
k

%

€ R4 denotes the local model at node 7 at iteration k. We also define
k k n
= (@) @) T @) T e R,
VFEx®; W) = [VF (@ e) T V(P e5)T) e R,

by stacking all local variables. The upright bold symbols (e.g. x,w,g € R"*?) always denote
stacked network-level quantities.

Bo = 77311; Vector

2 EFFECTIVE METRICS FOR ROW-STOCHASTIC NETWORKS

We consider a directed network with n computing nodes that is associated with a mixing matrix
A = lay)i ;= € R™™ where a;; € (0,1) if node j can send information to node 7 otherwise
a;; = 0. Decentralized optimization is built upon partial averaging zj =5 JeN; ijZ; in which
z; € R%is alocal vector held by node i and \/; denotes the in-neighbors of node 4, including node
1 itself. Since every node conducts partial averaging simultaneously, we have

A T T T A-protocol T T
22 (252552, e 2t = Az =) ayzfio s Y anE]] 2
JEN JENR
where A-protocol represents partial averaging with mixing matrix A. Evidently, the algebraic char-

acteristics of A substantially affects the convergence of partial averaging and the corresponding
decentralized optimization. This section explores metrics that capture the characteristics of A.

2.1 ROW-STOCHASTIC MIXING MATRIX

This paper focuses on a static directed network G associated with a row-stochastic matrix A.

Assumption 1 (PRIMITIVE AND ROW-STOCHASTIC MIXING MATRIX). The mixing matrix A is
non-negative, primitive, and satisfies Al,, = 1,,.

If G is strongly-connected, i.e., there exists a directed path from each node to every other node, and
A has a positive trace, then A is primitive. It is straightforward to make A row-stochastic by setting
ai; = 1/(1 + di*) if (i,7) € € orj = i otherwise a;; = 0, where £ is the set of directed edges
and di" is the in-degree of node i excluding the self-loop. With Assumption |1} Perron-Frobenius
theorem (Perron, [1907) ensures a unique equilibrium vector 4 € R™ with positive entries so that

myA=my, 1'ma=1, and lem AP =1,7}.
oo
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2.2  EFFECTIVE METRICS TO CAPTURE THE IMPACT OF ROW-STOCHASTIC WEIGHT MATRIX

Most decentralized algorithms rely on gossip protocols like (2), where local variables are partially
mixed to approximate the global average. The properties of the mixing matrix A are crucial in
determining whether this gossip mixing can achieve the global average and how efficiently this
process occurs. These properties will translate into effective metrics for evaluating the influence of
A on algorithmic performance.

Now we examine the gossip process with a row-stochastic mixing matrix A. Suppose that each
node 7 has a local variable z; € R, we letz = [2] ;25 ;- ; 2, | € R"*? and initialize x(*) = z.
Following the gossip protocol as in (2), we have the following recursions:

x®) = Ax(E=1) = gkx(0) foe, 1,7 ix© = 1,7}z, 3)

where we utilize the property that limy_,o, A¥ = 1,,7}. It is evident that the matrix A influences

both whether and how quickly x(*) approaches the global average (1/n)1,,1, z. Inspired by ,
we propose the following two metrics to capture the impact of the row-stochastic matrix A:

¢ The equilibrium skewness
k4 =max(ma)/ min(m4) € [1,+00)

captures the disagreement between the equilibrium vector 74 and the uniform vector n~'1,,.
When k4 — 1, the weighted average 1,7 ) z aligns better with the global average n~'1,,1,) z.

* The generalized spectral gap 1 — 4 of the row-stochastic matrix A, where

Ba=|A—-1,m} =A-Axll,, €10,1)

I

quantifies the convergence rate of x(*) to the weighted global average 1,7}z in . As 4
approaches 0, the iterates x(*) converge more rapidly to the weighted global average.

It is important to note that these two metrics are not new; they were proposed in (Xin et al.,|2019b;
Liang et al.l [2023)) to assess the influence of column-stochastic mixing matrices. Our contribution
lies in demonstrating that these metrics are also applicable to row-stochastic mixing matrices.

Another remark is that the standard gossip protocol using a row-stochastic matrix A in (3) cannot
achieve the global average. However, this issue can be resolved with an enhanced gossip protocol
called PULL-DIAG (Ma1 & Abed, 2016; X1 et al.| 2018)), which will be discussed in Section@

3 CONVERGENCE LOWER BOUNDS OVER ROW-STOCHASTIC NETWORKS

3.1 ASSUMPTIONS

This subsection specifies the category of decentralized algorithms to which our lower bound applies.

Function class. We define the function class Fa 1, as the set of functions that satisfy Assumption 2}
for any given dimension d € N and any initialization point z(®) € R<,

Assumption 2 (SMOOTHNESS). There exists a constant L, A > 0 such that
IVfi(z) = Vi)l < Lz - yll,
foralll <i<n,z,y € R and f(20) — infyepa f(x) < A
Gradient oracle class. We assume that each node ¢ processes its local cost function f; using a
stochastic gradient oracle V F(x; §;), which provides unbiased estimates of the exact gradient V f;

with bounded variance. Specifically, we define the stochastic gradient oracle class O,2 as the set of
all oracles VF(-;¢;) that satisfy Assumption [3]

Assumption 3 (GRADIENT ORACLES). There exists a constant o > 0 such that

E[VF(2:&)] = Vfi(z), E[|VF(%:&) ~ Vfi(@)|*] <0 Ve e R, V1<i<n
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Algorithm class description. We focus on decentralized algorithms where each node ¢ maintains
a local solution mgk) at iteration k£ and communicates using the A-protocol defined in . These
algorithms also adhere to the linear-spanning property, as defined in prior works (Carmon et al.
20205 20215 [Yuan et al., 2022} [Lu & De Sa, [2021)). Informally, this property ensures that each local

solution :cl(k) resides within the linear space spanned by CCEO), its local stochastic gradients, and

interactions with neighboring nodes. Upon completing K iterations, the final output &%) can be

any variable in span({{azgk) K ). Let A4 denote the set of all algorithms that adhere to partial
averaging via mixing matrix A and satisfy the linear-spanning property.

3.2 LOWER BOUND

With 54 and k4 at hand, we show, for the first time, that the convergence rate of any non-convex
decentralized stochastic first-order algorithm with a row-stochastic mixing matrix is lower bounded
by the following theorem.

Theorem 1 (Lower bound). For any given L > 0,n > 2, 0 > 0, and § € [Q(1),1 — 1/n), there
exists a set of loss functions { f;}_, € Fa. 1, a set of stochastic gradient oracles in O 2, and a row-
stochastic matrix A € R"*™ with 4 = B and In(k4) = Q(n(1 — B4)), such that the convergence
(0)

)

= x(0) i € [n] with K iterations is lower bounded by

oVIA (1+ ln(ﬁA))LA>

of any algorithm sl € A, starting from x

“4)

2EN2] =
E[[|Vf(@)[7] Q( JnK * (1-Ba)K

where K, o, L, and A represent the total number of iterations, gradient variance, smoothness pa-
rameter of the functions, and the initial gap in function values, respectively. The lower bound in ()
explicitly demonstrates the combined influence of the generalized spectral gap 54 and the equilib-
rium skewness x 4 on decentralized algorithms employing row-stochastic weight matrices.

4 LIMITATIONS IN EXISTING ROW-ONLY ALGORITHMS

This section examines the convergence of several existing ROW-ONLY algorithms and identifies the
limitations that prevent them from reaching the established lower limit.

4.1 PULL-DIAG PROTOCOL SUFFERS FROM INSTABILITY

Algorithm review. According to , for a row-stochastic matrix A, the convergence AF Il,ﬂr}
results in a biased weighted average during gossiping, i.e.,

[GOssIP] : x®) = Ax(1) = Akx(0) F2o0y g 2T x(0) £ 50 5)

where x(0) .= nillln]lzx(o) is the desired global average. The PULL-DIAG protocol, commonly
used in ROW-ONLY optimization (Mai & Abed, 2016} [X1 et al., 2018} [Li et al.| 2019; Xin et al.,
2019c} (Ghaderyan et al., [2021), corrects this bias by utilizing the diagonal entries of A¥, i.e.,

[PULL-DIAG ] : xF) = n_lAkDiag(Ak)_lx(O) oo, n_lﬂnwldiag(wzl)x(o) =%, (6)

It is evident that the inversion of the diagonal entries of A” plays a crucial role in correcting the bias
inherent in the vanilla gossip protocol.

Limitation. A key limitation of PULL-DIAG is its instability when diagonal entries of A* ap-
proaches zero. To ensure the protocol remains well-defined, an additional assumption is required to
provide a lower bound on the diagonal entries of A* across all iterations. We present this assumption
along with the following lemma to ensure the convergence of PULL-DIAG.

Proposition 1 (PULL-DIAG convergence). For a row-stochastic and primitive matrix A, if
maxy, || Diag(A¥) =t = 04 > 0, then PULL-DIAG converges at the following rate:

[ w®) — 2O p < min{1 4 04,204x%5° 85 }|x || 7. (7)
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The convergence rate of PULL-DIAG is influenced by 6 4, which arises from the inversion of small
values. Notably, 64 is independent of 84 and k4 and can become arbitrarily large, making PULL-
DIAG highly unstable when 6 4 is substantial, as illustrated in Figure[I] Consequently, all algorithms
built upon PULL-DIAG (Mai & Abed, 2016} Xi et all 2018 |Li et al., |2019; [Xin et al. 2019c;
Ghaderyan et al.l 2021) suffer from this instability issue. However, our established lower bound
in Theorem [I]is unaffected by 6 4, suggesting that this impact can be eliminated. In Section [5] we
introduce a new protocol PULL-SUM to address this issue.

4.2 PULL-DIAG-GT SUFFERS FROM DATA HETEROGENEITY

Algorithm review. Gradient tracking (Xu et al.l 2015} D1 Lorenzo & Scutari, |2016; |Qu & Li,
2017; Nedic et all 2017) is among the state-of-the-art algorithms in decentralized optimization.
Initially designed for undirected networks, it has been extended by (Li et al.,|2019; | Xin et al.,|[2019c;
Ghaderyan et al., 2021} L1 et al.,|2020; Xin et al.,|2019a)) to the ROW-ONLY setting using the PULL-
DIAG protocol. We revisit a representative algorithm FROST (Li et al., 2019; |Xin et al., 2019c¢):

xk D) = Ax®) _ oy ) (8a)

y(k:+1) — Ay(k) + D;—ilg(k+1) _ D;lg(k) (8b)

where D), = Diag(A*), x(*) is the variables, and y*) denotes the gradient tracking term. Specifi-
cally, g(*) is the stochastic gradient, defined as g(¥) = VF(x*); ¢(F)), with y(©) = g(®) We refer
to algorithms with structures similar to (8) as belonging to the PULL-DIAG-GT family.

Algorithm insight. The fundamental reason PULL-DIAG-GT is effective for row-stochastic net-
works is that it essentially functions as an asymptotic global gradient descent. To illustrate this, we
can first check the gradient tracking part by left-multiplying w} on both sides of :

(@) _
wly® ) _a Dol gkt @ Te®) g Tpolg®) -

b
k+1 © ng(o) © 0, 9

=AY
where equality (a) holds because 74 A = 7%, and equality (b) holds due to y(©@ = g(®_ The above
equality indicates that 7, y*) = 7% D, *g(*). Similarly, we left-multiply 7 on both sides of
and denote the weighted parameter w(*) = L x(F) .

w* D) = w® _ ar [y ® B ®) _ 47T p1g®), (10)

Noting that 7y D' — 1.}, k — oo, denote g*) = n=11 g*), the iteration can be asymptotically

written as w(’”l) = w® —nag®. As x(*) achieve consensual 2*) at each node at the end, this
becomes ¥tV = 2(¥) — nag®) making it a centralized parallel SGD.

Limitation. While PULL-DIAG-GT is simple and effective, it suffers from two limitations:

e It builds on PULL-DIAG, which introduces instability due to the inversion of the diagonal
entries of A*. Consequently, its convergence is influenced by 84 = max;, | Diag(A*¥)~1|]5.

o It suffers from data heterogeneity. As seen from (9), the effectiveness of PULL-DIAG-GT
stems from the fact that n_lwly(k) asymptotically approaches the globally averaged gradient

g® =n"13" g™ To quantify the discrepancy between WXy(’“) and g*), we have:

n
Tk _ gk — (N 1Al k) (*)
n=mayt =gt = ( g™ + -g") . (D
2 A G L)
’ gradlent dissimlarity
The first term is a global gradient and it is naturally bounded in the gradient descent process.
However, the second term is bounded only if we have assumed that the gradient dissimilarity
or data heterogeneity is bounded.

To illustrate the limitations of PULL-DIAG-GT, we analyze its convergence in the non-convex and
stochastic setting. Prior to our work, its convergence has only been examined in strongly-convex
and deterministic settings by |Li et al.|(2019)); Xin et al.| (2019c¢).
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Figure 1: The left plot illustrates the PULL-DIAG consensus on three different networks with
varying 6 4, while other parameters remain approximately constant, with k4 ~ 2 and S ~ 0.989.
It is observed that PULL-DIAG exhibits a larger initial spike for networks with higher 6 4. The
right plot compares the consensus error of PULL-SUM (dashed lines) and PULL-DIAG (solid lines).
PULL-SUM consistently outperforms PULL-DIAG across all cases. Detailed experimental setup is
referred to Appendix [G|

Assumption 4 (Bounded data heterogeneity). There exists constant b > 0 such that
1« 1< o 1o
- () — = VF; <b*, VxeR%
2 V@) =L S VAEI <, Ve

Theorem 2 (PULL-DIAG-GT convergence). Under assumptions Bland@} when total iteration

K > VA%

1-Ba

. 1% nk040%)3 Kka03 (0% + b3

_min B[V = 0 STy AT raOAET )
k=0,1,...K vnK nK3i(1-p83): n3K(l—fa)3

Here we omit constant coefficients including E[||g(?||%], A, L. We define w®) = 7} x*).

, there exists a learning rate o (see Theoreml in Appendix|F) such that

The convergence rate of PULL-DIAG-GT is influenced by 64 due to its reliance on the PULL-DIAG
protocol. Additionally, the rate is affected by the data heterogeneity metric b?; greater data hetero-
geneity results in slower convergence, as shown in Figure [3] However, our established lower bound
in Theorem is unaffected by both 64 and b2, indicating that their impacts can be eliminated.

5 ACHIEVING OPTIMAL COMPLEXITY WITH NEW ALGORITHM DESIGNS

The instability issues in PULL-DIAG protocol and the sensitivity to data heterogeneity in PULL-
DIAG-GT hinder existing algorithms from achieving the convergence lower bound. This section
develops new algorithms to address these limitations and attain the established lower bound.

5.1 PULL-SUM ADDRESSES THE INSTABILITY ISSUE

A key insight into how the PULL-DIAG protocol () corrects the bias in the vanilla gossip protocol
is that Diag(A*) — diag(m4) as k — oo. To address the instability arising from Diag(A*)~1,
we propose a novel PULL-SUM protocol:

[PULL-SUM | : w®) =AFdiag(1,] AF)~1x(® LN 1,7 diag(nma) " 'x@ =x@  (12)
where we utilize the fact that A — ]ln’ﬂ'z as k — oo. Notably, the inversion of the column sum of
A is significantly more stable than the inversion of the diagonal entries, as illustrated below:

Proposition 2. Let Dy, = diag(1,) A®), it holds that | D, *||2 < k4, Vk > 0.

With this result, we achieve the convergence rate of the PUSH-SUM protocol:

Proposition 3 (PULL-SUM convergence). For a row-stochastic and primitive matrix A, PULL-SUM
converges at the following rate: |[w® — x| p < max{1 + nka, 5°B5 x| F.

Compared to the convergence of PULL-DIAG shown in Proposition [I, PULL-SUM eliminates the
influence of @4, as illustrated in Figure[I} Because PULL-SUM is unaffected by 6 4, algorithms built
upon PULL-SUM have the potential to approach the lower bound established in Theorem I}
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5.2 PULL-SUM-GT ADDRESSES THE DATA HETEROGENEITY ISSUE

The primary reason for PULL-DIAG-GT’s susceptibility to data heterogeneity lies in its weighted
average w, which performs global gradient descent asymptotically rather than non-asymptotically;
that is, wly(k) — g™ as k — oo, but wly(k) # g®) in the non-asymptotic phase, see
the illustration in (9) and (I0). To address this issue, we develop a new gradient tracking
method based on the PULL-SUM protocol, termed PULL-SUM-GT, as follows. For Vk > 0,

Dyi1 = ADy, (13a) Dy = diag(1,) Dyys) (13b)
x*F+HD) — A(x®) — aDlZily(k)) (13¢) y ) = B(y® 4 gkt _ (k) (134)

where B = Adiag(1, A)~!,y(® = g(® and D, = A*, with ¢ representing the number of warm-
up iterations, i.e., we perform ¢ rounds of communication before starting the optimization to obtain
Dy = A*. We refer the implementation details to Appendix@ A critical strategy in PULL-SUM-GT
is the construction of a column-stochastic matrix B from the row-stochastic matrix A:

Lemma 4. For any non-negative integers u, B = diag(1,} A*) Adiag(1,} A**1)~! is a column-
stochastic matrix, i.e., 1, B = 1}. Specifically, we take u = 0 in our PULL-SUM-GT.

Algorithm insight. We now provide insights into why PULL-SUM-GT is robust to data heterogene-
ity. If we left-multiply =1 on both sides of (13d), we obtain g(*+1) — glk+1) = (k) _ g(k) —
... =g —g0 = 0, where we use the property 1, B = 1. This result indicates that g*) = g(*¥).
Next, we denote d} = n~'1,] A* and left-multiply d;[, ,_, on both sides of (13c):

dkT+571X(k+1) - d;MX(k) —ag® = d;rex(k) —ag®. (14)

As x(%) approaches consensus as k increases, i.e., x®*) — 1,2 it holds that dLex(k) =z,

The above recursion becomes x(*t1) = x(*) — ag(¥) | the centralized parallel SGD. Unlike PULL-
DIAG-GT (TI)), recursion is unaffected by gradient dissimilarity or data heterogeneity. Our
next theorem establishes the convergence of PULL-SUM-GT, which achieves the first linear speedup
convergence rate in ROW-ONLY decentralized learning in the stochastic and non-convex settings,
without assuming data heterogeneity:

Theorem 3 (PULL-SUM-GT convergence). Under assumptions and [3| when ¢ > {y =
2 2 ~
[4+1“(LK”£%1_1“(1_'6A)} = O(lfﬁA ), with proper « shown in Theorem 1 of Appendix @ we

have the following convergence result: VK > 0,

S 2/3 3/2 3.2 2 2
1 LA LA LA
KZEulw<w<k>>|21=o< 7 4 (WhAguane )™ Lo mmmnmga)
k=0

vnK K K K?
here = PR G BB, g MR g o THaa) 060 _ gTh)

d} =n"'1] A2 Absolute constants and E[||gV)||%] are omitted.

Remark 1 Although it is generally challenging to establish an exact relationship between «p and
K4, as well as Sp and 4, in practice we often observe that the quantities Sp and kp closely
resemble S4 and k 4, respectively. We will further eliminate the impact of B through multi-gossip
strategy in next subsection.

Remark 2 The convergence rate of PULL-SUM-GT effectively addresses the instability and hetero-
geneity issues encountered by existing algorithms; it is not influenced by the inversion of the small
value 6 4 or by data heterogeneity b?. Numerical experiments confirm that PULL-SUM-GT exhibits
greater stability than PULL-DIAG-GT in the presence of data heterogeneity, see Figure[3] This gives
PULL-SUM-GT based algorithms a chance to achieve the lower bound in Theorem T}

5.3 ACHIEVING OPTIMAL CONVERGENCE RATE

Building on the PULL-SUM protocol and PULL-SUM-GT, we now develop an algorithm to achieve
the convergence lower bound established in Theorem[I] Inspired by the optimal algorithm develop-
ment for doubly-stochastic mixing matrices demonstrated in|Lu & De Sa|(2021)); Yuan et al.[(2022),
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we introduce two additional components to PULL-SUM-GT: gradient accumulation and multi-gossip
(MG) communication, resulting in the algorithm named as MG-PULL-SUM-GT. For t € [T:

Dyy1 = AMDy, Dyyy = diag(1,) Dyy1) (152)  xUHD = AM(x® — oDl y®) (15b)
gD = M L VR €00 50y = ByW + gt —g) d5d)

Here, B = AMdiag(1]AM)~', Dy = Af, and y© = g(® = L Z L VF(x(©;¢07)) The
detail of 1mplementatlon can be found in Appendix [E] In contrast to the vamlla PULL-SUM-GT
algorithm ((13)), which performs one gossip communication and one gradient computation per it-
eration, MG-PULL-SUM—GT conducts M gossip communications and M gradient computations
per iteration. To maintain the same communication and computation budgets, we run the vanilla
PULL-SUM-GT for K iterations while executing MG-PULL-SUM-GT for ' = K /M iterations.
The following theorem shows that MG-PULL-SUM-GT achieves optimal convergence rate.

Theorem 4 (Convergence of MG-PULL-SUM-GT). Under Assumptions and[3| When £ > £,
M= [1““(”2”1”2'ln(g)Hlln(L)Hlln(A)‘] = O(—), MG-PULL-SUM-GT converges as:

1—Ba 1-Ba
k) LAc  (1+In(ka))LA
TZEHVfwk)H = (W + (=AY (16)

where K = MT is the total rounds of communication, M is the multi-gossip number, o (+) absorbs
logarithmic factors and absolute constants. w*) = d£M+£+1X(k)’ di =n"11] At

The detailed proof of Theorem []is referred to Appendix [E| Remarkably, the rate (16) aligns with
the lower bound (4)) up to logarithmic factors that are independent of x4 and 54. This demonstrates
the near-optimality of MG-PULL-SUM-GT and the tightness of the lower bound ().

6 EXPERIMENTS

In this section, we numerically compare PULL-SUM-GT with the state-of-the-art ROW-ONLY
gradient tracking algorithms, including PULL-DIAG-GT (Xin et al. 2019d; [Li et al.l [2019),
FRSD (Ghaderyan et al., [2021) and FROZEN (Xin et al., |2019a). We mainly exhibit that i) PULL-
SUM-GT is able to overcome the influence of 6 4, ii) PULL-SUM-GT is able to overcome the influ-
ence of data heterogeneity, iii) Multi-Gossip strategy can bring significant improvement.

Network Design. We construct four topologies with 20 nodes, labeled Ring, for ¢ = 1,2, 3,4, as
they represent directed ring graphs with ¢ additional connections. The mixing matrices are defined
by ai; = 1/(1 +di*) if (i,j) € Eorj = i, and a;; = 0 otherwise. These topologies exhibit
significant differences in 6 4 but have similar 54 and x 4. Further details are in Appendix

Synthetic Dataset: Influence of 6 4. We solve a decentralized logistic regression problem with non-
convex regularization using synthetic data (Xin et al.,2021;|Alghunaim & Yuan, |2022). Consider

M

1
Jr:reliRr}i Z fi(z) + pr(x) where fi(x)= i ;ln(l + exp(—yi,lhzlx).

The function r(x) = 2?21 [m]? /(1+ [x]?) is a non-convex regularizer, and p > 0 is the reg-
ularization coefficient. The training dataset at node i, {h;,y; ;}2,, consists of feature vectors
h;; € R and corresponding labels y;; € {+1,—1}. Detailed hyper-parameter settings are pro-
vided in Appendix [G] We compare PULL-SUM-GT with other PULL-DIAG-GT methods on topolo-
gies Ring; 5 5 4. PULL-SUM-GT remains unaffected by 6 4, while PULL-DIAG-based methods are
significantly influenced. As shown in Figure 2} when 64 is small (Ring; 4), the performance of all
algorithms is similar. However, for larger 64 (Ring; ,), PULL-SUM-GT remains robust, whereas
PULL-DIAG-based methods deteriorate significantly.

Real-World Dataset: Influence of heterogeneity. We train a four-layer fully connected neural
network in a decentralized setting to solve the handwritten digit classification task on the MNIST
dataset (Deng} 2012). Two scenarios are evaluated: (i) Uniformly distributed data, where each node
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Ring,, 0,=6*1e5 Ring,, 0,=5*1e4 Rings, 0,=8*1e2 Ring,, 8,=3*1e2
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Figure 2: Comparison on synthetic dataset.
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Figure 3: Comparison on MNIST dataset. “Uniform” denotes evenly distributed data, “Hetero”
denotes heterogeneous data.

holds a shuffled partition of the dataset, and (ii) Heterogeneous data, where each node contains im-
ages from only one digit class. As shown in Figure 3] PULL-DIAG-GT performs comparably to
PULL-SUM-GT in the uniform setting. However, PULL-SUM-GT is more robust to data heterogene-
ity, outperforming PULL-DIAG-GT and FROZEN. Notably, FRSD achieves the best performance,
as expected, due to its integration with momentum.

Benefit of Multiple Gossip. In the third set of experiments, we illustrate the performance of MG-
PULL-SUM-GT on two tasks described in the above two paragraphs. As demonstrated in Figure 4]
multiple rounds of gossip help mitigate the impact of the network and allow for a larger learning
rate, leading to faster convergence. Note that all curves are compared fairly, with each iteration
involving a single gradient computation and one communication round.

Ring;,Logistic Ring;, MNIST
1004 &
£ —— mg=1
i —— mg=2
2 —— mg=5
E 10-2 mg=10
]
bS] Qo3
@107 <, —+— mg=1
0] i —— mg=2
(C] 104 Mo 'V“:,(’* £ w'wwm X 0.1 — mg=5
0 2000 4000 6_000 8000 10000 0.0 ° 70 w0 Py 0 o0
Iteration Epoch

Figure 4: Performance of MG-PULL-SUM-GT on synthetic dataset (the left plot) and highly hetero-
geneous MNIST dataset (the right plot).

7 CONCLUSION AND LIMITATIONS

This paper establishes a tight lower bound and identifies optimal algorithms for decentralized op-
timization using row-stochastic mixing matrices. Our analysis shows that existing PULL-DIAG-
based methods are sensitive to algorithmic instability and data heterogeneity, preventing them from
reaching the lower bound. We propose the PULL-SUM protocol and (MG-)PULL-SUM-GT, which
mitigate dependence on network properties and heterogeneity, achieving the lower bound up to log-
arithmic factors. Experimental results support our findings. A limitation of this work is that, while
the method performs well empirically without a warm-up, the convergence guarantees for PULL-
SUM-GT are currently provided only with a warm-up stage. Addressing unconditional convergence
guarantees will be left for future work.

10
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A LOWER BOUND

A.1 A MATRIX EXAMPLE

Proposition 5. For any n > 2, there exists a row-stochastic, primitive matrix A € R™*" satisfying
Ba = g but kp = on—1,

Proof. Proposition 2.5 of [Liang et al.| (2023)) tells us that For any n > 2, there exists a column-

stochastic, primitive matrix W € R"™*" satisfying Sy = ? but k= 2771, By taking A = BT,

their Perron vectors are the same, i.e., T4 = my . Therefore, k4 = Ky . By definition of 7-norm,
1/2 —1/2 —1/2 1/2

we know that B4 = A~ Axclx, = [[TL{*(A = ALY | = |(I5, 2 (W = W) I T2 =

[Wllrw = Bw. O

A.2 PROOF OF THEOREM 1

The core idea of the proof is derived from|Liang et al.|(2023). The first complexity term, (< \/HLKA ),

is standard, and its proof can be found in works such as|Lu & De Sa|(2021) and Yuan et al.| (2022).
Therefore, we concentrate on proving the second term, Q((1 + In(k4))LA/K).

To proceed, let [x]; represent the j-th coordinate of a vector x € R? for 1 < j < d, and define:

rog(z) = 0 ifx =0;
Progi) == maxi<j<q{j: [z]; # 0} otherwise.

We also introduce several important lemmas, which have been established in previous research.
Lemma 6 (Lemma 2 of |Arjevani et al.|(2019)). Consider the function

hw) = —p(o([el) + 5ot (9=l lelyen) — 9 ([e))o((]s41)

where for any z € R,

0 z < 1/2;
exp (1 — ﬁ) z>1/2,

The function h(x) has the following properties:

P(z) = and  P(z) = \/E/_Z e~ 2 dt.

1. his zero-chain, i.e., prog(Vh(z)) < prog(z) + 1 for all x € R%.
h(z) — inf, h(x) < Aod, for all z € R with Ay = 12.

. his Lo-smooth with Ly = 152.

. IVR(2)||oo € Goo, for all z € RY with G, = 23.

A W N

9

. IVA(2) |l > 1for any x € RY with [x]4 = 0.
Lemma 7 (Lemma 4 of Huang et al.[(2022)). Letting functions
ha(e) i= =26(00([2]1) + 2 5 e 0y<a (V- [1)0(~[2l541) = b([e])((]j1))

and
ha(z) = 22]‘ odd, 0<j<d (ﬂ’(*[ﬂj)éf’(*[?ﬂ]jﬂ) - 1/’(Mj)¢([x]j+1)>,
then hy and hs satisfy the following properties:
1. 4(h1 + h2) = h, where h is defined in Lemma@

2. hy and hy are zero-chain, i.e., prog(Vh;(z)) < prog(x) + 1 forall v € R? and i = 1,2.
Furthermore, if prog(zx) is odd, then prog(Vhy(x)) < prog(x); if prog(x) is even, then
prog(Vha(z)) < prog(z).

3. hq and ho are also Lg-smooth with Ly = 152.

14
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We are now ready to prove our lower bound. This proceeds in three steps. Without loss of generality,
we assume n can be divided by 3.

(Step 1) We let fz = L)\2h1(llf/)\)/L0, Vie E1 £ {j 01 S j S n/3} and fz = L)\zhg(I/A)/LQ,
Vi€ Ey 2 {j:2n/3 < j < n}, where h; and hy are defined in Lemma and A > 0 will be
specified later. By the definitions of hy and hsy, we have that f;, V1 < i < n, is zero-chain and
flz) =n"t30 | fi(z) = 2LA*h(x/X)/3Lo. Since hy and ho are also Lo-smooth, {f;}7 are
L-smooth. Furthermore, since

£(0) — inf,, f(x) = 252 (h(0) — inf, h(x)) < LA Bed

to ensure { f; }; satisfy L-smooth Assumption, it suffices to let

L)?Agd . [ LoA
To S A, Le., A S Lgod' (17)

With the functions defined above, we have f(z) = n= 13" | fi(x) = LA%l(z/\)/(3Lo) and
prog(V fi(z)) = prog(x)+1if prog(x) isevenand i € E; or prog(z) isodd and ¢ € Fs, otherwise
prog(V fi(x)) < prog(x). Therefore, to make progress (i.e., to increase prog(x)), for any gossip
algorithm A € Ay, one must take the gossip communication protocol to transmit information
between F; and F5 alternatively.

(Step 2.) We consider the noiseless gradient oracles and the constructed mixing matrix W in Sub-
section |5 with ¢ = 28% — 1 so that %gr‘) = O(n). Note the directed distance from E;
to Fo is n/3. Consequently, starting from x(°) = 0, it takes of at least n/3 communications

for any possible algorithm A € A4 to increase prog(Z) by 1 if it is odd. Therefore, we have
[prog(#%))/2] < | 575 | ¥k = 0. This further implies

prog(a) <2 | 75 | +1<8k/n+1, V>0, (18)

(Step 3.) We finally show the error E[||V f(x)||?] is lower bounded by §2 (%), with any

algorithm A € Ay, with K communication rounds. For any K > n, we set d = 2 {ﬁJ +2 <

1/2
3K/n+2 < 5K/nand A = (&LAE’OAK) . Then naturally holds. Since prog(#5)) < d by
(I8), using the last point of Lemma [6]and the value of

E[|V(@)|2] = ming,—0 [ V@) = 52 = Q (222).

, we obtain

By finally using n = Q((1 + In(k4))/(1 — S4)), we complete the proof.

B PULL-DIAG CONVERGENCE

We need the following assumption.

Assumption 5 (Upper bound for inverse diagonal entries.). We assume that the diagonal entries of
A¥ is lower bounded, in other words, 0 4 = supy, | Diag(A*)~1||z.

Lemma 8. Under assumption[5] PULL-DIAG converges by:
[~ w® — x| p < min{l + 04,204r%° 845 }x V| (19)
Proof. On the one hand,

|A*Diag(A") ™" — 1,1, |l2 < [|A"Diag(A*) ™" — 1,1, ||
< nmax{|[A"Diag(A") ™! — 1,1, ][}
]

<n-+nby
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On the other hand,
| A*Diag(A*) ™ — 1,1, 2
< (A% — Ac)Diag(A*) 7|2 + [| A Diag(A%) ™ — 1,1, o
< || A" — Asc|l2|Diag(A") 7 2 + || L (7 — diag(A*)")|l2|/Diag(A*) " [l2
< OarYPBE 4+ 04000 || 4 — diag(AF)|| < Oark®BE (1 4+ n)

The last inequality comes from |74 — diag(A*)|| < ||A* — A ||r < n%°kY5B8K. Therefore, we
have

[~ w®) = %O)||p = 07t |[(A*Diag(4*) ! = 1,1,0)x |
< n | A*Diag(AF) ™ — 1,0 ||o][x @
< min{l + 04, 29A"ii{55,lf\}||x(0) |7,

which finishes our proof. O

C PuULL-SuM CONVERGENCE

Lemma 9. PULL-SUM converges by:

Iw® — x|z < min{l + nra, K585 HxO | (20)

Proof. We define Dy, = diag(1,] A*). Note that A" is a column-stochastic matrix, we can apply
the third statement of Lemma 2.4 of |Liang et al.|(2023)) and obtain that HD,C_1 |l2 < k4. On the one
hand,

||AkD,;1 — n_llln]lIHz < nma_x{HAkD,;l — n_llln]l;[]iﬂ} <1l4+nka.
i,

On the other hand, we have
[A*Dt = 1,10 [l2 < [[(1 = R) (A" — A2 Dy 2 < K4°IIA = Al = K%5°B4.
Therefore, we have
[w® —xD||p = |(A* Dt =07 1, 1)x V| p < AP D =07 L 21O
< minf{1 + k4, 55" B4 x| p,

which finishes our proof. O

D PULL-SUM-GT CONVERGENCE

D.1 NOTATIONS

We denote 1,, as an n-dimensional all-ones vector. We define I,, € R™*™ as the identity matrix.
Throughout the paper, A is always a row-stochastic matrix, i.e., AL, = 1, and B is always a
column-stochastic matrix, i.e., 1,) B = 1,]. We denote [n] as the index set {1,2,...,n}. We denote
Diag(A) as the the diagonal matrix generated from the diagonal entries of A. We denote diag(v) as
the diagonal matrix whose diagonal entries comes from vector v. We denote 74 as the left Perron
vector of A and 75 as the right Perron vector of B. We denote I14 = diag(w4), lIp = diag(np)

We define the 7 4-vector norm ||v||r, = ||H114/2v\| and the induced 7 4-matrix norm as [|W||, =
HHZ/QWHZUQ |l2. We define the p-vector norm ||v||, = ||H]_31/21)|| and the induced 7 g-matrix

norm as |W||,, = |5 *WII}/?|l,. We define Ao, = 1,7} and B, = 7l . We define
Ba=||A=Ax|za: B8 = |B — Bxollgg, a4 = max(ma)/ min(rp), £p = max(rp)/ min(rp),
ga = maxy>op4. Throughout the paper, we let wgk) € R¢ denote the local model copy at node i at
iteration k. Furthermore, we define the matrices

16
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x = (@) 5 @) T @) T e R

VF(x(k);g(k)) — [VFl(mgk)- Ek))T; o ;VFn(m(k).fy(Lk))T] e R4,

n

ViE®) = VA VR T; - Va@P) T e R

by stacking all local variables. The upright bold symbols (e.g. x,w,g € R"*?) always denote
stacked network-level quantities. Throughout the proof, we define V f(x(*)) = n= 1]V f(x(*)),
AP = (1 = RAF)x®) AP = g(k+D) _ g() We define K as the total rounds of commu-

nication, 7" as the iteration number of model parameter x and M as the multi-gossip number, i.e.,

K = MT. We define £y = "4+1n(L)+1n(T)+21n§fi%)A+2ln(n)72ln(lfﬁA)"I.

D.2 USEFUL INEQUALITIES

Lemma 10. 1. |RA*||y < land ||A 1|2 < /1.
2. mallvll? < ll2, < Tallol? 75 ol < Jloli2, < ms o))
3. ID; |2 < Ka, Yk > 0.

4. When ¢ > 14+ |'ln(LK)+2ln(nA)+21n(n)fln(1*,3A)1’ HILTT]AIHJ 24anlAK,AK’

1-Ba —nmy| <
Vk > 0.

Proof. First, Vv € R", we have |[RA*v| = ﬁ (di,v) < ﬁ”dkH”’UH Therefore, ||RA* ||y <
% < L (A= Doli|l = |27 aijv; — vi| < max; ||, which means [[(A — DNvl|p <

Vvnmax; [v;| < y/nllv|| and ||A — I]js < y/n. The second lemma can be verified straight for-
ward. The third inequality comes from our Appendix [C] The fourth inequality can derived by
17 AR —n || = |1, (A = A || < vara| AP = Asgllrs
< nraBh <exp(—4 —In(K) —2In(ka) — 1 —In(n) + In(1 — B4)) - /nka
—a 1-Ba 1
n1ORLPK T 24nsaka K-

Lemma 11 (ROLLING SUM LEMMA 1). We have the following rolling sum lemmas.

1. Ifl > 1 and A € R™ ™ is a primitive and row-stochastic matrix, the following estimation
holds for VT > 0.

Tk T
DD (A = A)AD|E < 5 Y AP, 2D
k=0 =0

i=0
where AW € R"*4 are arbitrary matrices, and s 4 is defined by:

1+ Lin(k(ma))
A r]rglgcl\ ooll2 T (22)

2. If1 > 1 and B € R™™ ™ is a primitive and column-stochastic matrix, the following estima-
tion holds for VT > 0.

T k T
MDY (BT = Bo)AW|R < s3> 1ADE, (23)

k=0 =0 i=0
where sp is defined by:
1+ 1 In(k(rp))

24
1= fp (24)

sp :=max ||B¥ — By ||z -
k>1

17
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Proof. First, we prove that
A" — Az < VK(ma)BYy, Vi > 0. (25)
Notice that 84 := ||A — Axol|x, and
A" = Ascllma = (A = Axc) lxa < 1A = Acollr, = B,
we have
i —1/2/ 4 i i
(A" = Ao)oll = T2 (A7 = Aoy < y/FaBh[0]lwa < V/i(ra)Bh 0],
which proves (23).

Second, we want to prove that for all £ > 0, we have
k
AR — A la < sa (26)
i=0

Towards this end, we define M, := maxy>1 [|A¥ — As||2. According to , My is well-

defined. We also define p = max { iy N(ﬂflz)ﬁj; (M) 0}7 then we can verify that || A’ — A |2 <

min{ M4, MaB' "}, ¥i > 1. With this inequality, we can bound Y5 [[A*1=F — A |5 as fol-
lows:

k A min{|p].k} k41 A
DA Ao = > [lAT = Awll2a + > A" = Asc|l2
i=0 i=1 i=min{|p),k}+1
min{[p],k} k+1

< Z My + Z Mapy?
=0 i=min{|p|,k}+1
1

<M (L mind[p), b)) + Ma - g3, @7)
—Ba
Ifp=0, is simplified to 25:0 |ARFI=E A ]y < My - 1—16A and || is naturally satisfied.
If p > 0, let x = min{|p|,k} + 1 —p € [0,1), (26) is simplified to
k _ B 1
DAY — Aslla < Mae +p+ 775-) < Ma(p + ).
= —Ba 1—Ba

Noting that p < %12(_'{7[(5“)) we finish the proof of .

Finally, to obtain (21)), we use Jensen’s inequality. For positive numbers a;,i € [k + 1] satisfying
St a; = 1, we have

k k
I (A = A)ADNE = |3 anga—i - gy (A = A) A%
i=0 i=0

k k
< aps—illag (AR = A AW R <Y oty AR - A B1AD)E. @28)
i=0 i=0
By choosing ag41_; = (Zf:o |ARFI=E — A ]|o) AR — A |2 in l| we obtain that
k k k
I (AR = A)ADF < Y AT = Ao Y AR = A oA (29)
i=0 i=0 i=0
By summing up (29) from k£ = 0 to T', we obtain that

Tk T K
DD AT = AAD R < sa Y Y AR = A2 AR
k=0 =0 k=0 i=0

T T T
<sa ) (D IIAMT = A o) 1AW < 5% Y 1AW,

i=0 k=i =0

18
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Algorithm 1: PULL-SUM-GT

Initialize 1" = e;, z” = (), y\” = g\¥ = VE (", &), > 1;
for s =0,1,...,¢ — 1, each node i in parallel do

s+1 s
end

Let d\” = ! and v; = 3", ¥ at each node i;
for k =0,1,..., K, each node i in parallel do

k+1 k k)y—1, (k
Locally calculate g(kH) = VFi(wEkH), §£k+1));

ik k+1 k
) (1) _ gy,

Locally calculate z; ~ = fui_l(yl(k) +g!
k+1 k
yz( ) = ZjENii" aijzj(. );

(k+1) (k).
i = Ljeny tiady

?

end

which finishes the proof of this lemma. The proof can be applied in the same way when B is

column-stochastic.

D.3 ALGORITHM FORMULATION

We also provide a denser form of Pull-Sum GT:

x* ) = A(x® —aD L, vy ™)

y(k+1) _ B(y(k) + g(k+1) _ g(k))

Hereon we define Dy, = diag(1,) A¥), £ is a non-negative integer.

D.4 BASIC TRANSFORMATIONS

1 AFHD = ReAktt — gk ARHD (4 - RARAPR (4 - RAFHD Ly ™).

2. A;k+1) _ _azfzo(AkH—q: _ RA2k+l—i)DZ_—+1[y(i).
3. x(H) —x(B) = (A — I)Agk) — aAD; L y®.
4.y W = Boy® + 1 (BF - Boo)AY

D.5 CONSENSUS LEMMA

Lemma 12 (Consensus Lemma).

T T

k k
S IAFE < 40?5655 ) Iy ® %
k=0 k=0

19
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Proof.
k .
HA k+1)||2 _QQH J— RAk+l Z AkJrl i )Di—+1ly(1)||%
=0

k
< 40?|| Y (AT - A)D Ly D15

i=0
T T
< 40?53 Y IDGyPNE < 40®s5imi Y Iy VR (32)
k=0 k=0

The first equality in uses || — RA**!||y < 2. The second inequality uses the rolling sum
Lemmal[T1l O

IN

D.6 GRADIENT TRACKING ANALYSIS

Lemma 13. When the learning rate satisfies o <
lowing inequality holds VT > 1:

: 1 1 1
Inln{ﬁ’ 1OSASBHA—IH2L’ lOSB){ApAL}’ thef()l_

T
> E[ly® 3] < 63s3;nTo +9nQZEHVf 12]. (33)
k=1 k=1

Proof. Using the fourth transformation in Sec. we have

k—1
Iy % = [Booy™ + > (B = Boo) AP |13
1=0
k—1
< 2| Booy™ |3 + 2 Y (B* — Bo) AW 2. (34)
1=0

Note that Af,k) can be further decomposed as follows:
AP =gt = V) 4 VD) = VI ®) + V() — g0,
Therefore, we can apply Cauchy-Schwarz inequality and obtain that

E[ A E] < 3E[lg"+) — Vf (x*FD)|[F] + 3E[IV S (x*) = VF(x™)]F]
+3E[|Vf(x™) — g™ 3]

< 6no? + 3L7E[|(A - DAL — aAD vy ™ 7]

< 6no® + 9L?(| A — I|ZE[|AL 7]
+ 90’ L2 |AD},y — RIBE[ly ™ |3 + 9na® LE[||g™ || 7]. (35)

20
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where the second inequality uses the boundness of noise and || RA¥ ||y < 1, the last inequality uses
Cauchy-Schwarz inequality. Now we sum up E[||y®)||?] from k = 1 to T and obtain that

k

T T T
Y Ely™I? < 2) EllBoey ™3] +2 Elll Y (B~ Boo) AP |I2]
k=1 k=1

i

|
-

Il
=]

T T
<20 S E(lg® ) + 253 Y EAY )
k=1

k=0

3

INE

T
(2n® + 9na”L?) Y E[||g™||°] + 18s3nTo® + 1855 L7 | A — I||QZE||A(’“)HF
k=1 k=0

T
+ 180 L2sp k%05 Z [y ® 113
k=0

EDesst o k)|12 2 2 - k)12
< 302 E[Ig®)*] + 18shnTo” + Cyy Y E[lly® 3] (36)
k=1 k=0
where g4 = supys|[A — RAM o, Cyy = 7202535 L%|A — I3 + 1802 L%s%, k% pA.

When we set a < min{ 1osAsB|\1A71|\2L7 wsBﬁAqAL}, Cyy < 2/3. Therefore, we can sub-
tract 2 Z{ o] [||y (k)||2.] from the both sides of . Finally, using the fact that E[||g(*)(]?] <
+IE[||Vf || ], we have

T

T
D Elly®IE <90 Y Elllg™)?) + 54snTo®
k=1 k=1

T
< 63s3nTo> + 9> S E[[V7" 2

k=1
O
D.7 DESCENT LEMMA
Lemma 14 (Preparation for Descent Lemma). If ¢ > ¢y, we have the following inequality:
T a? L
ZE LT (ARHEF2 Ak+£)A§Ck+l)”2} < Vel ZEHIy(k)H%] (37)

k=0 k=0

Proof. Our selection of £ can guarantee that ||1,; A* —n7} || < 5—t—77, Vk > £ (The proof can
be found in Sec. @l ). Therefore, the second part can be bounded as:

E[||1I(Ak+l+2 _ Ak+£)A3(L.k+1)||2]

M= 1M+

< H(]lek-&-l-iﬂ _ 7T:|4—) _ (]IIAIH-Z o WX)||2E[HAEE}’€+1)”2F
k=0
1 02
< E|| A(k+1) o« E| (k)27 38
144s% k4T Z i HF] = 36n2L2T2 Z (ly*1I%] (38)

21



Under review as a conference paper at ICLR 2025

Lemma 15 (Descent Lemma). When v < min{3-, 10LsAn1AsB\/ﬁ’ 10Ls;KApA} and T > 30ns.4,
we have the following inequality:

T
A(f(20) — f* S8aLo?
=RV < Ut aT) )y T 6000% L2 50
k=0
16000ns% 52,02 1

Proof. Left-multiply 1, A*+¢ on both sides of (30a)), we have
w(k+1) — w(k) o O[g(k) + H;LF(AIC+Z+2 _ Ak%’f)A;kJrl) (40)
Further apply L-smoothness inequality using (40), we have
Ef(w**)) ~ Ef(w®) < B (1] (442 — 4-OAGD ¥ f(w®))

) <g(k)’ vf(w(k))> 4 0.5LE[||]1,TL(A’€+“2 _ Ak+Z)A(k+1) . ag(k)||2]

A2
< O g ) - (- R )2 + S B{IAP)
_ _ (k+1) 202 Lo?
+ (O( 1 +L)EH|]II(AIC+Z+2 Ak+Z)A k+1 ||2} + -
BT - SEI )2 + S B AG3]

4

202 Lo?
+ ?E[HHT(Ak+£+2 Ak+£)A§ck+1)‘|2] + ==

; (41)
n

where the first inequality uses assumption I and the last inequality uses a < i Notice that
w® = 2, we sum up (1) from k£ = 0 to T and obtain that

T

1 (k)
TZE[HVJ“( w® 2] + Z]EHVf 2]
k=0
4 S8aLo?
< (0)y _ (T+1)
< L) - fT)] 4 2
b inlﬁ AkH32 gty a2 4 2 ZIIA"”IIQ
3a
(BXd) 4(f(x(0)) —f*)  8aLo?
< Ellly(*) 2
= ol + n "’Cyg]; [Hy ||F]
BD 4(f(=@) - f*)  8aLo?
< =T +— +63C, s5nTo?
o ==z(k)
+9n2Cyy > E[[VF |’ + Cy Bl 3] 42)
k=1
Where we define Cyg = z5ms + SazL:;,i‘”i‘. When a < m, we have 9n?Cy, < 7.

Therefore, we can subtract - Z o E [HWW [|?] from both sides of and finish the proof of this
lemma.

O
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D.8 MAIN THEOREM

2 2
Theorem 5. When ¢ > 1 + 210 'iﬁ)ﬂjn(lfﬁ“)l by setting a = (a7 ' +a; ' + a3zt +a;t +

agl)’l, we have the following inequality:

T 1/3
1 S8vV2LAc 140L2A252 52,02
7 2BV V2LAT g ( AT ) T TROTY

: o)) < 2L .
N 4OLASBHA(SA\/H +pa) L 16000ns? s%0%  12LA
T 372 T

5n2T

(43)

1/3

1/2

- 0)y _ f£x* _ nA _ A _ 1

where A = f(z) — f*, a1 = (5752) " o2 = T40L2Ts2 52, » X3 = T0Lsaraspvn’
1

_ — 1
Q4 = T0sgrapal’ ¥ = 3L

Proof. Our selection of « ensures that & < min{ay, as, a3, a4, a5}. The learning rate oy, g

2
further satisfies 25, = 8o1lo- 28 — 98003252 s%. Plug « into li we have

ar T n > oo

1 & 1
- ()21 _ (_— (0) 12
TEZOE[HVf(w )i (5n2TIE[IIg %] +

4A 8ay Lo?
(ot tayt oyt tart fagt) +
160(1[10' 279 4OLASB(SA\/E + "prA) 12LA
= 227 4840031
+ e sAsB + T + T
8\/2LA0 (140L2A25?432,‘302>1/ ’ | A0LAsaspy/n | 12LA

vnT T2 T T’

which finishes the proof of our main theorem. O

8960ns% s% 02 )
312

IN

+ 28003 L2s% 5%

Corollary 16. we have the following coarse estimate which only involves B4, Bp, kA, KB for
demonstrating the convergence of PULL-SUM-GT

T
7 Y EI (™))
k=0
=0 L29 + nLAgagpo ) + LAk aqaqs | n*¢hqpo” (44)
VnT T T oo 7
where g = %(5?)7(]3 — %g?)

n(24+1In(x n(2+In(k
Proof. Note that [|[A — RA*H1|, < \/n, 54 < ﬂltim < 2y/nga, sg < % <

2./nqp, by taking these estimate into , we obtain the corollary when the constant E[||g(?)||%] is
omitted. O

E MG-PULL-SUM-GT CONVERGENCE

Implementation details of MG-PULL-SUM-GT are as follows:

23



-

»~

10

1

12

13
14

15

17
18

Under review as a conference paper at ICLR 2025

Algorithm 2: MG-PULL-SUM-GT

Initialize " = e;, 2{” = 2@, y{? = g = LM Gp @0 0™ 1> M,
K=MT;
for s =0,1,...,¢ — 1, each node i in parallel do
s+1 s
P = Yjenin aij s

end

Let dz(-o) 1/;(@ =>r, wfim at each node i;

fort=0,1,. T — 1, each node i in parallel do

; k

Let (710 = 2l —a(x_, )1y M:

r=1"jr 7
form =0,1,..., M — 1, each node 1 in parallel do

k+1m ,m
Update (]5,5 +1m+1) = Zje./\/-m aij¢>(t+1 );

(tM+m+1) (tM+m),

Update d; = ZJGNW aijd; ;
end
Update :c(tH) ¢z(t+1 M) and compute g( T~ =4 Z%Zl VFZ-(wl(-tH); fi(tﬂ’m));
Let Zi(tH 0) = v; ! (y; ® 4 gl(t+1) (t)
form=0,1,..., M — 1, each node Z in parallel do

1,m+1 1,m

Update z(tJr T = =2 jenin CLUz](tJr ),

end

Update "V = (31, () 2{+ 1)
end

We also provide a denser form of MG-PULL-SUM-GT:
t+1) _ t
xtHD = A"(x®) — aD(t-H)My( ))
| M
(t+1) — — (t+1) ¢(t,m)
g =+ mZ:lVF(X £0™)
ytth = B’(y(t) +gtth — g(t))

Here A’ := AM B':= AMD!, D, := diag(1,} A?).

(45a)

(45b)

(45¢)

Lemma 17. When ¢ > M > [Z2a)£2In0)7 00 paye ngsA/%, sprynpa - ka = O(1).

1-Ba

1
Proof. Basy to verify that k4 = k4. note that 8, °* < 1/e, we have B4 < exp(—1—21In(k4) —
2In(n)) = 1/(en?x?). From the proofofLemma.we know that [|A" — A |2 < BYka,VEt > 0.

First we show that 34/-x% < 1. This can be derived from B4 = [|[AM — A ||, < [|A—Ax||¥,

M< 1
ﬁA — E’I’L2fﬁi.

Then, we have nsy = nmaxk>1||A’]~c — Al - Li—hliﬁ(rm) < np¥ka - 14;5‘;;’*‘) <
Al A

In(k _
O(L Hma) yin{1, L2 Y) = O(L2). par = supgsg [[(AM — Ao)(I — RAFMFEMEL) | <
\/ﬁﬁi\(/m <1/(enka),sonpar -4 = O(1).
To understand B, we estimate | B’ — R|r < [|[AM D} — R||r < ra|/(I — R)(A A)M||F <
kaBXv/n < 1/(esan). This indicates that min; ;bj; > + — |[B' — R||p > £, max; ; bj; <
% + HB/ — RHF < % Therefore, [ﬂ'B/]i = Zj:l bij[ﬂ'B/]j S [%, 57n]’ KRB’ S 3 = O( )
Bo = [ 2(AM Dy — mp AP o < kprl|(AMDy! = R) + (01 — 7)1 |ls <
HB/(% + k48N < Ky =0O(1).
Finally, Spr = MMaXg>1 ||B/ - BOOHZ # < BB’KB’ . Hililigjjl) = O(l) O

24



Under review as a conference paper at ICLR 2025

1421n(n)+21n(k4) | In(Lx)|

Theorem 6. When { > M = , we have the following convergence result

for MG-PULL-SUM-GT: 1—Ba
1L i ~ LAoc  (1+In(ka))LA
= E)Y)12] —
7 2SIV ) o(m MRS -

where K = MT is the total rounds of communication. @) () absorbs some logarithmic factors
including In(o), In(n), In(L), In(A) and absolute constants including E[||g®||%].

Proof. We replace s4, sp, pa, 0 With s/, sps, pas, 6 in Theorem (43) respectively. Using the
conclusion of Lemma([T7} we obtain that

a ; o\ 1/3 .
1 2242 1
TZEHIVﬂw“”)Q]:O( LA 4 (L A f’) HMHHH{LM)
t=0

VnT n2T? T Mn2T?
_oYIAs | (LN VP MLa L LA
T \WMaT ~ \n*MT? MT " n2MT?
_ o YEAs |, (MI2A%? Y3 | MLA | MLA
B VnK n?K? K  n?K?

22 _ 2 1/3 .
Note that (%) <2 \/I:LAK" + 1+ ML g MLS < MLA we thus obtain . O

F PULL-DIAG-GT CONVERGENCE

F.1 NOTATION

We denote 1,, as an n-dimensional all-ones vector. We define I,, € R™*" as the identity matrix.
Throughout the paper, A is always a row-stochastic matrix, i.e., A1, = 1,,. We denote [n] as the
index set {1,2,...,n}. We denote Diag(A) as the the diagonal matrix generated from the diagonal
entries of A. We denote diag(v) as the diagonal matrix whose diagonal entries comes from vector
v. We denote w4 as the left Perron vector of A. We denote 114 = diag(m4), ma-vector norm
o)<, = ||HL/21)|| and the induced 7 4-matrix norm as |W ||, = ||H114/2WH21/2H2. We define
Aso = 1,7}, Ba = |A = Aco|lns> ka = max(m4)/ min(m4), g4 = max>o pa. Throughout the
(k)

paper, we let ;" € R? denote the local model copy at node i at iteration k. Furthermore, we define

the matrices
x = (@) 5 @5) s @) T e R
VEEM:W) = (VR (@7:6") T VR P )] e R
Vi i= (V@) fa@l?) T V(@) T e R
by stacking all local variables. The upright bold symbols (e.g. x,w,g € R"*?) always denote

stacked network-level quantities. Throughout the proof, we define V f(x(*)) = n~11,] V f(x*)),
AP = (1= A )x®, A = glh+1) _ (),

F.2 ASSUMPTION

Assumption 6 (First-order Lipschitz continuity.). There exists a constant L such that ||V f;(x) —
Vi@ <Lz -y, Vi=12...n

Assumption 7 (Heterogeneity Bound.). There exists some constant b such that
7 i IV fi(®) = 5 X5, V(@) < b for every x € RY.

Assumption 8 (Gradient Oracle.). There exists some constant o such that E[|VF;(x,&;) —
fi@ | <ot Vi=1,2...n

25
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F.3 SOME USEFUL EQUATIONS AND INEQUALITIES
Lemma 18 (PROPERTIES OF m4 NORM). By definition of w4 norm, we have

L A= Asc|lss = Ba < 1.

2. 1= Asollrs =1
Lemma 19 (RELATIONSHIP BETWEEN F-NORM AND 7 4-NORM.). The following inequalities hold

1. (A= Aso)'2ll% < kaBT |27
2. |UVIE < wallUIZ, VI

Proof. Denote that V = |v;|'_; and m4 = min m4. By definition
1=1 24a

|UV|[7 = |ldiag(m) U2,

i=1

<fz [Uwil2, = — Z |diag () Udiag () diag(m)v; ||*
— =1 — =1

SHHUH%A > lldiag(m)vil|* < mall U2, VI

The first inequality can be derived from the second one. O

Lemma 20 (CONVERGENCE OF DIAGONAL MATRIX). The following inequalities hold for all k >
1.

1 ||Dyt = diag(Ac) |2 < 0% /man B
2. |t~ k+1||2 < 203 /kanfBh.

Proof Denote that TT = diag(A)~! and 74 = min7a. Then we have |[D; ' — I71|, =
| D, (Dy, — IT Y| < 62| Dy, — II||o. It is sufficient to estimate || Dy, — T1||2.

1D — IH[|3 < max [|(A* — Ao)ei|3 < Z I(A" — Ao )ei|3

—ledlag TSt - A )eil|mfjﬁ’22|\eilli
i=1

SﬁAnﬁA
]

Lemma 21. ||Vf(w")||2 is bounded by |V f(w®)|. Because of the heterogeneity bound, we
obtain the inequality that | VE(w®)) |2, < 2n||V f(w®))||? + 2nb2.

Proof. Because of the heterogeneity bound, we have

IVEw )5 =D IV fi(w ™))

i=1
<22||Vf @) = V(w7 + 2n[|V f (w ™))

§2n||Vf(w(’“))H2 + 2nb?.
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Algorithm 3: PULL-DIAG-GT

Initialize dl(-o) = e, :BZ(-O) =20, yi(o) = QEO) =153
for k =0,1,..., K, each node i in parallel do
k+1 k k
l’( ) = Zje/\/’;’n a”wg ) — Oé(yj( )»

k+1 k
dz(' ) = Zjé/\/’f" aijdg- )2
Locally calculate rgkﬂ) = (dz(.fﬂ))—lvpi(xl(’“rl)’ §i(k+1));
(k) _ (kt1) _ (k)

k+1 . k ’
y Y = Y jenin aijyj(- )42

Locally calculate z

end

Lemma 22. When we have the initial setting, y(©) = g, for a given k > 0, we have ﬂ'gy(k) =
74 Dy gy In this way, we take the expectation of both sides E[rTy )] = 7T D, 1 V1.

Proof. Since Dy = I, the proposition holds true when & = 0. Given the proposition holds when
n <k, forn==%k-+1:

71_Ty(k+1) :ﬂ_Ty(k) + T‘-TD]c_Jllgk-ﬁ-l _ TrTDlzlgk

:WTD;ilgk+l'
Then it holds for n = k£ + 1. By induction, the proposition holds for all £ > 0. O
F.4 ALGORITHM FORMULATION
Pull-diag-AGT:
x(F+1) = Ax(®) _ gy (F) (47a)
Vir1 = AVy, (47b)
y* ) = Ay®) 4 D,Zilgkﬂ — D g 47¢)

hereon we set Dy = I,,, (¥ = gy.

F.5 BASIC TRANSFORMATIONS
1oAY = —a 3% (A 1,77)i(T, — 1a )y,
k —i(— - i —i
2. Y(k+1) = Aooy(kJrl)ﬂLZi:o[(A*AOO)k (Di+11 *AOODi-i-ll)Ag*(A*AOO)kJrl (sigi]-

F.6 CONSENSUS

Lemma 23 (CONSENSUS LEMMA).
T K T
AS’-H) 2 < a2 A y(k) 2 (48)

Proof. we can use Jensen inequality and apply [I9]

k
[ 1 A —1
|AFDE <a® Z WH(A — L) (I = Lyn )y * 9|17
i=0 A
k i
<a? 3 APyt (49)
= (1= Ba)
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By summing up @9) from 0 To 7', we have

ZHMI 2 <a222 “AﬂA Sy < QZny“nF

kaO

F.7 GRADIENT TRACKING

Lemma 24 (GRADIENT TRACKING ). We have
T+1

> Iy ™z
k=0

T+1 T

<4 Ay ™ VN + (Cort(T +1) + Coz)o® + Coz Y _ IV (W) 3.
k=0 k=0

Where o < aip = [ (1—Ba)* }0.5 and
= 1 = 1481202 k4 (2104 k2(ma)Batra[A—I[|Z+(1—B4)2)

48 6%
1. Cpr = (17“232)5‘.

96 2.2 96 2
2. Cop = L Gasala

062 06 32
3. Co3 = mzl(_ﬂB/:))zA/BA

Proof. Firstly, applying lemma[l9|and noticing ||/ — A ||r, = 1 we have
1(A = Ac)* (D3 — As DAY — (A= Ac) 55|
<2[|(A = A)" (D — Ac D) AGIlE +2[[(A — Ac) il
<2683 IDZAAIF + 2,4 BT Gigl (50)
Use the second transformation in El ,@) and Jensen’s inequality, we have
Iy * V13 < 2| Ay *HV 5

k
+2IIZ[(A—A VTUDE, — A DA, — (A = As) T 5igi] [

i+1

Bk i+2 KA

k ia 1
<2|| Aoy * V|12, +4Z Bi'ka | DL AL ||F+4276A)

= Ba)

Note that Ag can be further decomposed as follows:

k) _ (k+1 k+1 k+1 k

AR =gt — v H) 4 V() - v (x®) + v (x®) — g®).

Therefore, we can apply Cauchy-Schwarz inequality and obtain that

AP < 3[lgh+D) — VFFD) | + 3|V £ (xFHD) = v (x 3|7

+3|VFx®) — g®|3

< 6no? + 3L2||(A - D)AF) — ay®)||2,

< 6no” + 6L2(|A — I|2| A |17 + 62 L2 |y ™% (51)
Applying lemma ||6:g:||% can be estimated as

H5igz‘||2F

16,83 < 40% K anB%|gsl[3
<40% kanBy [Bno® + 3|V f(xD) = V(W) % + 3|V f(wD)|F]
<404k anBy [3no® + BL2|AL|% + 3|V F(w?)|3] (52)
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Applying (51), (52) and and consensus lemma[23] we obtain

T
Do Iy
k=0

T
24n(T + 1)/@49 48n2k2% (1 4)0% 5%
<2 Ay B2, + A APA 2
2402 L%k (1 4)03 | A — I|%  48a2nL2k3( m )65, 52
+[ (1(_)6"4,4;l HF + ( A A ZH (k)H2

2402 L%k 40> 48nk*(m4)0% 0
7AZH (k)HF MZ”ch (k))||2

052 & (1 5a)?
Si < (—pa)* " hold btai
MCC X = | IRL202 5o (207 12 (ma)Bat+ral A—T %+ (1—Ba)2) 01ds, we obtain
T+1
> ly* 5
k=0
T+1 T
<4 Ay F + (Cor(T + 1) + Coa)o® + Cos > IV F(wM)]|[3..
k=0 k=0

F.8 DESCENT
Lemma 25 (PREPARATION FOR DESCENT LEMMA 1). We have the equality that
—oF [<Vf(w<k>), wZ{D,;lfkﬂ + O‘QTLE [Hﬂﬁy(’“)llz}
< - SB[V @) ] + 55 B [V (@) - 73D 0]
+2a*nLo? 4 202 LSk an o o® + (oL — ﬁ) [ImADy ' V] -
Where dj, = >, D

Proof. Applying the gradient oracle assumption, we obtain

o?L _
TE 174Dy gll]

<a’LE [|74D; (g — VE)|?] + &*LE [||n} D}, ' VE||?]
<20°nLo® +20°LE [||(x 4Dt — 1)) (g — V)| F] + o°LE |74 Dy Vi |?]
<2a*nLo?® + 20[2L06AI{A71B124]€O'2 +a’LE [Hﬂ'ng_lkaHﬂ .
Therefore we have
— ad'E [<def(w<k>),7r£D,;1fk>] + O‘Q—LE [||7r;{;y(’f)||2}
ady,

<~ FE[IVi )| - 33 E (Ix5Dg Vi ]

2
= (k)Y _ 7T p-1 2 L (k)
+ 5 B 169 £ (™) — 5D ka||]+ 5 E |75y @]

ad «a _
=~ FE[IVA@®)P] + 55 E 1495 (w®) ~7f D V7]

+2a2nLo? 4+ 202 LOS k anpZo? + (oL — %)E [HWED,:lkaHQ] .
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Lemma 26 (PREPARATION FOR DESCENT LEMMA 2). When heterogeneity bound assumption
holds, we have the equality that

dx ¥ f(w ™) — 7AD VE|? < L20% | A%

Proof. Since the heterogeneity bound, we have
1diV £ (™) — 24 D VE? =||nh Dy (VE(wi) — V)2 < L3]I AD |7

F.9 MAIN THEOREM

Theorem 7 (CONVERGENCE OF PULL-DIAG-GT). We can prove the linear speedup convergence
rate under a proper choice of T and ai.e.

T 1
d 16/2LAg0  3(C1216A2)s
D v p®)p) < LV2ER00 , 3(0121640)7
= St n(T'+1) no3s(T+1)3
2\/7A00110+3(16A20130 )E + 3(16A2C 14b2)
n(T +1)

Where C1; are constants and S, = Zfzo k

Proof. Since w1 = w®*) — a7 ,y(*) and L-smoothness of f(x), we have

E [f(w(’““))} <E [f(w““))} — ad;'E [<def(w<k>)m£D,;1ka>}

L
+55E [lImay®)2]
23

%k [£w®)] ~ SEB[I9£(w®)7] + 2020101 +0%545%)0?

_ o _
+ﬁE (149 () = TE D VENP | + (0L — 5B [ D V)

2k [fw®)] -

Sk (195w )] + (@2L — S [In” D 8]

L29?4a (k) ) ok 2
YA [IIA HF} +2a®nLo* 4 202 LOS k an Y
(53)
Since 1 < i < 04, it holds that 1 < dj, < 6 4. Summing up for 0 to T we obtain

T
5 O BE [V )] < 80+ (*L — 57-) ZE (I D V]
k=0

1262 T o]
s > E [HAEJ“)H%] +202nL(T + 1)0® + wag
2 & s

Where A is defined as f(w(®)) — f*, notice that lemma[23|and lemmahold, it holds that

T
3D dE [[Vf(w®)]?]
k=0

« 203 L2%0% nk 4
<Ay + azL——&—A] E 7TTD 1vf,
ot |02 - o+ I Z [ ]

202 LS kan 3L29124/<;A

1—@ METEEAE

+ {QQQnL(T +1)+ (001(T +1) + 002)}

ABL20% ki o

T B

L Cos QnZ A [V 1 (w™)|2] + 2n0?
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Applying lemma we can estimate dy as dy > n — ny/nk40%54%. In this way, we define Sy, =
3

S°¥_, d;, then we have Sy, > n(k + 1) — nim.

Denote that

_ (1-Ba) [*L(l*ﬁA)‘l’\/Lz(lf,@A)2+4nL29A/{A]

L. a2 47LL29124KA
(1—-Ba)
2' agz = PNV

Let o < ag and o < a3 ,Finally, we have

T 2 6
%]EHVf(w(k))Hz < 4Aq n 8aLn(T + 1)o n 8aLf)kan 2
k=0 St ~ adSr St (1—-pB%)Sr
202 L20% kA AnalL?0% k4
= A (Cr(T+1) + Cop)o? + ———A 2 C3b?. 54
(17614)2571( 01 (T +1) + Co2)o” + 1= A5y % (54)
LetT > 273712‘;93‘, then St > @ Define that
L. Chy = 16LOS Kkan
N e Y
22
2. C12 = %_%S? Co1
22 P
3. Ciz = %,03‘;)? Co2
n 2 2K?
4 C14 8(111_22)2A003
Then (54) can be reformulated as
T
dy, 8¢ aChy
D19 f w2 < — 829 4 16ar0? 4 OO 2
k:OST IV f(w)]* < an(T + 1) + 16aLo +n(T+1)J
a2012 2 a2013 2 OéQCl4
b2 55
T en? thr (53)
We define
A 3
Loy = |:2LTL(T-Oi-1)O'2:| :
%
2. a5 = [Cﬁ(‘;z} .
%
4A
3. ag = [01202(%+1)}
_ | _44¢ g
4. a7 = [01302]
1
5. ag — [04322} ’
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In , welet o < —+—  and T > 27371';‘;02‘, we finally prove the linear speedup of PULL-
DIAG.

=1 "%

T D 117 w2 < LOV2LA0T 3(3072nk2 04 L2 A202) &
= ST /(T +1) n(T+1)5(1—p2%)z

+8./7n/<;A9f’4«/LAOJ N 3(6144n°%K3 08 L2 % A202) 5
n(T +1)y/1- 3 n(T +1)(1 - Ba)3
3(12288n2k3, 08 L2 % A20%) 5

n(T+1)(1—-84)3

G EXPERIMENT DETAILS

In this section we provide unexplained details of experiment setup in the article.

G.1 NETWORK DESIGN

Ring, Ring,
6)=>3 ~y 6= 3~
7 3 7 3
/ Y / Y
8 2 8 2

/ \ / \
9 1 9 1
t ) 1 )
10 0 10 0
t :

11 19 11 19
\ / \ /
12 18 12 18
N\ ' \ '

13 17 13 17
14 e qs =16 \14._15‘_15

Figure Al: Left plot: Ring,, a directed ring graph with one extra connection. 64 ~ 629145.6,
Kka =~ 2,04 ~ 0.989. Right plot: Ring,, a directed ring graph with two extra connections. 04 =~
53387, ka ~ 2.5, 34 ~ 0.989.
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/ N
8 2
/ \
9 1
t
10 0
)

11 19
\ /
12 18
N\ '

13 17

S e S s

Figure A2: Left plot: Rings, a directed ring graph with three extra connections. 04 ~ 844, k4 ~
2,84 ~ 0.989. Right plot: Ring,, a directed ring graph with four extra connections. 64 ~ 313,
Kka = 1.6,84 ~ 0.970.

G.2 FIGURE 1 IN SECTION 4
Setup. We randomly generate an initial vector (®) € R?°, and then run either PULL-DIAG and

PULL-SUM consensus on a network of size 20 to estimate Z(?). The estimate at iteration & is
denoted by w*), and the consensus error is computed as ||w®) — || /||x©® — ).

Pull-Diag Consensus Pull-Sum vs Pull-Diag
a

10° —— Ring;, 8,=6*1e5 o 10 ---- Pull-Sum, Ring;

S —— Rings, 85=5*1ed o 102 ---- Pull-Sum, Ring;

E o— Rings, 8,=8*1e2 E ---- Pull-Sum, Ring3
n n
3 3
0 ]
c c
Q Q
0 ]
c c
5} )
o (0}

o 25 50 75 100_125 150 175 200 o 25 50 75 100 125 150 175 200

Iteration Iteration

Figure A3: The left plot illustrates the PULL-DIAG consensus on three different networks with
varying 6 4, while other parameters remain approximately constant, with k4 ~ 2 and 84 ~ 0.989.
It is observed that PULL-DIAG exhibits a larger initial spike for networks with higher #4. The
right plot compares the consensus error of PULL-SUM (dashed lines) and PULL-DIAG (solid lines).
PULL-SUM consistently outperforms PULL-DIAG across all cases.

G.3 FIGURE 2 IN SECTION 6

Setup. Our experiment on synthetic dataset focuses on a decentralized logistic regression with

non-convex regularization. The objective is formulated as minimizing min,cga n=1 >0 (fi(x) +
pr(zx)), where

1 & T []3

o) = 37 Lm0+ exployhlie)) and o) =3l

Here, {hi i, vi1} l]\i , represents the training dataset held by node 4, where h;; € R¢ denotes feature
vectors and y; ; € {+1, —1} signifies labels. The regularization term 7 (), which is non-convex, is
controlled by p > 0.

=1 =
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We fix d = 10, M = 20, and p = 0.001. To accommodate varying data characteristics across
nodes, each node ¢ computes a local solution x}. This solution is computed as x} = z* + v;, where
x* ~ N(0, I) is a shared, randomly generated vector, and v; ~ N(0, O'}QL[ 4) introduces variability
among local solutions.

To generate local data reflecting diverse distributions, we sample each feature vector h; ; ~ N (0, I4)
at node ¢. The corresponding label y; ; is determined by a random variable z; ; ~ U(0, 1), with y; ;
setto 1if z;; < 1/(1 + exp(—yi,h/ 7)) and —1 otherwise, thereby controlled by 7.

To introduce controlled gradient noise, we modify the actual gradient using Gaussian noise €; such
that Vf;(z) = Vf(x) + &;, where g; ~ N(0,021,). The parameter o> governs the intensity of
gradient noise.

In our experiments, we set o, = 20 and o,, = 0.001. Our primary performance metric of interest
across all experiments is ||V f (X)) ]].

Ring,, 0,=6*1e5 1or_Ringz, B5=5*1e4 Rings, B,=8*1e2 Ring,, Bx=3*1e2
10° 10°] 4
1004 \ —+— Pull-Sum-GT —+— Pull-Sum-GT | —+— Pull-Sum-GT
E + E e —— Pull-Diag-GT Em_, —— Pull-Diag-GT Emd —— Pull-Diag-GT
S0 2.0 —— FRSD S —— FRSD ] —— FRSD
® & FROZEN oo FROZEN PERIR FROZEN
§ 102} —— Pull-Sum-GT @ 102 H o
'-E —— Pull-Diag-GT % \ i ﬁ
€103 —— FRSD 10 S L107 e - 3
2 R 4 A T
© FROZEN Wiy © R R © TRy © A TR
g 10 .
0 500 1000 15002000_2500 30003500 4000 10 0 500 10001500 2000_15003000 3500 400( 0 500 10001500 2000_2500 3000 3500 4000 107t 0 500 10001500 2000_2500 3000 3500 4000
Iteration Iteration Iteration Iteration

Figure A4: When 04 is significant (Ring; ,), PULL-SUM-GT is not influenced while PULL-DIAG
based methods suffer a lot. When 6 4 is small (Ring& 4) their performance are similar.
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