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ABSTRACT

A key challenge in decentralized optimization is determining the optimal conver-
gence rate and designing algorithms that can achieve it. While this issue has been
thoroughly addressed for doubly-stochastic and column-stochastic mixing matri-
ces, the row-stochastic setting remains largely unexplored. This study establishes
the first convergence lower bound for decentralized learning over row-stochastic
networks. However, developing algorithms to achieve this lower bound is highly
challenging due to several factors: (i) the widely used ROW-ONLY gossip pro-
tocol, PULL-DIAG, suffers from significant instability in achieving average con-
sensus; (ii) PULL-DIAG-based algorithms are sensitive to data heterogeneity; and
(iii) there has been no analysis in nonconvex and stochastic settings to date. This
work addresses these deficiencies by proposing and analyzing a new gossip pro-
tocol called PULL-SUM, along with its gradient tracking extension, Pull-Sum-GT.
The PULL-SUM protocol mitigates the instability issues of PULL-DIAG, while
PULL-SUM-GT achieves the first linear speedup convergence rate without rely-
ing on data heterogeneity assumptions. Additionally, we introduce a multi-step
strategy that enables PULL-SUM-GT to match the established lower bound up to
logarithmic factors, demonstrating its near-optimal performance and the tightness
of our established lower bound. Experiments validate our theoretical results.

1 INTRODUCTION

Scaling machine learning tasks to large datasets and models requires efficient distributed computing
across multiple nodes. This paper investigates decentralized stochastic optimization over a network
of n nodes:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x) where fi(x) = Eξi∼Di
[F (x; ξi)]. (1)

Here, ξi is a random data vector supported on Ξi ⊆ Rq with some distribution Di, and F :
Rd × Rq → R is a Borel measurable function. Each loss function fi is accessible only by node i
and is assumed to be smooth and potentially non-convex. Note that data heterogeneity typically ex-
ists, i.e., the local data distributions {Di}ni=1 vary across nodes. The decentralized communication
among nodes is represented as a strongly connected directed graph, which is practically valuable in
real applications. For example, bidirectional communication may be infeasible due to nodes having
different power ranges (Yang et al., 2019) or experiencing channel disruptions. In distributed deep
learning model training, well-designed directed topologies often result in sparser and faster commu-
nication compared to undirected ones, thus accelerating training in terms of wall-clock time (Bottou
et al., 2018; Assran et al., 2019; Yuan et al., 2021).

Network topology and mixing matrix. A key challenge in decentralized optimization is to deter-
mine the optimal convergence rate and design algorithms that achieve it. Addressing this challenge
requires a theoretical characterization of how network topologies influence decentralized algorithms.
For a given connected network, we represent the topology using a mixing matrix that follows its
connectivity pattern, serving as an effective tool for evaluating the network’s impact. For undirected
networks, a symmetric and doubly-stochastic matrix can be easily constructed. However, in directed
networks, constructing a doubly-stochastic mixing matrix is generally impossible. Instead, mixing
matrices are typically either column-stochastic (Nedić & Olshevsky, 2014; Nedić et al., 2017) or
row-stochastic (Sayed, 2014; Mai & Abed, 2016), but not both.
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Optimal complexity over doubly-stochastic networks is well-established. The connectivity of a
doubly-stochastic mixing matrix can be effectively evaluated through a metric called spectral gap,
which measures how closely the decentralized network approximates a fully connected network.
Building on this metric, a series of works have established the optimal convergence rates for de-
centralized algorithms. For instance, the studies in (Scaman et al., 2017; 2018; Sun & Hong, 2019;
Kovalev et al., 2021) provide optimal convergence rates for convex or non-stochastic decentralized
optimization. Lu & De Sa (2021) establishes the optimal complexity for non-convex and stochastic
decentralized optimization over a specific type of linear networks, while (Yuan et al., 2022) extends
this optimal complexity to a much broader class of networks.

Optimal complexity over column-stochastic networks is established recently. If out-degree in-
formation is available prior to communication, a column-stochastic matrix can be easily constructed.
When only column-stochastic matrices are used in decentralized algorithms, this is referred to as
the COL-ONLY setting. The foundation of COL-ONLY algorithms is the PUSH-SUM gossip pro-
tocol (Kempe et al., 2003; Tsianos et al., 2012). Many algorithms based on PUSH-SUM achieve
superior convergence rates, e.g., Nedić & Olshevsky (2015); Tsianos et al. (2012); Zeng & Yin
(2017); Xi & Khan (2017); Xi et al. (2017); Nedić et al. (2017); Assran et al. (2019); Qureshi et al.
(2020). However, these works do not precisely capture the influence of column-stochastic networks
and, therefore, cannot clarify the optimal complexity in the COL-ONLY setting. This open question
has been addressed in a recent study by Liang et al. (2023), which establishes effective metrics to
evaluate the influence of column-stochastic networks and provides the optimal lower bound for the
COL-ONLY setting. Additionally, it proposes algorithms that achieve this lower bound.

Optimal complexity over row-stochastic networks remains unclear yet. If out-degree infor-
mation is unavailable, column-stochastic matrices cannot be directly constructed. However, row-
stochastic matrices can be formed using in-degree information, which can be obtained by counting
received messages. This is referred to as the ROW-ONLY setting. Similar to how PUSH-SUM serves
as the basis for COL-ONLY algorithms, the foundation of ROW-ONLY methods is the PULL-DIAG
gossip protocol (Mai & Abed, 2016). Building on PULL-DIAG, Mai & Abed (2016) adapted the dis-
tributed gradient descent (DGD) algorithm for the ROW-ONLY setting, while Li et al. (2019); Xin
et al. (2019c) extended gradient tracking methods, and Ghaderyan et al. (2021); Lü et al. (2020);
Xin et al. (2019a) introduced momentum-based ROW-ONLY gradient tracking. However, the con-
vergence analysis for ROW-ONLY algorithms is still quite limited. Current analyses focus only on
deterministic and strongly convex loss functions, leaving the performance of ROW-ONLY algorithms
in non-convex and stochastic settings unknown. More importantly, the impact of row-stochastic net-
works on the convergence rate of ROW-ONLY algorithms remains unclear. These gaps present sig-
nificant obstacles to determining the optimal complexity in the ROW-ONLY setting. The following
fundamental open problems then naturally arise:

Q1. What are the effective metrics that can fully capture the impact of row-stochastic networks
on decentralized stochastic optimization, and how do they influence the convergence of
prevalent ROW-ONLY algorithms?

Q2. Given these metrics, what is the lower bound on the convergence rate for ROW-ONLY
algorithms in the non-convex and stochastic setting?

Q3. Can existing ROW-ONLY algorithms readily achieve the optimal convergence rate? If not,
what limitations do they face?

Q4. Can we develop new ROW-ONLY algorithms that overcome the limitations of existing al-
gorithms and attain the aforementioned lower bound?

Main contributions. This paper provides an in-depth understanding of decentralized optimization
over row-stochastic networks by addressing the above open questions. Our contributions are:

C1. We find that the metrics generalized spectral gap and equilibrium skewness, proposed by
Liang et al. (2023) to characterize the influence of column-stochastic networks, can also
effectively capture the impact of row-stochastic networks on decentralized algorithms.

C2. Using these metrics, we establish the first lower bound on the convergence rate for any non-
convex decentralized stochastic first-order algorithm with a row-stochastic mixing matrix.
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This bound reflects the optimal influence of gradient noise, the mixing matrix, the number
of nodes, and problem smoothness on the algorithm.

C3. We find that existing ROW-ONLY algorithms cannot attain the aforementioned lower bound
due to two limitations. First, the PULL-DIAG protocol involves the inversion of small val-
ues during its operation, leading to instability in ROW-ONLY algorithms. Second, improper
algorithmic construction makes current ROW-ONLY algorithms highly sensitive to data het-
erogeneity. However, neither the instability nor data heterogeneity affects our lower bound,
suggesting that these issues can be eliminated with improved algorithm design.

C4. We develop novel ROW-ONLY algorithms to achieve the established lower bound. First,
we propose a PULL-SUM gossip protocol that avoids the inversion of small values. Next,
we introduce a new row-stochastic gradient tracking structure that removes the impact of
data heterogeneity. Together with a multi-step gossip protocol, these techniques will yield
an effective algorithm that nearly attains the established lower bound, demonstrating its
near-optimal performance and the tightness of the established lower bound.

Notations. Let 1n denote the n-dimensional all-ones vector, and In ∈ Rn×n the identity matrix.
We let matrix A denote the row-stochastic matrix (A1n = 1n) and B denote the column-stochastic
(1⊤

nB = 1⊤
n ) matrix. The set [n] represents the indices {1, 2, . . . , n}. Diag(A) refers to the diagonal

matrix formed byA’s diagonal entries, and diag(v) is the diagonal matrix formed from vector v. The
Perron vectors of A and B are πA and πB , respectively, with ΠA = diag(πA) and ΠB = diag(πB).
We define ∥v∥πA

= ∥Π1/2
A v∥ and ∥v∥πB

= ∥Π−1/2
B v∥, with corresponding induced matrix norm

∥W∥πA
= ∥Π1/2

A WΠ
−1/2
A ∥2 and ∥W∥πB

= ∥Π−1/2
B WΠ

1/2
B ∥2. We define A∞ = 1nπ

⊤
A and

B∞ = πB1
⊤
n . Vector x(k)

i ∈ Rd denotes the local model at node i at iteration k. We also define

x(k) := [(x
(k)
1 )⊤; (x

(k)
2 )⊤; · · · ; (x(k)

n )⊤] ∈ Rn×d,

∇F (x(k); ξ(k)) := [∇F1(x
(k)
1 ; ξ

(k)
1 )⊤; · · · ;∇Fn(x

(k)
n ; ξ(k)n )⊤] ∈ Rn×d,

by stacking all local variables. The upright bold symbols (e.g. x,w,g ∈ Rn×d) always denote
stacked network-level quantities.

2 EFFECTIVE METRICS FOR ROW-STOCHASTIC NETWORKS

We consider a directed network with n computing nodes that is associated with a mixing matrix
A = [aij ]

n
i,j=1 ∈ Rn×n where aij ∈ (0, 1) if node j can send information to node i otherwise

aij = 0. Decentralized optimization is built upon partial averaging z+i =
∑

j∈Ni
aijzj in which

zi ∈ Rd is a local vector held by node i and Ni denotes the in-neighbors of node i, including node
i itself. Since every node conducts partial averaging simultaneously, we have

z ≜ [z⊤1 ; z⊤2 ; · · · ; z⊤n ]
A-protocol7−−−−−→ z+ = Az = [

∑
j∈N1

a1jz
⊤
j ; · · · ;

∑
j∈Nn

anjz
⊤
j ] (2)

where A-protocol represents partial averaging with mixing matrix A. Evidently, the algebraic char-
acteristics of A substantially affects the convergence of partial averaging and the corresponding
decentralized optimization. This section explores metrics that capture the characteristics of A.

2.1 ROW-STOCHASTIC MIXING MATRIX

This paper focuses on a static directed network G associated with a row-stochastic matrix A.
Assumption 1 (PRIMITIVE AND ROW-STOCHASTIC MIXING MATRIX). The mixing matrix A is
non-negative, primitive, and satisfies A1n = 1n.

If G is strongly-connected, i.e., there exists a directed path from each node to every other node, and
A has a positive trace, then A is primitive. It is straightforward to make A row-stochastic by setting
aij = 1/(1 + dini ) if (i, j) ∈ E or j = i otherwise aij = 0, where E is the set of directed edges
and dini is the in-degree of node i excluding the self-loop. With Assumption 1, Perron-Frobenius
theorem (Perron, 1907) ensures a unique equilibrium vector πA ∈ Rn with positive entries so that

π⊤
AA = π⊤

A , 1⊤
n πA = 1, and lim

k→∞
Ak = 1nπ

⊤
A .

3
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2.2 EFFECTIVE METRICS TO CAPTURE THE IMPACT OF ROW-STOCHASTIC WEIGHT MATRIX

Most decentralized algorithms rely on gossip protocols like (2), where local variables are partially
mixed to approximate the global average. The properties of the mixing matrix A are crucial in
determining whether this gossip mixing can achieve the global average and how efficiently this
process occurs. These properties will translate into effective metrics for evaluating the influence of
A on algorithmic performance.

Now we examine the gossip process with a row-stochastic mixing matrix A. Suppose that each
node i has a local variable zi ∈ Rd, we let z = [z⊤1 ; z⊤2 ; · · · ; z⊤n ] ∈ Rn×d and initialize x(0) = z.
Following the gossip protocol as in (2), we have the following recursions:

x(k) = Ax(k−1) = Akx(0) k→∞7−−−−→ 1nπ
⊤
Ax

(0) = 1nπ
⊤
Az, (3)

where we utilize the property that limk→∞Ak = 1nπ
⊤
A . It is evident that the matrix A influences

both whether and how quickly x(k) approaches the global average (1/n)1n1
⊤
n z. Inspired by (3),

we propose the following two metrics to capture the impact of the row-stochastic matrix A:

• The equilibrium skewness

κA := max(πA)/min(πA) ∈ [1,+∞)

captures the disagreement between the equilibrium vector πA and the uniform vector n−11n.
When κA → 1, the weighted average 1nπ

⊤
Az aligns better with the global average n−11n1

⊤
n z.

• The generalized spectral gap 1− βA of the row-stochastic matrix A, where

βA :=
∥∥A− 1nπ

⊤
A

∥∥
πA

= ∥A−A∞∥πA
∈ [0, 1)

quantifies the convergence rate of x(k) to the weighted global average 1nπ
⊤
Az in (3). As βA

approaches 0, the iterates x(k) converge more rapidly to the weighted global average.

It is important to note that these two metrics are not new; they were proposed in (Xin et al., 2019b;
Liang et al., 2023) to assess the influence of column-stochastic mixing matrices. Our contribution
lies in demonstrating that these metrics are also applicable to row-stochastic mixing matrices.

Another remark is that the standard gossip protocol using a row-stochastic matrix A in (3) cannot
achieve the global average. However, this issue can be resolved with an enhanced gossip protocol
called PULL-DIAG (Mai & Abed, 2016; Xi et al., 2018), which will be discussed in Section 4.

3 CONVERGENCE LOWER BOUNDS OVER ROW-STOCHASTIC NETWORKS

3.1 ASSUMPTIONS

This subsection specifies the category of decentralized algorithms to which our lower bound applies.

Function class. We define the function class F∆,L as the set of functions that satisfy Assumption 2,
for any given dimension d ∈ N+ and any initialization point x(0) ∈ Rd.
Assumption 2 (SMOOTHNESS). There exists a constant L,∆ ≥ 0 such that

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥,

for all 1 ≤ i ≤ n,x,y ∈ Rd, and f(x(0))− infx∈Rd f(x) ≤ ∆.

Gradient oracle class. We assume that each node i processes its local cost function fi using a
stochastic gradient oracle ∇F (x; ξi), which provides unbiased estimates of the exact gradient ∇fi
with bounded variance. Specifically, we define the stochastic gradient oracle class Oσ2 as the set of
all oracles ∇F (·; ξi) that satisfy Assumption 3.
Assumption 3 (GRADIENT ORACLES). There exists a constant σ ≥ 0 such that

E[∇F (x; ξi)] = ∇fi(x), E[∥∇F (x; ξi)−∇fi(x)∥2] ≤ σ2, ∀x ∈ Rd, ∀ 1 ≤ i ≤ n.

4
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Algorithm class description. We focus on decentralized algorithms where each node i maintains
a local solution x(k)

i at iteration k and communicates using the A-protocol defined in (2). These
algorithms also adhere to the linear-spanning property, as defined in prior works (Carmon et al.,
2020; 2021; Yuan et al., 2022; Lu & De Sa, 2021). Informally, this property ensures that each local
solution x(k)

i resides within the linear space spanned by x(0)
i , its local stochastic gradients, and

interactions with neighboring nodes. Upon completing K iterations, the final output x̂(K) can be
any variable in span({{x(k)

i }ni=1}Kk=0). Let AA denote the set of all algorithms that adhere to partial
averaging via mixing matrix A and satisfy the linear-spanning property.

3.2 LOWER BOUND

With βA and κA at hand, we show, for the first time, that the convergence rate of any non-convex
decentralized stochastic first-order algorithm with a row-stochastic mixing matrix is lower bounded
by the following theorem.

Theorem 1 (Lower bound). For any given L ≥ 0, n ≥ 2, σ ≥ 0, and β̃ ∈ [Ω(1), 1 − 1/n], there
exists a set of loss functions {fi}ni=1 ∈ F∆,L, a set of stochastic gradient oracles in Oσ2 , and a row-
stochastic matrix A ∈ Rn×n with βA = β̃ and ln(κA) = Ω(n(1− βA)), such that the convergence
of any algorithm A ∈ AA starting from x(0)

i = x(0), i ∈ [n] with K iterations is lower bounded by

E[∥∇f(x̂(K))∥2] = Ω

(
σ
√
L∆√
nK

+
(1 + ln(κA))L∆

(1− βA)K

)
. (4)

where K, σ, L, and ∆ represent the total number of iterations, gradient variance, smoothness pa-
rameter of the functions, and the initial gap in function values, respectively. The lower bound in (4)
explicitly demonstrates the combined influence of the generalized spectral gap βA and the equilib-
rium skewness κA on decentralized algorithms employing row-stochastic weight matrices.

4 LIMITATIONS IN EXISTING ROW-ONLY ALGORITHMS

This section examines the convergence of several existing ROW-ONLY algorithms and identifies the
limitations that prevent them from reaching the established lower limit.

4.1 PULL-DIAG PROTOCOL SUFFERS FROM INSTABILITY

Algorithm review. According to (3), for a row-stochastic matrix A, the convergence Ak → 1nπ
⊤
A

results in a biased weighted average during gossiping, i.e.,

[GOSSIP] : x(k) = Ax(k−1) = Akx(0) k→∞7−−−−→ 1nπ
⊤
Ax

(0) ̸= x̄(0), (5)

where x̄(0) := n−11n1
⊤
nx

(0) is the desired global average. The PULL-DIAG protocol, commonly
used in ROW-ONLY optimization (Mai & Abed, 2016; Xi et al., 2018; Li et al., 2019; Xin et al.,
2019c; Ghaderyan et al., 2021), corrects this bias by utilizing the diagonal entries of Ak, i.e.,

[PULL-DIAG ] : x(k) = n−1AkDiag(Ak)−1x(0) k→∞7−−−−→ n−11nπ
⊤
Adiag(π

−1
A )x(0) = x̄(0). (6)

It is evident that the inversion of the diagonal entries of Ak plays a crucial role in correcting the bias
inherent in the vanilla gossip protocol.

Limitation. A key limitation of PULL-DIAG is its instability when diagonal entries of Ak ap-
proaches zero. To ensure the protocol remains well-defined, an additional assumption is required to
provide a lower bound on the diagonal entries ofAk across all iterations. We present this assumption
along with the following lemma to ensure the convergence of PULL-DIAG.

Proposition 1 (PULL-DIAG convergence). For a row-stochastic and primitive matrix A, if
maxk ∥Diag(Ak)−1∥2 = θA > 0, then PULL-DIAG converges at the following rate:

∥n−1w(k) − x̄(0)∥F ≤ min{1 + θA, 2θAκ
1.5
A βk

A}∥x(0)∥F . (7)

5
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The convergence rate of PULL-DIAG is influenced by θA, which arises from the inversion of small
values. Notably, θA is independent of βA and κA and can become arbitrarily large, making PULL-
DIAG highly unstable when θA is substantial, as illustrated in Figure 1. Consequently, all algorithms
built upon PULL-DIAG (Mai & Abed, 2016; Xi et al., 2018; Li et al., 2019; Xin et al., 2019c;
Ghaderyan et al., 2021) suffer from this instability issue. However, our established lower bound
in Theorem 1 is unaffected by θA, suggesting that this impact can be eliminated. In Section 5, we
introduce a new protocol PULL-SUM to address this issue.

4.2 PULL-DIAG-GT SUFFERS FROM DATA HETEROGENEITY

Algorithm review. Gradient tracking (Xu et al., 2015; Di Lorenzo & Scutari, 2016; Qu & Li,
2017; Nedic et al., 2017) is among the state-of-the-art algorithms in decentralized optimization.
Initially designed for undirected networks, it has been extended by (Li et al., 2019; Xin et al., 2019c;
Ghaderyan et al., 2021; Lü et al., 2020; Xin et al., 2019a) to the ROW-ONLY setting using the PULL-
DIAG protocol. We revisit a representative algorithm FROST (Li et al., 2019; Xin et al., 2019c):

x(k+1) = Ax(k) − αy(k) (8a)

y(k+1) = Ay(k) +D−1
k+1g

(k+1) −D−1
k g(k) (8b)

where Dk = Diag(Ak), x(k) is the variables, and y(k) denotes the gradient tracking term. Specifi-
cally, g(k) is the stochastic gradient, defined as g(k) = ∇F (x(k); ξ(k)), with y(0) = g(0). We refer
to algorithms with structures similar to (8) as belonging to the PULL-DIAG-GT family.

Algorithm insight. The fundamental reason PULL-DIAG-GT is effective for row-stochastic net-
works is that it essentially functions as an asymptotic global gradient descent. To illustrate this, we
can first check the gradient tracking part by left-multiplying π⊤

A on both sides of (8b):

π⊤
Ay

(k+1) − π⊤
AD

−1
k+1g

(k+1) (a)
= π⊤

Ay
(k) − π⊤

AD
−1
k g(k) = · · · = π⊤

Ay
(0) − π⊤

Ag
(0) (b)

= 0, (9)

where equality (a) holds because πT
AA = πT

A, and equality (b) holds due to y(0) = g(0). The above
equality indicates that π⊤

Ay
(k) = πT

AD
−1
k g(k). Similarly, we left-multiply π⊤

A on both sides of (8a)
and denote the weighted parameter w(k) = π⊤

Ax
(k) :

w(k+1) = w(k) − απ⊤
Ay

(k) (9)
= w(k) − απT

AD
−1
k g(k). (10)

Noting that π⊤
AD

−1
k → 1⊤

n , k → ∞, denote ḡ(k) = n−11⊤
n g

(k), the iteration can be asymptotically
written as w(k+1) = w(k) − nαḡ(k). As x(k) achieve consensual x(k) at each node at the end, this
becomes x(k+1) = x(k) − nαḡ(k), making it a centralized parallel SGD.

Limitation. While PULL-DIAG-GT is simple and effective, it suffers from two limitations:

• It builds on PULL-DIAG, which introduces instability due to the inversion of the diagonal
entries of Ak. Consequently, its convergence is influenced by θA = maxk ∥Diag(Ak)−1∥2.

• It suffers from data heterogeneity. As seen from (9), the effectiveness of PULL-DIAG-GT
stems from the fact that n−1π⊤

Ay
(k) asymptotically approaches the globally averaged gradient

ḡ(k) = n−1
∑n

i=1 g
(k)
i . To quantify the discrepancy between π⊤

Ay
(k) and ḡ(k), we have:

n−1π⊤
Ay

(k) − ḡ(k) = (

n∑
i=1

[πA]i
[Ak]ii

− 1)ḡ(k) +

n∑
i=1

[πA]i
[Ak]ii

(g
(k)
i − ḡ(k))︸ ︷︷ ︸

gradient dissimlarity

. (11)

The first term is a global gradient and it is naturally bounded in the gradient descent process.
However, the second term is bounded only if we have assumed that the gradient dissimilarity
or data heterogeneity is bounded.

To illustrate the limitations of PULL-DIAG-GT, we analyze its convergence in the non-convex and
stochastic setting. Prior to our work, its convergence has only been examined in strongly-convex
and deterministic settings by Li et al. (2019); Xin et al. (2019c).

6
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Figure 1: The left plot illustrates the PULL-DIAG consensus on three different networks with
varying θA, while other parameters remain approximately constant, with κA ≈ 2 and βA ≈ 0.989.
It is observed that PULL-DIAG exhibits a larger initial spike for networks with higher θA. The
right plot compares the consensus error of PULL-SUM (dashed lines) and PULL-DIAG (solid lines).
PULL-SUM consistently outperforms PULL-DIAG across all cases. Detailed experimental setup is
referred to Appendix G.

Assumption 4 (Bounded data heterogeneity). There exists constant b > 0 such that

1

n

n∑
i=1

∥∇fi(x)−
1

n

n∑
j=1

∇fj(x)∥2 ≤ b2, ∀x ∈ Rq.

Theorem 2 (PULL-DIAG-GT convergence). Under assumptions 1, 2, 3 and 4, when total iteration
K >

√
nκAθ3

A

1−βA
, there exists a learning rate α (see Theorem1 in Appendix F) such that

min
k=0,1,...,K

E[∥∇f(w(k))∥2] = O

(
σ√
nK

+
(nκ2Aθ

4
Aσ

2)
1
3

nK
2
3 (1− β2

A)
4
3

+
κAθ

3
A(σ

2
3 + b

2
3 )

n
1
3K(1− βA)

5
3

)
.

Here we omit constant coefficients including E[∥g(0)∥2F ],∆, L. We define w(k) = π⊤
Ax

(k).

The convergence rate of PULL-DIAG-GT is influenced by θA due to its reliance on the PULL-DIAG
protocol. Additionally, the rate is affected by the data heterogeneity metric b2; greater data hetero-
geneity results in slower convergence, as shown in Figure 3. However, our established lower bound
in Theorem 1 is unaffected by both θA and b2, indicating that their impacts can be eliminated.

5 ACHIEVING OPTIMAL COMPLEXITY WITH NEW ALGORITHM DESIGNS

The instability issues in PULL-DIAG protocol and the sensitivity to data heterogeneity in PULL-
DIAG-GT hinder existing algorithms from achieving the convergence lower bound. This section
develops new algorithms to address these limitations and attain the established lower bound.

5.1 PULL-SUM ADDRESSES THE INSTABILITY ISSUE

A key insight into how the PULL-DIAG protocol (6) corrects the bias in the vanilla gossip protocol
(5) is that Diag(Ak) → diag(πA) as k → ∞. To address the instability arising from Diag(Ak)−1,
we propose a novel PULL-SUM protocol:

[PULL-SUM ] : w(k)=Akdiag(1⊤
nA

k)−1x(0) k→∞7−−−−→ 1nπ
⊤
Adiag(nπA)

−1x(0) = x̄(0), (12)

where we utilize the fact that Ak → 1nπ
⊤
A as k → ∞. Notably, the inversion of the column sum of

A is significantly more stable than the inversion of the diagonal entries, as illustrated below:
Proposition 2. Let Dk = diag(1⊤

nA
k), it holds that ∥D−1

k ∥2 ≤ κA,∀k ≥ 0.

With this result, we achieve the convergence rate of the PUSH-SUM protocol:
Proposition 3 (PULL-SUM convergence). For a row-stochastic and primitive matrixA, PULL-SUM
converges at the following rate: ∥w(k) − x̄(0)∥F ≤ max{1 + nκA, κ

1.5
A βk

A}∥x(0)∥F .

Compared to the convergence of PULL-DIAG shown in Proposition 1, PULL-SUM eliminates the
influence of θA, as illustrated in Figure 1. Because PULL-SUM is unaffected by θA, algorithms built
upon PULL-SUM have the potential to approach the lower bound established in Theorem 1.
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5.2 PULL-SUM-GT ADDRESSES THE DATA HETEROGENEITY ISSUE

The primary reason for PULL-DIAG-GT’s susceptibility to data heterogeneity lies in its weighted
average w, which performs global gradient descent asymptotically rather than non-asymptotically;
that is, π⊤

Ay
(k) → ḡ(k) as k → ∞, but π⊤

Ay
(k) ̸= ḡ(k) in the non-asymptotic phase, see

the illustration in (9) and (10). To address this issue, we develop a new gradient tracking
method based on the PULL-SUM protocol, termed PULL-SUM-GT, as follows. For ∀k ≥ 0,

D̃k+1 = AD̃k (13a) Dk+1 = diag(1⊤
n D̃k+1) (13b)

x(k+1) = A(x(k) − αD−1
k+1y

(k)) (13c) y(k+1) = B(y(k) + g(k+1) − g(k)) (13d)

where B = Adiag(1⊤
nA)

−1,y(0) = g(0), and D̃0 = Aℓ, with ℓ representing the number of warm-
up iterations, i.e., we perform ℓ rounds of communication before starting the optimization to obtain
D̃0 = Aℓ. We refer the implementation details to Appendix D. A critical strategy in PULL-SUM-GT
is the construction of a column-stochastic matrix B from the row-stochastic matrix A:
Lemma 4. For any non-negative integers u, B = diag(1⊤

nA
u)A diag(1⊤

nA
u+1)−1 is a column-

stochastic matrix, i.e., 1⊤
nB = 1⊤

n . Specifically, we take u = 0 in our PULL-SUM-GT.

Algorithm insight. We now provide insights into why PULL-SUM-GT is robust to data heterogene-
ity. If we left-multiply n−11⊤

n on both sides of (13d), we obtain ȳ(k+1) − ḡ(k+1) = ȳ(k) − ḡ(k) =
· · · = ȳ(0)−ḡ(0) = 0, where we use the property 1⊤

nB = 1⊤
n . This result indicates that ȳ(k) = ḡ(k).

Next, we denote d⊤k = n−11⊤
nA

k and left-multiply d⊤k+ℓ−1 on both sides of (13c):

d⊤k+ℓ−1x
(k+1) = d⊤k+ℓx

(k) − αȳ(k) = d⊤k+ℓx
(k) − αḡ(k). (14)

As x(k) approaches consensus as k increases, i.e., x(k) → 1nx
(k), it holds that d⊤k+ℓx

(k) = x(k).
The above recursion becomes x(k+1) = x(k) − αḡ(k), the centralized parallel SGD. Unlike PULL-
DIAG-GT (11), recursion (14) is unaffected by gradient dissimilarity or data heterogeneity. Our
next theorem establishes the convergence of PULL-SUM-GT, which achieves the first linear speedup
convergence rate in ROW-ONLY decentralized learning in the stochastic and non-convex settings,
without assuming data heterogeneity:
Theorem 3 (PULL-SUM-GT convergence). Under assumptions 1, 2 and 3, when ℓ ≥ ℓ0 :=

⌈ 4+ln(LKn2κ2
A)−ln(1−βA)

1−βA
⌉ = Õ( 1

1−βA
), with proper α shown in Theorem 1 of Appendix D, we

have the following convergence result: ∀K ≥ 0,

1

K

K∑
k=0

E[∥∇f(w(k))∥2] = O

(√
L∆σ√
nK

+

(
nL∆qAqBσ

K

)2/3

+
L∆n3/2κAqAqB

K
+
n3q2Aq

2
Bσ

2

K2

)

where κB := max(πB)
min(πB) , βB := ∥B − B∞∥πB

, qA := 1+ln(κA)
1−βA

, qB := 1+ln(κB)
1−βB

, w(k) = d⊤k x
(k),

d⊤k = n−11⊤
nA

k+ℓ+2. Absolute constants and E[∥g(0)∥2F ] are omitted.

Remark 1 Although it is generally challenging to establish an exact relationship between κB and
κA, as well as βB and βA, in practice we often observe that the quantities βB and κB closely
resemble βA and κA, respectively. We will further eliminate the impact of B through multi-gossip
strategy in next subsection.

Remark 2 The convergence rate of PULL-SUM-GT effectively addresses the instability and hetero-
geneity issues encountered by existing algorithms; it is not influenced by the inversion of the small
value θA or by data heterogeneity b2. Numerical experiments confirm that PULL-SUM-GT exhibits
greater stability than PULL-DIAG-GT in the presence of data heterogeneity, see Figure 3. This gives
PULL-SUM-GT based algorithms a chance to achieve the lower bound in Theorem 1.

5.3 ACHIEVING OPTIMAL CONVERGENCE RATE

Building on the PULL-SUM protocol and PULL-SUM-GT, we now develop an algorithm to achieve
the convergence lower bound established in Theorem 1. Inspired by the optimal algorithm develop-
ment for doubly-stochastic mixing matrices demonstrated in Lu & De Sa (2021); Yuan et al. (2022),
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we introduce two additional components to PULL-SUM-GT: gradient accumulation and multi-gossip
(MG) communication, resulting in the algorithm named as MG-PULL-SUM-GT. For t ∈ [T ]:

D̃t+1 = AM D̃t, Dt+1 = diag(1⊤
n D̃t+1) (15a) x(t+1) = AM (x(t) − αD−1

t+1y
(t)) (15b)

g(t+1) =M−1
∑M

r=1∇F (x
(t+1); ξ(t+1,r)) (15c) y(t+1) = B(y(t) + g(t+1) − g(t)) (15d)

Here, B = AMdiag(1⊤
nA

M )−1, D̃0 = Aℓ, and y(0) = g(0) = 1
M

∑M
r=1 ∇F (x(0); ξ(0,r)). The

detail of implementation can be found in Appendix E. In contrast to the vanilla PULL-SUM-GT
algorithm (13), which performs one gossip communication and one gradient computation per it-
eration, MG-PULL-SUM-GT conducts M gossip communications and M gradient computations
per iteration. To maintain the same communication and computation budgets, we run the vanilla
PULL-SUM-GT for K iterations while executing MG-PULL-SUM-GT for T = K/M iterations.
The following theorem shows that MG-PULL-SUM-GT achieves optimal convergence rate.
Theorem 4 (Convergence of MG-PULL-SUM-GT). Under Assumptions 1, 2 and 3, When ℓ ≥ ℓ0,
M = ⌈ 1+ln(n2κ2

A)+2| ln(σ)|+| ln(L)|+| ln(∆)|
1−βA

⌉ = Õ( 1
1−βA

), MG-PULL-SUM-GT converges as:

1

T

T∑
t=0

E[∥∇f(w(k))∥2] = Õ

(√
L∆σ√
nK

+
(1 + ln(κA))L∆

(1− βA)K

)
(16)

where K =MT is the total rounds of communication, M is the multi-gossip number, Õ (·) absorbs
logarithmic factors and absolute constants. w(k) = dTkM+ℓ+1x

(k), dt = n−11⊤
nA

t.

The detailed proof of Theorem 4 is referred to Appendix E. Remarkably, the rate (16) aligns with
the lower bound (4) up to logarithmic factors that are independent of κA and βA. This demonstrates
the near-optimality of MG-PULL-SUM-GT and the tightness of the lower bound (4).

6 EXPERIMENTS

In this section, we numerically compare PULL-SUM-GT with the state-of-the-art ROW-ONLY
gradient tracking algorithms, including PULL-DIAG-GT (Xin et al., 2019d; Li et al., 2019),
FRSD (Ghaderyan et al., 2021) and FROZEN (Xin et al., 2019a). We mainly exhibit that i) PULL-
SUM-GT is able to overcome the influence of θA, ii) PULL-SUM-GT is able to overcome the influ-
ence of data heterogeneity, iii) Multi-Gossip strategy can bring significant improvement.

Network Design. We construct four topologies with 20 nodes, labeled Ringi for i = 1, 2, 3, 4, as
they represent directed ring graphs with i additional connections. The mixing matrices are defined
by aij = 1/(1 + dini ) if (i, j) ∈ E or j = i, and aij = 0 otherwise. These topologies exhibit
significant differences in θA but have similar βA and κA. Further details are in Appendix G.

Synthetic Dataset: Influence of θA. We solve a decentralized logistic regression problem with non-
convex regularization using synthetic data (Xin et al., 2021; Alghunaim & Yuan, 2022). Consider

min
x∈Rd

1

n

n∑
i=1

fi(x) + ρr(x) where fi(x) =
1

M

M∑
l=1

ln(1 + exp(−yi,lh⊤i,lx).

The function r(x) =
∑d

j=1 [x]
2
j/(1 + [x]2j ) is a non-convex regularizer, and ρ > 0 is the reg-

ularization coefficient. The training dataset at node i, {hi,l, yi,l}Ml=1, consists of feature vectors
hi,l ∈ Rd and corresponding labels yi,l ∈ {+1,−1}. Detailed hyper-parameter settings are pro-
vided in Appendix G. We compare PULL-SUM-GT with other PULL-DIAG-GT methods on topolo-
gies Ring1,2,3,4. PULL-SUM-GT remains unaffected by θA, while PULL-DIAG-based methods are
significantly influenced. As shown in Figure 2, when θA is small (Ring3,4), the performance of all
algorithms is similar. However, for larger θA (Ring1,2), PULL-SUM-GT remains robust, whereas
PULL-DIAG-based methods deteriorate significantly.

Real-World Dataset: Influence of heterogeneity. We train a four-layer fully connected neural
network in a decentralized setting to solve the handwritten digit classification task on the MNIST
dataset (Deng, 2012). Two scenarios are evaluated: (i) Uniformly distributed data, where each node

9
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Figure 2: Comparison on synthetic dataset.
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Figure 3: Comparison on MNIST dataset. “Uniform” denotes evenly distributed data, “Hetero”
denotes heterogeneous data.

holds a shuffled partition of the dataset, and (ii) Heterogeneous data, where each node contains im-
ages from only one digit class. As shown in Figure 3, PULL-DIAG-GT performs comparably to
PULL-SUM-GT in the uniform setting. However, PULL-SUM-GT is more robust to data heterogene-
ity, outperforming PULL-DIAG-GT and FROZEN. Notably, FRSD achieves the best performance,
as expected, due to its integration with momentum.

Benefit of Multiple Gossip. In the third set of experiments, we illustrate the performance of MG-
PULL-SUM-GT on two tasks described in the above two paragraphs. As demonstrated in Figure 4,
multiple rounds of gossip help mitigate the impact of the network and allow for a larger learning
rate, leading to faster convergence. Note that all curves are compared fairly, with each iteration
involving a single gradient computation and one communication round.
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Figure 4: Performance of MG-PULL-SUM-GT on synthetic dataset (the left plot) and highly hetero-
geneous MNIST dataset (the right plot).

7 CONCLUSION AND LIMITATIONS

This paper establishes a tight lower bound and identifies optimal algorithms for decentralized op-
timization using row-stochastic mixing matrices. Our analysis shows that existing PULL-DIAG-
based methods are sensitive to algorithmic instability and data heterogeneity, preventing them from
reaching the lower bound. We propose the PULL-SUM protocol and (MG-)PULL-SUM-GT, which
mitigate dependence on network properties and heterogeneity, achieving the lower bound up to log-
arithmic factors. Experimental results support our findings. A limitation of this work is that, while
the method performs well empirically without a warm-up, the convergence guarantees for PULL-
SUM-GT are currently provided only with a warm-up stage. Addressing unconditional convergence
guarantees will be left for future work.
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A LOWER BOUND

A.1 A MATRIX EXAMPLE

Proposition 5. For any n ≥ 2, there exists a row-stochastic, primitive matrix A ∈ Rn×n satisfying
βA =

√
2
2 but κA = 2n−1.

Proof. Proposition 2.5 of Liang et al. (2023) tells us that For any n ≥ 2, there exists a column-
stochastic, primitive matrix W ∈ Rn×n satisfying βW =

√
2
2 but κW = 2n−1. By taking A = B⊤,

their Perron vectors are the same, i.e., πA = πW . Therefore, κA = κW . By definition of π-norm,
we know that βA = ∥A−A∞∥πA

= ∥Π1/2
A (A−A∞)Π

−1/2
A ∥2 = ∥(Π−1/2

W (W −W∞)Π
1/2
W )⊤∥2 =

∥W∥πW
= βW .

A.2 PROOF OF THEOREM 1

The core idea of the proof is derived from Liang et al. (2023). The first complexity term, Ω(σ
√
L∆√
nK

),
is standard, and its proof can be found in works such as Lu & De Sa (2021) and Yuan et al. (2022).
Therefore, we concentrate on proving the second term, Ω((1 + ln(κA))L∆/K).

To proceed, let [x]j represent the j-th coordinate of a vector x ∈ Rd for 1 ≤ j ≤ d, and define:

prog(x) :=

{
0 if x = 0;

max1≤j≤d{j : [x]j ̸= 0} otherwise.

We also introduce several important lemmas, which have been established in previous research.
Lemma 6 (Lemma 2 of Arjevani et al. (2019)). Consider the function

h(x) := −ψ(1)ϕ([x]1) +
∑d−1

j=1

(
ψ(−[x]j)ϕ(−[x]j+1)− ψ([x]j)ϕ([x]j+1)

)
where for any z ∈ R,

ψ(z) =

{
0 z ≤ 1/2;

exp
(
1− 1

(2z−1)2

)
z > 1/2,

and ϕ(z) =
√
e

∫ z

−∞
e−

1
2 t

2

dt.

The function h(x) has the following properties:

1. h is zero-chain, i.e., prog(∇h(x)) ≤ prog(x) + 1 for all x ∈ Rd.

2. h(x)− infx h(x) ≤ ∆0d, for all x ∈ Rd with ∆0 = 12.

3. h is L0-smooth with L0 = 152.

4. ∥∇h(x)∥∞ ≤ G∞, for all x ∈ Rd with G∞ = 23.

5. ∥∇h(x)∥∞ ≥ 1 for any x ∈ Rd with [x]d = 0.
Lemma 7 (Lemma 4 of Huang et al. (2022)). Letting functions

h1(x) := −2ψ(1)ϕ([x]1) + 2
∑

j even, 0<j<d

(
ψ(−[x]j)ϕ(−[x]j+1)− ψ([x]j)ϕ([x]j+1)

)
and

h2(x) := 2
∑

j odd, 0<j<d

(
ψ(−[x]j)ϕ(−[x]j+1)− ψ([x]j)ϕ([x]j+1)

)
,

then h1 and h2 satisfy the following properties:

1. 1
2 (h1 + h2) = h, where h is defined in Lemma 6.

2. h1 and h2 are zero-chain, i.e., prog(∇hi(x)) ≤ prog(x) + 1 for all x ∈ Rd and i = 1, 2.
Furthermore, if prog(x) is odd, then prog(∇h1(x)) ≤ prog(x); if prog(x) is even, then
prog(∇h2(x)) ≤ prog(x).

3. h1 and h2 are also L0-smooth with L0 = 152.

14
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We are now ready to prove our lower bound. This proceeds in three steps. Without loss of generality,
we assume n can be divided by 3.

(Step 1.) We let fi = Lλ2h1(x/λ)/L0, ∀ i ∈ E1 ≜ {j : 1 ≤ j ≤ n/3} and fi = Lλ2h2(x/λ)/L0,
∀ i ∈ E2 ≜ {j : 2n/3 ≤ j ≤ n}, where h1 and h2 are defined in Lemma 7, and λ > 0 will be
specified later. By the definitions of h1 and h2, we have that fi, ∀ 1 ≤ i ≤ n, is zero-chain and
f(x) = n−1

∑n
i=1 fi(x) = 2Lλ2h(x/λ)/3L0. Since h1 and h2 are also L0-smooth, {fi}ni=1 are

L-smooth. Furthermore, since

f(0)− infx f(x) =
2Lλ2

3L0
(h(0)− infx h(x))≤Lλ2∆0d

L0
,

to ensure {fi}ni=1 satisfy L-smooth Assumption, it suffices to let

Lλ2∆0d
L0

≤ ∆, i.e., λ ≤
√

L0∆
L∆0d

. (17)

With the functions defined above, we have f(x) = n−1
∑n

i=1 fi(x) = Lλ2l(x/λ)/(3L0) and
prog(∇fi(x)) = prog(x)+1 if prog(x) is even and i ∈ E1 or prog(x) is odd and i ∈ E2, otherwise
prog(∇fi(x)) ≤ prog(x). Therefore, to make progress (i.e., to increase prog(x)), for any gossip
algorithm A ∈ AW , one must take the gossip communication protocol to transmit information
between E1 and E2 alternatively.

(Step 2.) We consider the noiseless gradient oracles and the constructed mixing matrix W in Sub-
section 5 with ϵ = 2β2

A − 1 so that 1+ln(κA)
1−βA

= O(n). Note the directed distance from E1

to E2 is n/3. Consequently, starting from x(0) = 0, it takes of at least n/3 communications
for any possible algorithm A ∈ AA to increase prog(x̂) by 1 if it is odd. Therefore, we have⌈
prog(x̂(k))/2

⌉
≤
⌊

k
2n/3

⌋
,∀ k ≥ 0. This further implies

prog(x̂(k)) ≤ 2
⌊

k
2n/3

⌋
+ 1 ≤ 3k/n+ 1, ∀ k ≥ 0. (18)

(Step 3.) We finally show the error E[∥∇f(x)∥2] is lower bounded by Ω
(

(1+ln(κA))L∆
(1−βA)K

)
, with any

algorithm A ∈ AW with K communication rounds. For any K ≥ n, we set d = 2
⌊

K
2n/3

⌋
+ 2 ≤

3K/n + 2 ≤ 5K/n and λ =
(

nL0∆
5L∆0K

)1/2
. Then (17) naturally holds. Since prog(x̂(K)) < d by

(18), using the last point of Lemma 6 and the value of λ, we obtain

E[∥∇f(x̂)∥2] ≥ min[x̂]d=0 ∥∇f(x̂)∥2 ≥ L2λ2

9L2
0

= Ω
(
nL∆
K

)
.

By finally using n = Ω((1 + ln(κA))/(1− βA)), we complete the proof.

B PULL-DIAG CONVERGENCE

We need the following assumption.

Assumption 5 (Upper bound for inverse diagonal entries.). We assume that the diagonal entries of
Ak is lower bounded, in other words, θA = supk ∥Diag(Ak)−1∥2.

Lemma 8. Under assumption 5, PULL-DIAG converges by:

∥n−1w(k) − x̄(0)∥F ≤ min{1 + θA, 2θAκ
1.5
A βk

A}∥x(0)∥F (19)

Proof. On the one hand,

∥AkDiag(Ak)−1 − 1n1
⊤
n ∥2 ≤ ∥AkDiag(Ak)−1 − 1n1

⊤
n ∥F

≤ nmax
i,j

{|[AkDiag(Ak)−1 − 1n1
⊤
n ]ij |}

≤ n+ nθA
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On the other hand,

∥AkDiag(Ak)−1 − 1n1
⊤
n ∥2

≤ ∥(Ak −A∞)Diag(Ak)−1∥2 + ∥A∞Diag(Ak)−1 − 1n1
⊤
n ∥2

≤ ∥Ak −A∞∥2∥Diag(Ak)−1∥2 + ∥1n(π
⊤
A − diag(Ak)⊤)∥2∥Diag(Ak)−1∥2

≤ θAκ
1.5
A βk

A + θAn
0.5∥πA − diag(Ak)∥ ≤ θAκ

1.5
A βk

A(1 + n)

The last inequality comes from ∥πA − diag(Ak)∥ ≤ ∥Ak − A∞∥F ≤ n0.5κ1.5A βk
A. Therefore, we

have

∥n−1w(k) − x̄(0)∥F = n−1∥(AkDiag(Ak)−1 − 1n1
⊤
n )x

(0)∥F
≤ n−1∥AkDiag(Ak)−1 − 1n1

⊤
n ∥2∥x(0)∥F

≤ min{1 + θA, 2θAκ
1.5
A βk

A}∥x(0)∥F ,

which finishes our proof.

C PULL-SUM CONVERGENCE

Lemma 9. PULL-SUM converges by:

∥w(k) − x̄(0)∥F ≤ min{1 + nκA, κ
1.5
A βk

A}∥x(0)∥F (20)

Proof. We define Dk = diag(1⊤
nA

k). Note that A⊤ is a column-stochastic matrix, we can apply
the third statement of Lemma 2.4 of Liang et al. (2023) and obtain that ∥D−1

k ∥2 ≤ κA. On the one
hand,

∥AkD−1
k − n−11n1

⊤
n ∥2 ≤ nmax

i,j
{|[AkD−1

k − n−11n1
⊤
n ]ij |} ≤ 1 + nκA.

On the other hand, we have

∥AkD−1
k − 1n1

⊤
n ∥2 ≤ ∥(I −R)(Ak −A∞)∥2∥D−1

k ∥2 ≤ κ1.5A ∥A−A∞∥kπA
= κ1.5A βk

A.

Therefore, we have

∥w(k) − x̄(0)∥F = ∥(AkD−1
k − n−11n1

⊤
n )x

(0)∥F ≤ ∥AkD−1
k − n−11n1

⊤
n ∥2∥x(0)∥F

≤ min{1 + κA, κ
1.5
A βk

A}∥x(0)∥F ,

which finishes our proof.

D PULL-SUM-GT CONVERGENCE

D.1 NOTATIONS

We denote 1n as an n-dimensional all-ones vector. We define In ∈ Rn×n as the identity matrix.
Throughout the paper, A is always a row-stochastic matrix, i.e., A1n = 1n and B is always a
column-stochastic matrix, i.e., 1⊤

nB = 1⊤
n . We denote [n] as the index set {1, 2, . . . , n}. We denote

Diag(A) as the the diagonal matrix generated from the diagonal entries of A. We denote diag(v) as
the diagonal matrix whose diagonal entries comes from vector v. We denote πA as the left Perron
vector of A and πB as the right Perron vector of B. We denote ΠA = diag(πA), ΠB = diag(πB)

We define the πA-vector norm ∥v∥πA
= ∥Π1/2

A v∥ and the induced πA-matrix norm as ∥W∥πA
=

∥Π1/2
A WΠ

−1/2
A ∥2. We define the πB-vector norm ∥v∥πB

= ∥Π−1/2
B v∥ and the induced πB-matrix

norm as ∥W∥πA
= ∥Π−1/2

B WΠ
1/2
B ∥2. We define A∞ = 1nπ

⊤
A and B∞ = πB1

⊤
n . We define

βA = ∥A−A∞∥πA
, βB = ∥B −B∞∥βB

, κA = max(πA)/min(πB), κB = max(πB)/min(πB),
qA = maxk≥0 pA. Throughout the paper, we let x(k)

i ∈ Rd denote the local model copy at node i at
iteration k. Furthermore, we define the matrices
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x(k) := [(x
(k)
1 )⊤; (x

(k)
2 )⊤; · · · ; (x(k)

n )⊤] ∈ Rn×d,

∇F (x(k); ξ(k)) := [∇F1(x
(k)
1 ; ξ

(k)
1 )⊤; · · · ;∇Fn(x

(k)
n ; ξ(k)n )⊤] ∈ Rn×d,

∇f(x(k)) := [∇f1(x(k)
1 )⊤;∇f2(x(k)

2 )⊤; · · · ;∇fn(x(k)
n )⊤] ∈ Rn×d,

by stacking all local variables. The upright bold symbols (e.g. x,w,g ∈ Rn×d) always denote
stacked network-level quantities. Throughout the proof, we define ∇f(x(k)) = n−11⊤

n∇f(x(k)),
∆

(k)
x := (I − RAk+l)x(k), ∆(k)

g = g(k+1) − g(k). We define K as the total rounds of commu-
nication, T as the iteration number of model parameter x and M as the multi-gossip number, i.e.,
K =MT . We define ℓ0 = ⌈ 4+ln(L)+ln(T )+2 ln(κA)+2 ln(n)−2 ln(1−βA)

1−βA
⌉.

D.2 USEFUL INEQUALITIES

Lemma 10. 1. ∥RAk∥2 ≤ 1 and ∥A− I∥2 ≤
√
n.

2. πA∥v∥2 ≤ ∥v∥2πA
≤ πA∥v∥2, π−1

B ∥v∥2 ≤ ∥v∥2πB
≤ πB

−1∥v∥2.

3. ∥D−1
k ∥2 ≤ κA,∀k ≥ 0.

4. When ℓ ≥ 1 + ⌈ ln(LK)+2 ln(κA)+2 ln(n)−ln(1−βA)
1−βA

⌉, ∥1⊤
nA

k+ℓ − nπ⊤
A∥ ≤ 1

24nLsAκAK ,
∀k ≥ 0.

Proof. First, ∀v ∈ Rn, we have ∥RAkv∥ = 1√
n
⟨dk, v⟩ ≤ 1√

n
∥dk∥∥v∥. Therefore, ∥RAk∥2 ≤

∥dk∥√
n

≤ 1. |[(A − I)v]i| = |
∑n

j=1 aijvj − vi| ≤ maxi |vi|, which means ∥(A − I)v∥F ≤
√
nmaxi |vi| ≤

√
n∥v∥ and ∥A − I∥2 ≤

√
n. The second lemma can be verified straight for-

ward. The third inequality comes from our Appendix C. The fourth inequality can derived by

∥1⊤
nA

k+ℓ − nπ⊤
A∥ = ∥1⊤

n (A
k+ℓ −A∞)∥ ≤

√
nκA∥Ak+ℓ −A∞∥πA

≤
√
nκAβ

ℓ
A ≤ exp(−4− ln(K)− 2 ln(κA)− 1− ln(n) + ln(1− βA)) ·

√
nκA

= e−4 1− βA
n1.5κ1.5A K

≤ 1

24nsAκAK
.

Lemma 11 (ROLLING SUM LEMMA 1). We have the following rolling sum lemmas.

1. If l ≥ 1 and A ∈ Rn×n is a primitive and row-stochastic matrix, the following estimation
holds for ∀T ≥ 0.

T∑
k=0

∥
k∑

i=0

(Ak+l−i −A∞)∆(i)∥2F ≤ s2A

T∑
i=0

∥∆(i)∥2F , (21)

where ∆(i) ∈ Rn×d are arbitrary matrices, and sA is defined by:

sA := max
k≥1

∥Ak −A∞∥2 ·
1 + 1

2 ln(κ(πA))

1− βA
. (22)

2. If l ≥ 1 and B ∈ Rn×n is a primitive and column-stochastic matrix, the following estima-
tion holds for ∀T ≥ 0.

T∑
k=0

∥
k∑

i=0

(Bk+1−i −B∞)∆(i)∥2F ≤ s2B

T∑
i=0

∥∆(i)∥2F , (23)

where sB is defined by:

sB := max
k≥1

∥Bk −B∞∥2 ·
1 + 1

2 ln(κ(πB))

1− βB
. (24)
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Proof. First, we prove that

∥Ai −A∞∥2 ≤
√
κ(πA)β

i
A,∀i ≥ 0. (25)

Notice that βA := ∥A−A∞∥πA
and

∥Ai −A∞∥πA
= ∥(A−A∞)i∥πA

≤ ∥A−A∞∥iπA
= βi

A,

we have
∥(Ai −A∞)v∥ = ∥Π−1/2

A (Ai −A∞)v∥πA
≤ √

πAβ
i
A∥v∥πA

≤
√
κ(πA)β

i
A∥v∥,

which proves (25).

Second, we want to prove that for all k ≥ 0, we have
k∑

i=0

∥Ak+l−i −A∞∥2 ≤ sA. (26)

Towards this end, we define MA := maxk≥1 ∥Ak − A∞∥2. According to (25), MA is well-

defined. We also define p = max

{
ln(
√

κ(πA))−ln(MA)

− ln(βA) , 0

}
, then we can verify that ∥Ai −A∞∥2 ≤

min{MA,MAβ
i−p
A },∀i ≥ 1. With this inequality, we can bound

∑k
i=0 ∥Ak+1−i − A∞∥2 as fol-

lows:
k∑

i=0

∥Ak+1−i −A∞∥2 =

min{⌊p⌋,k}∑
i=1

∥Ai −A∞∥2 +
k+1∑

i=min{⌊p⌋,k}+1

∥Ai −A∞∥2

≤
min{⌊p⌋,k}∑

i=0

MA +

k+1∑
i=min{⌊p⌋,k}+1

MAβ
i−p
A

≤MA · (1 + min{⌊p⌋, k}) +MA · 1

1− βA
β
min{⌊p⌋,k}+1−p
A . (27)

If p = 0, (27) is simplified to
∑k

i=0 ∥Ak+1−i −A∞∥2 ≤MA · 1
1−βA

and (26) is naturally satisfied.
If p > 0, let x = min{⌊p⌋, k}+ 1− p ∈ [0, 1), (26) is simplified to

k∑
i=0

∥Ak−i −A∞∥2 ≤MA(x+ p+
βx
A

1− βA
) ≤MA(p+

1

1− βA
).

Noting that p ≤
1
2 ln(κ(πA))

1−βA
, we finish the proof of (26).

Finally, to obtain (21), we use Jensen’s inequality. For positive numbers ai, i ∈ [k + 1] satisfying∑k+1
i=1 ai = 1, we have

∥
k∑

i=0

(Ak+1−i −A∞)∆(i)∥2F = ∥
k∑

i=0

ak+1−i · a−1
k+1−i(A

k−i −A∞)∆(i)∥2F

≤
k∑

i=0

ak+1−i∥a−1
k+1−i(A

k+1−i −A∞)∆(i)∥2F ≤
k∑

i=0

a−1
k+1−i∥A

k+1−i −A∞∥22∥∆(i)∥2F . (28)

By choosing ak+1−i = (
∑k

i=0 ∥Ak+1−i −A∞∥2)−1∥Ak+1−i −A∞∥2 in (28), we obtain that

∥
k∑

i=0

(Ak+1−i −A∞)∆(i)∥2F ≤
k∑

i=0

∥Ak+1−i −A∞∥2 ·
k∑

i=0

∥Ak+1−i −A∞∥2∥∆(i)∥2F . (29)

By summing up (29) from k = 0 to T , we obtain that
T∑

k=0

∥
k∑

i=0

(Ak+1−i −A∞)∆(i)∥2F ≤ sA

T∑
k=0

k∑
i=0

∥Ak+1−i −A∞∥2∥∆(i)∥2F

≤sA
T∑

i=0

(

T∑
k=i

∥Ak+1−i −A∞∥2)∥∆(i)∥2F ≤ s2A

T∑
i=0

∥∆(i)∥2F ,

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 1: PULL-SUM-GT

1 Initialize ψ(0)
i = ei, x

(0)
i = x(0), y(0)

i = g
(0)
i = ∇Fi(x

(0)
i , ξ

(0)
i ), ℓ ≥ 1;

2 for s = 0, 1, . . . , ℓ− 1, each node i in parallel do
3 ψ

(s+1)
i =

∑
j∈N in

i
aijψ

(s)
j ;

4 end
5 Let d(0)i = ψ

(ℓ)
i and vi =

∑n
r=1 ψ

(1)
ir at each node i;

6 for k = 0, 1, . . . ,K, each node i in parallel do
7 x

(k+1)
i =

∑
j∈N in

i
aij(x

(k)
j − α(

∑n
r=1 d

(k)
jr )−1y

(k)
j );

8 Locally calculate g(k+1)
i = ∇Fi(x

(k+1)
i , ξ

(k+1)
i );

9 Locally calculate z(k)i = v−1
i (y

(k)
i + g

(k+1)
i − g(k)i ) ;

10 y
(k+1)
i =

∑
j∈N in

i
aijz

(k)
j ;

11 d
(k+1)
i =

∑
j∈N in

i
aijd

(k)
j ;

12 end

which finishes the proof of this lemma. The proof can be applied in the same way when B is
column-stochastic.

D.3 ALGORITHM FORMULATION

We also provide a denser form of Pull-Sum GT:

x(k+1) = A(x(k) − αD−1
k+ℓ+1y

(k)) (30a)

y(k+1) = B(y(k) + g(k+1) − g(k)) (30b)

Hereon we define Dk = diag(1⊤
nA

k), ℓ is a non-negative integer.

D.4 BASIC TRANSFORMATIONS

1. ∆
(k+1)
x = R(Ak+ℓ −Ak+ℓ+2)∆

(k+1)
x + (A−RAk+l)∆

(k)
x − α(A−RAk+l)D−1

k+ly
(k).

2. ∆
(k+1)
x = −α

∑k
i=0(A

k+l−i −RA2k+l−i)D−1
i+ly

(i).

3. x(k+1) − x(k) = (A− I)∆
(k)
x − αAD−1

k+ly
(k).

4. y(k) = B∞y(k) +
∑k−1

i=0 (B
k−i −B∞)∆

(i)
g

D.5 CONSENSUS LEMMA

Lemma 12 (Consensus Lemma).

T∑
k=0

∥∆(k+1)
x ∥2F ≤ 4α2s2Aκ

2
A

T∑
k=0

∥y(k)∥2F (31)
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Proof.

∥∆(k+1)
x ∥2F = α2∥(I −RAk+l)

k∑
i=0

(Ak+l−i −A∞)D−1
i+ly

(i)∥2F

≤ 4α2∥
k∑

i=0

(Ak+l−i −A∞)D−1
i+ly

(i)∥2F

≤ 4α2s2A

T∑
k=0

∥D−1
i+ly

(k)∥2F ≤ 4α2s2Aκ
2
A

T∑
k=0

∥y(k)∥2F (32)

The first equality in (32) uses ∥I − RAk+l∥2 ≤ 2. The second inequality uses the rolling sum
Lemma 11.

D.6 GRADIENT TRACKING ANALYSIS

Lemma 13. When the learning rate satisfies α ≤ min{ 1
3L ,

1
10sAsB∥A−I∥2L

, 1
10sBκApAL}, the fol-

lowing inequality holds ∀T ≥ 1:

T∑
k=1

E[∥y(k)∥2F ] ≤ 63s2BnTσ
2 + 9n2

T∑
k=1

E[∥∇f (k)∥2]. (33)

Proof. Using the fourth transformation in Sec. D.4, we have

∥y(k)∥2F = ∥B∞y(k) +

k−1∑
i=0

(Bk−i −B∞)∆(i)
g ∥2F

≤ 2∥B∞y(k)∥2F + 2∥
k−1∑
i=0

(Bk−i −B∞)∆(i)
g ∥2F . (34)

Note that ∆(k)
g can be further decomposed as follows:

∆(k)
g = g(k+1) −∇f(x(k+1)) +∇f(x(k+1))−∇f(x(k)) +∇f(x(k))− g(k).

Therefore, we can apply Cauchy-Schwarz inequality and obtain that

E[∥∆(k)
g ∥2F ] ≤ 3E[∥g(k+1) −∇f(x(k+1))∥2F ] + 3E[∥∇f(x(k+1))−∇f(x(k))∥2F ]

+ 3E[∥∇f(x(k))− g(k)∥2F ]
≤ 6nσ2 + 3L2E[∥(A− I)∆(k)

x − αAD−1
k+ℓ+1y

(k)∥2F ]

≤ 6nσ2 + 9L2∥A− I∥22E[∥∆(k)
x ∥2F ]

+ 9α2L2∥AD−1
k+ℓ+1 −R∥22E[∥y(k)∥2F ] + 9nα2L2E[∥ḡ(k)∥2F ]. (35)
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where the second inequality uses the boundness of noise and ∥RAk∥2 ≤ 1, the last inequality uses
Cauchy-Schwarz inequality. Now we sum up E[∥y(k)∥2] from k = 1 to T and obtain that

T∑
k=1

E[∥y(k)∥2] ≤ 2

T∑
k=1

E[∥B∞y(k)∥2F ] + 2

T∑
k=1

E[∥
k−1∑
i=0

(Bk−i −B∞)∆(i)
g ∥2F ]

≤ 2n2
T∑

k=1

E[∥ḡ(k)∥2] + 2s2B

T∑
k=0

E[∥∆(i)
g ∥2]

(35)

≤ (2n2 + 9nα2L2)

T∑
k=1

E[∥ḡ(k)∥2] + 18s2BnTσ
2 + 18s2BL

2∥A− I∥22
T∑

k=0

E[∥∆(k)
x ∥2F

+ 18α2L2s2Bκ
2
Aq

2
A

T∑
k=0

E[∥y(k)∥2F ]

(31),α≤ 1
3L

≤ 3n2
T∑

k=1

E[∥ḡ(k)∥2] + 18s2BnTσ
2 + Cyy

T∑
k=0

E[∥y(k)∥2F ]. (36)

where qA = supk≥0 ∥A − RAk+ℓ+1∥2, Cyy = 72α2s2As
2
BL

2∥A − I∥22 + 18α2L2s2Bκ
2
Ap

2
A.

When we set α ≤ min{ 1
10sAsB∥A−I∥2L

, 1
10sBκAqAL}, Cyy ≤ 2/3. Therefore, we can sub-

tract 2
3

∑T
k=0 E[∥y(k)∥2F ] from the both sides of (36). Finally, using the fact that E[∥ḡ(k)∥2] ≤

σ2

n + E[∥∇f (k)∥2], we have

T∑
k=1

E[∥y(k)∥2F ] ≤ 9n2
T∑

k=1

E[∥ḡ(k)∥2] + 54s2BnTσ
2

≤ 63s2BnTσ
2 + 9n2

T∑
k=1

E[∥∇f (k)∥2]

D.7 DESCENT LEMMA

Lemma 14 (Preparation for Descent Lemma). If ℓ ≥ ℓ0, we have the following inequality:

T∑
k=0

E[∥1⊤
n (A

k+ℓ+2 −Ak+ℓ)∆(k+1)
x ∥2] ≤ α2

36T 2

T∑
k=0

E[∥y(k)∥2F ] (37)

Proof. Our selection of ℓ can guarantee that ∥1⊤
nA

k −nπ⊤
A∥ ≤ 1

24nsAκALT ,∀k ≥ ℓ (The proof can
be found in Sec. D.2 ). Therefore, the second part can be bounded as:

T∑
k=0

E[∥1⊤
n (A

k+ℓ+2 −Ak+ℓ)∆(k+1)
x ∥2]

≤
T∑

k=0

∥(1⊤
nA

k+ℓ+2 − π⊤
A)− (1⊤

nA
k+ℓ − π⊤

A)∥2E[∥∆(k+1)
x ∥2F

≤ 1

144s2Aκ
2
AT

2

T∑
k=0

E[∥∆(k+1)
x ∥2F ]

(31)

≤ α2

36n2L2T 2

T∑
k=0

E[∥y(k)∥2F ]. (38)
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Lemma 15 (Descent Lemma). When α ≤ min{ 1
3L ,

1
10LsAκAsB

√
n
, 1
10LsBκApA

} and T ≥ 30nsA,
we have the following inequality:

1

T

T∑
k=0

E[∥∇f(w(k)∥2] ≤ 4(f(x(0))− f∗)

αT
+

8αLσ2

n
+ 600α2L2s2As

2
Bσ

2

+
16000ns2As

2
Bσ

2

3T 2
+

1

5n2T
E[∥g(0)∥2F ] (39)

Proof. Left-multiply 1⊤
nA

k+ℓ on both sides of (30a), we have

w(k+1) = w(k) − αḡ(k) + 1⊤
n (A

k+ℓ+2 −Ak+ℓ)∆(k+1)
x (40)

Further apply L-smoothness inequality using (40), we have

Ef(w(k+1))− Ef(w(k)) ≤ E
〈
1⊤
n (A

k+ℓ+2 −Ak+ℓ)∆(k+1)
x ,∇f(w(k))

〉
− αE

〈
ḡ(k),∇f(w(k))

〉
+ 0.5LE[∥1⊤

n (A
k+ℓ+2 −Ak+ℓ)∆(k+1)

x − αḡ(k)∥2]

≤ −α− 4α2L

2
E[∥∇f (k)∥2]− (

α

2
− α

4
)E[∥∇f(w(k))∥2] + αL2

2n
E[∥∆(k)

x ∥2F ]

+ (α−1 + L)E[∥1⊤
n (A

k+ℓ+2 −Ak+ℓ)∆(k+1)
x ∥2] + 2α2Lσ2

n

≤ −α
4
E[∥∇f (k)∥2]− α

4
E[∥∇f(w(k))∥2] + αL2

2n
E[∥∆(k)

x ∥2F ]

+
4

3α
E[∥1⊤

n (A
k+ℓ+2 −Ak+ℓ)∆(k+1)

x ∥2] + 2α2Lσ2

n
, (41)

where the first inequality uses assumption 2, and the last inequality uses α ≤ 1
3L . Notice that

w(0) = x(0), we sum up (41) from k = 0 to T and obtain that

1

T

T∑
k=0

E[∥∇f(w(k)∥2] + 1

T

T∑
k=0

E[∥∇f (k)∥2]

≤ 4

αT
E[f(x(0))− f(w(T+1))] +

8αLσ2

n

+
16

3α2T

T∑
k=0

∥1⊤
n (A

k+ℓ+2 −Ak+ℓ)∆(k+1)
x ∥2 + 2L2

nT

T∑
k=0

∥∆(k)
x ∥2

(37)

≤ 4(f(x(0))− f∗)

αT
+

8αLσ2

n
+ Cyg

T∑
k=0

E[∥y(k)∥2F ]

(33)

≤ 4(f(x(0))− f∗)

αT
+

8αLσ2

n
+ 63Cygs

2
BnTσ

2

+ 9n2Cyg

T∑
k=1

E[∥∇f (k)∥2] + CygE[∥g(0)∥2F ] (42)

Where we define Cyg = 1
36n2T 3 +

8α2L2s2Aκ2
A

nT . When α ≤ 1
4L

√
nsAκA

, we have 9n2Cyg ≤ 1
T .

Therefore, we can subtract 1
T

∑T
k=0 E[∥∇f

(k)∥2] from both sides of (42) and finish the proof of this
lemma.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D.8 MAIN THEOREM

Theorem 5. When ℓ ≥ 1 + ⌈ ln(LTn2κ2
A)−ln(1−βA)
1−βA

⌉, by setting α = (α−1
1 + α−1

2 + α−1
3 + α−1

4 +

α−1
5 )−1, we have the following inequality:

1

T

T∑
k=0

E[∥∇f(w(k))∥2] ≤ 8
√
2L∆σ√
nT

+ 6

(
140L2∆2s2As

2
Bσ

2

T 2

)1/3

+
1

5n2T
E[∥g(0)∥2F ]

+
40L∆sBκA(sA

√
n+ pA)

T
+

16000ns2As
2
Bσ

2

3T 2
+

12L∆

T
(43)

where ∆ := f(x(0)) − f∗, α1 =
(

n∆
2LTσ2

)1/2
, α2 =

(
∆

140L2Ts2As2B

)1/3
, α3 = 1

10LsAκAsB
√
n

,

α4 = 1
10sBκApAL , α5 = 1

3L .

Proof. Our selection of α ensures that α ≤ min{α1, α2, α3, α4, α5}. The learning rate α1, α2

further satisfies 4∆
α1T

= 8α1Lσ2

n , 2∆
α2T

= 280α2
2L

2s2As
2
B . Plug α into (39), we have

1

T

T∑
k=0

E[∥∇f(w(k))∥2]− (
1

5n2T
E[∥g(0)∥2F ] +

8960ns2As
2
Bσ

2

3T 2
)

≤ 4∆

T
(α−1

1 + α−1
2 + α−1

3 + α−1
4 + α−1

5 ) +
8α1Lσ

2

n
+ 280α2

2L
2s2As

2
B

=
16α1Lσ

2

n
+ 840α2

2L
2s2As

2
B +

40L∆sB(sA
√
n+ κApA)

T
+

12L∆

T

=
8
√
2L∆σ√
nT

+ 6

(
140L2∆2s2As

2
Bσ

2

T 2

)1/3

+
40L∆sAsB

√
n

T
+

12L∆

T
,

which finishes the proof of our main theorem.

Corollary 16. we have the following coarse estimate which only involves βA, βB , κA, κB for
demonstrating the convergence of PULL-SUM-GT

1

T

T∑
k=0

E[∥∇f(w(k))∥2]

= O

(√
L∆σ√
nT

+

(
nL∆qAqBσ

T

)2/3

+
L∆n3/2κAqAqB

T
+
n3q2Aq

2
Bσ

2

T 2

)
, (44)

where qA := 1+ln(κA)
1−βA

, qB := 1+ln(κB)
1−βB

.

Proof. Note that ∥A − RAk+l+1∥2 ≤
√
n, sA ≤

√
n(2+ln(κA))

1−βA
≤ 2

√
nqA, sB ≤

√
n(2+ln(κB))

1−βB
≤

2
√
nqB , by taking these estimate into (43), we obtain the corollary when the constant E[∥g(0)∥2F ] is

omitted.

E MG-PULL-SUM-GT CONVERGENCE

Implementation details of MG-PULL-SUM-GT are as follows:
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Algorithm 2: MG-PULL-SUM-GT

1 Initialize ψ(0)
i = ei, x

(0)
i = x(0), y(0)

i = g
(0)
i = 1

M

∑M
m=1 ∇Fi(x

(0)
i ; ξ

(0,m)
i ), ℓ ≥M ,

K =MT ;
2 for s = 0, 1, . . . , ℓ− 1, each node i in parallel do
3 ψ

(s+1)
i =

∑
j∈N in

i
aijψ

(s)
j ;

4 end
5 Let d(0)i = ψ

(ℓ)
i , vi =

∑n
r=1 ψ

(M)
ir at each node i;

6 for t = 0, 1, . . . , T − 1, each node i in parallel do
7 Let ϕ(t+1,0)

i = x
(t)
j − α(

∑n
r=1 d

(t)
jr )

−1y
(k)
j ;

8 for m = 0, 1, . . . ,M − 1, each node i in parallel do
9 Update ϕ(k+1,m+1)

i =
∑

j∈N in
i
aijϕ

(t+1,m)
j ;

10 Update d(tM+m+1)
i =

∑
j∈N in

i
aijd

(tM+m)
j ;

11 end
12 Update x(t+1)

i = ϕ
(t+1,M)
i and compute g(t+1)

i = 1
M

∑M
m=1 ∇Fi(x

(t+1)
i ; ξ

(t+1,m)
i );

13 Let z(t+1,0)
i = v−1

i (y
(t)
i + g

(t+1)
i − g(t)i );

14 for m = 0, 1, . . . ,M − 1, each node i in parallel do
15 Update z(t+1,m+1)

i =
∑

j∈N in
i
aijz

(t+1,m)
j ;

16 end
17 Update y(t+1)

i = (
∑n

r=1 ψ
(u)
ir )z

(t+1,M)
i ;

18 end

We also provide a denser form of MG-PULL-SUM-GT:

x(t+1) = A′(x(t) − αD−1
(t+1)My(t)) (45a)

g(t+1) =
1

M

M∑
m=1

∇F (x(t+1), ξ(t,m)) (45b)

y(t+1) = B′(y(t) + g(t+1) − g(t)) (45c)

Here A′ := AM , B′ := AMD−1
M , Dt := diag(1⊤

nA
t).

Lemma 17. When ℓ ≥M ≥ ⌈ 1+2 ln(κA)+2 ln(n)
1−βA

⌉, we have n2sA′
σ2

L∆ , sB′ , npA′ · κA = O(1).

Proof. Easy to verify that κA = κA′ . note that β
1

1−βA

A ≤ 1/e, we have βM
A ≤ exp(−1−2 ln(κA)−

2 ln(n)) = 1/(en2κ2A). From the proof of Lemma 11 we know that ∥At −A∞∥2 ≤ βt
AκA,∀t ≥ 0.

First we show that βA′ ·κ2A ≤ 1
e . This can be derived from βA′ = ∥AM−A∞∥πA

≤ ∥A−A∞∥MπA
=

βM
A ≤ 1

en2κ2
A

.

Then, we have nsA′ = nmaxk≥1 ∥A′k − A∞∥2 · 1+ln(κA)
1−βA′

≤ nβM
A κA · 1+ln(κA)

1−β′
A

≤
O( 1

ne
1+ln(κA)

κA
min{1, L∆

σ2 }) = O(L∆
σ2 ). pA′ = supk≥0 ∥(AM − A∞)(I − RAkM+ℓ−M+1)∥ ≤√

nβM
A κA ≤ 1/(enκA), so npA′ · κA = O(1).

To understand B, we estimate ∥B′ − R∥F ≤ ∥AMD−1
M − R∥F ≤ κA∥(I − R)(A − A∞)M∥F ≤

κAβ
M
A

√
n ≤ 1/(eκAn). This indicates that mini,j b

′
ij ≥ 1

n − ∥B′ − R∥F ≥ 3
5n , maxi,j b

′
ij ≤

1
n + ∥B′ −R∥F ≤ 7

5n . Therefore, [πB′ ]i =
∑

j=1 bij [πB′ ]j ∈ [ 3
5n ,

7
5n ], κB′ ≤ 7

3 = O(1).

βB′ = ∥Π−1/2
B′ (AMD−1

M − πB′1⊤
n )Π

1/2
B′ ∥2 ≤ κB′∥(AMD−1

M − R) + (n−11n − πB′)1⊤
n ∥2 ≤

κB′( 25 + κ2Aβ
M
A ) ≤ κ′B = O(1).

Finally, sB′ = maxk≥1 ∥B′k −B∞∥2 · 1+ln(κB′ )
1−βB′

≤ βB′κB′ · 1+ln(κB′ )
1−βB′

= O(1).
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Theorem 6. When ℓ ≥M =
1+2 ln(n)+2 ln(κA)+| ln( σ2

L∆ )|
1−βA

, we have the following convergence result
for MG-PULL-SUM-GT:

1

T

T∑
t=0

E[∥∇f(w(k))∥2] = Õ

(√
L∆σ√
nK

+
(1 + ln(κA))L∆

(1− βA)K

)
(46)

where K = MT is the total rounds of communication. Õ (·) absorbs some logarithmic factors
including ln(σ), ln(n), ln(L), ln(∆) and absolute constants including E[∥g(0)∥2F ].

Proof. We replace sA, sB , pA, σ with sA′ , sB′ , pA′ , σ̂ in Theorem (43) respectively. Using the
conclusion of Lemma 17, we obtain that

1

T

T∑
t=0

E[∥∇f(w(k))∥2] = O

(√
L∆σ̂√
nT

+

(
L2∆2σ̂2

n2T 2

)1/3

+
L∆

T
+

min{L∆, 1}
Mn2T 2

)

= O

( √
L∆σ√
MnT

+

(
L2∆2σ2

n2MT 2

)1/3

+
ML∆

MT
+

L∆

n2MT 2

)

= O

(√
L∆σ√
nK

+

(
ML2∆2σ2

n2K2

)1/3

+
ML∆

K
+
ML∆

n2K2

)

Note that
(

ML2∆2σ2

n2K2

)1/3
≤ 2

3 ·
√
L∆σ√
nK

+ 1
3 · ML∆

nK and ML∆
n2K2 ≤ ML∆

K , we thus obtain (46).

F PULL-DIAG-GT CONVERGENCE

F.1 NOTATION

We denote 1n as an n-dimensional all-ones vector. We define In ∈ Rn×n as the identity matrix.
Throughout the paper, A is always a row-stochastic matrix, i.e., A1n = 1n. We denote [n] as the
index set {1, 2, . . . , n}. We denote Diag(A) as the the diagonal matrix generated from the diagonal
entries of A. We denote diag(v) as the diagonal matrix whose diagonal entries comes from vector
v. We denote πA as the left Perron vector of A. We denote ΠA = diag(πA), πA-vector norm
∥v∥πA

= ∥Π1/2
A v∥ and the induced πA-matrix norm as ∥W∥πA

= ∥Π1/2
A WΠ

−1/2
A ∥2. We define

A∞ = 1nπ
⊤
A , βA = ∥A−A∞∥πA

, κA = max(πA)/min(πA), qA = maxk≥0 pA. Throughout the
paper, we let x(k)

i ∈ Rd denote the local model copy at node i at iteration k. Furthermore, we define
the matrices

x(k) := [(x
(k)
1 )⊤; (x

(k)
2 )⊤; · · · ; (x(k)

n )⊤] ∈ Rn×d,

∇F (x(k); ξ(k)) := [∇F1(x
(k)
1 ; ξ

(k)
1 )⊤; · · · ;∇Fn(x

(k)
n ; ξ(k)n )⊤] ∈ Rn×d,

∇fk := [∇f1(x(k)
1 )⊤;∇f2(x(k)

2 )⊤; · · · ;∇fn(x(k)
n )⊤] ∈ Rn×d,

by stacking all local variables. The upright bold symbols (e.g. x,w,g ∈ Rn×d) always denote
stacked network-level quantities. Throughout the proof, we define ∇f(x(k)) = n−11⊤

n∇f(x(k)),
∆

(k)
x := (I −A∞)x(k), ∆(k)

g = g(k+1) − g(k).

F.2 ASSUMPTION

Assumption 6 (First-order Lipschitz continuity.). There exists a constant L such that ∥∇fi(x) −
∇fi(y)∥ ≤ L∥x− y∥, ∀i = 1, 2 . . . n.

Assumption 7 (Heterogeneity Bound.). There exists some constant b such that
1
n

∑n
i=1 ∥∇fi(x)−

1
n

∑n
j=1 ∇fj(x)∥2 ≤ b2 for every x ∈ Rd.

Assumption 8 (Gradient Oracle.). There exists some constant σ such that E[∥∇Fi(x, ξi) −
fi(x)∥2] ≤ σ2, ∀i = 1, 2 . . . n.
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F.3 SOME USEFUL EQUATIONS AND INEQUALITIES

Lemma 18 (PROPERTIES OF πA NORM). By definition of πA norm, we have

1. ∥A−A∞∥πA
= βA < 1.

2. ∥I −A∞∥πA
= 1

Lemma 19 (RELATIONSHIP BETWEEN F-NORM AND πA-NORM.). The following inequalities hold

1. ∥(A−A∞)iz∥2F ≤ κAβ
2i
A ∥z∥2F .

2. ∥UV ∥2F ≤ κA∥U∥2πA
∥V ∥2F

Proof. Denote that V = [vi]
n
i=1 and πA = minπA. By definition

∥UV ∥2F =

n∑
i=1

∥diag(π)−0.5Uvi∥2πA

≤ 1

πA

n∑
i=1

∥Uvi∥2πA
=

1

πA

n∑
i=1

∥diag(π)Udiag(π)0.5diag(π)vi∥2

≤ 1

πA
∥U∥2πA

n∑
i=1

∥diag(π)vi∥2 ≤ κA∥U∥2πA
∥V ∥2F .

The first inequality can be derived from the second one.

Lemma 20 (CONVERGENCE OF DIAGONAL MATRIX). The following inequalities hold for all k ≥
1.

1. ∥D−1
k − diag(A∞)−1∥2 ≤ θ2A

√
κAnβ

k
A.

2. ∥D−1
k −D−1

k+1∥2 ≤ 2θ2A
√
κAnβ

k
A.

Proof. Denote that Π = diag(A∞)−1 and πA = minπA. Then we have ∥D−1
k − Π−1∥2 =

∥D−1
k (Dk −Π)Π−1∥2 ≤ θ2A∥Dk −Π∥2. It is sufficient to estimate ∥Dk −Π∥2.

∥Dk −Π∥22 ≤max
i

∥(Ak −A∞)ei∥22 ≤
n∑

i=1

∥(Ak −A∞)ei∥22

=

n∑
i=1

∥diag(π)−0.5(Ak −A∞)ei∥2πA
≤ 1

πA
βk
A

n∑
i=1

∥ei∥2π

≤κAnβ2k
A .

Lemma 21. ∥∇f(w(k))∥2F is bounded by ∥∇f(w(k))∥. Because of the heterogeneity bound, we
obtain the inequality that ∥∇f(w(k))∥2F ≤ 2n∥∇f(w(k))∥2 + 2nb2.

Proof. Because of the heterogeneity bound, we have

∥∇f(w(k))∥2F =

n∑
i=1

∥∇fi(w(k))∥2

≤2

n∑
i=1

∥∇fi(w(k))−∇f(w(k))∥2 + 2n∥∇f(w(k))∥2

≤2n∥∇f(w(k))∥2 + 2nb2.
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Algorithm 3: PULL-DIAG-GT

1 Initialize d(0)i = ei, x
(0)
i = x(0), y(0)

i = g
(0)
i = 1⊤

d ;
2 for k = 0, 1, . . . ,K, each node i in parallel do
3 x

(k+1)
i =

∑
j∈N in

i
aijx

(k)
j − α(y

(k)
j ;

4 d
(k+1)
i =

∑
j∈N in

i
aijd

(k)
j ;

5 Locally calculate r(k+1)
i = (d

(k+1)
ii )−1∇Fi(x

(k+1)
i , ξ

(k+1)
i );

6 Locally calculate z(k)i = r
(k+1)
i − r(k)i ;

7 y
(k+1)
i =

∑
j∈N in

i
aijy

(k)
j + z

(k)
i ;

8 end

Lemma 22. When we have the initial setting, y(0) = g0, for a given k > 0, we have πT
Ay

(k) =

πT
AD

−1
k gk. In this way, we take the expectation of both sides E[πTy(k)] = πTD−1

k ∇fk.

Proof. Since D0 = I , the proposition holds true when k = 0. Given the proposition holds when
n ≤ k, for n = k + 1:

πTy(k+1) =πTy(k) + πTD−1
k+1gk+1 − πTD−1

k gk

=πTD−1
k+1gk+1.

Then it holds for n = k + 1. By induction, the proposition holds for all k ≥ 0.

F.4 ALGORITHM FORMULATION

Pull-diag-AGT:

x(k+1) = Ax(k) − αy(k) (47a)
Vk+1 = AVk (47b)

y(k+1) = Ay(k) +D−1
k+1gk+1 −D−1

k gk (47c)

hereon we set D0 = In, y(0) = g0.

F.5 BASIC TRANSFORMATIONS

1. ∆
(k+1)
x = −α

∑k
i=0(A− 1nπ

T )i(In − 1nπ
T )y(k−i).

2. y(k+1) = A∞y(k+1)+
∑k

i=0[(A−A∞)k−i(D−1
i+1−A∞D

−1
i+1)∆

i
g−(A−A∞)k+1−iδigi].

F.6 CONSENSUS

Lemma 23 (CONSENSUS LEMMA).

T∑
k=0

∥∆(i+1)
x ∥2F ≤ α2 κA

(1− βA)2

T∑
k=0

∥y(k)∥2F . (48)

Proof. we can use Jensen inequality and apply 19

∥∆(i+1)
x ∥2F ≤α2

k∑
i=0

1

(1− βA)βi
A

∥(A− 1nπ
T )i(In − 1nπ

T )y(k−i)∥2F

≤α2
k∑

i=0

κAβ
i
A

(1− βA)
∥y(k−i)∥2F . (49)
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By summing up (49) from 0 To T , we have
T∑

k=0

∥∆(i+1)
x ∥2F ≤α2

T∑
k=0

k∑
i=0

κAβ
i
A

(1− βA)
∥y(k−i)∥2F ≤ α2κA

(1− βA)2

T∑
k=0

∥y(k)∥2F .

F.7 GRADIENT TRACKING

Lemma 24 (GRADIENT TRACKING ). We have
T+1∑
k=0

∥y(k+1)∥2F

≤4

T+1∑
k=0

∥A∞y(k+1)∥2F + (C01(T + 1) + C02)σ
2 + C03

T∑
k=0

∥∇f(w(k))∥2F .

Where α ≤ α1 =
[

(1−βA)4

48L2θ2
AκA(2nθ4

Aκ2(πA)βA+κA∥A−I∥2
F+(1−βA)2)

]0.5
and

1. C01 =
48nκAθ2

A

(1−βA)2 .

2. C02 =
96n2κ2(πA)θ6

Aβ2
A

(1−βA)3 .

3. C03 =
96nκ2(πA)θ6

Aβ2
A

(1−βA)2

Proof. Firstly, applying lemma 19 and noticing ∥I −A∞∥πA
= 1 we have

∥(A−A∞)k−i(D−1
i+1 −A∞D

−1
i+1)∆

i
g − (A−A∞)k+1−iδigi∥2F

≤2∥(A−A∞)k−i(D−1
i+1 −A∞D

−1
i+1)∆

i
g∥2F + 2∥(A−A∞)k+1−iδigi∥2F

≤2κAβ
2(k−i)
A ∥D−1

i+1∆
i
g∥2F + 2κAβ

2(k−i+1)
A ∥δigi∥2F . (50)

Use the second transformation in F.5 ,(50) and Jensen’s inequality, we have

∥y(k+1)∥2F ≤ 2∥A∞y(k+1)∥2F

+2∥
k∑

i=0

[(A−A∞)k−i(D−1
i+1 −A∞D

−1
i+1)∆

i
g − (A−A∞)k+1−iδigi]∥2F

≤2∥A∞y(k+1)∥2F + 4

k∑
i=0

βk−i
A κA

(1− βA)
∥D−1

i+1∆
i
g∥2F + 4

k∑
i=0

βk−i+2
A κA
(1− βA)

∥δigi∥2F

Note that ∆(k)
g can be further decomposed as follows:

∆(k)
g = g(k+1) −∇f(x(k+1)) +∇f(x(k+1))−∇f(x(k)) +∇f(x(k))− g(k).

Therefore, we can apply Cauchy-Schwarz inequality and obtain that

∥∆(k)
g ∥2F ≤ 3∥g(k+1) −∇f(x(k+1))∥2F + 3∥∇f(x(k+1))−∇f(x(k))∥2F
+ 3∥∇f(x(k))− g(k)∥2F

≤ 6nσ2 + 3L2∥(A− I)∆(k)
x − αy(k)∥2F

≤ 6nσ2 + 6L2∥A− I∥2F ∥∆(k)
x ∥2F + 6α2L2∥y(k)∥2F (51)

Applying lemma 20, ∥δigi∥2F can be estimated as

∥δigi∥2F ≤ 4θ4AκAnβ
2i
A ∥gi∥2F

≤4θ4AκAnβ
2i
A [3nσ2 + 3∥∇f(x(i))−∇f(w(i))∥2F + 3∥∇f(w(i))∥2F ]

≤4θ4AκAnβ
2i
A [3nσ2 + 3L2∥∆i

x∥2F + 3∥∇f(w(i))∥2F ] (52)
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Applying (51), (52) and and consensus lemma 23, we obtain
T∑

k=0

∥y(k+1)∥2F

≤2

T∑
k=0

∥A∞y(k+1)∥2F + [
24n(T + 1)κAθ

2
A

(1− βA)2
+

48n2κ2(πA)θ
6
Aβ

2
A

(1− βA)3
]σ2

+[
24α2L2κ2(πA)θ

2
A∥A− I∥2F

(1− βA)4
+

48α2nL2κ3(πA)θ
6
Aβ

2
A

(1− βA)4
]

T∑
k=0

∥y(k)∥2F

+
24α2L2κAθ

2
A

(1− βA)2

T∑
k=0

∥y(k)∥2F +
48nκ2(πA)θ

6
Aβ

2
A

(1− βA)2

T∑
k=0

∥∇f(w(k))∥2F .

Since α ≤
[

(1−βA)4

48L2θ2
AκA(2nθ4

Aκ2(πA)βA+κA∥A−I∥2
F+(1−βA)2)

]0.5
holds, we obtain

T+1∑
k=0

∥y(k+1)∥2F

≤4

T+1∑
k=0

∥A∞y(k+1)∥2F + (C01(T + 1) + C02)σ
2 + C03

T∑
k=0

∥∇f(w(k))∥2F .

F.8 DESCENT

Lemma 25 (PREPARATION FOR DESCENT LEMMA 1). We have the equality that

− αE
[〈

∇f(w(k)), πT
AD

−1
k fk

〉]
+
α2L

2
E
[
∥πT

Ay
(k)∥2

]
≤− αdk

2
E
[
∥∇f(w(k))∥2

]
+

α

2dk
E
[
∥dk∇f(w(k))− πT

AD
−1
k ∇fk∥2

]
+2α2nLσ2 + 2α2Lθ6AκAnβ

2k
A σ2 + (α2L− α

2dk
)E
[
∥πT

AD
−1
k ∇fk∥2

]
.

Where dk =
∑n

i=1
πi

Dk,i
.

Proof. Applying the gradient oracle assumption, we obtain
α2L

2
E
[
∥πT

AD
−1
k+igk∥2

]
≤α2LE

[
∥πT

AD
−1
k (gk −∇fk)∥2

]
+ α2LE

[
∥πT

AD
−1
k ∇fk∥2

]
≤2α2nLσ2 + 2α2LE

[
∥(πT

AD
−1
k − 1T

n )(gk −∇fk)∥2F
]
+ α2LE

[
∥πT

AD
−1
k ∇fk∥2

]
≤2α2nLσ2 + 2α2Lθ6AκAnβ

2k
A σ2 + α2LE

[
∥πT

AD
−1
k ∇fk∥2

]
.

Therefore we have

− αd−1
k E

[〈
dk∇f(w(k)), πT

AD
−1
k fk

〉]
+
α2L

2
E
[
∥πT

Ay
(k)∥2

]
≤− αdk

2
E
[
∥∇f(w(k))∥2

]
− α

2dk
E
[
∥πT

AD
−1
k ∇fk∥2

]
+

α

2dk
E
[
∥dk∇f(w(k))− πT

AD
−1
k ∇fk∥2

]
+
α2L

2
E
[
∥πT

Ay
(k)∥2

]
=− αdk

2
E
[
∥∇f(w(k))∥2

]
+

α

2dk
E
[
∥dk∇f(w(k))− πT

AD
−1
k ∇fk∥2

]
+2α2nLσ2 + 2α2Lθ6AκAnβ

2k
A σ2 + (α2L− α

2dk
)E
[
∥πT

AD
−1
k ∇fk∥2

]
.
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Lemma 26 (PREPARATION FOR DESCENT LEMMA 2). When heterogeneity bound assumption
holds, we have the equality that

∥dk∇f(w(k))− πT
AD

−1
k ∇fk∥2 ≤ L2θ2A∥∆(k)

x ∥2F .

Proof. Since the heterogeneity bound, we have
∥dk∇f(w(k))− πT

AD
−1
k ∇fk∥2 =∥πT

AD
−1
k (∇F (wk)−∇fk)∥2 ≤ L2θ2A∥∆(k)

x ∥2F .

F.9 MAIN THEOREM

Theorem 7 (CONVERGENCE OF PULL-DIAG-GT). We can prove the linear speedup convergence
rate under a proper choice of T and α,i.e.

T∑
k=0

dk
ST

E[∥∇f(w(k))∥2] ≤ 16
√
2L∆0σ√

n(T + 1)
+

3(C1216∆
2
0)

1
3

nσ
4
3 (T + 1)

2
3

+
2
√
∆0C11σ + 3(16∆2

0C13σ
2)

1
3 + 3(16∆2

0C14b
2)

1
3

n(T + 1)
.

Where C1i are constants and Sk =
∑T

k=0 dk.

Proof. Since w(k+1) = w(k) − απAy
(k) and L-smoothness of f(x), we have

E
[
f(w(k+1))

]
≤ E

[
f(w(k))

]
− αd−1

k E
[〈
dk∇f(w(k)), πT

AD
−1
k ∇fk

〉]
+
α2L

2
E
[
∥πAy(k)∥2

]
25
≤E

[
f(w(k))

]
− αdk

2
E
[
∥∇f(w(k))∥2

]
+ 2α2nL(1 + θ6AκAβ

2k
A )σ2

+
α

2dk
E
[
∥dk∇f(w(k))− πT

AD
−1
k ∇fk∥2

]
+ (α2L− α

2dk
)E
[
∥πT

AD
−1
k ∇fk∥2

]
26
≤E

[
f(w(k))

]
− αdk

2
E
[
∥∇f(w(k))∥2

]
+ (α2L− α

2dk
)E
[
∥πTD−1

k ∇fk∥2
]

+
L2θ2Aα

2dk
E
[
∥∆(k)

x ∥2F
]
+ 2α2nLσ2 + 2α2Lθ6AκAnβ

2k
A σ2

(53)
Since 1 ≤ 1

Dk,i
≤ θA, it holds that 1 ≤ dk ≤ θA. Summing up (53) for 0 to T we obtain

α

2

T∑
k=0

dkE
[
∥∇f(w(k))∥2

]
≤ ∆0 + (α2L− α

2θA
)

T∑
k=0

E
[
∥πTD−1

k ∇fk∥2
]

+
L2θ2Aα

2

T∑
k=0

E
[
∥∆(k)

x ∥2F
]
+ 2α2nL(T + 1)σ2 +

2α2Lθ6AκAn

1− β2
A

σ2.

Where ∆0 is defined as f(w(0))− f∗, notice that lemma 23 and lemma 24 hold, it holds that

α

2

T∑
k=0

dkE
[
∥∇f(w(k))∥2

]
≤∆0 +

[
α2L− α

2θA
+

2α3L2θ2AnκA
(1− βA)2

] T∑
k=0

E
[
∥πTD−1

k ∇fk∥2
]

+

[
2α2nL(T + 1) +

2α2Lθ6AκAn

1− β2
A

+
α3L2θ2AκA
2(1− βA)2

(C01(T + 1) + C02)

]
σ2

+
α3L2θ2AκA
2(1− βA)2

C03

[
2n

T∑
k=0

dkE
[
∥∇f(w(k))∥2

]
+ 2nb2

]
.
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Applying lemma 19, we can estimate dk as dk ≥ n − n
√
nκAθ

3
Aβ

k
A. In this way, we define Sk =∑k

i=0 di, then we have Sk ≥ n(k + 1)− n
√
nκAθ3

A

1−βA
.

Denote that

1. α2 =
(1−βA)

[
−L(1−βA)+

√
L2(1−βA)2+4nL2θAκA

]
4nL2θ2

AκA
.

2. α3 ≤ (1−βA)
2
√
nκALθA

.

Let α ≤ α2 and α ≤ α3 ,Finally, we have

T∑
k=0

dk
ST

E∥∇f(w(k))∥2 ≤ 4∆0

αST
+

8αLn(T + 1)σ2

ST
+

8αLθ6AκAn

(1− β2
A)ST

σ2

+
2α2L2θ2AκA
(1− βA)2ST

(C01(T + 1) + C02)σ
2 +

4nα2L2θ2AκA
(1− βA)2ST

C03b
2. (54)

Let T ≥ 2
√
nκAθ3

A

1−βA
, then ST ≥ n(T+1)

2 . Define that

1. C11 =
16Lθ6

AκAn

(1−β2
A)

2. C12 =
4L2θ2

AκA

(1−βA)2 C01

3. C13 =
4L2θ2

AκA

(1−βA)2 C02

4. C14 =
8nL2θ2

AκA

(1−βA)2 C03

Then (54) can be reformulated as

T∑
k=0

dk
ST

E∥∇f(w(k))∥2 ≤ 8∆0

αn(T + 1)
+ 16αLσ2 +

αC11

n(T + 1)
σ2

+
α2C12

n
σ2 +

α2C13

n(T + 1)
σ2 +

α2C14

n(T + 1)
b2. (55)

We define

1. α4 =
[

∆0

2Ln(T+1)σ2

] 1
2

.

2. α5 =
[

∆0

C11σ2

] 1
2

.

3. α6 =
[

4∆0

C12σ2(T+1)

] 1
3

.

4. α7 =
[

4∆0

C13σ2

] 1
3

.

5. α8 =
[

4∆0

C14b2

] 1
3

.
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In (55), we let α ≤ 1∑8
i=1 α−1

i

and T ≥ 2
√
nκAθ3

A

1−βA
, we finally prove the linear speedup of PULL-

DIAG.
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4
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.

G EXPERIMENT DETAILS

In this section we provide unexplained details of experiment setup in the article.

G.1 NETWORK DESIGN
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Figure A1: Left plot: Ring1, a directed ring graph with one extra connection. θA ≈ 629145.6,
κA ≈ 2, βA ≈ 0.989. Right plot: Ring2, a directed ring graph with two extra connections. θA ≈
53387, κA ≈ 2.5, βA ≈ 0.989.
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Figure A2: Left plot: Ring3, a directed ring graph with three extra connections. θA ≈ 844, κA ≈
2, βA ≈ 0.989. Right plot: Ring4, a directed ring graph with four extra connections. θA ≈ 313,
κA ≈ 1.6, βA ≈ 0.970.

G.2 FIGURE 1 IN SECTION 4

Setup. We randomly generate an initial vector x(0) ∈ R20, and then run either PULL-DIAG and
PULL-SUM consensus on a network of size 20 to estimate x̄(0). The estimate at iteration k is
denoted by w(k), and the consensus error is computed as ∥w(k) − x̄(0)∥/∥x(0) − x̄(0)∥.
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Figure A3: The left plot illustrates the PULL-DIAG consensus on three different networks with
varying θA, while other parameters remain approximately constant, with κA ≈ 2 and βA ≈ 0.989.
It is observed that PULL-DIAG exhibits a larger initial spike for networks with higher θA. The
right plot compares the consensus error of PULL-SUM (dashed lines) and PULL-DIAG (solid lines).
PULL-SUM consistently outperforms PULL-DIAG across all cases.

G.3 FIGURE 2 IN SECTION 6

Setup. Our experiment on synthetic dataset focuses on a decentralized logistic regression with
non-convex regularization. The objective is formulated as minimizing minx∈Rd n−1

∑n
i=1(fi(x) +

ρr(x)), where

fi(x) =
1

M

M∑
l=1

ln(1 + exp(−yi,lh⊤i,lx)) and r(x) =

d∑
j=1

[x]2j
1 + [x]2j

.

Here, {hi,l, yi,l}Ml=1 represents the training dataset held by node i, where hi,l ∈ Rd denotes feature
vectors and yi,l ∈ {+1,−1} signifies labels. The regularization term r(x), which is non-convex, is
controlled by ρ > 0.
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We fix d = 10, M = 20, and ρ = 0.001. To accommodate varying data characteristics across
nodes, each node i computes a local solution x⋆i . This solution is computed as x⋆i = x⋆ + vi, where
x⋆ ∼ N (0, Id) is a shared, randomly generated vector, and vi ∼ N (0, σ2

hId) introduces variability
among local solutions.

To generate local data reflecting diverse distributions, we sample each feature vector hi,l ∼ N (0, Id)
at node i. The corresponding label yi,l is determined by a random variable zi,l ∼ U(0, 1), with yi,l
set to 1 if zi,l < 1/(1 + exp(−yi,lh⊤i,lx⋆i )) and −1 otherwise, thereby controlled by x⋆i .

To introduce controlled gradient noise, we modify the actual gradient using Gaussian noise εi such
that ∇fi(x) = ∇f(x) + εi, where εi ∼ N (0, σ2

nId). The parameter σ2
n governs the intensity of

gradient noise.

In our experiments, we set σh = 20 and σn = 0.001. Our primary performance metric of interest
across all experiments is ∥∇f(x̄(k))∥.
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Figure A4: When θA is significant (Ring1,2), PULL-SUM-GT is not influenced while PULL-DIAG
based methods suffer a lot. When θA is small (Ring3,4), their performance are similar.
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