
Pretraining Codomain Attention Neural Operators
for Solving Multiphysics PDEs

Md Ashiqur Rahman1, Robert Joseph George2, Mogab Elleithy2, Daniel Leibovici2,
Zongyi Li2, Boris Bonev3, Colin White2, Julius Berner2, Raymond A. Yeh1,

Jean Kossaifi3, Kamyar Azizzadenesheli3, Anima Anandkumar2
1Purdue University, 2Caltech, 3NVIDIA

Abstract

Existing neural operator architectures face challenges when solving multiphysics
problems with coupled partial differential equations (PDEs) due to complex ge-
ometries, interactions between physical variables, and the limited amounts of
high-resolution training data. To address these issues, we propose Codomain Atten-
tion Neural Operator (CoDA-NO), which tokenizes functions along the codomain
or channel space, enabling self-supervised learning or pretraining of multiple PDE
systems. Specifically, we extend positional encoding, self-attention, and normal-
ization layers to function spaces. CoDA-NO can learn representations of different
PDE systems with a single model. We evaluate CoDA-NO’s potential as a backbone
for learning multiphysics PDEs over multiple systems by considering few-shot
learning settings. On complex downstream tasks with limited data, such as fluid
flow simulations, fluid-structure interactions, and Rayleigh-Bénard convection, we
found CoDA-NO to outperform existing methods by over 36%.

1 Introduction

Many science and engineering challenges involve solving partial differential equations (PDEs).
A PDE can represent physical phenomena such as fluid dynamics, wave propagation, material
deformation, etc., but to describe many real-world systems, multiple such PDEs must be coupled
together, viz., multi-physics modeling [1]. For instance, in subsurface engineering, equations of
flow, thermodynamics, and microchemistry are coupled together [2]; in materials science, physics
at multiple scales are involved in modeling [3], and in weather forecasting, atmospheric processes
involve interactions of wave propagation and fluid dynamics [4].

Traditionally, numerical methods have been devised to solve PDEs. However, they typically require
discretization of PDEs on fine grids to capture the physical phenomena accurately. Consequently,
these computational requirements often exceed available memory and computational budgets for real-
world applications. Beyond these obstacles present in individual PDE problems, the convergence of
numerical solvers in multiphysics systems presents major difficulties arising from intricate interactions
among multiple coupled PDEs.

Deep learning techniques have emerged as faster alternatives to numerical solvers for PDEs in many
applications. They are typically trained using supervised learning with data obtained from solvers.
This becomes a challenge when only limited data is available, especially in the case of multiphysics
simulations, which are expensive and challenging for numerical solvers. Instead, obtaining data from
simpler simulations where only a subset of the “physics" is incorporated is more convenient and less
expensive. In other words, instead of getting data from coupled PDE systems, we can obtain data by
solving individual PDEs. While the solutions of the two systems can be very different, they share
common features and can benefit from a combined learning framework. Can we design a systematic
curriculum learning scheme for learning multiphysics systems?

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

CoDA-NO

Self-Supervised Pre-training Few Shot Supervised Finetuning

Single Physics System Coupled Multi-Physics System

New variables

Mask

ux,t+δt

uy,t+δt

pt+δt

dx,t+δt

dy,t+δt

ux,t

uy,t

pt

dx,t

dy,t

ux

uy

p

ux

uy

p CoDA-NO

Figure 1. CoDA-NO adapts seamlessly to new multi-physics systems. Pre-trained on fluid dynamics data
(Navier-Stokes equation with ux, uy , and p) using the masked-reconstruction objective, CoDA-NO easily adapts
to multi-physics fluid-solid interaction systems (new dx and dy variables) without any architectural changes.

More generally, a foundation model trained on different kinds of PDEs can learn representations
across multiple domains and then transfer them to new problems. Such foundation models have found
immense success in computer vision and natural language processing [5, 6]. Foundation models are
first trained in a self-supervised manner on large and often unlabeled datasets. Then they can be
efficiently adapted or fine-tuned to a broad range of downstream tasks with minimal to no additional
data or training.

Recent works have attempted to train a foundation model for solving PDEs [7–9]. However, these
methods only work on predetermined PDEs with a fixed number of variables, and none of them
consider multi-physics PDEs, and they are mostly restricted to uniform grids, limiting their applica-
bility. For example, standard patching-based approaches used in Vision Transformers (ViTs) [10]
often struggle with discontinuities in predicted functions and changing resolutions [11]. Since they
are limited to fixed uniform grids, they cannot generalize to resolutions different from the training
resolutions.

To handle varying resolutions and grids, neural operators [12, 13] have been introduced as a deep
learning framework for learning mappings between function spaces. Neural operators are guaranteed
to converge to a unique operator in the limit of increasingly fine discretizations (of the computa-
tional domain). This property is known as discretization convergence, making them agnostic to the
discretization of the input and output functions and suitable for approximating solution operators
of PDEs. Neural operators can replace numerical solvers while being significantly faster in several
scenarios [14, 15]. While some of the previous PDE foundation models [7, 9] use neural operators,
they still cannot handle multiphysics or coupled PDEs. They also cannot adapt to new variables that
are not predetermined at the beginning of training.

Our Approach: We propose a novel transformer neural operator architecture with codomain attention
(CoDA-NO) layers designed to handle varying combinations of physical phenomena modeled through
coupled PDEs. We partition the input function codomain-wise into a set of token functions, each
corresponding to distinct physical variables of the PDE. The CoDA-NO model processes this set of
functions as input, extending the transformer architecture from a finite-dimensional vector space to
an infinite-dimensional function space. This extension is achieved by carefully redesigning positional
encodings, the self-attention mechanism, and normalization techniques.

In our architecture, each token is treated as a function, capturing cross-function dynamics through
attention mechanisms while maintaining discretization convergence. This design empowers the ar-
chitecture to handle functions discretized on grids of varying resolutions. Specifically, each token
function is subjected to the following operations: (i) concatenation with a learned positional embed-
ding, (ii) lifting to a higher-dimensional co-domain, and (iii) functional attention mechanisms to
compute interactions. We use Fourier neural operators (FNOs) [16] rather than traditional multi-layer
perceptrons (MLPs) to create the representations for keys, values, and queries, which helps maintain
the functional nature of the input data. Details can be found in Sec. 3 and Alg. 1.

CoDA-NO can be applied to varying numbers of input functions (on different geometries) and adapt
to novel PDEs with fewer or additional interacting variables, as illustrated in Fig. 1. This allows us to
learn multiple PDE systems in one model.

To demonstrate CoDA-NO’s generalizability across diverse physical systems, we examine two
settings: multiphysics problems and a collection of single-physics problems.

2

⊕

CoDA-NO Block

GNO

K

Q

VToken
Functions

k1

q1

v1

k2

q2

v2

SoftMax

〈q1, k1〉 〈q1, k2〉

〈q2, k1〉〈q2, k2〉

×

GNOVariable 1

Variable 2

VSPE 1

VSPE 2

⊕

GNO

Output
Functions

Iper
Variable 1

Variable 2

Input Function Target FunctionLatent Function

Key

Query

Value

×	#

(a) Illustration of CoDA-NO architecture. Each of the input physical variables, ‘variable 1’ and ‘variable 2’, depicted with two different
colors (yellow and blue), incorporate a learnable variable-specific positional encoder (VSPE). These variables, along with the corresponding
VSPE, are passed through GNO layers to transform from non-uniform to latent uniform grids. Codomain attention tokenizes the latent
functions along the codomain. Each token undergoes transformations with K,Q, and V operators yielding key, query, and value functions
{k1, k2}, {q1, q2}, and {v1, v2}. The resulting function is computed using a self-attention mechanism in function space followed by
an integral operator Iper . Finally, the output function on the target geometry is generated by passing through stacked CoDA-NO blocks,
followed by an additional GNO layer.

ux

uy

p

VSPE1

VSPE3

⊕

⊕

⊕

VSPE1

Pre-training on Physical Quantities
of Navier–Stokes Equations

Encoder Reconstructor
Masking

Masking

Masking ux
uy
p

VSPE1

VSPE3

VSPE2

⊕

⊕

⊕

VSPE5

VSPE4 ⊕

⊕

Fine-tuning to additional Physical
Quantities of Elastic Wave Equation

Encoder Predictor

ux,t

uy,t

pt

dx,t

dy,t

ux,t+δt
uy,t+δt
pt+δt

dx,t+δt

dy,t+δt

(b) Self-supervised pre-training and fine-tuning with CoDA-NO. Model, pre-trained on the Navier-Stokes equations dataset (with ux, uy ,
and p) in a self-supervised way, can be fine-tuned to a fluid-solid interaction dataset (new dx and dy variables) by only including two extra
VSPEs and a predictor module.

Figure 2. (a) CoDA-NO architecture. (b) Self-supervised pre-training and fine-tuning process with CoDA-NO.

For the multiphysics scenario, we examine two distinct systems. First, we consider a fluid-structure
interaction problem [17] governed by the incompressible Navier-Stokes equation and the Elastic
wave equation. The fluid-structure interaction problem is representative of the multi-physics behavior
of various real-world problems, e.g., climate and atmosphere modeling. It also provides an additional
challenge of irregular meshes on a complex geometry.

Instead of directly learning to solve the full multiphysics problem, we start with a curriculum
where we first learn the basic fluid dynamics without the elastic wave equation, governed by the
incompressible Navier-Stokes equation, with velocity and pressure as variables. We pre-train CoDA-
NO in a self-supervised manner on snapshots of fluid flows by masking different parts of the velocity
or pressure fields. Using few-shot supervised fine-tuning, we show that our model can adapt to unseen
viscosities and additional displacement fields given by the elastic wave equation. We use graph neural
operator (GNO) layers [18] as encoders and decoders to handle time-varying irregular meshes of the
fluid-structure interaction problems. For the few-shot learning problem, our model achieves 36.8%
lower errors on average compared to the best-performing baseline trained from scratch on the target
problem.

The second system involves Rayleigh-Bénard convection, where the Navier-Stokes and heat (energy)
equations are coupled in a regular 2D domain. Similar to the first case, we pre-train CoDA-NO with
an incompressible Navier-Stocks equation involving just the velocity term. Then, we fine-tuned the
model to predict velocity and temperature using few-shot training samples. Here, too, the pre-trained
CoDA-NO significantly outperforms the baseline, reducing the prediction error by a factor of two.

We also train CoDA-NO on a diverse set of PDEs, which form a subset of PDEBench [19] and
demonstrate superior performance and parameter efficiency over prior approaches in learning all of
those PDE systems. CoDA-NO consistently outperforms the FNO architecture trained on the same
set of PDEs, reducing test error by up to 43% while only requiring 2% of the parameters.

3

Our contributions are as follows:

• We propose a co-domain attention neural operator that efficiently learns solution operators to PDEs
by formulating transformer operations in function space and ensuring discretization convergence.

• The proposed architecture enables self-supervised learning in function space for diverse physical
systems by handling varying numbers of input functions and geometries.

• CoDA-NO achieves state-of-the-art performance in generalizing to unknown physical systems with
very limited data. That is, CoDA-NO can be viewed as the first foundation neural operator for
multiphysics problems.

2 Related Works

Transformers for solving PDEs. Recent work [20] proposes a method to weight variables/codomains
of the input function based on the weights calculated from the PDE parameters. Another study [21]
proposes a scalable transformer architecture by combining a projection operator to a one-dimensional
domain and a learnable factorized kernel. In contrast to these works, CoDA-NO provides a complete at-
tention operator by considering each physical variable as a token function, i.e., an infinite-dimensional
vector, extending traditional transformers that only operate on finite-dimensional tokens.

Self-supervised learning. Self-supervised learning (SSL) has been proposed to tackle the issue of
limited labeled data [22–24]. It allows the training of large foundation models on massive amounts
of unlabeled data in the field of computer vision and natural language processing. Subsequently,
these models can be successfully applied to a wide range of downstream tasks with minimal to no
additional task-specific data [6, 25–27].

Pre-training for PDE solving. Models that are pre-trained in a self-supervised fashion have also
gained traction in the domain of scientific computing. One recent study [8] proposes pretraining
the models with autoregressive tasks on a diverse dataset of multiple PDEs. These models can then
be fine-tuned for specific downstream PDEs. Several recent studies have investigated task-agnostic
approaches through masking-and-reconstruction [22] and the consistency of representations under
symmetry transformations [16, 28, 29]. Recent work [7] also sheds light on the transferability of these
models between different systems of PDEs. While these methods achieve good performance, the target
(downstream) PDE must maintain a strict resemblance to the ones used for pretraining. In addition,
adapting these models for PDEs with new additional physical variables is not possible. Additionally,
ViT-based patching approaches [11] disrupt the continuity and are not resolution-agnostic.

3 Method

Let us first define our setting and provide a brief introduction to neural operators. For further details,
we refer to Sec. A in the appendix.

For an input function a : D → Rdin , we will denote the din-dimensional output space Rdin as the
codomain. We consider the components of the codomain as different physical variables, given by
real-valued functions over the input domain D, i.e., a = [a1, . . . , adin] with ai : D → R. The
same applies to the output function u : D → Rdout . We define the action of a pointwise operator
H : {f : D → Rdf } → {g : D → Rdg} given by a function hθ : Rdf → Rdg with parameters θ as

H[f](x) = hθ(f(x)). (1)

Moreover, we define an integral operator T : {f : D → Rdf } → {g : D → Rdg} given by a kernel
function kϕ with parameters ϕ as

T [f](x) =
∫
D
kϕ(x, y)f(y) dy. (2)

Problem Statement. Our objective is to construct a general neural operator architecture that explicitly
represents the interaction between the physical variables of PDE systems. Such an architecture should
be able to learn and predict various systems without being constrained to a fixed number of variables.

Let’s consider two input functions a : D → Rdin and ã : D → Rd̃in of two different PDE with
corresponding output functions u : D → Rdout and ũ : D → Rd̃out . In general, the functions a and ã

4

represent din and d̃in physical variables over the domain D with din ̸= d̃in . We aim to design neural
operator architectures G that can both be applied to a as well as ã despite the different codomains of
the input as well as output functions.

Such property provides the possibility to evaluate or finetune the operator on PDEs with different
numbers of variables than those on which it was trained. In particular, when the PDE systems have
overlapping physical variables {ai}din

i=1 ∩ {ãi}d̃in
i=1 ̸= ∅, this naturally allows to transfer learned

knowledge from one system to the other. We will next describe the details of the CoDA-NO layers
and architecture to achieve this goal.

Neural Operator on Sets. As we consider the vector-valued input function a as a set of din functions
{a1, a2, . . . , adin} that represents different physical variables of the PDE, we seek to construct
operators that act on sets of input functions with different cardinalities.

For an efficient implementation of operators on sets of functions, we mimic transformer architectures
and share weights across different variables. Specifically, we can define the integral operator Iper as

Iper[a] =
[
I[a1], . . . , I[adin]

]
, (3)

where a = [a1, . . . , adin] and I is a regular integral operator as described in Eq. (2). Such construction
makes the operator permutation-equivariant with respect to the order of the variables in the set.
Following the same mechanism, we can also define permutation-equivariant pointwise operator
Hper with a shared pointwise operatorH (see Eq. (1)). We will use FNOper and GNOper to denote
permutation-equivariant operators using a shared GNO and FNO, respectively.

CoDA-NO Layer. To explain the CoDA-NO layer, let us assume the input function a has been
processed into a latent function w : D → Rd. We partition the function into a set of so-called
token functions wj : D → Rd′

with wj ∈ W for j ∈ {1, . . . T} along the codomain, such
that w =

[
w1, . . . wT

]
(and where each wj is associated with precisely one of the physical input

variables). That is, w represents the codomain-wise concatenation of the token functions wj and
d′ = d

T . If no other value is specified, we assume that d′ = 1. The CoDA-NO layer now processes
the token functions using an extension of the self-attention mechanism to the function space (see
Appendix Sec. B and Fig. 2a).

Let us begin by introducing a single-head CoDA-NO layer. Later, we will expand the concept to
multi-head codomain attention. We extend the key, query, and value matrices of the standard attention
(see Appendix Sec. B for details) to operators mapping token functions wj : D → Rd′

to key, query,
and value functions. We define the key, query, and value operators as

K :W → {kj : D → Rdk}, Q :W → {qj : D → Rdq}, V :W → {vj : D → Rdv}. (4)

Assuming dk = dq, we denote by kj = K[wj], qj = Q[wj], and vj = V[wj] the key, query, and
value functions of the token functions, respectively.

Next, we calculate the output (token) functions oj : D → Rdv as

oj = Softmax




⟨qj ,k1⟩
τ
...

⟨qj ,kT ⟩
τ


 [v1, . . . , vT]⊤, (5)

where τ is the temperature hyperparameter. Here, ⟨., .⟩ denotes a suitable dot product in the function
space. We take the L2(D,Rdk)-dot product given by ⟨qj , km⟩ =

∫
D⟨qj(x), km(x)⟩dx, where the

integral can be discretized using quadrature rules, similar to the integral operator in Eq. (2).

To implement multi-head attention, we apply the (single-head) attention mechanism described
above separately for multiple heads h ∈ {1, . . . H} using Kh,Qh, and Vh to obtain oj,h. We then
concatenate these outputs oj,h along the codomain and get cj := [oj,1, . . . oj,H]. Finally, we use an
operator

M : {cj : D → RH·dv} → {oj : D → Rdv} (6)
to get the output function oj .

5

We obtain the output of the attention mechanism by concatenating ojs as o = [o1, o2, . . . oT]. Finally,
we complete the CoDA-NO layer by applying a permutation-equivariant integral operator Iper
on o. When CoDA-NO is acting on functions sampled on a uniform grid, the internal operators
Kh,Qh,Vh,M, and I are implemented as FNOs.

Function Space Normalization. Normalization is a vital aspect of deep learning architectures.
However, when it comes to neural operators mapping infinite-dimensional functions, this topic remains
largely unexplored. We now provide a natural extension. Given a function w, let wj : D → Rd′

be a
token. Then we calculate the mean µ ∈ Rd′

and standard deviation σ ∈ Rd′
for this token as

µj =

∫
D
wj(x) dx, σj =

(∫
D
(wj(x)− µj)◦2 dx

)◦ 1
2

. (7)

Algorithm 1 Adaptation of CoDA-NO from two phys-
ical variables a1, a2 to a new variable a3 on uniform
1D grid. Only the parts in ‘Blue’ are additionally re-
quired to incorporate the new variable a3.

Require: a1, a2, a3 ∈ R1×n

Variable Specific Positional Encoding:
// Learnable Fourier coefficients
κ1, κ2, κ3 ∈ Cden×n

2

ā1 ← concatenate(a1, iFFT(κ1))
ā2 ← concatenate(a2, iFFT(κ2))
ā3 ← concatenate(a3, iFFT(κ3))

Lifting:
// Lifting from Rden+1×n to
RD×n with D > den + 1
w1 ← pointwiseMLP(ā1)
w2 ← pointwiseMLP(ā2)
w3 ← pointwiseMLP(ā3)

Codomain Attention Block: ×L
k1, k2, k3 ← FNOk(w1), FNOk(w2), FNOk(w3)
q1, q2, q3 ← FNOq(w1), FNOq(w2), FNOq(w3)
v1, v2, v3 ← FNOv(w1), FNOv(w2), FNOv(w3)
// Compute attention coefficients M
for i, j ∈ {1, 2, 3} do

M[i, j]← ⟨qi, kj⟩
end for
M← softmax

(
M[i,j]

N

)
// Compute attention outputs
for i ∈ {1, 2, 3} do

oi ←∑
j∈{1,2,3} v

j ×M[i, j]
end for
// Normalize and Residual
o1 ← norm(o1) + w1

o2 ← norm(o2) + w2

o3 ← norm(o3) + w3

w1, w2, w3 ← FNOI(o1), FNOI(o2), FNOI(o3)
...

Projection:
// Projection from RD×n to R1×n

u1 ← pointwiseMLP(w1)
u2 ← pointwiseMLP(w2)
u3 ← pointwiseMLP(w3)
return u1, u2, u3

Here, ◦r denotes the elementwise (Hadamard)
rth-power. The normalization operator can be
written as

Norm[wj](x) = (g⊘σj)⊙(wj(x)−µj)+b.

Here b ∈ Rd′
and g ∈ Rd′

are learnable bias
and gain vectors and ⊘ and ⊙ denote elemen-
twise division and multiplication operation.
This normalization can be seen as an exten-
sion of instance normalization [30] for func-
tion spaces. Similarly, normalization variants,
such as group norm, layer norm, and batch
norm, extend to operator learning with these
definitions of statistics [31–33].

Variable Specific Positional Encoding
(VSPE). We learn positional encoders ei :
D → Rden for each physical variable i ∈
{1, . . . , din}, for the given vector-valued in-
put function a = [a1, . . . , adin]. We con-
catenate each positional encoding ei with
the respective variable ai : D → R along
the codomain to obtain extended input func-
tions āi = [ai, ei]. Next, we apply a shared
pointwise lifting operator P : {āi : D →
Rden+1} → {w̄i : D → RD}, typically with
D > den + 1. Finally, we concatenate w̄i,
i ∈ {1, . . . din}, to get the lifted latent func-
tion

w = [w̄1, . . . , w̄din] : D → RD·din . (8)

In the previous paragraphs, we used d =
D · din and, to maintain the permutation-
equivariance property of the operator, d′ must
divide D.

Algorithm 1 presents the pseudocode for the
CoDA-NO architecture applied to input func-
tions [a1, a2], mapping two different physical
variables on a uniform grid in a 1D domain,
to the solution functions [u1, u2]. It assumes
d′ = D while designing the CoDA-NO layer.
Notably, to incorporate another function a3,
representing a new physical variable, it is only
necessary to introduce a corresponding param-
eter for the new VSPE, denoted as κ3.

To effectively handle non-uniform complex
geometries, we follow the GINO architecture

6

[34], where a GNO is used as an encoding and decoding module. Given a set of evaluations of an
input function a on a mesh, as represented by {a(xin

i)}ni=1, where {xin
i }ni=1 ⊂ Din, our first step

involves concatenation of each physical variables with respective VSPEs (see Fig. 2a).

Next, we use GNOper to transform the function a into a new function w0 on a uniform latent grid,
represented by {xgrid

i }n′

i=1. Finally, we apply l stacked CoDA-NO layers to w0 to obtain the encoded
function wl, which acts as a representation of the input function a.

The decoding module is essentially a mirrored version of the encoding module. It starts by applying
another block of l stacked CoDA-NO layers to the encoded function wl to obtain wL. Subsequently,
it uses another GNOper operator to transform wL on a uniform grid to an approximation u of the
solution function on an arbitrary output grid {u(xout

i)}n′

i=1. The architecture is summarized in Fig. 2a.

Model Training. To seamlessly adapt to multi-physics PDEs with limited data, we propose a two-
stage training process: Self-supervised pretraining is followed by a supervised fine-tuning stage. For
a summary, we refer to Fig. 2b.

Pre-training. In the context of self-supervised pretraining, the objective is to train the model to
reconstruct the original input function from its masked version. Within this phase, the model’s
encoding component is denoted as the Encoder, while the decoding component comprises the
Reconstructor. The values of the input function at a specific percentage of mesh points are randomly
masked to zero, and certain variables (channels/co-domains) of the input function are entirely masked
to zero. The model is then trained to reconstruct the original input from this masked version.

We emphasize that the self-supervised learning phase is agnostic of the downstream supervised task
and only requires snapshots of simulations of the physical systems.

Fine-tuning. In the supervised fine-tuning phase, the Reconstructor is omitted from the decoding
module and replaced by a randomly initialized Predictor module. The parameters of the Encoder and
VSPEs are copied from pre-trained weights. If the fine-tuning (target) PDE introduces variables that
are not present in the pre-training PDE; we train additional variable encoders only for these newly
introduced variables (see Fig. 2b). This ensures that the model adapts to the expanded set of variables
needed for the fine-tuning task with minimal additional parameters.

4 Experiments

We conduct experiments on two coupled PDEs: fluid-structure interaction and
Rayleigh-Bénard convection system. We also test our model on a diverse set of PDEs from
PDEBench [19]. The code is available at https://github.com/neuraloperator/CoDA-NO.

Modeling Fluid-Structure Interaction. We consider the following problems: (a) a fluid dynamics
problem, where a Newtonian, incompressible fluid impinges on a rigid object, and (b) a fluid-structure
interaction problem between a Newtonian, incompressible fluid and an elastic, compressible solid
object [17]. We denote Ωf

t (resp. Ωs
t) as the domain occupied by the fluid (resp. the solid) at time t.

The dynamics of the fluid are governed by the Navier-Stokes equations

ρf
∂u

∂t
+ ρf∇ · (u⊗ u) = ∇ · σf , ∇ · u = 0, in Ωf

t (9)

where u and ρf denote the fluid velocity and density, respectively. And σf denotes the Cauchy stress
tensor, given by σf = −pI+ µ(∇u+∇uT), where I is the identity tensor, p the fluid pressure, and
µ the fluid dynamic viscosity.

For fluid-structure interaction, the deformable solid is governed by the elastodynamics equations

ρs
∂2d

∂t2
= ∇.(Jσs(F−1)T) in Ωs

t (10)

with F = I +∇d and J = det(F). Here d, ρs, F , and σs denote the deformation field, the solid
density, the deformation gradient tensor, and the Cauchy stress tensor, respectively (see Eq. (18) in
the Appendix). The fluid dynamics (resp. the fluid-structure interaction) problem considers a fluid
flow past a fixed, rigid cylinder with a rigid (resp. elastic) strap attached. The details regarding the
geometric setup (see Fig. 3), time-dependent inlet boundary condition, and the initial conditions are

7

https://github.com/neuraloperator/CoDA-NO

provided in the Appendix Sec. C.1.

Modeling Rayleigh-Bénard Convection. The Rayleigh-Bénard convection system governs the flow
of a fluid layer heated from below and cooled from above. The governing equations for the Rayleigh-
Bénard system consist of the incompressible Navier-Stokes equations coupled with an energy equation
for heat transfer. The system is modeled as follows:

∂u

∂t
+ u · ∇u+∇P − ν∇2u− αgTẑ = 0 (11)

∂T

∂t
+ u · ∇T− κ∇2T = 0 (12)

Dataset Description and Generation. To study the fluid-structure interaction system, two datasets,
the fluid-structure interaction (NS+EW dataset) and the fluid dynamics(NS dataset), are generated
using the TurtleFSI package [35].

We simulate the fluid-structure interaction and the fluid dynamics test cases described above up to
time Tf = 10, using a constant time-step δt =

Tf

n , where n = 1000. The data sets are composed of
solution trajectories [ut, pt, dt] (resp. [ut, pt]), which denote the approximate solution of the fluid-
structure interaction problem (resp. the fluid dynamics problem) at times t = iδt, i ∈ {0, . . . , n}.
These trajectories are generated on the basis 3 parameters (µ, c1, c2) describing combinations of fluid
viscosities µ ∈ {0.5, 1, 5, 10} and inlet conditions, (c1, c2) ∈ I.
For our setup, the fluid considered is water, with a density of 1000kg.m−3 and a maximum inlet
velocity of approximately 4m.s−1, leading to Reynolds (Re) numbers in the range 200− 4000 (for
µ between 10− 0.5). Modeling fluid-solid interaction or only fluid motion with such high Reynolds
numbers is challenging and serves as a benchmark problem [12, 17] (See Sec. C.2 for a detailed
explanation).

To study the Rayleigh-Bénard convention system, we degenerate two different PDE datasets. Firstly,
we generate Rayleigh-Bénard convection system with Ra number 12× 103 and 20× 103. We set the
temperature difference between the top (cold) and bottom (hot) boundaries to 1. We assume no-slip
boundary conditions, and to start the convection process, we also add initial temperature perturbation.
Additionally, we generate incompressible Navier-Stocks equations with Reynold number Re = 500
with cyclic boundary condition on a uniform 2D grid [36] (for details, see Appendix Sec. C.3).

Experiment Setup. For the fluid-structure interaction system, we conduct two distinct pretraining
procedures for CoDA-NO and obtain two pretrained models: GpNS−EW and GpNS. The former is pretrained
on a fluid-structure interaction dataset that combines the Navier-Stokes equation and the elastic wave
equation, denoted as GpNS−EW. The latter, GpNS, is pretrained on a fluid motion dataset governed solely
by the Navier-Stokes equation. In both scenarios, the pretraining involves utilizing 8000 snapshots of
flow and displacement fields with Re ∈ {200, 2000}.
The supervised task involves training the model to predict the system’s state at the subsequent
time step based on its current state. For the fluid-structure interaction dataset, we train an operator
GNS−EW such that GNS−EW : [ut, pt, dt] → [ut+δt, pt+δt, dt+δt], where u, p, and d are the velocity,
pressure, and mesh deformation fields (see Sec. 4). For the data with only fluid motion, we train
the operator GNS which maps between the current and next time step velocity and pressure field as
GNS : [ut, pt]→ [ut+δt, pt+δt].

The pretrained model for both datasets is fine-tuned for unseen viscosity µ = 5.0(Re = 400) with
different numbers of a few shot examples. The inlet conditions of these simulations are excluded from
the pretraining data. So, the target PDEs’ viscosity and inlet conditions are absent in the per-taining
dataset. We test the model’s adaptability on a more turbulent fluid-solid interaction dataset with
Re = 4000(µ = 0.5) by finetuning both pretrained models GpNS−EW and GpNS on each dataset.

For the Rayleigh-Bénard convention system, we pretrain a CoDA-NO model, denoted as GpNS, on the
incompressible Navier-Stokes equations using 40, 000 snapshots in a self-supervised manner. The
supervised task for this system is to train an operator, GNS−T : [ut,Tt] → [ut+δt,Tt+δt], where u
represents velocity and T represents temperature. The pretrained model GpNS is fine-tuned for the

8

Table 1. Test L2 loss for fluid dynamics (NS) and fluid-solid interaction (NS+EW) datasets with viscosity
Re = 400 and Re = 4000 for different numbers of few-shot training samples.

Model Pretrain
Dataset

Re = 400 Re = 4000

Few Shot Training Samples
5 25 100 5 25 100

Evaluation Dataset
NS NS+EW NS NS+EW NS NS+EW NS+EW NS+EW NS+EW

GINO - 0.200 0.122 0.047 0.053 0.022 0.043 0.717 0.292 0.136
DeepO - 0.686 0.482 0.259 0.198 0.107 0.107 0.889 0.545 0.259
GNN - 0.038 0.045 0.008 0.009 0.008 0.009 0.374 0.310 0.132
ViT - 0.271 0.211 0.061 0.113 0.017 0.021 0.878 0.409 0.164
U-Net - 13.33 3.579 0.565 0.842 0.141 0.203 3.256 0.563 0.292

Ours
- 0.182 0.051 0.008 0.084 0.006 0.004 0.326 0.264 0.070

NS 0.025 0.071 0.007 0.008 0.004 0.005 0.366 0.161 0.079
NS+EW 0.024 0.040 0.006 0.005 0.005 0.003 0.308 0.143 0.069

supervised task of solving Rayleigh-Bénard convection using different numbers of a few shot training
samples.

Baselines. For comparison on the supervised tasks on fluid-structure interaction system, we train
GINO [18], DeepONet [37], graph neural network (GNN) [38], vision transformer (ViT) [10], and
the Unet [39] model from scratch. The mesh points of the NS and NS+EW datasets are irregular and
change for each sample. So, to efficiently handle irregular mesh, in the branch network of DeepONet,
we use a GNN layer followed by MLPs. Also, as ViT and Unet can handle irregular mesh, we follow
the architecture of GINO and use a GNN layer to query the latent function on a uniform grid. We
then apply Unet and ViT to the uniform grid, followed by another GNN layer, to get the output at the
desired query points. For the Rayleigh-Bénard convection system, we train Unet [39] and FNO [12]
from scratch and compare them against our proposed model.

It should be noted that employing the existing models for pertaining and subsequent finetuning on
the target datasets is nontrivial due to complex geometry and the changes in the number of physical
variables between the pertaining and target datasets. We report the L2 error between the predicted
and target functions, which serves as a measure of model performance. Additional implementation
details are provided in the Appendix Sec. H.

Results. In Tab. 1, we report the performance of our model and the baselines for modeling the
fluid-structure interaction. We observe that the pretrained CoDA-NO model performs better than
the baselines. Importantly, the performance gain is higher when the number of few-shot examples
is very low. This demonstrates the sample efficiency and generalization capability of CoDA-NO to
previously unseen physical systems.

Next, when CoDA-NO is pretrained solely on the NS dataset, it shows an impressive ability to adapt
to the more challenging NS+EW dataset. Finally, when CoDA-NO is pretrained on the more intricate
NS+EW dataset, it easily adapts to the simpler NS dataset through fine-tuning. This underscores
the capability of the CoDA-NO to adjust between different PDEs with varying numbers of variables
seamlessly.

Also, we notice that pretrained CoDA-NO performs better than CoDA-NO trained from scratch,
demonstrating the effectiveness of the pretraining scheme. We also provide the energy spectra of the
predicted fluid flow by the different models in Sec. F.4 where we observe that the energy spectrum
remains closest to the ground truth.

In Tab. 2, we present the result on modeling the Rayleigh-Bénard convention. We observe that
pretrained CoDA-NO outperforms every other baseline and adapted to the new temperature variable,
T , of the Rayleigh-Bénard system. Similar to the fluid-structure interaction problem, we also observe
that the pretrained CoDA-NO outperforms CoDA-NO trained from scratch, which underlines the
effectiveness of our pretraining and adaptation mechanism.

9

Table 2. Test L2 error for Rayleigh-Bénard convection system with coupled Navier-Stokes and energy (heat)
equation with Rayleigh number Ra = 12× 103 and Ra = 20× 103 for different few shot examples.

Model Pretrain
dataset

Ra = 12× 103 Ra = 20× 103

#Few Shot Training Samples
5 10 25 5 10 25

Unet - 0.049 0.025 0.013 0.126 0.083 0.075
FNO - 0.119 0.070 0.044 0.491 0.166 0.127

Ours - 0.067 0.045 0.035 0.221 0.058 0.040
NS 0.016 0.007 0.002 0.074 0.040 0.029

Additionally, we also conduct experiments on various PDEs from the PDEBench dataset [19], where
we show superior performance and parameter efficiency (see Appendix Sec. G).

Adaptation to More Turbulent Fluid-Structure Interaction. We also test the adaptation capability
of our pretrained model on a more turbulent fluid-solid interaction scenario with viscosity µ = 0.5
with a Reynolds number of 4000. From Tab. 1, we can observe that, even though the model is
pretrained on data with lower Reynold’s number (200 − 2000), it can seamlessly adapt to more
turbulent flow and outperform baselines with a significant margin.

Ablation Studies. To demonstrate the effect of each of the proposed components, namely, codomain
attention, normalization layer, VSPE, and pertaining, we present the result of a detailed ablation study
in Appendix Sec. F.1. We observe that substituting the codomain attention with regular patch-based
attention impacts the model’s performance. In particular, removing the normalization layer prevents
the model from converging.

We also provide an ablation study on fine-tuning methods. Instead of fine-tuning all the parameters,
here, we freeze the parameters of the “Encoder" and only train the parameters of the “Predictor" and
VSPEs. This minimized the number of trainable parameters during fine-tuning. Also, in this case, we
performed significantly better than the other models (see Appendix Sec. F.5).

We also provide the results for the zero-shot super-resolution task, where we directly predict the
output function on a much denser mesh than the training mesh. Our findings show that CoDA-NO
outperforms other baselines significantly (see Appendix Sec. F.2).

Additionally, we have conducted a comparative analysis of the parameter count and computational
cost for each model, which points to the overfitting problem of the baseline when learning complex
multi-physics PDEs (see Appendix Sec. F.3).

Limitations. In general, CoDA-NO’s performance on target PDEs is influenced by the number of
training examples, and we highlight the potential for further enhancement through the integration of
physics-informed approaches.

5 Conclusion

In this work, we introduce CoDA-NO, a versatile pre-trained model architecture designed for seamless
adaptation to Partial Differential Equations (PDEs) featuring diverse variable compositions. Departing
from conventional patch-based attention modules, CoDA-NO innovatively extends the transformer to
function spaces by computing attention across co-domains. Leveraging a flexible variable encoding
scheme and a graph-based neural operator module, CoDA-NO exhibits adaptability to any target PDE,
accommodating new and previously unseen variables with arbitrary input-output geometries during
fine-tuning. Our empirical evaluations demonstrate that CoDA-NO consistently outperforms baselines
across varying amounts of training data and exhibits robustness in handling missing variables. Our
findings on complex multiphysics simulations underscore the efficacy and adaptability of CoDA-NO,
positioning it as a valuable tool for addressing challenges in machine learning for PDEs.

10

Acknowledgments

A. Anandkumar is supported in part by Bren endowed chair, ONR (MURI grant N00014-18-12624),
and by the AI2050 senior fellow program at Schmidt Sciences. We thank David Pitt for his support in
adding our code to the neuraloperator library, facilitating broader use and accessibility.

References
[1] Gilbert Strang. Computational science and engineering. Optimization, 2007. 1

[2] Gege Wen, Zongyi Li, Qirui Long, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M
Benson. Real-time high-resolution co 2 geological storage prediction using nested fourier neural
operators. Energy & Environmental Science, 16(4):1732–1741, 2023. 1

[3] Burigede Liu, Nikola Kovachki, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar,
Andrew M Stuart, and Kaushik Bhattacharya. A learning-based multiscale method and its
application to inelastic impact problems. Journal of the Mechanics and Physics of Solids, 2022.
1

[4] Geoffrey K Vallis. Atmospheric and oceanic fluid dynamics. Cambridge University Press, 2017.
1

[5] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings
of the IEEE/CVF international conference on computer vision, 2021. 2

[6] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning.
PMLR, 2021. 2, 4

[7] Shashank Subramanian, Peter Harrington, Kurt Keutzer, Wahid Bhimji, Dmitriy Morozov,
Michael Mahoney, and Amir Gholami. Towards foundation models for scientific machine
learning: Characterizing scaling and transfer behavior. arXiv preprint arXiv:2306.00258, 2023.
2, 4

[8] Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles
Cranmer, Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois
Lanusse, et al. Multiple physics pretraining for physical surrogate models. arXiv preprint
arXiv:2310.02994, 2023. 4, 22

[9] Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima
Anandkumar, Jian Song, and Jun Zhu. Dpot: Auto-regressive denoising operator transformer
for large-scale pde pre-training. arXiv preprint arXiv:2403.03542, 2024. 2, 19, 22

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. In International
Conference on Learning Representations, 2021. 2, 9

[11] Bowen Zhang, Shuyang Gu, Bo Zhang, Jianmin Bao, Dong Chen, Fang Wen, Yong Wang,
and Baining Guo. Styleswin: Transformer-based gan for high-resolution image generation. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022. 2,
4

[12] Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, Anima Anandkumar, et al. Fourier neural operator for parametric partial differential
equations. In Proceedings of the International Conference on Learning Representations (ICLR),
2021. 2, 8, 9, 22

[13] Kamyar Azzizadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiaffini, Jean Kossaifi,
and Anima Anandkumar. Neural operators for accelerating scientific simulations and design.
arXiv preprint arXiv:2309.15325, 2023. 2

11

https://github.com/neuraloperator/neuraloperator

[14] Jean Kossaifi, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, and Anima Anandkumar.
Multi-grid tensorized fourier neural operator for high resolution PDEs, 2023. 2

[15] Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik
Kashinath, and Anima Anandkumar. Spherical fourier neural operators: Learning stable dy-
namics on the sphere. In Proceedings of the International Conference on Machine Learning
(ICML), 2023. 2

[16] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differen-
tial equations. arXiv preprint arXiv:2010.08895, 2020. 2, 4, 14

[17] Stefan Turek and Jaroslav Hron. Proposal for numerical benchmarking of fluid-structure
interaction between an elastic object and laminar incompressible flow. Springer, 2006. 3, 7, 8,
16

[18] Zongyi Li, Nikola Borislavov Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Prakash
Otta, Mohammad Amin Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli,
and Anima Anandkumar. Geometry-informed neural operator for large-scale 3d pdes. arXiv
preprint arXiv:2309.00583, 2023. 3, 9

[19] Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani,
Dirk Pflüger, and Mathias Niepert. PDEBENCH: An extensive benchmark for scientific machine
learning, 2023. 3, 7, 10, 19, 22

[20] Makoto Takamoto, Francesco Alesiani, and Mathias Niepert. Learning neural pde solvers with
parameter-guided channel attention. arXiv preprint arXiv:2304.14118, 2023. 4

[21] Zijie Li, Dule Shu, and Amir Barati Farimani. Scalable transformer for pde surrogate modeling.
arXiv preprint arXiv:2305.17560, 2023. 4

[22] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2022. 4

[23] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

[24] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning. PMLR, 2020. 4

[25] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 2023. 4

[26] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton,
Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al.
Photorealistic text-to-image diffusion models with deep language understanding. Advances in
Neural Information Processing Systems, 2022.

[27] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF international conference on computer vision, 2021. 4

[28] Bonan Xu, Yuanye Zhou, and Xin Bian. Self-supervised learning based on transformer for flow
reconstruction and prediction. arXiv preprint arXiv:2311.15232, 2023. 4

[29] Grégoire Mialon, Quentin Garrido, Hannah Lawrence, Danyal Rehman, Yann LeCun, and
Bobak Kiani. Self-supervised learning with lie symmetries for partial differential equations. In
ICLR 2023 Workshop on Physics for Machine Learning, 2023. 4

[30] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016. 6

12

[31] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning. PMLR,
2015. 6

[32] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[33] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference
on computer vision (ECCV), 2018. 6

[34] Zongyi Li, Nikola Borislavov Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Prakash
Otta, Mohammad Amin Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzade-
nesheli, et al. Geometry-informed neural operator for large-scale 3d pdes. arXiv preprint
arXiv:2309.00583, 2023. 7

[35] Aslak W Bergersen, Andreas Slyngstad, Sebastian Gjertsen, Alban Souche, and Kristian Valen-
Sendstad. turtlefsi: A robust and monolithic fenics-based fluid-structure interaction solver.
Journal of Open Source Software, 2020. 8

[36] Valentin Duruisseaux, Miguel Liu-Schiaffini, Julius Berner, and Anima Anandkumar. Towards
enforcing hard physics constraints in operator learning frameworks. ICML 2024 AI for Science
Workshop, 2024. 8

[37] Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of operators.
arXiv preprint arXiv:1910.03193, 2019. 9

[38] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction
networks for learning about objects, relations and physics. Advances in neural information
processing systems, 2016. 9

[39] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer-Assisted Inter-
vention. Springer, 2015. 9

[40] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
spaces. arXiv preprint arXiv:2108.08481, 2021. 14

[41] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial
differential equations. arXiv preprint arXiv:2003.03485, 2020. 14

[42] Dick Kachuma and Ian Sobey. Linear instability of asymmetric poiseuille flows. 2007. 15

[43] Sukhendu Ghosh. Relative effects of asymmetry and wall slip on the stability of plane channel
flow. Fluids, 2017. 15

[44] Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution of differential equations
by the finite element method: The FEniCS book. Springer Science & Business Media, 2012. 16

[45] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi,
and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communi-
cations of the ACM. 23

13

Appendix

The appendix is organized as follows:

• In Sec. A, we provide a brief introduction of Neural Operators.
• In Sec. B, we describe regular attention mechanism.
• In Sec. C, we describe the detailed regarding the dataset generation.
• In Sec. D, we provide a comparison between the CoDA-NO and FNO architecture.
• In Sec. E, we provide the visualization of ground truth vs predicted solution function by

CoDA-NO.
• In Sec. F, we provide the ablation studies and additional evaluation metrics.
• In Sec. G, we provide the results of our experiment on PDEs from the PDEBench dataset.
• In Sec. H, we provide additional implementation details.

A Neural Operators

Neural Operators are a class of deep learning architectures designed to learn maps between infinite-
dimensional function spaces [40]. A Neural Operator seeks to approximate an operator G that maps
an input function a ∈ A to its corresponding output function u ∈ U by building a parametric map Gϕ :
A → U . The typical architecture of a Neural Operator can be described as Gϕ = P ◦ TL ◦ . . . T1 ◦ L.
Here, L : a→ w0 and P : wL → u are lifting and pointwise projection operators, respectively. The
action of any pointwise operatorH : {f : D → Rdf } → {g : D → Rdg} can be defined as

H[f](x) = hθ(f(x)), (13)

where hθ : Rdf → Rdg is any function with parameters θ. The integral operator Tl : wl−1 → wl

performs a kernel integration over the input function wl−1 as

Tl[wl−1](x) =

∫
Dl−1

kl(x, y)wl−1(y) dy. (14)

Here, Dl−1 is the domain of the function wl−1. In the case of Fourier Neural operators (FNO) [16], a
convolution kernel, i.e., kl(x, y) = kl(x − y) was used. By the convolution theorem, this enables
the representation of an integral operator as a pointwise multiplication of the Fourier coefficients as
follows wl = F−1(F(kl)⊙F(wl−1)).

For the Graph neural operator (GNO) [41], a small neighborhood Br(x) ∩ Dl−1 around the point x
is considered instead of integrating over the whole domain Dl−1, such that Eq. (2) changes to

wl(x) =

∫
Br(x)∩Dl−1

kl(x, y)wl−1(y) dy. (15)

Given a set of evaluations of the function wl−1 on points {yi}ni=1 ⊂ Dl−1, the kernel integral can be
approximated by

wl(x) ≈
∑

yi∈Br(x)

kl(x, yi)wl−1(yi)qi, (16)

where qi ∈ R are suitable quadrature weights [40]. The discretized kernel integral can be viewed as
a message passing on graphs, where the neighborhood of each point x consists of all points within
radius r.

B Attention mechanism for finite-dimensional vectors

Given three sets of vectors, so-called queries {qi}Nq

i=1, keys {ki}Nk
i=1, and values {vi}Nv

i=1 with
Nk = Nv and matching dimensions of queries and keys, attention mechanism calculates weighted
sums of the value vectors. Specifically, the set of output vectors {oi}Nq

i=1 can be expressed that

oi = ai[v1, . . .vNv
]⊤, i = 1, . . . Nq, (17)

14

where ai = SoftMax[⟨qi,k1⟩
τ , . . . ,

⟨qi,kNk
⟩

τ] and τ is the temperature term. For the self-attention
mechanism, the key, query, and value vectors are calculated from some input sequence {z}Li=1 using
the key, query, and value matrices K,Q, and V as

qi = Qzi, ki = Kzi, vi = Vzi.

C Dataset Description

ux at t ux at t + δt

Figure 3. Visualization of horizontal velocity ux at t and t+ δt time step.

C.1 Fluid-Structure Interaction System

Here, we provide the details on generating the fluid-structure interaction dataset involving Navier-
Stokes and Elastic wave equations.

Fluid-structure interaction model. Under the Kirchoff St-Venant model, the Cauchy stress tensor
σs verifies

σs =
1

J
F(λs(tr(E))I+ 2µsE)FT (18)

where λs and µs are the Lame coefficients, and

E =
1

2
(FFT − I).

Inlet Boundary Condition. Time-dependent inlet boundary conditions consist of 4th order poly-
nomials velocity profiles which vanish at the channel walls [42, 43]. The inlet conditions are given
by

uI
c1,c2(y, t) = v(t) · y(y −H)

(
y − c1

H
2

) (
y − c2

H
2

)
H(1− c1)(1− c2)

. (19)

Here v is the ramp function defined as

v(t) =

{
70 ·

(
1− cos

(
πt
2

))
if 0 ≤ t < 2

140 if t ≥ 2
(20)

and (c1, c2) ∈ I, where

I =
{
(a, b) ∈ {−6,−4,−2, 0, 2, 4, 6}2 | a ≤ b

}
(21)

are enforced at the inlet x = 0.

Geometric setup, boundary, and initial conditions. In the considered setup (see also Figure 3),
a fluid flows past a fixed cylinder of radius R = 0.05 centered at (xc, yc) = (0.2, 0.2) in a two-
dimensional channel of length L = 2.5 and width H = 0.41. A deformable elastic strap of length
ℓ = 0.35 and height h = 0.02 is attached to the back of the cylinder. Note that, in the test cases
considering fluid motion exclusively, the elastic strap is assumed to be rigid.

In the case of the fluid-structure interaction, the interaction conditions arise from the mechanical
equilibrium at the boundaries of the strap, which are given by

σf · n = σs · n

u =
∂d

∂t

15

where n denotes a unit normal vector to the fluid-solid interface. No-slip boundary conditions are
imposed on the fluid velocity at the top (resp .bottom) boundaries of the channel at y = 0 (resp.
y = H), as well as on the boundaries of the cylinder and the elastic strap. Outflow boundary
conditions are imposed at x = 2.5 by enforcing the values p = 0 for the pressure.

The initial conditions
(u, p, d) = (0, 0, 0)

where the displacement d = 0 corresponds to a perfectly horizontal elastic strap and is imposed at
time t = 0.

Details regarding the data set generation. The TurtleFSI package provides a monolithic solver for
the fluid-structure interaction test case, that is, combining the equations describing the solid and fluid
evolution into one coupled system based on an Arbitrary Eulerian-Lagrangian (ALE) formulation of
the problem and developed on the FEniCS computing environment [44].

The initial conditions are expressed at set X = XS ∪ XF of mesh points, corresponding to the
union of the solid and fluid domains. In the ALE formulation, at each snapshot 0 ≤ t ≤ tM of the
simulation, the solution is given at a set of mesh points Xt = X + dt, where dt denotes the mesh
displacement. In particular, the snapshots ut (resp. pt) correspond to numerical approximations of
the velocity (resp. the pressure) at the mesh points Xt. Notably, while equation (10) governs the
deformation field in the solid domain Ωs

t , the displacements dt are obtained through an extension of
the deformation field to the fluid domain Ωf

t via a biharmonic extrapolation.

In all the cases considered, the values ρf = 1.0 × 103, ρs = 1.0 × 103, λs = 4.0 × 106 and
µs = 2.0× 106 were used. The simulations were performed using a constant time step δt = 0.01.

C.2 Justification of Experiment Design

For our setup, the fluid considered is water, with a density of 1000 kg.m-3 and a maximum inlet
velocity of approximately 4m.s−1, leading to Reynolds numbers in the range 200−2000 (µ = 10−1)
for our experiments. Only when the flow becomes turbulent can ample movements of the elastic strap
(Fig. 4) be observed in the fluid-structure interaction case. Modeling fluid-solid interaction or only
fluid motion with such a Reynolds number is quite challenging and used as a benchmark problem
[17].

Modeling fluid-solid interaction with an even higher Reynolds number requires a very high computa-
tional cost. Because TurtleFSI’s (used in this study) fluid solver, including its’ fluid-structure interac-
tion solver, uses a direct numerical simulation (DNS) of fluid dynamics and does not employ any
turbulence models. This means that in order to accurately capture the small-scale energy-dissipating
vortices that form when the flow interacts with the cylinder and strap at high Reynolds numbers, a
very fine spatial domain discretization is required. Furthermore, an extremely small time step (∆t) is
necessary to ensure numerical stability. For these reasons, the contribution [17], which introduced the
benchmark fluid-structure interaction problem studied here, only deals with flows that have Reynolds
numbers less than or equal to 200.

It’s crucial to highlight a significant disparity between the pre-training and finetuning stages, par-
ticularly concerning examples with viscosities 1 and 10. This disparity arises from the utilization
of distinct inlet boundary conditions during the pre-training and finetuning phases. Consequently,
even though the viscosities align with the pre-training dataset during finetuning on PDEs featuring
µ ∈ {1, 10}, the model faces formidable challenges in adapting due to variations in inlet conditions.
The finetuning dataset with viscosity=5 has different viscosity as well as intel conditions compared to
the pre-training dataset, serving as an out-of-distribution PDE setup.

C.3 Generating Rayleigh-Bénard dataset

The initial temperature field is initialized with a linear gradient between the hot bottom boundary,
Tbottom = 1, and the cold top boundary, Ttop = 0. To induce instability and initiate convection,
temperature perturbations are introduced in localized regions of the domain. A region centered at(

Lx

4 ,
Ly

4

)
is perturbed to T = 1, while a region near the middle of the domain, centered at

(
Lx

2 ,
Ly

2

)
,

16

is set to T = −1. These perturbations break the symmetry and help to trigger the onset of convection
patterns.

For the incompressible Navier-Stocks equation, we consider two-dimensional Kolmogorov flow (a
form of the Navier-Stokes equations) for a viscous, incompressible fluid,

∂u

∂t
= −u · ∇u−∇p+ 1

Re
∆u+ sin(ny)x̂, (22)

with the incompressibility constraint∇·u = 0 on the domain [0, 2π]2× (0,∞). The initial condition
is given as u(·, 0) = u0, where u denotes the velocity, p the pressure, and Re is the Reynolds number
which we set to 500 for our simulation.

D Comparison with FNO

We would like to bring out a distinction. In FNO, the mixing of channels happens in the Fourier
space in the spectral layer through the linear transform R applied to the Fourier coefficients. This
defines a weighting of some sort on the input channels and how they are mixed. The mixing is global
since the Fourier transform is a global operation. In CoDA-NO, however, the mixing of channels
happens in the spatial domain through the attention mechanism as well as in the Fourier space
because Kh,Qh,Vh,M, and I are all implemented as FNO’s. The attention weights determine
how the channels are mixed, allowing for a more flexible and input-dependent mixing. This added
flexibility enables CoDA-NO to better capture complex interactions and dependencies between
different physical variables, especially in multiphysics problems where the relationships between
variables can be intricate and vary depending on the input conditions. This also implies that this is more
efficient as it can seamlessly incorporate additional or fewer variables during fine-tuning, avoiding
retraining the whole model from scratch like FNO would have to, which can be computationally
expensive.

E Visualization of Results

0.0 0.5 1.0 1.5 2.0 2.50.0

0.2

0.4

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(a) Ground Truth

0.0 0.5 1.0 1.5 2.0 2.50.0

0.2

0.4

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

(b) CoDA-NO Prediction

0.0 0.5 1.0 1.5 2.0 2.50.0

0.2

0.4

0.25
0.20
0.15
0.10
0.05

0.00
0.05
0.10
0.15

(c) Error

Figure 4. Visualization of CoDA-NO prediction. We plot the horizontal velocity ux for the fluid-structure
interaction problem.

17

F Additional Results

F.1 Ablation of Proposed components

Table 3 shows that replacing the codomain attention with a regular attention mechanism or the
removal of any of these designed components significantly impacts the model’s performance. We
also observe that our proposed normalization technique is crucial for effective training.

Table 3. Evaluating L2 loss across different models using various pre-training datasets and varying
numbers of few-shot training samples. "*" indicates configurations that did not converge due to excessive
training error.

CoDA-NO VSPE Norm Pretrain
Dataset

Few Shot Training Samples
5 25 100

NS NS+EW NS NS+EW NS NS+EW

✗ ✗ ✗ ✗ 0.271 0.211 0.061 0.113 0.017 0.020
✓ ✗ ✗ ✗ 0.182 0.051 0.008 0.084 0.006 0.004
✓ ✗ ✓ NS 0.049 0.079 0.009 0.0132 0.004 0.009
✓ ✗ ✓ NS EW 0.045 0.057 0.010 0.011 0.008 0.004
✓ ✓ ✗ NS * * 0.023 * 0.008 0.006
✓ ✓ ✗ NS EW 0.057 0.232 0.012 0.052 0.006 0.006
✓ ✓ ✓ NS 0.025 0.071 0.007 0.008 0.004 0.005
✓ ✓ ✓ NS EW 0.024 0.040 0.006 0.005 0.005 0.003

F.2 Zero-Shot Super Resolution Test

Here, we present the results of our zero-shot super-resolution models (see Tab. 4) on complex fluid-
solid interaction problems. We train the models with 1317 mesh points on the domain (xy plain).
However, during inference, the solution function is queried directly on a denser and non-uniform
target mesh consisting of 2193 points.

We observe that the zero-shot super-resolution performance of CoDA-No is significantly better than
the other baselines.

Table 4. Zero Shot Super Resolution Performance on Fluid-Solid (NS-EW) Interaction Problem

Model Pretrain
Dataset

Fluid Viscocities
µ = 5 µ = 1 µ = 10

U-Net - 0.144 0.267 0.216
Vit - 0.052 0.175 0.046
GINO - 0.069 0.103 0.0711
DeepO - 0.113 0.107 0.357
GNN - 0.223 0.211 0.247

CoDA-NO NS-ES 0.041 0.063 0.048
CoDA-NO NS 0.032 0.049 0.035

F.3 Parameter Count and Computational Cost.

Now the present the number of parameters and training/interference time taken by the proposed
model along with different baselines used in the study in Tab. 5. It might seem that models are not
compared fairly, as the CoDA-NO has a higher parameter count. However, here, we test the models
on a few shot learning problems. Increasing the baselines’ parameter count worsens the overfitting
problem.

18

To demonstrate this fact, we perform experiments on a fluid-solid interaction dataset with an increased
parameter count. We will observe that increasing the parameter count almost always negatively
impacts the performance, especially for very few hot learning scenarios (see Tab. 6).

We also note that the additional model parameters and computation are required to learn rich
inter-variable dependencies during pre-training and generalize from single to multi-physics dur-
ing finetuning. Furthermore, the zero-shot super-resolution capability of CoDA-NO is discussed
in Sec. F.2. CoDA-NO is a justified choice due to its seamless adaptation to various PDEs, remarkable
performance gap, and zero-shot super-resolution capability despite having a little more computational
overhead.

Table 5. Comparison of Inference Time, Training Time (in sec.) per sample, and Number of Parameters
for different models.

Models GNN GINO DeepO ViT Unet CoDA-NO

Inference Time 0.012 0.012 0.006 0.071 0.024 0.440
Training Time 0.136 0.136 0.131 0.273 0.268 1.250
Parameter ×106 0.6 60 6 27 30 43

Table 6. Overfitting of Baselines with Higher Parameters (in ×1e6) on NS-EW dataset

Models # Parameter # Train = 5 # Train=25 # Train=100
(Used/High) (Used / High) (Used/ High) (Used / High)

GINO 60/200 0.122 / 0.342 0.053 / 0.066 0.043 / 0.036
DeepO 6 / 25 0.482 / 0.495 0.198 / 0.303 0.107 / 0.083
GNN 0.6/7 0.045 / 0.268 0.009 / 0.031 0.009 / 0.061
ViT 27/100 0.211 / 0.266 0.113 / 0.125 0.020 / 0.022

U-net 30/48 3.579 / 9.462 0.842 / 3.957 0.203 / 0.412

F.4 Energy Spectrum

Here, we show the energy spectrum for the NS-EW dataset for µ = 5 calculated from the test set
(see Fig. 5). All models are trained on 100 training examples. Due to numerical error, the measured
spectral energy does not decay smoothly in the high-frequency region. However, our models’ energy
spectrum remains closest to the ground truth.

F.5 Ablation on Finetuning Technique

Here, in Tab. 7, Tab. 9, and Tab. 8, we present some additional ablation studies on our model’s
performance when we keeping the weight of the “Encoder" frozen during supervised fine-tuning.

F.6 Error bar

G PDEBench experiments

We finally compare CoDA-NO, FNO, and the recently proposed DPOT [9] on PDEBench [19].
DPOT (Auto-Regressive Denoising Operator Transformer for Large-Scale PDE Pre-Training) is a
large-scale pre-training approach for learning PDE representations. It utilizes an auto-regressive
denoising strategy and a Fourier transformer architecture for efficient pre-training on diverse PDE
datasets.

To assess the performance of these models on a diverse set of PDEs, we conduct experiments on three
single-physics datasets from the PDEBench: Shallow Water Equations (SWE), Diffusion Equations
(DIFF), and Navier-Stokes Equations (NS). We follow the same pretraining and finetuning procedure
for both models’ datasets. And we evaluate the models on the following two tasks

• Reconstructive task: The models are trained on the respective datasets during pretraining
to use the self-supervised learning objective to reconstruct the masked input. The error

19

Figure 5. Energy Spectrum of the Velocity Field of the fluid on the fluid-solid interaction dataset.

Table 7. Test errors (L2 loss) for fluid dynamics (NS) and fluid-solid interaction (NS+EW) datasets with
viscosity µ = 1.0 for different numbers of few-shot training samples. The pre-training is done with 8000
samples taken from NS and NS+EW datasets with viscosities µ ∈ {1.0, 10.0}.

Model Pretrain
Dataset

Few Shot Training Samples
5 10 50 100 250

NS NS+EW NS NS+EW NS NS+EW NS NS+EW NS NS+EW

Ours NS 0.0493 0.2645 0.0237 0.1955 0.0092 0.0378 0.0103 0.0604 0.0085 0.0294
NS+EW 0.0416 0.2371 0.0221 0.1786 0.0105 0.0484 0.0110 0.0380 0.0089 0.0273

CoDA-NO - 0.1279 0.2435 0.0225 0.2282 0.0117 0.0745 0.0115 0.0219 0.0091 0.0148
GINO - 0.3337 0.2615 0.3189 0.1817 0.0596 0.0667 0.0349 0.0636 0.0209 0.0308
GNN - 0.0265 0.1800 0.0222 0.1799 0.0068 0.0867 0.0113 0.0539 0.0050 0.0193
ViT - 0.2738 0.5087 0.1519 0.4146 0.0473 0.1119 0.0407 0.1106 0.0119 0.0381
U-Net - 25.33 1.434 4.007 4.320 0.1495 0.6653 0.07723 0.1821 0.0934 0.1651
DeepONet - 1.262 0.8186 0.6485 0.4937 0.2576 0.3198 0.1992 0.3399 0.1385 0.1916

achieved through this is called the “Reconstruction error". This allows the models to learn
meaningful representations of the underlying physical systems.

20

Table 8. Test errors (L2 loss) for fluid dynamics (NS) and fluid-solid interaction (NS+EW) datasets with
viscosity µ = 5.0 for different numbers of few-shot training samples. The pre-training is done with 8000
samples taken from NS and NS+EW datasets with viscosities µ ∈ {1.0, 10.0}.

Model Pretrain
Dataset

Few Shot Training Samples
5 10 50 100 250

NS NS+EW NS NS+EW NS NS+EW NS NS+EW NS NS+EW

Ours NS 0.0190 0.1597 0.0141 0.0220 0.0043 0.0042 0.0054 0.0053 0.0033 0.0025
NS+EW 0.0201 0.1077 0.0157 0.0153 0.0053 0.0053 0.0044 0.0030 0.0037 0.0022

CoDA-NO - 0.1820 0.0513 0.0107 0.0199 0.0063 0.0066 0.0062 0.0045 0.0041 0.0029
GINO - 0.2004 0.1222 0.2245 0.0753 0.0359 0.0364 0.0222 0.0438 0.0163 0.0190
GNN - 0.0390 0.0460 0.0280 0.0294 0.0045 0.0123 0.0086 0.0094 0.0064 0.0033
ViT - 0.2719 0.2113 0.1889 0.1561 0.0271 0.0474 0.0173 0.0207 0.0077 0.0122
U-Net - 13.3370 3.5790 1.1540 2.1340 0.1608 0.3178 0.1418 0.2035 0.1317 0.1180
DeepONet - 0.6863 0.4821 0.6720 0.2945 0.2019 0.2024 0.1076 0.1070 0.0731 0.1085

Table 9. Test errors (L2 loss) for fluid dynamics (NS) and fluid-solid interaction (NS+EW) datasets with
viscosity µ = 10.0 for different numbers of few-shot training samples. The pre-training is done with 8000
samples taken from NS and NS+EW datasets with viscosities µ ∈ {1.0, 10.0}.

Model Pretrain
Dataset

Few Shot Training Samples
5 10 50 100 250

NS NS+EW NS NS+EW NS NS+EW NS NS+EW NS NS+EW

Ours NS 0.0186 0.1203 0.0105 0.0207 0.00327 0.00444 0.00391 0.00412 0.00229 0.00215
NS+EW 0.0171 0.0925 0.0109 0.0130 0.00383 0.00360 0.00303 0.00232 0.00225 0.00133

CoDA-NO - 0.0859 0.0618 0.0115 0.0166 0.00494 0.00763 0.00660 0.00330 0.00374 0.00195
GINO - 0.2316 0.1560 0.1679 0.0582 0.04122 0.03327 0.03074 0.0395 0.01389 0.01139
GNN - 0.0715 0.0448 0.0547 0.0179 0.00789 0.00494 0.00319 0.0148 0.00547 0.00229
ViT - 0.4001 0.2201 0.3388 0.1967 0.06215 0.05700 0.04299 0.01867 0.00770 0.00903
U-Net - 1.2550 0.6995 0.3255 0.9148 0.3156 0.2095 0.1889 0.2085 0.1732 0.3132
DeepONet - 0.7158 0.3794 0.5515 0.2533 0.1164 0.1337 0.1027 0.07814 0.08359 0.05697

Table 10. Error bar representing standard deviation over three runs with different number of few shot example
for NS+EW dataset for Re = 400

Models Pre-training # Few Shot Training Samples
Dataset 5 25 100

GINO 0.121 ± 0.023 0.0530 ± 0.0053 0.0345±0.0086
DeepO 0.534 ± 0.005 0.1920 ± 0.0072 0.1384±0.0293
GNN 0.121 ± 0.136 0.0304 ± 0.0210 0.0200±0.0120
ViT 0.276 ± 0.093 0.0837 ± 0.0284 0.0208±0.0044
U-net 1.770 ± 1.636 0.8368 ± 0.3503 0.5814±0.5680

0.059 ± 0.017 0.0096 ± 0.0010 0.0038±0.0003
Ours NS 0.068 ± 0.055 0.0078 ± 0.0002 0.0036±0.0005

NS-EW 0.044 ± 0.041 0.0057 ± 0.0012 0.0034±0.0006

• Predictive task: Subsequently, we finetune the pre-trained models using a supervised
learning objective, where the goal is to minimize the “Prediction error" by accurately
predicting the next 5 timesteps given the input history. We try to learn the solution operator
that maps the state of the system from time t ∈ [0, T] to the state at time t ∈ [T, T + 5],
effectively predicting the next 5 timesteps given the history up to time T .

Both models were pre-trained and fine-tuned on this dataset for 35 epochs.

21

Table 11. Error bar representing standard deviation over three runs with different number of few shot example
for NS dataset for Re = 400

Models Pre-training # Few Shot Training Samples
Dataset 5 25 100

GINO 0.143 ± 0.0231 0.0371 ± 0.0044 0.0330 ± 0.0105
DeepO 0.621 ± 0.2417 0.3162 ± 0.1146 0.1978 ± 0.0345
GNN 0.021 ± 0.0124 0.0046 ± 0.0012 0.0051 ± 0.0024
ViT 0.196 ± 0.0326 0.0409 ± 0.0057 0.0302 ± 0.0160
U-net 7.241 ± 4.3200 0.6568 ± 0.3635 0.2025 ± 0.1223

0.0612 ± 0.0364 0.0094 ± 0.0006 0.0045 ± 0.0006
Ours NS 0.0276 ± 0.0032 0.0057 ± 0.0005 0.0039 ± 0.0001

NS-EW 0.0273 ± 0.0054 0.0056 ± 0.0005 0.0040 ± 0.0001

Table 12. Test errors(L2 error) for CoDA-NO vs FNO on 2D datasets from PDEBench. SWE indicates shallow
water equations, DIFF indicates the diffusion equation. NS+DIFF+SWE means pretraining and fine-tuning on a
combined Navier-Stokes, diffusion, and shallow water equations dataset.

Model Dataset Test Error

Prediction Error Reconstruction Error

CoDA-NO SWE 0.04072 0.00460
FNO 0.04631 0.03262

CoDA-NO DIFF 0.00810 0.00041
FNO 0.01415 0.01894

CoDA-NO NS+DIFF+SWE 0.00302 0.00006
FNO 0.00118 0.00287

Table 12 presents CoDA-NO and FNO [12] test errors on the single-physics PDEs datasets sourced
from PDEBench [19]. For the single-physics experiments, CoDA-NO consistently outperforms
FNO, improving generalization (predictive error) up to 43% over FNO, indicating its ability to
capture complex dynamics and dependencies within these systems. We report additional details
and experimental results in Sec. G comparing FNO, DPOT [9] and CoDA-NO where CoDA-NO
demonstrates superior performance and parameter efficiency. It is worth noting that DPOT and MPP
[8] are significantly bigger models but can also handle a larger set of PDEs.

In addition to the single-physics experiments, we also explore the potential of joint pretraining and
finetuning across multiple PDE systems. We create a combined dataset by merging the SWE, DIFF,
and NS datasets, even though these PDEs do not share any common physical variables or governing
equations. Both FNO and CoDA-NO were pre-trained and fine-tuned on this dataset for 35 epochs.

DPOT, with its large-scale pre-training approach, demonstrates strong performance on the SWE and
DIFF datasets. Even with a 500 million parameter model (DPOT-L-500), DPOT achieves impressive
results, reducing the test error to 0.0017 on SWE and 0.0073 on DIFF. It is also important to note
that DPOT is larger as it was pretrained on 12 different datasets, and hence the size is justified.
However, it is noteworthy that CoDA-NO, with only 11 million parameters, comes very close to
achieving similar generalization performance. CoDA-NO’s test error on DIFF (0.0081) is comparable
to DPOT’s performance, as shown in table 15, despite having significantly fewer parameters and
fewer finetuning epochs. However, on the other hand, we see that CoDA-NO doesn’t do well on the
SWE dataset as shown in table 14; we assume that the case would be the fact that we would need to
finetune for more epochs to achieve better results. The SWE task is also a harder dataset; increasing
the model complexity and pretraining epochs would help get better results.

It is important to highlight that DPOT was pre-trained on 12 datasets for 1000 epochs, while CoDA-
NO was pre-trained and fine-tuned on a single dataset for 35 epochs. Despite this difference in
pre-training data and epochs, CoDA-NO still achieves competitive results compared to DPOT’s
200/500 epochs of fine-tuning.

These results suggest that when there is shared physics between the pre-training and fine-tuning
datasets, CoDA-NO can effectively leverage this commonality to achieve strong generalization

22

Table 13. Comparison of model parameter sizes for CoDA-NO, FNO, and DPOT. DPOT-FT stands for the
Finetuning model used, whereas -T stands for tiny, -S stands for small, -M stands for medium, and -L stands for
Large. The pretrained model sizes are present in the original paper but are around the same parameter sizes as
the fine-tuned models.

Model Model Parameters

CoDA-NO 11M
FNO 1.9B
DPOT-FT-T 7M
DPOT-FT-S 30M
DPOT-FT-M 100M
DPOT-FT-L 500M

Table 14. Test errors for CoDA-NO vs DPOT on 2D datasets from PDEBench. SWE indicates shallow
water equations data. ‘12DATA’ represents the 12PDE PDE datasets DPOT is pretrained on. The “-200” and
“-500” suffixes denote fine-tuning on each subset for 200 and 500 epochs, respectively, which is directly taken
from the DPOT paper. All of this was fine-tuned on SWE data.

Model Pretrained Dataset Predcition Error

CoDA-NO SWE 0.0407
FNO SWE 0.0463
T-200 12DATA 0.0028
S-200 12DATA 0.0022
M-200 12DATA 0.0021
L-200 12DATA 0.0019
T-500 12DATA 0.0024
S-500 12DATA 0.0023
M-500 12DATA 0.0022
L-500 12DATA 0.0017

performance. However, when there is no shared physics, as in the case of the combined dataset,
CoDA-NO’s performance may not be as remarkable.

Table 13 compares the model sizes of CoDA-NO, FNO, and DPOT. CoDA-NO’s model size of 11
million parameters is significantly smaller than FNO’s 1.9 billion parameters and DPOT’s largest
model size of 500 million parameters. This highlights CoDA-NO’s parameter efficiency and its ability
to achieve competitive performance with a more compact model.

In summary, these experiments on the PDEBench datasets demonstrate the effectiveness of CoDA-
NO in learning and generalizing to different PDE systems. CoDA-NO’s performance, especially
considering its smaller model size and shorter pre-training, showcases its potential as a foundation
model for scientific machine learning. The ability to achieve competitive results with DPOT, de-
spite the differences in pre-training data and epochs, further highlights CoDA-NO’s efficiency and
generalization capabilities.

G.1 Ablation on the Size of FNO

In Tab. 16, we present the performance of FNO with a different number of parameters along with the
performance of CoDA-NO.

H Implementation Details

The variable encoders are implemented using a multi-layer perceptron mapping the position x ∈ D
to the embedding vector. Following transformers and NeRF [45] model, we use positional encoding

23

Table 15. Test errors for CoDA-NO vs DPOT on 2D datasets from PDEBench. DIFF indicates the diffusion
equation data. ‘12DATA’ represents the 12PDE datasets DPOT was trained on. The “-200” and “-500” suffixes
denote fine-tuning on each subset for 200 and 500 epochs, respectively, which is directly taken from the DPOT
paper. All of this was fine-tuned on DIFF data.

Model Pretrained Dataset Test error

CoDA-NO DIFF 0.0081
FNO DIFF 0.0141
T-200 12DATA 0.0194
S-200 12DATA 0.0171
M-200 12DATA 0.0142
L-200 12DATA 0.0158
T-500 12DATA 0.0148
S-500 12DATA 0.0129
M-500 12DATA 0.0103
L-500 12DATA 0.0073

Table 16. Error in L2 norm for models in both the Shallow Water Equation and Diffusion-Reaction experiments.
The number of parameters is reported alongside the L2 errors for both tasks.

Model # Parameter L2 (SWE) L2 (DIFF)
CoDA-NO 11M 0.0407 0.0081
FNO 1.9B 0.0463 0.0141
FNO 485M 0.0424 0.0145
FNO 120M 0.0410 0.0153
FNO 11M 0.0491 0.0268
FNO 1M 0.2355 0.2085

instead of raw coordinates. The Encoder and Reconstructor modules use three stacked CoDA-NO
layers. The Predictor modules use one layer of CoDA-NO.

For every training sample, one of the following two masking choices is selected with equal probability

• 50% of the mesh points of 60% of variables are masked.
• 30% of the variables are masked out completely.

In order to apply masking on an irregular mesh, we select a point at random from the mesh. Following
this, we identify the neighboring points within a fixed distance from the selected point and set their
values to zero. This process is continued until we have masked out a predetermined portion of all
mesh points.

24

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All the claims are justified either in the theoretical aspect of the paper or in the
experiments. We carefully make the distinctions between what is a heuristic versus what is
being proposed based on the given assumptions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See line 321.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

25

Answer: [Yes]

Justification: Yes, the complete and correct proof is provided in the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the details are either in the main paper or the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

26

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All the details are either in the main paper or the appendix.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the details are either in the main paper or the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer:[Yes]
Justification: Error bars are reported for the main result.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: Provided in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We study a fundamental framework for the downsampling of signals, which is
foundation research and has limited negative societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

28

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper has no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The resources used in the work are cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

29

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Code will be open-sourced under MIT license.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30

	Introduction
	Related Works
	Method
	Experiments
	Conclusion
	Neural Operators
	Attention mechanism for finite-dimensional vectors
	Dataset Description
	Fluid-Structure Interaction System
	Justification of Experiment Design
	Generating Rayleigh-Bénard dataset

	Comparison with FNO
	Visualization of Results
	Additional Results
	Ablation of Proposed components
	Zero-Shot Super Resolution Test
	Parameter Count and Computational Cost.
	Energy Spectrum
	Ablation on Finetuning Technique
	Error bar

	PDEBench experiments
	Ablation on the Size of FNO

	Implementation Details

