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Abstract001

Experience replay plays a pivotal role in en-002
hancing sample efficiency for reinforcement003
learning-based dialogue policy optimization.004
However, traditional random sampling or static005
heuristic strategies fail to dynamically exploit006
critical experiences following policy learning007
stages, resulting in inefficient sampling and008
noise propagation. To address this issue, this009
paper presents a dynamic Stage-aware Experi-010
ence Management (SEM) framework that es-011
tablishes quantitative mapping between policy012
learning stages and experience states to ad-013
just replay priorities adaptively. This frame-014
work adopts a quadripartite experience state015
paradigm to characterize the stages of pol-016
icy learning and provide a quantitative basis017
for experience management decisions. More-018
over, a dual Q-network structure is employed019
to monitor loss discrepancies and trends in020
real-time, discriminating each experience as021
stable, forgotten, unmastered, or noisy. Ben-022
efiting from this dynamic stage-aware mech-023
anism, the SEM prioritizes replaying critical024
experiences in forgotten and unmastered ex-025
periences to strengthen weak links while sup-026
pressing noisy samples to reduce interference.027
Experiments on four public dialogue datasets028
verify the effectiveness and generalizability of029
the SEM in dynamic priority management.030

1 Introduction031

As the decision core of task-oriented dialogue032

(TOD) systems, dialogue policies (DPs) aim to033

accurately infer user intents and efficiently accom-034

plish domain-specific goals through multi-turn in-035

teractions (Algherairy and Ahmed, 2025). Though036

large language models (LLMs) have demonstrated037

strong power in linguistic tasks, their lack of ex-038

plicit long-term value estimation compromises DP039

convergence stability in multi-step decision opti-040

mization (Yi et al., 2024). Even with reasoning-041

enhanced techniques like chain-of-thought prompt-042

ing, LLMs still struggle to explore ambiguous so- 043

lution spaces in complex dialogues efficiently (Yi 044

et al., 2024), while the scarcity of domain-specific 045

TOD datasets further exacerbates their adaptability 046

challenges (Kamuni et al., 2024). Consequently, 047

off-policy reinforcement learning (RL) which lever- 048

ages experience replay to reuse historical interac- 049

tion trajectories for policy learning has emerged 050

as the mainstream technique for DP optimization 051

(Algherairy and Ahmed, 2024). 052

The management efficiency of experience re- 053

play buffers directly impacts the training outcomes, 054

where the key challenge resides in accurately quan- 055

tifying the experience sampling priorities at ev- 056

ery training stage. Existing methods rely on ran- 057

dom sampling or static heuristic strategies. How- 058

ever, both fail to dynamically adjust the experience 059

sampling priorities as policies evolve (Zhao et al., 060

2024). As shown in Fig.1(a), the random sam- 061

pling method assigns experiences indiscriminately 062

at stage T1, ignoring the empirical state discrimi- 063

nation. The static heuristic assigns the maximum 064

priority to sample E4 (Noisy Experience) at stage 065

T1 and maintains this assignment continuously at 066

stage T2. Nevertheless, this assignment is likely 067

no longer optimal at this stage since sample E4 068

is a noisy sample. That is, traditional strategies 069

struggle to exploit critical experiences required at 070

different training stages. This results in two critical 071

deficiencies: (i) high-value experiences are prema- 072

turely diluted due to fixed priorities, and (ii) noisy 073

experiences continuously interfere with the training 074

process. The underlying cause lies in the absence 075

of dynamic quantification linking policy learning 076

phases to the actual contribution of experiences. 077

To address these issues, this paper proposes a dy- 078

namic experience prioritization framework with 079

a Stage-aware Experience Management (SEM) 080

mechanism to learn the latent rhythms between 081

experience significance and policy evolution for di- 082

alogue policy optimization. This mechanism quan- 083
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(a) The priority-mastery correlation in the SEM framework (b) Four States differentiation under dual-network loss

Figure 1: (a) This diagram illustrates the correlation between priority and mastery within the SEM framework. It
shows the transition from initial priorities (T1) to updated priorities (T2), highlighting SEM’s adaptive mechanism
for reassessing and adjusting priorities based on mastery levels. (b) This graph depicts the representational
differentiation of four experience states under dual-network loss. It tracks the evolution of mastery (solid lines)
and priority (dashed lines) over training epochs for each experience state (E1–E4), showcasing SEM’s dynamic
response and adjustment based on the quality of experiences.

titatively maps the evolving stages of policy learn-084

ing to distinct experience states. Specifically, four085

quantifiable states are first defined: Stable (consis-086

tently mastered), Forgotten (previously mastered087

but recently degraded), Unmastered (not effectively088

learned), and Noisy (containing unreliable or mis-089

leading information). Then, a dual Q-network090

structure consisting of a main network and a tar-091

get network is maintained to identify these states.092

The main network loss reflects the current instanta-093

neous mastery of policy, while the target network094

loss represents historical learning outcomes. The095

dynamic trends of their discrepancies reveal the096

underlying state of each experience and guide the097

adjustment of priority at different training stages:098

increasing priorities for Forgotten and Unmastered099

states to reinforce critical knowledge gaps, while100

reducing priorities for Noisy states to suppress in-101

terference. As shown in Fig.1(a), the SEM assigns102

the lowest priority to Forgotten sample E2 and the103

highest to Noisy sample E4 at stage T1. Subse-104

quently, it evaluates experience states continuously105

at each training stage and updates the priorities of106

E2 (Forgotten ) and E4 (Noisy) to the highest and107

lowest at stage T2, which are optimal assignments108

for this stage.109

Moreover, a hierarchical sum tree is employed110

for experience storage, enabling local updates, fast111

localization of high-frequency sampling regions,112

and low-complexity real-time priority adjustment. 113

• A quadripartite experience state quantification 114

paradigm is proposed, which establishes the 115

first dynamic mapping between policy learn- 116

ing stages and experience values to provide a 117

quantitative decision-making basis for experi- 118

ence management. 119

• A stage-aware experience management frame- 120

work is presented, enabling real-time expe- 121

rience state classification and dynamic prior- 122

ity adjustment with plug-and-play lightweight 123

adaptability to off-policy RL algorithms. 124

• The effectiveness and generalizability of the 125

proposed SEM are validated across four pub- 126

lic dialogue datasets, demonstrating its capa- 127

bilities in experience state identification and 128

dynamic sampling priority management. 129

2 Related Work 130

Our work focuses on improving experience man- 131

agement in off-policy RL-based DP optimization. 132

Existing relevant studies predominantly rely on two 133

paradigms: uniform random sampling and static 134

heuristic strategies (Zhang et al., 2024). 135

Uniform random sampling: The foundational 136

Deep Q-Networks (DQN) (Mnih et al., 2015) em- 137

ployed experience replay with uniform sampling. 138
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Figure 2: Dialogue policy optimization experience management process under the SEM framework.

It treats all transitions equally regardless of their in-139

trinsic value. Though unbiased, this method cannot140

distinguish valuable experiences from noisy ones,141

resulting in inefficient learning (Liu et al., 2024).142

Subsequent studies confirm its insufficiency for DP143

optimization where strategic experience selection144

proves crucial (Yang et al., 2024).145

Static heuristic strategies: Efforts to overcome146

random sampling limitations have converged on147

three static heuristic categories: (i) Priority Weight-148

ing: Prioritized Experience Replay (PER) (Schaul149

et al., 2016) utilized temporal difference (TD) er-150

rors as fixed importance metrics, while variants151

(Mei et al., 2023; Oh et al., 2022) incorporated152

auxiliary reward signals. Though improving initial153

sampling efficiency through priority-based selec-154

tion, it fundamentally operates within a binary state155

paradigm – identifying only consistently mastered156

and unmastered experiences. (ii) Noise Filtering:157

Approaches such as conversational dead-end de-158

tection (Zhao et al., 2024) and adversarial filtering159

(Yu et al., 2024) aimed to suppress low-quality160

samples. However, their binary keep/discard de-161

cisions often exclude borderline experiences with162

partial utility, exacerbating forgetting (Gu et al.,163

2017); (iii) Memory Augmentation: Topological164

Experience Replay (TER) (Hong et al., 2022) or-165

ganized experiences via graph structures, while166

multi-buffer strategies (Lu et al., 2023) preserved167

historical samples. Despite organizational benefits,168

these methods incurred prohibitive computational169

overhead and struggled with dynamic policy adap-170

tation (Yang et al., 2022).171

These methods suffered from dual priority distor-172

tion: premature high-value discard from static pri- 173

oritization metrics (e.g., PER’s outdated TD errors 174

estimates (Horgan et al., 2018)) and noise amplifi- 175

cation from rigid filtering thresholds that propagate 176

residual artifacts through training iterations (Vezhn- 177

evets et al., 2017). Hybrid methods combining pri- 178

ority weighting and filtering (Buzzega et al., 2020) 179

partially mitigated but retained heuristic-based lim- 180

itations. In contrast, our SEM breaks this paradigm 181

through dynamic priority calibration via dual Q- 182

network discrepancy analysis. 183

Unlike existing memory-augmented approaches 184

requiring complex architectures, the proposed SEM 185

achieves: (i) Adaptive Reassessment: Continu- 186

ous priority updates aligned with policy evolution; 187

(ii) Noise-Resilient Selection: Probabilistic sup- 188

pression rather than binary filtering; (iii) Compu- 189

tational Efficiency: Linear-time complexity ver- 190

sus TER’s quadratic overhead. This systematic 191

approach overcomes the experience prioritization 192

distortion inherent in existing methods while main- 193

taining plug-and-play compatibility with standard 194

off-policy RL pipelines. 195

3 Methodology 196

As shown in Fig. 2, the SEM method consists of 197

three steps: 1) Experience States Access, which 198

captures agent-environment interactions, system- 199

atically storing transition tuples in replay buffers 200

partitioned into four distinct state categories; 2) 201

Loss Surveillance, which identifies four experience 202

states by calculating loss discrepancies between 203

the main and the target Q-networks outputs; 3) 204

Priority Management, which employs dynamic ex- 205
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perience priority adjustment via a sum-tree archi-206

tecture, enabling hierarchical storage and weighted207

sampling based on categorized experience states.208

3.1 Experience State Access209

The SEM method establishes a quadripartite expe-210

rience state quantification paradigm to dynamically211

align sampling priorities with policy learning de-212

mands. In this method, a dual Q-network archi-213

tecture is employed, where the main network loss214

indicates current mastery, and the target network215

loss reflects historical learning. Experiences exhibit216

distinct temporal loss patterns across two networks,217

reflecting varying levels of policy mastery.218

• Stable Experiences (E1 in Fig.1(b) exhibit219

consistently low losses in both main and target220

Q-networks, indicating mastered knowledge.221

These experiences should maintain baseline222

sampling priority to preserve policy stability.223

• Forgotten Experiences (E2 in Fig.1(b) show224

high main network loss paired with low target225

network loss, revealing knowledge degrada-226

tion. Their rising main loss triggers priority227

elevation to reinforce fading skills.228

• Unmastered Experiences (E3 in Fig.1(b)229

display synchronized high losses in both net-230

works, signaling unlearned patterns. These231

receive progressive priority boosts to acceler-232

ate initial acquisition.233

• Noisy Experiences (E4 in Fig.1(b) manifest234

persistent high losses regardless of training235

progress. Their priority undergoes exponen-236

tial decay to mitigate interference.237

This taxonomy enables the SEM adaptive expe-238

rience management. During agent-environment in-239

teraction, the DQN agent1 generates experience tu-240

ples ⟨st,at, rt, st+1⟩ through ϵ-greedy exploration.241

The dual Q-network architecture, comprising a242

rapidly updated main network θ and a slowly evolv-243

ing target network θ̂, provides temporal loss signals244

for state classification:245

θ̂ ← τθ + (1− τ)θ̂ (1)246

Lalg
θ , Lalg

θ̂
= TD-loss(Qθ, Qθ̂) (2)247

1We adopt DQN as our illustrative baseline, given its sem-
inal role in deep RL and its widespread use in task-oriented
dialogue policy research. This choice ensures clear exposi-
tion and empirical validation against a well-understood off-
policy RL framework. Importantly, our approach is algorithm-
agnostic and can be seamlessly extended to other off-policy
RL–based methods, as detailed in App. D.

where τ ∈ (0,1] is the soft update coefficient. The 248

losses Lalg
θ and Lalg

θ̂
are computed for the SEM 249

loss and priority update (Eq. 3). 250

3.2 Loss Surveillance 251

The loss surveillance phase monitors the SEM loss 252

of each sampled experience. It classifies the expe- 253

rience and updates the priority accordingly. This 254

process consists of two steps: 255

1) SEM Loss: The SEM loss is the metric to 256

measure the priority of experience. It is defined 257

by the loss discrepancy between the main and the 258

target Q-networks, formulated as: 259

SEMLossi = Lalg
θ (i)−Lalg

θ̂
(i) (3) 260

where Lalg
θ (i) and Lalg

θ̂
(i) are the network losses 261

for the experience i in the main and the target Q- 262

networks, respectively. The SEM loss provides 263

an objective metric for prioritizing experiences by 264

dynamically assessing agent mastery via loss dis- 265

crepancies between two Q-network outputs2. This 266

design naturally supports stage-aware prioritization 267

during policy learning. 268

2) Priority Update: Based on the SEM loss, we 269

update the experience priority employing a map- 270

ping function fmap. The form is as follows: 271

pi = fmap(SEMLossi) + ϵ (4) 272

where fmap maps the SEM loss to non-negative 273

values and adds a small positive value ϵ to ensure all 274

experiences have positive sampling probabilities, 275

preventing sampling dead zones (Lee et al., 2019). 276

After the priority is updated, the main Q-network 277

parameters θ will be updated. 278

3.3 Priority Management 279

The priority management phase manages the ex- 280

perience priorities through a hierarchical sum tree 281

storage structure. 282

The sum tree is a binary tree data structure de- 283

signed to manage experience priorities. Its charac- 284

teristic is that each node stores the sum of its chil- 285

dren’s priorities, which allows weighted sampling 286

and priority updates in O(log n) time. Moreover, 287

when an experience priority changes, only the path 288

from the corresponding leaf to the root needs to 289

be updated, avoiding full array recalculations and 290

improving update efficiency: i) Leaf nodes: store 291

2It is worth noting that the priority calculation in PER
differs from our SEM loss. PER calculates priority based on
the TD errors, defined as pi = |δi| + ϵ, where δi is the TD
errors and ϵ is a small constant added to prevent zero priority.
In contrast, our method adopts a different approach.
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Algorithm 1: SEM Implementation
Require:
• Off-policy RL algorithm A with loss function Lalg

• Main Q-network parameters θ

• Target Q-network parameters θ̂

• Experience replay pool B

• Initial priority Pinit

• SEM Loss Normalization Function fmap

1: Initialize Experience replay pool B as empty;

2: Initialize Target Q-network θ̂ = θ;
3: for t = 1 to T do

a. Interact with environment:;

• Observe state st from the environment;

• Compute action at from the agent;

• Execute action at, observe reward rt, and next
state st+1;

• Store transition ⟨st,at, rt, st+1⟩ in B with Pinit;
b. for each Iteration step from 1 to Titer do

• Sample minibatch of size b from B;

• Compute Lalg
θ and update θ;

• Compute Lalg
θ̂

and calculate the SEM Loss;

• Update minibatch priorities:
fmap(SEM Loss) + ϵ;

4: Update Target Q-network following A;

the priority pi of each experience. ii) Intermediate292

nodes: store the sum of the priorities of all their293

child nodes. iii) Root node: stores the sum of leaf294

node priorities, representing the total priority of the295

experience pool
∑n

i=1 pi. With this structure, a296

weighted sampling mechanism can efficiently sam-297

ple experiences from the replay buffer, balancing298

the latent rhythms between experience importance299

and policy evolution. The operation is as follows:300

The operation is as follows: A random value u is301

generated within the range [0,
∑n

i=1 pi]. Starting302

from the root node, we recursively compare u with303

the priorities of the left and right child nodes and304

eventually locate the matching leaf node (i.e., the305

corresponding experience tuple). It ensures that306

each experience is sampled with a probability P (i)307

proportional to its priority pi, i.e.,308

P (i) =
pi∑n
j=1 pj

(5)309

The updated priorities are stored in the leaf nodes310

of the Sum Tree, and the priority sums of the inter-311

mediate and root nodes are recursively updated to312

maintain the consistency of the entire structure.313

The procedure of the SEM is described in Alg. 1.314

315

4 Experiments 316

The objectives of this experiment are 3: i) Assess 317

the effectiveness of the SEM over baseline methods 318

in simulated (4.3) and human evaluations (4.6); ii) 319

Examine the performance of the SEM in address- 320

ing four experience states by the visualization of 321

experience distributions (4.4.1) and priority trends 322

(4.4.2); iii) Validating the generality of the SEM in 323

off-policy RL-based DP algorithms (4.5). 324

4.1 Baselines 325

We comprehensively evaluate the effectiveness of 326

the SEM framework against six state-of-the-art 327

experience-management baselines: DQN with Ran- 328

dom Experience Replay (RER) (Mnih et al., 2015), 329

which uniformly samples experiences from the re- 330

play buffer without any prioritization; PER (Schaul 331

et al., 2016), which prioritizes experiences based 332

on high TD errors to enhance learning efficiency; 333

TER (Hong et al., 2022), which organizes experi- 334

ences into a state-dependency graph and performs 335

value backups via breadth-first search from termi- 336

nal nodes; DDR (Zhao et al., 2024), which iden- 337

tifies dialogue dead-ends, provides corrective res- 338

cue actions, and augments the buffer with penalty 339

experiences to steer exploration; LLM_DA (Yi 340

et al., 2024), which employs a LLM4 to replace the 341

TOD system’s DP module, which replaces the DP 342

module with a LLM to generate dialogue actions 343

that are then responded by an NLG component; 344

LLM_Word (Yi et al., 2024), which extends this by 345

using an LLM to directly select words and produce 346

end-to-end responses. 347

4.2 Experimental Settings 348

4.2.1 Datasets 349

Four public datasets widely used in TODs research, 350

including both single-domain (Li et al., 2018) and 351

multi-domain datasets (Budzianowski et al., 2018) 352

are employed for evaluation. The domain and fea- 353

ture information of datasets are shown in App. A. 354

4.2.2 Implementation Details 355

For experimental fairness, all dialogue agents em- 356

ploy identical DQN with synchronized parameter 357

initialization. Each agent undergoes from-scratch 358

3We will release the code on GitHub after the anonymity
period.

4We adopt GPT-4.0 as LLM-based agents for its superior
generative performance on dialogue tasks. Since ChatGPT-4.0
is closed-source and cannot be fine-tuned, we instead drive it
via a carefully engineered prompt, detailed in App. C.
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Table 1: Performance comparison of agents on four datasets with 10% noise5, with top performers in each
column bolded. All results are statistically significant (t-test, p < 0.05). Epochs denote early(50), mid(250), and
post-convergence(500) stages. ChatGPT-4.0’s numbers reflect its post-convergence evaluation (fine-tuning is not
possible), while all other agents were trained from scratch. Therefore, comparisons with LLM_DA&LLM_Word
focus on the converged results on 500 epoch.

Domain Agent Venue Epoch=50 Epoch=250 Epoch=500

Success↑ Reward↑ Turn↓ Success↑ Reward↑ Turn↓ Success↑ Reward↑ Turn↓

Movie

RER Nature 2015 0.0193 -52.49 31.62 0.4058 -4.29 27.98 0.6001 21.73 22.56
PER ICLR 2016 0.0163 -52.48 30.88 0.4422 0.19 27.75 0.6382 26.67 21.87
TER ICLR 2022 0.0152 -54.79 35.23 0.4228 -2.12 27.71 0.6698 30.90 20.96
DDR TACL 2024 0.0526 -49.77 32.67 0.4788 5.53 26.89 0.7173 37.63 20.11

LLM_DA CoRR 2024 0.4140 -4.03 24.88 0.4140 -4.03 24.88 0.4140 -4.03 24.88
LLM_Word CoRR 2024 0.2720 -28.58 31.35 0.2720 -28.58 31.35 0.2720 -28.58 31.35

SEM - - - - - 0.0847 -43.03 28.39 0.5806 18.57 24.21 0.7708 44.21 18.57

Rest.

RER Nature 2015 0.0004 -43.81 29.67 0.0549 -37.85 27.58 0.2566 -18.60 25.38
PER ICLR 2016 0.0002 -42.10 26.23 0.1097 -32.48 26.71 0.3784 -6.39 22.90
TER ICLR 2022 0.0003 -41.14 24.32 0.1784 -25.86 25.83 0.3950 -4.85 22.81
DDR TACL 2024 0.0020 -42.69 26.26 0.1967 -24.58 26.33 0.4601 1.80 22.26

LLM_DA CoRR 2024 0.3080 -6.41 21.33 0.3080 -6.41 21.33 0.3080 -6.41 21.33
LLM_Word CoRR 2024 0.2530 -20.31 31.63 0.2530 -20.31 31.63 0.2530 -20.31 31.63

SEM - - - - - 0.0021 -42.63 27.65 0.1826 -25.60 26.07 0.5040 5.78 21.15

Taxi

RER Nature 2015 0.0446 -39.61 29.25 0.1569 -29.52 29.29 0.2411 -21.71 28.82
PER ICLR 2016 0.0226 -41.51 29.08 0.1356 -31.18 28.77 0.2636 -19.21 27.87
TER ICLR 2022 0.0421 -39.68 28.93 0.2408 -21.41 28.17 0.3304 -13.25 27.98
DDR TACL 2024 0.0265 -42.11 29.65 0.1919 -26.30 28.85 0.3550 -10.50 27.51

LLM_DA CoRR 2024 0.2940 -12.35 26.75 0.2940 -12.35 26.75 0.2940 -12.35 26.75
LLM_Word CoRR 2024 0.2130 -19.68 29.31 0.2130 -19.68 29.31 0.2130 -19.68 29.31

SEM - - - - - 0.0434 -39.63 29.08 0.2949 -16.22 27.53 0.4551 -1.29 26.50

MultiWOZ

RER Nature 2015 0.0144 -45.73 31.06 0.0287 -36.76 30.47 0.0366 -30.19 30.11
PER ICLR 2016 0.0156 -43.69 32.14 0.0624 -35.92 31.59 0.0842 -30.13 31.05
TER ICLR 2022 0.0048 -46.18 33.97 0.0533 -36.71 32.18 0.0763 -29.86 31.74
DDR TACL 2024 0.0212 -41.07 30.93 0.0849 -33.42 29.17 0.1171 -25.64 29.73

LLM_DA CoRR 2024 0.1220 -20.47 30.80 0.1220 -20.47 30.80 0.1220 -20.47 30.80
LLM_Word CoRR 2024 0.1040 -22.57 32.78 0.1040 -22.57 32.78 0.1040 -22.57 32.78

SEM - - - - - 0.0192 -42.38 31.07 0.0995 -30.43 28.94 0.1584 -17.91 27.48

training with uniform experience budgets (100 dia-359

logues for warm-start initialization, 1 dialogue per360

training epoch) 6. A multi-layer perceptron with361

two hidden layers of 80 neurons each is employed362

across all DQN-based algorithms. For details on363

the experimental parameters and the implementa-364

tion of the fmap function, please refer to the App. B.365

4.3 Main Results366

Table 1 benchmarks baseline performance across367

four datasets. RER performs worst because its uni-368

form sampling fails to prioritize high-value expe-369

riences, hurting DP learning efficiency. PER’s370

static reliance on TD errors induces gradient bias371

and delayed priority updates, degrading long-term372

performance. TER is unstable in practice due373

to its sensitivity to shifting policies. Although374

6Current methodological reporting gaps in dialogue policy
learning research include insufficient specification of epoch-
wise data scheduling parameters, which our work addresses by
strictly following the standardized training protocol detailed
in Zhao et al. (2024). The benchmark policies in the Covlab
Platform, despite achieving 0.89 success rates, utilize hybrid
training strategies involving MLP pretraining (initial success
rate=0.56) followed by RL refinement. Our full retraining
paradigm removes this pretraining advantage, with the SEM
demonstrating statistically significant improvements over all
baselines under this initialization condition (see App. E).

achieving second-best performance, DDR remains 375

constrained by its rule-based dead-end detection 376

mechanism that lacks online adaptability. LM_DA 377

achieves moderate initial success thanks to its re- 378

stricted action space but cannot improve further 379

due to hallucination issues and its closed-source na- 380

ture. LLM_WORD yields the poorest LLM-based 381

results due to combinatorial action space explosion 382

amplified by unconstrained generative hallucina- 383

tion tendencies. In contrast, the SEM discriminates 384

between different experience states and adaptively 385

adjusts their priorities, achieving best performance. 386

4.4 Visualization Analysis 387

Due to space constraints, we present the experi- 388

ence priority trend results on the most challenging 389

dataset MultiWOZ 2.1 in the main text. Results on 390

other datasets are provided in the app.G. 391

4.4.1 Evolution of Experience State 392

Distributions 393

We analyze the evolution of four experience states 394

distribution across different baselines during early 395

and late training phases, as illustrated in Fig- 396

610% noise approximates real-world dialogue system er-
rors (8-12% range); other noise-level results appear in App. F.
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(a) Movie (b) Restaurant (c) Taxi (d) MultiWOZ 2.1

Figure 3: Evolution of experience states distribution across different baselines.

(a) Noisy (b) Forgotten (c) Stable (d) Unmastered

Figure 4: Sampling priorities for four experience states across MultiWOZ 2.1 dataset. The results on the movie,
taxi, and restaurant datasets are presented in App.G

(a) Movie (b) Restaurant (c) Taxi (d) MultiWOZ 2.1

Figure 5: Incorporate different off-policy RL-based dialogue policy approaches with our SEM on four datasets. The
standalone learning curves are presented in App. D.

ure 3. Both RER and TER exhibit initial uniformity397

across experience states, reflecting undifferentiated398

state recognition capabilities in early training. This399

homogeneity gradually gives way to increased dis-400

tribution variance during later phases, with stable401

states ultimately dominating through spontaneous402

convergence mechanisms. PER demonstrates tar-403

geted prioritization by differentially processing sta-404

ble and unmastered experiences. However, its in-405

ability to distinguish between noisy and forgot-406

ten states leads to concurrent amplification of both407

states, revealing fundamental pattern recognition408

limitations. While DDR effectively suppresses409

noise and forgotten states through dead-end de-410

tection and data augmentation, it shows limited411

efficacy on unmastered experiences. LLM-based412

agents introduce significant noise artifacts due to413

inherent hallucination effects, consistent with large414

model training literature. The proposed SEM ad-415

dresses these limitations by dynamically prioritiz-416

ing different experience states, reducing noisy and417

forgotten experiences while enhancing unmastered418

ones. This adaptive approach facilitates the progres-419

sive conversion of various experiences into stable 420

states during later training phases. 421

4.4.2 Differentiated Efficacy Experience 422

States 423

This section systematically evaluates the SEM’s 424

scheduling capability across four distinct experi- 425

ence states: noisy, forgotten, stable, and unmas- 426

tered. We adopt PER as the baseline for two princi- 427

pal considerations: (i) As a representative dynamic 428

sampling method, PER has demonstrated proven 429

effectiveness in enhancing sample efficiency and 430

training stability across diverse tasks; (ii) As a typ- 431

ical priority-based sampling method, PER shares 432

the same priority mechanism as the SEM, making 433

it a suitable baseline for highlighting the SEM’s 434

unique advantages. (iii) Empirical results reveal 435

that the SEM and PER exhibit consistent prior- 436

ity evolution patterns for stable and unmastered 437

experiences (see Fig. 4(c) and (d)). This equiva- 438

lence establishes PER as an ideal baseline to iso- 439

late the SEM’s unique advantages in noise suppres- 440

sion and forgotten experience reactivation. 441
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Noisy Experience Filtering: To validate the442

SEM’s noise robustness, we inject random noise443

into training experiences and dynamically track444

their sampling priority evolution. As shown in445

Fig. 4(a), the SEM’s dual-error joint evaluation446

mechanism (via main and target Q-Networks) ef-447

fectively identifies noisy experiences through per-448

sistent high error signals, subsequently suppressing449

their sampling priorities. In contrast, TD-errors-450

based PER fails to distinguish between meaning-451

ful gradients and noise fluctuations, persistently452

misidentifying noisy samples as high-priority can-453

didates. This leads to repeated sampling of noisy454

experiences and degraded learning efficiency.455

Forgotten Experience Reactivation: We456

construct a noise-free environment to isolate457

knowledge-forgetting, normalizing experience pri-458

orities from both methods. Thresholds (A =459

0.2, B = 0.5) categorize experiences into forgot-460

ten (priority < A) and reactivated (priority > B).461

Fig.4(b) demonstrates PER’s priorities drop below462

A = 0.2 at t1, indicating gradual knowledge loss.463

Conversely, the SEM reactivates forgotten experi-464

ences via dual Q-network loss analysis, elevating465

their priorities above B = 0.5 at t2. This benefit is466

especially pronounced in the complex taxi task and467

the MultiWOZ 2.1 multi-domain dialogue task.468

Stable/Unmastered Experience Optimization:469

We visualize priority trends for stable and unmas-470

tered experiences during training. As depicted in471

Fig. 4(c) and (d), both methods appropriately re-472

duce priorities for stable experiences while main-473

taining high priorities for unmastered ones. This474

alignment confirms the SEM retains PER’s advan-475

tages in handling Stable/Unmastered experience476

states, focusing innovations on addressing PER’s477

key limitations in noise and forgetting scenarios.478

In summary, by establishing a quantitative map-479

ping between dialogue experience states and net-480

work mastery phases, the SEM inherits PER’s481

strengths in stable and unmastered experience man-482

agement and significantly improves noise suppres-483

sion and forgotten-experience recovery, thereby en-484

hancing overall training efficiency and robustness.485

4.5 Generality Evaluation486

To verify the universality of the SEM, we con-487

duct a generality evaluation by integrating it with488

representative off-policy RL dialogue policy meth-489

ods, including DDQ (Peng et al., 2018), Double490

DQN (van Hasselt et al., 2016) and HER (Lu et al.,491

2019). As illustrated in Fig. 5, the SEM exhibits492

method-agnostic characteristics, achieving consis- 493

tent performance improvements. The superior per- 494

formance metrics stem from the SEM’s dual ad- 495

vantages in experience state differentiation and dy- 496

namic priority allocation, which complement rather 497

than conflict with existing RL methodologies. 498

4.6 Human Evaluation 499

To complement simulation limitations in assessing 500

dialogue naturalness and coherence, we conducted 501

human evaluations following the dataset platform’s 502

standardized protocol. Fifty-six evaluators (28 do- 503

main experts and 28 general users) interacted with 504

trained models, scoring them on two metrics: Suc- 505

cess Rate (SR, binary task completion) and Human 506

Score (HS, 1-5 scale for naturalness/coherence). 507

As shown in Tab. 2, the SEM achieves superior 508

performance, aligning with simulation results. 509

Table 2: Human evaluation of different agents in differ-
ent domains. For a fair comparison, all models in single-
domain are trained for 500 epochs, while multi-domain
(MultiWOZ 2.1) tests utilized RL-fine-tuned models
initialized with MLE-pretrained models (corresponding
simulation results are detailed in App. E). LLM-based
agents are excluded from multi-domain comparisons
due to their closed-source architectural constraints.

Model Movie Restaurant Taxi MultiWOZ 2.1
SR HS SR HS SR HS SR HS

RER 0.4643 2.33 0.1786 2.55 0.2143 2.02 0.3263 2.47
PER 0.4107 2.65 0.3036 2.01 0.2321 2.14 0.3861 2.86
TER 0.5357 2.58 0.3214 2.46 0.2500 2.10 0.3790 2.82
DDR 0.4931 2.77 0.3323 2.56 0.2776 2.45 0.4028 3.30
LLM_DA 0.1968 1.68 0.1268 1.46 0.0937 1.73 – –
LLM_Word 0.0890 1.20 0.1050 1.23 0.0366 1.09 – –
SEM 0.5714 3.05 0.3571 2.98 0.3036 2.55 0.4489 3.83

5 Conclusion 510

This paper proposes a novel SEM approach that 511

captures the latent rhythms between experience 512

significance and policy evolution by quantitatively 513

mapping dialogue experience states to policy learn- 514

ing phases, offering new methodological insights 515

for experience management. By analyzing loss 516

discrepancies between the main and the target Q- 517

networks, the SEM dynamically evaluates experi- 518

ence states and adjusts sampling priorities to en- 519

hance sampling efficiency. As a model-agnostic 520

framework, the SEM can effectively integrate off- 521

policy RL-based dialogue policy algorithms to im- 522

prove performance. Extensive evaluations across 523

four TOD datasets under various noise configura- 524

tions validate the SEM’s effectiveness and general- 525

izability. Visual analytics on the sampling priorities 526

of experiences further confirms its capability to op- 527

timize priority assignments adaptively. 528
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Limitations529

The SEM demonstrates strong effectiveness in ad-530

vancing prioritized experience replay, with two531

main limitations: First, due to its design for pri-532

ority calculation, the SEM is primarily focused on533

optimizing experience replay in off-policy RL. In534

off-policy learning, historical experiences are the535

sole source of learning, and optimizing the priority536

of these experiences is crucial for improving learn-537

ing efficiency and stability. However, in Online RL,538

real-time interactions and dynamic updates to the539

experience pool limit the applicability of the SEM.540

Future efforts will extend our method to accom-541

modate scenarios involving Online RL. Second,542

the SEM dynamically adjusts the priorities of the543

four different experience categories, particularly544

emphasising the differentiated treatment of noisy545

and forgotten experiences. Although the SEM is an546

effective experience management mechanism that547

alleviates prioritization distortion in experience re-548

play, it still faces the challenge of not eliminating549

the impact of negative experiences, as shown in550

Figure 3. Future research will enhance the SEM’s551

ability to handle these situations more effectively.552

Ethics Statement553

We have carefully considered the potential ethical554

implications of our work and conclude that it does555

not pose significant ethical risks. Specifically:556

No sensitive data involved: All experiments557

are conducted using publicly available or synthetic558

datasets that contain no sensitive personal informa-559

tion or private user interaction data.560

Responsible human evaluation: Although hu-561

man evaluation is included, it was conducted with-562

out involving identifiable individuals or personally563

sensitive content. No formal ethical approval was564

required, as the evaluation process posed no risk or565

harm to participants.566

Low risk of misuse: The methods and data pre-567

sented in this work do not enable or facilitate the568

generation of harmful, offensive, or otherwise un-569

safe content. We do not foresee any substantial risk570

of misuse.571

Based on these considerations, our work adheres572

to standard ethical research practices and does not573

require further ethical review.574
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A Dataset Details 743

MultiWOZ 2.1 is a large-scale, multi-domain TOD dataset that includes dialogues from multiple domains 744

such as restaurant booking, hotel booking, taxi booking, and tourist attraction recommendations. The 745

dataset provides detailed user intent, slot annotations, and dialogue context, making it suitable for 746

evaluating core tasks such as dialogue management, intent recognition, and slot filling. The scale and 747

complexity of MultiWOZ 2.1 make it an ideal choice for testing cross-domain generalization ability. The 748

Microsoft Dialogue Challenge focuses on daily conversations and customer support, offering diverse 749

dialogue scenarios across three domains: movie-ticket booking, restaurant booking, and taxi booking, 750

making it suitable for multi-task learning and sentiment analysis research. By training with these datasets, 751

this study can validate the effectiveness of the proposed SEM loss method in multi-domain, multi-task 752

environments, particularly in handling noisy experiences, forgetting experiences, and human evaluation 753

performance.

Table 3: Dataset statistics for various dialogue tasks.

Dataset Domains Scale

MultiWOZ 2.1 7 Dialogue scale: 8,438; Dialogue rounds: 115,424;
Avg. rounds: 13.68; Slots: 25

Movie 1 Dialogue scale: 2,890; Intention: 11; Slots: 29
Restaurant 1 Dialogue scale: 4,103; Intention: 11; Slots: 30
Taxi 1 Dialogue scale: 3,094; Intention: 11; Slots: 29

754

B Experimental setup details 755

Table 4: Experimental Settings

Parameter Value / Description

Exploration rate (ϵ) Initial: 0.1; decayed to 0.01 during training
Update coefficient (τ ) 1× 10−2 (soft update for target network)
L2 regularization coefficient (regc) 1× 10−3

Discount factor (γ) 0.99
Batch size 16
Learning rate 0.001
Replay buffer size 10,000
Operating system Ubuntu 24.01
Python version 3.9
Toolkit ConvLab-3
Simulator Rule-based simulator from ConvLab-3
Model architecture Modular neural models
Fmap ReLU(x)=max(0,x)
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C Prompt Design756

Table 5: Descriptions of Prompts used for LLM-based baselines.

Model Prompt

LLM_DA
1. System role definition: Function as the policy component in of a task-
oriented dialogue system, you need to produce system responses according
to dialogue context.
2. Processing user dialogue state: Process the provided dialogue state
representation to guide response selection.
3. Generate system actions: Given the user’s dialogue state, generate system
actions in the format: [[“ActionType”, “Domain”, “Slot”, “Value”]]. Here,
‘ActionType‘ refers to the system’s intended operation (e.g., Request, Inform,
Confirm), ‘Domain‘ indicates the relevant area (such as restaurant, taxi, or
hotel), ‘Slot‘ specifies the information field (like name, area, or type), and
‘Value‘ holds the related content or remains empty if not provided.
4. Compliance requirements: Output must strictly conform to JSON schema
without extraneous content.

LLM_Word
1. System role definition: Function as the dialog policy module and natural
language generation module of task-oriented dialogue systems, you need to
determine system behaviors based on real-time conversational state analysis.
2. Processing user dialogue state: Process the provided dialogue state
representation to guide response selection.
3. Generate system actions: make decisions based on the current state of the
dialogue and formulate natural language responses to the user.
4. Compliance requirements: Output must strictly conform to JSON schema
without extraneous content.
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D Generality Evaluation of SEM-based Methods 757

(a) Movie (b) Restaurant

(c) Taxi (d) MultiWOZ 2.1

Figure 6: Incorporating DDQ with our SEM on four datasets.

(a) Movie (b) Restaurant

(c) Taxi (d) MultiWOZ 2.1

Figure 7: Incorporating HER with our SEM on four datasets.
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(a) Movie (b) Restaurant

(c) Taxi (d) MultiWOZ 2.1

Figure 8: Incorporating Double DQN with our SEM on four datasets.

E Model Performance Initialized with the Pretrained MLE Model758

Table 6: Performance Comparison of Different Models Initialized with the Pretrained MLE Model

Model Success ↑ Rewards ↑ Turns ↓

MLE 0.56 20.9 24.1
RER 0.67 25.8 21.5
PER 0.71 35.8 22.3
TER 0.74 32.1 26.4
DDR 0.82 37.2 25.3
LLM_DA – – –
LLM_Word – – –

SEM 0.89 44.6 19.0

The results provided by the ConvLab platform are based on MLE models that have been pretrained and759

subsequently fine-tuned using RL, rather than models trained from scratch. Therefore, directly comparing760

those results to our own models trained from scratch would be unfair. To ensure a fair comparison under761

the same conditions, we initialized our training with the pretrained MLE model provided by ConvLab762

(which achieves a success rate of 0.56). We then apply RL-based baselines for fine-tuning over 2000763

epochs, all uniformly based on the PPO architecture. LLM-based baselines (e.g., GPT4.0) are not available764

in this comparison due to their closed-source nature, which prevents us from performing any fine-tuning765

or reinforcement learning-based adaptation. The results, as shown in Tab. 6, further confirm that our766

proposed method consistently outperforms others—whether trained from scratch or fine-tuned from767

pretrained models.768
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F Performance Comparison under Varying Levels of Noise 769

As shown in Fig. 10, the SEM outperforms all other methods in all scenarios, demonstrating higher success 770

rates and better stability, especially in high noisy environments (15%&20%). It highlights its ability to 771

identify and avoid noisy experiences effectively. Although PER performs better than RER, its performance 772

still lags behind the SEM. The increased probability of noisy experiences in such environments leads 773

PER to repeatedly prioritize this experience, which is confusing training. In contrast, the SEM adjusts 774

the priority of noisy experience by comparing losses between the main and marget Q-networks, ensuring 775

that its priority decreases as training progresses, avoiding confusion. For TER, using hash tables to 776

construct the graph optimization experience replay process is better than RER to a certain extent. Still, its 777

performance will be limited when the task state and action space increase sharply and are disturbed by 778

noisy experiences (Zhao et al., 2020). 779

(a) Movie (b) Restaurant

(c) Taxi (d) MultiWOZ 2.1

Figure 9: Performance comparison of agents under noisy-free environment) across four datasets.

Furthermore, we conducted experiments under ideal conditions without the presence of noise, as 780

depicted in Fig. 9. Even in such scenarios, our method continues to deliver superior performance. This 781

outcome eliminates the influence of noisy experiences, highlighting the impact of other experience types, 782

particularly forgotten experiences. 783
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(a) Movie (15%) (b) Restaurant (15%)

(c) Taxi (15%) (d) MultiWOZ 2.1 (15%)

(e) Movie (20%) (f) Restaurant (20%)

(g) Taxi (20%) (h) MultiWOZ 2.1 (20%)

Figure 10: Performance comparison of agents under noisy environments (15% and 20% noise) across four datasets.

16



G Sampling priorities for four experience states across Movie, Restaurant, Taxi datasets 784

Movie Restaurant Taxi
(a) Sampling priorities for noisy experiences across three datasets.

Movie Restaurant Taxi
(b) Sampling priorities for forgotten experiences across three datasets.

Movie Restaurant Taxi
(c) Sampling priorities for stable experiences across three datasets.

Movie Restaurant Taxi
(d) Sampling priorities for unmastered experiences across three datasets.

Figure 11: Comparative analysis of priority trends for four experience states in SEM and PER.
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