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Abstract

Developing autonomous household robots controlled by natural language has long been a
pursuit of humanity. While advancements in large language models (LLMs) and embodied
intelligence make this goal closer, several challenges persist: the lack of a robotic task and
benchmark that are well-aligned with realistic household tasks, limited evaluation methods
and metrics, data incompatibility between LLMs and mobile manipulation trajectories. To
address these issues, we propose Embodied Mobile Manipulation in Open Environments
(EMMOE), a benchmark that requires agents to interpret user instructions and execute
long-horizon everyday tasks in continuous space. EMMOE seamlessly integrates high-level
and low-level embodied tasks into a unified framework, along with three new metrics for more
diverse assessment. Additionally, we collect EMMOE-100, which features in various task
attributes, detailed process annotations, re-plans after failures, and two sub-datasets for LLM
training. Furthermore, we design HomieBot, a sophisticated agent system consists of LLM
with Direct Preference Optimization (DPO), light weighted navigation and manipulation
models, and multiple error detection mechanisms. Finally, we demonstrate HomieBot’s
performance and evaluations of different models and policies.

1 Introduction

Developing autonomous household robots capable of performing various daily tasks through a single instruction
has been a long-standing goal. To achieve this goal, robots need to understand natural language instructions,
make feasible plans, perceive and interact with dynamic environments, and equip with powerful navigation
and manipulation skills. Typical methods like imitation learning (IL) (Ho & Ermon, 2016) and reinforcement
learning (RL) (Sutton, 2018) primarily focus on task-specific policies, but are always limited to short-horizon
tasks and struggle to generalize to new tasks. Task and Motion Planning (TAMP) treats long-horizon mobile
manipulation tasks as hybrid discrete-continuous search problems (Garrett et al., 2021) and addresses with a
hierarchical architecture (Kaelbling & Lozano-Pérez, 2011): High-level task planning in discrete task space,
low-level motion planning in continuous action space, and interleaved execution between two layers. However,
the scope of TAMP remains limited. Despite various extensions (Garrett et al., 2020; Chen et al., 2024),
it still requires specific goal states and detailed scene configurations. The complexity and dynamism of
real-world environments, and vague user descriptions make it highly challenging to meet these requirements.

In recent years, the rapid development of LLM (Achiam et al., 2023; DeepSeek-AI et al., 2025) and embodied
intelligence (Brohan et al., 2023b; Driess et al., 2023) has made this pursuit possible. The scope of each layer
in TAMP has been largely broadened and spawns various embodied tasks driven by language and vision. In
high-level embodied tasks (Wu et al., 2023; Li et al., 2024a), LLMs have shown exceptional performance and
powerful generalization capabilities. Advanced prompting techniques like Chain-of-Thought (COT) (Wei et al.,
2022) have further enhanced the logical reasoning abilities of LLMs. Visual Language Models (VLMs) (Radford
et al., 2021) enable agents to process visual inputs and understand current environments. Large Multi-modal
Models (LMMs) (Liu et al., 2024) extend the application of embodied agents to real-world scenarios. The
most recent world models (Matsuo et al., 2022) and spatial models (Huang et al., 2024b) allow agents to more
accurately perceive scene information and spatial relationships. In low-level embodied tasks, the emphasis of
models has gradually shifted from single skill with specific objects (Shafiullah et al., 2023) to single skill with
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Figure 1: Data example in EMMOE-100. A key feature of EMMOE-100 is the emphasis on the reasoning
process and interleaved execution. In the shown task, the agent must check the fridge first. Otherwise, even
if the agent finally gets a banana in the kitchen, it will not be considered as a success.

open-vocabulary objects (Fang et al., 2023b), then further to general models (Black et al., 2024), such as
Visual Language Navigation (VLN) (Zhang et al., 2024e) and Visual Language Action (VLA) (Brohan et al.,
2023a) models.

However, several problems remain unresolved: 1) Lack of a comprehensive task and benchmark aligns
well with household scenarios. Although significant progress has been made in various embodied tasks,
there is still a gap between current tasks and envisioned language-driven household robots. Meanwhile,
existing embodied tasks always operate in isolation, neglecting the mutual influence caused by interleaved
task execution. By integrating different high-level and low-level embodied tasks, robots can achieve more
advanced capabilities while enabling a unified evaluation of various embodied tasks. Each layer will constrain
and influence the others, working collaboratively to accomplish the final task. 2) Inadequate evaluation
methods and metrics. Embodied task planning involves causal dependencies between each step. However,
solutions are not absolute, thus making evaluations based solely on individual steps or the final state
insufficient. Additionally, current evaluation methods rely heavily on simulators or PDDL files, which also
limits the real-world deployment and application. Furthermore, how to make more fine-grained evaluations
of the entire agent system remains a challenge. 3) LLM grounding problems. Although LLMs excel in
commonsense reasoning, they need to be grounded in current environments to produce realistic and practical
outputs. Furthermore, due to the uncertainties and dynamic changes in the real world, LLMs must be able to
make timely adjustments based on real-time feedback. However, the incompatibility between the conversation
data required for LLMs and the trajectory data required for robotics increases the difficulty of grounding.

To advance the development of autonomous household robots, we propose EMMOE as an open challenge,
which requires agents to interpret user instructions and execute long-horizon everyday tasks in continuous
space. Besides, we manually collect EMMOE-100, the first daily task dataset featuring various task attributes,
detailed process annotations, analyses of each output, re-plans after failures. We also build Supervised Fine-
Tuning (SFT) and Direct Preference Optimization (DPO) (Rafailov et al., 2024) sub-datasets to facilitate the
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alignment of LMM capabilities with specific embodied tasks. Finally, we introduce HomieBot, a sophisticated
agent system that integrates both high-level and low-level models, as well as multiple error detection and
adaptation mechanisms. An example of EMMOE challenge and EMMOE-100 tasks is shown in Fig.1.

In particular, our paper makes the following contributions:

• We propose EMMOE, the first unified benchmark for both high-level and low-level embodied tasks
with three novel metrics for more advanced evaluation.

• We collect EMMOE-100, the first everyday task dataset featuring COT outputs, diverse task designs,
re-plan processes, with SFT and DPO sub-datasets.

• We design HomieBot, a sophisticated agent system which integrates models at different levels,
multiple error detection and adaptation mechanisms.

2 Related Work

2.1 Embodied Tasks and Benchmarks

As embodied agents and LLMs develop rapidly, many embodied tasks and benchmarks have emerged.
In Embodied Question Answering (EQA) tasks, EQA-v1 (Das et al., 2018), VirtualHome (Puig et al.,
2018), MT-EQA (Yu et al., 2019), MP3D-EQA (Wijmans et al., 2019), IQUAD V1 (Gordon et al., 2018),
OpenEQA (Majumdar et al., 2024), HM-EQA (Ren et al., 2024), S-EQA (Dorbala et al., 2024) contains a
variety of task range to evaluate logical reasoning abilities of LLMs. BLINK (Fu et al., 2024a) for visual
perception abilities of LMMs. In Vision-and-Language Navigation (VLN) tasks, R2R (Anderson et al.,
2018), R4R (Jain et al., 2019) and VLN-CE (Krantz et al., 2020), SOON (Zhu et al., 2021) evaluate LLM’s
capabilities under different navigation settings. ALFRED (Shridhar et al., 2020) Behavior series (Srivastava
et al., 2022; Li et al., 2023a) focus on interactive household tasks OVMM (Yenamandra et al., 2023) involves
picking and placing any object in unseen environments. VLA-3D (Zhang et al., 2024b) for 3D semantic scene
understanding and navigation. Common manipulation datasets include MT-Opt (Kalashnikov et al., 2021),
VIMA (Jiang et al., 2022), ManiSkill2 (Gu et al., 2023), Calvin (Mees et al., 2022), BridgeData-v2 (Walke
et al., 2023), RH20T (Fang et al., 2023a), Open-X (O’Neill et al., 2024), AgiBot World (contributors, 2024).
In mobile manipulation, RT series (Brohan et al., 2022; Zitkovich et al., 2023) and Mobile ALOHA (Fu
et al., 2024b) exhibit strong capabilities. GRUTOPIA (Wang et al., 2024a) takes human participation into
account. Additionally, some benchmarks focus on cross-embodiments, like RoboMIND (Wu et al., 2024).
EmbodiedBench (Yang et al., 2025) try to evaluate LMMs together in high-levels and low-levels. Despite
numerous benchmarks, a unified benchmark and relevant task is still missing. Traditional mobile manipulation
uses IL to learn entire trajectories, complicating the evaluation of intermediate processes. In our work, we
propose EMMOE, a holistic benchmark designed to assess both final results and the execution process.

2.2 LLMs For Robotics

LLM-driven embodied agents represent cutting-edge advancements in robotics. SayCan (Ahn et al., 2022),
Palm-E (Driess et al., 2023), LLM-Planner (Song et al., 2023) and EmbodiedGPT (Mu et al., 2024) combine
LLMs with complex embodied tasks. TAPA (Wu et al., 2023) and SayPlan (Rana et al., 2023) use visual
modules for multi-room settings. Voyager (Wang et al., 2023), STEVE (Zhao et al., 2023b), Smallville (Park
et al., 2023) and Octopus (Yang et al., 2023a) use LLMs to choose pre-defined functions. L3MVN (Yu et al.,
2023), ESC (Zhou et al., 2023), SayNav (Rajvanshi et al., 2023) and VLFM(Yokoyama et al., 2024) build
frontier or semantic maps to navigate. ViNT (Shah et al., 2023) and NoMaD (Sridhar et al., 2024) focus on
image navigation, PixNav (Cai et al., 2024) uses LLM to select target image pixel. GOAT (Chang et al., 2023)
is a comprehensive navigation system. Navid (Zhang et al., 2024e) and Uni-Navid (Zhang et al., 2024d) focus
on end-to-end navigation models. RT-2 (Zitkovich et al., 2023) is the first Visual Language Action (VLA)
model. RoboFlamingo (Li et al., 2023b) and OpenVLA (Kim et al., 2024) are open-source VLA models.
Leo (Huang et al., 2024a) focuses on multiple QA problems. Manipulate Anything (Duan et al., 2024) and
Octo (Team et al., 2024b) are light models for arm control. ALOHA (Zhao et al., 2023a) improves action
prediction through action chunking. RoboAgent (Bharadhwaj et al., 2024) enhances object detection and
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generalization, and LCB (Shentu et al., 2024) uses LLMs to generate implicit strategy goals. ManipLLM (Li
et al., 2024b), VoxPoser (Huang et al., 2023), Rekep (Huang et al., 2024b) combine environmental perception
and task execution.

2.3 LLMs for Task Planning

Typical usages of LLM for task planing include treating LLM as a translator or a planner. There are also
some studies combining LLMs with traditional PDDL (Guan et al., 2023; Valmeekam et al., 2024; Silver et al.,
2024; Zhou et al., 2024), in which LLM will be treated as a translator between the real-world and specific
domain planner. But this method is limited by the performance of the domain planner and can’t leverage
the powerful commonsense reasoning capabilities of LLMs to assist in planning. When LLM is treated as a
planner, discrepancies between LLM’s outputs and real-world conditions always lead to execution failures.
LLM-Planner (Song et al., 2023) make a straightforward re-plan. Self-Refine (Madaan et al., 2024) use single
LLM as generator and evaluator. Reflexion (Shinn et al., 2024) treats LLM as the Actor and the evaluator as
the Critic. ViLA (Lin et al., 2024) utilizes GPT-4V (Yang et al., 2023b) to obtain visual feedback. However,
self-improvement relies heavily on prompt design and intrinsic capabilities of LLMs. If errors unrelated to
planning occur, LLMs may struggle to self-correct. Inner Monologue (Huang et al., 2022) and RoCo (Mandi
et al., 2024) utilizes external collision detection and feedback. DoReMi (Xie et al., 2024) sets pre-defined
constrains. Nevertheless, LLMs may make same mistakes in similar situations as the model weights are not
changed. SayCan (Ahn et al., 2022) trains a value function to consider both generated actions and their
values. Remember (Zhang et al., 2024a) builds a memory module and retrieves similar state-action pairs.
Retroformer (Yao et al., 2023) learns a retrospective model via policy gradient optimization. While RL-based
adaptation mechanisms are able to adjust actions before execution, defining and training an effective value
function or reward model is highly challenging. The recently popular DPO (Rafailov et al., 2024) algorithm
greatly simplifies this process by requiring only a preference dataset. In our HomieBot, we use DPO for
model alignment, CoT (Wei et al., 2022) and self-reflection for decision-making. Additionally, error detection
and feedback mechanisms are applied during low-level execution.

3 EMMOE Benchmark

3.1 Problem Statement

EMMOE requires that robots explore environments and perform various open-vocabulary mobile manipulation
tasks based solely on language instructions and sensor observations. More specifically, it combines embodied
task planning, embodied decision making, visual language navigation and manipulation in continuous space,
which requires highly on both level of models and the design of the agent system.

3.2 EMMOE-100 Dataset

By controlling Fetch Robots (Fetch Robotics, 2020) in Habitat-Lab 2.0 (Szot et al., 2021), we collect EMMOE-
100, a dataset consists of 100 complex everyday tasks. We sample 100 different scenarios from Replica
Challenge (Szot et al., 2021) to build simulation environments. In each scene, we’ll first design a daily
mobile manipulation task, then manually control a Fetch robot to complete the task in continuous space and
decompose execution trajectories into discrete subtasks. When designing tasks, we ensure their feasibility in
simulation. Therefore, we select six of most common fundamental skills based on Habitat’s capabilities and
support, which are subsequently composed into our task sequences. Each subtask consists of an executable
action, a target, and a low-level model selection, with the total steps constrained to a maximum of 15. Finally
we obtain 966 subtasks in total. We also annotate each subtask with four first-person view images and
detailed reasoning processes. Moreover, we intentionally design some failed subtasks and provide re-plans
to enhance dataset robustness. To alleviate grounding problems, we construct SFT and DPO sub-datasets,
which will be introduced in Section 5.1.

To enhance task diversity and better align with human demands, we design tasks with five different attributes:
Short-horizon tasks like pick something and place it somewhere. Long-horizon tasks which consist of at
least ten subtasks. Open-ended tasks that allow multiple results and solutions. Logical tasks that provide
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Table 1: Dataset Comparisons. EMMOE-100 is the first dataset to integrate mobile manipulation tasks
with embodied task planning, decomposing long mobile manipulation trajectories into discrete actions then
executed by low-level policies in continuous space.

Benchmark
Low-level

Policy
Selection

Task
Planning Manipulation Navigation Procedure

Annotations Re-plan
LMM

Trainable
Format

COT
Analysis

Open-ended
Instructions

DPO
Sub-dataset

OVMM ✗ ✗ Continuous Continuous ✗ ✗ ✗ ✗ ✗ ✗

BEHAVIOR-1K ✗ ✓ Continuous Continuous ✗ ✗ ✗ ✗ ✗ ✗

ALFRED ✗ ✓ Discrete Discrete ✓ ✗ ✓ ✗ ✗ ✗

Octopus ✗ ✓ Discrete Discrete ✓ ✓ ✓ ✓ ✗ ✗

Habitat-LAB 2.0 ✗ ✗ Continuous Continuous ✗ ✗ ✗ ✗ ✗ ✗

VirtualHome ✗ ✓ Discrete ✗ ✓ ✗ ✓ ✗ ✗ ✗

ManiSkill-2 ✗ ✓ Continuous Continuous ✗ ✗ ✗ ✗ ✗ ✗

Grutopia ✗ ✓ Continuous Continuous ✗ ✗ ✗ ✗ ✗ ✗

EMMOE-100 ✓ ✓ Continuous Continuous ✓ ✓ ✓ ✓ ✓ ✓

vague descriptions and require logical reasoning. Human-style tasks are described in a natural conversation
style. One task can possess multiple attributes as some of these attributes are not contradictory. Table 1
shows detailed comparisons with other mobile manipulation and embodied task datasets. We also provide
detailed task statistics in Appendix A.

3.3 Evaluation Metrics

The most fundamental metrics in embodied task planning are Success Rate (SR) and Goal-Condition Success
(GC) (Shridhar et al., 2020). SR measures the proportion of successful trajectories, while GC is the ratio of
goal conditions achieved at the end of a trajectory. A trajectory is considered successful only if GC reaches
100%. However, GC focuses only on the final result and relies on pre-defined state goals, thus failing to
meet the requirements of our EMMOE tasks, which require fine-grained and language-based evaluations.
Although some studies (Li et al., 2024a) conduct more fine-grained evaluations, they overlook the flexibility
and coherence in embodied task planning and still rely on abstract terms. The success of an individual step
may not contribute to the final success, and an output that differs from the ground truth but can complete
the task in an alternative way should not be considered incorrect. Furthermore, fine-grained evaluation of the
entire agent system remains a challenge. To overcome these limitations and provide more diverse evaluations,
we propose the following new metrics. All details about definitions and visible calculation examples can be
found in Appendix B.

Task Progress To better measure the task execution process and the interrelations among subtasks, we
propose Task Progress (TP), which is calculated as follows:

TP = max
ki∈KT

(
len(kcheck

i )
len(ki)

)
(1)

A keypath is defined as an ordered node set of all necessary subtasks required to complete a task, ki is the
i-th keypath in the keypath set KT for task T , each task is assigned with several keypaths, representing
different ways to complete the task. We strictly match the execution trajectory with the subtask nodes in
ki in sequential order. Once the node in ki is successfully matched, it will be added to another ordered set
kcheck

i , then the ratio between the length of kcheck
i and the length of ki will be recorded. This process will be

repeated for all keypaths in KT , and the highest ratio will become the TP value of the trajectory. Only if TP
reaches 100%, the trajectory will be considered successful. TP considers both the flexibility of the execution
process and the relationships between every step. The way of using natural language and execution results to
evaluate also simplifies new task design and enables evaluation in real-world scenarios, where writing PDDL
files is impractical.

Success End Rate A fully autonomous robot should be able to actively terminate the execution at a
proper moment. Otherwise, even if the task is already done, the robot may continue running and get stuck in
an endless loop. Therefore, we propose Success End Rate (SER) to evaluate whether the agent has the ability
to understand its current situation and reasonably determine the appropriate timing for task termination,
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Figure 2: Overview of HomieBot. HomieBot leverages a hierarchical framework to handle long-horizon
tasks: High-Level Planning decomposes tasks into manageable actions, Low-Level Execution accomplishes
received actions and provides real-time feedback.

the calculation method is as follows:

SER = len(S)∑
t∈M countt(end) (2)

t represents a single trajectory and M is the set of trajectories for all tasks, countt(end) equals 1 if End is
the final action of t or 0 otherwise. S is the set of successful trajectories, of which TP equals 100%. Then
SER is calculated as the ratio of the number of successful trajectories to the number of trajectories that the
agent deemed successful. Once SER reaches a certain threshold or even 100%, auxiliary methods or metrics
are no longer needed to calculate SR.

Success Re-plan Rate Execution failures are common cases in the real world, especially in unfamiliar
environments, which makes the ability to quickly adjust from failures and continuously adapt to new
environments a crucial skill. To measure the adaptation and generalization abilities of the agent, we propose
Success Re-plan Rate (SRR), which is calculated as follows:

SRR =
∑

t∈S countt(replan)∑
t∈M countt(replan) (3)

a replan is defined as the next action that agent takes after the previous action failed, countt(replan) is
the number of re-plans in trajectory t, other symbol definitions are the same as SER. SRR represents the
effectiveness of re-planning and adaptability of the agent. When SRR reaches 100%, it indicates that the
agent can adapt to all failures and then successfully complete the task.

4 HomieBot

4.1 Overview

In this section, we will introduce how HomieBot accomplishes EMMOE tasks. HomieBot employs a hierarchical
framework with communication mechanisms for interleaved execution. High-Level Planning (HLP) deals with
embodied decision making and planning adaptation, while Low-Level Execution (LLE) translates subtasks
into continuous low-level controls and provides feedback to HLP. We will describe HLP in Section 4.2 and
LLE in Section 4.3. A system overview is shown in Fig.2.
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4.2 High Level Planning (HLP)

A long trajectory will be decomposed into several subtasks, the agent must continuously interact with the
environment and adjust plans based on real-time feedback to ensure generated subtasks are practical. We
design elaborate input and output instructions to facilitate dynamic adjustments during execution. Video-
LLaVA (Lin et al., 2023) is selected as our planner model M and fine-tuned with SFT and DPO sub-datasets,
which will be described in Section 5.1.

Multi-modal Instruction To help the LMM better understand current situations, the format of the input
instruction I is as follows:

I = {o1∼4, s, T, inv, h, f} (4)

In the visual component, four first-person view images o1∼4 correspond to four directions respectively. In
the textual component, system information s and user task T remain constant throughout the conversation,
reminding the agent of its responsibility. Feedback f indicates the status of the last execution and detailed
error information if failed, it will also be used to update other parts in I. Inventory inv reflects the items
currently held by the agent, primarily to prevent the generation of illogical actions, it is updated based on
both f and the type of the last action. Execution history h logs all previous subtasks and their results.
Once receiving f , the last subtask and its result will be logged in h. Besides, to better align with real-world
scenarios, we prohibit directly inputting background information into the LMM (e.g. raw object data, Bird’s
Eye View images etc.). The planner must explore the environment and enhance its intrinsic capabilities to
generate more reasonable outputs.

Json-format Output Considering that different low-level policies may require different information formats
and to facilitate the replacement and maintenance of each module, we define our output in the following
uniform format:

O = M(I) = {A, S, m}, S = {action, target} (5)

A represents the analysis of each output, which is inspired by works like CoT (Wei et al., 2022). Before
generating final outputs, planner model M is expected to summarize previous executions and current
situations, analyze what to do next, and propose the subsequent subtask S. To ensure the feasibility of the
output, action can only be chosen from the available action list. Similarly, m which represents the selected
low-level models or policies, is also restricted to a given model list. target can be either an object or a spot,
it should be observable in the provided images and deemed necessary to complete the task.

4.3 Low Level Execution (LLE)

LLE will convert S, m and inv from HLP into precise model-calling instructions. Error detection will
be applied at different stages to monitor the whole process. Once the execution is completed or failed,
environmental images and feedback will be sent back to HLP. We set up six skills based on the support of the
simulator(see Table D1). Since the required information varies from models and would significantly impact
the model performance, we establish two distinct settings to ensure fairness.

Execution With Background Information More specifically, execution with background information
means that the selected model needs precise position and state information of the target. As M3 (Gu et al.,
2022) shows exceptional performance in all skills when utilizing background information in Habitat, we choose
it as the unique model choice m in this setting. To make M3 adapt to our task requirements, we implement
a name mapping for target and adjust its original setting to better align with requirements of our tasks.
In addition to text and image data, LLE also captures the execution process of each step and the entire
trajectory data in video format. This means that HomieBot has the potential to bridge the gap between
robot data and LMM data as the entire execution process is fully automated and annotated, users only need
to set up the scene and input instructions. The video data can be utilized for IL in robotics, while the text
and image data can be utilized for LMM training.
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Execution Without Background Information Without background information means that the agent
can only rely on the information captured by its sensors and the intrinsic abilities of low-level models to
complete the task. As shown in Table D2, we set two manipulation models and two navigation models. For
manipulation, RT-1-X (Padalkar et al., 2023) is used for Pick and Place, while Octo Team et al. (2024b) is
set for Open and Close. For navigation, NoMaD (Sridhar et al., 2024) specializes in image navigation and
is suitable when target is a spot or large object. PixNav (Cai et al., 2024) excels in pixel-level and object
navigation, making it ideal when target is a detectable object. As the deployment of robots in the real world
always demands high real-time performance and is constrained by hardware limitations, we prefer to choose
lightweight models rather than the currently popular VLA models to prevent the system from becoming too
burdensome. Additionally, breaking down long-horizon tasks into action primitives would also reduce the
performance requirements of low-level models. Compared to general-purpose end-to-end models, specialized
lightweight models can complete the action while reducing time costs.

Error Detection To facilitate communication with HLP and provide more detailed error information, we
further classify common errors into four main types and several subtypes. Logical error L1 : The agent’s
hands are already full but still attempts to pick/open/close; L2 : The agent holds nothing but attempts
to put; L3 : The agent attempts to pick/put the object in a closed container; L4 : The agent attempts to
interact with a non-interactive object. Distance error D1 : The agent stands too far and is unable to reach
the target; D2 : The agent is too close to the target and its arm is hindered from properly extending during
interaction. Format Error F1 : The output action or model is not in the available list; F2 : The output
target does not exist in the current scene or can not be recognized by low-level models. Execution Error
E1 : The limited capabilities of the low-level models or policies cause the failure; E2 : Failed execution may
result in the inventory information being accidentally updated. Furthermore, we conduct multiple phases
of error detection during the whole process to guarantee the executions. More classification and detection
details are given in Appendix D.

5 Experiments

5.1 Data Augmentation

SFT Augmentation Previous work (Zhang et al., 2024c) has shown that a standardized data format
would significantly enhance model training and evaluation. Therefore, we write a uniform script to convert
the original EMMOE-100 data into fixed-format conversation data. During this process, all failed subtasks
will be skipped as they are treated as junk data for the SFT dataset, and we initially obtained 930 SFT data
in this way, which is still insufficient for LLM training. To expand the dataset, we use GPT-4o (Hurst et al.,
2024) to regenerate text descriptions of tasks and the analysis of each subtask for three times. This approach
not only enhances the diversity of instructions, allowing the LLM to adapt to different user input styles, but
also helps to avoid introducing additional inaccuracy or inconsistency. Finally, we obtain 3,720 SFT data in
total. The relevant code and data samples are available in Appendix E.1.

DPO Augmentation DPO (Rafailov et al., 2024) training has a strict requirement for data format, which
must include prompt, chosen and rejected. For the i-th subtask and its input instruction Ii, if the execution
of output Oi fails but the next output Oi+1 succeeds after re-plan, we will choose Ii as the prompt, Oi as the
rejected and Oi+1 as the chosen. Although this approach aligns well with the concept of preference data, the
proportion of re-planned data is relatively low. Thus, we utilize following methods to construct new DPO
data. Order Change: We shuffle the order of successful subtasks, treating successful output Oi as chosen
and Oi+1 as rejected. This approach aims to help LLMs learn the logical relationships between subtasks,
particularly the proper sequence of actions. Action Change: To standardize the planner model’s output and
reduce responses outside the action list, we replace actions in subtasks with non-standard names or actions
outside the available list. Model Change: To enable the LLM to own the ability to select the appropriate
low-level model for a given scenario, we replace the model choice with models of the same type in the model
list. As a result, we get 10,104 DPO data in total. More processing flows and data samples are provided in
Appendix E.2.
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5.2 Model Training

We select 90 tasks from EMMOE-100 as our training tasks. Using the methods described in Section 5.1, we
obtain 3,316 SFT training data and 8,984 DPO training data in total. Then we select Video-LLaVA-7B (Lin
et al., 2023) as our base model and conduct a two-stage training process. In the first stage, we fine-tune the
base model with a learning rate of 5e-4 on 4×NVIDIA A40. In the second stage, we align the fine-tuned
model with DPO and train with a learning rate of 5e-6. To prevent catastrophic forgetting and maintain the
intrinsic model capability, LoRA (Hu et al., 2021) is applied in both stages, with LoRA rank set to 128 and
α to 256 in stage one, and LoRA rank set to 8 and α to 8 in stage two.

5.3 Setup

Metrics In addition to SR, TP, SER and SRR introduced in Section 3.3, we also choose Path Length
Weighted SR (PLWSR) (Shridhar et al., 2020) as one of our evaluation metrics. PLWSR is defined as
SR×(length of successful trajectory) / max(length of expert trajectory, length of successful trajectory) and
measures the ability gap between the agent and the expert in successful trajectories.

High Level Planner In baseline planner selections, GPT-4o (Hurst et al., 2024) and Gemini-1.5-Pro (Team
et al., 2024a) are the most popular and common closed-source models. The reasoning model o1 (Jaech et al.,
2024) is famous for its powerful reasoning abilities and can effectively handle complex inference tasks. For
open-source models, as the base planner model - VideoLLaVA can hardly finish EMMOE tasks, making the
evaluation meaningless, we instead choose Qwen2-VL-7B (Wang et al., 2024b) and MiniCPM-V 2.6 (Yao et al.,
2024), which perform well in various multi-modal tasks and have similar model sizes. GPT-4o, Gemini-1.5-Pro
and o1 can be easily integrated into HomieBot after minor adjustments to format requirements. By leveraging
the in-context learning abilities and providing output examples for each inference, the other two models can
also be deployed in our system.

Low Level Executor As the model without finetuning performs poorly due to the impact of the real-to-sim
gap, we currently focus on evaluating the individual skills in M3 (Gu et al., 2022). We extract and modify
implementations of each skill. Original skills require the initial and final states of the object. We map the
object name to obtain specific background information and select the nearest object. Additionally, robotic
arms will be reset after each execution to enhance the success rate. We also pass all environmental state
information between executions to ensure environmental consistency. We use single NVIDIA A40 to run both
models and provide more details in Appendix G.1.

Evaluation Benchmark All tasks in EMMOE-100 will be used for evaluation, and the remaining ten
untrained tasks will serve as our test set. Each task is executed three times with a maximum step limit of 20
each time, the average execution results will be used for the final calculation.

5.4 Results

We begin with a general evaluation since all data are unseen to baseline models. As shown in Table 2, the
DPO version of HomieBot achieves the best performance in SR, PLWSR, TP and SER metrics. o1 also
demonstrates excellent performance in our tasks and surpasses the SFT version in some metrics. Additionally,
it is evident that for open-source models of similar size, even state-of-the-art LMMs like Qwen2-VL-7B (Wang
et al., 2024b) and MiniCPM-V 2.6 (Yao et al., 2024) struggle in EMMOE tasks without additional training.
The low overall success rate is primarily due to the difficulty of EMMOE tasks, which reflects that there is
still a long way from achieving truly autonomous home robots. Moreover, compared with GPT and Gemini
which have much larger parameter sizes, HomieBot still achieves improvements, and shows substantial gains
over models of a similar scale. This validates the effectiveness of our dataset and augmentation methods.

For SER, though the DPO version still performs best, the improvement is not so obvious. This phenomenon
should be attributed to the nature of SER, which reflects the model’s ability to correctly determine when
a task is completed and should be terminated. It is less influenced by format requirements and low-level
executions, but relies more on the model’s inherent reasoning ability. The strong reasoning capabilities of
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Table 2: Performance comparison of different models on EMMOE-100 tasks. The highest values for each
metric are highlighted in bold.

Model SR PLWSR TP SRR SER

Qwen2-VL-7B (Wang et al., 2024b) 1.00 0.50 16.55 0.59 25.00
MiniCPM-V 2.6 (Yao et al., 2024) 0.67 0.57 14.45 0.06 40.00
GPT-4o (Hurst et al., 2024) 13.33 10.51 29.79 3.57 49.38
Gemini-1.5-Pro (Team et al., 2024a) 17.33 14.79 38.03 3.39 55.91
o1 (Jaech et al., 2024) 28.67 24.11 44.52 13.80 38.57

HomieBot-7B (SFT) 27.67 20.88 50.27 9.23 53.90
HomieBot-7B (SFT+DPO) 30.30 24.66 51.39 8.72 60.81

Table 3: Performance comparison of HomieBot on the training and test split. The highest values for each
metric are highlighted in bold.

Model Train split Test split

SR PLWSR TP SRR SER SR PLWSR TP SRR SER

HomieBot (SFT) 28.52 21.49 50.16 9.59 53.85 20.00 15.36 51.19 6.55 54.55
HomieBot (SFT+DPO) 31.84 25.82 52.29 9.69 60.71 16.67 14.36 43.39 3.08 62.50

GPT-4o (Hurst et al., 2024), Gemini-1.5-Pro (Team et al., 2024a) and o1 (Jaech et al., 2024) enable them to
effectively decide when to end a trajectory. Moreover, as we observed during experiments, o1 is more likely
to “give up” compared with other models. After several failed attempts, o1 would judge that the current
task is infeasible and directly terminate task execution, while other models would continue to explore. This
tendency results in relatively lower SER, and also affects TP to some extent.

For SRR, o1 performs best and SFT version performs better than DPO version. Since SRR reflects the
model’s ability to adapt to environments and adjust from failure, this result suggests that o1 can better
leverage feedback information to make more effective re-plans. Besides, it could also be relevant with the
limitations of the DPO method (Xu et al., 2024). Although DPO brings unparalleled advantages in training
efficiency and convenience, it compromises the model’s generalization and transferability to certain extent.
Therefore, we further evaluate HomieBot separately in training and test set. As we can observe in Table 3,
while DPO version performs best on all metrics in the training split, it only outperforms SFT version on SER
in the test split. Additionally, DPO version shows a significant decline on SRR. This observation further
confirms that the DPO method introduces certain generalization issues.

Notably, SER remains stable for both versions across the training and test splits, which further demonstrates
that SER is more related to the model’s inherent judgment ability, and our specialized handling of End
during dataset construction has enhanced this ability (See in Appendix E.2).

5.5 Analysis

To further explore the reasons for the overall low success rate and demonstrate how HomieBot can be used to
simultaneously evaluate both HLP and LLE, we conduct a detailed analysis based on the results in Section 5.4.
Using the error classification in Section 4.3 and the recorded feedback, we collect all errors that occurred
during experiments. To identify which errors are acceptable and solvable and which are the primary causes
of failure, we further classify the collected errors according to whether they appear in successful or failed
trajectories, the results are shown in Figure 3.

Error Analysis Except for E1 and E2 error that come from low-level models, each error type corresponds
to different capabilities of LMMs. In failed trajectories, the predominant error type across all baseline models
is F2 error. This suggests that the primary obstructive factors are physical grounding failures and model
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Figure 3: Error Statistics. The left and right figures depict the proportion of each error type of each model
in successful and failed trajectories respectively. Additionally, we indicate the proportion of total execution
failures next to each model’s name. Due to too few successful trajectories for Qwen2-VL and MiniCPM-V 2.6,
their results will not be shown in the left figure. The original statistical data are available in Appendix G.2.

hallucinations. In practical execution processes, we observe that even models are already told the object
doesn’t exist or can’t be recognized, they may still produce inappropriate outputs or repeat mistakes after
several steps. This issue has been significantly improved in our models, which also highlights the significance
of LMM-trainable format data. With a small amount of augmented data, LMM can build up a general
understanding of current environments, enabling outputs to be compatible with low-level models.

Besides, the proportion of failed executions for two open-source models is relatively low, indicating that
most subtasks are successfully completed, which seems to conflict with the very poor SR. Based on our
observations, since EMMOE includes numerous complex and long-horizon tasks, execution histories often
become lengthy. When the model’s understanding ability is insufficient, it may fail to fully understand or
even forget previous execution contents, ultimately resulting in meaningless outputs. Although these subtasks
can be successfully executed, they contribute nothing to the final task, and even worse, they will consume
remaining steps and fasten task termination. In successful trajectories, the most common error is D1 error.
This indicates that even when the model’s spatial perception ability is insufficient, it can be adjusted through
feedback information. Typically, after a D1 error occurs, the model will output Go to action based on the
feedback, effectively resolving this error.

Case Study Based on the trajectories from the experiments, we further analyze the execution performance
and failure factors, then obtain the following preliminary conclusions: Terrible Grounding. Even after
informing the model that the target doesn’t exist, the model may still generate incorrect outputs, or forget
the mistake after a few steps. Limited LLE. Though high-level planner makes correct plans, execution
continues to fail due to the limited ability of low-level models. Meaningless Outputs. All outputs are
successfully completed, but the agent keeps circling in place without making progress. These meaningless
outputs quickly consume the remaining execution steps, ultimately causing the task to fail. Solvable D1
Error. After a D1 error happens, a Go to action can effectively solve it and facilitate the success of the
whole trajectory. We provide corresponding cases in Appendix H.
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Table 4: Results of LLE evaluations. P represents the proportion of single action errors. SR here represents
an average value as each skill is attempted up to three times per execution.

Metrics Go to Pick Place Open Close

P 38.49 49.77 7.30 3.32 1.11
SR 45.32 22.45 40.97 43.13 36.45

Table 5: The performance of each type of task is presented in the format SR (PLWSR).

Model Short-horizon Long-horizon Open-ended Logical Human-style

HomieBot-7B (SFT) 43.75 (32.31) 24.60 (18.70) 18.52 (11.93) 34.01 (25.45) 25.24 (18.70)
HomieBot-7B (SFT+DPO) 41.67 (34.24) 28.11 (22.82) 15.38 (11.57) 35.86 (28.05) 27.88 (21.78)

LLE Evaluation Comprehensive error types allow us to evaluate HLP and LLE separately. We further
classify E1 and E2 errors based on action types and count total occurrences of each action, the calculation
results are shown in Table 4. It is evident that Pick action has a significantly lower success rate and the
highest proportion of execution errors compared to other actions.

Task Performance We also evaluate SR and PLWSR for each type of task defined in Section 3.2. As
shown in Table 5, short horizon tasks are relatively easy due to straightforward processes and fewer overall
steps. The most challenging are open-ended tasks, which usually have a very long total step count, with
flexible processes and results, demanding powerful capabilities from both HLP and LLE models.

6 Conclusions and Discussions

We propose EMMOE, the first unified benchmark designed to evaluate both high-level planners and low-level
policies. Then we present the collection and features of EMMOE-100 and propose three novel metrics to
complement existing evaluation methods. Next, we introduce our HomieBot and illustrate how its two main
components HLP and LLE function. In experiments, we demonstrate how to construct LMM-trainable SFT
and DPO datasets and evaluate different levels of models. Finally, we conduct an in-depth analysis based on
the detailed error information.

Limitations and Future Work Limited actions and available space in Habitat restrict the scope of task
design. Besides, standardized output will sacrifice certain information precision. The growing number of
model inferences will also lead to additional time costs. Moreover, we conduct deployment and experiments
only in simulation. This decision was driven by two key factors: 1) All researchers are required to make
assessments under the same conditions, thus ensuring optimal fairness and consistency. 2) Since sufficient
GPU resources for deploying LLMs and a capable mobile robot with manipulators are unaffordable for most
researchers, conducting evaluations on a simulation platform could effectively lower the research barrier. In
the future, we’ll collect more tasks, design a more efficient system, and explore real-world evaluations.

Broader Impact Statement

This research uses publicly accessible models and simulators, with all data anonymized and compliant with
privacy regulations. We recognize potential biases in automated data generation (e.g., gender, race) and have
implemented measures to assess and mitigate them, with a commitment to ongoing improvement. We also
acknowledge risks of misuse, such as generating misleading data, and have incorporated safeguards. Our
goal is to advance embodied agent technology responsibly, ensuring accessibility, automation, and ethical
standards. To support reproducibility, all code and models will be openly shared.
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Appendix
The appendix is structured as follows:

• Dataset in Section A.

• Metric Calculation in Section B.

• High Level Planning in Section C.

• Low Level Execution in Section D.

• Data Augmentation in Section E.

• Training Details in Section F.

• Experimental Details in Section G.

• Case Study in Section H.

A Dataset

A.1 Data Collection

We first randomly sample episode information provided by Replica Challenge (Szot et al., 2021) to build
the task scenario, then we use the Fetch robot to collect EMMOE-100 in Habitat-lab v0.2.3. To facilitate
data collection, we modify the original interaction script, and new interface can be seen in Fig. A1. The
interface provides both third-person and first-person view observation to facilitate data collection, third-person
observation is used to assist with collection, only first-person observation with 256∗256 resolution will be
saved. Notably, we only use the scene information to collect environment data, other functions and metrics
in Replica Challenge are irrelevant to our work.

Figure A1: Data collection interface in Habitat-lab v0.2.3. Third-person observation in the left is used
to facilitate data collection, only first-person observation with 256∗256 resolution in the right will be saved.

We also show the modified code clip, once a single subtask is finished, we can conveniently save relevant
information by pressing the keyboard.

21



Under review as submission to TMLR

def save_first_view_images ():
directions = [’left ’, ’back ’, ’right ’, ’front ’]
global h_cnt

h_cnt += 1
for i in range (4):

for j in range (19):
base_action = [0, 1]
name = base_action_name
args = { base_key : base_action }
result = step_env (env , name , args)

use_ob = observations_to_image (result , {})
draw_ob = use_ob [:]
from PIL import Image
ob = Image. fromarray ( draw_ob )
width , height = ob.size
ob.crop ((384 , 0, width , height )).save(os.path.join( info_folder , f"
subtask {h_cnt}_{ directions [i]}. png"))

return result , arm_action , end_ep

A.2 Dataset Details

(a) Task Classification (b) Task Cloud

Figure A2: Dataset Statistics

In terms of task classification, the long-horizon task is the most, with 84 (76 in the train set and 8 in the test
set). The least task is the most difficult open-ended task, with 6 in the train set and 3 in the test set. The
distribution of the five types of tasks in the train and test sets is also approximately the same. In the word
cloud map, we can see that put, find, sofa, etc. are popular words in our task.

A.3 Dataset Demonstration

Here we provide a demonstration of EMMOE data, its viusal information is shown in Fig. A3, the collection
method is as Section 3.2.

Task: check if there are anything in the kitchen drawer , if it ’s empty put a
short can into it

Subtask1 : [Go to , blue_sofa ] ( PixNav )
Analysis : According to my final task , I must go to kitchen first , but I can ’t
find kitchen in my sight and I find a blue sofa , so I should go to the blue
sofa first and find kitchen later
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Figure A3: Task Demonstration. line: subtask sequence; row: front, left, back, right
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Feedback : None
Inventory : None

Subtask2 : [Go to , living_room ] (NoMaD)
Analysis : I successfully arrived sofa but I still can ’t find kitchen , as I see

living room , I should go to living room then keep searching kitchen
Feedback : None
Inventory : None

Subtask3 : [Go to , kitchen_drawer ] (NoMaD)
Analysis : I successfully arrived the living room and find the kitchen drawer ,
so I should go to kitchen drawer next
Feedback : None
Inventory : None

Subtask4 : [Open , kitchen_drawer ] (octo)
Analysis : I successfully arrived the kitchen drawer but it ’s closed . To check
items in the drawer , I should open it first
Feedback : None
Inventory : None

Subtask5 : [Go to , kitchen_counter ] (NoMaD)
Analysis : I successfully opened the drawer and find nothing in it , according
to my task , I should put a short can into it in this case , as I find one on
the kitchen counter , I should go there next
Feedback : None
Inventory : None

Subtask6 : [Pick , short_can ] (RT -1-X)
Analysis : I successfully arrived the kitchen counter and find the can , so I
should pick it next
Feedback : None
Inventory : short_can

Subtask7 : [Go to , kitchen_drawer ] (NoMaD)
Analysis : I successfully picked the short can and I should come back to
kitchen drawer to put it in
Feedback : None
Inventory : short_can

Subtask8 : [Put , short_can , kitchen_drawer ] (RT -1-X)
Analysis : I successfully arrived the kitchen drawer and I should put the can
into it next
Feedback : None
Inventory : None

Subtask9 : [Close , kitchen_drawer ] (octo)
Analysis : I successfully put the can into the drawer , and it ’s better to close

the drawer next
Feedback : None
Inventory : None

Subtask10 : [End]
Analysis : According to the historical execution and final task , I have finally

finished the task and it ’s time to end
Feedback : None
Inventory : None

24



Under review as submission to TMLR

We also provide all designed tasks here, the task design principles focus on reflecting human’s real-life with a
variety of common demands and task descriptions.

(1) fetch a frozen meat can and put it on the kitchen counter
(2) clean up the brown table and place all items in the fridge
(3) find a cold apple and put it on the kitchen_counter
(4) find an bowl and put it on the sofa
(5) find an master_chef_can on the wood_table and put it into the drawer
(6) go to the floor 2
(7) prepare neccessary ingredients to make a fruit salad and put them on the
yellow_table
(8) keep the number of red_boxes on the yellow_table to 5
(9) search a blue can for me
(10) fetch one crack box and one sugar box and put them on the beige table
(11) find two cracker boxes in the room and put them on the kitchen counter
(12) check if there are apples in the fridge and put one into it if not
(13) pick all fruit on the brown table and put them on the sofa
(14) put the bowl into the kitchen cabinet
(15) find a bleach cleanser and a sponge then place them on the brown table
(16) fetch two apples from the kitchen counter and put them into the fridge
(17) clean the wood table and put all items except mug to the sofa
(18) I want to eat at the brown table and prepare a fish can for me
(19) fetch two cracker_boxes from the kitchen sink and refrigerate them
(20) check and close all kitchen facilities
(21) prepare two bowls on the brown table
(22) fetch two meat_cans from the kitchen and put them on the beige table
(23) find a mug and put it on the tvstand
(24) go to kitchen then put the red box into the drawer and put the red can
into the fridge
(25) find an apple and place it on the tv_stand
(26) clean the tvstand and put all items to the sofa
(27) clean up the tv_stand and put all items in the kitchen drawer
(28) put the sponge and bleach cleanser on the sofa into the kitchen drawer
(29) freeze a sugar_box
(30) put the blue can on the kitchen_counter to the fridge
(31) find two potted_meat_cans and put them on the sofa
(32) clean up the blue table and put all items to the white cabinet
(33) find an apple and put it on the sofa
(34) take a bowl and a meat can from the kitchen and put them on the brown
table
(35) clean up the kitchen sink and put fruit to the fridge other items to the
kitchen_counter
(36) replenish the number of blue cans on the table to 3
(37) find two bowls in the room and put them in the kitchen sink
(38) put all cracker_boxes on the tvstand to the sofa
(39) take a yellow box and put it into the fridge .
(40) put the apple on the blue table to the sofa
(41) fetch 3 different kinds of fruit and put them on the beige table
(42) I want to eat at the brown table and prepare some fruit for me
(43) put the frozen sponge into the kitchen drawer
(44) put all bowls on the sofa to the kitchen sink
(45) get a can in the fridge and put it on the table
(46) prepare a washed apple then put it on the yellow table
(47) clean up the tvstand
(48) clean up the chair
(49) put everything in the kitchen sink onto the kitchen_counter
(50) wash the bowl on the kitchen_counter
(51) fetch two sugar boxes in the fridge and put them on the brown table , if
there aren ’t enough sugar boxes in the fridge , find them elsewhere in the room

25



Under review as submission to TMLR

(52) Prepare a soup_can and a red_bowl on the kitchen_counter
(53) put all the fruit on the kitchen_counter into the sink
(54) put the bowl on the wood_table and the apple on the kitchen_counter to
the kitchen sink
(55) refrigerate all master_chef_cans on the tvstand
(56) clean up the blue sofa
(57) find a gelation_box and put it in the drawer
(58) put the cracker box in the kitchen sink to the sofa
(59) check if there is food on the sofa then put them in the fridge if so
(60) refrigerate all lemons in the kitchen drawer
(61) put all food on the sofa into the drawer
(62) take the bowl on the table to the kitchen
(63) clean up the tv_stand and place items on the kitchen_counter
(64) check if there are bananas in the fridge ; if not , get one from the
kitchen and put it in the fridge
(65) fetch a yellow box from the refrigerator and place it on the table , if
there isn ’t one , get it from the kitchen
(66) clean the sofa and put all items on the table in front of it
(67) find an apple and place it in the drawer
(68) Put the red bowl on the blue table in the fridge .
(69) go to the second floor
(70) keep the number of red_boxes on the yellow_table to 3 and put extra
red_boxes to the kitchen_counter
(71) clean up the beige table and put all items to kitchen
(72) put all fruit in the living_room to the fridge
(73) find an apple and place it in the fridge
(74) find a bowl and a mug then put them into the kitchen sink
(75) replenish the number of pears in the fridge to 3
(76) find an apple and put it on the brown table
(77) put all lemons and apples on the sofa to the tvstand
(78) put all bowls in the open drawer onto the kitchen_counter
(79) clean up the sofa and put all items into the drawer
(80) clean up the sofa and place all items on the nearby chair
(81) freeze the meat can on the blue desk
(82) check and close all appliances in the room
(83) get a cold apple and put it on the wood table
(84) check if there are anything in the kitchen drawer , if it ’s empty put a
short can into it
(85) turn off all appliances in the room then go the door and wait
(86) prepare some food and put it on the brown table
(87) check items in the fridge then increase the number of blue cans to 2
(88) find a box and put it on the tvstand
(89) clean the table in front of you and put all items into the sink
(90) find two bananas on the tvstand and put them to the kitchen sink
(91) find the bowl in the drawer and put it to the kitchen sink
(92) get a cold fruit and prepare to wash it
(93) clean the sofa
(94) put all items on the sofa to the tvstand
(95) put all items on the blue sofa to the white desk
(96) find the sponge and put it into the drawer
(97) find two kinds of fruit and put them on the tvstand
(98) find a banana and place it in a bowl
(99) put the bowl on the brown table into the kitchen sink and put the
suger_box on the tvstand to the sofa
(100) put the green_can on the brown_table to the fridge
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B Metric Calculation

B.1 Task Progress

In the task demonstrated in Appendix A, it’s easy to find that to complete the task, we have to open the
drawer to see if there is anything, and then we have to finish a put operation (put short can in the drawer).
In addition to these two, we can also add some operation like, go to the drawer, close the cook and other
actions which do not influence the final success. So we get the keypath as shown below,

[
[

"[Open , kitchen_drawer ]",
"[Put , short_can , kitchen_drawer ]",
"[ End ]"

],
[

"[Open , kitchen_drawer ]",
"[Put , short_can , kitchen_drawer ]",
"[ Close , drawer ]",
"[ End ]"

],
[

"[Go to , drawer ]",
"[Open , kitchen_drawer ]",
"[Put , short_can , kitchen_drawer ]",
"[ End ]"

],
[

"[Go to , drawer ]",
"[Open , kitchen_drawer ]",
"[Put , short_can , kitchen_drawer ]",
"[ Close , drawer ]",
"[ End ]"

]
]

Here’s an example to show how to calculate TP,

(1) [Go to , kitchen ]( success )
(2) [Open , drawer ]( success )
(3) [Put , short_can , drawer ]( fail)
(4) [Go to , kitchen_counter ]( success )
(5) [Put , short_can , kitchen_counter ]( fail)
(6) [Go to , drawer ]( success )
(7) [Put , short_can , drawer ]( fail)
(8) [Go to , kitchen_counter ]( success )
(9) [Put , short_can , kitchen_counter ]( fail)
(10) [Go to , drawer ]( success )
(11) [Put , short_can , drawer ]( fail)
(12) [Go to , kitchen_counter ]( success )
(13) [Put , short_can , kitchen_counter ]( fail)
(14) [Go to , drawer ]( success )
(15) [Put , short_can , drawer ]( fail)
(16) [Go to , kitchen_counter ]( success )
(17) [Put , short_can , kitchen_counter ]( fail)
(18) [Go to , drawer ]( success )
(19) [Put , short_can , drawer ]( fail)
(20) [Go to , kitchen_counter ]( success )
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This is the result of one run, and we can see that the TP of this run is as calculated in Section 3.3, max ( 1
3 ,

1
4 , 1

2 , 2
5 ) = 0.5.

B.2 Success End Rate

In the above result, the number of steps reach 20, and there is no End action to terminate the task. Here’s a
example to show the success end.

(1) [Go to , kitchen_counter ]( success )
(2) [Go to , yellow_box ]( success )
(3) [Pick , yellow_box ]( success )
(4) [Go to , fridge ]( success )
(5) [Put , yellow_box , fridge ]( fail)
(6) [Open , fridge ]( fail)
(7) [Go to , kitchen_counter ]( success )
(8) [Put , yellow_box , kitchen_counter ]( success )
(9) [Go to , fridge ]( success )
(10) [Open , fridge ]( success )
(11) [Go to , kitchen_counter ]( success )
(12) [Pick , yellow_box ]( success )
(13) [Go to , fridge ]( success )
(14) [Put , yellow_box , fridge ]( success )
(15) [Close , fridge ]( success )
(16) [End]

This is the result of one run for the task take a yellow box and put it into the fridge, and we can judge by its
keypath that it complete the task successfully. It has End action, so the End is a success end which can
be treated as one of the numerators when calculating SER in Section 3.3. In fact, as said in Section 3.3,
successful task trajectory must have one end, but there maybe other unsuccessful task trajectories have ends,
that’s why we calculating SER.

B.3 Success Re-plan Rate

First of all, the next action our agent takes after the previous action failed is called replan. Use the above
subsection result as an example, and it’s a successful task trajectory. In the step 5, the agent try to put the
yellow box in the fridge but failed, and then, it try to open the fridge which can be treated as a success replan
even though it failed again. Since the action open fridge is a meaningful action which can lead to the final
success. It’s one of the numerators when calculating SRR in Section 3.3. Also, in the first subsection for TP,
the example is an unsuccessful task trajectory, so actions like put short can drawer are not success replan.

C High Level Planning

In this section, we will should how the high-level planner described in Section 4.2 works step by step. A running
demonstration of our HomieBot is shown in Fig. C4. To provide more intuitive understanding, we extract
core sections from the original code and adapt them into a more general and easy-to-understand format to
illustrate the process flow, this processing method is also applied to all subsequent code demonstrations. First,
we provide the system information used in HomieBot, and all subsequent references to system information
are consistent with what is provided here.

You are a powerful housework assistant , I will give you following information
for you to make a decision toward the final task.
(1) Observation images : Four first - person perspective images of the current
environment , in the order of front , left , back , and right.
(2) Task: Your final goal.
(3) Inventory : Your current assets , remember that you are a one -hand agent ,
which means you can ’t open or pick when your Inventory is not None , and you
can ’t put if your Inventory is None , this is very important .
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Task: check if there are bananas in the fridge; if not, get one 

from the kitchen and put it in the fridge.

VLM 

Low 

Level 

Execution

Image:

Inventory: None

Historical Execution: (1) [Go to, fridge](success) (2) 

[Open, fridge](success) …… (7) [Go to, banana](success)

Feedback: None

Analysis: I successfully arrive the banana and find it, so I 

should pick it.

Subtask: [Pick, banana]

Model: RT-1-X

Image: 

Inventory: None

Historical Execution: : (1) [Go to, fridge](success) …… 

(7) [Go to, banana](success) (8) [Pick, banana](fail)

Feedback: Unable to pick, the subtask is too difficult to 

perform.

Analysis: I failed to pick the banana, as the task is too 

difficult, so I should go to the kitchen counter next.

Subtask: [Go to, kitchen_counter]

Model: NoMaD

……

……

Figure C4: An illustration of running pipeline of HomieBot. After receiving images and feed- back,
LMM generates analysis, specific subtask and model choice for low level executor to per- form.

(4) Historical Execution : Subtasks that were already fulfilled in the history ,
and the execution status of each subtask ( success or fail). You need to make

decisions based on historical actions , current circumstances and your final
task.
(5) Feedback : Feedback will provide error information of the last execution ,
it will be None if the last execution ends successfully .

You should output with following formats :
Analysis : Make a detailed summary of your current situation based on given
information , analyse and decide what to do next and output the reason of your
decision .
Subtask : [action , target ], choose your action from the action list [Go to ,
Pick , Put , Open , Close , End], and the target can be a place or a object from
your observation . If you choose Put as your action , output in format [Put ,
object , place] which means put the object to the place. If the final task is
done and no more action is needed , just output [End ].
Model: Choose one most suitable model in the model list [NoMaD , PixNav , octo ,
RT -1-X]. NoMaD can go to a spot like living room , PixNav focuses on object
navigation and can go to a object , octo can handle with open and close , RT -1-X

is good at picking and putting .

You need to focus on the consistency with previous subtasks . You should pay
attention to current Inventory and avoid conflicts .
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Remember you can only go to the place and interact with the objects you
observe in your sight.
Remember the logic between outputs , it is recommended to open the receptacle
before you pick something because you can ’t open while holding , and it ’s
recommended to arrive the object place before you interact with it.
Remember you just need to output the next subtask to be fulfilled and don ’t
output a whole plan , this is very important .
Remember you should output strictly with the response template .
Now , I will send the message so that you can make planning accordingly .

Next, we define some classes to make the overall process more readable and smooth. Here we only list most
relevant and important parts in the process.

import os
import json
import re

class Conversations :
def __init__ (self , max_round =20):

self. system = SYSTEM_INFO
self. history = []
self.round = 0
self. window = 3
self. max_round = max_round

def get_history_prompt (self):
history_prompt = ""
if self.round < self. window :

history_prompt = "".join(self. history )
else:

history_prompt = "".join(self. history [ -3:])
return history_prompt

def reset(self):
self. history = []
self.round = 0

def save(self , save_path ):
with open(os.path.join(save_path , " conversation .json"), "w") as file:

json.dump(self.history , file , indent =4)

class HomieBot :
def __init__ (self):

self.conv = Conversations ()
self. inventory = []
self.comm = Communicator ()

def get_inventory (self):
if len(self. inventory ) == 0:

return "None"
else:

return " ".join(self. inventory )

def generate_instruction (self , task , feedback , historical_execution ):
if historical_execution == "":

instruction = f"Task: {task }\ nInventory : {self. get_inventory ()}\
nHistorical Execution : None\ nFeedback : None\nNow based on the
instruction above , please output Analysis , Subtask and Model in
mentioned format .\n"
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else:
instruction = f"Task: {task }\ nInventory : {self. get_inventory ()}\
nHistorical Execution : { historical_execution }\ nFeedback : { feedback
}\ nNow based on the instruction above , please output Analysis ,
Subtask and Model in mentioned format .\n"

return instruction

def update_inventory (self , subtask , feedback ):
subtask = subtask .lower ()
if "None" in feedback :

if "pick" in subtask :
obj = subtask .split.split(’,’)[1]. strip ()
self. inventory . append (obj)

if "put" in subtask :
self. inventory .pop ()

else:
if "put" in subtask and "the object is missing " in feedback :

self. inventory .pop ()

def end(self):
self.comm. close_connection ()

the most important function generate_instruction works as described in Section 4.2, which contains task,
inventory, history and feedback.

Afterward, we provide the process for HomieBot to execute the task in a single trajectory.

homie = HomieBot ()
task = "input your task"
save_path = " save_path "
feedback = ""
historical_execution = ""

while homie.conv.round < homie.conv. max_round :
homie.conv.round += 1
instruction = homie. generate_instruction (task , feedback ,
historical_execution )
images = homie.comm. receive_env_images ()

output = model_inference ( instruction , images )
homie.conv. history . append (f"USER :\n{ instruction } ASSISTANT :\n{ output }\n")

pattern = r’.* Analysis : *(.+?) * Subtask : *\[(.*?) \].* Model: *(.*?) $’
match = re. search (pattern , output , re. DOTALL )
analysis = match.group (1).strip ()
subtask = match.group (2).strip ()
model_choice = match.group (3).strip ()

homie.comm. send_subtask (subtask , model_choice , homie. get_inventory ())
feedback , signal = homie.comm. receive_feedback ()

homie. update_inventory (subtask , feedback )
historical_execution += f"({ homie.conv.round }) { subtask }({ signal }) "

if "end" in subtask .lower ():
break

homie.conv.save( save_path )
homie.end ()
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the realization of function model_inference varies from different models, but it’s quite easy to deploy different
models into HomieBot as we can see in the code.

D Low Level Execution

D.1 Pipeline

def error_detection (action , target , inventory , env):
# Format Error Detection
if action not in action_list :

return ’fail ’, f’{ action } is not in the action list! You should only
choose actions in the list.’

mapping_dict = load_name_mapping ()
if target in mapping_dict :

target = mapping_dict [ target ]
else:

return ’fail ’, f’{ target } does not exist! Please choose another object
’

# Logical Error Detection
if inventory != ’None ’ and action in [’pick ’, ’open ’, ’close ’]:

return ’fail ’, f’Unable to { action }, the hand is full ’
if inventory == ’None ’ and action == ’put ’:

return ’fail ’, f’Unable to { action }, the hand is empty ’

if action == ’put ’ and " closed " in check_status ( target ):
return ’fail ’, f’Unable to put , the { target } is closed , you should
open it first ’

if action in [’open ’,’close ’] and "non - interactive " in check_status ( target
):

return ’fail ’, f’Can not { action } { target }! Please choose another
object ’

# Distance Error Detection
if action != "go to":

distance = calculate_distance (env , target )
if distance > 2:

return ’fail ’, f’Unable to { action }, the target is far away ’
if distance < 0.1:

return ’fail ’, f’Unable to { action }, the target is too close ’

return ’success ’, ’None ’

max_count = 20
comm = Communicator ()
save_path = " save_path "
count_steps = 1
env = init_env ()

while count_steps <= max_count :
images = get_env_images (save_path , env , count_steps )
comm. send_env_images ( images )

action , target , inventory = comm. receive_subtask ()
if "end" in action .lower ():

comm. send_feedback ("None", " success ")
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break

# Error Detection Before Execution
signal , feedback = error_detection (action , target , inventory , env)
if signal == "fail":

comm. send_feedback (feedback , signal )
break

for retry in range (3):
reset_arm (env)
# Error Detection During and After Execution
signal , feedback , env = execution (action , target , inventory , env)
if signal == ’success ’:

break
elif action == ’put ’ and env[’grasped_obj ’] is None:

feedback = f’Unable to { action }, and the object is missing ’
break

elif retry == 2:
feedback = f’Unable to { action }, the subtask is too difficult to
perform ’

if signal == ’success ’:
feedback = "None"

count_steps += 1
comm. send_feedback (feedback , signal )

D.2 Skills

The skill we choose and their functions are shown in Table D1.

Table D1: The list of skills we used with descriptions and examples

Skill Description Example

Pick object Pick an object up pick sugar box
Put object to place Put an object into a place put lemon on brown table
Open container Open the container open the fridge
Close container Close the container close the kitchen drawer
Go to place navigate to a place navigate TV stand
Go to object navigate to where an object is navigate bowl
End End the execution End

D.3 Models

M3 (Gu et al., 2022) can flexible interact with target objects from various locations based on the integration
of manipulative skills and mobility, while navigational skills are designed to accommodate multiple endpoints,
ultimately leading to successful operations. Specifically, M3 implements these concepts by emphasizing mobile
manipulation skills over fixed skills and training navigational skills using area targets rather than point
targets.

RT-1-X ( (Padalkar et al., 2023)) architecture utilizes image and text instructions as inputs, and generates
discrete end-effector actions as outputs. Specifically, RT-1-X is a transformer-based model that guides robotic
arms to complete various manipulation tasks. RT-1-X is an extension of the RT-1 ( (Brohan et al., 2022))
model, which is designed for robot control and trained on a large-scale robot dataset.
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Table D2: Descriptions of Low Level Models used in HomieBot.

Model Input Capability Task

RT-1-X (Brohan et al., 2022) RGB & Instructions Manipulation Picking & Placing
Octo (Team et al., 2024b) RGB & Instructions Manipulation Opening & Closing
NoMaD (Sridhar et al., 2024) RGB & Goal-Image Image-Navigation Navigate to Spot & Large Object
PixNav (Cai et al., 2024) RGB & Goal-Name Pixel-Navigation Navigate to Object

Octo ( (Team et al., 2024b)) is an open-source, general-purpose policy for robotic manipulation based on
transformers. It supports flexible task and observation definition and can be quickly integrated into new
observation and action spaces.

NoMaD ( (Sridhar et al., 2024)) trains a single diffusion strategy for goal-oriented navigation and goal-
independent exploration, the first one is to reach user-specified goals after localization and the second one is
to search new environments. The method is instantiated using a transformer-based large-scale policy trained
on data from various ground robots.

PixNav ( (Cai et al., 2024)) is a pixel-guided navigational skill. It designs an LLM-based planner that
utilizes common sense between objects and rooms to select the optimal waypoints, which are then executed
by a pixel navigation strategy to achieve long-line-of-sight navigation. In this pipeline, we use its ability of
finding the optimal waypoint and pixel navigation to navigate to some specific small object such as lemon
and sugar box.

D.4 Error Classification

Logical error If the hand already has an object (inventory is not empty) but still attempts to perform a
pick/open/close operation, the execution will fail, and the message the hand is full will be returned; if the
hand has no object (inventory is empty) but still attempts to perform a place operation, the execution will
fail, and the message the hand is empty will be returned; if the item is not a container but still attempts to
perform a open/close operation, the execution will fail, and the message please choose another object will
be returned. In the execution with environment state information, if the container is closed and a place
operation is still attempted, the execution will fail, and the message the container is closed, you should open
it first will be returned.

Distance error In the execution with environment state information, if the agent is too close to the target,
causing the arm to be unable to extend properly but still attempts to perform a pick/place/open/close
operation, the execution will fail, and the message the target is too close will be returned; if the agent is
too far from the target, causing it to be unable to reach the target object but still attempts to perform
a pick/place/open/close operation, the execution will fail, and the message the target is far away will be
returned.

Format Error For high level planning, it may output an object which is not in the scene, that is, in low
level execution, we can’t find an object with a name matching the input in the scene, the message please
choose another object will be returned; also, high level planning may output in a wrong operation which can
not be performed, the message You should only choose actions in the list will be returned.

Execution Error Due to the limited capabilities of low-level models, sometimes the failure is not caused
by HLP. Therefore, each action can be executed up to three times. If it fails after three times, it will return a
message the subtask is too difficult to perform; also, when performing a put operation, if the agent put the
wrong place, it will return a message the object is missing to remind the agent to re-plan and re-pick.
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E Data Augmentation

E.1 SFT Augmentation

To expand the original dataset size, we first use GPT-4o (Achiam et al., 2023) to regenerate text descriptions.
Here is the regeneration code clip, we just show how to regenerate task descriptions, but the regeneration of
subtask analysis uses the same template.

client = OpenAI ( api_key =’’)
completion = client .chat. completions . create (

model="gpt -4o",
messages =[

{"role": " system ", " content ": " Rewrite the following text with the
same meaning but in a different description while do not change object
’s name: "},
{"role": "user", " content ": task}

]
)

Next we show how to convert a single EMMOE data into fix-format conversation data. After processing,
each individual subtask will be combined with all previously subtasks to form a SFT data.

import os
with open( task_path ) as file:

content = file.read ()

content = content .split("\n\n")
task = content [0]
historical = ""
sft_data = []

for i, subtask_info in enumerate ( content [1:]):
subtask_data = {}
subtask_info = subtask_info .strip ().split("\n")
if subtask_info [0] == ’’:

continue
subtask_id , decision = subtask_info [0]. split(’: ’)
subtask_id = subtask_id .lower ()
analysis = subtask_info [1]

if "End" not in decision :
action , model_choice = decision .strip(’)’).split(’ (’)

else:
action = "[End]"
model_choice = "None"

image_paths = [
os.path.join(save_dir , f"{ subtask_id } _front .png"),
os.path.join(save_dir , f"{ subtask_id }_left.png"),
os.path.join(save_dir , f"{ subtask_id }_back.png"),
os.path.join(save_dir , f"{ subtask_id } _right .png")

]
for path in image_paths :

if not os.path. exists (path):
raise FileNotFoundError (f"File does NOT exist: {path}")

if i == 0:
instruction = f"{task }\ nInventory : None\ nHistorical Execution : None\
nFeedback : None\nNow , please output Analysis , Subtask and Model ,
according to the instruction above."
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else:
instruction = f"{task }\n{ inventory }\ nHistorical Execution :{ historical
}\n{ feedback }\nNow , please output Analysis , Subtask and Model ,
according to the instruction above."

answer = f"{ analysis }\ nSubtask : { action }\ nModel : { model_choice }"

feedback = subtask_info [2]
inventory = subtask_info [3]
if "None" in feedback :

historical += f"({i+1}){ decision } ( success )\n"
else:

historical += f"({i+1}){ decision } (fail)\n"

conv = []
conv. append ({"from": "human", "value": instruction })
conv. append ({"from": "gpt", "value": answer })

task_id = ’_’.join( task_path .split(’.’)[0]. split(’/’)[ -2:])

subtask_data ["id"] = task_id + ’_’ + subtask_id
subtask_data ["image"] = image_paths
subtask_data [" conversations "] = conv

sft_data . append ( subtask_data )

We also provide some data samples for more intuitive understanding.

[
{

"id": "21 _info_subtask13 ",
"image ": [

"./ HomieBot /data/train /21/ subtask13_front .png",
"./ HomieBot /data/train /21/ subtask13_left .png",
"./ HomieBot /data/train /21/ subtask13_back .png",
"./ HomieBot /data/train /21/ subtask13_right .png"

],
" conversations ": [

{
"from ": "human",
"value ": "Task: clean up the blue sofa\ nInventory : None\
nHistorical Execution :(1)[Go to , blue_sofa ] ( PixNav ) ( success )
\n(2)[Pick , cracker_box ] (RT -1-X) ( success )\n(3)[Go to ,
kitchen_counter ] (NoMaD) ( success )\n(4)[Put , cracker_box ,
kitchen_counter ] (RT -1-X) ( success )\n(5)[Go to , blue_sofa ] (
PixNav ) ( success )\n(6)[Pick , sugar_box ] (RT -1-X) ( success )\n
(7)[Go to , kitchen_counter ] (NoMaD) ( success )\n(8)[Put ,
sugar_box , kitchen_counter ] (RT -1-X) ( success )\n(9)[Go to ,
blue_sofa ] ( PixNav ) ( success )\n(10)[Pick , soup_can ] (RT -1-X) (
success )\n(11)[Go to , kitchen_counter ] (NoMaD) ( success )\n(12)
[Put , soup_can , kitchen_counter ] (RT -1-X) ( success )\n\
nFeedback : None\nNow , please output Analysis , Subtask and
Model , according to the instruction above ."

},
{

"from ": "gpt",
"value ": " Analysis : I successfully put the soup_can on the
kitchen_counter , according to my task , I should go back to the

sofa to check whether it ’s clean or not\ nSubtask : [Go to ,
blue_sofa ]\ nModel : PixNav "
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}
]

},
{

"id": "21 _info_subtask14 ",
"image ": [

"./ HomieBot /data/train /21/ subtask14_front .png",
"./ HomieBot /data/train /21/ subtask14_left .png",
"./ HomieBot /data/train /21/ subtask14_back .png",
"./ HomieBot /data/train /21/ subtask14_right .png"

],
" conversations ": [

{
"from ": "human",
"value ": "Task: clean up the blue sofa\ nInventory : None\
nHistorical Execution :(1)[Go to , blue_sofa ] ( PixNav ) ( success )
\n(2)[Pick , cracker_box ] (RT -1-X) ( success )\n(3)[Go to ,
kitchen_counter ] (NoMaD) ( success )\n(4)[Put , cracker_box ,
kitchen_counter ] (RT -1-X) ( success )\n(5)[Go to , blue_sofa ] (
PixNav ) ( success )\n(6)[Pick , sugar_box ] (RT -1-X) ( success )\n
(7)[Go to , kitchen_counter ] (NoMaD) ( success )\n(8)[Put ,
sugar_box , kitchen_counter ] (RT -1-X) ( success )\n(9)[Go to ,
blue_sofa ] ( PixNav ) ( success )\n(10)[Pick , soup_can ] (RT -1-X) (
success )\n(11)[Go to , kitchen_counter ] (NoMaD) ( success )\n(12)
[Put , soup_can , kitchen_counter ] (RT -1-X) ( success )\n(13)[Go
to , blue_sofa ] ( PixNav ) ( success )\n\ nFeedback : None\nNow ,
please output Analysis , Subtask and Model , according to the
instruction above ."

},
{

"from ": "gpt",
"value ": " Analysis : According to the historical execution and
final task , I have finally finished the task and it ’s time to
end\ nSubtask : [End ]\ nModel : None"

}
]

}
]

E.2 DPO Augmentation

The last step for SFT Augmentation and the first step of DPO Augmentation occur simultaneously, failed
subtasks are considered junk data for SFT but can be used to construct DPO data, so we run data_sift
function first. After getting initial DPO data, we will use SFT data, model_change, order_change and
action_change to construct final DPO dataset.

def data_sift ( subtask_list ):
sft_data = []
dpo_data = []
flag = 1
for i in range (1, len( subtask_list )):

if " Feedback : None" in subtask_list [i][" conversations "][0]["value"]:
sft_data . append ( subtask_list [i -1])
if flag == 0:

dpo_data . append ({
" prompt ": subtask_list [i -2][" conversations "][0]["value"],
" chosen ": ’\n’.join( subtask_list [i -1][" conversations "][1][
"value"]. split(’\n’)[1:]) ,
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" rejected ": ’\n’.join( subtask_list [i -2][" conversations "
][1]["value"]. split(’\n’)[1:])

})
flag = 1

else:
flag = 0

sft_data . append ( subtask_list [ -1])

return sft_data , dpo_data

def dpo_augment (sft_data , dpo_data ):
for i in range(len( sft_data )):

prompt = sft_data [i][" conversations "][0]["value"]
chosen = ’\n’.join( sft_data [i][" conversations "][1]["value"]. split(’\n’
)[1:])
if "End" in sft_data [i][" conversations "][1]["value"]:

continue

def model_change ( chosen ):
if "NoMaD" in chosen :

return chosen . replace ("NoMaD", " PixNav ")
elif " PixNav " in chosen :

return chosen . replace (" PixNav ", "NoMaD")
elif "octo" in chosen :

return chosen . replace ("octo", "RT -1-X")
else:

return chosen . replace ("RT -1-X", "octo")

def order_change (i, sft_data ):
return ’\n’.join( sft_data [i+1][" conversations "][1]["value"]. split(
’\n’)[1:])

def action_change ( chosen ):
if "Pick" in chosen :

return chosen . replace ("Pick", "Fetch")
elif "Put" in chosen :

return chosen . replace ("Put", "Place")
elif "Go to" in chosen :

return chosen . replace ("Go to", "Move")
elif "Open" in chosen :

return chosen . replace ("Open", "Pull")
elif "Close" in chosen :

return chosen . replace ("Close", "Push")

reject1 = model_change ( chosen )
reject2 = order_change (i, sft_data )
reject3 = action_change ( chosen )
dpo_data . append ({" prompt ": prompt , " chosen ": chosen , " rejected ":
reject1 })
dpo_data . append ({" prompt ": prompt , " chosen ": chosen , " rejected ":
reject2 })
dpo_data . append ({" prompt ": prompt , " chosen ": chosen , " rejected ":
reject3 })

return dpo_data

Notably, action End is special among all available actions and it will only appear as rejected in DPO data.
In the first augmentation stage and order_change, since the relationship between chosen and rejected is
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Oi and Oi+1 (see definitions in Section 5.1) and there are no other subtasks after End, which means other
actions might appear in either chosen or rejected while End can only be the rejected. But this effect of
suppressing the End output is exactly what we want. Even executing a few extra steps after completing the
task is better than terminating early without finishing the task. That is to say, We hope the model could
consider more and do not output End so easily. Experimental results in Table 2 and Table 3 confirm the
effectiveness of this method as we can see an improvement in SER metric, another positive phenomenon in
results is that the length of the successful paths hasn’t increased significantly as we observe in PLWSR and
TP .

Finally, we provide some DPO data examples.

[
{

" prompt ": "Task: Clear everything off the table in front of you and
place all the items in the sink .\ nInventory : None\ nHistorical
Execution :(1)[Pick , yellow_box ] (RT -1-X) ( success )\n(2)[Put ,
yellow_box , sink] (RT -1-X) ( success )\n\ nFeedback : None\nNow , please
output Analysis , Subtask and Model , according to the instruction above
.",
" chosen ": " Subtask : [Go to , red_can ]\ nModel : PixNav ",
" rejected ": " Subtask : [Pick , red_can ]\ nModel : RT -1-X"

},
{

" prompt ": "Task: Collect all the fruit located on the brown table and
place them on the sofa .\ nInventory : None\ nHistorical Execution :(1)[Go
to , brown_table ] (NoMaD) ( success )\n(2)[Pick , orange ] (RT -1-X) (
success )\n(3)[Go to , sofa] ( PixNav ) ( success )\n(4)[Put , orange , sofa]
(RT -1-X) ( success )\n(5)[Go to , brown_table ] (NoMaD) ( success )\n\
nFeedback : None\nNow , please output Analysis , Subtask and Model ,
according to the instruction above .",
" chosen ": " Subtask : [Pick , pear ]\ nModel : RT -1-X",
" rejected ": " Subtask : [Fetch , pear ]\ nModel : RT -1-X"

},
{

" prompt ": "Task: find a blue can for me\ nInventory : None\ nHistorical
Execution : None\ nFeedback : None\nNow , please output Analysis , Subtask
and Model , according to the instruction above .",
" chosen ": " Subtask : [Go to , fridge ]\ nModel : PixNav ",
" rejected ": " Subtask : [Go to , fridge ]\ nModel : NoMaD"

}
]

F Training Details

F.1 Training Parameters

We use Video-LLaVA-7B (Zhang et al., 2023) as our base model, we also use the training scripts they provide
and partial parameters for sft are as follows.

--lora_enable True
--lora_r 128
--lora_alpha 256
--mm_projector_lr 2e-5
--bits 4
-- mm_projector_type mlp2x_gelu
-- mm_vision_select_layer -2
-- mm_use_im_start_end False
-- mm_use_im_patch_token False
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-- image_aspect_ratio pad
-- group_by_modality_length True
--bf16 True
-- num_train_epochs 1
-- per_device_train_batch_size 16
-- per_device_eval_batch_size 4
-- gradient_accumulation_steps 1
-- evaluation_strategy "no"
--save_strategy "steps"
--save_steps 50000
-- save_total_limit 1
--learning_rate 5e-4
--weight_decay 0.
--warmup_ratio 0.03
-- lr_scheduler_type " cosine "
--logging_steps 1
--tf32 True
-- model_max_length 2048
-- tokenizer_model_max_length 3072
-- gradient_checkpointing True
-- dataloader_num_workers 4
--lazy_preprocess True
--report_to tensorboard

We use finetuned model as our base and reference model, and use open-source trl package and parameters for
dpo are as follows.

bnb_config = BitsAndBytesConfig (
load_in_4bit =True ,
bnb_4bit_compute_dtype =torch.float16 ,
bnb_4bit_use_double_quant =True ,
bnb_4bit_quant_type =’nf4 ’

)
training_args = DPOConfig (

per_device_train_batch_size =16,
per_device_eval_batch_size =4,
gradient_accumulation_steps =1,
gradient_checkpointing =True ,
max_grad_norm =0.3 ,
num_train_epochs =1,
save_steps =1000 ,
learning_rate =5e-6,
bf16=True ,
save_total_limit =1,
logging_steps =10,
output_dir =output_dir ,
optim =" paged_adamw_32bit ",
lr_scheduler_type =" cosine ",
warmup_ratio =0.03 ,
remove_unused_columns =False

)
peft_config = LoraConfig (

r=8,
lora_alpha =8,
target_modules = find_all_linear_names (model),
lora_dropout =0.05 ,
bias =" none",
task_type =" CAUSAL_LM ",

)
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dpo_trainer = DPOTrainer (
model ,
model_ref ,
args= training_args ,
beta =0.1 ,
train_dataset = train_dataset ,
eval_dataset = eval_dataset ,
tokenizer =tokenizer ,
max_prompt_length =2048 ,
max_length =2048 ,

)

G Experimental Details

G.1 Baseline Setup

To make it more convenient for different models to deploy into our system without training, we slightly lower
output format requirements, here shows the adapatations.

import re

pattern = r’.* Analysis : *(.+?) * Subtask : *\[(.*?) \].* Model: *(.*?) $’
match = re. search (pattern , output , re. DOTALL )
if match == None:

pattern = r’.* Analysis : *(.+?) * Subtask : *(.*?) *Model: *(.*?) $’
match = re. search (pattern , output , re. DOTALL )

Despite lowering the output format standards, the output from 7B-sized models still fails to meet our least
requirements. They either do not output single-step subtasks or the subtask format is far from requirements.
This issue is difficult to resolve by merely adjusting prompts. Therefore, we leverage the in-context learning
abilities of these models by providing an output template example before each inference. Here, we provide
the inference template for Qwen2-VL (Wang et al., 2024b) MiniCPM-V 2.6 (Yao et al., 2024) respectively.

Qwen2VL

messages = [
{"role": " system ", " content ": homie.conv. system },
{"role": "user",

" content ": "here is an example output , please strictly follow its
format and system reminders in your output :\ nAnalysis : According to
my final task , I need to fetch apples first , but it’s a better choice

to go the fridge and open it first , which will avoid potential
conflicts , so I should go to the fridge next\ nSubtask : [Go to , fridge
]\ nModel : NoMaD\n",

},
{"role": " assistant ",

" content ": "I will surely follow the given format , now you can send
prompt to me."

},
{"role": "user",

" content ": [
{"type": "image", "image": images [0]} ,
{"type": "image", "image": images [1]} ,
{"type": "image", "image": images [2]} ,
{"type": "image", "image": images [3]} ,
{"type": "text", "text": instruction }]

}
]
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prompt = processor . apply_chat_template (
messages , tokenize =False , add_generation_prompt =True

)
image_inputs , video_inputs = process_vision_info ( messages )
inputs = processor (

text =[ prompt ],
images = image_inputs ,
videos = video_inputs ,
padding =True ,
return_tensors ="pt"

)to("cuda")
generated_ids = model. generate (** inputs , max_new_tokens =512)
enerated_ids_trimmed = [

out_ids [len( in_ids ) :] for in_ids , out_ids in zip( inputs .input_ids ,
generated_ids )

]
outputs = processor . batch_decode (

generated_ids_trimmed , skip_special_tokens =True ,
clean_up_tokenization_spaces =False

)

MiniCPM-V 2.6

image_loads = [Image.open(image). convert (’RGB ’) for image in images ]
messages = [

{"role": "user",
" content ": "here is an example output , please strictly follow its
format and system reminders in your output :\ nAnalysis : According to
my final task , I need to fetch apples first , but it’s a better choice

to go the fridge and open it first , which will avoid potential
conflicts , so I should go to the fridge next\ nSubtask : [Go to , fridge
]\ nModel : NoMaD\n",

},
{"role": " assistant ",

" content ": "I will surely follow the given format , now you can send
prompt to me.",

},
{"role": "user",

" content ": [ image_loads [0], image_loads [1], image_loads [2],
image_loads [3], instruction ]

}
]

output = model.chat(
image=None ,
system_prompt =homie.conv.system ,
tokenizer = tokenizer

)

G.2 Results

Here we provide more detailed results of experiments in Section 5.5. Table G3 and Table G4 show the
statistics results in percentages while Table G5 and Table G6 show original counts. Table G7 show the
original counts and success rate range of each action.
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Table G3: Successful Trajectories Error Statistics All definitions are same as in Section 5.5. Additionally,
we add statistics of four primary types.

Models L1 L2 L3 L4 L D1 D2 D F1 F2 F E1 E2 E All

GPT-4o (Achiam et al., 2023) 3.97 0.79 0.79 0 5.56 44.44 0 44.44 1.59 17.46 19.05 15.87 15.08 30.95 30.29
Gemini-1.5-Pro (Team et al., 2024a) 3.85 3.85 0 7.69 15.38 48.08 0 48.08 0 17.31 17.31 15.38 3.85 19.23 21.80
Qwen2-VL-7B (Wang et al., 2024b) 0 0 0 0 0 100 0 100 0 0 0 0 0 0 20
MiniCPM-V 2.6 (Yao et al., 2024) 0 0 0 0 0 100 0 100 0 0 0 0 0 0 6.67
o1 (Jaech et al., 2024) 0 0 1.18 10.06 11.24 21.89 0 21.89 0 48.52 48.52 18.34 0 18.34 20.56
HomieBot-7B (SFT) 10.53 9.77 12.78 1.50 34.59 36.09 0 36.09 0 3.01 3.00 24.06 2.26 26.32 14.41
HomieBot-7B (SFT+DPO) 10.17 15.25 9.32 3.39 38.14 33.05 0 33.05 0 3.39 3.39 25.42 0 25.42 12.87

Table G4: Failed Trajectories Error Statistics

Models L1 L2 L3 L4 L D1 D2 D F1 F2 F E1 E2 E All

GPT-4o (Achiam et al., 2023) 6.87 0.12 0.69 3.65 11.34 8.41 0.06 8.47 0.57 64.88 65.45 13.99 0.75 14.74 73.61
Gemini-1.5-Pro (Team et al., 2024a) 7.48 1.52 2.41 6.45 17.86 9.41 0 9.41 0 47.86 47.86 22.76 2.10 24.86 68.38
Qwen2-VL-7B (Wang et al., 2024b) 2.17 9.49 0.99 3.56 16.21 7.71 0 7.71 4.74 54.35 59.09 16.40 0.59 17.00 27.74
MiniCPM-V 2.6 (Yao et al., 2024) 8.58 0.80 0.92 1.72 12.01 7.78 0 7.78 3.49 65.39 68.88 10.87 0.46 11.33 31.08
o1 (Jaech et al., 2024) 1.16 0.07 1.96 4.86 8.05 8.64 0 8.64 0 56.75 56.75 26.27 0.29 26.59 51.77
HomieBot-7B (SFT) 11.31 23.85 9.86 4.20 49.24 11.77 0 11.77 0.61 11.47 12.08 24.54 2.37 26.91 35.70
HomieBot-7B (SFT+DPO) 11.46 23.90 11.13 2.62 49.10 9.25 0 9.25 0.25 17.27 17.51 22.67 1.47 24.14 35.88

H Case Study

We show case studies of the inference from HomieBot in various situations as follows.

Case 1: Successful trajectory

Here we show a successful trajectory of our HomieBot (DPO version). To facilitate understanding, we convert
the dialogue data into the original EMMOE data format. As shown, even if errors occur, timely adjustments
can be made through feedback, ensuring the correctness of the execution process.

Task: put the green_can on the brown_table to the fridge

# Round1
Analysis : According to my final task , I need to go to the green_can first .
Subtask : [Go to , green_can ]
Inventory : None
Feedback : None

# Round2
Analysis : I successfully arrived the green_can and I should pick it next
Subtask : [Pick , green_can ]
Inventory : green_can
Feedback : None

# Round3
Analysis : I successfully picked the green_can , so according to my final task ,
I should go to the fridge to put it down.
Subtask : [Go to , fridge ]
Inventory : green_can
Feedback : None

# Round4
Analysis : I successfully arrived the fridge and I should put the green_can
into it next
Subtask : [Put , green_can , fridge ]
Inventory : green_can
Feedback : Unable to put , the fridge is closed , you should open it first
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Table G5: Original Successful Trajectories Statistics All data are integers.

Models L1 L2 L3 L4 L D1 D2 D F1 F2 F E1 E2 E All

GPT-4o (Achiam et al., 2023) 5 1 1 0 7/126 56 0 56/126 2 22 24/126 20 19 39/126 126/416
Gemini-1.5-Pro (Team et al., 2024a) 4 4 0 8 16/104 50 0 50/104 0 18 18/104 16 4 20/104 104/477
Qwen2-VL-7B (Wang et al., 2024b) 0 0 0 0 0/9 9 0 9/9 0 0 0/9 0 0 0/9 9/45
MiniCPM-V 2.6 (Yao et al., 2024) 0 0 0 0 0/1 1 0 0/1 0 0 0/1 0 0 0/1 1/15
o1 (Jaech et al., 2024) 0 0 2 17 19/169 37 0 37/169 0 82 82/169 31 0 31/169 169/822
HomieBot-7B (SFT) 14 13 17 2 46/133 48 0 48/133 0 4 4/133 32 3 35/133 133/923
HomieBot-7B (SFT+DPO) 12 18 11 4 45/118 39 0 39/118 0 4 4/118 30 0 30/118 118/917

Table G6: Original Failed Trajectories Statistics

Models L1 L2 L3 L4 L D1 D2 D F1 F2 F E1 E2 E All

GPT-4o (Achiam et al., 2023) 228 4 23 121 376/3317 279 2 281/3317 19 2152 2171/3317 464 25 489/3317 3317/4506
Gemini-1.5-Pro (Team et al., 2024a) 217 44 70 187 518/2900 273 0 273/2900 0 1388 1388/2900 660 61 721/2900 2900/4241
Qwen2-VL-7B (Wang et al., 2024b) 33 144 15 54 246/1518 117 0 117/1518 72 825 897/1518 249 9 258/1518 1518/5472
MiniCPM-V 2.6 (Yao et al., 2024) 150 14 16 30 210/1748 136 0 136/1748 61 1143 1204/1748 190 8 198/1748 1748/5624
HomieBot-7B (SFT) 148 312 129 55 644/1308 154 0 154/1308 8 150 158/1308 321 31 352/1308 1308/3664
HomieBot-7B (SFT+DPO) 140 292 136 32 600/1222 113 0 113/1222 3 211 214/1222 277 18 295/1222 1222/3406

# Round5
Analysis : I failed to put the green_can into the fridge , since the fridge is
closed , so I should open the fridge first
Subtask : [Open , fridge ]
Inventory : green_can
Feedback : Unable to open , the hand is full

# Round6
Analysis : I failed to open the fridge because my hand is full , so I should put

the green_can on the brown_table first
Subtask : [Go to , brown_table ]
Inventory : green_can
Feedback : None

# Round7
Analysis : I successfully arrive the brown_table and I should put the green_can

on it
Subtask : [Put , green_can , brown_table ]
Inventory : None
Feedback : None

# Round8
Analysis : I successfully put the green_can on the brown_table , so I should go
to the fridge next
Subtask : [Go to , fridge ]
Inventory : None
Feedback : None

# Round9
Analysis : I successfully arrived the fridge and I should open it next
Subtask : [Open , fridge ]
Inventory : None
Feedback : None

# Round10
Analysis : I successfully open the fridge and find the green_can , so I should
go to the green_can .
Subtask : [Go to , green_can ]
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Table G7: Count represents the number of each action error with a total count behind. SRrange is the
percentage to indicate the range of success rates of each action, with the average value shown in parentheses.

Metrics Go to Pick Place Open Close

Count 938/2437 1213/2437 178/2437 81/2437 27/2437
SRrange (45.32)31.19∼82.89 (22.45)18.34∼28.95 (40.97)29.06∼69.40 (43.13)30.13∼75.84 (36.45)26.72∼57.37

Inventory : None
Feedback : None

# Round11
Analysis : I successfully arrive the green_can and find it , so I should pick it
.
Subtask : [Pick , green_can ]
Inventory : green_can
Feedback : None

# Round12
Analysis : I successfully picked the green_can , so according to my final task ,
I should go to the fridge to put it down.
Subtask : [Go to , fridge ]
Inventory : green_can
Feedback : None

# Round13
Analysis : I successfully arrived the fridge and I should put the green_can
into it next
Subtask : [Put , green_can , fridge ]
Inventory : None
Feedback : None

# Round14
Analysis : I successfully put the green_can into the fridge , so I should close
the fridge next
Subtask : [Close , fridge ]
Inventory : None
Feedback : None\n

# Round15
Analysis : According to the historical execution and final task , I have finally

finished the task and it ’s time to end
Subtask : [End]
Inventory : None
Feedback : None

Case 2: Terrible Grounding

Here we show a terrible grounding problem issues during the inference of GPT4-o (Achiam et al., 2023).
Due to the lengthy path, we only highlight the most critical subtask outputs and their execution results to
emphasize errors (following cases are handled similarly). We can see that the ungrounded output directly
prevents the process to be continued. Even after informing the model that the object doesn’t exist, the issue
remains unresolved. The model continues to output incorrect objects or makes mistakes again after a few
steps.

Task: clean up the beige table and put all items to kitchen
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(1) Go to , beige table( success )
(2) Pick , item(fail)
(3) Pick , item(fail)
(4) Pick , item(fail)
(5) Pick , item(fail)
(6) Pick , item(fail)
(7) Pick , item(fail)
(8) Pick , item on the table(fail)
(9) Pick , item on the table(fail)
(10) Pick , item on the table(fail)
(11) Pick , item on the table(fail)
(12) Pick , item(fail)
(13) Pick , item on the table(fail)
(14) Pick , item on the beige table(fail)
(15) Pick , stack of papers (fail)
(16) Pick , box(fail)
(17) Go to , closer to the table(fail)
(18) Pick , item on the table(fail)
(19) Pick , visible item on the beige table(fail)

Case 3: Limited LLE

Here we show a problem issues from the limited ability of low-level models. As we can see in step7 and step8,
though high-level planner makes correct plans, execution still fails due to the limited ability of low-level
models, this problem occurs repeatedly during whole process and finally leads to the failue the trajectory.

Task: take a yellow box and put it into the fridge .

(1) Go to , living room( success )
(2) Pick , yellow box( success )
(3) Go to , kitchen ( success )
(4) Open , fridge (fail)
(5) Put , yellow box , counter (fail)
(6) Put , yellow box , table(fail)
(7) Go to , fridge ( success )
(8) Open , fridge (fail)
(9) Put , yellow box , counter (fail)
(10) Open , fridge (fail)
(11) Put , yellow box , counter (fail)
(12) Open , fridge (fail)
(13) Put , yellow box , counter (fail)
(14) Open , fridge (fail)
(15) Put , yellow box , counter (fail)
(16) Open , fridge (fail)
(17) Put , yellow box , counter (fail)
(18) Open , fridge (fail)
(19) Put , yellow box , counter (fail)

Case 4: Meaningless Outputs

Here we show a case of Qwen2-VL (Wang et al., 2024b) generating a large amount of meaningless outputs
during the inference. As we can see, even though all subtasks are successful, the agent keep circling in
place without making progress. These meaningless outputs quickly consume the remaining execution steps,
ultimately causing the task to fail.

Task: find two bowls in the room and put them in the kitchen sink
(1) Go to , kitchen ( success )
(2) Go to , kitchen ( success )
(3) Go to , kitchen ( success )
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(4) Go to , kitchen ( success )
(5) Go to , kitchen ( success )
(6) Go to , kitchen ( success )
(7) Go to , living room( success )
(8) Go to , living room( success )
(9) Go to , kitchen ( success )
(10) Go to , kitchen ( success )
(11) Go to , living room( success )
(12) Go to , living room( success )
(13) Go to , living room( success )
(14) Go to , living room( success )
(15) Go to , living room( success )
(16) Go to , living room( success )
(17) Go to , living room( success )
(18) Go to , living room( success )
(19) Go to , living room( success )

Case 5: Solvable D1 Error

Here we show how D1 error is solvable during the inference of Gemini-1.5-Pro (Team et al., 2024a). As we
can see in step3, after a D1 error happens, a Go to action can effectively solve it and facilitate the success of
the whole trajectory.

Task: fetch one crack box and one sugar box and put them on the beige table

(1) [Go to , beige_table ]( success )
(2) [Pick , cracker_box ]( fail)
(3) [Go to , cracker_box ]( success )
(4) [Pick , cracker_box ]( success )
(5) [Go to , beige_table ]( success )
(6) [Put , cracker_box , beige_table ]( success )
(7) [Go to , brown_table ]( success )
(8) [Put , sugar_box , brown_table ]( fail)
(9) [Go to , beige_table ]( success )
(10) [Put , sugar_box , beige_table ]( fail)
(11) [Go to , sugar_box ]( success )
(12) [Pick , sugar_box ]( success )
(13) [Go to , beige_table ]( success )
(14) [Put , sugar_box , beige_table ]( success )
(15) [End ]( success )

47


	Introduction
	Related Work
	Embodied Tasks and Benchmarks
	LLMs For Robotics
	LLMs for Task Planning

	EMMOE Benchmark
	Problem Statement
	EMMOE-100 Dataset
	Evaluation Metrics

	HomieBot
	Overview
	High Level Planning (HLP)
	Low Level Execution (LLE)

	Experiments
	Data Augmentation
	Model Training
	Setup
	Results
	Analysis

	Conclusions and Discussions
	Dataset
	Data Collection
	Dataset Details
	Dataset Demonstration

	Metric Calculation
	Task Progress
	Success End Rate
	Success Re-plan Rate

	High Level Planning
	Low Level Execution
	Pipeline
	Skills
	Models
	Error Classification

	Data Augmentation
	SFT Augmentation
	DPO Augmentation

	Training Details
	Training Parameters

	Experimental Details
	Baseline Setup
	Results

	Case Study

