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ABSTRACT

Tabular data generation has attracted significant research interest in recent years,
with the tabular diffusion models greatly improving the quality of synthetic data.
However, while memorization—where models inadvertently replicate exact or
near-identical training data—has been thoroughly investigated in image and text
generation, its effects on tabular data remain largely unexplored. In this paper,
we conduct the first comprehensive investigation of memorization phenomena
in diffusion models for tabular data. Our empirical analysis reveals that mem-
orization appears in tabular diffusion models and increases with larger training
epochs. We further examine the influence of factors such as dataset sizes, feature
dimensions, and different diffusion models on memorization. Additionally, we
provide a theoretical explanation for why memorization occurs in tabular diffusion
models. To address this issue, we propose TabCutMix, a simple yet effective
data augmentation technique that exchanges randomly selected feature segments
between random training sample pairs. Experimental results across various datasets
and diffusion models demonstrate that TabCutMix effectively mitigates memo-
rization while maintaining high-quality data generation. Our code is available at
https://anonymous.4open.science/r/TabCutMix-3F7B.

1 INTRODUCTION
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Figure 1: The overview performance of TabCut-
Mix in TabDDPM and TabSyn for Default dataset.
“Mem. Ratio” represents the memorization ratio.

Tabular data generation has gained increasing at-
tention due to its broad applications, such as data
imputation (Zheng & Charoenphakdee, 2022;
Liu et al., 2024; Villaizán-Vallelado et al., 2024),
data augmentation (Fonseca & Bacao, 2023),
and data privacy protection (Zhu et al., 2024;
Assefa et al., 2020). Unlike image or text data,
tabular data consists of structured datasets com-
monly found in fields such as healthcare (Her-
nandez et al., 2022), finance (Assefa et al., 2020),
and e-commerce (Cheng et al., 2023). Its het-
erogeneous and mixed-type feature space often
poses unique challenges for generative mod-
els (Yang et al., 2024b; Zhang et al., 2023b).
Recent advances have led to the development of various methods aimed at improving the quality of
synthetic tabular data, with diffusion models emerging as a particularly effective approach (Zhang
et al., 2023a; Kotelnikov et al., 2023). These models have demonstrated significant improvements in
generating high-quality tabular data, making them a powerful tool for a wide range of applications.

Despite these advancements, an often-overlooked issue is the phenomenon of memorization, where
diffusion models unintentionally replicate exact or nearly identical samples from the training data.
This not only introduces privacy concerns but also hampers model generalization Yoon et al. (2023);
Kandpal et al. (2022). While this phenomenon has been extensively investigated in image and text
generation (Karras et al., 2022; Carlini et al., 2021; Song et al., 2021; Ho et al., 2020), its occurrence
and impact in tabular data generation remain relatively unexplored. This gap in understanding leads
to a key question:
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Does memorization occur in tabular diffusion models,
and if so, how can it be effectively mitigated?

In this paper, we aim to address this gap by conducting the first comprehensive investigation into
memorization behaviors within tabular diffusion models. Through rigorous empirical analysis,
we examine how various factors—such as training dataset sizes, feature dimensions, and model
architecture—affect the extent of memorization. Additionally, we provide a theoretical exploration of
memorization in tabular diffusion models, shedding light on the underlying mechanisms that lead to
the issue of memorization in tabular data.

To mitigate memorization, we introduce TabCutMix, a novel data augmentation technique tailored
for tabular data. By randomly swapping feature subsets among training samples within the same class,
TabCutMix disrupts the model’s tendency to memorize individual data points while preserving the
overall data generation quality. Extensive experiments across multiple datasets and diffusion models
demonstrate that TabCutMix effectively reduces memorization (See Figure. 1) without compromising
the quality of the synthetic data, making it a practical solution for improving tabular data generation
in real-world scenarios.

Our contributions are highlighted as follows:

• We present the first comprehensive analysis of memorization in diffusion models for tabular data,
an issue that has been overlooked compared to the extensive research in image and text generation.

• We offer both empirical evidence and theoretical insights into the different factors—such as training
dataset sizes, feature dimensions, and model architectures—that influence memorization in tabular
diffusion models.

• We introduce TabCutMix, a simple yet effective data augmentation method tailored to tabular data
generation. This method mitigates memorization by swapping randomly selected feature segments
between training samples while preserving overall data generation quality.

• We conduct extensive experiments to validate the effectiveness of TabCutMix, showing its ability
to reduce memorization and maintain high-quality synthetic data generation across various datasets
and diffusion models.

2 RELATED WORK

Tabular Generative Models. Generative models for tabular data have gained attention due to
their broad applicability. Early approaches like CTGAN and TVAE (Xu et al., 2019) leveraged
Generative Adversarial Networks (GANs) (Goodfellow et al., 2020) and VAEs (Kingma, 2013)
for handling imbalanced features. GOGGLE (Liu et al., 2023) advanced this by modeling feature
dependencies using graph neural networks. Inspired by NLP advancements, GReaT (Borisov et al.,
2023) transformed rows into natural language sequences to capture table-level distributions. More
recently, diffusion models, originally successful in image generation (Ho et al., 2020), have been
adapted for tabular data, as demonstrated by STaSy (Kim et al., 2023), TabDDPM (Kotelnikov et al.,
2023), CoDi (Lee et al., 2023), TabSyn (Zhang et al., 2023a), and balanced tabular diffusion (Yang
et al., 2024b).

Memorization in Generative Models. Memorization has been widely studied in image and
language domains (van den Burg & Williams, 2021; Gu et al., 2023; Huang et al., 2024). In image
generation, reseasrchers (Somepalli et al., 2023a; Carlini et al., 2021) found that diffusion models,
like Stable Diffusion (Rombach et al., 2022) and DDPM (Ho et al., 2020), memorize portions of
their training data at varying levels. Concept ablation (Kumari et al., 2023) is proposed to mitigate
memorization via fine-tuning of pre-trained models to minimize output disparity. AMG (Chen
et al., 2024) uses real-time similarity metrics to selectively apply guidance to likely duplicates. For
text generation, text conditioning amplifies memorization risks, especially in large-scale language
models (Somepalli et al., 2023a;b; Huang et al., 2024). Goldfish loss (Hans et al., 2024) randomly
drops a subset of tokens from the training loss computation to prevent the model from memorizing.
Memorization prediction (Biderman et al., 2024), i.e., predicting which sequences will be memorized
before full-scale training, is investigated by analyzing the memorization patterns of lower-compute
trial runs for early intervention. Although these patterns are evident in image and text generation, the
impact of memorization on tabular data remains underexplored.
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3 MEMORIZATION IN TABULAR DIFFUSION MODELS

Despite the development of numerous high-performing diffusion models for tabular data generation,
it remains unclear whether these models are susceptible to memorization. In this section, we
introduce a criterion for detecting and quantifying the intensity of memorization in tabular data.
Using this criterion, we explore memorization behaviors across various diffusion models under
different dataset sizes and feature dimensions. We choose two state-of-the-art (SOTA) generative
models: TabSyn (Zhang et al., 2023a) and TabDDPM (Kotelnikov et al., 2023) for our preliminary
memorization analysis. Furthermore four real-world tabular datasets—Adult, Default, Shoppers, and
Magic—each containing both numerical and categorical features are included. The details of the
datasets can be found in Section 5. Additionally, we provide a theoretical analysis to explain the
mechanisms behind memorization in tabular diffusion models.

3.1 MEMORIZATION DETECTION CRITERION

A quantitative criterion is essential for quantifying the memorization ratio—i.e., the proportion of
generated samples that are memorized by a model. In natural language processing, memorization is
typically identified when a model can reproduce verbatim sequences from the training set in response
to an adversarial prompt (Carlini et al., 2021; Kandpal et al., 2022). However, such a verbatim
definition is not directly applicable to image and tabular data, where the intrinsic continuous nature
of pixels and features makes exact replication less meaningful.

Inspired by prior work in image generation (Yoon et al., 2023; Gu et al., 2023), we adopt the
“relative distance ratio” criterion to detect whether a generated sample x is a memorized replica from
training data D in tabular dataset. Specifically, x is considered memorized if d

(
x,NN1(x,D)

)
<

1
3 · d

(
x,NN2(x,D)

)
, where d(·, ·) is the distance metric in the input sample space, NNi(x,D)

represents i-th nearest neighbor of x in training data D based on the distance d(·, ·)1.

In the image generation domain, l2 norm is commonly adopted as the distance metric to measure the
sample similarity in the input space. However, this metric is not suitable for tabular data generation
due to the mix-typed (categorical and numerical) input features. To address this, and inspired from
mixed-type data clustering literature (Ji et al., 2013; Ahmad & Khan, 2019), we define a mixed
distance d(·, ·) between generated sample x and real training sample x′ as follows:

d(x,x′) =
1

M

norm
(√ ∑

i∈Fnum

(xi − x′
i)

2
)
+

∑
j∈Fcat

1(xj ̸= x′
j)

 , (1)

where Fnum and Fcat represent the index sets for numerical and categorical features, respectively;
norm(dn) represents max-min normalization rescaling the distance values to a [0, 1] range using

norm(dk) =
dk−min

k
(dk)

max
k

(dk)−min
k

(dk)
, where k is sample pair distance index; M is the total number of

features, such that |Fnum|+ |Fcat| = M . In this equation, xi(x
′
i) represents i-th feature value for

sample x(x′), 1(xj ̸= x′
j) is an indicator function that equals 1 if xj ̸= x′

j and 0 otherwise. In this
paper, we use Eq. (1) to measure sample similarity and to quantify the memorization ratio in tabular
data generation.

3.2 EFFECT OF DIFFERENT DIFFUSION MODELS

In this subsection, we focus on examining the behavior of the two diffusion models (TabSyn (Zhang
et al., 2023a) and TabDDPM (Kotelnikov et al., 2023)) on the memorization ratio across the four
tabular datasets (Adult, Default, Shoppers, and Magic). For each dataset, we check the memorization
ratio over the course of training of TabSyn and TabDDPM. Figure 2 illustrates the memorization ratio
for both models. Based on our experiments, we make the following observations:

Obs.1: TabSyn exhibits faster convergence with more stable memorization ratios across all datasets
compared to TabDDPM. This trend is particularly prominent for the Default and Adult datasets,
where TabSyn stabilizes its memorization rate after approximately 500 epochs, while TabDDPM
continues to fluctuate over a much longer training duration, up to 4000 epochs.

1The factor 1
3

is an empirical threshold and widely adopted in image generation literature.
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Obs.2: Although the converged memorization rates vary between datasets, the final memorization
levels are relatively similar across both diffusion models. For instance, in TabSyn, the memorization
ratio for Magic can reach up to 80%, indicating high memorization, whereas it stabilizes at 20% in
Default, showing lower memorization. Similar trends are observed in TabDDPM, suggesting that
while the training dynamics differ, the overall memorization capacity converges to comparable levels
across models for the same dataset.
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Figure 2: Memorization ratio curve of TabSyn and TabDDPM w.r.t. training epochs.

3.3 IMPACT OF TRAINING DATASET SIZE

Building on the findings from Section 3.2, where TabSyn demonstrated high training stability, we
use TabSyn as the backbone model to explore the impact of training dataset size on memorization
in tabular data. We conduct experiment with four datasets (Default, Shoppers, Magic, and Adult),
randomly downsampling the training samples to five different sizes: 0.1%, 1%, 10%, 50%, and 100%
of the original dataset. Figure 3 shows the memorization ratio for each dataset size over the training
epochs. We make the following observations:

Obs.1: Smaller training datasets consistently exhibit higher memorization ratios, as observed across
all datasets when the training size is reduced to 0.1%. For some datasets, such as Shoppers, even
moderate reductions in training size (e.g., 10%) lead to noticeable increases in memorization, whereas
for others, such as Magic, the effect becomes prominent only at extremely small sizes (e.g., 0.1%).

Obs.2: The memorization ratio generally increases over training epochs before stabilizing. The
final converged memorization ratio demonstrates a strong dependency on training dataset size when
the size is extremely small (e.g., 0.1%). For larger sizes, such as 10%, the dependency is less
pronounced for datasets like Magic and Shoppers, possibly due to the relatively larger sample pool.
This observation suggests that the impact of dataset size on memorization becomes increasingly
critical as the dataset size decreases.
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Figure 3: Impact of dataset size among different datasets for TabSyn model.

3.4 IMPACT OF INPUT FEATURE DIMENSION

In this subsection, we further examine the relationship between input feature dimensionality and the
memorization ratio for TabSyn. We randomly select different percentages of input features (i.e., 30%,
50%, 70%, 100%) to train the diffusion model TabSyn. The memorization ratio across various input
feature dimensions is shown in Figure 4. We observe:
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Obs.1: The number of input features significantly influences the memorization ratio, though the
effect varies across datasets. For instance, in the Default dataset, a higher input feature dimensionality
leads to a lower converged memorization ratio, while the opposite trend is observed in the Shoppers
and Magic datasets, where more input features result in higher memorization.

Obs.2: The impact of feature dimensionality on the converged memorization ratio varies across
datasets. For example, in the Default dataset, increasing the input feature percentage from 30% to
100% results in a 50% decrease in the memorization ratio. In contrast, for the Shoppers dataset, the
memorization ratio increases by approximately 20% as the input feature percentage grows from 30%
to 100%.
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Figure 4: The memorization ratio v.s. training epochs with different feature dimensions for TabSyn.

3.5 THEORETICAL ANALYSIS

In the previous section, we empirically investigate the memorization phenomenon in existing tabular
diffusion models. However, the underlying cause of memorization in tabular diffusion models
remains unclear. To bridge the gap, we provide a theoretical analysis of why memorization occurs in
TabSyn (Zhang et al., 2023a), one of the SOTA tabular generative models.

In TabSyn, a variational autoencoder (VAE) is used to map the input features x into an embedding
z = Encoder(x) in latent space. Subsequently, a latent diffusion is applied to generate samples in
the latent space. The final synthetic data is generated via the decoder of VAE. For simplicity, we only
consider latent diffusion in the analysis. Specifically, the following forward and backward stochastic
differential equations are adopted in the latent diffusion:

zt = z0 + σ(t)ϵ, ϵ ∼ N (0, I), (2)

dzt = −2σ̇(t)σ(t)s(zt, t)dt+
√

2σ̇(t)σ(t)dωt, (3)

where z0 = z represents the initial embedding from the encoder, zt is the diffused embedding at
time t, and σ(t) is the noise level at time t. The score function s(zt, t) is defined as s(zt, t) =
∇zt

log pt(zt), and ωt is the standard Wiener process.

When the score function s(zt, t) is known, synthetic data can be sampled by reversing the diffusion
process. In practice, diffusion models train a neural network sθ(zt, t) to approximate the score
function s(zt, t). However, score function∇z log pt(z) is intractable since the marginal distribution
pt(z) = p(zt) is unknown. Fortunately, the conditional distribution p(zt|z0) is tractable and can be
used to train the denoising function to approximate the conditional score function ∇zt log p(zt|z0).
The denoising score-matching training process is formulated as:

minEz0∼p(z0)Ezt∼p(zt|z0)∥sθ(zt, t)−∇zt
log p(zt|z0)∥22, (4)

where∇zt
log p(zt|z0) can be calculated according to∇zt

log p(zt|z0) = − ϵ
σ(t) .

For the denoising score matching objective, we have the following result2:
Proposition 3.1. For empirical denoising score matching objective in Eq. (4) with training data
{z̃n|n = 1, 2, · · · , N}, the optimal score function is given by

s∗θ(zt, t) =
( N∑

n=1

exp
(
− ∥z̃n − zt∥22

2σ2(t)

))−1 N∑
n=1

exp
(
− ∥z̃n − zt∥22

2σ2(t)

)
· z̃n − zt

σ2(t)
. (5)

2The analysis is closely related to prior work (Gu et al., 2023) in image generation, where a similar analysis
was performed in different generative models. Our work specifically addresses tabular data with mixed feature
types by combining a VAE with latent diffusion to handle tabular data.
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See proof in Appendix. A. Proposition.3.1 provides a closed-form expression for the optimal score
matching function given a finite training set. Furthermore, we derive the following result regarding
memorization of synthetic data in the latent space:
Proposition 3.2. Assume that the neural network can perfectly approximate the optimal score
function s∗θ(zt, t) given by Eq. (5) and a perfect SDE solver is applied in backward SDE. The
generated sample in latent space z0 will exactly replicate the latent embedding of the real sample in
training data.

See proof in Appendix. B. Proposition. 3.2 demonstrates that under ideal conditions, the generated
sample in latent space is an exact representation of a real training sample, which contradicts the
empirical observation in TabSyn (i.e., not 100% memorization). There are several possible reasons
for this discrepancy. First, the practical score-matching function learned by the neural network may
not perfectly approximate the optimal score due to insufficient optimization or limited model capacity.
Additionally, TabSyn uses a VAE to handle mixed-type tabular data, followed by latent diffusion for
generation. As a result, even if the generated sample in latent space is identical to a training sample,
the final generated sample may differ due to the randomness introduced by the VAE decoder.

4 METHODOLOGY

Building on the memorization study presented in Section 3, we find that the issue of memorization
in existing tabular diffusion models is significant but often overlooked in the literature. To address
this problem and enhance the diversity of generated data, we propose a novel data augmentation
strategy, TabCutMix, specifically designed for tabular data generation. This approach is inspired by
the CutMix (Yun et al., 2019) data augmentation technique used in the image domain.

We provide the details of TabCutMix data augmentation procedure. TabCutMix works by generating
a new training sample (x̃, ỹ) to mitigate memorization, which is formed by combining two samples
(xA, yA) and (xB , yB) that belong to the same class. In tabular data, ”same class” refers to instances
that share the same categorical target label, ensuring that the generated sample remains consistent
with its original class and prevents label mismatches.

The feature swap within the same class increases data diversity and reduces the likelihood of
memorization while preserving the integrity of the label. The newly generated sample is then used to
train the diffusion model with its original loss function. The mix operation is defined as follows

x̃ = M ⊙ xA + (1−M)⊙ xB , (6)

where M ∈ {0, 1}M denotes a binary mask matrix indicating which features to swap between the
two samples, 1 is a mask filled with ones, and ⊙ represents element-wise multiplication. Similar
to existing data augmentation strategies, the portion of exchanged features λ is sampled from the
uniform distribution U(0, 1) In binary mask sampling, each element is independently sampled with
a value 1 based on Bernoulli distribution Bern(λ), i.e., the removal or fill-in of each feature is
independent in TabCutMix data augmentation. In each training iteration, we first sample the class
index c ∈ {1, 2, · · · , C} using the class prior distribution and then randomly select two samples from
that class. The pseudo code of our proposed algorithm is in Appendix C.

Moreover, we note that splitting highly correlated features during the augmentation process may
disrupt the inherent relationships in the original dataset, potentially leading to increased Out-of-
Distribution (OOD) Yang et al. (2024a) issues. To address this concern, we propose TabCutMixPlus,
a safer augmentation strategy designed to preserve the structural integrity of the data. In Tab-
CutMixPlus, we first compute feature correlations to identify clusters of highly correlated features.
Specifically, for numerical features, we use the Pearson correlation coefficient, for categorical features,
we employ Cramér’s V Cramér (1999), and for numerical-categorical pairs, we calculate the squared
ETA coefficient Richardson (2011). These measures allow us to group highly correlated features into
clusters, treating each cluster as an atomic unit during the swap operation. By ensuring that features
within a cluster are exchanged together, TabCutMixPlus avoids disrupting relationships among highly
correlated features, thereby mitigating the risk of introducing OOD issues. We evaluate the effective-
ness of TabCutMixPlus in Appendix 4, where we perform OOD detection experiments comparing
TabCutMix and TabCutMixPlus. The results demonstrate that TabCutMixPlus significantly reduces
OOD samples while maintaining the advantages of data augmentation, thereby providing a robust
and reliable solution for training models on tabular data.
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5 EXPERIMENTS

In this section, we extensively evaluate the effectiveness of TabCutMix and TabCutMixPlus across
several SOTA tabular diffusion models in various datasets and compared other augmentation methods
Mixup Zhang (2017); Takase (2023) and SMOTE Chawla et al. (2002).

5.1 EXPERIMENTAL SETUP

Datasets. We use four real-world tabular datasets containing both numerical and categorical features:
Adult Default, Shoppers, and Magic. The detailed descriptions and overall statistics of these datasets
are provided in Appendix D.1.

Baselines. We integrate TabCutMix with three existing SOTA diffusion-based tabular data gen-
erative models, including TabDDPM (Kotelnikov et al., 2023) , STaSy (Kim et al., 2023), and
TabSyn (Zhang et al., 2023a). To the best of our knowledge, this work is the first to comprehensively
evaluate both generation quality and memorization performance for these models.

Evaluation Metrics. We evaluate the performance of synthetic data generation from two perspec-
tives: memorization and synthetic data quality. For memorization evaluation, we generate the same
number of synthetic samples as the training dataset and use Eq. (1) to calculate the distance between
the generated and real samples. The generated sample is considered memorized if its closest neighbor
in the training data is less than one-third of the distance to its second closest neighbor (Yoon et al.,
2023; Gu et al., 2023). For synthetic data quality evaluation, we consider 1) low-order statistics (i.e.,
column-wise density and pair-wise column correlation) measured by shape score3 and trend score
4; 2) high-order metrics α-precision and β-recall scores measuring the overall fidelity and diversity
of synthetic data; 3) downstream tasks performance machine learning efficiency (MLE)5, i.e., the
testing performance (e.g., AUC) on real data when trained only on synthetically generated tabular
datasets. The reported results are averaged over 5 independent experimental runs. More details on
evaluation metrics can be found in Appendic D.3.

5.2 MEMORIZATION AND DATA QUALITY: OVERALL EVALUATION

To thoroughly compare the memorization and data generation quality, we incorporate several metrics,
including the memorization ratio, MLE, α-precision, β-recall, shape score, and trend score. We
report these metrics results of applying TabCutMix to three SOTA generative models (i.e., STaSy,
TabDDPM, and TabSyn) across four datasets in Table. 1. We observe that

Obs.1: TabCutMix consistently reduces the memorization ratio across all models and datasets.
The average reductions for the four datasets across different generative models range from 12.51%
to 15.62%. The average reductions for the three different generative models across four datasets
range from 12.22% to 16.75%. Although the actual reduction rate varies over dataset and model
combination, the overall results indicate that TabCutMix is highly effective in mitigating memorization
in synthetic data.

Obs.2: For data quality metrics, TabCutMix can preserve most of the original performance. For
example, MLE scores remain stable or show slight improvements with the application of TabCutMix,
suggesting that the reduction in memorization does not compromise model performance. The other
data quality metrics, such as α-Precision and shape Score, remain consistent across models with and
without TabCutMix, indicating that the fidelity and structure of the synthetic data are well preserved.
Trend Score also shows only minor variations, demonstrating stable data generation.

3Shape Score measures how closely the synthetic data matches the distribution of individual columns in the
real data using Kolmogorov-Smirnov (KS) test.

4Trend Score assesses whether the relationships or correlations between pairs of columns in the synthetic
data are similar to those in the real data

5We report AUC in Table. 1.
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Table 1: The overview performance comparison for tabular diffusion models on more datasets.
“TCM” represents our proposed TabCutMix and “TCMP” represents TabCutMixPlus. “Mem.
Ratio” represents memorization ratio. “Improv” represents the improvement ratio on memorization.

Methods Mem. Ratio (%) ↓ Improv. MLE (%)↑ α-Precision(%)↑ β-Recall(%)↑ Shape Score(%)↑ Trend Score(%)↑ C2ST(%)↑ DCR(%)

D
ef

au
lt

STaSy 17.57 ± 0.53 - 76.48 ± 1.18 87.78 ± 5.20 35.94 ± 5.48 90.27 ± 2.43 89.58 ± 1.35 67.68 ± 6.89 50.30 ± 0.36
STaSy+Mixup 17.89 ± 0.99 −1.80% ↓ 75.69 ± 1.26 82.65 ± 10.01 37.94 ± 2.57 85.77 ± 4.02 86.49 ± 4.66 50.81 ± 6.01 50.66 ± 1.39
STaSy+SMOTE 15.98 ± 0.04 9.07% ↓ 75.41 ± 0.95 86.75 ± 5.80 32.95 ± 2.93 87.89 ± 5.17 32.54 ± 0.91 48.57 ± 5.90 51.39 ± 2.23
STaSy+TCM 14.51 ± 0.46 17.44% ↓ 75.33 ± 1.32 86.04 ± 11.55 32.13 ± 5.07 90.30 ± 3.88 89.85 ± 3.16 49.51 ± 6.33 50.39 ± 0.99
STaSy+TCMP 15.53 ± 2.00 11.59% ↓ 76.30 ± 0.57 90.83 ± 4.51 32.81 ± 1.37 91.49 ± 0.77 92.08 ± 2.04 50.43 ± 2.00 50.70 ± 1.94
TabDDPM 19.33 ± 0.45 - 76.79 ± 0.69 98.15 ± 1.45 44.41 ± 0.70 97.58± 0.95 94.46 ± 0.68 91.85 ± 6.04 49.12 ± 0.94
TabDDPM+Mixup 18.46 ± 0.71 4.50% ↓ 77.18 ± 0.35 93.20 ± 4.16 42.59 ± 1.13 95.34 ± 1.79 90.32 ± 3.31 92.59 ± 2.82 52.36 ± 1.57
TabDDPM+SMOTE 17.46 ± 0.51 9.66% ↓ 76.92 ± 0.35 91.19 ± 0.68 40.52 ± 0.65 94.89 ± 1.46 28.63 ± 2.28 72.73 ± 0.69 50.95 ± 0.38
TabDDPM+TCM 16.76 ± 0.47 13.26% ↓ 76.47 ± 0.60 97.30 ± 0.46 38.72 ± 2.78 97.27 ± 1.74 93.27 ± 2.52 94.72 ± 3.87 50.23 ± 0.53
TabDDPM+TCMP 18.00 ± 0.24 6.88% ↓ 76.92 ± 0.17 98.26 ± 0.25 41.92 ± 0.52 97.37 ± 0.09 91.42 ± 1.15 95.64 ± 0.49 49.75 ± 0.32
TabSyn 20.11 ± 0.03 - 77.00 ± 0.33 98.66 ± 0.13 46.76 ± 0.50 98.96 ± 0.11 96.82 ± 1.71 98.27 ± 1.14 51.09 ± 0.32
TabSyn+Mixup 19.58 ± 0.33 2.65% ↓ 77.24 ± 0.42 99.05 ± 0.45 46.94 ± 0.19 97.84 ± 0.16 97.11 ± 0.42 96.82 ± 1.99 49.80 ± 0.17
TabSyn+SMOTE 18.72 ± 0.54 6.93% ↓ 77.24 ± 0.43 93.00 ± 0.29 42.78 ± 0.64 96.59 ± 0.10 32.70 ± 0.23 81.38 ± 0.90 50.79 ± 0.66
TabSyn+TCM 16.86 ± 1.36 16.16% ↓ 76.84 ± 0.34 96.16 ± 1.24 40.69 ± 2.46 98.02 ± 1.62 96.51 ± 1.42 97.65 ± 0.65 51.16 ± 1.82
TabSyn+TCMP 17.60 ± 0.28 12.48% ↓ 77.17 ± 0.51 97.61 ± 0.27 44.46 ± 0.60 99.03 ± 0.08 96.30 ± 1.48 98.16 ± 0.65 51.20 ± 0.90

A
du

lt

STaSy 26.02 ± 0.89 - 90.54 ± 0.17 85.79 ± 7.85 34.35 ± 2.46 89.14 ± 2.29 86.00 ± 2.97 51.89 ± 14.87 50.46 ± 0.39
STaSy+Mixup 24.89 ± 1.30 4.37% ↓ 90.74 ± 0.06 90.00 ± 1.91 34.24 ± 2.47 90.28 ± 1.69 87.56 ± 1.06 52.61 ± 6.52 50.08 ± 0.59
STaSy+SMOTE 22.92 ± 3.77 11.91% ↓ 90.50 ± 0.24 85.81 ± 11.39 32.11 ± 5.13 86.91 ± 0.81 84.36 ± 2.36 45.12 ± 8.82 50.46 ± 0.20
STaSy+TCM 20.89 ± 1.33 19.71% ↓ 90.45 ± 0.30 85.39 ± 1.61 31.24 ± 0.97 88.33 ± 3.63 85.39 ± 4.03 45.49 ± 4.78 50.92 ± 0.39
STaSy+TCMP 21.45 ± 2.60 17.59% ↓ 90.72 ± 0.06 86.71 ± 4.12 32.63 ± 1.81 89.62 ± 1.55 86.05 ± 2.44 49.12 ± 9.95 50.75± 0.59
TabDDPM 31.01 ± 0.18 - 91.09 ± 0.07 93.58 ± 1.99 51.52 ± 2.29 98.84 ± 0.03 97.78 ± 0.07 94.63 ± 1.19 51.56 ± 0.34
TabDDPM+Mixup 30.04 ± 0.41 3.14% ↓ 90.82 ± 0.12 95.78 ± 0.68 47.65 ± 1.35 98.02 ± 1.08 96.78 ± 1.33 93.65 ± 3.59 50.86 ± 0.86
TabDDPM+SMOTE 28.98 ± 0.78 6.56% ↓ 90.41 ± 0.36 94.93 ± 1.72 46.10 ± 0.65 93.40 ± 1.12 90.76 ± 1.76 80.75 ± 0.84 51.82 ± 0.56
TabDDPM+TCM 27.55 ± 0.19 11.16% ↓ 91.15 ± 0.06 94.97 ± 0.06 47.43 ± 1.46 98.65 ± 0.03 97.75 ± 0.07 85.61 ± 16.03 50.99 ± 0.65
TabDDPM+TCMP 26.10 ± 2.11 15.83% ↓ 90.54 ± 0.17 92.26 ± 6.97 43.49 ± 3.74 95.10 ± 4.27 91.50 ± 6.53 84.76 ± 10.12 50.68 ± 0.89
TabSyn 29.26 ± 0.23 - 91.13 ± 0.09 99.31 ± 0.39 48.00 ± 0.22 99.33 ± 0.09 98.19 ± 0.50 98.68 ± 0.41 50.42 ± 0.27
TabSyn+Mixup 28.29 ± 0.28 3.30% ↓ 90.75 ± 0.24 98.63 ± 0.81 45.73 ± 2.67 98.30 ± 0.90 97.91 ± 0.12 98.05 ± 2.22 50.97 ± 1.10
TabSyn+SMOTE 27.10 ± 0.15 7.36% ↓ 89.97 ± 0.76 98.60 ± 0.50 44.72 ± 0.45 94.47 ± 0.57 91.74 ± 0.42 82.55 ± 0.71 48.42 ± 0.78
TabSyn+TCM 27.03 ± 0.22 7.60% ↓ 91.09 ± 0.17 99.04 ± 0.42 44.95 ± 0.42 99.40 ± 0.07 98.51 ± 0.08 89.18 ± 1.94 50.67 ± 0.11
TabSyn+TCMP 25.99 ± 0.52 11.17% ↓ 90.96 ± 0.16 98.43 ± 1.04 43.23 ± 2.96 98.38 ± 0.91 96.53 ± 1.47 93.39 ± 6.01 50.30 ± 0.78

Sh
op

pe
rs

STaSy 25.51 ± 0.32 - 91.26 ± 0.23 88.02 ± 3.54 34.58 ± 1.84 88.18 ± 0.29 89.10 ± 0.53 47.85 ± 8.48 51.68 ± 0.56
STaSy+Mixup 24.80 ± 1.20 2.81% ↓ 91.79 ± 0.58 87.03 ± 5.46 38.48 ± 4.54 87.14 ± 1.87 88.72 ± 1.42 47.42 ± 4.84 50.36 ± 2.45
STaSy+SMOTE 22.52 ± 1.51 11.73% ↓ 91.31 ± 1.21 85.22 ± 3.20 30.53 ± 1.65 81.22 ± 2.23 84.74 ± 0.78 38.92 ± 2.63 46.47 ± 0.95
STaSy+TCM 22.78 ± 0.69 10.71% ↓ 90.56 ± 0.44 86.66 ± 4.18 34.08 ± 1.46 87.16 ± 3.78 86.56 ± 4.26 50.08 ± 6.30 50.61 ± 0.41
STaSy+TCMP 22.19 ± 1.21 13.03% ↓ 91.37 ± 0.65 85.82 ± 2.66 34.11 ± 2.08 87.38 ± 2.30 88.61 ± 1.64 52.42 ± 2.65 51.19 ± 0.95
TabDDPM 31.37 ± 0.31 - 92.17 ± 0.32 93.16 ± 1.58 52.57 ± 1.30 97.08 ± 0.46 92.92 ± 3.27 86.74 ± 0.63 51.36 ± 0.63
TabDDPM+Mixup 27.45 ± 1.88 12.50% ↓ 91.44 ± 1.37 94.80 ± 0.68 51.72 ± 1.05 92.14 ± 4.16 89.31± 3.91 82.34 ± 3.24 46.85 ± 5.81
TabDDPM+SMOTE 26.64 ± 1.46 15.07% ↓ 89.96 ± 0.95 94.41 ± 4.67 45.22 ± 3.26 90.78 ± 0.49 83.09± 2.47 64.05 ± 1.44 51.94 ± 1.52
TabDDPM+TCM 25.56 ± 1.17 18.51% ↓ 92.17 ± 0.26 94.41 ± 1.49 50.05 ± 1.59 97.18 ± 0.34 93.95± 0.51 86.96 ± 0.50 47.52± 1.81
TabDDPM+TCMP 28.51 ± 0.35 9.12% ↓ 92.09 ± 0.99 93.43 ± 1.65 52.30 ± 0.73 97.31 ± 0.22 94.79± 0.30 87.02 ± 2.04 50.83 ± 0.59
TabSyn 27.68 ± 0.10 - 91.76 ± 0.66 99.20 ± 0.29 47.79 ± 0.77 98.54 ± 0.19 97.83 ± 0.10 95.44 ± 0.39 52.50 ± 0.44
TabSyn+Mixup 28.01 ± 0.46 −1.18% ↓ 92.02 ± 0.29 98.57 ± 0.32 48.17 ± 0.84 97.59 ± 0.09 97.98 ± 0.14 98.37 ± 0.47 51.50 ± 2.63
TabSyn+SMOTE 26.43 ± 0.85 4.54% ↓ 91.96 ± 1.02 95.27 ± 0.97 44.57 ± 0.24 94.58 ± 0.48 94.59 ± 0.08 79.89 ± 1.22 49.99 ± 0.81
TabSyn+TCM 25.38 ± 0.18 8.30% ↓ 91.43 ± 0.26 99.11 ± 0.28 45.98 ± 0.90 98.56 ± 0.10 97.85 ± 0.06 97.28 ± 2.41 49.92 ± 1.59
TabSyn+TCMP 25.93 ± 0.23 6.33% ↓ 91.75 ± 0.47 99.24 ± 0.55 46.48 ± 0.77 98.60 ± 0.14 97.77 ± 0.09 97.40 ± 0.57 50.21 ± 3.33

M
ag

ic

STaSy 77.52 ± 0.27 - 92.92 ± 0.30 91.18 ± 1.30 46.07 ± 1.61 88.12 ± 7.05 90.27 ± 6.53 75.02 ± 4.03 52.57 ± 0.92
STaSy+Mixup 78.11 ± 0.18 −0.77% ↓ 93.03 ± 0.16 91.03 ± 3.57 50.19 ± 0.84 94.30 ± 1.91 96.67 ± 1.10 79.72 ± 6.80 50.27 ± 1.42
STaSy+SMOTE 76.88 ± 0.43 0.83% ↓ 92.95 ± 1.59 67.32 ± 1.04 52.39 ± 2.18 88.78 ± 0.91 89.78 ± 1.45 53.08 ± 3.70 51.24 ± 0.74
STaSy+TCM 75.12 ± 0.29 3.10% ↓ 91.49 ± 0.63 92.50 ± 3.01 35.24 ± 1.48 89.62 ± 5.33 89.96 ± 6.44 75.70 ± 5.53 49.85 ± 0.21
STaSy+TCMP 76.70 ± 0.38 1.06% ↓ 92.77 ± 0.20 97.27 ± 1.30 40.11 ± 1.65 95.37 ± 1.51 96.34 ± 0.42 76.63 ± 6.85 48.41 ± 0.28
TabDDPM 77.62 ± 2.11 - 92.78 ± 0.23 98.41 ± 0.37 46.67 ± 1.18 99.07 ± 0.06 98.58 ± 0.51 99.05 ± 0.70 50.47 ± 0.42
TabDDPM+Mixup 78.37 ± 0.81 −0.97% ↓ 92.08 ± 0.58 92.01 ± 1.24 45.45 ± 1.38 96.22 ± 0.53 97.26 ± 1.69 98.33 ± 2.34 50.92 ± 0.20
TabDDPM+SMOTE 72.31 ± 1.56 6.84% ↓ 91.68 ± 0.52 66.45 ± 3.04 45.35 ± 2.70 89.30 ± 0.77 88.04 ± 1.54 54.27 ± 0.56 50.83 ± 0.71
TabDDPM+TCM 72.99 ± 0.22 5.96% ↓ 91.69 ± 0.86 97.92 ± 0.38 32.51 ± 0.70 98.97 ± 0.08 99.19 ± 0.11 97.62 ± 2.44 49.73 ± 0.35
TabDDPM+TCMP 76.22 ± 0.39 1.81% ↓ 91.50 ± 0.22 96.50 ± 4.02 36.52 ± 2.43 98.08 ± 1.32 95.17 ± 3.05 95.29 ± 6.22 49.88 ± 0.74
TabSyn 80.02 ± 0.39 - 93.18 ± 0.31 99.10 ± 0.68 48.28 ± 0.41 99.00 ± 0.28 99.15 ± 0.08 99.75 ± 0.29 50.48 ± 0.16
TabSyn+Mixup 78.88 ± 0.78 1.42% ↓ 92.63 ± 0.45 91.68 ± 0.20 48.50 ± 0.17 96.70 ± 0.10 98.41 ± 0.34 99.68 ± 0.43 51.01 ± 0.51
TabSyn+SMOTE 72.14 ± 1.27 9.85% ↓ 92.74 ± 0.12 63.32 ± 0.79 48.73 ± 2.69 89.36 ± 0.86 89.02 ± 0.89 56.26 ± 2.53 50.29 ± 0.53
TabSyn+TCM 52.06 ± 7.12 34.94% ↓ 91.77 ± 0.12 96.83 ± 0.40 30.79 ± 2.92 97.83 ± 0.65 98.09 ± 0.17 93.55 ± 1.49 51.76 ± 0.49
TabSyn+TCMP 76.46 ± 0.36 4.44% ↓ 91.91 ± 0.42 98.03 ± 1.76 39.54 ± 1.54 98.87 ± 0.57 97.26 ± 0.27 97.58 ± 3.36 51.32 ± 0.63

5.3 A CLOSER LOOK AT MEMORIZATION

5.3.1 DISTANCE RATIO DISTRIBUTION

We analyze the distribution of the nearest-neighbor distance ratio, defined as r = NN1(x,D)
NN2(x,D) , to assess

the severity of memorization. A more zero-concentrated ratio distribution indicates more severe
memorization issue, as the generated sample x is closer to a real sample in training set D. Figure. 5
illustrates the distance ratio distribution for both the original TabSyn and TabSyn with TabCutMix,
and we observe the following:

Obs.1: TabCutMix consistently shifts the distribution away from zero, indicating a reduction in
memorization. For example, in the Magic dataset, TabCutMix reduces the memorization ratio from
80.01% to 52.06% by generating samples that are less tightly aligned with the real data in D.
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Obs.2: The distance ratio distributions for both TabSyn and TabSyn with TabCutMix exhibit a bipolar
pattern, with a higher probability mass concentrated near 0 or 1, while the probability in the middle
remains low. This indicates that more generated samples are either very close to real data points
(suggesting memorization) or relatively far apart (suggesting diversity). In the Magic dataset, for
instance, this bipolarization is prominent, with TabCutMix shifting a greater proportion of samples
towards higher distance ratios, thus reducing memorization.
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Figure 5: The nearest-neighbor distance ratio distributions of TabSyn with and without TabCutMix
across different datasets.

5.3.2 VISUALIZATION OF REAL AND GENERATION SAMPLES

We visualize the distribution of real and generative samples for four datasets (i.e., Adult, Default,
Shoppers, and Magic) in Figure. 6. For each dataset, we sample 100 generated samples while
preserving the memorization ratio consistent with that of the entire generated dataset. For each of
these 100 samples, we then select their nearest and second-nearest real samples from the training set
to visualize. Using t-SNE, we embed both the generative samples and their corresponding nearest
and second-nearest real samples from the training data. We make the following observations:

Obs.1: In the TabSyn model, memorized generative samples (marked with ×) are tightly clustered
around their nearest real samples (shown in blue), indicating a high level of memorization. This
clustering is particularly pronounced in the Magic dataset, where most generative samples are
concentrated near their nearest neighbors, corresponding to a memorization ratio of 80.01%. In
contrast, non-memorized samples are more dispersed, demonstrating better diversity.

Obs.2: While the visual impact of TabCutMix is subtle, we observe that the generative samples exhibit
a slightly broader distribution, particularly in datasets like Default and Shoppers. This suggests a
reduction in tight clustering around real samples, which correlates with the reduction in memorization
ratios. However, in some datasets like Magic, the visual distinction remains modest, indicating that
TabCutMix quantitatively reduces memorization.
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Figure 6: The visualization of real and generated samples of TabSyn with and without TabCutMix
across different datasets.

5.4 CASE STUDY ON ADULT DATASET: REAL VS. GENERATED SAMPLES

Table. 2 provides a comparison between real samples, synthetic samples generated by TabSyn, and
synthetic samples generated with TabSyn and TabCutMix (w/ TCM) for the Adult dataset. We report
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key feature (e.g., age, Workclass, education, marital status, occupation, income, etc.) values of two
real samples and the corresponding nearest generative samples to study the quality and characteristics
of the generated data.

Obs.1: The results suggest that TabSyn alone tends to generate samples that closely resemble real
data, raising concerns about memorization. For instance, the top real sample has an age of 47.0 years.
TabSyn generates a sample with an age of 48.0 years, which is nearly identical. Similarly, other
features like workclass, marital status, and occupation are also closely reproduced.

Obs.2: When TabCutMix is applied, the generated age for the top sample changes to 36.0 while
the key relationships between other features such as marital status, occupation, and workclass
are preserved. For instance, for the workclass feature, all samples across real data, TabSyn, and
TabSyn+TCM show ”Private,” and for the relationship feature, they show ”Unmarried” or ”Own-
child,” depending on the context. For the bottom sample, prior to applying TabCutMix, the distance
ratio is 0.17, which is less than the threshold of 1

3 and thus considered memorized. However, after
applying TabCutMix, the closest sample achieves a distance ratio of 0.88, significantly exceeding the
1
3 threshold, indicating a much lower likelihood of memorization. This demonstrates that TabCutMix
can introduce diversity in specific features like age while preserving categorical feature relationships.

Table 2: The real and generative samples by TabSyn and TabSyn with TabCutMix in Adult dataset.
TCM represents TabCutMix.

Samples Age Workclass fnlwgt Education Education.num Marital Status Occupation Relationship Race Sex Capital Gain Capital Loss Hours per Week Native Country Income
Real 47.0 Private 207207.0 HS-grad 9.0 Divorced Sales Unmarried White Female 0.0 0.0 45.0 United-States ¡=50K

TabSyn 48.0 Private 207915.31 HS-grad 9.0 Divorced Sales Unmarried White Female 0.0 0.0 45.0 United-States ¡=50K
TabSyn+TCM 36.0 Private 201703.6 HS-grad 9.0 Divorced Sales Unmarried White Female 0.0 0.0 60.0 Germany ¡=50K

Real 20.0 Private 205970.0 Some-college 10.0 Never-married Craft-repair Own-child White Female 0.0 0.0 25.0 United-States ¡=50K
TabSyn 19.0 Private 208743.81 Some-college 10.0 Never-married Craft-repair Own-child White Female 0.0 0.0 18.0 United-States ¡=50K

TabSyn+TCM 44.0 Private 197128.89 Some-college 10.0 Never-married Craft-repair Own-child White Female 0.0 0.0 40.0 United-States ¡=50K
Real 67.0 Self-emp-not-inc 106143.0 Doctorate 16.0 Married-civ-spouse Sales Husband White Male 20051.0 0.0 40.0 United-States ¿50K

TabSyn 50.0 Self-emp-not-inc 151815.17 Doctorate 16.0 Married-civ-spouse Sales Husband White Male 15024.0 0.0 60.0 United-States ¿50K
TabSyn+TCM 43.0 Self-emp-not-inc 250019.6 Doctorate 16.0 Married-civ-spouse Sales Husband White Male 0.0 1977.0 40.0 United-States ¿50K

5.5 HYPERPARAMETER STUDY: IMPACT OF AUGMENTED RATIO
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Figure 7: The memorization ratio v.s. training
epochs with different augmented ratios for TabSyn.

In this section, we investigate the effect of the
augmented ratio in TabCutMix on the memoriza-
tion rate. Figure 7 presents the memorization
ratio for different augmented ratios across two
datasets, Default and Shoppers. We test vari-
ous augmented ratios, including 0%, 10%, 20%,
30%, and 100%, to analyze their impact on the
memorization behavior over training epochs.

We observe that the memorization ratio de-
creases consistently as the augmented ratio in-
creases. Without augmentation (i.e., 0% aug-
mented ratio), the memorization ratio is higher, stabilizing around 0.19 for Default and 0.25 for
Shoppers. In contrast, the 100% augmented ratio (purple curve) yields the lowest memorization
ratio, stabilizing at approximately 0.15 for Default and 0.18 for Shoppers. This suggests that higher
augmented ratios introduce more data diversity, effectively reducing overfitting and preventing the
model from memorizing specific training samples.

6 CONCLUSIONS

In this study, we first investigate memorization phenomena in diffusion models for tabular data using
quantitative metrics. Our findings reveal the prevalent memorization behaviors in existing tabular
diffusion models, with the memorization ratio increasing as training epochs grow. We further study
the effects of the diffusion model instantiation, dataset size, and feature dimensions through the lens
of memorization ratio and observe the heterogeneous trend dependent on the dataset. The theoretical
analysis provides new insights into why memorization occurs within the SOTA model TabSyn. To
mitigate the memorization issue, we propose TabCutMix, a simple yet effective data augmentation
method. Our experiments demonstrate that TabCutMix significantly mitigates the memorization for
various diffusion models and preserves the data generation quality. We believe that our paper provides
a valuable contribution by not only drawing attention to the often-overlooked issue of memorization
in tabular data generation but also offering an effective solution with TabCutMix.
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A PROOF OF PROPOSITION 3.1

In this section, we prove the close form of optimal score matching function s∗θ(zt, t). Note that the
objective of denoising score matching is given by

min
θ

Ez0∼p(z0)Ezt∼p(zt|z0)∥sθ(zt, t)−∇zt
log p(zt|z0)∥22, (7)

Note that the score function can be simplified as

∇zt
log p(zt|z0) =

1

p(zt|z0)
∇zt

p(zt|z0)

=
1

p(zt|z0)
·
(
− zt − z0

σ2(t)

)
· p(zt|z0)

= − 1

σ2(t)

(
z0 + σ(t)ϵ− z0

)
= − ϵ

σ(t)
(8)

Additionally, the noise sample zt = z̃n + σ(t)ϵ, we have ϵ = − z̃n−zt

σ(t) and dϵ = dzt

σ(t) We can
obtain the empirical objective of denoising score matching as follows:

Lemp =
1

N

∫ N∑
n=1

∥∥∥sθ(zt, t) +
ϵ

σ(t)

∥∥∥2
2
N (ϵ;0, I)dϵ

=
1

N

∫ N∑
n=1

∥∥∥sθ(zt, t)−
z̃n − zt

σ2(t)

∥∥∥2
2
N
(
zt; z̃n, σ

2(t)I
)
dσ(t)dzt. (9)

The minimization of empirical loss Lemp is a convex optimization problem. Therefore, the optimum
can be obtained via first-order gradient w.r.t. score function sθ(zt, t):

0 = ∇sθ(zt,t)

[ 1

N

N∑
n=1

∥∥∥sθ(zt, t)−
z̃n − zt

σ2(t)

∥∥∥2
2
N
(
zt; z̃n, σ

2(t)I
)]

=
2

N

N∑
n=1

[
sθ(zt, t)−

z̃n − zt

σ2(t)

]
N
(
zt; z̃n, σ

2(t)I
)

=
2

N

{ N∑
n=1

N
(
zt; z̃n, σ

2(t)I
)
sθ(zt, t)−

N∑
n=1

N
(
zt; z̃n, σ

2(t)I
) z̃n − zt

σ2(t)

}
, (10)

Therefore, the optimal score function can be written as

s∗θ(zt, t) =

∑N
n=1N

(
zt; z̃n, σ

2(t)I
) z̃n−zt

σ2(t)∑N
n=1N

(
zt; z̃n, σ2(t)I

)
=

( N∑
n=1

exp
(
− ∥z̃n − zt∥22

2σ2(t)

))−1 N∑
n=1

exp
(
− ∥z̃n − zt∥22

2σ2(t)

)
· z̃n − zt

σ2(t)
(11)

B PROOF OF PROPOSITION. 3.2

Consider the reverse process of a diffusion model defined by the score function sθ(z, t) and the
following backward stochastic differential equation (SDE):

dzt = −2σ̇(t)σ(t)s(zt, t)dt+
√

2σ̇(t)σ(t)dωt, (12)

where ωt is standard Brownian motion, and σ(t) are noise ratio at time instant t.

For solving this backward SDE given optimal score function s∗θ(zt, t), we consider the following
steps:
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Step 1: Euler Approximation. We use Euler approximation for backward SDE via sampling
multiple time steps 0 = t0 < t1 = τ < t2 = 2τ < · · · < tn = nτ = T , where τ is time sampling
resolution and small value indicates low approximation error. Using an Euler discretization, the
backward SDE can be approximated at discrete time steps tn, leading to the following update rule:

ztn = ztn+1 − 2σ̇(t)σ(t)
∥∥∥
t=tn+1

s(zt, t)(tn − tn+1) +
√

2σ̇(t)σ(t)∥t=tn+1 · ϵ · (tn − tn+1), (13)

Step 2: Update Rule Calculation. Next, we calculate the update rule considering infinite short
time resolution τ → 0,

lim
tn−tn+1→0−

2σ̇(t)σ(t)
∥∥∥
t=tn+1

= 2σ(tn+1)
σ(tn)− σ(tn+1)

tn − tn+1
, (14)

then we have

ztn = ztn+1
− 2σ(tn+1)

(
σ(tn)− σ(tn+1)

)
s(zt, t)

+
√

2σ(tn+1)
(
σ(tn)− σ(tn+1)

)
(tn − tn+1) · ϵ, (15)

For t0 = 0, it is easy to obtain σ(t) = 0, the generated sample in latent space z0 is giving by

z0 = zτ + 2σ2(τ)s(zt, t) +
√
2τσ2(τ) · ϵ. (16)

Step 3: The generated sample in latent space under τ → 0. When the denoising score function
perfectly approximates the optimal solution, we have

s(zt, t) = s∗θ(zt, t) =
( N∑

n=1

exp
(
− ∥z̃n − zt∥22

2σ2(t)

))−1 N∑
n=1

exp
(
− ∥z̃n − zt∥22

2σ2(t)

)
· z̃n − zt

σ2(t)
, (17)

Subsequently, we consider the optimal score function under τ → 0. Suppose the nearest neighbor of
z is z̃m = NN1(z,D), we have

∥z − z̃m∥22 − ∥z − z̃n∥22 < 0, for n ̸= m. (18)

Define distribution:

pt(z = z̃n) =
( N∑

n=1

exp
(
− ∥z̃n − zt∥22

2σ2(t)

))−1 N∑
n=1

exp
(
− ∥z̃n − zt∥22

2σ2(t)

)
, (19)

where n = 1, 2, · · · , N. Note that σ(τ)→ 0 if τ → 0. It is easy to calculate

lim
τ→0

pτ (z = z̃m) = lim
τ→0

( N∑
n=1

exp
(
− ∥z̃m − zτ∥22

2σ2(τ)

))−1 N∑
n=1

exp
(
− ∥z̃m − zτ∥22

2σ2(τ)

)
= lim

τ→0

[
1 +

∑
n̸=m

exp
(
− ∥z̃m − zτ∥22

2σ2(τ)

)]−1

=
[
1 + lim

σ(τ)→0

∑
n ̸=m

exp
(
− ∥z̃m − zτ∥22

2σ2(τ)

)]−1

= 1, (20)

similarly, we have, for any n′ ̸= m,

lim
τ→0

pτ (z = z̃n′) = 0. (21)

According to the above equations, the optimal score function is given by

lim
τ→0

s∗θ(zt, t) =
z̃m − zt

σ2(t)
, (22)

and the generated sample in latent space z0 is as follows:

lim
τ→0

z0 = lim
τ→0

zτ + 2σ2(τ)s(zt, t) +
√

2τσ2(τ) · ϵ

= lim
τ→0

zτ + 2σ2(τ)
z̃m − zt

σ2(t)
+

√
2τσ2(τ) · ϵ

= 2z̃m − lim
τ→0

zτ , (23)
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Therefore, we have lim
τ→0

z0 = z̃m = NN1(zτ ,D).

To summarize, under the assumption (1) the neural network can perfectly approximate the score
function s(zt, t) = s∗θ(zt, t) (2) perfect SDE solver with infinite time solution (τ → 0), the generated
sample z0 replicates one of the training samples from the dataset D.

C ALGORITHM

In this section, we provide an algorithmic illustration of the proposed TabCutMix in Algorithm 1. In
TabCutMix, the hyperparameter rn determines the augmentation ratio, i.e., the number of augmented
samples over the whole number of the original training samples.

Algorithm 1 Pseudo-code of TabCutMix

Require: Training set D, Number of samples N
1: Augmented sample set D̃ =
2: for i = 1 to N do
3: Sample class c from {1, · · · , C} with prior class distribution; ▷ Keep class ratio after

augmentation.
4: Sample (xA, yA) and (xB , yB) from class c in D; ▷ Randomly select two training samples

from the same class.
5: Sample λ ∼ Unif(0, 1) and sampling binary mask M with Bernoulli distribution Bern(λ); ▷

Proportion of features to exchange.
6: x̃←M ⊙ xA + (1−M)⊙ xB ; ▷ Mix the features based on binary mask M .
7: ỹ ← c; ▷ Assign the label of the new sample.
8: D̃ = D̃ ∪ (x̃, ỹ); ▷ Save the augmented sample.
9: end for

10: return New Training Set D ∪ D̃

D EXPERIMENTAL DETAILS

We implement TabCutMix and all the baseline methods with PyTorch. All the methods are optimized
with Adam optimizer.

D.1 DATASETS

We select 7 datasets, 5 of 7 datasets come from UCI Machine Learning Repository: Adult, Default,
Shoppers, Magic, and Wilt. The other two are Cardio and Churn Modeling. All datasets are associated
with classification tasks.

The statistics are shown in Table. 3. The detailed introduction for these datasets are given as follows:

• Adult Dataset6: The Adult Census Income dataset consists of demographic and employment-
related information about individuals, derived from the 1994 U.S. Census. The dataset’s primary
task is to predict whether an individual earns more or less than 50, 000 per year. It includes features
such as age, education, work class, marital status, and occupation, with 48, 842 records. This
dataset is widely used in binary classification tasks, especially for exploring income prediction and
socio-economic factors.

• Default Dataset7: The Default of Credit Card Clients Dataset contains records of default payments,
credit history, demographic factors, and bill statements of credit card holders in Taiwan, covering
data from April 2005 to September 2005. It features 30, 000 clients and aims to predict whether a
client will default on payment the following month. Key features include credit limit, past payment
status, and monthly bill amounts, making it useful for credit risk modeling and financial behavior
analysis.

6https://archive.ics.uci.edu/dataset/2/adult
7https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
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• Shoppers Dataset8: The Online Shoppers Purchasing Intention Dataset includes detailed informa-
tion about user interactions with online shopping websites, with data from 12, 330 user sessions.
It records features such as the number of pages viewed, time spent on different sections of the
site, and user behavior metrics. The primary task is to predict whether a user’s session will result
in a purchase. This dataset is particularly useful for studying customer behavior, e-commerce
optimization, and purchase prediction models.

• Magic Dataset9: The Magic Gamma Telescope Dataset is designed for the classification of high-
energy gamma particles collected by a ground-based atmospheric Cherenkov telescope. The dataset
contains 19, 019 instances and is used to distinguish between signals from gamma particles and
background noise generated by hadrons. The features include statistical properties of the events
such as length, width, and energy distribution, making it useful for astronomical data analysis and
high-energy particle research.

• Wilt Dataset10: The Wilt dataset is a high-resolution remote sensing dataset used for binary
classification tasks, focusing on detecting diseased trees (’w’) versus other land cover (’n’). It
includes 4, 889 instances. Features include spectral and texture information derived from Quickbird
imagery, such as GLCM mean texture, mean green, red, NIR values, and standard deviation of the
Pan band. The dataset is imbalanced, with only 74 samples of diseased trees.

• Cardio Dataset11: The Cardiovascular Disease dataset consists of 70, 000 patient records, featuring
11 attributes and a binary target variable indicating the presence or absence of cardiovascular
disease. The attributes are categorized into three types: objective (e.g., age, height, weight, gender),
examination (e.g., blood pressure, cholesterol, glucose), and subjective (e.g., smoking, alcohol
intake, physical activity).

• Churn Modeling Dataset12: The Churn Modeling dataset contains data on 10, 000 customers
from a bank, with the target variable indicating whether a customer has churned (closed their
account) or not. The dataset includes 14 columns that represent various features such as customer
demographics (e.g., age, gender, and geography), account details (e.g., balance, number of products,
tenure), and behaviors (e.g., credit score, activity, and churn status).

Table 3: Statistics of datasets. Num indicates the number of numerical columns, and Cat indicates the
number of categorical columns.

Dataset #Rows #Num #Cat #Train #Validation #Test Task
Adult 48,842 6 9 28,943 3,618 16,281 Classification
Default 30,000 14 11 24,000 3,000 3,000 Classification
Shoppers 12,330 10 8 9,864 1,233 1,233 Classification
Magic 19,019 10 1 15,215 1,902 1,902 Classification
Cardio 70,000 5 7 44,800 11,200 14,000 Classification
Churn Modeling 10,000 7 5 6,400 1,600 2,000 Classification
Wilt 4,839 5 1 3,096 775 968 Classification

In Table 3, the column “# Rows” represents the number of records in each dataset, while “# Num”
and ”# Cat” indicate the number of numerical and categorical features (including the target feature),
respectively. Each dataset is split into training, validation, and testing sets for machine learning
efficiency experiments. For the Adult dataset, which has an official test set, we directly use it for
testing, while the training set is split into training and validation sets in a ratio of 8 : 1. For the
remaining datasets, the data is split into training, validation, and test sets with a ratio of 8:1:1, ensuring
consistent splitting with a fixed random seed.

8https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+
intention+dataset

9https://archive.ics.uci.edu/dataset/159/magic+gamma+telescope
10https://archive.ics.uci.edu/dataset/285/wilt
11https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset
12https://www.kaggle.com/datasets/shrutimechlearn/churn-modelling?

resource=download
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D.2 BASELINES

In this section, we present and compare the characteristics of the baseline methods employed in this
study.

• STaSy (Kim et al., 2023) is a recently developed diffusion-based model designed for synthetic
tabular data generation. It treats one-hot encoded categorical columns as continuous features,
allowing them to be processed alongside numerical columns. STaSy utilizes the VP/VE stochastic
differential equations (SDEs) to model the distribution of tabular data. Additionally, the model
introduces several training strategies, such as self-paced learning and fine-tuning, to stabilize the
training process, thereby improving both the quality and diversity of the generated data.

• TabDDPM (Kotelnikov et al., 2023) follows a similar framework to CoDi by applying diffusion
models to both numerical and categorical data. Like CoDi, it uses DDPM with Gaussian noise
for numerical columns and multinomial diffusion for categorical data. However, TabDDPM
simplifies the modeling process by concatenating both numerical and categorical features as
inputs to a denoising function, which is implemented as a multi-layer perceptron (MLP). While
CoDi incorporates more advanced techniques like inter-conditioning and contrastive learning,
TabDDPM’s more streamlined approach has been shown to outperform CoDi in experimental
evaluations, proving that simplicity can sometimes yield better results.

• TabSyn (Zhang et al., 2023a) is a SOTA approach for generating high-quality synthetic tabular
data by leveraging diffusion models in a unified latent space. Unlike previous methods that struggle
to handle mixed data types, such as numerical and categorical features, TabSyn first transforms
raw tabular data into a continuous latent space, where diffusion models with Gaussian noise can
be effectively applied. To maintain the underlying relationships between columns, TabSyn uses a
Variational AutoEncoder (VAE) architecture that captures both inter-column dependencies and
token-level representations. The method employs an adaptive loss weighting technique to fine-tune
the balance between reconstruction performance and smooth embedding generation. TabSyn’s
diffusion process is simplified with Gaussian noise that progressively reduces as the reverse

D.3 EVALUATION METRICS

D.3.1 LOW-ORDER STATISTICS

In this part, we will introduce the details of the shape score and trend score13 for each feature and
feature pair, respectively.

The Shape Score of numerical and categorical features are determined by the KSComplement and
TVComplement metrics in SDMetrics package, respectively. KSComplement compares the shapes of
real and synthetic distributions using the maximum difference between their cumulative distribution
function (CDFs). TVComplement is based on the TVComplement, which assesses how well the
categorical distributions in the real and synthetic datasets align, with smaller differences leading to a
higher score.

• Shape Score of Numerical Features: The KSComplement is computed based on the Kolmogorov-
Smirnov (KS) statistic. The KS statistic quantifies the maximum distance between the Cumulative
Distribution Functions (CDFs) of real and synthetic data distributions. The formula is given by:

KST = sup
x
|Fr(x)− Fs(x)|, (24)

where Fr(x) and Fs(x) are the CDFs of the real distribution pr(x) and the synthetic distribution
ps(x), respectively. To ensure that a higher score represents higher quality, we use KSComplement
based on shape score = 1−KST . A higher shape score indicates greater similarity between the
real and synthetic data distributions, resulting in a higher Shape Score.

• Shape Score of Categorical Features: The TVComplement is calculated derived from the
Total Variation Distance (TVD). The TVD measures the difference between the probabilities of
categorical values in the real and synthetic datasets. It is defined as:

TV D =
1

2

∑
ω∈Ω

|R(ω)− S(ω)|, (25)

13We calculate these scores based on SDMetrics package, available at https://docs.sdv.dev/
sdmetrics.
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where Ω represents the set of all possible categories, and R(ω) and S(ω) denote the real and
synthetic frequencies for each category. The shape score is defined as shape score = 1− TV D,
which returns a score where higher values reflect a smaller difference between real and synthetic
category distributions.

In this paper, we report the average shape score across all numerical and categorical features.

The Trend Score is used to evaluate how well the synthetic data captures the relationships between
column pairs in the real dataset. Different metrics are applied depending on the types of columns
involved: numerical, categorical, or a combination of both.

• Numerical-Numerical Pairs. For numerical column pairs, the Pearson Correlation Coefficient is
used to measure the linear correlation between the two columns. The Pearson correlation, ρ(x, y),
is defined as:

ρx,y =
Cov(x, y)

σxσy
, (26)

where Cov(x, y) is the covariance, and σx and σy are the standard deviations of columns x and y,
respectively. The trend score for numerical-numerical pair (i.e., correlation similarity) is calculated
as 1 minus the average absolute difference between the real data’s and synthetic data’s correlation
values:

Trend Score = 1− 1

2
Ex,y

[
|ρR(x, y)− ρS(x, y)|

]
, (27)

where ρR(x, y) and ρS(x, y) denote the Pearson correlation coefficients of the real and synthetic
datasets, respectively.

• Categorical-Categorical Pairs. For categorical column pairs, the Contingency Similarity metric
is used. This metric measures the difference between real and synthetic contingency tables using
the Total Variation Distance (TVD). The contingency score is defined as:

Contingency Score =
1

2

∑
α∈A

∑
β∈B

|Rα,β − Sα,β |, (28)

where A and B are the sets of all possible categories in the two columns, and Rα,β and Sα,β

represent the joint frequencies of category combinations α and β for real and synthetic data,
respectively. The trend score is calculated as 1− Contingency Score.

• Mixed Pairs (Numerical-Categorical). For column pairs involving one numerical and one
categorical column, the numerical column is first discretized into bins. After discretization, the
contingency similarity metric is applied to evaluate the relationship between the binned numerical
data and the categorical column, similar to how it is used for categorical-categorical pairs. The
trend score for mixed pair is calculated as 1− Contingency Score.

Finally, the Trend Score is computed as the average of all pairwise scores (Pearson Score for
numerical-numerical pairs, and Contingency Score for categorical-categorical and numerical-
categorical pairs). This score reflects how well the synthetic data captures the relationships and trends
between columns in the real dataset.

D.3.2 MACHINE LEARNING EFFICIENCY EVALUATION

We follow the experimental setting in work (Zhang et al., 2023a). We split each dataset into training
and testing sets. The generative models are trained using the real training data, and subsequently, a
synthetic dataset of equal size is generated for further experimentation.

To assess the quality of synthetic data in Machine Learning Efficiency (MLE) tasks, we evaluate the
divergence in performance when models are trained on either real or synthetic data. The procedure
follows these steps: First, the machine learning model is trained using real data, which is split into
training and validation sets in an 8:1 ratio. The classifier or regressor is trained on this data, and
hyperparameters are optimized based on validation performance. Once the optimal hyperparameters
are determined, the model is retrained on the complete training set and evaluated using the real test
data. The synthetic data undergoes the same evaluation procedure to assess its impact on model
performance.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The following lists the hyperparameter search space for the XGBoost classifier applied during the
MLE tasks, where grid search is used to determine the best parameter configurations:

• Number of estimators: {10, 50, 100}
• Minimum child weight: {5, 10, 20}
• Maximum tree depth: {1, 10}
• Gamma: {0.0, 1.0}

The implementations of these evaluation metrics are sourced from SDMetrics14, and we follow their
guidelines for ensuring consistency across real and synthetic data assessments.

D.3.3 SAMPLE-LEVEL QUALITY METRICS: α-PRECISION AND β-RECALL

To rigorously evaluate the quality of synthetic data, we employ two complementary metrics proposed
in work (Alaa et al., 2022): α-Precision and β-Recall. These metrics offer a refined approach to
assessing the fidelity and diversity of synthetic data samples by focusing on their relationship with
the real data distribution.

• α-Precision. The α-Precision metric quantifies the fidelity of synthetic data by measuring the
probability that a generated sample lies within the α-support of the real data distribution, denoted
as Sα

r . The α-support includes the most representative regions of the real data, containing the
highest probability mass. Therefore, a high α-Precision score ensures that the synthetic samples
are realistic, falling within these high-density areas of the real data. This metric is particularly
important because it distinguishes between synthetic samples that resemble real data in a typical
way and those that might still be valid but are more akin to outliers. By focusing on the high-density
areas, α-Precision ensures that the generated data looks both realistic and “typical” compared to
real-world data. Mathematically, this is expressed as:

Pα = P(X̃g ∈ Sα
r ), α ∈ [0, 1]. (29)

• β-Recall. Conversely, β-Recall evaluates the coverage of synthetic data. It measures whether the
synthetic data captures the entire real data distribution, particularly focusing on the β-support of
the generative model, denoted as Sβ

g . The β-support includes all regions of the real distribution,
not just the frequent or typical areas. A high β-Recall score indicates that the synthetic data can
represent even the rare or low-density parts of the real distribution. This metric is crucial because it
ensures that the synthetic data does not merely replicate the most common patterns but also spans
the broader diversity of the real data, capturing rare or edge cases. Mathematically, it is defined as:

Rβ = P(X̃r ∈ Sβ
g ), β ∈ [0, 1]. (30)

Importance of α-Precision and β-Recall. The combination of α-Precision and β-Recall allows
for a holistic assessment of synthetic data. While α-Precision ensures that the synthetic data aligns
well with the most typical regions of the real data distribution (fidelity), β-Recall ensures that the
synthetic data covers the full diversity of the real data (coverage). Together, these metrics provide
insight into both the accuracy and diversity of the synthetic data. By sweeping through values of
α and β, one can gain a more dynamic understanding of how synthetic data aligns with different
aspects of the real data distribution, offering a comprehensive evaluation of its quality.

In summary, α-Precision ensures the generated data looks realistic and falls within typical regions
of the real distribution, while β-Recall ensures that the generated data covers the entire distribution,
including rare cases. The complementary nature of these two metrics makes them essential for
evaluating the fidelity and diversity of synthetic data.

D.3.4 DISTANCE TO CLOSEST RECORD (DCR) SCORE

The Distance to the Closest Record (DCR) score is a commonly used metric for assessing privacy
leakage risks in synthetic data. This metric quantifies how similar a synthetic sample is to records in
the training set compared to those in a holdout set. By calculating the DCR score for each synthetic

14https://docs.sdv.dev/sdmetrics
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Figure 8: Visualization of synthetic data’s single column distribution density v.s. the real data.

sample against both the training and holdout sets, we can determine whether the synthetic data poses
privacy concerns. If privacy risks are present, DCR scores for the training set would tend to be
significantly lower than those for the holdout set, indicating potential memorization of training data.
In contrast, the absence of such risks would result in overlapping distributions of DCR scores between
the training and holdout sets. Moreover, a probability close to 50% that a synthetic sample is closer
to the training set than the holdout set reflects a lack of systematic bias toward the training set, which
is a positive indicator for privacy preservation.

Following Zhang et al. (2023a), employ a ”synthetic vs. holdout” evaluation protocol. The dataset is
split evenly into two parts: one serves as the training set for the generative model, while the other
acts as the holdout set and is excluded from training. After generating a synthetic dataset of the same
size as the training and holdout sets, we calculate DCR scores for synthetic samples.

D.3.5 CLASSIFIER TWO SAMPLE TESTS (C2ST)

The Classifier Two-Sample Test (C2ST) Zhang et al. (2023a) is used to evaluate how well synthetic
data replicates the distribution of real data. This approach involves training a binary classifier to
distinguish between real and synthetic samples. If the synthetic data closely matches the distribution
of the real data, the classifier should struggle to differentiate the two, resulting in a test accuracy
close to 50%. Conversely, if the synthetic data deviates significantly from the real data distribution,
the classifier will achieve higher accuracy, indicating poor alignment. The C2ST score provides a
quantitative measure of this alignment, offering insights into the quality of the synthetic data. A low
C2ST score suggests that the synthetic data effectively captures the real data distribution, making it
difficult for the classifier to distinguish between real and synthetic samples.

D.3.6 OUT-OF-DISTRIBUTION (OOD) DETECTION

TabCutMix may introduce a degree of OOD Yang et al. (2024a) issues. To investigate the potential
relationship between TabCutMix and OOD, we conducted OOD detection experiments. These
experiments also aimed to evaluate whether TabCutMixPlus could mitigate OOD-related challenges
to some extent. We framed the OOD detection task as a classification problem, treating normal
samples as negative and OOD samples as positive. Since our dataset lacks explicit labels for OOD
samples, we synthesized positive samples following the approach outlined in Ulmer et al. (2020). For
numerical features, we randomly selected one feature and scaled it by a factor F (where F = 100).
This approach aligns with the methodology in Azizmalayeri et al. (2023), which experimented with
F values of 10, 100, and 1000; we adopted F = 100 as a balanced choice for our experiments. For
categorical features, we randomly selected a value from the existing categories of the chosen feature.
This process was repeated for a single feature at a time. We used the original training set as the
negative class and the synthesized samples as the positive class. A multi-layer perceptron (MLP)
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was trained to classify between these two classes. Subsequently, we tested the samples generated
by TabCutMix and TabCutMixPlus using the trained MLP and calculated the proportion of samples
classified as OOD. This analysis provides insights into the extent of OOD issues introduced by
TabCutMix and the potential of TabCutMixPlus to alleviate such issues.

4 indicates that the OOD issue introduced by TabCutMix is relatively minor across most datasets,
as evidenced by low OOD ratios (e.g., 2.06% for Adult and 0.61% for Magic) and high F1 scores
(e.g., above 90% in several cases). While some datasets, such as Default and Cardio, exhibit higher
OOD ratios (39.47% and 4.83%, respectively). TabCutMixPlus significantly mitigates the OOD
problem, reducing the OOD ratio by substantial margins across all datasets. For instance, in the Adult
dataset, the OOD ratio is reduced from 2.06% to 0.36%, while in the Default dataset, it decreases
from 39.47% to 25.44%. These findings highlight the effectiveness of TabCutMixPlus in addressing
potential OOD challenges while maintaining robust classification capabilities, reinforcing its utility
in synthetic data augmentation workflows.

Table 4: OOD detection of datasets.

Method Adult Default Shoppers Magic Cardio Churn Modeling Wilt
TabCutMix (F1 Score%) 92.67 ± 0.22 71.42 ± 1.32 82.47 ± 0.35 99.27 ± 0.07 60.33 ± 0.25 97.94 ± 0.13 99.94 ± 0.01
TabCutMix (Ratio%) 2.06 ± 1.10 39.47 ± 6.70 1.58 ± 0.76 0.61 ± 0.03 4.83 ± 1.39 0.00 ± 0.00 0.00 ± 0.00
TabCutMixPlus (F1 Score%) 92.63 ± 0.20 71.39 ± 0.94 82.28 ± 0.39 99.19 ± 0.05 60.39 ± 0.17 97.97 ± 0.02 99.95 ± 0.03
TabCutMixPlus (Ratio%) 0.36 ± 0.27 25.44 ± 2.81 0.70 ± 0.39 0.43 ± 0.25 3.88 ± 0.19 0.00 ± 0.00 0.00 ± 0.00

E MORE EXPERIMENTAL RESULTS

E.1 DATA DISTRIBUTION COMPARISON

Figure. 8 compares the distribution of real and synthetic data, with and without TabCutMix, for both
numerical and categorical features across four datasets: Adult, Default, Shoppers, and Magic. We use
one numerical feature and one categorical feature as examples from each dataset. We observe that

Obs.1: In the numerical feature distributions, TabCutMix generally synthesizes data, similar to w/o
TabCutMix, aligned with the real data’s distribution. For instance, in the Magic dataset, the Asym
feature shows that the synthetic data generated by TabSyn has a good alignment with real data.

Obs.2: The categorical feature distributions show a similar improvement. In the Shoppers dataset,
the proportion of values for the ”VisitorType” feature generated by TabCutMix closely matches the
real data, similar to the synthetic data generated without TabCutMix. This suggests that TabCutMix
preserves the alignment between real and synthetic data for categorical features as well.

E.2 FEATURE CORRELATION MATRIX COMPARISON

Figure. 9 presents heatmaps of the pairwise column correlations between synthetic and real data. We
compare the correlation matrices of synthetic data generated by TabSyn with TabCutMix against the
real data. We observe that

Obs.1: TabCutMix preserves the quality of data generation in terms of correlation matrices, maintain-
ing similar patterns to the synthetic data generated by TabSyn without introducing further errors. In
datasets like Default and Shoppers, TabCutMix ensures that the synthetic data retains the essential
correlation structure of the real data, without significant degradation in correlation matrix accuracy.

Obs.2: In the Magic dataset, while discrepancies between the synthetic and real data’s correlation
patterns persist, TabCutMix helps to maintain the existing data generation quality. Although it does
not reduce the correlation matrix error, it ensures that the synthetic data continues to represent feature
relationships similarly to TabSyn, preserving the overall structure.
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Figure 9: Heatmaps of the pair-wise column correlation of synthetic data v.s. the real data. The value
represents the absolute divergence between the real and estimated correlations (the lighter, the better).

E.3 MORE EXPERIMENTAL RESULTS ON SHAPE SCORE

Figure 10 visualizes the shape scores for synthetic data generated by TabSyn and TabSyn combined
with TabCutMix (w/ TCM) across multiple datasets (Adult, Default, Magic, and Shoppers). Shape
scores reflect how closely the distribution of individual columns in synthetic data matches the real
data. This figure compares these scores for different features to assess the fidelity of the generated
data. We make the following observations:

Obs. 1: TabSyn and TabSyn+TabCutMix produce high-fidelity distributions across datasets. Across
all datasets (Adult, Default, Magic, Shoppers), both TabSyn and TabSyn+TabCutMix maintain high
shape scores, suggesting that the generated samples from both methods capture the real data’s feature
distributions effectively. For instance, in the Adult and Default datasets, shape scores are consistently
close to 1.0, indicating minimal divergence between synthetic and real data distributions.

Obs. 2: Low variance in shape scores across features. One notable observation across all datasets
(Adult, Default, Magic, and Shoppers) is the consistently high shape scores across features, with
minimal variance. For most features, the shape scores are very close to 1.0, indicating that both
TabSyn and TabCutMix can replicate the real data distributions with high fidelity, regardless of feature
type. The small variance in shape scores suggests that both methods generalize well across a wide
range of features, from categorical to continuous, without significant degradation in performance for
any particular feature.

The shape score comparison demonstrates that both TabSyn and TabCutMix generate synthetic data
with high fidelity to the real data across multiple datasets.
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Figure 10: Shape score comparison for each feature in synthetic data generated by TabSyn and
TabSyn+TabCutMix across multiple datasets.
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Table 5: The overview performance comparison for tabular diffusion models on more datasets.
“TCM” represents our proposed TabCutMix and “TCMP” represents TabCutMixPlus. “Mem.
Ratio” represents memorization ratio. “Improv” represents the improvement ratio on memorization.

Methods Mem. Ratio (%) ↓ Improv. MLE (%)↑ α-Precision(%)↑ β-Recall(%)↑ Shape Score(%)↑ Trend Score(%)↑ C2ST(%)↑ DCR(%)

C
hu

rn

STaSy 27.01 ± 0.30 - 84.80 ± 2.24 92.39 ± 2.97 37.42 ± 8.07 87.17 ± 6.64 86.95 ± 5.99 48.42 ± 10.89 50.70 ± 2.00
STaSy+Mixup 24.86 ± 3.47 7.97% ↓ 85.08 ± 2.46 89.09 ± 1.40 46.08 ± 2.81 87.44 ± 2.82 87.95 ± 0.58 47.19 ± 7.58 51.79 ± 0.48
STaSy+SMOTE 22.36 ± 0.87 17.20% ↓ 83.73 ± 1.37 82.44 ± 1.78 35.85 ± 4.59 84.51 ± 3.71 86.23 ± 0.43 40.76 ± 4.83 51.90 ± 0.58
STaSy+TCM 22.86 ± 2.32 15.36% ↓ 84.01 ± 2.62 96.22 ± 2.87 43.16 ± 1.19 91.03 ± 1.60 90.30 ± 1.57 49.73 ± 4.26 52.26 ± 1.29
STaSy+TCMP 24.12 ± 1.05 10.69% ↓ 85.36 ± 2.16 94.92 ± 3.45 43.61 ± 2.21 91.10± 1.20 90.22 ± 0.76 50.68 ± 0.79 50.10 ± 1.80
TabDDPM 25.43 ± 1.00 - 86.31 ± 2.57 99.10 ± 0.36 51.03 ± 0.90 98.84± 0.30 98.06 ± 0.37 98.71 ± 1.40 49.23± 2.27
TabDDPM+Mixup 25.00 ± 0.68 1.69% ↓ 85.99 ± 1.49 95.04 ± 2.25 49.52 ± 1.49 95.98 ± 1.37 93.84± 2.43 88.77 ± 3.39 48.73 ± 0.82
TabDDPM+SMOTE 24.57 ± 0.61 3.41% ↓ 84.57 ± 2.14 86.46 ± 3.22 46.25 ± 1.18 94.53 ± 0.90 92.02 ± 2.19 80.12 ± 3.96 50.42 ± 0.23
TabDDPM+TCM 24.42 ± 0.71 4.00% ↓ 86.39 ± 1.82 98.51 ± 0.87 50.41 ± 0.75 98.55 ± 0.52 98.18 ± 0.81 96.62 ± 3.13 52.98 ± 0.53
TabDDPM+TCMP 24.66 ± 0.32 3.03% ↓ 86.55 ± 2.96 98.13 ± 1.21 51.82 ± 2.19 98.15 ± 0.33 97.78 ± 0.27 96.62 ± 2.20 50.37 ± 2.43
TabSyn 25.42 ± 0.21 - 86.04 ± 2.38 99.31 ± 0.31 50.45 ± 1.06 99.14 ± 0.13 98.15 ± 0.19 99.89 ± 0.06 50.80 ± 0.61
TabSyn+Mixup 24.74 ± 0.51 2.70% ↓ 85.84 ± 1.56 98.37 ± 0.16 49.43 ± 0.74 98.02 ± 0.65 97.10 ± 0.73 95.94 ± 5.81 50.43 ± 0.25
TabSyn+SMOTE 24.53 ± 0.38 3.50% ↓ 83.12 ± 1.76 88.51 ± 0.40 46.62 ± 1.02 94.98 ± 0.54 93.31 ± 0.34 83.22 ± 2.14 52.28 ± 0.45
TabSyn+TCM 24.61 ± 0.17 3.21% ↓ 85.60 ± 2.41 99.12 ± 0.46 49.60 ± 0.38 99.14 ± 0.19 98.25 ± 0.28 99.70 ± 0.33 52.15 ± 0.77
TabSyn+TCMP 24.79 ± 0.15 2.49% ↓ 86.28 ± 2.15 99.10 ± 0.28 49.62± 0.64 98.99 ± 0.50 98.70 ± 0.32 99.49 ± 0.32 49.30 ± 1.90

C
ar

di
o

STaSy 23.94 ± 0.12 - 79.89 ± 0.74 93.72 ± 3.19 46.46 ± 0.87 96.17 ± 1.24 96.37 ± 0.80 85.00 ± 4.66 50.10 ± 0.71
STaSy+Mixup 23.84 ± 0.15 0.42% ↓ 79.30 ± 0.28 94.86 ± 3.17 46.32 ± 0.47 95.14 ± 0.79 95.90 ± 0.15 82.90 ± 3.11 49.79 ± 0.53
STaSy+SMOTE 22.77 ± 0.27 4.87% ↓ 78.81 ± 0.18 90.57 ± 3.00 45.11 ± 1.24 95.37 ± 0.48 95.16 ± 1.34 76.82 ± 5.21 50.48 ± 0.24
STaSy+TCM 22.50 ± 0.35 6.00% ↓ 79.71 ± 0.46 95.11 ± 3.87 45.92 ± 1.76 95.79 ± 2.18 95.95 ± 1.74 85.34 ± 2.49 52.24 ± 3.03
STaSy+TCMP 22.81 ± 0.48 4.73% ↓ 79.96 ± 0.33 94.93 ± 2.82 46.09 ± 2.68 96.37± 1.59 96.07 ± 1.06 85.99 ± 2.21 50.43 ± 0.74
TabDDPM 24.63 ± 0.18 - 80.24 ± 0.78 99.14 ± 0.15 49.11 ± 0.17 99.61 ± 0.03 98.95 ± 0.30 99.43 ± 0.55 49.91 ± 0.36
TabDDPM+Mixup 24.00 ± 0.36 2.57% ↓ 79.62 ± 0.27 99.22 ± 0.45 48.17 ± 0.17 97.80 ± 0.72 97.38 ± 0.85 95.01 ± 2.25 50.15 ± 0.54
TabDDPM+SMOTE 23.10 ± 0.69 6.21% ↓ 79.47 ± 0.45 96.35 ± 2.38 47.44 ± 1.17 96.58 ± 0.75 94.39 ± 1.28 85.43 ± 1.69 50.73 ± 0.19
TabDDPM+TCM 23.05 ± 0.38 6.40% ↓ 79.71 ± 0.58 97.82 ± 2.05 48.37 ± 1.11 98.66 ± 1.35 95.86 ± 3.43 96.31 ± 0.42 49.24 ± 1.58
TabDDPM+TCMP 23.54 ± 0.34 4.43% ↓ 79.82 ± 0.27 98.71 ± 0.49 48.87 ± 0.34 98.88± 0.62 98.67 ± 0.20 96.31 ± 0.42 49.34 ± 0.38
TabSyn 25.31 ± 0.45 - 80.04 ± 0.79 95.70 ± 2.65 49.63 ± 0.69 97.43± 0.76 96.63 ± 1.67 91.46 ± 1.99 50.34 ± 0.79
TabSyn+Mixup 24.46 ± 0.43 3.33% ↓ 79.85 ± 0.30 98.48 ± 0.78 48.15 ± 0.56 98.32 ± 0.53 96.10 ± 2.38 96.64 ± 3.19 50.69 ± 0.34
TabSyn+SMOTE 23.85 ± 0.68 5.77% ↓ 79.76 ± 0.49 97.54 ± 0.82 47.47 ± 0.44 97.06 ± 0.71 95.00 ± 3.33 86.30 ± 3.50 48.73 ± 0.36
TabSyn+TCM 22.97 ± 0.17 9.23% ↓ 79.92 ± 0.44 98.59 ± 0.98 48.62 ± 0.76 98.90 ± 0.63 97.93 ± 0.99 95.97 ± 3.13 50.27± 1.22
TabSyn+TCMP 23.90 ± 0.42 5.55% ↓ 79.79 ± 0.60 98.32 ± 0.36 48.60 ± 0.90 98.55 ± 0.14 98.12 ± 0.99 95.78 ± 0.60 49.95 ± 0.27

W
ilt

STaSy 98.42 ± 0.24 - 98.74 ± 1.15 86.68 ± 5.50 42.20 ± 1.00 82.39 ± 8.05 91.16 ± 5.11 36.64 ± 6.77 52.27 ± 5.18
STaSy+Mixup 97.61 ± 0.81 0.77% ↓ 99.05 ± 0.84 91.78 ± 8.33 43.48 ± 3.40 85.41 ± 4.54 88.76 ± 1.65 47.88 ± 6.39 45.45 ± 8.90
STaSy+SMOTE 97.31 ± 0.82 1.13% ↓ 98.88 ± 0.71 76.07 ± 2.06 36.07 ± 2.25 80.96 ± 2.64 85.34 ± 5.12 35.63 ± 3.54 50.49 ± 0.33
STaSy+TCM 92.47 ± 5.97 6.05% ↓ 98.80 ± 0.64 91.10 ± 9.72 42.21 ± 8.70 87.34 ± 12.46 91.68 ± 7.60 47.49 ± 14.75 51.65 ± 2.80
STaSy+TCMP 97.60 ± 0.84 0.84% ↓ 99.33 ± 0.31 90.66 ± 7.37 42.22 ± 9.77 85.32 ± 8.57 90.94 ± 7.43 49.98 ± 4.59 48.19 ± 3.51
TabDDPM 98.48 ± 0.35 - 99.32 ± 0.58 98.63 ± 0.73 50.53 ± 0.47 98.58 ± 1.51 98.48 ± 0.35 98.63 ± 1.68 52.47 ± 0.54
TabDDPM+Mixup 98.16 ± 0.24 0.32% ↓ 99.34 ± 0.44 96.29 ± 0.49 52.13 ± 1.11 97.34 ± 0.99 92.24 ± 3.21 96.05 ± 1.97 50.84 ± 0.26
TabDDPM+SMOTE 96.78 ± 0.41 1.72% ↓ 99.22 ± 0.54 79.49 ± 0.78 43.76 ± 1.37 91.09 ± 0.50 88.04 ± 4.73 76.66 ± 2.61 50.29 ± 0.28
TabDDPM+TCM 97.17 ± 0.12 1.33% ↓ 99.22 ± 0.38 97.93 ± 1.01 48.47 ± 1.17 97.31 ± 1.28 95.71 ± 2.49 96.92 ± 1.72 48.75 ± 2.18
TabDDPM+TCMP 96.75 ± 0.67 1.76% ↓ 99.52 ± 0.37 98.55 ± 0.14 49.36 ± 0.99 97.12 ± 0.84 96.81 ± 0.63 96.76 ± 3.44 45.52 ± 1.35
TabSyn 97.67 ± 0.39 - 99.85 ± 0.07 98.83 ± 0.28 47.96 ± 0.64 98.73 ± 0.12 98.62 ± 0.19 99.91 ± 0.07 51.71 ± 2.94
TabSyn+Mixup 97.62 ± 0.22 0.05% ↓ 99.44 ± 0.34 97.03 ± 0.13 48.89 ± 1.61 98.51 ± 0.08 93.38 ± 4.39 98.85 ± 0.14 50.68 ± 0.42
TabSyn+SMOTE 94.84 ± 0.60 2.89% ↓ 99.13 ± 0.84 77.86 ± 1.27 41.96 ± 0.26 90.57 ± 0.61 87.85 ± 3.33 77.73 ± 1.02 47.10 ± 2.18
TabSyn+TCM 95.95 ± 0.19 1.76% ↓ 99.45 ± 0.29 98.73 ± 0.51 47.04 ± 0.25 98.64 ± 0.06 98.11 ± 0.30 99.73 ± 0.24 49.44 ± 4.08
TabSyn+TCMP 96.79 ± 0.23 0.90% ↓ 99.70 ± 0.14 99.10 ± 0.23 48.14 ± 0.41 98.47 ± 0.29 98.74 ± 0.07 99.06 ± 0.78 49.72 ± 1.02

E.4 EXPERIMENTAL RESULTS ON MORE DATASETS

To broaden the evaluation of TabCutMix and TabCutMixPlus, we included additional datasets Churn,
Cardio, Wilt. Please see the results in Table 5.

F LIMITATION DISCUSSION

While this work makes significant contributions to augmenting tabular data with TabCutMix and its
improved version, TabCutMixPlus, several limitations remain that warrant further exploration:

• Assumptions About Feature Independence. TabCutMix assumes that features can be
swapped between samples independently without disrupting the data manifold. However,
this assumption does not hold for datasets with strongly correlated features or complex
interdependencies. For instance, in the Cardio dataset, the high feature correlation led to
a relatively high OOD ratio (4.83%), highlighting a limitation of the current method in
preserving feature relationships during augmentation.

• Challenges in Complex Domains. TabCutMix struggles in sensitive domains, such as health-
care or finance, where feature interactions often carry critical domain-specific meanings.
Arbitrary feature exchanges may result in implausible or nonsensical combinations, reducing
the utility of augmented data for downstream tasks. For example, relationships between
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features like age and medical diagnosis may be violated, leading to unrealistic augmented
samples.

• Sensitivity to Outliers. The proposed mixed-distance metric, like many distance-based mea-
sures, is sensitive to outliers, particularly in numerical features, which can disproportionately
affect distance calculations and distort relationships between samples. While normalization
mitigates feature dominance, it does not fully address the impact of extreme values. Future
work could explore robust distance metrics, such as adaptive scaling or trimming, to reduce
the influence of outliers and improve the reliability of distance-based approaches in tabular
data modeling.

• Lack of General Insights into Data-Centric Factors. While this work identifies the influence
of data-centric factors, such as dataset complexity and feature interactions, on the effective-
ness of TabCutMix, it does not provide a comprehensive framework for understanding or
addressing these factors. A deeper investigation into these data-centric elements is necessary
to fully realize the potential of TabCutMix and similar augmentation techniques.

G FUTURE WORK

While this study makes significant strides in addressing the issue of memorization in tabular data
generation, several directions remain open for future exploration:

1. Theoretical Analysis of Factor Heterogeneity: A deeper theoretical investigation is valuable into
how different factors, such as dataset size and feature dimensionality, influence memorization in
heterogeneous ways. Specifically, understanding the nonlinear relationships between these factors
and their combined effect on model memorization could provide further insights.

2. Exploring Alternative Memorization Mitigation Techniques: Beyond data augmentation, future
work could explore different strategies to mitigate memorization. These could include more
advanced generative model training techniques, such as regularization methods or differential
privacy mechanisms that limit model overfitting to specific data points. Additionally, techniques
like model pruning, weight clipping, or dropout variations could be explored for their potential
to reduce memorization during model training. The model architecture design by leveraging
architectures like variational autoencoders (VAEs), normalizing flows, or GAN variations with
modified loss functions can be developed to mitigate memorization.

3. Evaluation Metrics for Memorization: Developing more comprehensive and practical evaluation
metrics specifically tailored to detect memorization in tabular data models remains a key area
for future work. These metrics could better assess the trade-off between generating high-quality
synthetic data and avoiding overfitting to the training data.

4. Real-World Applications and Use Cases: Applying these methods to a broader range of real-
world use cases could provide valuable feedback and improvements. Specific industries such as
healthcare, finance, and marketing, where tabular data is prevalent, would be ideal candidates for
testing how well these approaches generalize and perform in production environments.

5. Data-Centric Investigation for Tabular Diffusion Models: This study reveals that memorization
in tabular diffusion models may be predominantly driven by dataset-specific factors such as feature
complexity, sparsity, and redundancy, rather than model-specific architecture. A deeper exploration
into these data-centric influences could provide valuable insights into the interplay between dataset
properties and memorization behavior. Future work could focus on developing strategies to
quantify the impact of dataset characteristics on generative performance and proposing adaptive
preprocessing, augmentation, or sampling methods tailored to diverse datasets. Such investigations
would enhance the robustness and applicability of diffusion models across a wide range of tabular
data scenarios.
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