
Iterative Methods via Locally Evolving Set Process

Baojian Zhou1,2 ∗ Yifan Sun3 Reza Babanezhad Harikandeh4 Xingzhi Guo3

Deqing Yang1,2 Yanghua Xiao2

1 the School of Data Science, Fudan University,
2 Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University

3 Department of Computer Science, Stony Brook University, 4 Samsung SAIT AI Lab.

Abstract

Given the damping factor α and precision tolerance ϵ, Andersen et al. [2] intro-
duced Approximate Personalized PageRank (APPR), the de facto local method
for approximating the PPR vector, with runtime bounded by Θ(1/(αϵ)) indepen-
dent of the graph size. Recently, Fountoulakis & Yang [12] asked whether faster
local algorithms could be developed using Õ(1/(√αϵ)) operations. By noticing
that APPR is a local variant of Gauss-Seidel, this paper explores the question
of whether standard iterative solvers can be effectively localized. We propose
to use the locally evolving set process, a novel framework to characterize the al-
gorithm locality, and demonstrate that many standard solvers can be effectively
localized. Let vol(St) and γt be the running average of volume and the residual
ratio of active nodes St during the process. We show vol(St)/γt ≤ 1/ϵ and prove
APPR admits a new runtime bound Õ(vol(St)/(αγt)) mirroring the actual perfor-
mance. Furthermore, when the geometric mean of residual reduction is Θ(

√
α),

then there exists c ∈ (0, 2) such that the local Chebyshev method has runtime
Õ(vol(St)/(

√
α(2− c))) without the monotonicity assumption. Numerical results

confirm the efficiency of this novel framework and show up to a hundredfold
speedup over corresponding standard solvers on real-world graphs.

1 Introduction

Personalized PageRank (PPR) vectors are key tools for graph problems such as clustering [2, 3, 30,
36, 54, 57], diffusion [10, 14, 15, 29], random walks [25, 32, 44], neural net training [7, 27, 20, 21],
and many others [17, 48]. The Approximate PPR (APPR) [2] and its many variants [6, 9, 13, 37]
efficiently approximate PPR vectors by exploring the neighbors of a specific node at each time, only
requiring access to a tiny part of the graph – hence the number of operations needed is independent of
graph size. These local solvers are well-suited for large-scale graphs in modern graph data analysis.
Specifically, let A and D be the adjacency and degree matrices of a graph G, respectively. Given a
source node s and the damping factor α ∈ (0, 1), this paper studies local solvers for the linear system

(
I − (1− α)

(
I +AD−1

)
/2
)
π = αes, (1)

where es is the standard basis of s and π is the PPR vector [2, 12, 37]. Given the error tolerance ϵ, a
local solver needs to find π̂ such that ∥D−1(π̂ − π)∥∞ ≤ ϵ without accessing the entire graph G.2

∗Corresponding to: Baojian Zhou, bjzhou@fudan.edu.cn
2Local methods for solving Equ. (1) can be naturally extended to other linear systems defined on G.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Andersen et al. [2] proposed the local APPR algorithm, which pushes large residuals to neighboring
nodes until all residuals are small. Its runtime is upper bounded by Θ(1/(αϵ)) independent of graph
size. Based on a variational characterization of Equ. (1), Fountoulakis et al. [13] reformulated the
problem as optimizing a quadratic objective plus ℓ1-regularization and later asked [12] whether there
exists a local solver with runtime Õ(1/(√αϵ)). This corresponds to an accelerated rate since α is the
strongly convex parameter. Recently, Martínez-Rubio et al. [37] provided a method based on a nested
subspace pursuit strategy, and the corresponding iteration complexity is bounded by Õ(|S∗|/√α)
where S∗ is the support of the optimal solution. This bound deteriorates to Õ(n/√α) when the
solution is dense, with n representing the number of nodes in G, which could be less favorable than
that of standard solvers under similar conditions. Moreover, the nested computational structure
provides a constant factor overhead, which could be significant in practice.

The bound analysis of the above local methods critically depends on the monotonicity properties of
the designed algorithms. These requirements may hinder the development of simpler and faster local
linear solvers that lack such monotonicity properties. Specifically, the runtime analysis of APPR
relies on the non-negativity and decreasing monotonicity of residuals. Conversely, the runtime bounds
developed in Fountoulakis et al. [13] and Martínez-Rubio et al. [37] depend on the monotonicity of
variable updates, ensuring that the sparsity of intermediate variables increases monotonically.

Our contributions. Based on a refined analysis of APPR, our starting point is to demonstrate
that APPR is a local variant of Gauss-Seidel Successive Overrelaxation (GS-SOR) that can be
treated as an evolving set process.3 This insight leads us to explore whether standard solvers can be
effectively localized to solve Equ. (1). To develop faster local methods with improved local bounds,
we propose a novel locally evolving set process framework inspired by its stochastic counterpart [38].
This framework enables the development of faster local methods and circumvents the monotonicity
requirement barrier in runtime complexity analysis in the existing literature. For example, our analysis
of the local Chebyshev method does not depend on the monotonicity of residual or the active node
sets processed. Specifically,

• As a core tool, we propose an algorithm framework based on the locally evolving set process. We
show that APPR is a local variant of GS-SOR using this process. This framework is powerful
enough to facilitate the development of new local solvers. Specifically, standard gradient descent
(GD) can be effectively localized for solving this problem and admits Θ(1/(αϵ)) runtime bound.

• This local evolving set process provides a novel way to characterize the algorithm locality; hence,
new runtime bounds can be derived. Let vol(St) and γt be the running average of volume and the
residual ratio of active nodes St during the process; we prove the ratio vol(St)/γt serving as a
lower bound of 1/ϵ. We further show both APPR and local GD have Õ(vol(St)/(αγt)) runtime
bound mirroring the actual performance of these two methods.

• Using our framework, we show there exists c ∈ (0, 2) such that both the localized Chebyshev and
Heavy-Ball methods admit runtime bound Õ(vol(St)/(

√
α(2− c))) with the assumption that the

geometric mean of active ratio factors is Θ(
√
α). Importantly, our analysis does not require any

monotonicity property. The technical novelty is that we effectively characterize residuals of these
two methods by using second-order difference equations with parameterized coefficients.

• We demonstrate, over 17 large graphs, that these localized methods can significantly accelerate
their standard counterparts by a large margin. Furthermore, our proposed LOCSOR, LOCCH, and
LOCHB are significantly faster than APPR and ℓ1-based solvers on two huge-scale graphs.

Paper structure. We begin by clarifying notations and reviewing APPR in Sec. 2. Sec. 3 introduces
the locally evolving set process. Sec. 4 presents localized Chebyshev and Heavy-Ball methods along
with our novel techniques. We discuss open questions in Sec. 5. Experiments and conclusions are
covered in Sec. 6 and 7, respectively. Detailed related works and all missing proofs are included in
the Appendix. Our code is available at https: // github. com/ baojian/ LocalCH .

2 Notations and Preliminaries

Notations. We consider an undirected simple graph G(V, E) where V = {1, 2, . . . , n} and E ⊆ V×V
with |E| = m are the node and edge sets, respectively. The set of neighbors of v is denoted as

3The local variant of GS-SOR is defined in Appendix B.1

2

https://github.com/baojian/LocalCH

N (v) ⊆ V . The adjacency matrix A of G assigns unit weight au,v = 1 if (u, v) ∈ E and 0 otherwise.
The v-th entry of the degree matrix D is dv = |N (v)|. Given S ⊆ V , we define the volume of S
as vol(S) ≜∑v∈S dv. The support of x ∈ Rn is the set of nonzero indices supp(x) ≜ {v : xv ̸=
0, v ∈ V}. The eigendecomposition of D−1/2AD−1/2 = V ΛV ⊤ where each column of V is an
eigenvector and Λ = diag(λ1, λ2, . . . , λn) with 1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −1.

2.1 Revisiting Anderson’s APPR and its local runtime bound

We use (p, z) for solving Equ. (1) while use (x, r) for solving Equ. (3) or Equ. (4). With the initial
setting p ← 0, z ← es, APPR obtains a local estimate of π denoted as p by using a sequence of
PUSH operations defined as

APPR(α, ϵ, s,G) : Repeat (p, z)← PUSH(u, α,p, z) Until ∀v, zv < ϵdv; Return p. (2)

Algo. 1 PUSH(u, α,p, z)

1: ν = zu
2: pu ← pu + α · ν
3: zu ← (1− α) · ν/2
4: for v ∈ N (u) do
5: zv ← zv +

(1−α)ν
2du

6: Return (p, z)

At each repeat step (p, z)← PUSH(u, α,p, z), it synchronously up-
dates both p and residual z whenever there exists an active node u ∈ V
(a node with a large residual, i.e., zu ≥ ϵdu). Specifically, for each
active u, it updates pu, zu, and zv for v ∈ N (u) by using a PUSH
operator illustrated on the left. It stops when no active nodes are left.
APPR can be implemented locally so that the runtime is independent
of G. In particular, vol(supp(p)) is locally bounded, demonstrating
the sparsity effect. We restate the existing main results as follows.
Lemma 2.1 (Runtime bound of APPR [2]). Given α ∈ (0, 1) and the

precision ϵ ≤ 1/ds for node s ∈ V with p ← 0, z ← es at the initial, APPR(α, ϵ, s,G) defined
in (2) returns an estimate p of π. There exists a real implementation of (2) (e.g., Algo. 2) such that
the runtime TAPPR satisfies

TAPPR ≤ Θ(1/(αϵ)) .

Furthermore, the estimate π̂ := p satisfies ∥D−1(π̂−π)∥∞ ≤ ϵ and vol(supp(π̂)) ≤ 2/((1−α)ϵ).

The main argument for proving Lemma 2.1 is critically based on: 1) z ≥ 0 and ∥z∥1 decreases
during the updates; 2) for each active u, zu ≥ ϵdu, implying that ∥z∥1 is decreased by at least αϵdu,
consecutively leading to

∑
u du ≤ 1/(αϵ).

2.2 Problem reformulation

To approximate the PPR vector π, the original linear system in Equ. (1) can be reformulated as an
equivalent symmetric version defined as

Qx = b, with Q ≜ I − 1−α
1+αD

−1/2AD−1/2 and b ≜ 2α
(1+α)D

−1/2es, (3)

where again es is the standard basis of s, and Q is a symmetric positive-definite M -matrix with all
eigenvalues in [2α

1+α ,
2

1+α]. To solve Equ. (3) is equivalent to solving a quadratic problem

x∗ = argmin
x∈Rn

{
f(x) ≜

1

2
x⊤Qx− x⊤b

}
, (4)

where f is strongly convex with condition number 1/α. Indeed, Equ. (3) is a symmetrized version
of Equ. (1) and has a unique solution x∗ = Q−1b. The PPR vector π can be recovered from x∗ by
π = D1/2x∗. It is convenient to denote estimate of π as π(t) ≜ D1/2x(t). Given x(t), we define
the residual r(t) ≜ b −Qx(t). If x(t) is returned by a local solver for solving either Equ. (3) or
Equ. (4), we then equivalently require ∥D−1/2(x(t) − x∗)∥∞ ≤ ϵ. Hence, it is enough to have a
stop condition ∥D−1/2r(t)∥∞ ≤ 2αϵ/(1 + α) for local solvers of Equ. (3) and Equ. (4).4

Fountoulakis et al. [13] demonstrated that APPR is equivalent to a coordinate descent solver for
minimizing f in Equ. (4) and introduced an ISTA-style solver by minimizing f(x) + ϵα∥D1/2x∥1,
which provides a method with runtime bound Õ(1/(ϵα)) for achieving the same estimation guarantee
of APPR. On one hand, one may note that the runtime bound Θ(1/(αϵ)) provided in Lemma 2.1
becomes less valuable when ϵ ≤ 1/m; on the other hand, all previous local variants [6, 9, 13, 37]

4See a justification in Appendix B.

3

of APPR are critically based on some monotonicity property. This limitation could impede the
development of faster local methods that might violate the monotonicity assumption. The following
two sections present the techniques and tools to address these challenges.

3 Local Methods via Evolving Set Process
Our investigation begins with the locally evolving set process, as inspired by the stochastic counterpart
[38]. The process reveals that APPR is essentially a local variant of GS-SOR. We then show how
to use this process to build faster local solvers based on GS-SOR. We further develop a local
parallelizable gradient descent with runtime Θ(1/(αϵ)).

3.1 Locally evolving set process

Given α, ϵ, s, and G, a local solver for Equ. (3) keeps track of an active set St ⊂ V at each iteration t.
That is, only nodes in St are used to update x or r. The next set St+1 is determined by current St
and an associated local solver A. We define this process as the following local evolving set system.

Definition 3.1 (Locally evolving set process). Given a parameter configuration θ ≜ (α, ϵ, s,G), and
a local iterative method A, the locally evolving set process generates a sequence of (St,x(t), r(t))
representing as the following dynamic system

(
St+1,x

(t+1), r(t+1)
)
= Φθ

(
St,x(t), r(t),A

)
, ∀t ≥ 0, (5)

where St+1 ⊆ St ∪ (∪u∈St
N (u)) and we denote the active set St = {u1, u2, . . . , u|St|}. The set St

is maintained via a queue data structure. We say this process converges when the last set ST = ∅ if
there exists such T ; the generated sequence of active nodes are

(S0,x(0), r(0)) → (S1,x(1), r(1)) → (S2,x(2), r(2)) → . . . → (ST = ∅,x(T), r(T)).

The runtime of the local solver, A for this whole local process, is then defined as 5

TA ≜
T−1∑

t=0

vol(St).

The framework of this set process provides a new way to design local methods. Furthermore, it
helps to analyze the convergence and runtime bound of local solvers by characterizing the sequences
{vol(St)}, and {∥r(t)∥} generated by Φθ. To analyze a new runtime bound, for T ≥ 1, we define
the average of the volume of active node sets {vol(St)} and active ratio sequence {γt} as

vol(ST) ≜
1

T

T−1∑

t=0

vol(St), γT ≜
1

T

T−1∑

t=0

{
γt ≜

∑|St|
i=1 |

√
dui

r
(t+∆i)
ui |

∥D1/2r(t)∥1

}
, (6)

where ∆i is a smaller time magnitude. We define ∆i = (i− 1)/|St| for the analysis of APPR and
LOCSOR while ∆i = 0 for LOCGD in our later analysis. In the rest, we denote IT = supp(r(T)).

0 20 40

t

0.0

0.2

0.4

0.6

0.8

1.0
×105

vol(St)

vol(St)/γt

0 20 40

t

0.00

0.25

0.50

0.75

1.00
γt
γt

0 20 40

t

0.0

0.5

1.0

1.5

2.0

×106

1/ε

vol(St)
γt

· ln
(

2

ε(1− α)|It|

)

Figure 1: Runtime of APPR in the locally evolving set process on the com-dblp
graph with s = 0, α = 0.1, and ϵ = 1/m. The red region of the left figure is
TAPPR. The right two figures show active ratios and vol(ST)/γT ≤ 1/ϵ.

These two metrics
vol(ST) and γT
characterize the
locality of local
methods. To
demonstrate this
local process, Fig. 1
shows vol(St) of
APPR peaks at the
early stage, and
the active ratio
decreases as the
active volume
diminishes. The quantity vol(ST)/γT is strictly smaller than 1/ϵ, indicating that it could serve as a
better factor in the runtime analysis.

5In practice, TA :=
∑T−1

t=0 (vol(St) + |St|) where we ignore |St| for simplicity as vol(St) dominates |St|.

4

3.2 APPR via locally evolving set process

We first demonstrate how this locally evolving set process can represent APPR. For solving Equ. (1),
the set S0 = {s} and the queue-based of APPR (see Algo. 2 in Appendix A) naturally forms a
sequence of active sets from S0 = {s} to ST = ∅, hence converging. Active nodes u in queue satisfy
zu ≥ ϵdu. To delineate successive iterations St and St+1, one can insert ∗ at the beginning of St.
After processing St, it serves as an indicator for the next iteration. The star ∗ is reinserted into the
queue iteratively until the queue is empty. We use a slightly different notation for presenting tuple
(St,p(t), z(t)) to consistent with Sec. 2.1 and write out such evolving process as follows

Φθ

(
St,p(t), z(t),A = APPR

)
: for ui in St := {u1, u2, . . . , u|St|} do

p(t+∆i+1) ← p(t+∆i) + αz
(t+∆i)
ui eui , ∆i := (i− 1)/|St|

z(t+∆i+1) ← z(t+∆i) − (1+α)
2 z

(t+∆i)
ui eui +

(1−α)
2 z

(t+∆i)
ui AD−1eui

(7)

The following lemma establishes the equivalence between APPR and the local variant of GS-SOR
method (see Appendix B.1) and provides a new evolving-based bound.
Lemma 3.2 (New local evolving-based bound for APPR). Let M = α−1

(
I − 1−α

2

(
I +AD−1

))

and s = es. The linear system Mπ = s is equivalent to Equ. (1). Given p(0) = 0, z(0) = es with
ω ∈ (0, 2), the local variant of GS-SOR (15) for Mπ = s can be formulated as

p(t+∆i+1) ← p(t+∆i) +
ωz

(t+∆i)
ui

Muiui

eui
, z(t+∆i+1) ← z(t+∆i) − ωz

(t+∆i)
ui

Muiui

Meui
,

where ui is an active node in St satisfying zui ≥ ϵdui and ∆i = (i− 1)/|St|. Furthermore, when
ω = 1+α

2 , this method reduces to APPR given in (7), and there exists a real implementation (Aglo. 2)
of APPR such that the runtime TAPPR is bounded, that is

TAPPR ≤ vol(ST)

αγ̂T
ln

CT

ϵ
, where

vol(ST)

γ̂T
≤ 1

ϵ
, CT =

2

(1− α)|IT |
, γ̂T ≜

1

T

T−1∑
t=0

{∑|St|
i=1 |z

(t+∆i)
ui |

∥z(t)∥1

}
.

3.3 Faster local variant of GS-SOR

Lemma 3.2 points to the sub-optimality of APPR, as GS-SOR allows for a larger ω. For solving
Equ. (3), since APPR essentially serves as a local variant of GS-SOR, we can develop a faster local
variant based SOR. To extend this method to solve Equ. (3), we propose a local GS-SOR based on an
evolving set process, namely LOCSOR, as the following

Φθ

(
St,x(t), r(t),A = LOCSOR

)
: for ui in St := {u1, . . . , u|St|} and do

x(t+∆i+1) ← x(t+∆i) + ωr
(t+∆i)
ui eui

, ∆i = (i− 1)/|St|
r(t+∆i+1) ← r(t+∆i) − ωr

(t+∆i)
ui eui

+ (1−α)ω
1+α r

(t+∆i)
ui D−1/2AD−1/2eui

(8)

When ω ∈ (0, 1], the residual r is still nonnegative and monotonically decreasing, we establish the
convergence of LOCSOR stated in the following theorem.
Theorem 3.3 (Runtime bound of LOCSOR (ω = 1)). Given the configuration θ = (α, ϵ, s,G) with
α ∈ (0, 1) and ϵ ≤ 1/ds and let r(T) and x(T) be returned by LOCSOR defined in (8) for solving
Equ. (3). There exists a real implementation of (8) such that the runtime TLOCSOR is bounded by

1 + α

2
· vol(ST)

αγT

(
1− ∥D

1/2r(T)∥1
∥D1/2r(0)∥1

)
≤ TLOCSOR ≤

1 + α

2
·min

{
1

αϵ
,
vol(ST)
αγT

ln
C

ϵ

}

where vol(ST) and γT are defined in (6) and C = 1+α
(1−α)|IT | with IT = supp(r(T)). Furthermore,

vol(ST)/γT ≤ 1/ϵ and the local estimate π̂ := D1/2x(T) satisfies ∥D−1(π̂ − π)∥∞ ≤ ϵ.

5

0.0 0.5 1.0 1.5
Operations ×106

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

ln
‖π

(T
)
−
π
‖ 1

LocSOR (ω = 1)

LocSOR (ω = ω∗)

APPR

−12−10−8−6−4
ε

4

6

8

10

12

lo
g(

#
O

p
er

at
io

ns
)

Anderson’s Upper Bound

Our Upper Bound

Actual Operations

Our Lower Bound

Figure 2: Comparison of runtime between
APPR and LOCSOR (left) and runtime
bounds (right) as a function of ϵ. We used
the same setting as in Fig. 1.

Our new evolving bound Õ(vol(ST)/(αγT)) mirror-
ing the actual performance of APPR and empirically
much smaller than Θ(1/(αϵ)) as illustrated in Fig. 2.
Our lower bounds are quite effective when ϵ is rel-
atively large, while our upper bound is better than
Anderson’s when ϵ is small. When ϵ ≪ Θ(1/m),
this new bound is superior to both O(1/(αϵ)) and
Õ(1/(√αϵ)). This superiority is evident when com-
pared to algorithms like ISTA or FISTA [5] to min-
imize the ℓ1-regularization of f for obtaining an ap-
proximate solution of Equ. (3). Additionally, when
ω ∈ (1, 2) and recalling that Q is an M -matrix, the standard analysis of SOR shows that the spectral
norm of the iteration matrix must be larger than |ω − 1|. Hence, 0 < ω < 2 if and only if global
SOR converges [55]. When ω∗ is optimal (the point that the spectral radius of the iteration matrix is
minimized), we have the following result.

Corollary 3.4. Let ω = ω∗ ≜ 2/(1 +
√

1− (1− α)2/(1 + α)2) and St = V,∀t ≥ 0 during the
updates, the global version of LOCSOR has the following convergence bound

∥r(t)∥2 ≤
2

(1 + α)
√
ds

(
1−√α
1 +
√
α
+ ϵt

)t

,

where ϵt are small positive numbers with limt→∞ ϵt = 0.

Asymptotically, when ϵt = o(
√
α), then the runtime of global LOCSOR is Õ(m/

√
α) where Õ

hides log 1/ϵ. The main difficulty of analyzing the optimal local LOCSOR is that the nonnegativity
and monotonicity of r(t) do not hold. Instead, by using a parameterized second-order difference
equation, we develop new techniques based on the Chebyshev method detailed in Sec. 4.

3.4 Parallelizable local gradient descent

One disadvantage of LOCSOR is its limited potential for parallelization. The standard GD x(t+1) =
x(t)−∇f(x(t)) (step size = 1), in contrast, is easy to parallelize across the coordinates of the update.
Instead of updating r and x synchronously per-coordinate, we propose the following

Φθ

(
St,x(t), r(t),A = LOCGD

)
: x(t+1) ← x(t) + r

(t)
St

, r(t+1) ← r(t) −Qr
(t)
St

(9)

Every coordinate in St is updated in parallel at iteration t. Interestingly, LOCGD exhibits nonnegativ-
ity and monotonicity properties, and its runtime complexity is similar to that of LOCSOR, as stated
in the following theorem (To remind, ∆i = 0 for γT of LOCGD in Equ. (6)).
Theorem 3.5 (Runtime bound of LOCGD). Given the configuration θ = (α, ϵ, s,G) with α ∈ (0, 1)
and ϵ ≤ 1/ds and let r(T) and x(T) be returned by LOCGD defined in (9) for solving Equ. (4). There
exists a real implementation of (9) such that the runtime TLOCGD is bounded by

1 + α

2
· vol(ST)

αγT

(
1− ∥D

1/2r(T)∥1
∥D1/2r(0)∥1

)
≤ TLOCGD ≤

1 + α

2
·min

{
1

αϵ
,
vol(ST)
αγT

ln
C

ϵ

}
,

where C = (1 + α)/((1 − α)|IT |), IT = supp(r(T)). Furthermore, vol(ST)/γT ≤ 1/ϵ and the
estimate π̂ := D1/2x(T) satisfies ∥D−1(π̂ − π)∥∞ ≤ ϵ.

Note that γT of LOCGD is empirically smaller than that of LOCSOR. Hence, LOCGD is empirically
slower than LOCSOR by only a small constant factor (e.g., twice as slow), a finding consistent with
observations of their standard counterparts [19]. Nonetheless, LOCGD is much simpler and more
amenable to parallelization on platforms such as GPUs compared to APPR.

4 Accelerated Local Iterative Methods

This section presents our key contributions where we propose faster local methods based on the
Chebyshev method for solving Equ. (3) and the Heavy-Ball (HB) method for Equ. (4).

6

4.1 Local Chebyshev method

Compared with GS and GD, the standard Chebyshev method offers optimal acceleration in solving
Equ. (3). Following existing techniques (e.g., see d’Aspremont et al. [11]), we show there exists
an upper runtime bound Õ(m/

√
α) to meeting the stopping condition where Õ hides log 1/ϵ (we

presented it in Theorem C.6). Hence, the Chebyshev method is one of the optimal first-order linear
solvers for solving Equ. (3). However, localizing Chebyshev poses greater challenges due to the
additional momentum vector involved in updating x(t). Our key observation is that if a substantial
reduction in the magnitudes of r(t) is required within a subset of St, then the corresponding momentum
coordinates are likely to possess significant acceleration energy. Intuitively, a viable strategy involves
localizing both the residual and momentum vectors. For t ≥ 1, denote the “momentum” vector as
∆(t) := x(t) − x(t−1) and δt:t+1 = δtδt+1, we propose the localized Chebyshev as the following

Φθ

(
St,x(t), r(t),A = LOCCH

)
:

x̂(t) ← (1 + δt:t+1)r
(t)
St

+ δt:t+1∆
(t)
St
, δt+1 =

(
2 1+α
1−α − δt

)−1

x(t+1) ← x(t) + x̂(t), r(t+1) ← r(t) − x̂(t) + 1−α
1+αWx̂(t),

(10)

where t ≥ 1 with the initials x(0) = 0,x(1) = r(0), δ0 = 0, δ1 = (1 − α)/(1 + α), and W =
D−1/2AD−1/2 is normalized adjacency matrix. Our key strategy for analyzing (10) is to rewrite the
updates of r(t) as a nonhomogeneous second-order difference equation (see details in Lemma C.8)

r(t+1) − 2δt+1Wr(t) + δt:t+1r
(t−1) =

t∑

j=0


(1 + δj:j+1)

t∏

r=j+1

δr:r+1Qr
(j)
Sj,t


 , (11)

where we denote Sj,t = Sj ∩ · · · ∩ St−1 ∩ St given t ≥ j ≥ 0 where St = V\St. In the rest, we
define α̃ = (1−√α)/(1 +√α) and recall the eigendecomposition of D−1/2AD−1/2 = V ΛV ⊤.
Based on the above Equ. (11), we have the following key lemma.

Lemma 4.1. Given t ≥ 1,x(0) = 0, x(1) = r(0). The residual r(t) of LOCCH defined in (10) can
be expressed as the following

V ⊤r(t) = δ1:tZtV
⊤r(0) + δ1:ttu0,t + 2

t−1∑

k=1

δk+1:t(t− k)uk,t,

where Zt is a diagonal matrix such that ∥Zt∥2 ≤ 1 and

uk,t =





∑t−1
j=1

δ2:j
t Hj,t

(
I − 1−α

1+αΛ
)
V ⊤r

(0)
S0,j

if k = 0

∑t−1
j=k

δk+1:j

(t−k) Hj,t

(
1+α
1−αI −Λ

)
V ⊤r

(k)
Sk,j

if k ≥ 1,

where Hk,t is a diagonal matrix such that ∥Hk,t∥2 ≤ t− k.

This key lemma essentially captures the process of residual reduction r(t) of LOCCH. Specif-
ically, given current iteration t, we define the running residual reduction rate for r(k) with
k = 0, 1, 2, . . . , t− 1 of step t as βk,t, that is,

βk,t ≜
∥uk,t∥2
∥r(k)∥2

, βk ≜ max
t

βk,t. (12)

Note that

βk,t ≤
2∥r(k)Sk

∥2
(1− α)∥r(k)∥2︸ ︷︷ ︸

≈O(ϵ)

+

t−1∑

j=k+1

4α̃j−k(t− j)

(1− α)(t− k)

∥r(k)Sk,j
∥2

∥r(k)∥2
︸ ︷︷ ︸

≤ 4α̃
(1−α)(1−α̃)

,

where whether the last term can be even smaller depends on ∥r(k)Sk,j
∥2 for Sk,j = Sk∩· · ·∩Sj−1∩Sj .

However, we notice that the running geometric mean βt ≜ (
∏t−1

j=0(1 + βj))
1/t is even smaller in

practice. Based on these observations and the assumption on βt, we establish the following theorem.

7

Theorem 4.2 (Runtime bound of LOCCH). Given the configuration θ = (α, ϵ, s,G) with α ∈ (0, 1)
and ϵ ≤ 1/ds and let r(T) and x(T) be returned by LOCCH defined in (10) for solving Equ. (3). For
t ≥ 1, the residual magnitude ∥r(t)∥2 has the following convergence bound

∥r(t)∥2 ≤ δ1:t

t−1∏

j=0

(1 + βj)yt,

where yt is a sequence of positive numbers solving yt+1 − 2yt + yt−1/((1 + βt−1)(1 + βt)) = 0

with y0 = y1 = ∥r(0)∥2. Suppose the geometric mean βt ≜ (
∏t−1

j=0(1 + βj))
1/t of βt be such that

βt = 1 + c
√
α

1−
√
α

where c ∈ [0, 2). There exists a real implementation of (10) such that the runtime
TLOCCH is bounded by

TLOCCH ≤ Θ

(
(1 +

√
α)vol(ST)√

α(2− c)
ln

2yT
ϵ

)
.

0 200000 400000 600000

TA =
∑

t

vol(St)

−0.3

−0.2

−0.1

ln
‖π̂
−
π
‖ 1

ASPR (ε̂ =1.00e-05)

ASPR (ε̂ =1.00e-07)

APPR

0 1 2

TA =
∑

t

vol(St) ×107

−0.6

−0.4

−0.2

ASPR (ε̂ =3.15e-07)

ASPR (ε̂ =3.15e-09)

APPR

Figure 3: Comparison of runtime between
APPR and ASPR. The setting is the same as
in Fig. 1. Left ϵ = 10−4 while 1

n for right.

Golub & Overton [18] considered the approximate
Chebyshev method by assuming that the inexact resid-
ual is sufficiently smaller than ϵ∥r(t)∥2, where ϵ
must be small enough to ensure convergence. How-
ever, this assumption is overly stringent for our case.
The novelty of our analysis lies in a more elegant
treatment of a parameterized second-order difference
equation, allowing us to circumvent this assumption.
The nested APGD(ϵ̂), namely ASPR proposed in
Martínez-Rubio et al. [37] has runtime complexity
Õ(|S∗| ṽol (S∗) /√α + |S∗| vol (S∗)) where S∗ is
the optimal support of argminx

{
f(x) + ϵα∥D1/2x∥1

}
and ṽol(S∗) = nnz (QS∗,S∗). Although it

is difficult to compare our bound to this, one limitation of ASPR is that it assumes to call APGD(ϵ̂)
O(|S∗|) times to finish in the worst case. However, our iteration complexity is Õ(1/(√α(2− c))).
Asymptotically, c = o(

√
α) (ϵ→ 0), our complexity is Õ(1/√α) could be better than Õ(|S∗|/√α).

Fig. 3 presents a preliminary study on ASPR, indicating that it requires more operations than APPR.

We conclude our analysis by presenting a similar result for the local Heavy Ball (HB). Note the
HB method is the one when δtδt+1 → α̃2 where α̃ = (1 −√α)/(1 +√α). Hence, it has similar
convergence analyses as to LOCCH shown in Theorem D.8. The LOCHB has the following updates

Φ (St; s, ϵ, α,G,A = LOCHB) :

x̂(t) ← (1 + α̃2)r
(t)
St

+ α̃2∆
(t)
St

x(t+1) ← x(t) + x̂(t), r(t+1) ← r(t) − x̂(t) + 1−α
1+αWx̂(t).

(13)

5 Generalization and Open Problems

Our framework can be applied to various local methods for large-scale linear systems. Extensions of
this framework to other linear systems are detailed in Tab. 2 of Appendix E. More broadly, we consider
the feasibility of local methods for solving Qx = b, where b is a sparse vector (| supp(b)| ≪ n) and
Q is a positive definite, graph-induced matrix with bounded eigenvalues. This leads us to question
whether all standard iterative methods can be effectively localized, raising two key questions

1. Given a graph-induced matrix Q and its spectral radius ρ(Q) < 1, a standard solver A, and the
corresponding local evolving process Φθ(St,x(t), r(t), LOCA), does a localized version of A
(over St) converge and have local runtime bounds?

2. Based on current analysis, Theorem 4.2 relies on the geometric mean of residual reduction
on ∥r(k)∥2 being small. How feasible is acceleration within locality constraints? Specifically,
a stronger bound could be established for solving Equ. (3) via LOCHB and LOCCH, with a
graph-independent bound of

TLOCA = Θ

(
vol(ST)√

αγT

ln
C

ϵ

)
, where C a graph-independent constant.

8

Additionally, this work primarily focuses on using first-order neighbors at each iteration. An area
for future exploration is generalizing to higher-order neighbors to determine if this leads to faster or
more efficient methodologies, which remains an open question.

6 Experiments

We conduct experiments over 17 graphs to solve (3) and explore the local clustering task. We
address the following questions: 1) Can iterative solvers be effectively localized? 2) How does the
performance of accelerated local methods compare to non-accelerated ones? 3) Can our proposed
methods reduce the number of operations required for local clustering? 6

Baselines. We consider four baselines: 1) Conjugate Gradient Method (CGM) as a benchmark to
compare local and non-local methods; 2) ISTA, the local method proposed by Fountoulakis et al.
[13]; 3) FISTA, the momentum-based local algorithm proposed by Hu [22]; and 4) APPR, the classic
local method proposed by Andersen et al. [2]. All methods are implemented in Python 3.10 with the
numba library [33].

Efficiency of localized algorithms. To compare local solvers to their standard counterparts, we set
α = 0.1, randomly select 50 nodes from each graph to serve as es in (3), and run standard GD, SOR,
HB, and CH solvers along with their local counterparts: LOCGD, LOCSOR, LOCHB, and LOCCH.
We measure the efficiency by the speedup, defined as the ratio between the runtime of the standard
and local solver. The range of ϵ is ϵ ∈ [α

2(1+α)ds
, 10−4/n]. The results, presented in Fig. 4, clearly

indicate that our design demonstrates significant speedup, especially around ϵ = 1/n. Remarkably,
they still show better performance even when ϵ ≈ 10−4/n (Fig. 5). These results suggest that local
solvers are preferred over non-local ones when the precision requirement is in this range.

10−8 10−5 10−2

ε

0

50

100

150

S
pe

ed
up

ogbl-ppa
GD/LOCGD
SOR/LOCSOR
HB/LOCHB
CH/LOCCH

10−8 10−5 10−2

ε

0

20

40

60

ogbn-arxiv

10−8 10−5 10−2

ε

0

20

40

60

80
ogbn-mag

10−8 10−5 10−2

ε

0

100

200

300

ogbn-products

10−8 10−5 10−2

ε

0

50

100

ogbn-proteins

Figure 4: The speedup of local solvers as a function of ϵ. The vertical line is ϵ = 1/n.

0.0 0.5 1.0 1.5 2.0
Operations ×109

−6

−4

−2

ln
‖x

(T
)
−
x
∗ ‖

1

ogbl-ppa
LocSOR

LocHB

LocCH

ISTA

FISTA

CGM

APPR

0 1 2 3
Operations ×109

−8

−6

−4

−2
ogbn-products

Figure 5: Estimation error as a function of
operations required. (ϵ = 10−4/n)

Comparison with local baselines and CGM. We
next compare our three accelerated methods with
four baselines. Fig. 5 presents the ℓ1-estimation er-
ror in terms of the number of operations (quanti-
fied as t · vol(St)) executed. It is evident that our
three solvers use significantly fewer operations com-
pared to CGM and the other three local methods.
Again, due to maintaining a nondecreasing set of ac-
tive nodes, ISTA and FISTA require more operations
than the locally evolving set process. Ours are more efficient than APPR, where r(0) = es is used.

0 1 2
Operations ×107

−3.5

−3.0

−2.5

−2.0

ln
‖x

(T
)
−
x
‖ 1

com-friendster

APPR

LocHB

LocCH

LocSOR

0 2 4
Operations ×107

−3

−2

ogbn-papers100M

Figure 6: Performance on large-scale graphs.

Efficiency in terms of α and huge-graph tests. We
demonstrate the performance of local solvers in terms
of different α ranging from 0.005 to 0.25. Interest-
ingly, in Fig. 13, LOCGD show faster convergence
when α is small; this may be because of the advan-
tages of monotonicity properties, which is not present
in the accelerated methods. However, in other regions
of α, accelerated methods are faster. We also tested
local solvers on two large-scale graphs where pa-

pers100M has 111M nodes and 1.6B edges while com-friendster has 65M nodes with 1.8B edges.
Results are shown in Fig. 6; compared with current default local methods, it is several times faster,
especially on ogbn-papers100M.

6Additional experimental results, setups, and algorithm parameters are provided in Appendix F.

9

Case study on local clustering.
Following the experimental setup
in Fountoulakis et al. [13], we
consider the task of local cluster-
ing on 15 graphs. As partially
demonstrated in Tab. 1, compared
with APPR and FISTA, LOCSOR
uses the least operations and is the
fastest, demonstrating the advan-
tages of our proposed local solvers.

Table 1: Operations/runtime comparison on local clustering.

G Operations Run Time (Seconds)

APPR LocSOR FISTA APPR LocSOR FISTA

G1 6.9e+05 6.5e+04 5.7e+05 0.127 0.043 0.093
G2 6.7e+05 8.9e+04 4.4e+05 0.362 0.125 0.308
G3 4.3e+05 3.5e+04 2.9e+05 0.069 0.014 0.042
G4 5.7e+05 7.6e+04 4.4e+05 0.357 0.175 0.229
G5 5.4e+05 9.0e+04 5.0e+05 0.072 0.055 0.084

7 Limitations and Conclusion

Our proposed algorithms may have the following limitations: 1) When α is small, the acceleration
effect partially disappears, as observed in Fig. 13. This may be due to the limitations of global coun-
terparts, where the residual may not decrease early; 2) Our new accelerated bound for LocCH depends
on an empirically reasonable assumption of residual reduction but lacks theoretical justification.

We propose using a new locally evolving set process framework to characterize algorithm locality
and demonstrate that several standard iterative solvers can be effectively localized, significantly
speeding up current local solvers. Our local methods could be efficiently implemented into GPU
architecture to accelerate the training of GNNs such as APPNP [27] and PPRGo [7]. We also offer
open problems in developing faster local methods. It is worth exploring whether subsampling active
nodes stochastically or using different queue strategies (priority rather than FIFO) could help speed up
the framework further. It also remains interesting to see how to design local algorithms for conjugate
direction-based methods such as CGM.

10

Acknowledgments and Disclosure of Funding

The authors would like to thank the anonymous reviewers for their helpful comments. The work
of Baojian Zhou is sponsored by Shanghai Pujiang Program (No. 22PJ1401300) and the National
Natural Science Foundation of China (No. KRH2305047). The work of Deqing Yang is supported by
Chinese NSF Major Research Plan No.92270121. The computations in this research were performed
using the CFFF platform of Fudan University.

References
[1] Alon, N., Rubinfeld, R., Vardi, S., and Xie, N. Space-efficient local computation algorithms. In

Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms (SODA),
pp. 1132–1139. SIAM, 2012.

[2] Andersen, R., Chung, F., and Lang, K. Local graph partitioning using PageRank vectors. In
47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2006.

[3] Andersen, R., Gharan, S. O., Peres, Y., and Trevisan, L. Almost optimal local graph clustering
using evolving sets. Journal of the ACM (JACM), 63(2):1–31, 2016.

[4] Anikin, A., Gasnikov, A., Gornov, A., Kamzolov, D., Maximov, Y., and Nesterov, Y. Efficient
numerical methods to solve sparse linear equations with application to PageRank. Optimization
Methods and Software, pp. 1–29, 2020.

[5] Beck, A. and Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Imaging Sci., 2:183–202, 2009.

[6] Berkhin, P. Bookmark-coloring algorithm for personalized pagerank computing. Internet
Mathematics, 3(1):41–62, 2006.

[7] Bojchevski, A., Klicpera, J., Perozzi, B., Kapoor, A., Blais, M., Rózemberczki, B., Lukasik, M.,
and Günnemann, S. Scaling graph neural networks with approximate pagerank. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(KDD), 2020.

[8] Boyd, S., Diaconis, P., and Xiao, L. Fastest mixing markov chain on a graph. SIAM review, 46
(4):667–689, 2004.

[9] Chen, Z., Guo, X., Zhou, B., Yang, D., and Skiena, S. Accelerating personalized PageRank
vector computation. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD), pp. 262–273, 2023.

[10] Chung, F. The heat kernel as the pagerank of a graph. Proceedings of the National Academy of
Sciences (PNAS), 104(50):19735–19740, 2007.

[11] d’Aspremont, A., Scieur, D., Taylor, A., et al. Acceleration methods. Foundations and Trends®
in Optimization, 5(1-2):1–245, 2021.

[12] Fountoulakis, K. and Yang, S. Open problem: Running time complexity of accelerated ℓ1-
regularized PageRank. In Conference on Learning Theory (COLT), 2022.

[13] Fountoulakis, K., Roosta-Khorasani, F., Shun, J., Cheng, X., and Mahoney, M. W. Variational
perspective on local graph clustering. Mathematical Programming, 174(1):553–573, 2019.

[14] Fountoulakis, K., Wang, D., and Yang, S. p-norm flow diffusion for local graph clustering. In
ICML, 2020.

[15] Gasteiger, J., Weißenberger, S., and Günnemann, S. Diffusion improves graph learning. In
Advances in neural information processing systems (NeurIPS), 2019.

[16] Gleich, D. and Mahoney, M. Anti-differentiating approximation algorithms: A case study with
min-cuts, spectral, and flow. In International Conference on Machine Learning, pp. 1018–1025.
PMLR, 2014.

11

[17] Gleich, D. F. PageRank beyond the web. siam REVIEW, 57(3):321–363, 2015.

[18] Golub, G. H. and Overton, M. L. The convergence of inexact chebyshev and richardson iterative
methods for solving linear systems. Numerische Mathematik, 53(5):571–593, 1988.

[19] Golub, G. H. and Van Loan, C. F. Matrix computations (4th Edition). JHU press, 2013.

[20] Guo, X., Zhou, B., and Skiena, S. Subset node representation learning over large dynamic
graphs. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, pp. 516–526, 2021.

[21] Guo, X., Zhou, B., and Skiena, S. Subset node anomaly tracking over large dynamic graphs. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 475–485, 2022.

[22] Hu, C. Local graph clustering using l1-regularized PageRank algorithms. Master’s thesis,
University of Waterloo, 2020.

[23] Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., and Leskovec, J. Open
graph benchmark: Datasets for machine learning on graphs. Advances in neural information
processing systems, 33:22118–22133, 2020.

[24] Johnson, R. and Zhang, T. Graph-based semi-supervised learning and spectral kernel design.
IEEE Transactions on Information Theory, 54(1):275–288, 2008.

[25] Kapralov, M., Lattanzi, S., Nouri, N., and Tardos, J. Efficient and local parallel random walks.
Advances in Neural Information Processing Systems (NeurIPS), 2021.

[26] Klamkin, M. and Newman, D. J. Extensions of the weierstrass product inequalities. Mathematics
Magazine, 43(3):137–141, 1970.

[27] Klicpera, J., Bojchevski, A., and Günnemann, S. Predict then propagate: Graph neural networks
meet personalized pagerank. In International Conference on Learning Representations (ICLR),
2019.

[28] Kloster, K. and Gleich, D. F. A nearly-sublinear method for approximating a column of the
matrix exponential for matrices from large, sparse networks. In Algorithms and Models for the
Web Graph: 10th International Workshop, WAW 2013, Cambridge, MA, USA, December 14-15,
2013, Proceedings 10, pp. 68–79. Springer, 2013.

[29] Kloster, K. and Gleich, D. F. Heat kernel based community detection. In Proceedings of the
20th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD),
2014.

[30] Kloumann, I. M. and Kleinberg, J. M. Community membership identification from small
seed sets. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD), 2014.

[31] Koutis, I., Miller, G. L., and Peng, R. A nearly-m log n time solver for sdd linear systems. In
2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 590–598.
IEEE, 2011.

[32] Łącki, J., Mitrović, S., Onak, K., and Sankowski, P. Walking randomly, massively, and efficiently.
In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC),
pp. 364–377, 2020.

[33] Lam, S. K., Pitrou, A., and Seibert, S. Numba: A llvm-based python jit compiler. In Proceedings
of the Second Workshop on the LLVM Compiler Infrastructure in HPC, pp. 1–6, 2015.

[34] Leskovec, J., Lang, K. J., Dasgupta, A., and Mahoney, M. W. Community structure in large net-
works: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics,
6(1):29–123, 2009.

[35] Leventhal, D. and Lewis, A. S. Randomized methods for linear constraints: convergence rates
and conditioning. Mathematics of Operations Research, 35(3):641–654, 2010.

12

[36] Mahoney, M. W., Orecchia, L., and Vishnoi, N. K. A local spectral method for graphs: With
applications to improving graph partitions and exploring data graphs locally. The Journal of
Machine Learning Research (JMLR), 13(1):2339–2365, 2012.

[37] Martínez-Rubio, D., Wirth, E., and Pokutta, S. Accelerated and sparse algorithms for ap-
proximate personalized PageRank and beyond. In Proceedings of Thirty Sixth Conference
on Learning Theory (COLT), volume 195 of Proceedings of Machine Learning Research, pp.
2852–2876. PMLR, 2023.

[38] Morris, B. and Peres, Y. Evolving sets and mixing. In Proceedings of the Thirty-Fifth Annual
ACM Symposium on Theory of Computing (STOC), pp. 279–286, New York, NY, USA, 2003.
Association for Computing Machinery.

[39] Nutini, J., Schmidt, M., Laradji, I., Friedlander, M., and Koepke, H. Coordinate descent
converges faster with the gauss-southwell rule than random selection. In ICML, pp. 1632–1641.
PMLR, 2015.

[40] Polyak, B. T. Introduction to optimization. New York, Optimization Software„ 1987.

[41] Rakhlin, A. and Sridharan, K. Efficient online multiclass prediction on graphs via surrogate
losses. In Artificial Intelligence and Statistics, pp. 1403–1411. PMLR, 2017.

[42] Rubinfeld, R. and Shapira, A. Sublinear time algorithms. SIAM Journal on Discrete Mathemat-
ics, 25(4):1562–1588, 2011.

[43] Saad, Y. Iterative methods for sparse linear systems. SIAM, 2003.

[44] Schaub, M. T., Benson, A. R., Horn, P., Lippner, G., and Jadbabaie, A. Random walks on
simplicial complexes and the normalized hodge 1-laplacian. SIAM Review, 62(2):353–391,
2020.

[45] Spielman, D. A. Algorithms, graph theory, and linear equations in laplacian matrices. In
Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes)
Vol. I: Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures, pp. 2698–2722. World
Scientific, 2010.

[46] Spielman, D. A. and Teng, S.-H. Nearly linear time algorithms for preconditioning and
solving symmetric, diagonally dominant linear systems. SIAM Journal on Matrix Analysis and
Applications, 35(3):835–885, 2014.

[47] Stević, S. Bounded solutions to nonhomogeneous linear second-order difference equations.
Symmetry, 9(10):227, 2017.

[48] Teng, S.-H. et al. Scalable algorithms for data and network analysis. Foundations and Trends®
in Theoretical Computer Science, 12(1–2):1–274, 2016.

[49] Tseng, P. and Yun, S. A coordinate gradient descent method for nonsmooth separable minimiza-
tion. Mathematical Programming, 117:387–423, 2009.

[50] Tu, S., Venkataraman, S., Wilson, A. C., Gittens, A., Jordan, M. I., and Recht, B. Breaking
locality accelerates block gauss-seidel. In ICML, pp. 3482–3491. PMLR, 2017.

[51] Vishnoi, N. K. et al. Lx= b. Foundations and Trends in Theoretical Computer Science, 8(1–2):
1–141, 2013.

[52] Wang, J.-K., Lin, C.-H., and Abernethy, J. D. A modular analysis of provable acceleration via
Polyak’s momentum: Training a wide ReLU network and a deep linear network. In ICML, pp.
10816–10827. PMLR, 2021.

[53] Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Weinberger, K. Simplifying graph convolu-
tional networks. In ICML, pp. 6861–6871. PMLR, 2019.

[54] Yin, H., Benson, A. R., Leskovec, J., and Gleich, D. F. Local higher-order graph clustering. In
Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and
data mining (KDD), 2017.

13

[55] Young, D. M. Iterative solution of large linear systems. Elsevier, 2014.

[56] Zeng, H., Zhang, M., Xia, Y., Srivastava, A., Malevich, A., Kannan, R., Prasanna, V., Jin, L.,
and Chen, R. Decoupling the depth and scope of graph neural networks. Advances in Neural
Information Processing Systems, 34:19665–19679, 2021.

[57] Zhou, B., Sun, Y., and Harikandeh, R. B. Fast online node labeling for very large graphs. In
ICML, pp. 42658–42697. PMLR, 2023.

14

Appendix / supplemental material

A Notations and Proof of Lemma 2.1 16

A.1 List of Notations . 16

A.2 Proof of Lemma 2.1 . 16

B Local Iterative Methods via Evolving Set Process 18

B.1 Local Variant of GS-SOR and Proof of Lemma 3.2 18

B.2 LOCSOR and Proof of Theorem 3.3 . 20

B.3 Optimal GS-SOR and Proof of Corollary 3.4 . 22

B.4 LOCGD and Proof of Theorem 3.5 . 23

C Local Chebyshev Method - LOCCH 25

C.1 Nonhomogeneous of Second-order Difference Equation 25

C.2 Properties on Ratio of Chebyshev Polynomials 28

C.3 Standard Chebyshev (CH) Method and Proof of Theorem C.6 29

C.4 Residual Updates of LOCCH and Proof of Lemma 4.1 30

C.5 Convergence of LOCCH and Proof of Theorem 4.2 34

C.6 Implementation of LOCCH . 37

D Local Heavy-Ball Method - LOCHB 37

D.1 Standard HB and Proof Theorem D.2 . 37

D.2 Residual Updates of LOCHB and Proof of Theorem D.6 40

D.3 Convergence of LOCHB of Proof of Theorem D.8 43

D.4 Implementation of LOCHB . 45

E Instances of Sparse Linear Systems 45

E.1 Table of Popular Graph-induced Linear Systems 45

F Experimental Details and Missing Results 46

F.1 Datasets and Preprocessing . 46

F.2 Problems Settings and Baseline Methods . 46

F.3 Full results of Fig. 15 4 5 6 . 47

F.4 Results on local clustering . 52

G Related work 53

15

A Notations and Proof of Lemma 2.1

A.1 List of Notations

In the rest of the appendix, we use the following notations:

Description
G An undirected connected simple graph with unit weights.

A The adjacency matrix of G.

D The diagonal degree matrix of G.

W The normalized Laplacian matrix W ≜ D−1/2AD−1/2.

V ΛV ⊤ The eigendecomposition of W is given by W = D−1/2AD−1/2 = V ΛV ⊤, where
Λ = diag(λ1, λ2, . . . , λn), with 1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −1. When λn = −1, G
is a bipartite graph.

Q The underlying matrix of Equ. (3) is Q = I − 1−α
1+αD

−1/2AD−1/2.

r(t) Given an estimate x(t), the residual is defined as r(t) ≜ b−Qx(t).

r̃(t) The D1/2-shifted residual is defined as r̃(t) = D1/2r(t).

α The damping factor α, which lies in the interval (0,1).

α̃ A pre-defined constant α̃ = (1−√α)/(1 +√α).
TA The total runtime of a local algorithm A.

Tt(x) For t ≥ 1, Tt denotes the Chebyshev polynomial of the first kind, defined as Tt+1(x) =
2xTt(x)− Tt−1(x), with T0(x) = 1, and T1(x) = x.

δt The ratio of Tt−1 and Tt, i.e., δt = Tt−1(
1+α
1−α)/Tt(

1+α
1−α), and δt+1 = (2 1+α

1−α − δt)
−1,

with δ1 = 1−α
1+α .

δ1:t The product of all δt, i.e., δ1:t ≜
∏t

i=1 δi. By default, we set δ0:1 = 0.

S1:t The intersection of all t-ordered sets, i.e., S1:t = S1 ∩ S2 ∩ · · · ∩ St. By default, we
set St:t−1 = V .

St The complement of St, i.e., St = V\St.
Sj,t Sj,t = Sj ∩ Sj+1 ∩ · · · ∩ St−1 ∩ St = Sj:t−1 ∩ St. By default, we set St,t = St.

A.2 Proof of Lemma 2.1

Lemma 2.1 (Runtime bound of APPR [2]). Given α ∈ (0, 1) and the precision ϵ ≤ 1/ds for node
s ∈ V with p← 0, z ← es at the initial, APPR(G, ϵ, α, s) defined in (2) returns an estimate p of π.
There exists a real implementation of (2) (e.g., Algo. 2) such that the runtime TAPPR satisfies

TAPPR ≤ Θ(1/(αϵ)) .

Furthermore, the estimate π̂ := p satisfies ∥D−1(π̂−π)∥∞ ≤ ϵ and vol(supp(π̂)) ≤ 2/((1−α)ϵ).

Proof. To find an upper bound of TAPPR, we add a time index for all active nodes u1, u2, . . . , ut

processed in APPR of Algo. 2, a real implementation of (2). The parameter t is the number of
active nodes processed, and ui is the node dequeued at time i. So, updates of p and z are from
(0, es) = (p(0), z(0)) to (p(t), z(t)) as follows:

(p(0), z(0))
u1−→ (p(1), z(1))

u2−→ (p(2), z(2)) · · · ut−→ (z(t),p(t)).

For each active ui, the updates of (p, z) by definition can be represented as

p(i) = p(i−1) + αz(i−1)
ui

· eui
, z(i) = z(i−1) − (1 + α)z

(i−1)
ui

2
eui

+
(1− α)z

(i−1)
ui

2
AD−1eui

.

16

Since z(0) = es ≥ 0, then z(i) ≥ 0 and p(i) ≥ 0 for all i by induction. Note that ∥AD−1eui∥1 = 1,
we have the following relation from the updates of z

∥z(i)∥1 = ∥z(i−1)∥1 − αz(i−1)
ui

⇐⇒ z(i−1)
ui

=
∥z(i−1)∥1 − ∥z(i)∥1

α
.

Note ϵdui
≤ z

(i−1)
ui for each active ui. Summing the above equation over i = 1, 2, . . . , t, we have

t∑

i=1

ϵdui
≤

t∑

i=1

z(i−1)
ui

=

t∑

i=1

(∥z(i−1)∥1 − ∥z(i)∥1
α

)
=
∥z(0)∥1 − ∥z(t)∥1

α
≤ ∥z

(0)∥1
α

=
1

α
,

where note ∥z(0)∥1 = ∥es∥1 = 1 by the initial condition. Since
∑t

i=1 dui exactly captures the
number of operations needed, the runtime of Algo. 2 is then bounded as

TAPPR = Θ

(
t∑

i=1

dui

)
≤ Θ

(
1

αϵ

)
.

To check the quality of estimate p, using the updates of p(i) and summing over all i, we have

p(t) = α
t∑

i=1

z(i−1)
ui

eui
= α

(
(1 + α)

2
I − (1− α)

2
AD−1

)−1

︸ ︷︷ ︸
Π

t∑

i=1

(
z(i−1) − z(i)

)
= π −Πz(t),

where Π is the PPR matrix. The above gives us π − p(t) = Π · z(t). Since G is undirected, the Π
matrix satisfies πv[u] = (du/dv)πu[v] where πv[u] is the u-th element of PPR vector of sourcing
node v. Consider each u-th element of Π · z(t)

(Π · z(t))u =
∑

v∈V
z(t)v · πv[u] =

∑

v∈V
z(t)v ·

du
dv

πu[v] ≤ ϵdu
∑

v∈V
πu[v] = ϵdu,

where the last equality is due to
∑

v∈V πu[v] = 1. Hence, (π − p(t))u = (Π · z(t))u ≤ ϵdu, which
indicates ∥D−1(p(t)−π)∥∞ ≤ ϵ. To see the bound of vol(supp(p(t))), note for any u ∈ supp(p(t)),
it was an active node and there was at least z̃u(1−α)/2 remain in u-th entry of z(t) where we denote
z̃u as the residual before the last push operation of node u; hence

∑

u∈supp(p)

du ≤
∑

u∈supp(p)

z̃u
ϵ

=
∑

u∈supp(p)

z̃u(1− α)/2

ϵ(1− α)/2
≤
∑

u∈supp(p) z
(t)
u

ϵ(1− α)/2
≤ 2

(1− α)ϵ
.

Algo. 2 APPR(α, ϵ, s,G) via FIFO Queue
1: Initialize: p← 0, z ← es,Q ← {∗, s}, t = −1
2: while true do
3: u← Q.dequeue()
4: if u == * then
5: if Q = ∅ then
6: break
7: t← t+ 1 // Starting time of St
8: Q.enqueue(*) // Marker for next St+1

9: continue
10: z̃ ← zu
11: pu ← pu + α · z̃
12: zu ← z̃ · (1− α)/2
13: for v ∈ N (u) do
14: zv ← zv +

(1−α)
2 · z̃

du

15: if zv ≥ ϵdv and v /∈ Q then
16: Q.enqueue(v)
17: if zu ≥ ϵdu and u /∈ Q then
18: Q.enqueue(u)
19: return p

Indeed, Lemma 2.1 is a special case of The-
orem 1 in [2]. The proof outlined above ad-
heres to the key strategy demonstrated in that
theorem, which involves exploring the mono-
tonicity and nonnegativity of z.
The real implementation of APPR, as shown
in Algo. 2, presents a typical queue-based
method. It has monotonic properties dur-
ing the updates of p and z (Lines 10-16 of
Algo. 2). It also holds element-wise that
p ≥ 0 and z ≥ 0. The operations of
Q.enqueue(u), Q.dequeue(), and v /∈ Q are
all in O(1). Line 4 to Line 9 is to design
the marker for distinguishing between St and
St+1. If all active nodes are processed and
no more active nodes are added into Q, then
Q will be empty, and finally, the algorithm
returns an estimate p of π.

17

B Local Iterative Methods via Evolving Set Process

Justification of an equivalent condition. We make the justification of an equivalent stop condition
for solving (3). Note we require a local solver to return an estimate π̂ satisfies

∥D−1 (π̂ − π) ∥∞ ≤ ϵ (14)

Since we define Qx = b as
(
I − 1−α

1+αD
−1/2AD−1/2

)
x = 2α

1+αD
−1/2es. With r(t) = b−Qx(t)

and the stop condition

∥D−1/2r(t)∥∞ ≤
2αϵ

1 + α

ensures the estimate π̂ = D1/2x(t) satisfies (14). To see this, since π = D1/2x∗, we have

∥D−1 (π̂ − π) ∥∞ = ∥D−1/2(x(t) − x∗)∥∞
= ∥D−1/2(Q−1b−Q−1r(t) −Q−1b)∥∞
= ∥D−1/2Q−1D1/2D−1/2r(t)∥∞
≤ ∥D−1/2Q−1D1/2∥∞ · ∥D−1/2r(t)∥∞
≤ ∥D−1/2Q−1D1/2∥∞ ·

2αϵ

1 + α

where D−1/2Q−1D1/2 = (I − 1−α
1+αD

−1A)−1 =
∑∞

i=0(
1−α
1+αD

−1A)i. This leads to

∥D−1 (π̂ − π) ∥∞ ≤ ∥
∞∑

i=0

(1−α
1+αD

−1A)i∥∞ ·
2αϵ

1 + α

≤ 1 + α

2α
· 2αϵ

1 + α
= ϵ.

B.1 Local Variant of GS-SOR and Proof of Lemma 3.2

The Gauss-Seidel Successive Over-Relaxation (GS-SOR) solver (see Section 11.2.7 of Golub &
Van Loan [19]) for the linear system Mπ = s via the following forward substitution

for i in V := {1, 2, . . . , n} do :

p
(t+1)
i = ω


si −

i−1∑

j=1

Mijp
(t+1)
j −

n∑

j=i+1

Mijp
(t)
j


 /Mii + (1− ω)p

(t)
i ,

where p is updated from p(t) to p(t+1). When the relaxation parameter ω = 1, GS-SOR reduces to
the standard GS method. Equivalently, let ∆i = (i− 1)/n for i = 1, 2, . . . , n, then GS-SOR updates
can be sequentially represented as

for i in V := {1, 2, . . . , n} do :

p(t+∆i+1) ← p(t+∆i) +
ω

Mii


si −

i−1∑

j=1

Mijp
(t+∆i)
j −

n∑

j=i

Mijp
(t+∆i)
j


 · ei.

Therefore, it is natural to define the following local variant of GS-SOR.
Definition B.1 (Local variant of GS-SOR). Consider the linear system Mπ = s. For t ≥ 0, we are
given an active node set St = {u1, u2, . . . , u|St|} and let ∆i = (i − 1)/|St| for i = 1, 2, . . . , |St|,
providing ω ∈ (0, 2), it is natural to define the local variant of GS-SOR as follows:

for ui in St := {u1, u2, . . . , u|St|} do :

p(t+∆i+1) ← p(t+∆i) +
ω

Muiui


sui −

i−1∑

j=1

Muiujp
(t+∆i)
uj

−
n∑

j=i

Muiujp
(t+∆i)
uj


 · eui , (15)

where St ⊆ V . When ω = 1 and St = V = {1, 2, . . . , n}, it reduces to the standard GS.

18

We use the above definition to show APPR is a local variant of GS-SOR as the following.
Lemma 3.2 (New local evolving-based bound for APPR). Let M = α−1

(
I − 1−α

2

(
I +AD−1

))

and s = es. The linear system Mπ = s is equivalent to Equ. (1). Given p(0) = 0, z(0) = es with
ω ∈ (0, 2), the local variant of GS-SOR (15) for Mπ = s can be formulated as

p(t+∆i+1) ← p(t+∆i) +
ωz

(t+∆i)
ui

Muiui

eui
, z(t+∆i+1) ← z(t+∆i) − ωz

(t+∆i)
ui

Muiui

Meui
,

where ui is an active node in St satisfying zui ≥ ϵdui and ∆i = (i− 1)/|St|. Furthermore, when
ω = 1+α

2 , this method reduces to APPR given in (7), and there exists a real implementation (Aglo. 2)
of APPR such that the runtime TAPPR is bounded by

TAPPR ≤ vol(ST)

αγ̂T
ln

CT

ϵ
, where

vol(ST)

γ̂T
≤ 1

ϵ
, CT =

2

(1− α)|IT |
, γ̂T ≜

1

T

T−1∑
t=0

{∑|St|
i=1 |z

(t+∆i)
ui |

∥z(t)∥1

}
.

Proof. Note that Mπ = s is equivalent to Equ. (1). We first rewrite p(t+∆i+1) in terms of the
residual z. The residual z at time t+∆i can be written as z(t+∆i) = s−Mp(t+∆i). Note sui

−∑i−1
j=1 Muiuj

p
(t+∆i)
uj −∑n

j=i Muiuj
p
(t+∆i)
uj = (s−Mp(t+∆i))ui

= z
(t+∆i)
ui . Then, the updates of

local GS-SOR defined in (15) can be rewritten as p(t+∆i+1) = p(t+∆i)+ ω
Muiui

z
(t+∆i)
ui ·eui

. Hence,

the updates of z(t+∆i) can be written as

z(t+∆i+1) = s−Mp(t+∆i+1) = s−M

(
p(t+∆i) +

ωz
(t+∆i)
ui

Muiui

· eui

)
= z(t+∆i) − ωz

(t+∆i)
ui

Muiui

Meui
.

Note the diagonal element Muiui
= (1 + α)/(2α). Hence, when ω = 1+α

2 , we have

p(t+∆i+1) = p(t+∆i) + αz(t+∆i)
ui

· eui

z(t+∆i+1) = z(t+∆i) − αz(t+∆i)
ui

Meui
= z(t+∆i) − z(t+∆i)

ui
(
1 + α

2
I − 1− α

2
AD−1)eui

.

The above updates match APPR’s evolving set process formulation in (7). The rest is to show a new
runtime bound. Adding ℓ1-norm on both sides of the above equation, then note ∥z(t+∆i+1)∥1 =

∥z(t+∆i)∥1 − αz
(t+∆i)
ui for i = 1, 2, . . . , |St|. We have

∥z(t+1)∥1 =

(
1− α

∑|St|
i=1 z

(t+∆i)
ui

∥z(t)∥1

)
∥z(t)∥1 = (1− αβt) ∥z(t)∥1 =

t∏

i=0

(1− αβt) ∥z(0)∥1,

where we define βt :=
∑|St|

i=1 |z(t+∆i)
ui

|
∥z(t)∥1

. Let t = T − 1, we have

ln
∥z(T)∥1
∥z(0)∥1

=

T−1∑

t=0

ln (1− αβt) ≤ −
T−1∑

t=0

αβt ⇒ T ≤ 1

αγ̂T
ln
∥z(0)∥1
∥z(T)∥1

,

where the first inequality is due to ln(1 + x) ≤ x for x > −1. For each nonzero node u ∈ IT =

{z(T)
u : z

(T)
u ̸= 0, u ∈ V}, consider the last time t′ that it was altered. Then, either the alteration

came from u being an active node, with z
(t′)
u ≥ duϵ, and after the PUSH operation it became

z
(t′′)
u ≥ (1−α)du

2 ϵ; or the alteration came from a neighboring node vu ∈ N (u) pushing its mass onto

u, which ensures that z(t
′′)

u ≥ (1−α)
2dvu

z
(t′)
vu ≥ (1−α)

2 ϵ. These two cases provide a lower bound of 1−α
2 ϵ.

Hence, ∥z(T)∥1 ≥ ϵ(1−α)|IT |
2 , which leads to the corresponding constant CT .

To see the lower bound of 1/ϵ, note ϵdui
≤ z

(t+∆i)
ui for all i = 1, 2, . . . , |St|. Then we have

ϵ vol(St) ≤
|St|∑

i=1

z(t+∆i)
ui

= βt∥z(t)∥1
≤ βt,

19

where we defined βt :=
∑|St|

i=1 |z(t+∆i)
ui

|
∥z(t)∥1

and the last inequality is due to the monotonic decreasing of

∥z(t)∥1, i.e., 1 ≥ ∥z(0)∥1 ≥ · · · ≥ ∥z(T)∥1. Applying the above inequality for all t = 0, 1, 2 . . . , T−
1, it leads to

ϵ vol(St) ≤ βt

⇒ ϵ

T−1∑

t=0

vol(St) ≤
T−1∑

t=0

βt

⇒ vol(ST)
γ̂T

≤ 1

ϵ
,

where the last derivation is from the fact that γ̂T = 1
T

{∑T−1
t=0 βt :=

∑|St|
i=1 |z(t+∆i)

ui
|

∥z(t)∥1

}
.

Remark B.2. The connection between APPR and the Gauss-Seidel is not new [28, 29, 16, 9]. Our
work is the first work that has linked APPR and the Gauss-Seidel with a locally evolving set process.

B.2 LOCSOR and Proof of Theorem 3.3

In this subsection, recall we defined r̃(t) = D1/2r(t).
Lemma B.3 (Local iteration complexity of LOCSOR (ω ≤ 1)). Denote St = {u1, u2, . . . , u|St|}
as the active node set at the t-th iteration. When ω ∈ (0, 1], all vectors r̃(t) ≥ 0 are nonnegative
and magnitudes are decreasing ∥r̃(t+1)∥1 < ∥r̃(t)∥1. Let T be the total number of iterations needed.
Then, at iteration T , we have

T ∈ (1 + α)

2αωγT

[
1− ∥r̃

(T)∥1
∥r̃(0)∥1

, ln
∥r̃(0)∥1
∥r̃(T)∥1

]
, γT ≜

1

T

T−1∑

t=0



γt ≜

|St|∑

i=1

r̃
(t+∆i)
ui

∥r̃(t)∥1



 , (16)

where γt = t−1
∑t−1

τ=0 γτ is the mean of active ratio factors defined in Equ. (6).

Proof. Recall ui ∈ St = {u1, . . . , u|St|} and ∆i =
i−1
|St| , LOCSOR in Algo. 3 updates

x(t+∆i+1) = x(t+∆i) + ωr(t+∆i)
ui

· eui

r(t+∆i+1) = r(t+∆i) − ωr(t+∆i)
ui

· eui +
(1−α)ω
1+α r(t+∆i)

ui
·D−1/2AD−1/2eui

Note r ≥ 0 during updates when ω ∈ (0, 1] and recall r̃(t) = D1/2r(t), we have

∥r̃(t+∆i+1) + ωr̃(t+∆i)
ui

· eu∥1 = ∥r̃(t+∆i) + (1−α)ω
1+α r̃(t+∆i)

ui
·AD−1eui

∥1
∥r̃(t+∆i+1)∥1 + ωr̃(t+∆i)

ui
= ∥r̃(t+∆i)∥1 + (1−α)ω

1+α r̃(t+∆i)
ui

.

Summing over the above equations over ui, we have

∥r̃(t+1)∥1 = ∥r̃(t)∥1 −
2αω

1 + α

|St|∑

i=1

r̃(t+∆i)
ui

=

(
1− 2αω

1 + α

|St|∑

i=1

r̃
(t+∆i)
ui

∥r̃(t)∥1
︸ ︷︷ ︸

γt

)
∥r̃(t)∥1. (17)

Given {xi}T−1
i=0 and xi ∈ (0, 1), the Weierstrass product inequality provides 1 − ∑T−1

i=0 xi ≤∏T−1
i=0 (1− xi). By using this inequality, we continue to have a lower bound of T as the following

1−
T−1∑

t=0

2αωγt
1 + α

≤
T−1∏

t=0

(
1− 2αωγt

1 + α

)
=

∥∥r̃(T)
∥∥
1∥∥r̃(0)
∥∥
1

⇒ (1 + α)
(
1− ∥r̃(T)∥1/∥r̃(0)∥1

)

2αωγT

≤ T.

To get upper bound of γt, note each active residual r̃(t+∆i)
ui pushes at most (1−α)ω

(1+α) times magnitude to

r̃ui+1
, r̃ui+2

, and r̃u|St|
; hence,

∑|St|
j=i r̃

(t+∆j)
uj will increase by at most r̃(t+∆i)

ui · (1−α)ω
(1+α) ≤ r̃

(t+∆i)
ui

in total. Hence, overall ui, we have

∥∥r̃(t)St

∥∥
1
=

|St|∑

i=1

r̃(t)ui
≤

|St|∑

i=1

r̃(t+∆i)
ui

≤ 2
∥∥r̃(t)St

∥∥
1
.

20

We reach the following lower and upper bounds of γt,
∥r̃(t)

St
∥1

∥r̃(t)∥1
≤ γt :=

∑|St|
i=1

r̃
(t+∆i)
ui

∥r̃(t)∥1
≤ 2∥r̃(t)

St
∥1

∥r̃(t)∥1
. To

check the upper bound of T , from Equ. (17), ∥r̃(T)∥1 =
∏T−1

t=0

(
1− 2αωγt

1+α

)
∥r̃(0)∥1 and

ln
∥r̃(T)∥1
∥r̃(0)∥1

=

T−1∑

t=0

ln

(
1− 2αωγt

1 + α

)
≤ −

T−1∑

t=0

2αωγt
1 + α

⇒ T ≤ (1 + α)

2αωγT

ln
∥r̃(0)∥1
∥r̃(T)∥1

,

where the first inequality is due to ln(1 + x) ≤ x for x > −1.

Theorem 3.3 (Runtime bound of LOCSOR (ω = 1)). Given the configuration θ = (α, ϵ, s,G) with
α ∈ (0, 1) and ϵ ≤ 1/ds and let r(T) and x(T) be returned by LOCSOR defined in (8) for solving
Equ. (3). There exists a real implementation of (8) such that the runtime TLOCSOR is bounded by

1 + α

2
· vol(ST)

αγT

(
1− ∥D

1/2r(T)∥1
∥D1/2r(0)∥1

)
≤ TLOCSOR ≤

1 + α

2
·min

{
1

αϵ
,
vol(ST)
αγT

ln
C

ϵ

}

where vol(ST) and γT are defined in (6) and C = 1+α
(1−α)|IT | with IT = supp(r(T)). Furthermore,

vol(ST)/γT ≤ 1/ϵ and the local estimate π̂ := D1/2x(T) satisfies ∥D−1(π̂ − π)∥∞ ≤ ϵ.

Proof. After the last iteration T , for each nonzero residual r̃(T)
u ̸= 0, u ∈ IT , there must be at least

one update that happened at node u: Node u has a neighbor vu ∈ N (u), which was active. This

neighbor vu pushed some residual
(1−α)r̃(t

′)
vu

(1+α)dvu
to u where t′ < T . Hence, for all u ∈ IT , we have

∥r̃(T)∥1 =
∑

u∈IT

r̃(T)
u ≥

∑

u∈IT

(1− α)r̃
(t′)
vu

(1 + α)dvu
≥
∑

u∈IT

(1− α)2αϵdvu/(1 + α)

(1 + α)dvu

= ϵ|IT |
2α(1− α)

(1 + α)2
,

where the second inequality is because r̃(t
′)

vu was active before the push operation. Applying the above
lower bound of ∥r̃(T)∥1 to Equ. (16) of Lemma B.3 and note ∥r̃(0)∥1 = 2α/(1 + α), we obtain

∥r̃(0)∥1
∥r̃(T)∥1

≤ ∥r̃(0)∥1
ϵ|IT | · 2α(1−α)

(1+α)2

=
1 + α

ϵ(1− α)|IT |
:=

C1

ϵ
.

The rest is to prove an upper bound 1/(αϵ) of TLOCSOR. Recall that for any active node u, we have
residual updates from Algo. 3 as the following

D1/2r(t+1) = D1/2r(t) − ωr(t)u D1/2eu +
(1− α)ωr

(t)
u

1 + α
AD−1D1/2eu.

Move −ωr(t)u D1/2eu to the left and note ∥AD−1D1/2eu∥1 =
√
du, we then obtain

∥D1/2r(t+1)∥1 + ω
√
dur

(t)
u = ∥D1/2r(t)∥1 +

(1− α)ω

1 + α

√
dur

(t)
u .

Hence, for each active u, we have 2αω
√
dur

(t)
u

1+α = ∥D1/2r(t)∥1 − ∥D1/2r(t+1)∥1. Summing them

over all active nodes u and noticing r
(t)
u ≥ 2αϵ

√
du/(1 + α) by the active condition. Note ω = 1

and ||D1/2r(0)||1 = 2α
1+α , we have run time bounded by

TLOCSOR =
∑

u

du ≤
(
1 + α

2α

)2 ∑
t(∥D1/2r(t)∥1 − ∥D1/2r(t+1)∥1)

ωϵ
≤ (1 + α)

2αϵ
.

Combining the above bound and the bound T shown in Lemma B.3, we prove the lower and upper
bound of TLocSOR. To check the lower bound of 1/ϵ,i.e., vol(ST)/γT ≤ 1/ϵ, note 2αϵdui

1+α ≤ r̃
(t+∆i)
ui

for all i = 1, 2, . . . , |St|. Then we have

2αϵ

1 + α
vol(St) ≤

|St|∑

i=1

r̃(t+∆i)
ui

= γt∥D1/2r(t)∥1
≤ γt∥D1/2r(0)∥1 =

2αγt
1 + α

,

21

where the last inequality is due to the monotonic decreasing of ∥D1/2r(t)∥1, i.e., 2α
1+α ≥

∥D1/2r(0)∥1 ≥ · · · ≥ ∥r(T)∥1. Applying the above inequality over all t = 0, 1, 2 . . . , T − 1,
it leads to

ϵ vol(St) ≤ γt

⇒ ϵ

T−1∑

t=0

vol(St) ≤
T−1∑

t=0

γt

⇒ vol(ST)
γT

≤ 1

ϵ
.

Algo. 3 LOCSOR(α, ϵ, s,G, ω) via FIFO Queue

1: Initialize: r ← ces, x← 0, c = 2α
1+α , t = −1

2: Q ← {∗, s} // As we assume ϵ ≤ 1/ds
3: while true do
4: u← Q.dequeue()
5: if u == * then
6: if Q = ∅ then
7: break
8: t← t+ 1 // Starting time of St
9: Q.enqueue(*) // Marker for next St+1

10: continue
11: r̃ ← ru
12: if |ru| < c · ϵdu then
13: continue
14: xu ← xu + ω · r̃
15: ru ← ru − ω · r̃
16: for v ∈ N (u) do
17: rv ← rv +

(1−α)ω
(1+α) · r̃

du

18: if |rv| ≥ c · ϵdv and v /∈ Q then
19: Q.enqueue(v)
20: if |ru| ≥ c · ϵdu and u /∈ Q then
21: Q.enqueue(u)
22: return x

The real queue-based implementation of LOC-
SOR is presented in Algo. 3. It has mono-
tonic and nonnegative properties during the up-
dates of r ≥ 0 and x ≥ 0 when ω ∈ (0, 1].
Same as APPR, the operations ofQ.enqueue(u),
Q.dequeue(), and v /∈ Q are all in O(1).
During the updates, one should note that the real
vector r presents D1/2r(t) while the vector x
is D1/2x(t). In this case, the original active
node condition is implicitly shifting from |ru| ≥
2αϵ

√
du

1+α to
√
du|ru| ≥ 2αϵdu

1+α . We use this shifted
active condition in Lines 11 and 13 and inactive
condition in Line 5. When ω ∈ (1, 2), it is
possible |ru| < c · ϵdu and LOCSOR will ignore
this inactive node u during the updates. This
step makes sure St = {ui : |r(t+∆i)

ui
| ≥ 2αϵ

√
du

1+α }
during the updates.

B.3 Optimal GS-SOR and Proof of Corollary 3.4

We introduce the following standard result.
Lemma B.4 (Young [55], Section 12.2, Theorem 2.1). Given the GS-SOR method for solving
Qx = b, if the underlying matrix Q is a Stieltjes matrix and set relaxation parameter ω as

ω∗ =
2

1 +
√
1− ρ(B)2

= 1 +

(
ρ(B)

1 +
√

1− ρ(B)2

)2

, (18)

where ρ(B) is the largest eigenvalue (in magnitude) of B = I − diag(Q)−1Q, then

ω∗ − 1 ≤ ρ(Lω∗) ≤
√
ω∗ − 1, (19)

where Lω := (diag(Q)− ωQL)
−1(ωQU − (ω − 1)diag(Q)) with Q = diag(Q)−QU −QL.

Corollary 3.4. Let ω = ω∗ ≜ 2/(1 +
√
1− (1− α)2/(1 + α)2) and St = V,∀t ≥ 0, the global

version of LOCSOR has the following convergence bound

∥r(t)∥2 ≤
2

(1 + α)
√
ds

(
1−√α
1 +
√
α
+ ϵt

)t

, (20)

where ϵt are small positive numbers with limt→∞ ϵt = 0.

22

Proof. Recall Q = I − 1−α
1+αD

−1/2AD−1/2 and we consider the underlying graph as simple which
means A has 0 diagonal. Hence, diag(Q) = I and B is defined as

B =
1− α

1 + α
D−1/2AD−1/2, ρ(B) =

1− α

1 + α
.

Since Q is a Stieltjes matrix, then Lemma B.4 gives a bound on the spectral radius of Lω as

ρ(Lω∗) ≤
(

2

1 +
√
1− ρ(B)2

− 1

)1/2

=

(
2(1 + α)

1 + α+ 2
√
α
− 1

)1/2

=
1−√α
1 +
√
α
.

Recall that Gelfand’s formula states [52]: Given spectral radius ρ(Lω∗) := maxi∈[n] |λi(Lω∗)|,
where λi(·) is the i-th eigenvalue, there exists a sequence {ϵt}≥0 such that ∥Lt

ω∗∥2 = (ρ(Lω∗) + ϵt)
t

and limt→∞ ϵt = 0. The standard SOR method is defined as the following

x(t+1) = (diag(Q)− ω∗QL)
−1
(
ω∗b+ (ω∗QU − (ω∗ − 1)diag(Q))x(t)

)

= Lω∗x(t) + ω∗(diag(Q)− ω∗QL)
−1b,

Note r(t) = Qe(t) = QLt
ω∗Q−1Qe(0) = QLt

ω∗Q−1r(0). We have

∥r(t)∥2 = ∥QLt
ω∗Q−1r(0)∥2 ≤ ∥Q∥2∥Lt

ω∗∥2∥Q−1∥2∥r(0)∥2

≤ 2

1 + α
· ∥Lt

ω∗∥2 ·
1 + α

2α
· 2α

(1 + α)
√
ds

=
2∥Lt

ω∗∥2
(1 + α)

√
ds

.

To meet the stop condition, we require |r(t)u | ≤ 2αϵ
√
du

1+α . It is enough to make sure ∥r(t)∥2 ≤
2αϵ

(1+α)
√
ds

. This leads to find t such that

∥r(t)∥2 ≤
2∥Lt

ω∗∥2
(1 + α)

√
ds
≤ 2αϵ

(1 + α)
√
ds
⇔
(
1−√α
1 +
√
α
+ ϵt

)t

≤ αϵ.

When ϵt = o(
√
α), then the runtime of global LOCSOR is Õ(m/

√
α) where Õ hides log 1

ϵ .

B.4 LOCGD and Proof of Theorem 3.5

The local gradient descent, namely LOCGD is to use x(t+1) = x(t)+r
(t)
St

and r(t+1) = r(t)−Qr
(t)
St

,

where St = {ui : |r(t+∆i)
ui | ≥ 2αϵ

√
du/(1 + α)} where ∆i = 0. Algo. 4 presents our actual

implementation of LOCGD via FIFO Queue.

Algo. 4 LOCGD(α, ϵ, s,G) via FIFO Queue

1: Initialize: r ← ces, x← 0, c = 2α
1+α

2: Q ← {s} // Assume ϵ ≤ 1
ds

3: t = 0
4: while Q ≠ ∅ do
5: St ← []
6: while Q ≠ ∅ do
7: u← Q.dequeue()
8: St.append((u, ru))
9: xu ← xu + ru

10: ru ← 0
11: for (u, r̃) ∈ St do
12: for v ∈ N (u) do
13: rv ← rv +

(1−α)r̃
(1+α)du

14: if |rv| ≥ c · ϵdv and v /∈ Q then
15: Q.enqueue(v)
16: t← t+ 1
17: return x, r

Algo. 4 presents LOCGD similar to the real
queue-based implementation of LOCSOR. It has
monotonic and nonnegative properties during
the updates of r ≥ 0 and x ≥ 0. Again, the
operations of Q.enqueue(u), Q.dequeue(), and
v /∈ Q are all in O(1). During the updates, one
should note that r presents D1/2r(t) while x is
D1/2x(t). All shifted conditions are the same as
of LOCSOR. The key advantage of LOCGD is
that it is highly parallelizable, while LOCSOR is
truly an online update, so it is hard to parallelize.

23

Lemma B.5 (Iterations of LOCGD). With the initial x(0) = 0, r(0) = b,S0 = supp(r(0)), denote
r̃(t) = D1/2r(t). LOCGD defined in (9) has the following properties: 1) x(t) ≥ 0, r(t) ≥ 0 and
∥r(t)∥ ≥ ∥r(t+1)∥1; 2) The residual and estimation error satisfies

∥r̃(t+1)∥1 =

(
1− 2αγt

1 + α

)
∥r̃(t)∥1, γt =

|St|∑

i=1

r̃
(t+∆i)
ui

∥r̃(t)∥1
, where ∆i = 0.

Proof. We first show x(t) ≥ 0, r(t) ≥ 0 are all nonnegative vectors during the updates when
b ≥ 0. This can be seen from the induction. At the initial stage, x(0) ≥ 0 and r(0) = b ≥ 0.
Now assume that for any t ≥ 0, x(t) ≥ 0 and r(t) ≥ 0. Then x(t+1) = x(t) + r

(t)
Sk
≥ 0, and

r(t+1) = r
(t)

St
+ 1−α

1+αD
−1/2AD−1/2r

(t)
St
≥ 0. Therefore, x(t) ≥ 0 and r(t) ≥ 0 for all t. Note

r̃(t+1) = r̃
(t)

St
+ 1−α

1+αAD−1 · r̃(t)St
and since ∥AD−1r̃

(t)
St
∥1 = ∥r̃(t)St

∥1, we will have

∥r̃(t+1)∥1 =

(
1− 2α

1 + α

∥r̃(t)St
∥1

∥r̃(t)∥1

)
∥r̃(t)∥1, where γt := ∥r̃(t)St

∥1/∥r̃(t)∥1.

Then, we can bound the total residual as the following theorem.
Theorem 3.5 (Runtime bound of LOCGD). Given the configuration θ = (α, ϵ, s,G) with α ∈ (0, 1)
and ϵ ≤ 1/ds and let r(T) and x(T) be returned by LOCGD defined in (9) for solving Equ. (4). There
exists a real implementation of (9) such that the runtime TLOCGD is bounded by

1 + α

2
· vol(ST)

αγT

(
1− ∥r̃

(T)∥1
∥r̃(0)∥1

)
≤ TLOCGD ≤

1 + α

2
·min

{
1

αϵ
,
vol(ST)
αγT

ln
C

ϵ

}
,

where C = (1 + α)/((1 − α)|IT |), IT = supp(r(T)). Furthermore, vol(ST)/γT ≤ 1/ϵ and the
estimate π̂ := D1/2x(T) satisfies ∥D−1(π̂ − π)∥∞ ≤ ϵ.

Proof. We first show bound 1/(αϵ). We first rearrange r(t+1) = r(t) −Qr
(t)
St

into

D1/2r(t+1) +D1/2r
(t)
St

= D1/2r(t) +
1− α

1 + α
AD−1D1/2r

(t)
St

.

Note r(t) ≥ 0 and ∥AD−1D1/2r
(t)
St
∥1 = ∥D1/2r

(t)
St
∥1. Hence, it leads to

∥D1/2r
(t)
St
∥1 =

1 + α

2α

(
∥D1/2r(t)∥1 − ∥D1/2r(t+1)∥1

)
.

At each local iterative t, by the active node condition 2αϵ
√
du/(1 + α) ≤ r

(t)
u , we have

ϵ vol(St) =
∑

u∈St

ϵdu ≤
∑

u∈St

(1 + α)
√
dur

(t)
u

2α
=

1 + α

2α

∥∥∥D1/2r
(t)
St

∥∥∥
1
.

Then the total run time of LOCGD presented in Algo. 4 is

T−1∑

t=0

vol(St) ≤
1

ϵ

(
1 + α

2α

)2 (
∥D1/2r(0)∥1 − ∥D1/2r(T)∥1

)
≤ 1 + α

2αϵ
.

Therefore, the total run time is at most TLOCGD :=
∑T−1

t=0 vol(St) ≤ 1+α
2αϵ . For estimating the bounds

of T , by the Weierstrass product inequality [26] and Lemma B.5, we use the similar argument made
in Lemma B.3 and continue to have

(1 + α)

2αγT

(
1− ∥r̃

(T)∥1
∥r̃(0)∥1

)
≤ T ≤ (1 + α)

2αγT

ln
∥r̃(0)∥1
∥r̃(T)∥1

,

24

Note that each nonzero r̃
(T)
u has at least part of the magnitude from the push operation of an active

node, say vu at time t′ < T . This means each nonzero of D1/2r(T) satisfies

r̃(T)
u ≥ (1− α)r̃

(t′)
vu

(1 + α)dvu
≥ (1− α) · 2αϵdvu/(1 + α)

(1 + α)dvu
=

2α(1− α)ϵ

(1 + α)2
, for u ∈ IT .

Hence, we have ∥r̃(T)∥1 ≥ 2α(1−α)ϵ|IT |
(1+α)2 and T is further bounded as

T ≤ (1 + α)

2αγT

ln
∥r̃(0)∥1

2α(1−α)ϵ|IT |
(1+α)2

:=
(1 + α)

2αγT

ln
CT

ϵ
, where CT =

(1 + α)

(1− α)|IT |
.

The lower bound of 1/ϵ, i.e., vol(St)/γT ≤ 1/ϵ, directly follows a similar strategy of previous proof
by noticing that ∥D1/2r(t)∥1 is monotonically decreasing.

Remark B.6. One may consider designing local methods based on Jacobi and Richardson’s iterations.
Indeed, these two methods have the same updates as standard GD. Recall the standard GD method
to solve (4) is x(t+1) = x(t) + r(t), r(t+1) = r(t) −Qr(t). The Richardson’s iteration is x(t+1) =
(I − ωW)x(t) + ωb, i.e., x(t+1) = x(t) − ω(Wx(t) − b). The optimal ω∗ = 2/(λmin + λmax)
where λmin = 2α/(1+α) and λmax ≤ 2/(1+α). Hence one can choose ω = 1 ≤ ω∗ [19]. It leads
to x(t+1) = x(t) + r(t). One can get the same result for the Jacobi method.

C Local Chebyshev Method - LOCCH

C.1 Nonhomogeneous of Second-order Difference Equation

We begin by providing the solutions of the second-order nonhomogeneous equation as the following

Lemma C.1 (Stević [47]). The solution of the second-order nonhomogeneous difference equation

xt+1 + pxt + qxt−1 = ft, t = 1, 2, . . . (21)

is characterized by the following two cases

xt =





1
λ̂2−λ̂1

(
λ̂t
1

(
λ̂2x0 − x1 −

∑t
k=1

fk
λ̂k
1

)
+ λ̂t

2

(
x1 − λ̂1x0 +

∑t
k=1

fk
λ̂k
2

))
p2 ̸= 4q

(−p
2)

t
(
x0 −

∑t
k=1

kfk
(−p/2)k+1

)
+ t(−p

2)
t−1
(
x1 −

(
−p

2

)
x0 +

∑t
k=1

fk
(−p/2)k

)
p2 = 4q

,

where λ̂1, λ̂2 are two roots of λ2 + pλ+ q = 0, and the summation follows convention
∑0

k=1 · = 0.

Based on the above lemma, we have the following corollary

Corollary C.2 (Second-order nonhomogeneous equation). Given |a| ≤ 1, the second-order nonho-
mogeneous equation

xt+1 − 2axt + xt−1 = ft

has the following solution

xt =





x0 + t(x1 − x0) +
∑t

k=1(t− k)fk if a = 1

sin(θt)x1−sin(θ(t−1))x0

sin θ +
∑t

k=1 sin(θ(t−k))fk
sin θ if |a| < 1 where θ = arccos(a)

(−1)t(x0 − t(x0 + x1)) + (−1)t
(∑t

k=1(−1)−k−1(t− k)fk

)
if a = −1.

(22)

Proof. The first and last two cases can be directly followed from Lemma C.1. Since λ̂1 and λ̂2

are the two complex roots of λ2 − 2aλ + 1 = 0, we write λ̂1 = reiθ = r(cos θ + i sin θ) and
λ̂2 = re−iθ = r(cos θ − i sin θ). It indicates

λ2 − 2aλ+ 1 =
(
λ− reiθ

) (
λ− re−iθ

)
= λ2 − r(eiθ + e−iθ)λ+ r2 = 0.

25

Since 1 > a2, λ̂1 = a − i
√
1− a2, and Re(λ̂1)

2 + Im(λ̂1)
2 = a2 + (1 − a2) = 1, then r = 1.

Then θ = arccos(Re(λ̂1)) = arccos(a), and sin(θ) = Im(λ̂1) =
√
1− a2. Finally, λ̂t

1 = eitθ =
cos(tθ) + i sin(tθ), and

λ̂1 = cos θ + i sin θ, λ̂2 = cos θ − i sin θ

λ̂1λ̂2 = eitθe−itθ = 1

λ̂2 − λ̂1 = −2i sin θ
λ̂t
1 = cos(θt) + i sin(θt), λ̂t

2 = cos(θt)− i sin(θt)

λ̂t
2 − λ̂t

1 = e−itθ − eitθ = −2i sin(θt).

λ̂t−1
1 − λ̂t−1

2 = 2i sin(θ(t− 1))
λ̂1λ̂2=1
= λ̂t

1λ̂2 − λ̂t
2λ̂1

Based on these, we have

xt =
1

λ̂2 − λ̂1

(
λ̂t
1

(
λ̂2x0 − x1 −

t∑

k=1

fk

λ̂k
1

)
+ λ̂t

2

(
x1 − λ̂1x0 +

t∑

k=1

fk

λ̂k
2

))

=
λ̂t
1(λ̂2x0 − x1) + λ̂t

2(x1 − λ̂1x0)

λ̂2 − λ̂1

+
1

λ̂2 − λ̂1

(
−λ̂t

1

t∑

k=1

fk

λ̂k
1

+ λ̂t
2

t∑

k=1

fk

λ̂k
2

)

=
(2i sin(θ(t− 1))x0 − 2i sin(θt)x1)

−2i sin θ +
1

−2i sin θ

(
−λ̂t

1

t∑

k=1

fk

λ̂k
1

+ λ̂t
2

t∑

k=1

fk

λ̂k
2

)

=
sin(θt)x1 − sin(θ(t− 1))x0

sin θ
+

1

−2i sin θ
t∑

k=1

(
λ̂t−k
2 − λ̂t−k

1

)
fk

=
sin(θt)x1 − sin(θ(t− 1))x0

sin θ
+

1

−2i sin θ
t∑

k=1

−2i sin(θ(t− k))fk

=
sin(θt)x1 − sin(θ(t− 1))x0

sin θ
+

∑t
k=1 sin(θ(t− k))fk

sin θ
.

Lemma C.3. For |λi| ≤ 1, i = 1, 2, . . . , n, equations y
(t+1)
i − 2λiy

(t)
i + y

(t−1)
i = 0 have the

following solutions

y
(t)
i =





y
(0)
i + t(y

(1)
i − y

(0)
i) if λi = 1

sin(θit)y
(1)
i −sin(θi(t−1))y

(0)
i

sin(θi)
if |λi| < 1 where θi = arccos(λi)

(−1)t(zi,0 − t(y
(0)
i + y

(1)
i)) if λi = −1.

(23)

Furthermore, when y
(1)
i = λiy

(0)
i for i = 1, 2, . . . , n, then solutions can be simplified as

y
(t)
i =





y
(0)
i if λi = 1

y
(0)
i cos(θit) if |λi| < 1 where θi = arccos(λi)

zi,0(−1)t if λi = −1.
(24)

Proof. The first part is a consequence of Corollary C.2 by letting ft = 0. To see the second identity
of this lemma, note that

(λi sin(θit)− sin(θi(t− 1)))

sin θi
= cos(θit).

26

Indeed, by expanding sin(θi(t− 1)), we have
sin(θi(t− 1)) = sin(θit− θi)

= sin(θit) cos(−θi) + cos(θit) sin(−θi)
= sin(θit) cos(θi)− cos(θit) sin(θi)

= λi sin(θit)− cos(θit) sin(θi)

Hence, when y
(1)
i = λiy

(0)
i , we have

sin(θit)y
(1)
i − sin(θi(t− 1))y

(0)
i

sin(θi)
=

(λi sin(θit)− sin(θi(t− 1))) y
(0)
i

sin θi
= cos(θit)y

(0)
i .

Lemma C.4. Given t ≥ 1, |λi| ≤ 1 , the n second-order difference equations

y
(t+1)
i − 2λiy

(t)
i + y

(t−1)
i = hi,t, i = 1, 2, . . . , n.

have the following solutions

y
(t)
i =





y
(0)
i + t(y

(1)
i − y

(0)
i) +

∑t−1
k=1(t− k)hi,k if λi = 1

sin(θit)y
(1)
i −sin(θi(t−1))y

(0)
i

sin(θi)
+
∑t−1

k=1
sin(θi(t−k))

sin θi
hi,k if |λi| < 1 where θi = arccos(λi)

(−1)t(zi,0 − t(y
(0)
i + y

(1)
i)) +

∑t−1
k=1(−1)t−k−1(t− k)hi,k if λi = −1.

(25)

Furthermore, with initial conditions y(1)i = λiy
(0)
i , y(t)i can be simplified as

y
(t)
i =





y
(0)
i +

∑t−1
k=1(t− k)hi,k if λi = 1

cos(θit)y
(0)
i +

∑t−1
k=1

sin(θi(t−k))
sin θi

hi,k if |λi| < 1 where θi = arccos(λi)

(−1)ty(0)i +
∑t−1

k=1(−1)t−k−1(t− k)hi,k if λi = −1.

(26)

Proof. The first part is a consequence of Corollary C.2 by letting ft = hi,t. We prove the second
part by considering three cases of λi as

• Case 1. When λi = 1, we have y
(t+1)
i − 2y

(t)
i + y

(t−1)
i = hi,t. For t ≥ 1, the solution the

above is

y
(t)
i = y

(0)
i + t(y

(1)
i − y

(0)
i) +

t−1∑

k=1

(t− k)hi,k = y
(0)
i +

t−1∑

k=1

(t− k)hi,k,

where the second equation is due to y
(1)
i = λ1y

(0)
i = y

(0)
i .

• Case 2. When λn = −1 (G is a bipartite graph), we have y
(t+1)
i + 2y

(t)
i + y

(t−1)
i = hi,t.

For t ≥ 1, the solution is

y
(t)
i = (−1)ty(0)i + (−1)t

t−1∑

k=1

(t− k)hi,k

(−1)k+1
= (−1)ty(0)i +

t−1∑

k=1

(−1)t−k−1(t− k)hi,k.

• Case 3. When |λi| < 1, and define θi = arccos(λi). We use a similar argument in Lemma
C.3 and continue to have

y
(t)
i =

sin(θit)y
(1)
i − sin(θi(t− 1))y

(0)
i

sin θi
+

∑t−1
k=1 sin(θi(t− k))hi,k

sin θi

=
(λi sin(θit)− sin(θi(t− 1))) y

(0)
i

sin θi
+

∑t−1
k=1 sin(θi(t− k))hi,k

sin θi

= cos(θit)y
(0)
i +

t−1∑

k=1

sin(θi(t− k))

sin θi
hi,k.

27

C.2 Properties on Ratio of Chebyshev Polynomials

The next lemma presents the properties of Chebyshev polynomials.
Lemma C.5 (Chebyshev polynomial bound). For t ≥ 1, the Chebyshev polynomial of the first kind
is defined recursively as

Tt+1(x) = 2xTt(x)− Tt−1(x) with T0(x) = 1, T1(x) = x.

For t ≥ 1, define δt = Tt−1(
1+α
1−α)/Tt(

1+α
1−α), then

1. Tt(x = 1+α
1−α) and δt defines the following sequence

δt+1 =

(
2
1 + α

1− α
− δt

)−1

, where δ1 =
1− α

1 + α
.

2. The closed-form δ1:t can be upper bounded as

δ1:t =
1

Tt(
1+α
1−α)

=
2

α̃t + α̃−t
≤ 2

(
1−√α
1 +
√
α

)t

.

3. Note δ1 = T0/T1 = 1/x = 1−α
1+α , the sequence {δt} satisfies δt < 1,∀t ≥ 1 and

1 = 2δt+1x− δtδt+1, t = 1, 2,

4. Denote δj:t =
∏t

i=j δi for t ≥ j ≥ 0 and set the default value δj:j−1 = 1 for j ≥ 0, then

δ1:t/(δ1:k) = δk+1:t ≤ 2α̃t−k, for t ≥ k ≥ 0.

Proof. For the first item, let x = 1+α
1−α , use the Chebyshev equation, we have

1 = 2

(
1 + α

1− α

)
Tt

Tt+1
− Tt−1

Tt+1
= 2

(
1 + α

1− α

)
δt+1 − δtδt+1 ⇒ δ−1

t+1 = 2

(
1 + α

1− α

)
− δt.

For the second item, for all t ≥ 0, if ξ = x+x−1

2 ̸= 0, it is well known that the Tt can be rewritten as

Tt

(
ξ =

x+ x−1

2

)
=

xt + x−t

2
.

For our problem, recall we defined α̃ = 1−
√
α

1+
√
α

and using x = 1+α
1−α ̸= 0, one can verify that

x =
1 + α

1− α
=

α̃+ α̃−1

2
⇐⇒ Tt

(
x =

1 + α

1− α

)
= Tt

(
α̃+ α̃−1

2

)
=

α̃t + α̃−t

2

and
t∏

j=1

δj =
T0

T1
· T1

T2
· T2

T3
· · · Tt−1

Tt
=

1

Tt
=

2

α̃t + α̃−t
=

2α̃t

α̃2t + 1
≤ 2α̃t = 2

(
1−√α
1 +
√
α

)t

.

For the third item, it is sufficient to show that δt ≤ 1
x for all t ≥ 1, for x = 1+α

1−α . This can be done
recursively, since δ1 = x and

δt+1 =
1

2x− δt
≤ 1

2x− 1
x

x≥ 1
x≤ 1

x
.

For the last item, note when t ≥ 1 and k ≥ 1, we have the following inequalities
t∏

j=1

δj ·
k∏

j=1

δ−1
j =

2

α̃t + α̃−t
· α̃

k + α̃−k

2
=

α̃k + α̃−k

α̃t + α̃−t
= α̃t−k α̃

2k + 1

α̃2t + 1
≤ 2α̃t−k,

where note α̃2k+1
α̃2t+1 ∈ [1, 2] for t ≥ k.

28

C.3 Standard Chebyshev (CH) Method and Proof of Theorem C.6

This subsection introduces the standard Chebyshev algorithm. Our following theorem is to prove the
runtime complexity of the Chebyshev polynomial iteration for solving Equ. (3).

Theorem C.6 (Standard CH). For t ≥ 1, consider the Chebyshev polynomials to solve Equ. (3) as

x(t+1) = x(t) + (1 + δt:t+1)r
(t) + δt:t+1

(
x(t) − x(t−1)

)
, r(t+1) = 2δt+1Wr(t) − δt:t+1r

(t−1),

where x(0) = 0,x(1) = x(0) + r(0) and δt+1 =
(
2 1+α
1−α − δt

)−1
with δ1 = 1−α

1+α . Assume ϵ < 1/ds,
then the residual has the following convergence bound

∥∥∥r(t)
∥∥∥
2
≤ 2

(
1−√α
1 +
√
α

)t

∥b∥2.

Let the estimate be π̂ = D1/2x(t), the the runtime of CH for reaching ∥D−1/2r(t)∥∞ ≤ 2αϵ
1+α with

∥D−1(π̂ − π)∥∞ ≤ ϵ guarantee is at most

TCH ≤ Θ

(
m

⌈
1 +
√
α

2
√
α

ln
2

ϵ

⌉)
= Θ̃

(
m√
α

)
.

Proof. Recall eigendecomposition of W = V ΛV ⊤ where V = [v1,v2, . . . ,vn] and each vi is the
eigenvector. For t ≥ 1, the residual r(t) can be written as n second-order difference equations as

V ⊤r(t+1) − 2δt+1ΛV ⊤r(t) + δt:t+1V
⊤r(t−1) = 0,

where each i-th element-wise equation of the above can be written as the following

v⊤
i r

(t+1) − 2δt+1λiv
⊤
i r

(t) + δt+1δtv
⊤
i r

(t−1) = 0, i = 1, 2, . . . , n.

Define V ⊤r(t) = δ1:ty
(t). Each component v⊤

i r
(t) is v⊤

i r
(t) = δ1:ty

(t)
i where v⊤

i r
(0) := y

(0)
i by

default. The above can be rewritten

δ1:t+1y
(t+1)
i − 2δt+1δ1:tλiy

(t)
i + δt+1δtδ1:t−1y

(t−1)
i = 0

⇐⇒ y
(t+1)
i − 2λiy

(t)
i + y

(t−1)
i = 0, (27)

where ⇐⇒ follows from δ1:t+1 ̸= 0. Note V ⊤r(1) = 1−α
1+αV

⊤V ΛV ⊤r(0) = δ1ΛV ⊤r(0), we
have

V ⊤r(0) = y(0) ⇒ V ⊤r(1) = δ1y
(1) = δ1ΛV ⊤r(0) = δ1Λy(0),

where it follows from δ1 ̸= 0. As y(1) = Λy(0), follow Equ. (24) of Lemma C.3, y(t)i has the
solution

y
(t)
i =

{
y
(0)
i cos(θit) |λi| < 1

y
(0)
i λt

i |λi| = 1
≤
{
|y(0)i | |λi| < 1

|y(0)i | |λi| = 1
,

where θi = arccos(λi). We can write down r(t) in terms of y(t)

V ⊤r(t) = δ1:ty
(t) = δ1:tZty

(0),

where Zt has two possible forms

Zt =

{
diag (1, . . . , cos(θit), . . . , (−1)t) for bipartite graphs

diag (1, . . . , cos(θit), . . . , cos(θnt)) for non-bipartite graphs.

Hence, ∥Zt∥2 ≤ 1 and ∥Zty
(0)∥2 ≤ ∥y(0)∥2. We have

∥r(t)∥2 = ∥V ⊤r(t)∥2 ≤ δ1:t∥y(0)∥2 ≤ 2

(
1−√α
1 +
√
α

)t

∥b∥2,

29

where the last inequality follows Lemma C.5 and note z(0) = V ⊤r(0). To meet the stop condition of{
|r(t)u | < 2αϵ

√
du/(1 + α), u ∈ V

}
= ∅, it is sufficient to choose a minimal integer t such that

2

(
1−√α
1 +
√
α

)t

∥b∥2 <
2αϵ

(1 + α)
√
ds

.

To see this, if the above inequality is satisfied, then note for any node u, we have

|r(t)u | ≤ ∥r(t)∥∞ ≤ ∥r(t)∥2 ≤ 2

(
1−√α
1 +
√
α

)t

∥b∥2 <
2αϵ

(1 + α)
√
ds
≤ 2αϵ

√
du

(1 + α)
,

where all nodes are inactive. So, it gives t ln
(

1−
√
α

1+
√
α

)
≤ ln ϵ

2 by noticing ∥b∥2 = 2α/((1 + α)
√
ds).

It indicates t ≥
⌈
ln 2

ϵ

/
ln
(

1+
√
α

1−
√
α

)⌉
. As 1

ln(1+x) ≤ 1+x
x for x > 0, it is sufficient to choose t

t =

⌈
1 +
√
α

2
√
α

ln
2

ϵ

⌉
.

C.4 Residual Updates of LOCCH and Proof of Lemma 4.1

We propose the following local Chebyshev iteration procedure

x(t+1) = x(t) + (1 + δt:t+1)r
(t)
St

+ δt:t+1

(
x(t) − x(t−1)

)
St
.

Our next Lemma is to expanding
(
x(t) − x(t−1)

)
St

Lemma C.7. For t ≥ 1 with initials x(0) = 0 and x(1) = x(0) + r
(0)
S0

, the local Chebyshev iterative
is the following

x(t+1) = x(t) + (1 + δt:t+1)r
(t)
St

+ δt:t+1

(
x(t) − x(t−1)

)
St
.

Denote ∆(t) = x(t) − x(t−1), then ∆(t) =
∑t−1

j=0

(
(1 + δj:j+1)

∏t−1
r=j+1 δr:r+1r

(j)
Sj:t−1

)
, where

δ0:1 = 0, S0:t = S0 ∩ S1 ∩ · · · ∩ St and δj:j+1 = δjδj+1. We have the following

(1 + δt:t+1)r
(t)

St
+ δt:t+1

(
x(t) − x(t−1)

)
St

=

t∑

j=0


(1 + δj:j+1)

t∏

r=j+1

δr:r+1r
(j)
Sj,t


 ,

where Sj,t ≜ Sj:t−1 ∩ St.

Proof. Recall we defined δ0 = 0 so that δ0:1 = 0. We prove this lemma by induction.

For t = 1, note δ0:1 = 0 and the support of r(0) is S0 = supp(r(0)), then

x(1) − x(0) = (1 + δ0:1)r
(0).

For t = 2, note S1:1 = S1 and S0:1 = S0 ∩ S1 by our notation, then

x(2) − x(1) = (1 + δ1:2)r
(1)
S1:1

+ δ1:2(x
(1) − x(0))S1

= (1 + δ1:2)r
(1)
S1:1

+ (1 + δ0:1)δ1:2r
(0)
S0:1

.

For t = 3, one can build x(3) − x(2) based on x(2) − x(1) and recall S2:2 = S2, S1:2 = S1 ∩ S2
x(3) − x(2) = (1 + δ2:3)r

(2)
S2:2

+ δ2:3(x
(2) − x(1))S2

= (1 + δ2:3)r
(2)
S2:2

+ δ2:3((1 + δ1:2)r
(1)
S1:1

+ (1 + δ0:1)δ1:2r
(0)
S0:1

)S2

= (1 + δ2:3)r
(2)
S2:2

+ (1 + δ1:2)δ2:3r
(1)
S1:2

+ (1 + δ0:1)δ1:2δ2:3r
(0)
S0:2

.

30

For t = 4, we continue to have

x(4) − x(3) = (1 + δ3:4)r
(3)
S3:3

+ δ3:4(x
(3) − x(2))S3:3

= (1 + δ3:4)r
(3)
S3:3

+ δ3:4((1 + δ2:3)r
(2)
S2:2

+ (1 + δ1:2)δ2:3r
(1)
S1:2

+ (1 + δ0:1)δ1:2δ2:3r
(0)
S0:2

)S3:3

= (1 + δ3:4)r
(3)
S3:3

+ (1 + δ2:3)δ3:4r
(2)
S2:3

+ (1 + δ1:2)δ3:4δ2:3r
(1)
S1:3

+ (1 + δ0:1)δ1:2δ2:3δ3:4r
(0)
S0:3

(x(4) − x(3))S4
=
(
(1 + δ3:4)r

(3)
S3:3

+ δ3:4(x
(3) − x(2))S3:3

)
S4
.

By induction t ≥ 1,

x(t) − x(t−1) =

t−1∑

j=0

(
(1 + δj:j+1)

t−1∏

r=j+1

δr:r+1r
(j)
Sj:t−1

)
,

where the convention notation
∑0

i=1 · = 0 and
∏i

j=i+1 · = 1. To verify the inductive step, consider
for t+ 1, we have

x(t+1) − x(t) = (1 + δt:t+1)r
(t)
St

+ δt:t+1(x
(t) − x(t−1))St

= (1 + δt:t+1)r
(t)
St

+ δt:t+1(x
(t) − x(t−1))St

= (1 + δt:t+1)r
(t)
St

+ δt:t+1




t−1∑

j=0


(1 + δj:j+1)

t−1∏

r=j+1

δr:r+1r
(j)
Sj:t−1






St

=

t∑

j=0


(1 + δj:j+1)

t∏

r=j+1

δr:r+1r
(j)
Sj:t


 .

To see the second equation, note

(1 + δt:t+1)r
(t)

St
+ δt:t+1

(
x(t) − x(t−1)

)
St

= (1 + δt:t+1)r
(t)

St
+

t−1∑

j=0


(1 + δj:j+1)

t∏

r=j+1

δr:r+1r
(j)

Sj:t−1∩St




=

t∑

j=0


(1 + δj:j+1)

t∏

r=j+1

δr:r+1r
(j)
Sj,t


 ,

where recall we denote Sj,t ≜ Sj:t−1 ∩ St.

Lemma C.8 (Local Chebyshev updates). Given the updates of x(t+1) as defined by LOCCH in (10),
we have the following local updates




x(t+1) = x(t) + (1 + δt:t+1)r

(t)
St

+ δt:t+1

(
x(t) − x(t−1)

)
St

r(t+1) − 2δt+1Wr(t) + δt:t+1r
(t−1) =

∑t
j=0

(
(1 + δj:j+1)

∏t
r=j+1 δr:r+1Qr

(j)
Sj,t

) (28)

31

Proof. We only need to show the second equation of (28). The residual of LOCCH updates is

r(t+1) = b−Qx(t+1)

r(t+1) = b−Q
(
x(t) + (1 + δt:t+1)r

(t)
St

+ δt:t+1(x
(t) − x(t−1))St

)

= r(t) − (1 + δt:t+1)Qr
(t)
St
− δt:t+1Q(x(t) − x(t−1))St

r(t+1) + (1 + δt:t+1)Qr(t) + δt:t+1Q(x(t) − x(t−1))− r(t)︸ ︷︷ ︸
u

= (1 + δt:t+1)Qr
(t)

St
+ δt:t+1Q

(
x(t) − x(t−1)

)
St︸ ︷︷ ︸

small noisy part

.

Note Q(x(t) − x(t−1)) = b−Qx(t−1) − (b−Q(x(t)) = r(t−1) − r(t) and then u becomes

u = r(t+1) + (1 + δt:t+1)Qr(t) + δt:t+1(r
(t−1) − r(t))− r(t)

= r(t+1) − 2δt+1Wr(t) + δt:t+1r
(t−1),

where the last equality is due to (1 + δt:t+1)Qr(t) = (1 + δt:t+1)r
(t) − 2δt:t+1Wr(t) by noticing

(1 + δtδt+1)
1−α
1+α = 2δt+1 in Lemma C.5. Hence, we have the second equation. To see the noisy part,

note by Lemma C.7

(1 + δt:t+1)r
(t)

St
+ δt:t+1

(
x(t) − x(t−1)

)
St

= (1 + δt:t+1)r
(t)

St
+

t−1∑

j=0

(
(1 + δj:j+1)

t∏

r=j+1

δr:r+1r
(j)
Sj,t

)

(1 + δt:t+1)Qr
(t)

St
+ δt:t+1Q

(
x(t) − x(t−1)

)
St

=

t∑

j=0

(
(1 + δj:j+1)

t∏

r=j+1

δr:r+1Qr
(j)
Sj,t

)
.

Lemma 4.1 (Residual updates of LOCCH). Given t ≥ 1,x(0) = 0, x(1) = x0 + r
(0)
S0

. The residual
r(t) of LOCCH defined in Equ. (28) satisfies

V ⊤r(t) = δ1:tZtV
⊤r(0) + δ1:ttu0,t + 2

t−1∑

k=1

δk+1:t(t− k)uk,t, (29)

where

uk,t =





∑t−1
j=1 δ2:jHj,t

(
I − 1−α

1+αΛ
)
V ⊤r

(0)
S0,j

/t if k = 0

∑t−1
j=k

(
δk+1:jHj,t

(
1+α
1−αI −Λ

)
V ⊤r

(k)
Sk,j

)
/(t− k) if k ≥ 1,

Zt =

{
diag (1, . . . , cos(θit), . . . , (−1)t) for bipartite graphs

diag (1, . . . , cos(θit), . . . , cos(θnt)) for non-bipartite graphs,

Hk,t =





diag
(
t− k, . . . , sin(θi(t−k))

sin θi
, . . . , (−1)t−k−1(t− k)

)
for bipartite graphs

diag
(
t− k, . . . , sin(θi(t−k))

sin θi
, . . . , sin(θn(t−k))

sin θn

)
for non-bipartite graphs.

Proof. We first decompose the residual equation in (28) as

V ⊤r(t+1) − 2δt+1ΛV ⊤r(t) + δt:t+1V
⊤r(t−1)

=

t∑

j=0


(1 + δj:j+1)

t∏

r=j+1

(δr:r+1)

(
I − 1− α

1 + α
Λ

)
V ⊤r

(j)
Sj,t




︸ ︷︷ ︸
f(t)

.

32

Define V ⊤r(t) = δ1:ty
(t) and V ⊤r(0) = δ1:0y

(0) = y(0) by default. Then we have

δ1:t+1y
(t+1) − 2δ1:t+1Λy(t) + δ1:t+1y

(t−1) = f (t) ⇒ y(t+1) − 2Λy(t) + y(t−1) = f(t)

δ1:t+1
.

Note V ⊤r(1) = δ1y
(1) = V ⊤δ1Wr(0) = δ1Λy(0), which indicates y(1) = Λy(0). Then, by the

Lemma C.4, each y
(t)
i has the solution

y
(t)
i =





y
(0)
i +

∑t−1
k=1(t− k)f

(k)
i /(δ1:k+1) if λi = 1

cos(θit)y
(0)
i +

∑t−1
k=1

sin(θi(t−k))
sin θi

f
(k)
i /(δ1:k+1) if |λi| < 1

(−1)ty(0)i +
∑t−1

k=1(−1)t−k−1(t− k)f
(k)
i /(δ1:k+1) if λi = −1.

Use Zt and Hk,t, we write the solution of the second-order difference equation as

y(t) = Zty
(0) +

t−1∑

k=1

Hk,tf
(k)/(δ1:k+1)

V ⊤r(t) = δ1:ty
(t) = δ1:tZtV

⊤r(0) + δ1:t

t−1∑

k=1

Hk,tf
(k)/(δ1:k+1)

V ⊤r(t) = δ1:tZtV
⊤r(0) +

t−1∑

k=1

δk+2:tHk,t

k∑

j=0


(1 + δj:j+1)

k∏

r=j+1

(δr:r+1)

(
I − 1− α

1 + α
Λ

)
V ⊤r

(j)
Sj,k


 .

Note 1 + δj:j+1 = 2δj+1
1+α
1−α , j ≥ 1, then (1 + δj:j+1)

∏k
r=j+1 (δr:r+1) = 2 1+α

1−αδj+1:kδj+1:k+1.
Then, we have

V ⊤r(t) = δ1:tZtV
⊤r(0) +

t−1∑

k=1

δk+2:tHk,t

(
δ2:kδ1:k+1

(
I − 1− α

1 + α
Λ

)
V ⊤r

(0)
S0,k

)

+ 2

t−1∑

k=1

δk+2:tHk,t

k∑

j=1

(
δj+1:kδj+1:k+1

(
1 + α

1− α
I −Λ

)
V ⊤r

(j)
Sj,k

)

= δ1:tZtV
⊤r(0) + δ1:t

t−1∑

k=1

δ2:kHk,t

(
I − 1− α

1 + α
Λ

)
V ⊤r

(0)
S0,k

+ 2

t−1∑

k=1

δk+2:tHk,t

k∑

j=1

(
δj+1:kδj+1:k+1

(
1 + α

1− α
I −Λ

)
V ⊤r

(j)
Sj,k

)
,

where the last term can be expanded as
t−1∑

k=1

δk+2:tHk,t

k∑

j=1

(
δj+1:kδj+1:k+1

(
1 + α

1− α
I −Λ

)
V ⊤r

(j)
Sj,k

︸ ︷︷ ︸
w

(j)
Sj,k

)
=

δ3:tH1,tδ2:1δ2:2w
(1)
S1,1

+

δ4:tH2,tδ2:2δ2:3w
(1)
S1,2

+ δ4:tH2,tδ3:2δ3:3u
(2)
S2,2

+

δ5:tH3,tδ2:3δ2:4w
(1)
S1,3

+ δ5:tH3,tδ3:3δ3:4w
(2)
S2,3

+ δ5:tH3,tδ4:3δ4:4w
(3)
S3,3

+

δ6:tH4,tδ2:4δ2:5w
(1)
S1,4

+ δ6:tH4,tδ3:4δ3:5w
(2)
S2,4

+ δ6:tH4,tδ4:4δ4:5w
(3)
S3,4

+ δ6:tH4,tδ5:4δ5:5w
(4)
S4,4

+

δ7:tH5,tδ2:5δ2:6w
(1)
S1,5

+ δ7:tH5,tδ3:5δ3:6w
(2)
S2,5

+ δ7:tH5,tδ4:5δ4:6w
(3)
S3,5

+ δ7:tH5,tδ5:5δ5:6w
(4)
S4,5

+ δ7:tH5,tδ6:5δ6:6w
(5)
S5,5

+

...

=

t−1∑

k=1

δk+1:t

t−1∑

j=k

(
δk+1:jHj,t

(
1 + α

1− α
I −Λ

)
V ⊤r

(k)
Sk,j

)
.

33

Here, we denote δk+1:k = 1. The final iterative update is

V ⊤r(t) = δ1:tZtV
⊤r(0) + δ1:tt

t−1∑

j=1

δ2:jHj,t

(
I − 1− α

1 + α
Λ

)
V ⊤r

(0)
S0,j

/
t

︸ ︷︷ ︸
u0,t

+ 2

t−1∑

k=1

δk+1:t(t− k)

t−1∑

j=k

(
δk+1:jHj,t

(
1 + α

1− α
I −Λ

)
V ⊤r

(k)
Sk,j

)/
(t− k)

︸ ︷︷ ︸
uk,t

.

C.5 Convergence of LOCCH and Proof of Theorem 4.2

Corollary C.9. Let βk be lower bound of residual reduction satisfies ∥uk,t∥2 ≤ βk∥r(k)∥2, then the
upper bound of ∥r(t)∥2 can be characterized as

∥r(t)∥2 ≤ δ1:t

t−1∏

j=0

(1 + βj)yt, where yt+1 − 2yt +
yt−1

(1 + βt−1)(1 + βt)
= 0, (30)

where y0 = y1 = ∥r0∥2.

Proof. Since ∥uk,t∥2 ≤ βk∥r(k)∥2, the final iterative updates (29) can be bounded as

V ⊤r(t) = δ1:tZtV
⊤r(0) + δ1:ttu0,t + 2

t−1∑

k=1

δk+1:t(t− k)uk,t

∥r(t)∥2 ≤ δ1:t∥r(0)∥2 + δ1:ttβ0∥r(0)∥2 + 2

t−1∑

k=1

δk+1:t(t− k)βk∥r(k)∥2

∥r(t)∥2 − 2

t−1∑

k=1

δk+1:t(t− k)βk∥r(k)∥2 ≤ δ1:t(1 + tβ0)∥r(0)∥2, (31)

where t = 0, 1, . . . , T . These T + 1 (including a trivial one where ∥r(0)∥2 ≤ ∥r(0)∥2) inequalities
shown in Equ. (31) form a system of linear inequality matrix as




1 0 0 · · · 0

−z21 1 0 · · · 0

−z31 −z32 1 · · · 0

...
...

...
. . .

...

−zT1 −zT2 −zT3 · · · 1




︸ ︷︷ ︸
I−ZL




∥r(1)∥2
∥r(2)∥2
∥r(3)∥2

...

∥r(T−1)∥2




≤




δ1:1(1 + 1β0)∥r(0)∥2
δ1:2(1 + 2β0)∥r(0)∥2
δ1:3(1 + 3β0)∥r(0)∥2

...

δ1:T (1 + Tβ0t)∥r(0)∥2




:= c,

where (ZL)tk = 2δk+1:t(t − k)βk for t = 2, 3, . . . , T and k = 1, 2, . . . , t − 1. Assume that
N ∈ RT×T is a strictly lower triangular matrix, then we know the established formula (I+N)−1 =

I +
∑T−1

k=1 (−1)kNk. Hence, we have the following

(I −ZL)
−1

= I +

T−1∑

k=1

Zk
L.

34

Given that (I −ZL)
−1 ≥ 0, then we obtain an upper-bound of




∥r(1)∥2
∥r(2)∥2

...

∥r(T)∥2



≤ z ≜ (I −ZL)

−1
c.

It leads to the following new second-order difference equation

zt − 2

t−1∑

k=1

δk+1:t(t− k)βkzk = δ1:t(1 + tβ0)z0, for t = 1, 2, . . . , T,

where the initial value of z0 = ∥r(0)∥2. Following the argument in Theorem 1 of Golub & Overton
[18], we construct a second-order homogeneous equation for zt as

zt = δ1:t(1 + tβ0)z0 + 2

t−1∑

k=1

δk+1:t(t− k)βkzk

zt+1 = δ1:t+1(1 + (t+ 1)β0)z0 + 2

t∑

k=1

δk+1:t+1(t+ 1− k)βkzk

δt+1zt = δ1:t+1(1 + tβ0)z0 + 2

t∑

k=1

δk+1:t+1(t− k)βkzk

zt+1 − δt+1zt = δ1:t+1β0z0 + 2

t∑

k=1

δk+1:t+1βkzk, (32)

where Equ. (32) is obtained by the difference between the second equation and the third equation.
Similarly,

zt−1 = δ1:t−1(1 + (t− 1)β0)z0 + 2

t−2∑

k=1

δk+1:t−1(t− k − 1)βkzk

δt:t+1zt−1 = δ1:t+1(1 + (t− 1)β0)z0 + 2

t−2∑

k=1

δk+1:t+1(t− k − 1)βkzk

δt+1zt − δt:t+1zt−1 = δ1:t+1β0z0 + 2

t−1∑

k=1

δk+1:t+1βkzk, (33)

where Equ. (33) is obtained by the difference of the first two. Hence, Equ. (32) − (33) gives us

zt+1 − 2(1 + βt)δt+1zt + δt:t+1zt−1 = 0, for t = 1, 2, . . . , T,

where two initials are z0 = ∥r(0)∥0 and z1 = δ1(1 + β0)∥r(0)∥2. Let zt = δ1:tẑt, then

ẑt+1 − 2(1 + βt)ẑt + ẑt−1 = 0,

where two initials are ẑ0 = z0 = ∥r(0)∥0 and ẑ1 = (1 + β0)∥r(0)∥2. We finish the proof by setting∏t−1
j=0(1 + βj)yt = ẑt.

Remark C.10. Key points of the above proof strategy largely follow from Golub & Overton [18].
However, different from the original technique, we generalize the strategy to a parameterized version.
Lemma C.11. Given βj ≥ 0, the following second-order difference equation

xt+1 − 2(1 + βt)xt + xt−1 = 0.

has the following solution

xt =

t−1∏

j=0

(1 + βj)yt,

where yt+1 − 2yt +
yt−1

(1+βt−1)(1+βt)
= 0 with y0 = x0 and y1 = x1/(1 + β0).

35

Proof. Assume xt =
(
− 1

2

)t∏t−1
j=0 (−2(1 + βj)) yt. Then, following the equation, we have

(
−1

2

)t+1 t∏

j=0

(−2(1 + βj)) yt+1

− 2(1 + βt)

(
−1

2

)t t−1∏

j=0

(−2(1 + βj)) yt +

(
−1

2

)t−1 t−2∏

j=0

(−2(1 + βj)) yt−1 = 0.

Since βj ≥ 0, the term
∏t

j=0 (−2(1 + βj)) ̸= 0, we divide it on both sides to have

(
−1

2

)t+1

yt+1 +

(
−1

2

)t

yt +

(
−1

2

)t−1
1

4(1 + βt−1)(1 + βt)
yt−1 = 0.

Hence, it is simplified into yt+1 − 2yt +
yt−1

(1+βt−1)(1+βt)
= 0. To make a simplification on xt, we

prove the lemma.

Theorem 4.2 (Runtime bound of LOCCH). Given the configuration θ = (α, ϵ, s,G) with α ∈ (0, 1)
and ϵ ≤ 1/ds and let r(T) and x(T) be returned by LOCCH defined in (10) for solving Equ. (3). For
t ≥ 1, the residual magnitude ∥r(t)∥2 has the following convergence bound

∥r(t)∥2 ≤ δ1:t

t−1∏

j=0

(1 + βj)yt,

where yt is a sequence of positive numbers solving yt+1 − 2yt + yt−1/((1 + βt−1)(1 + βt)) = 0

with y0 = y1 = ∥r(0)∥2. Suppose the geometric mean βt ≜ (
∏t−1

j=0(1 + βj))
1/t of βt be such that

βt = 1 + c
√
α

1−
√
α

where c ∈ [0, 2). There exists a real implementation of (9) such that the runtime
TLOCCH is bounded by

TLOCCH ≤ Θ

(
(1 +

√
α)vol(ST)√

α(2− c)
ln

2yT
ϵ

)
.

Proof. The convergence bound of r(t) directly follows from Corollary C.9. Since we assume that

there exists c ∈ [0, 2) such that
∏t−1

j=0(1 + βj) ≤
(
1 + c

√
α

1−
√
α

)t
. Then multiplying both sides by α̃t,

we have

α̃t
t−1∏

j=0

(1 + βj) ≤
(
1− (2− c)

√
α

1 +
√
α

)t

.

Then we have

∥r(t)∥2 ≤ δ1:t

t−1∏

j=0

(1 + βj)yt
δ1:t≤2α̃t

≤ 2α̃tβ̄t
tyt ≤ ϵ

t ln


1−√α
1 +
√
α

(t−1∏

j=0

(1 + βj)
)1/t


 ≤ ln

(
ϵ

2yt

)

t ≥
⌈
ln

(
2yt
ϵ

)/
ln

(
1 +
√
α(

1−√α
)
βt

)⌉

Since βt =
(∏t−1

j=0(1 + βj)
)1/t

, and by using 1+x
x ≥ 1

ln(1+x) and letting x = 1+
√
α(

1−
√
α
)
βt

− 1 > 0,

then t can be lower bounded further by

t ≥
⌈

1 +
√
α

1 +
√
α− (1−√α)βt

ln

(
2yt
ϵ

)⌉
≥
⌈
ln

(
2yt
ϵ

)/
ln

(
1 +
√
α(

1−√α
)
βt

)⌉
.

36

Since we assumed βt = (1 + c
√
α

1−
√
α
), which means 1 ≤ β̄t = (1 + c

√
α

1−
√
α
), so βt ∈

[
1, 1+

√
α

1−
√
α

]
.

Then, we find such an upper bound of t so that LOCCH converges.

t =

⌈
1 +
√
α

1 +
√
α− (1−√α)βt

ln

(
2yt
ϵ

)⌉
=

⌈
1 +
√
α

(2− c)
√
α
ln

(
2yt
ϵ

)⌉
.

C.6 Implementation of LOCCH

We present the implementation of LOCCH as follows: Recall the sequence δt+1 =
(
2 1+α
1−α −

δt
)−1

, t = 1, 2, . . . with δ1 = 1−α
1+α . Denote x̃(t) ≜ x(t) − x(t−1),∆(t) := (1 + δt:t+1)r

(t) +

δt:t+1x̃
(t), we have

x(t+1) = x(t) + (1 + δt:t+1)r
(t)
St

+ δt:t+1x̃
(t)
St

= x(t) +∆
(t)
St

r(t+1) = b−Q
(
x(t) + (1 + δt:t+1)r

(t)
St

+ δt:t+1x̃
(t)
St

)
= r(t) −Q∆

(t)
St

x̃(t+1) = x̃(t) +∆
(t)
St
−∆

(t−1)
St−1

.

• When t = 0, we have x(0) = 0, r(0) = b, x̃(0) = 0, ∆(0) = r(0).

• When t = 1, we have x(1) = r
(0)
S0

, r(1) = 1−α
1+αW∆

(0)
S0

, x̃(1) = r
(0)
S0

, ∆(1) = (1 +

δ1:2)r
(1) + δ1:2x̃

(1).

• When t ≥ 1, we can recursively calculate the following vectors

x(t+1) = x(t) +∆
(t)
St

r(t+1) = r(t) −∆
(t)
St

+
1− α

1 + α
W∆

(t)
St

x̃(t+1) = x̃(t) +∆
(t)
St
−∆

(t−1)
St−1

.

Therefore, at per-iteration, we only need to save sub-vectors ∆St
and ∆St−1

and update x locally.

D Local Heavy-Ball Method - LOCHB

D.1 Standard HB and Proof Theorem D.2

Lemma D.1 (The standard HB updates). The updates x(t) and r(t) of the HB method for solving
Equ. (4) can be written as

x(t+1) = x(t) + (1 + α̃2)r(t) + α̃2
(
x(t) − x(t−1)

)

r(t+1) = 2α̃Wr(t) − α̃2r(t−1).

The residual updates can be rewritten as a second-order homogeneous equation

y(t+1) − 2Λy(t) + y(t−1) = 0, ∀t = 1, 2, 3, . . .

where y(t) is such that r(t) = α̃tV y(t), t ≥ 0 with y(0) = V ⊤r(0) = V ⊤b.

Proof. We follow the standard Polyak’s heavy-ball method [40] as

x(t+1) = x(t) − ηα∇f(x(t)) + ηβ(x
(t) − x(t−1)),

where∇f(x(t)) = Qx(t)−b and ηα = 4/(
√
2/(1 + α)+

√
2α/(1 + α))2 = 2(1+α)/(1+

√
α)2 =

1+ α̃2 and ηβ = (
√
2/(1 + α)−

√
2α/(1 + α))2/(

√
2/(1 + α) +

√
2α/(1 + α))2 = α̃2. Hence,

it leads to the following updates

x(t+1) = x(t) + (1 + α̃2)r(t) + α̃2
(
x(t) − x(t−1)

)
.

37

Inserting

r(t) = Q(x∗ − x(t)) = b−
(
I − 1− α

1 + α
W

)
x(t) = b−

(
I − 2α̃

1 + α̃2
W

)
x(t)

then x(t+1) = 2α̃Wx(t) − α̃2x(t−1) + (1 + α̃2)b and since

QW =

(
I − 1− α

1 + α
W

)
W = W

(
I − 1− α

1 + α
W

)
= WQ

So

r(t+1) = −Q(x(t+1) − x∗)

= −2α̃QWx(t) + α̃2Qx(t−1) + (I − (1 + α̃2)Q)b

= −2α̃QWx(t) + α̃2Qx(t−1) +
(
−α̃2 + 2α̃W

)
b

= 2α̃Wr(t) − α̃2r(t−1)

Using r(t) = α̃tV y(t), t ≥ 0

α̃t+1V y(t+1) = 2α̃W α̃tV y(t) − α̃2α̃t−1V y(t−1) ⇒ V y(t+1) = 2WV y(t) − V y(t−1).

As W = V ΛV ⊤ and V ⊤ = V −1 is orthogonal matrix, we continue to have

V ⊤V y(t+1) − 2V ⊤V ΛV ⊤V y(t) + V ⊤V y(t−1) = 0 ⇒ y(t+1) − 2Λy(t) + y(t−1) = 0.

Theorem D.2 (Convergence analysis of Heavy-Ball (HB)). To solve the minimization problem in
Equ. (4), we propose the following standard HB updates as

x(t+1) = x(t) + (1 + α̃2)r(t) + α̃2
(
x(t) − x(t−1)

)
, r(t+1) = 2α̃Wr(t) − α̃2r(t−1),

where the initial condition is x(0) = 0, r(0) = b, x(1) = x(0) + Γr(0), r(1) = b − Qx(1).
Then there exists a constant τ such that the total iteration complexity to reach the stop condition
{u : |ru| ≤ ϵdu, u ∈ V} = ∅ is

t =

⌈
1 +
√
α

2
√
α

ln
Ct∥r(0)∥2

ϵ

⌉
,

where Ct = 1 if Γ = Q−1(I − α̃W) (ideal case); Ct = max

{
1+α̃−1√

1−λ2
2

, 1 + (1 + α̃−1)t

}
if Γ = 0

(practical case); and Ct =
2√
1−λ2

2

if Γ = (1−α̃)(1+α)
2 I (G is not bi-partite graph).

Proof. Recall W = V ΛV ⊤ and then V ⊤r(t+1) = 2α̃ΛV ⊤r(t) − α̃2V ⊤r(t−1). By Lemma D.1,
we have

y(t+1) − 2Λy(t) + y(t−1) = 0,

where we obtained n second-order difference equations

y
(t+1)
i − 2λiy

(t)
i + y

(t−1)
i = 0, ∀i = 1, 2, . . . , n.

Follow the Lemma C.3, Equ. (23) has the solution

y
(t)
i =





sin(θit)y
(1)
i −sin(θi(t−1))y

(0)
i

sin(θi)
|λi| < 1 where θi = arccos(λi)

(y
(0)
i + (y

(1)
i − λiy

(0)
i)t)λt

i |λi| = 1,

, (34)

where in the case of |λi| < 1. We consider the three cases of Γ

38

• Ideal Case: We can eliminate t in (34), when y(1) = Λy(0), we get y(1)i = λiy
(0)
i , and then y

(t)
i

can be simplified into

y
(t)
i =

{
(λi sin(θit)−sin(θi(t−1)))y

(0)
i

sin θi
|λi| < 1

y
(0)
i λt

i |λi| = 1
=

{
y
(0)
i cos(θit) |λi| < 1

y
(0)
i λt

i |λi| = 1
≤
{
|y(0)i | |λi| < 1

|y(0)i | |λi| = 1
.

In this case, Γ needs to be Γ = Q−1(I − α̃W). Therefore, we have

∥V ⊤r(t)∥2 = ∥r(t)∥2 = α̃t∥y(t)∥2 ≤ α̃t∥y(0)∥2 = α̃t∥V ⊤r(0)∥2 = α̃t∥r(0)∥2.

• Practical Case: Just letting x(1) = x(0) = 0, we have α̃y(1) = y(0), then

y
(t)
i =





α̃−1 sin(θit)−sin(θi(t−1))
sin(θi)

y
(0)
i |λi| < 1

(1 + (α̃−1 − λi)t)y
(0)
i λt

i |λi| = 1
≤ max

{
1 + α̃−1

√
1− λ2

2

, 1 + (1 + α̃−1)t

}
|y(0)i |,

where θi = arccos(λi).

• Non-bipartite graph Case: When the graph is non-bipartite, we can eliminate t, as the following:
We choose Γ = τI , we have

x(1) = x(0) + Γr(0) = Γr(0), r(1) = b−Qx(1) = r(0) − τQr(0)

V ⊤r(1) = (1− τ)V ⊤r(0) +
(1− α)τ

1 + α
ΛV ⊤r(0), v⊤

i r
(1) = (1− τ +

(1− α)τ

1 + α
λi)v

⊤
i r

(0)

We have the following relations

v⊤
i r

(0) = y
(0)
i

v⊤
i r

(1) = α̃y
(1)
i = (1− τ +

(1− α)τ

1 + α
λi)v

⊤
i r

(0) = (1− τ +
(1− α)τλi

1 + α
)y

(0)
i ,

To make t disappear when λi = 1, we need y
(0)
i = y

(1)
i , or

1− τ +
(1− α)τ

1 + α
=

1−√α
1 +
√
α
⇐⇒ τ =

1 + α

α+
√
α
.

In this case, we have

|y(t)i | ≤
2√

1− λ2
2

|y(0)i |

To make sure the algorithm stops when the stop condition is met, it is enough for

∥r(t)∥2 = α̃t∥y(t)∥2 ≤ α̃tCt∥y(0)∥2 = α̃tCt∥V ⊤r(0)∥2 = α̃tCt∥r(0)∥2 ≤ ϵ.

This means Ct∥r(0)∥2α̃t ≤ ϵ, which leads to the following

t =

⌈
1 +
√
α

2
√
α

ln
Ct∥r(0)∥2

ϵ

⌉
.

Remark D.3. The constant that appears in the bound involves the second largest eigenvalue λ2 of
AD−1. It is deeply related to the mixing time of random walk [8] where the second largest eigenvalue
determines the mixing time of the walk. A smaller absolute value of the second largest eigenvalue
indicates that a random walk on the graph will mix (i.e., approach its steady-state distribution) more
quickly. Our proof is partially inspired by d’Aspremont et al. [11] where we directly bound r(t)

instead of providing bound for e(t).

39

D.2 Residual Updates of LOCHB and Proof of Theorem D.6

Lemma D.4. Let the local heavy-ball method be defined as

x(t+1) = x(t) +∆
(t)
St
, r(t+1) = r(t) −Q∆

(t)
St
, ∆(t) = (1 + α̃2)r(t) + α̃2

(
x(t) − x(t−1)

)
,

where x(0) = 0,x(1) = Γr(0) and Γ = diag(Γ1,Γ2, . . . ,Γn) is initial step size matrix. We have
the following expanding sequence

α̃2(x(t) − x(t−1))St
= (1 + α̃2)

t−1∑

i=1

α̃2(t−i)r
(i)

Si:t−1∩St
+ α̃2tΓr

(0)

S0:t−1∩St
, ∀t ≥ 1

∆
(t)

St
= (1 + α̃2)

t∑

i=1

α̃2(t−i)r
(i)

Si:t−1∩St
+ α̃2tΓr

(0)

S0:t−1∩St
, ∀t ≥ 1.

Furthermore, we have the following sequence

α̃2(V ⊤ − 1− α

1 + α
ΛV ⊤)

(
x(t) − x(t−1)

)
St

=

(1 + α̃2)

t−1∑

i=1

α̃2(t−i)(V ⊤ − 1− α

1 + α
ΛV ⊤)r

(i)

Si,t
+ Γα̃2t(V ⊤ − 1− α

1 + α
ΛV ⊤)r

(0)

S0,t
.

where we denote Si,t ≜ Si:t−1 ∩ St.

Proof. We assume all nonzeros in b are active nodes at time t = 0 and t = 1, i.e., S0 = r(0) =
supp(b). The local updates can be expressed as

x(t+1) = x(t) + (1 + α̃2)r
(t)
St

+ α̃2
(
x(t) − x(t−1)

)
St

r(t+1) = b−Qx(t+1)

= r(t) − (1 + α̃2)Qr(t) − α̃2Q
(
x(t) − x(t−1)

)
︸ ︷︷ ︸

original updates

+ (1 + α̃2)Qr
(t)

St
+ α̃2Q

(
x(t) − x(t−1)

)
St︸ ︷︷ ︸

noisy with small magnitudes

= 2α̃Wr(t) − α̃2r(t−1) + (1 + α̃2)Qr
(t)

St
+ α̃2Q

(
x(t) − x(t−1)

)
St︸ ︷︷ ︸

noisy with small magnitudes

= 2α̃Wr(t) − α̃2r(t−1) + (1 + α̃2)
(
I − 1− α

1 + α
W
)
r
(t)

St
+ α̃2Q

(
x(t) − x(t−1)

)
St

r(t+1) − 2α̃Wr(t) + α̃2r(t−1) = (1 + α̃2)r
(t)

St
− 2α̃Wr

(t)

St
+ α̃2Q

(
x(t) − x(t−1)

)
St

40

For t ≥ 1, we can expand x(t+1) − x(t) as the following

x(t+1) = x(t) + (1 + α̃2)r
(t)
St

+ α̃2
(
x(t) − x(t−1)

)
St

∆(t) = x(t+1) − x(t) = (1 + α̃2)r
(t)
St

+ α̃2
(
(1 + α̃2)r

(t−1)
St−1

+ α̃2
(
x(t−1) − x(t−2)

)
St−1

)
St

= (1 + α̃2)r
(t)
St

+ α̃2(1 + α̃2)r
(t−1)
St−1:t

+ α̃4
(
x(t−1) − x(t−2)

)
St−1:t

= (1 + α̃2)r
(t)
St

+ α̃2(1 + α̃2)r
(t−1)
St−1:t

+ α̃4
(
(1 + α̃2)r

(t−2)
St−2

+ α̃2
(
x(t−2) − x(t−3)

)
St−2

)
St−1:t

= (1 + α̃2)r
(t)
St

+ α̃2(1 + α̃2)r
(t−1)
St−1:t

+ α̃4(1 + α̃2)r
(t−2)
St−2:t

+ α̃6
(
x(t−2) − x(t−3)

)
St−2:t

= (1 + α̃2)

t∑

i=t−2

α̃2(t−i)r
(i)
Si:t

+ α̃6
(
x(t−2) − x(t−3)

)
St−2:t

= (1 + α̃2)

t∑

i=1

α̃2(t−i)r
(i)
Si:t

+ α̃2t
(
x(1) − x(0)

)
S1:t

= (1 + α̃2)

t∑

i=1

α̃2(t−i)r
(i)
Si:t

+ α̃2tΓr
(0)
S1:t

.

Note S0 = supp(r(0)), then r
(0)
S1:t

= r
(0)
S0:t

, we continue to have

x(t) − x(t−1) = (1 + α̃2)

t−1∑

i=1

α̃2(t−i−1)r
(i)
Si:t−1

+ Γα̃2(t−1)r
(0)
S0:t−1

, ∀t ≥ 1

α̃2(x(t) − x(t−1))St
= (1 + α̃2)

t−1∑

i=1

α̃2(t−i)r
(i)

Si:t−1∩St
+ Γα̃2tr

(0)

S0:t−1∩St
, ∀t ≥ 1

The rest follows readily.

Lemma D.5 (The nonhomogeneous difference equation). Given y(1) = Λy(0), equations

y(t+1) − 2Λy(t) + y(t−1) := f (t).

have the following solutions

y(t) = Zty
(0) +

t−1∑

k=1

Hk,tf
(k),

where

Zt =

{
diag (1, . . . , cos(θit), . . . , (−1)t) for bipartite graphs

diag (1, . . . , cos(θit), . . . , cos(θnt)) for non-bipartite graphs,

Hk,t =





diag
(
t− k, . . . , sin(θi(t−k))

sin θi
, . . . , (−1)t−k−1(t− k)

)
for bipartite graphs

diag
(
t− k, . . . , sin(θi(t−k))

sin θi
, . . . , sin(θn(t−k))

sin θn

)
for non-bipartite graphs.

Proof. This directly follows from Lemma C.4.

41

Theorem D.6 (Representation of r(t) for LOCHB). Given t ≥ 1, x(0) = 0 and x(1) = Γr
(0)
S0

. The
residual of r(t) of LOCHB satisfies

V ⊤r(t) = α̃tZtV
⊤r(0) + α̃tt

t−1∑

k=1

α̃k−1Hk,tV
⊤QΓr

(0)
S0,k

/
t

︸ ︷︷ ︸
u0,t

+ 2

t−1∑

k=1

α̃t−k(t− k)

t−1∑

j=k

α̃j−kHj,t

(
1 + α

1− α
−Λ

)
V ⊤r

(k)
Sk,j

/
(t− k)

︸ ︷︷ ︸
uk,t

.

Proof. Follow Lemma D.4, we have

r(t+1) −Q∆
(t)

S̄t
= r(t) −Q∆(t)

= r(t) − (1 + α̃2)Qr(t) − α̃2Q(x(t) − x(t−1))

= −α̃2r(t) + 2α̃Wr(t) − α̃2Q(x(t) − x(t−1))

= 2α̃Wr(t) − α̃2r(t−1)

So we can write the updates of LOCHB as

r(t+1) − 2α̃Wr(t) + α̃2r(t−1) = Q∆
(t)

St

= (1 + α̃2)

t∑

i=1

α̃2(t−i)Qr
(i)

S̄i,t
+ α̃2tQΓr

(0)

S̄0,t
.

Write V ⊤r(t) = α̃ty(t), and note

r(t) = α̃tV y(t), r
(t)

St
= α̃t

(
V y(t)

)
St

⇒ V ⊤r
(t)

St
= α̃tV ⊤

(
V y(t)

)
St

.

Hence,

V ⊤r(t+1) − 2α̃V ⊤Wr(t) + α̃2V ⊤r(t−1)

= (1 + α̃2)

t∑

i=1

α̃2(t−i)V ⊤Qr
(i)

S̄i,t
+ α̃2tV ⊤QΓr

(0)

S̄0,t

⇐⇒ α̃t+1y(t+1)−2α̃α̃tWy(t) + α̃2α̃t−1y(t−1)

= (1 + α̃2)

t∑

i=1

α̃2(t−i)α̃iQV ⊤(V ⊤y(i))S̄i,t
+ α̃2tQΓV ⊤(V y(0))S̄0,t

⇐⇒ y(t+1)−2Wy(t) + y(t−1)

=

f(t)

︷ ︸︸ ︷
t∑

i=1

(1 + α̃2)α̃t−1α̃−iQV ⊤(V y(i))Si,t︸ ︷︷ ︸
f

(t)
i

+ α̃t−1QΓV ⊤(V y(0))S0,t︸ ︷︷ ︸
f

(t)
0

.

Then, from Lemma D.5

y(t) = Zty
(0) +

t−1∑

k=1

Hk,tf
(k) ⇐⇒ V ⊤r(t) = α̃tZtV

⊤r(0) + α̃t
t−1∑

k=1

Hk,tf
(k)

42

so expanding the error term

α̃tHk,tf
(k) =

k∑

i=1

α̃tHk,tf
(k)
i + α̃tHk,tf

(k)
0

= (1 + α̃2)α̃t+k−1−i
k∑

i=1

Hk,tQV ⊤(V y(i))Si,k

+ α̃t+k−1Hk,tQΓV ⊤(V y(0))S0,k

= (1 + α̃2)α̃t+k−1−2i
k∑

i=1

Hk,tQV ⊤r
(i)
Si,k

+ α̃t+k−1Hk,tQΓV ⊤r
(0)
S0,k

= 2

k∑

i=1

α̃t+k−2iHk,t(
1 + α

1− α
)QV ⊤r

(i)
Si,k

+ α̃t+k−1Hk,tQΓV ⊤r
(0)
S0,k

t−1∑

k=1

α̃tHk,tf
(k) =

t−1∑

k=1

(2

k∑

i=1

α̃t+k−2iHk,t(
1 + α

1− α
)QV ⊤r

(i)
Si,k

+ α̃t+k−1Hk,tQΓV ⊤r
(0)
S0,k

)

= 2

t−1∑

k=1

t−1∑

j=k

α̃t+j−2kHj,t(
1 + α

1− α
)QV ⊤r

(k)
Sk,j

+

t−1∑

k=1

α̃t+k−1Hk,tQΓV ⊤r
(0)
S0,k

which when simplified, gives the relation proposed.

D.3 Convergence of LOCHB of Proof of Theorem D.8

Corollary D.7. Define

βk,t ≜ ∥uk,t∥2/∥r(k)∥2, βk ≜ max
t

βk,t.

Then the upper bound of ∥r(t)∥2 can be characterized as

∥r(t)∥2 ≤ α̃t
t−1∏

j=0

(1 + βj)yt, (35)

where yt+1 − 2yt + yt−1/((1 + βt−1)(1 + βt)) = 0 where y0 = y1 = ∥r(0)∥2.

Proof. Since ∥uk,t∥2 ≤ βk∥r(k)∥2, then given the final iterative updates (29)

V ⊤r(t) = α̃tZtV
⊤r(0) + α̃ttu0,t + 2

t−1∑

k=1

α̃t−k(t− k)uk,t

and since ∥Zt∥2 ≤ 1 we can bound

∥r(t)∥2 ≤ α̃t∥r(0)∥2 + α̃ttβ0∥r(0)∥2 + 2

t−1∑

k=1

α̃t−k−1(t− k)βk∥r(k)∥2

⇐⇒ ∥r(t)∥2 − 2

t−1∑

k=1

α̃t−k−1(t− k)βk∥r(k)∥2 ≤ α̃t(1 + tβ0)∥r(0)∥2, (36)

where t = 0, 1, . . . , T . The rest just follows a similar strategy shown in Corollary C.9. We have the
following inequalities

I − VL :=




1 0 0 · · · 0

−v21 1 0 · · · 0

−v31 −v32 1 · · · 0

...
...

...
. . .

...

−vn1 −vn2 −vn3 · · · 1







∥r(1)∥2
∥r(2)∥2
∥r(3)∥2

...

∥r(T)∥2




≤




α̃1(1 + β0)∥r(0)∥2
α̃2(1 + 2β0)∥r(0)∥2
α̃3(1 + 3β0)∥r(0)∥2

...

α̃T (1 + Tβ0)∥r(0)∥2




:= c,

43

where (VL)tk = 2α̃t−k(t− k)βk. Denote each upper bound as τt = ∥r(t)∥2, we will have

τt = ct +

t−1∑

k=1

vt,k = α̃t(1 + tβ0)τ0 + 2

t−1∑

k=1

(t− k)α̃t−kβkτk

τt+1 = ct+1 +

t∑

k=1

vt+1,k = α̃t+1(1 + (t+ 1)β0)τ0 + 2

t∑

k=1

(t+ 1− k)α̃t−k+1βkτk

= α̃t+1(1 + (t+ 1)β0)τ0 + 2

t−1∑

k=1

(t− k)α̃t−k+1βkτk + 2

t∑

k=1

α̃t−k+1βkτk

α̃τt = α̃t+1(1 + tβ0)τ0 + 2

t−1∑

k=1

(t− k)α̃t−k+1βkτk

τt+1 − α̃τt = α̃t+1β0τ0 + 2

t∑

k=1

α̃t−k+1βkτk

τt−1 = α̃t−1(1 + (t− 1)β0)τ0 + 2

t−2∑

k=1

(t− k − 1)α̃t−k−1βkτk

α̃2τt−1 = α̃t+1(1 + (t− 1)β0)τ0 + 2

t−1∑

k=1

(t− k)α̃t−k+1βkτk − 2

t−1∑

k=1

α̃t−k+1βkτk

α̃τt − α̃2τt−1 = α̃t+1β0τ0 + 2

t−1∑

k=1

α̃t−k+1βkτk.

τt+1 − 2α̃τt + α̃2τt−1 = 2α̃βtτt

The above analysis finally leads to τt+1 − 2(1 + βt)α̃τt + α̃2τt−1 = 0. So for

α̃t
t−1∏

j=0

(1 + βj)yt = τt

we have
yt+1 − 2yt +

yt
(1 + βt)(1 + βt−1)

= 0.

Following the same strategy in Corollary C.9, we obtain the upper bound.

Theorem D.8 (Convergence of LOCHB). Let the geometric mean of βt be βt ≜
∏t−1

j=0(1 + βj)
1/t.

Then the upper bound of ∥r(t)∥2 can be characterized as

∥r(t)∥2 ≤ α̃t
t−1∏

j=0

(1 + βj)yt, (37)

where yt+1 − 2yt + yt−1/((1 + βt−1)(1 + βt)) = 0 where y0 = y1 = ∥r(0)∥2. Assume that there
exists a constant c ∈ [0, 2) such that βt ≤ 1 + c

√
α

1−
√
α

. Then the total number of iterations can be
bounded as

T ≤
⌈

1 +
√
α

(2− c)
√
α

⌉
ln
(yt
ϵ

)
.

Then the total runtime T is bounded by

T ≤ Θ

(
(1 +

√
α)vol(ST)

(2− c)
√
α

ln
yt
ϵ

)
= Õ

(
vol(ST)

(2− c)
√
α

)
,

where Õ hides ln(yt/ϵ).

Proof. The first part follows from Corollary of D.7. The rest follows the same strategy of LOCCH as
in Theorem 4.2. (See also Theorem 4.2.)

44

Table 2: Examples of sparse linear systems

Original Linear system Our target Qx = b
Q = Λ− σD−1/2AD−1/2 [µ,L] Ref.

(
I − σW

)
x = αes

1. Λ = I, σ = 1− α
b = αes

[α, 2− α]
[27]
[53]

(
αI + 1−α

2 L
)
x = αD−1/2es

2.

L = I −D−1/2AD−1/2

Λ = I, σ = 1−α
1+α

b = 2αD−1/2s/(1 + α)

[
2α
1+α ,

2
1+α

] [2]
[13]
[12]
[37]

(
I − (1− α)AD−1

)
y = αes

3.
Λ = I, σ = 1− α
b = αD−1/2es, α ∈ (0, 1)
x = D−1/2y

[α, 2− α]
[7]
[56]

(
λ
nIn +D −A

)
y = 2λes

4.

Λ = λ
nD

−1 + In, σ = 1

b = 2λD−1/2es, λ ∈ [1, n]
x = D1/2y

[
λ

ndmax
, λ+2n

n

] [41]
[57]

D.4 Implementation of LOCHB

We present the implementation of LOCHB as follows: Recall the updates of LOCHB is

x(t+1) = x(t) + (1 + α̃2)r
(t)
St

+ α̃2
(
x(t) − x(t−1)

)
St
, r(t+1) = 2α̃Wr(t) − α̃2r(t−1).

The corresponding local updates are

∆(t) = (1 + α̃2)r(t) + α̃2x̃(t)

x(t+1) = x(t) +∆
(t)
St

r(t+1) = r(t) −∆(t) +
1− α

1 + α
W∆(t)

x̃(t+1) = x̃(t) +∆(t) −∆(t−1),

where if we choose x(0) = x(1) = x̃(1) = 0, r(0) = r(1) = b and ∆(0) = 0.

E Instances of Sparse Linear Systems

E.1 Table of Popular Graph-induced Linear Systems

This section presents most commonly used graph-induced linear system as the following

Λ− σD−1/2AD−1/2

︸ ︷︷ ︸
Q

x = b,

where Q is the generalized version of the perturbed normalized graph Laplacian matrix with perturba-
tion parameter σ > 0, and b is a sparse vector. A typical example of Q = I − 1−α

1+αD
−1/2AD−1/2

with Λ = I and b = 2αD−1/2es/(1 + α)

The detailed parameters are:

• 1. W = D̃−1/2ÃD̃−1/2 and Ã = I +A is the adjacency matrix defined on G(V, E) by adding
self-loops for all nodes, and D̃ = I +D is defined as the augmented degree matrix by adding
self-loops. α ∈ (0, 1) and usually α < 0.5, The I − (1 − α)W is the perturbed augmented
normalized Laplacian with perturbed parameter α.

• 2. Q = D−1/2
(
D − 1−α

2 (D +A)
)
D−1/2 = αI + 1−α

2 L > 0 and Q = 1−α
1+αD

−1/2AD−1/2.
This is known as the lazy random-walk version of PPR vectors.

• 3. x = α
(
I − (1− α)AD−1

)−1
es This is the standard Personalized PageRank vectors widely

used for graph embeddings and graph neural network designing [7]. It is also used for decoupling
for large-scale GNNs [56].

45

Dataset ID Dataset Name n m

G1 as-skitter 1,694,616 11,094,209
G2 cit-patent 3,764,117 16,511,740
G3 com-dblp 317,080 1,049,866
G4 com-lj 3,997,962 34,681,189
G5 com-orkut 3,072,441 117,185,083
G6 com-youtube 1,134,890 2,987,624
G7 ogbn-arxiv 169,343 1,157,799
G8 ogbn-mag 1,939,743 21,091,072
G9 ogbn-products 2,385,902 61,806,303
G10 ogbn-proteins 132,534 39,561,252
G11 soc-lj1 4,843,953 42,845,684
G12 soc-pokec 1,632,803 22,301,964
G13 wiki-talk 2,388,953 4,656,682
G14 ogbl-ppa 576,039 21,231,776
G15 wiki-en21 6,216,199 160,823,797
G16 com-friendster 65,608,366 1,806,067,135
G17 ogbn-papers100m 111,059,433 1,614,061,934

Table 3: Dataset Statistics

• 4. Graph kernel computation for online learning. Each computed vector serves as semi-supervised
learning feature vectors [24] or as online node labeling learning vectors [41, 57]. Note the target
linear system when σ = 1

D−1/2

(
λ

n
In +D −A

)
D−1/2D1/2y = 2λD−1/2es

(
λ

n
D−1 + In −D−1/2AD−1/2

)
D1/2y = 2λD−1/2es.

Hence, we have Λ = λ
nD

−1 + In, σ = 1, b = 2λD−1/2es.

F Experimental Details and Missing Results

F.1 Datasets and Preprocessing

Following Leskovec et al. [34], we treat all 17 graphs as undirected with unit weights. We remove self-
loops and keep the largest connected component when the graph is disconnected. After preprocessing,
the graphs range from 169, 343 nodes in ogbn-proteins to 111, 059, 433 in ogbn-papers100M, as
presented in Table 3.

F.2 Problems Settings and Baseline Methods

For solving Equation (3), we randomly select 50 source nodes s from each graph. The
damping factor is fixed at 0.1, i.e., α = 0.1 for all experiments, and it varies within the
range {0.005, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3} for others. The ϵ is chosen from the range[
2α/((1 + α)ds), 10

−4/n
]
.

For solving the local clustering problem, we follow the greedy strategy from Andersen et al. [2],
where a local cluster is identified by examining the top magnitudes in PPR vectors. Specifically, we
denote the boundary of S as ∂(S) = {(u, v) ∈ E : u ∈ S, v /∈ S}. The conductance of S is defined
as

Φ(S) ≜ |∂(S)|
min(vol(S), 2m− vol(V\S)) .

46

0 1 2
×108

−5.0

−2.5

0.0

ln
‖x̂
−
x
∗ ‖

1

as-skitter

0 2
×108

−2

0
cit-patent

0 1
×107

−4

−2

0
com-dblp

0 1 2
×1010

−2

−1

com-friendster

0 2 4
×108

−2

−1

com-lj

0 5
×108

−1.0

−0.5

com-orkut

0 2 4
×107

−3

−2

−1

ln
‖x̂
−
x
∗ ‖

1

com-youtube

0 1
×1010

−5

0
ogb-mag240m

0 1 2
×108

−1.5

−1.0

−0.5

ogbl-ppa

0 1 2
×107

−4

−2

0
ogbn-arxiv

0 1 2
×108

−1.5

−1.0

−0.5

ogbn-mag

0 1
×1010

−2

−1

ogbn-papers100M

0 5
operations ×108

−3

−2

−1

ln
‖x̂
−
x
∗ ‖

1

ogbn-products

0 1
operations ×108

−0.4

−0.2

ogbn-proteins

0.0 2.5 5.0
operations ×108

−4

−2

0
soc-lj1

0 1 2
operations ×108

−1.5

−1.0

−0.5

soc-pokec

0 1
operations ×109

−1.5

−1.0

−0.5

wiki-en21

0 2
operations ×107

−2

−1

wiki-talk

Figure 7: The LOCSOR method compared with CGM over 18 graphs.

0

25

50

75

S
pe

ed
up

as-skitter
GD/LOCGD
SOR/LOCSOR
HB/LOCHB
CH/LOCCH

0

50

100

cit-patent

0

50

100

com-dblp

0

50

com-lj

0

100

200

com-orkut

0

20

40

60

S
pe

ed
up

com-youtube

0

50

100

150

ogbl-ppa

0

20

40

60

ogbn-arxiv

0

25

50

75

ogbn-mag

0

100

200

300

ogbn-products

10−8 10−5 10−2

ε

0

50

100

S
pe

ed
up

ogbn-proteins

10−8 10−5 10−2

ε

0

50

soc-lj1

10−8 10−5 10−2

ε

0

50

100

150
soc-pokec

10−8 10−5 10−2

ε

0

50

100

150

wiki-en21

10−8 10−5 10−2

ε

0

5

10

wiki-talk

Figure 8: The speedup of local solvers compared with their standard counterparts.

The goal of local clustering is to obtain PPR vectors using these local methods and then apply
clustering algorithms to find clusters with low conductance. For the sorting process, given the
approximate PPR vector π̃, we sort D−1/2π̃ in decreasing order of magnitudes. Let the ordered
nodes be v1, v2, . . . , vt; the local clustering algorithm iteratively checks the conductance reduc-
tion by v1, v2, · · · , vk where k = 1, 2, . . . , t, and after completing all checks, it returns a subset
v1, v2, . . . , vk′ that has the minimal conductance among all examined subsets.

Parameter settings of baselines. For the local ISTA method [13], the precision parameter is set to
ϵ̂ = 0.5 for all experiments. According to the algorithm’s description of ISTA, the corresponding ρ
value is given by ϵ/(1 + ϵ̂). For LOCSOR, the parameter ω is calculated as 2(1 + α)/(1 +

√
α)2.

For the local FISTA, as demonstrated in [22], we adopt the same settings as for ISTA and follow
its implementation guidelines. We also include preliminary results on ASPR [37]. The algorithm
incorporates a parameter, ϵ̂, to control the number of iterations in the nested Accelerated Projected
Gradient Descent (APGD). We adjust ϵ̂ from low precision, ϵ̂ = 0.1/n, to high precision, ϵ̂ = 10−4/n,
to ensure the identification of a good approximation.

For our experiment, we used a server powered by an Intel(R) Xeon(R) Gold 5218R CPU, which
features 40 cores (80 threads). The system is equipped with 256 GB of RAM.

F.3 Full results of Fig. 15 4 5 6

In all 15 graphs, we set α = 0.1 and ϵ = 0.1/n. For each of the testing graphs, we randomly select
50 nodes and run LOCSOR and CGM.

47

0 2
×106

−4

−2

ln
‖x

(T
)
−
x
‖ 1

as-skitter (ε =1.12e-09)

LocSOR

LocHB

LocCH

0 2 4
×107

−4

−2

cit-patent (ε =1.12e-09)

0 2 4
×106

−4

−2

com-dblp (ε =1.12e-09)

0.0 0.5 1.0
×108

−4

−2

com-lj (ε =1.12e-09)

0 1 2
×108

−4

−3

com-orkut (ε =1.12e-09)

0 2
×107

−4

−2

ln
‖x

(T
)
−
x
‖ 1

com-youtube (ε =1.12e-09)

0 1 2
×107

−4

−3

ogbl-ppa (ε =1.12e-09)

0.0 2.5 5.0
×106

−4

−2

ogbn-arxiv (ε =1.12e-09)

0.0 0.5 1.0
×108

−4

−3

ogbn-mag (ε =1.12e-09)

0 2
×107

−4

−2
ogbn-products (ε =1.12e-09)

0 5
Operations ×106

−4.5

−4.0

−3.5

ln
‖x

(T
)
−
x
‖ 1

ogbn-proteins (ε =1.12e-09)

0.0 0.5 1.0
Operations ×108

−4

−2

soc-lj1 (ε =1.12e-09)

0.0 0.5 1.0
Operations ×108

−4

−3

−2
soc-pokec (ε =1.12e-09)

0 1 2
Operations ×108

−4

−3

wiki-en21 (ε =1.12e-09)

0 2 4
Operations ×107

−6

−4

−2

wiki-talk (ε =1.12e-09)

Figure 10: Comparison of three local solvers over 15 graphs.

Fig. 8 presents all speedup tests on 15 datasets. It is evident that these standard linear solvers can be
localized effectively.

0 1 2 3
×108

−6

−4

−2

ln
‖x

(T
)
−
x
‖ 1

as-skitter (ε =1.58e-09)

LocSOR

LocHB

LocCH

ISTA

FISTA

CGM

APPR

0.0 2.5 5.0 7.5
×108

−5

−4

−3

−2

cit-patent (ε =7.13e-10)

0 2 4
×107

−4

−2

com-dblp (ε =8.46e-09)

0.0 0.5 1.0
×109

−5

−4

−3

−2

com-lj (ε =6.71e-10)

0 1 2
×109

−5

−4

−3

−2
com-orkut (ε =8.73e-10)

0 1 2
×108

−5

−4

−3

−2

−1

ln
‖x

(T
)
−
x
‖ 1

com-youtube (ε =2.36e-09)

0 2
×108

−4.5

−4.0

−3.5

−3.0

−2.5

ogbl-ppa (ε =4.66e-09)

0 2 4 6
×107

−5

−4

−3

−2

ogbn-arxiv (ε =1.58e-08)

0.0 0.5 1.0
×109

−5

−4

−3

−2
ogbn-mag (ε =1.38e-09)

0.0 0.5 1.0
×109

−6

−5

−4

−3

−2

ogbn-products (ε =1.12e-09)

0 1 2 3

Operations ×108

−5.0

−4.5

−4.0

−3.5

ln
‖x

(T
)
−
x
‖ 1

ogbn-proteins (ε =2.02e-08)

0.0 0.5 1.0 1.5

Operations ×109

−5

−4

−3

−2

−1

soc-lj1 (ε =5.54e-10)

0.0 0.5 1.0

Operations ×109

−5

−4

−3

−2
soc-pokec (ε =1.64e-09)

0 2 4

Operations ×109

−4.5

−4.0

−3.5

−3.0

−2.5

wiki-en21 (ε =4.32e-10)

0 2 4

Operations ×108

−6

−4

−2

wiki-talk (ε =1.12e-09)

Figure 9: The estimation error reduction tests on 7 solvers including our LOCSOR, LOCHB, and
LOCCH. The experiments were conducted on 15 datasets.

Fig. 9 presents the missing results on the estimation error reduction for 15 datasets. Compared with
the global solver CGM, all local methods show significant speedup in the early stages. To compare
our three local solvers, we zoom in on our results and present them in Fig. 10. Empirically, LOCSOR
is the fastest algorithm when the parameter ω is chosen optimally.

48

0 1 2
×107

−3.5

−3.0

−2.5

−2.0

ln
‖x

(T
)
−
x
‖ 1

(Node 0, ε = 1/n)

APPR

LocHB

LocCH

LocSOR

0 2
×107

−3.00

−2.75

−2.50

−2.25

(Node 1, ε = 1/n)

0 2
×107

−3.0

−2.8

−2.6

−2.4

(Node 2, ε = 1/n)

0 2
×107

−3.00

−2.75

−2.50

−2.25

(Node 3, ε = 1/n)

0 2
×107

−3.0

−2.5

−2.0

(Node 4, ε = 1/n)

0 2
Operations ×109

−4

−3

−2

ln
‖x

(T
)
−
x
‖ 1

(Node 0, ε = 1/m)

0 1 2
Operations ×109

−3.5

−3.0

−2.5

(Node 1, ε = 1/m)

0 1 2
Operations ×109

−3.5

−3.0

−2.5

(Node 2, ε = 1/m)

0 2
Operations ×109

−3.5

−3.0

−2.5

(Node 3, ε = 1/m)

0 2
Operations ×109

−4.0

−3.5

−3.0

−2.5

−2.0

(Node 4, ε = 1/m)

Figure 11: Estimation error as a function of the number of operations on com-friendster. We randomly
select 5 different nodes and use ϵ = 1./n and ϵ = 1/m.

0 2 4
×107

−3

−2

ln
‖x

(T
)
−
x
‖ 1

(Node 0, ε = 1/n)

APPR

LocHB

LocCH

LocSOR

0 5
×107

−3.0

−2.5

(Node 1, ε = 1/n)

0 5
×107

−3.0

−2.8

−2.6

−2.4
(Node 2, ε = 1/n)

0 5
×107

−3.2

−3.0

−2.8

−2.6

−2.4

(Node 3, ε = 1/n)

0.0 2.5 5.0
×107

−3.5

−3.0

−2.5

−2.0

−1.5
(Node 4, ε = 1/n)

0.0 0.5 1.0
Operations ×109

−4

−3

−2

ln
‖x

(T
)
−
x
‖ 1

(Node 0, ε = 1/m)

0 1 2
Operations ×109

−4.0

−3.5

−3.0

−2.5

−2.0
(Node 1, ε = 1/m)

0 2
Operations ×109

−3.5

−3.0

−2.5

(Node 2, ε = 1/m)

0 2
Operations ×109

−4.0

−3.5

−3.0

−2.5

(Node 3, ε = 1/m)

0.0 0.5 1.0
Operations ×109

−4

−3

−2

(Node 4, ε = 1/m)

Figure 12: Estimation error as a function of the number of operations on ogbn-papers100m. We
randomly select 5 different nodes and use ϵ = 1./n and ϵ = 1/m.

- Run time (seconds) Number of operations
Dataset LOCSOR LOCCH CGM LOCSOR LOCCH CGM

as-skitter 0.350 ± 0.054 0.567 ± 0.095 2.626 ± 0.551 7.827e+05 1.026e+06 1.524e+08
cit-patent 0.966 ± 0.120 1.609 ± 0.189 14.660 ± 2.249 1.804e+06 2.298e+06 2.873e+08
com-dblp 0.068 ± 0.058 0.104 ± 0.059 0.469 ± 0.112 8.222e+04 1.166e+05 1.562e+07
com-friendster 15.29 ± 1.89 26.54 ± 3.52 508.50 ± 99.12 7.027e+07 8.063e+07 1.442e+10
com-lj 0.802 ± 0.148 1.410 ± 0.234 7.593 ± 2.361 2.604e+06 3.271e+06 4.122e+08
com-orkut 0.455 ± 0.158 0.815 ± 0.308 13.343 ± 7.951 2.965e+06 3.221e+06 9.220e+08
com-youtube 0.290 ± 0.070 0.501 ± 0.099 1.314 ± 0.257 7.617e+05 9.323e+05 3.561e+07
ogb-mag240m 85.14 ± 16.05 108.86 ± 7.994 549.51 ± 367.2 4.541e+07 5.820e+07 9.426e+09
ogbl-ppa 0.116 ± 0.019 0.202 ± 0.040 5.624 ± 1.108 6.117e+05 6.445e+05 1.682e+08
ogbn-arxiv 0.039 ± 0.060 0.058 ± 0.063 0.239 ± 0.104 1.158e+05 1.354e+05 1.473e+07
ogbn-mag 0.520 ± 0.079 0.921 ± 0.128 6.136 ± 0.974 1.804e+06 1.947e+06 2.050e+08
ogbn-papers100M 27.20 ± 3.94 41.99 ± 6.17 750.96± 110.45 8.893e+07 1.095e+08 1.604e+10
ogbn-products 0.695 ± 0.236 1.059 ± 0.249 31.907 ± 4.961 1.777e+06 2.385e+06 7.071e+08
ogbn-proteins 0.021 ± 0.057 0.025 ± 0.057 0.910 ± 0.306 7.941e+04 6.610e+04 1.488e+08
soc-lj1 1.040 ± 0.282 1.751 ± 0.487 7.102 ± 3.410 3.263e+06 4.045e+06 4.833e+08
soc-pokec 0.210 ± 0.027 0.368 ± 0.049 1.568 ± 0.207 2.020e+06 2.225e+06 2.160e+08
wiki-en21 1.436 ± 2.708 1.794 ± 0.215 19.658 ± 4.576 5.996e+06 6.659e+06 1.329e+09
wiki-talk 0.251 ± 0.049 0.455 ± 0.091 0.642 ± 0.071 1.090e+06 1.290e+06 4.284e+07

Table 4: Summary of runtime and operations for 15 datasets. (ϵ = 10−6)

49

0 1 2 3
×107

−2.5

−2.4

−2.3

−2.2

−2.1

ln
‖x

(T
)
−
x
∗ ‖

1
ogbl-ppa (α = 0.005)

0 2 4 6 8
×106

−3.5

−3.0

−2.5

−2.0

ogbl-ppa (α = 0.1)

0.0 0.5 1.0 1.5
×106

−5

−4

−3

−2

ogbl-ppa (α = 0.25)

LocGD

LocSOR

LocHB

LocCH

0 1 2

Operations ×107

−2.8

−2.6

−2.4

−2.2

ln
‖x

(T
)
−
x
∗ ‖

1

ogbn-products (α = 0.005)

0.0 0.5 1.0

Operations ×107

−5

−4

−3

ogbn-products (α = 0.1)

0 2 4

Operations ×106

−6

−5

−4

−3

ogbn-products (α = 0.25)

Figure 13: Estimation error as a function of operations needed. For α = 0.005, α = 0.1, and
α = 0.25.

0 500 1000

−3

−2

−1

0

C
on

d
u

ct
an

ce

as-skitter

APPR

LocCH

LocHB

LocSOR

ISTA

FISTA

0 500 1000 1500

−1.0

−0.5

0.0
cit-patent

0 100 200 300

−2

−1

0
com-dblp

0 50 100

−3

−2

−1

0
com-lj

0 2000

−0.75

−0.50

−0.25

0.00
com-orkut

0 50

−2

−1

0

C
on

d
u

ct
an

ce

com-youtube

0 250 500 750

−1.5

−1.0

−0.5

0.0
ogbl-ppa

0 50 100 150

−2

−1

0
ogbn-arxiv

0 2000 4000

−1.0

−0.5

0.0
ogbn-mag

0 20 40 60

−2

−1

0
ogbn-products

0 500 1000 1500
Support Size

−1.0

−0.5

0.0

C
on

d
u

ct
an

ce

ogbn-proteins

0 50 100
Support Size

−4

−2

0
soc-lj1

0 200 400
Support Size

−1.5

−1.0

−0.5

0.0
soc-pokec

0 2500 5000 7500
Support Size

−1.0

−0.5

0.0
wiki-talk

0 1000 2000 3000
Support Size

−0.75

−0.50

−0.25

0.00
wiki-en21

Figure 14: The graph conductance found by local graph clustering method using different local
approximate methods. Experiments ran on 15 graphs. (ϵ = 10−6)

50

Dataset APPR LOCCH LOCHB LOCSOR ISTA FISTA

as-skitter 5.90e-04 5.90e-04 5.90e-04 5.90e-04 5.90e-04 5.90e-04
cit-patent 4.23e-02 4.23e-02 4.23e-02 4.23e-02 4.23e-02 4.23e-02
com-dblp 4.12e-03 4.12e-03 4.12e-03 4.12e-03 4.12e-03 4.12e-03
com-lj 2.94e-04 2.94e-04 2.94e-04 2.94e-04 2.94e-04 2.94e-04
com-orkut 1.75e-01 1.76e-01 1.76e-01 1.75e-01 1.76e-01 1.75e-01
com-youtube 5.46e-03 5.46e-03 5.46e-03 5.46e-03 5.46e-03 5.46e-03
ogbn-arxiv 2.11e-02 2.11e-02 2.11e-02 2.12e-02 2.14e-02 2.11e-02
ogbn-mag 3.18e-03 1.59e-03 3.18e-03 3.18e-03 4.74e-03 3.18e-03
ogbn-products 7.26e-02 1.02e-01 9.68e-02 9.65e-02 9.51e-02 7.24e-02
ogbn-proteins 5.92e-03 5.92e-03 5.92e-03 5.92e-03 5.92e-03 5.92e-03
soc-lj1 5.07e-02 1.18e-01 1.18e-01 1.18e-01 5.25e-02 5.07e-02
soc-pokec 7.80e-05 7.80e-05 7.80e-05 7.80e-05 7.80e-05 7.80e-05
wiki-talk 1.64e-02 1.64e-02 1.64e-02 1.64e-02 1.64e-02 1.64e-02
ogbl-ppa 5.13e-02 5.13e-02 5.13e-02 5.13e-02 5.13e-02 5.13e-02
wiki-en21 1.31e-01 1.31e-01 1.31e-01 1.31e-01 1.31e-01 1.31e-01

Table 5: The local conductance for six local solvers tested on 15 graphs datasets. (ϵ = 10−6)

Dataset APPR LOCCH LOCHB LOCSOR ISTA FISTA
as-skitter 0.127 0.147 0.144 0.043 0.323 0.093
cit-patent 0.362 0.516 0.457 0.125 0.939 0.308
com-dblp 0.069 0.033 0.028 0.014 0.297 0.042
com-lj 0.357 0.440 0.664 0.175 0.493 0.229
com-orkut 0.072 0.141 0.139 0.055 0.108 0.084
com-youtube 0.128 0.176 0.131 0.040 0.682 0.102
ogbl-ppa 0.102 0.047 0.091 0.027 0.146 0.102
ogbn-arxiv 0.042 0.013 0.014 0.006 0.237 0.032
ogbn-mag 0.068 0.137 0.091 0.035 0.253 0.090
ogbn-products 0.072 0.121 0.117 0.045 0.135 0.090
ogbn-proteins 0.005 0.005 0.005 0.002 0.005 0.004
soc-lj1 0.239 0.376 0.350 0.103 0.512 0.194
soc-pokec 0.067 0.096 0.059 0.033 0.222 0.051
wiki-talk 0.197 0.314 0.274 0.109 0.508 0.176
wiki-en21 0.121 0.290 0.279 0.106 0.197 0.147

Table 6: Runtime (seconds) for six local solvers tested on 15 graphs datasets. (ϵ = 10−6)

51

F.4 Results on local clustering

Dataset APPR LOCCH LOCHB LOCSOR ISTA FISTA

as-skitter 6.9e+05 7.6e+04 8.1e+04 6.5e+04 2.9e+06 5.7e+05
cit-patent 6.7e+05 1.0e+05 1.1e+05 8.9e+04 2.3e+06 4.4e+05
com-dblp 4.3e+05 4.8e+04 5.0e+04 3.5e+04 1.9e+06 2.9e+05
com-lj 5.7e+05 8.9e+04 1.0e+05 7.6e+04 2.8e+06 4.4e+05
com-orkut 5.4e+05 8.9e+04 1.1e+05 9.0e+04 1.3e+06 5.0e+05
com-youtube 5.3e+05 6.5e+04 6.6e+04 5.7e+04 3.8e+06 4.4e+05
ogbl-ppa 6.7e+05 9.6e+04 1.1e+05 9.3e+04 1.5e+06 6.0e+05
ogbn-arxiv 6.8e+05 8.7e+04 9.7e+04 7.6e+04 2.7e+06 5.2e+05
ogbn-mag 5.2e+05 8.2e+04 9.4e+04 8.3e+04 2.4e+06 4.4e+05
ogbn-products 9.0e+05 1.1e+05 1.3e+05 9.8e+04 2.1e+06 7.6e+05
ogbn-proteins 5.3e+05 4.0e+04 5.5e+04 5.0e+04 6.8e+05 6.2e+05
soc-lj1 5.6e+05 8.9e+04 1.0e+05 7.7e+04 2.8e+06 4.4e+05
soc-pokec 5.9e+05 1.1e+05 1.3e+05 1.1e+05 2.5e+06 5.0e+05
wiki-talk 4.4e+05 5.5e+04 5.2e+04 4.6e+04 1.8e+06 3.4e+05
wiki-en21 5.2e+05 8.0e+04 9.7e+04 8.1e+04 1.8e+06 4.9e+05

Table 7: Operations Needed for six local solvers tested on 15 graphs datasets. (ϵ = 10−6)

52

G Related work

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Number of operations needed ×1010

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

ln
‖x̂
−
x
∗ ‖

1

LocCH

CGM

Figure 15: Comparison of the error reduction
between the proposed LOCCH and the stan-
dard CGM on the papers100M dataset [23],
in terms of the number of operations required.

Many graph applications [2, 7, 29, 15, 27, 36, 30, 44,
25, 45, 51, 48] only require solving Equ. (1) approxi-
mately. The reasons could be either the most energies
of π are among a small set of nodes forming small
subgraphs, or one wants to study large graphs by
checking them locally. Given a graph G with n nodes
and m edges, there are two main types of iterative
solvers for Equ. (1) as follows:

Standard iterative methods. Methods for solving
linear systems have been well-established over the
past decades (see textbooks of Saad [43], Golub &
Van Loan [19], Young [55]). The fastest linear solver
for solving the symmetrized version of Equ. (1) is
the Conjugate Gradient Method (CGM) with runtime
complexity Õ(m/

√
α) where m is the number of edges in the graph. It costs Θ(m) to access

the entire graph at each iteration; hence, it is much slower than local solvers, as demonstrated in
Fig. 15. The symmetric diagonally dominant (SDD) solvers advance CGM further to have complexity
Õ (m logc n log(1/ϵ)) [31, 46]. Anikin et al. [4] considered the PageRank problem and proposed an
algorithm with runtime depending on O(n). This paper focuses on local algorithms where the goal is
to avoid the dominant factor m or n by avoiding the full Qx operation.

Local algorithms. Local solvers, in contrast to standard counterparts, leverage the fact that the energy
of π lives in a small portion of the graph and hence do not require O(m) or O(n) per iteration. They
are advantageous for huge-scale graphs demonstrated in Fig. 15. Andersen et al. [2] used APPR to
obtain an approximate of π for local clustering. Quite similar algorithms were developed in Berkhin
[6] (bookmark-coloring algorithm) and Kloster & Gleich [28] (Gauss-Southwell procedure).

Under the same stopping condition as APPR, Fountoulakis et al. [13] demonstrated that APPR is
equivalent to coordinate descent via variational characterization, with a runtime of Õ(1/(αϵ)) using
ISTA where the monotonicity and conservation properties remain. Hence, it is nature to ask whether
Õ(1/(√αϵ)) could be achieved by FISTA [5] in Fountoulakis & Yang [12]. However, the difficulty
is that FISTA violates the monotonicity property where the volume accessed of per-iteration cannot
be bounded properly. To overcome this, Martínez-Rubio et al. [37] proposed a nested accelerated
projected gradient descent (APGD) and gradually expanding solutions so that the monotonicity
property still holds. However, nested APGD requires solving subproblems accurately, which in
practice may be cumbersome if the precision requirement of the inner problem is too stringent.
All current local methods rely on some monotonicity property of variables to guarantee locality,
which does not exist in most accelerated frameworks; thus, developing an accelerated method that is
guaranteed to preserve intermediate variable sparsity remains challenging.

It is worth mentioning that local methods are also closely related to sublinear time and local computa-
tional algorithms [42, 1]. From the optimization perspective, the equivalence between Gauss-Seidel
and coordinate descent has been considered [49, 35, 39, 50] but does not focus on local analysis.

53

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the main claims made by the paper,
including its key contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in
the paper.

• The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The accelerated algorithms, such as LOCCH and LOCHB, may exhibit instability
when α is small. This limitation arises due to the inherent constraints of global methods.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to vi-

olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]

54

Justification: All assumptions are clearly stated.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided our code for the review process and will make it publicly available
upon publication.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: All datasets used in this study are publicly available.

55

Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https://
nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: All parameter settings of our methods and baselines are included.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For most of our results, we report the standard error over 50 random sampling nodes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

56

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [Yes]
Justification: For our experiment, we used a server powered by an Intel(R) Xeon(R) Gold 5218R
CPU, which features 40 cores (80 threads). The system is equipped with 256 GB of RAM.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms in every respect with the NeurIPS
Code of Ethics. The authors have thoroughly reviewed and adhered to the guidelines, ensuring
that all aspects of their work align with ethical standards.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: The advancements in accelerated algorithms like LOCCH and LOCHB can signifi-
cantly enhance computational efficiency in various applications, contributing to faster and more
effective solutions in fields such as data analysis, machine learning, and optimization.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

57

https://neurips.cc/public/EthicsGuidelines

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification: None.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users
adhere to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [NA]

Justification: None.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: None.

Guidelines:

• The answer NA means that the paper does not release new assets.

58

paperswithcode.com/datasets

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: No human subjects involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-
jects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: No human subjects involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

59

	Introduction
	Notations and Preliminaries
	Revisiting Anderson's APPR and its local runtime bound
	Problem reformulation

	Local Methods via Evolving Set Process
	Locally evolving set process
	APPR via locally evolving set process
	Faster local variant of GS-SOR
	Parallelizable local gradient descent

	Accelerated Local Iterative Methods
	Local Chebyshev method

	Generalization and Open Problems
	Experiments
	Limitations and Conclusion
	Notations and Proof of Lemma 2.1
	List of Notations
	Proof of Lemma 2.1

	Local Iterative Methods via Evolving Set Process
	Local Variant of GS-SOR and Proof of Lemma 3.2
	 LocSOR and Proof of Theorem 3.3
	Optimal GS-SOR and Proof of Corollary 3.4
	LocGD and Proof of Theorem 3.5

	Local Chebyshev Method - LocCH
	Nonhomogeneous of Second-order Difference Equation
	Properties on Ratio of Chebyshev Polynomials
	Standard Chebyshev (CH) Method and Proof of Theorem C.6
	Residual Updates of LocCH and Proof of Lemma 4.1
	Convergence of LocCH and Proof of Theorem 4.2
	Implementation of LocCH

	Local Heavy-Ball Method - LocHB
	Standard HB and Proof Theorem D.2
	Residual Updates of LocHB and Proof of Theorem D.6
	Convergence of LocHB of Proof of Theorem D.8
	Implementation of LocHB

	Instances of Sparse Linear Systems
	Table of Popular Graph-induced Linear Systems

	Experimental Details and Missing Results
	Datasets and Preprocessing
	Problems Settings and Baseline Methods
	Full results of Fig. 15 4 5 6
	Results on local clustering

	Related work

