

000 001 002 003 004 005 006 007 008 009 010 THE ROLE OF DIVERSITY IN IN-CONTEXT LEARNING 002 003 004 005 006 007 008 009 010 FOR LARGE LANGUAGE MODELS

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 In-context learning (ICL) is a crucial capability of current large language models
 012 (LLMs), where the selection of examples plays a key role in performance. While
 013 most existing approaches focus on selecting the most *similar* examples to the
 014 query, the impact of *diversity* in example selection remains underexplored. We
 015 systematically investigate the role of *diversity* in in-context example selection
 016 through experiments across a range of tasks, from sentiment classification to more
 017 challenging math and code problems. Experiments on Llama-3.1, Gemma-2, and
 018 Mistral-v0.3 families of models show that diversity-aware selection methods im-
 019 prove performance, particularly on complex tasks like math and code, and enhance
 020 robustness to out-of-distribution queries. To support these findings, we introduce
 021 a theoretical framework that explains the benefits of incorporating diversity in
 022 in-context example selection.

023 1 INTRODUCTION

024 In-context learning (ICL) (Brown et al., 2020) has emerged as one of the most significant and versatile
 025 capabilities of large language models (LLMs). This paradigm allows a model to adapt to a vast array
 026 of new tasks on the fly, simply by conditioning on a prompt containing a few input-output examples,
 027 all without requiring updates to its parameters. The power and resource efficiency of ICL have made
 028 it a cornerstone of LLM applications, ranging from simple text classification (Min et al., 2022) and
 029 commonsense reasoning (Srivastava et al., 2023) to complex, multi-step tasks like mathematical
 030 problem-solving (Wei et al., 2022) and code generation (Chen et al., 2021).

031 The effectiveness of ICL, however, is highly sensitive to the choice of in-context examples (Lu
 032 et al., 2021; Liu et al., 2021; Chang and Jia, 2023). This makes example selection a critical area of
 033 study. To address this, prior work has explored various selection strategies: choosing examples most
 034 *similar* to the query in embedding space (Liu et al., 2021; Yang et al., 2022; Wu et al., 2023; Qin
 035 et al., 2023), maximizing feature *coverage* (Levy et al., 2023; Ye et al., 2023; Gupta et al., 2023),
 036 selecting based on *difficulty* (Ma et al., 2025; Swayamdipta et al., 2020; Yuan et al., 2025; Cook
 037 et al., 2025), or choosing examples based on *sensitivity* (Chen et al., 2023). Other approaches train
 038 deep neural retrievers (Karpukhin et al., 2020; Rubin et al., 2022; Luo et al., 2023; Scarlatos and
 039 Lan, 2023) or leverage feedback from large language models to guide selection (Li and Qiu, 2023a;
 040 Chen et al., 2023; Wang et al., 2023). More discussion can be found in Appendix A. Among these,
 041 similarity-based methods remain the fundamental baseline due to their conceptual simplicity and
 042 consistent empirical success. However, relying solely on similarity can lead to redundancy among
 043 demonstrations and potentially omit important but less similar features (Levy et al., 2023; Gupta
 044 et al., 2023).

045 Within machine learning, *diversity* is also a fundamental principle for building robust and generaliz-
 046 able models, and its importance is widely recognized in related domains—such as fixed-prompt ICL
 047 with global demonstration sets (Li and Qiu, 2023b; Luo et al., 2024), active learning (Giouroukis
 048 et al., 2025; Shi and Shen, 2016), coresnet construction (Wan et al., 2024; Zhan et al., 2025; Sener
 049 and Savarese, 2018), and instruction tuning (Wang et al., 2024). By exposing a model to a varied set
 050 of examples, we can prevent overfitting and encourage the learning of more abstract, transferable
 051 patterns. Given its foundational role, a deep understanding of diversity is crucial for unlocking the
 052 full potential of in-context learning.

053 Despite its importance, the explicit role of diversity in retrieval-based ICL remains underexplored.
 054 While some recent work has incorporated feature coverage as a proxy for diversity (Levy et al., 2023;

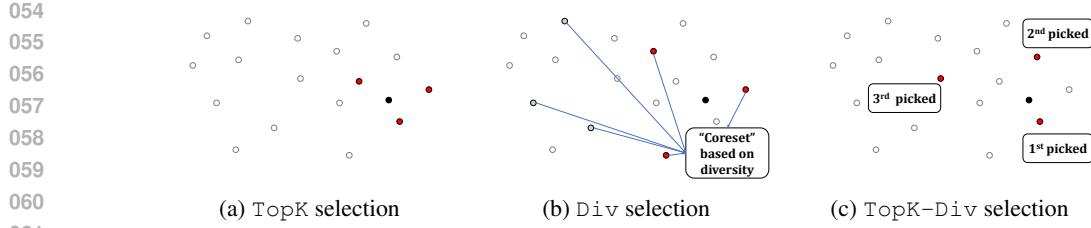


Figure 1: An illustrative example for TopK, Div, and TopK-Div methods. Point filled in black denotes the query. **(a)** TopK: Select the most similar demonstrations (3 points filled in red) in the embedding space. **(b)** Div: First select a “coreset” based on some *diversity* metric, which is fixed for all queries (6 points filled in gray or red). Then select the most similar demonstrations (3 points filled in red) among this “coreset”. **(c)** TopK-Div: Select the demonstrations sequentially based on the linear combination of similarity to the query and the diversity with the selected examples. The first example is the one most similar to the query. When picking the second, it is balanced between the similarity to the query and the diversity from the first example.

[Ye et al., 2023](#); [Gupta et al., 2023](#)), this approach is limited in scope. Coverage primarily aims to span the concrete input features of a given query, which is a narrower goal than promoting the broader representational variety that is central to true diversity; see also examples in Appendix E that compare coverage with diversity. Other diversity-aware approaches have also been proposed, such as the S3 method from [Kumari et al. \(2024\)](#). However, that study was confined to simple classification and selection tasks. Consequently, the effectiveness of diversity in more complex, reasoning-based ICL applications remains an open question.

Furthermore, pursuing diversity without care can be counterproductive, as explicit diversity-aware selection risks retrieving examples that are too dissimilar from the query, potentially harming performance ([An et al., 2023a](#)). The field, therefore, lacks a systematic understanding of this trade-off. It remains unclear whether and when explicit diversity is beneficial—especially for tasks that lack clear local structure and demand more abstract reasoning. This gap in knowledge motivates the following fundamental questions:

Should we explicitly consider diversity when selecting in-context examples? If so, under what conditions does it outperform similarity-based methods? And fundamentally, why does diversity help?

1.1 OUR CONTRIBUTIONS

We present, to the best of our knowledge, the first systematic investigation of the role of diversity in in-context learning. Our study spans a broad range of tasks—including sentiment classification, commonsense reasoning, math generation, reading comprehension, and SQL code generation—covering diverse types and varying levels of difficulty. We compare five demonstration selection methods: (1) random selection (Rand); (2) selecting the K most similar examples to the query (TopK) ([Liu et al., 2021](#)); (3) Select the most representative examples from a similarity-reduced subset (Div-S3) ([Kumari et al., 2024](#)); (4) selecting similar examples from a diversity-reduced subset (Div) ([Su et al., 2023](#)), which relates to DPP-based diversity ([Chen et al., 2018](#)); and (5) a sequential method that balances similarity to the query and diversity among selected examples (TopK-Div). We are the first to systematically evaluate methods for (4) and (5) in the ICL setting. Their approaches are particularly compelling because they offer explicit control over the diversity level, enabling a tunable trade-off between selecting highly relevant examples and avoiding redundancy—a key factor in optimizing LLM performance within limited context windows. See Figure 1 for illustration and Section 2 for formal definitions.

Through experiments on frontier open-source models (Llama-3.1 ([Dubey et al., 2024](#)), Gemma-2 ([Team et al., 2024](#)), and Mistral-v0.3 ([Jiang et al., 2023](#))), we reach the following findings.

Finding 1: *Diversity-aware demonstration selection methods achieve better performance on more “challenging” tasks like reading comprehension, math, and code.* As task difficulty increases, diversity-aware methods yield greater relative benefits, narrowing the gap with the TopK method or even surpassing it.

108 While changing the tasks and even the language model to use will change the ranking of the demon-
 109 stration selection methods we test, in general we find that diversity-aware methods, namely Div ,
 110 TopK-Div and Div-S3 , perform better on more challenging tasks like reading comprehension,
 111 math, and simple code generation. On the other hand, on simple tasks like sentiment classification
 112 and multiple-choice, TopK performs the best (Table 1). TopK-Div achieves, on average, more than
 113 a 1% improvement over TopK on difficult tasks, whereas on simpler tasks TopK holds a marginal
 114 0.14% average advantage over TopK-Div . Quantitative analysis of performance improvements under
 115 varying levels of added diversity for TopK-Div and Div demonstrates that more challenging tasks
 116 benefit more from increased diversity, further validating this finding (Figure 4, Table 7).
 117

118 **Finding 2:** *Diversity-aware methods work better for out-of-distribution queries.* When the query and
 119 demonstrations come from different distributions, diversity-aware methods are more likely to perform
 120 well. For example, on sentiment classification, when both demonstration and query come from the
 121 SST-2 dataset, which consists of movie reviews, TopK performs the best, and there is a gap with all
 122 other methods (Table 2). The average performance gap between TopK and TopK-Div is 1.26%
 123 across the two models. However, when changing the demonstrations from SST-2 to IMDB (which
 124 also consists of movie reviews), TopK-Div outperforms TopK by 0.6% on average (Table 2). A
 125 similar observation holds for various splits of Geoquery dataset (Figure 2).
 126

127 **Finding 3:** In the same task, diversity-aware methods likely perform better on “harder” examples, e.g.
 128 reading comprehension with longer context, or SQL code generation with more structures (Table 3).
 129 On the easier samples from GeoQuery and SQuAD, TopK-Div achieves an average accuracy
 130 improvement of 2.12% over TopK . On the more challenging samples, the average improvement
 131 of TopK-Div over TopK increases to 6.47%. Our analysis also reveals that diversity exhibits a
 132 “beyond-coverage” phenomenon, both at the task level and the example level (see discussion in
 133 Section 3.1 and Appendix E).
 134

135 We discuss these findings in detail in Section 3. In addition, we conduct ablation studies across model
 136 scales (ranging from 1B to 70B parameters) and varying numbers of in-context demonstrations to
 137 examine the robustness of our conclusions. Beyond empirical trends, we extract practical insights
 138 from our study: our results offer actionable guidance for tuning the diversity level of demonstrations
 139 depending on the task type, such as reasoning, generation, or classification. Overall, our findings
 140 deepen the understanding of how diversity influences in-context learning, and inform principled
 141 strategies for demonstration selection in real-world applications.
 142

2 BACKGROUND AND NOTATIONS

143 In this section, we introduce the in-context learning (ICL) paradigm, relevant demonstration selection
 144 methods, and associated notations.

145 **In-context learning (ICL).** A task $\mathcal{T} = (\mathcal{X}, \mathcal{Y}, P(y|x))$ defines a probabilistic mapping from an
 146 input $x \in \mathcal{X}$ to an output $y \in \mathcal{Y}$. For example, the task can be sentiment classification where the
 147 input space contains reviews of products and the output space contains the customer’s corresponding
 148 sentiment (positive or negative). We are provided with a demonstration set $D = \{(x_i, y_i)\}_{i=1}^n$, where
 149 inputs x_i are drawn from a demonstration distribution $\mathcal{D}_{\mathcal{X}}$ and $y_i \sim P_{\mathcal{T}}(y|x_i)$. Queries x_q are
 150 drawn from a query distribution $\mathcal{Q}_{\mathcal{X}}$, which may differ from $\mathcal{D}_{\mathcal{X}}$ (representing shifts in domain or
 151 complexity). For math tasks, the demonstration set may contain many elementary-level problems,
 152 while the query may require solving more advanced, middle-school-level problems. Now given a
 153 query input $x_q \sim \mathcal{Q}_{\mathcal{X}}$, the in-context learning paradigm refers to the following capability of a large
 154 language model.

155 **Definition 2.1 (In-Context learning (ICL)).** Given an LLM, a prompting strategy Prompt , a
 156 demonstration set $D = \{(x_i, y_i)\}_{i=1}^n$, and a query x_q , ICL involves selecting a small subset $S =$
 157 $\{(x_{j_i}, y_{j_i})\}_{i=1}^K$ with shots K from the demonstrations D . The LLM then predicts the output y_q for
 158 x_q as: $P_{\mathcal{T}}(y|x_q) \approx \text{LLM}(\text{Prompt}(S, x_q))$.

159 **Demonstration selection for ICL.** Choosing a small subset S (see Theorem 2.1) is vital due to LLM
 160 context limits, efficiency needs, and the observation that excessive demonstrations can impair performance.
 161 Prior work has shown that ICL performance is highly sensitive to this selection (Liu et al.,
 162 2021), and thus sparks the study for *demonstration selection*. While numerous selection strategies are
 163 proposed, the most notable and effective methods are the ones that select the demonstrations most

similar to the query in the embedding space. Efforts are also made to retrieve the demonstrations using another model (can be another LLM), as well as considering diversity/coverage. However, there is no consensus on which method to use in a specific setting, and there is nearly no understanding of these methods (further discussed in Appendix A).

To analyze these methods and the role of diversity, we focus on five representative selection strategies:

Method 1: Rand. For a query x_q , this method uniformly and randomly selects K demonstrations from the set D . Note that Rand can also be viewed as a method that is aware of diversity, but it has nothing to do with the coverage.

Method 2: TopK. This method selects K demonstrations from D that exhibit the highest cosine similarity to the query x_q within an embedding space mapped by $E : \mathcal{X} \rightarrow \mathcal{E}$. It maximizes

$$\text{Similarity}(E(x_i), E(x_q)) := \frac{\langle E(x_i), E(x_q) \rangle}{\|E(x_i)\| \cdot \|E(x_q)\|}. \quad (1)$$

Method 3: Div-S3. This method, proposed by Kumari et al. (2024) for in-context demonstration selection, combines a similarity-based pruning step with a greedy submodular optimization to select examples that are both relevant and diverse. The approach aims to ensure representative coverage while maintaining closeness to the query. Although submodular diversity techniques have been well-studied in classical data selection (Lin and Bilmes, 2011; Prasad et al., 2014), their application in ICL has not been systematically explored.

Method 4: Div. This approach first constructs a diverse “coreset” $D_r \subset D$ of size m (where $K \leq m \leq n$). Starting with one randomly chosen demonstration, D_r is built greedily by adding $(x, y) \in D \setminus D_r$ that maximizes

$$\text{Diversity}(E(x), D_r) := 1 - \frac{1}{|D_r|} \sum_{(x_j, y_j) \in D_r} \text{Similarity}(E(x), E(x_j)), \quad (2)$$

we stop after D_r contains m examples. This is the procedure to get a diverse set of demonstrations for a task (Su et al., 2023). Subsequently, TopK selection is applied to D_r to choose K demonstrations for the query x_q . The coreset size m controls the trade-off between diversity and similarity: setting $m = K$ emphasizes diversity by forcing selection from a small pool, while increasing m shifts the method closer to TopK by enlarging the candidate set based on similarity.

Method 5: TopK-Div. This method serves as a combination of TopK and Div, which includes some awareness of the diversity through similarity-based selection. It is also a greedy-like procedure when selecting the demonstration set S . Suppose that S does not reach size K , then we select the demonstration $(x, y) \in D \setminus K$ that maximize the following metric:

$$\alpha \cdot \text{Similarity}(E(x), e_q) + (1 - \alpha) \cdot \text{Diversity}(E(x), S), \quad (3)$$

The hyperparameter α governs the balance between diversity and similarity: setting $\alpha = 0$ emphasizes diversity among selected examples, while $\alpha = 1$ recovers the TopK method that prioritizes similarity to the query. We stop when S has size K . For the first demonstration (when S is empty), $\text{Diversity}(E(x), S)$ is defined as 0, thus prioritizing similarity.

The use of TopK-Div and Div methods for demonstration selection is, to our knowledge, new in the ICL setting. Their flexibility in adjusting the diversity level offers practical value, as it enables task-specific tuning to improve performance; see Section 3.1 for details.

3 EXPERIMENTS AND FINDINGS

This section empirically tests whether diversity-aware retrieval (Div, TopK-Div) yields more reliable in-context learning than similarity-only baselines (TopK).

Tasks and datasets. We consider 5 tasks: sentiment classification (classification task), commonsense reasoning (multiple-choice), text to SQL generation (generation), math (generation), and reading comprehension (generation). For sentiment classification, we test on SST-2 (Scarlatos and Lan, 2023), IMDB (Maas et al., 2011) and Amazon (polarity) (McAuley and Leskovec, 2013). For commonsense reasoning, we use ARC-Easy (Clark et al., 2018) and CommonsenseQA (CsQA) (Talmor et al., 2019). For text to SQL generation, we use GeoQuery (Zelle and Mooney, 1996; Tang and Mooney, 2001). For math problems, we test on GSM8K (Cobbe et al., 2021) and GSM-Plus-Mini (Li et al., 2024)

216 Table 1: **(Comparison of different in-context example selection methods)** We compare diversity-
 217 aware methods **Div** and **TopK-Div** with randomly chosen (Rand) and similarity-based method
 218 **TopK** on a variety of tasks using different models with different number of in-context examples
 219 K . For **TopK** and **TopK-Div**, we test ten different permutations of the demonstration due to the
 220 determined choice by these methods; For **Rand** and **Div**, we test ten different random seeds. We
 221 use the corresponding instruct-tuned model for math tasks (GSM8K and GSM-Plus-Mini) and base
 222 model for all other tasks. For **TopK** and **TopK-Div** methods - both being deterministic approaches -
 223 we computed outcomes across ten distinct example permutations. For **Rand** and **Div** methods, we
 224 report the averaged results across ten random seeds. There is a huge improvement when the shot
 225 number increases from 0 to 4 / 8, which demonstrates the effectiveness of our example selection. Due
 226 to the absence of prior knowledge for **Geoquery** in the zero-shot ($k = 0$) setting, we omit its $k = 0$
 227 results. The bold entries indicate optimal performances. The std is no more than 1% in most cases;
 228 see Appendix D for details.

Model	K	Method	Classification		Multiple-choice		Math GSM-Plus-Mini	Code GeoQuery	Reading		
			SST-2	Amazon	ARC-Easy	CsQA			SQuAD	SCIQ	
Llama-3.1-8B	4	0	87.50	95.40	82.43	62.80	53.45	65.12	—	42.30	36.40
		Rand	91.31	96.38	84.72	71.15	82.24	66.90	12.50	75.95	74.00
		TopK	94.13	96.24	86.10	72.54	81.99	65.30	62.79	73.51	72.70
		Div-S3	92.89	96.81	85.81	72.28	82.52	66.97	34.54	77.95	74.61
		Div	91.50	96.18	85.06	71.17	82.14	66.92	33.79	75.66	74.47
	8	TopK-Div	92.75	96.43	85.83	72.57	81.74	66.12	71.14	73.28	73.87
		Rand	92.27	96.63	84.38	72.23	82.81	66.72	23.11	77.13	74.65
		TopK	93.64	96.12	85.91	73.91	82.26	65.99	72.04	75.52	74.72
		Div-S3	93.65	96.74	85.50	73.04	83.00	66.82	43.61	79.41	75.15
		Div	92.95	96.25	84.97	72.77	82.98	66.56	38.61	77.71	75.17
Gemma-2.9B	4	TopK-Div	93.33	96.57	85.39	73.76	82.63	66.48	78.68	76.13	75.07
		0	67.50	85.10	88.15	61.80	16.07	32.79	—	37.90	41.10
		Rand	93.33	96.15	89.52	74.70	84.29	74.40	13.89	77.19	75.80
		TopK	94.47	96.34	90.50	75.19	84.25	74.50	61.14	74.82	75.24
		Div-S3	93.64	96.54	89.98	75.51	84.07	74.86	37.32	77.94	76.13
	8	Div	93.45	95.69	90.03	74.85	84.44	73.34	36.29	77.06	75.96
		TopK-Div	93.34	96.57	90.19	75.60	83.54	74.47	70.43	75.05	75.21
		Rand	93.30	96.09	89.39	75.98	84.34	74.48	24.36	79.23	76.28
		TopK	94.20	96.55	90.62	76.14	83.57	75.36	71.00	77.59	75.55
		Div-S3	93.38	96.60	90.10	76.98	83.56	75.62	45.86	79.79	77.24
Mistral-7B-v0.3	4	Div	93.41	95.94	89.90	76.60	84.22	74.69	42.07	79.05	76.65
		TopK-Div	94.04	96.58	90.48	76.53	83.85	75.16	76.32	77.64	76.24
		0	66.50	94.00	76.41	51.80	9.48	5.17	—	30.50	34.20
		Rand	91.00	94.02	82.77	69.83	48.78	37.20	12.14	76.70	74.71
		TopK	93.57	96.17	85.21	69.73	49.28	38.20	60.14	75.04	73.73
	8	Div-S3	92.83	95.60	83.93	70.29	51.43	38.22	37.75	75.74	75.54
		Div	91.98	94.15	82.98	70.15	49.49	37.50	34.89	75.96	75.83
		TopK-Div	92.73	95.90	84.55	69.91	49.99	38.45	71.46	74.43	73.16
		Rand	92.49	95.35	83.69	71.65	47.86	36.32	22.18	77.30	75.54
		TopK	93.61	96.15	85.17	71.88	48.43	37.35	70.50	77.05	75.44
251	8	Div-S3	92.79	96.10	84.38	72.47	48.57	36.60	45.86	77.71	76.56
		Div	92.55	95.10	84.27	72.04	48.33	36.12	39.14	77.67	76.30
		TopK-Div	93.47	96.11	84.85	71.81	48.60	37.81	77.93	77.44	75.22
		0	66.50	94.00	76.41	51.80	9.48	5.17	—	30.50	34.20
		Rand	91.00	94.02	82.77	69.83	48.78	37.20	12.14	76.70	74.71
252	4	TopK	93.57	96.17	85.21	69.73	49.28	38.20	60.14	75.04	73.73
		Div-S3	92.83	95.60	83.93	70.29	51.43	38.22	37.75	75.74	75.54
		Div	91.98	94.15	82.98	70.15	49.49	37.50	34.89	75.96	75.83
		TopK-Div	92.73	95.90	84.55	69.91	49.99	38.45	71.46	74.43	73.16
		Rand	92.49	95.35	83.69	71.65	47.86	36.32	22.18	77.30	75.54
253	8	TopK	93.61	96.15	85.17	71.88	48.43	37.35	70.50	77.05	75.44
		Div-S3	92.79	96.10	84.38	72.47	48.57	36.60	45.86	77.71	76.56
		Div	92.55	95.10	84.27	72.04	48.33	36.12	39.14	77.67	76.30
		TopK-Div	93.47	96.11	84.85	71.81	48.60	37.81	77.93	77.44	75.22
		0	66.50	94.00	76.41	51.80	9.48	5.17	—	30.50	34.20
254	4	Rand	91.00	94.02	82.77	69.83	48.78	37.20	12.14	76.70	74.71
		TopK	93.57	96.17	85.21	69.73	49.28	38.20	60.14	75.04	73.73
		Div-S3	92.83	95.60	83.93	70.29	51.43	38.22	37.75	75.74	75.54
		Div	91.98	94.15	82.98	70.15	49.49	37.50	34.89	75.96	75.83
		TopK-Div	92.73	95.90	84.55	69.91	49.99	38.45	71.46	74.43	73.16
255	8	Rand	92.49	95.35	83.69	71.65	47.86	36.32	22.18	77.30	75.54
		TopK	93.61	96.15	85.17	71.88	48.43	37.35	70.50	77.05	75.44
		Div-S3	92.79	96.10	84.38	72.47	48.57	36.60	45.86	77.71	76.56
		Div	92.55	95.10	84.27	72.04	48.33	36.12	39.14	77.67	76.30
		TopK-Div	93.47	96.11	84.85	71.81	48.60	37.81	77.93	77.44	75.22
256	4	0	66.50	94.00	76.41	51.80	9.48	5.17	—	30.50	34.20
		Rand	91.00	94.02	82.77	69.83	48.78	37.20	12.14	76.70	74.71
		TopK	93.57	96.17	85.21	69.73	49.28	38.20	60.14	75.04	73.73
		Div-S3	92.83	95.60	83.93	70.29	51.43	38.22	37.75	75.74	75.54
		Div	91.98	94.15	82.98	70.15	49.49	37.50	34.89	75.96	75.83
257	8	TopK-Div	92.73	95.90	84.55	69.91	49.99	38.45	71.46	74.43	73.16
		Rand	92.49	95.35	83.69	71.65	47.86	36.32	22.18	77.30	75.54
		TopK	93.61	96.15	85.17	71.88	48.43	37.35	70.50	77.05	75.44
		Div-S3	92.79	96.10	84.38	72.47	48.57	36.60	45.86	77.71	76.56
		Div	92.55	95.10	84.27	72.04	48.33	36.12	39.14	77.67	76.30
258	8	TopK-Div	93.47	96.11	84.85	71.81	48.60	37.81	77.93	77.44	75.22
		0	66.50	94.00	76.41	51.80	9.48	5.17	—	30.50	34.20
		Rand	91.00	94.02	82.77	69.83	48.78	37.20	12.14	76.70	74.71
		TopK	93.57	96.17	85.21	69.73	49.28	38.20	60.14	75.04	73.73
		Div-S3	92.83	95.60	83.93	70.29	51.43	38.22	37.75	75.74	75.54
259	4	Div	91.98	94.15	82.98	70.15	49.49	37.50	34.89	75.96	75.83
		TopK-Div	92.73	95.90	84.55	69.91	49.99	38.45	71.46	74.43	73.16
		Rand	92.49	95.35	83.69	71.65	47.86	36.32	22.18	77.30	75.54
		TopK	93.61	96.15	85.17	71.88	48.43	37.35	70.50	77.05	75.44
		Div-S3	92.79	96.10	84.38	72.47	48.57	36.60	45.86	77.71	76.56
260	8	Div	92.55	95.10	84.27	72.04	48.33	36.12	39.14	77.67	76.30
		TopK-Div	93.47	96.11	84.85	71.81	48.60	37.81	77.93	77.44	75.22
		0	66.50	94.00	76.41	51.80	9.48	5.17	—	30.50	34.20
		Rand	91.00	94.02	82.77	69.83	48.78	37.20	12.14	76.70	74.71
		TopK	93.57	96.17</							

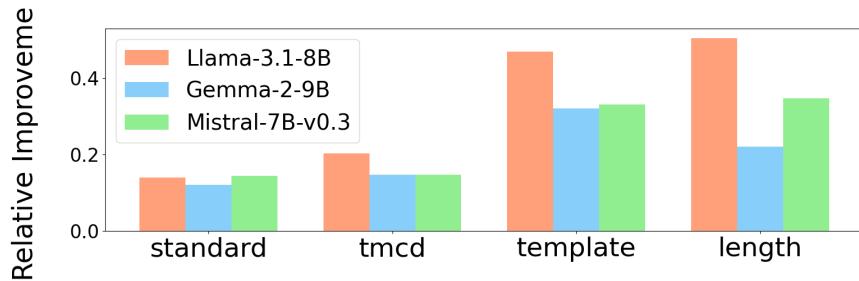


Figure 2: **(Comparison of different methods on GeoQuery OOD setting)** We report the relative improvement of TopK-Div over TopK when demonstrations and queries come from different GeoQuery dataset splitting ways. “standard” split denotes ID the setting. The relative improvement enlarges in the OOD setting.

3.1 MAIN FINDINGS

Finding 1: Diversity-aware methods perform better on more “challenging” tasks. Table 1 summarizes our main results in the in-distribution (ID) setting, where the demonstration distribution $\mathcal{D}_{\mathcal{X}}$ matches the query distribution $\mathcal{Q}_{\mathcal{X}}$. For simpler tasks like sentiment classification, TopK consistently performs best, significantly outperforming diversity-emphasizing methods like Rand and Div (e.g., TopK outperforms these methods by at least 1% on average in SST-2), while TopK-Div (balancing similarity and diversity) typically ranks between these extremes. In commonsense reasoning (multiple-choice), introducing some diversity via TopK-Div improves performance over pure TopK, as observed in Commonsense QA, although the gains on ARC-Easy remain modest.

For more complex tasks—including reading comprehension, text-to-SQL generation, multi-step mathematical reasoning, and GeoQuery—introducing diversity consistently improves performance over the similarity-based TopK baseline. In GeoQuery specifically, diversity (TopK-Div) yields at least a 7% absolute accuracy gain, likely due to enhanced feature coverage (Levy et al., 2023; Ye et al., 2023).¹ However, excessive diversity (Rand and Div) becomes detrimental, as overly dissimilar examples fail to illustrate coherent solution patterns.

For math and reading comprehension tasks, methods that emphasize diversity—such as Div and even Rand—outperform TopK. Interestingly, the effectiveness of random selection cannot be explained solely by coverage, as random demonstrations do not systematically capture similar problem structures. Instead, we observe that for tasks where the model already exhibits strong zero-shot abilities (e.g., Math and Reading), incorporating diverse demonstrations encourages the model to rely more on its general reasoning skills rather than memorizing surface-level patterns. To support this interpretation, we present 0-shot and 1-shot performance results in Appendix C.1, which highlight the model’s underlying capabilities.

Regarding Div-S3, we observe that it underperforms TopK on relatively simple classification tasks, but shows a performance advantage on more complex tasks such as Math and Reading. These trends are consistent with other diversity-based methods and complement the analysis in (Kumari et al., 2024), extending their findings to a broader range of task types and difficulty levels.

To further verify the impact of diversity on different tasks, we also conducted experiments on both Div and TopK-Div by varying their degree of diversity (Figure 4 and Table 7). We observe a consistent pattern across both Div and TopK: for simpler tasks, introducing less diversity (i.e., employing larger subset size m for Div or higher α for TopK-Div) leads to better performance, whereas for more complex tasks, incorporating greater diversity yields superior performance. Due to space limit, we defer a more detailed discussion to Appendices C.2 and C.3.

Finding 2: Diversity helps out-of-distribution generalization. Table 2 presents results on sentiment classification, commonsense reasoning, and reading comprehension, while Figure 2 shows text-to-SQL generation performance in the out-of-distribution (OOD) setting, where the demonstration distribution $\mathcal{D}_{\mathcal{X}}$ and query distribution $\mathcal{Q}_{\mathcal{X}}$ differ.

¹The correspondence between inputs and outputs is deterministic, and the model need to learn this mapping from the provided examples. Better coverage of the query inputs implies that the model acquires a larger portion of the mappings required for the query inputs.

324
 325 **Table 2: (Comparison of different methods when demonstration and query come from different**
 326 **distribution)** We compare the methods on different tasks. The number of shots is fixed as $K = 4$. We
 327 observe that diversity-aware methods are more robust to out-of-distribution query. The performance
 drop from ID to OOD on TopK is in general larger than diversity-aware methods.

	Test	Demo.	Rand	TopK	Div-S3	Div	TopK-Div
329 330 331 332 333 334 335 336 337 338 339 340 341 342	3.1-8B	SST-2	91.31	94.13	92.89	91.50	92.75
		IMDB	88.85	90.80	86.90	90.71	90.80
		Amazon	88.28	89.50	90.70	86.64	89.60
		CsQA	71.15	72.54	72.28	71.17	72.57
	3.5-12B	ARC-Easy	66.86	66.70	66.50	67.08	67.70
		SCIQ	74.00	72.70	74.61	74.47	73.87
		SQuAD	72.11	71.40	73.67	72.79	71.60
		SST-2	93.33	94.47	93.64	93.45	93.34
	Gemma-2-9B	IMDB	88.66	89.90	85.50	88.59	91.10
		Amazon	88.69	89.40	89.30	90.49	89.60
		CsQA	74.70	75.19	75.51	74.85	75.60
		ARC-Easy	68.30	68.90	68.80	68.58	69.50
		SCIQ	75.80	75.24	76.13	75.96	75.21
		SQuAD	73.63	73.60	76.07	74.64	73.50

343
 344 **Table 3: Relative improvement of TopK-Div over TopK on GeoQuery and SQuAD on different**
 345 **sets of the queries.** For the GeoQuery dataset, we fine-tuned both base models on its training set. We
 346 categorized questions in testing set as “Easy” if the fine-tuned models correctly answered them in
 347 a 0-shot setting, and as “Hard” if these models failed to answer them correctly in the same 0-shot
 348 setting. We report the performance of both methods in a 4-shot setting. For SQuAD, we split the
 349 testing set only using the fine-tuned gemma-2-9B model, since fine-tuning the Llama-3.1-8B model
 350 yielded poor results. We observe that TopK-Div exhibits greater improvement on “Hard” examples.

351 352	Split	Method	Gemma-2-9B		Llama-3.1-8B	
			GeoQuery	SQuAD	GeoQuery	SQuAD
353 354	Easy	TopK	72.09	83.01	79.31	81.04
		TopK-Div	77.91	82.66	83.71	79.65
355 356	Hard	TopK	56.29	20.00	51.52	24.44
		TopK-Div	67.11	23.70	62.13	25.19

357
 358
 359 Overall, diversity improves OOD in-context learning. In sentiment classification, TopK performs
 360 best when both demonstrations and queries come from SST-2. However, when demonstrations shift
 361 to IMDB (another movie review dataset), TopK and TopK-Div perform similarly. When using
 362 Amazon (a shopping review dataset) as demonstrations, TopK-Div surpasses TopK. A similar trend
 363 is observed in commonsense reasoning: replacing Commonsense QA (ID) demonstrations with ARC-
 364 Easy (OOD) increases the performance gap between Div and TopK from 0.4% to 1.0%. Text-to-SQL
 365 generation follows this pattern, with a larger improvement in OOD settings. Additionally, we note
 366 that GSM-Plus-Mini serves as an OOD setting for GSM8K (Math in Table 1), as they share the same
 367 training set. A larger improvement from adding diversity is also observed on GSM-Plus-Mini.

368 For reading comprehension, switching to an OOD demonstration dataset does not significantly
 369 widen the gap between Div and TopK, but Div still outperforms TopK. We provide additional
 370 out-of-distribution (OOD) results in Appendix C.4, which further reinforce our conclusions.

371 Beyond explicitly defined OOD settings, the contrast between the Amazon and SST-2 classification
 372 tasks in Table 1 further illustrates the impact of distributional differences on the effectiveness of
 373 diversity-based selection. While SST-2 consists of curated movie reviews with relatively homoge-
 374 neous content—where TopK consistently outperforms diversity-based methods—Amazon reviews
 375 span heterogeneous domains such as electronics, books, and household items. This broader domain
 376 variability in Amazon leads to performance gains for diversity-driven methods like Rand, Div-S3
 377 and Div, sometimes even surpassing TopK. These results are consistent with the patterns observed
 in Table 2 and provide additional empirical support for our Finding 2.

378 **Finding 3: Diversity performs better on harder examples.** Besides discussing the performance of
 379 diversity-aware methods (TopK-Div, Div, and even Rand) at task levels, we also analyze which
 380 specific examples benefit most from diversity. For this, we first provide a method to quantify the
 381 “difficulty level” of examples. Motivated by (Swayamdipta et al., 2020), we use whether a model
 382 can correctly answer a question after fine-tuning as an indicator of that question’s difficulty for a
 383 specific language model. Therefore, we fine-tuned the corresponding base model on the dataset’s
 384 training set using LoRA. Subsequently, based on whether this fine-tuned model could accurately
 385 answer questions in the testing set under a zero-shot setting, we classified these questions as “easy”
 386 or “hard”.

387 We examine this phenomenon in GEOQUERY and SQuAD, where TopK-Div consistently outper-
 388 forms TopK. Table 3 shows that diversity yields greater benefits on harder examples. In GEOQUERY,
 389 the absolute accuracy improvement of TopK-Div over TopK is 5.11% on easy examples (averaged
 390 across two models), increasing to 10.72% on hard examples. In SQuAD, while TopK-Div slightly
 391 underperforms TopK on easy examples by 0.87%, it outperforms TopK on hard examples by 2.23%.

392 3.2 UNDERSTANDING THE ROLE OF DIVERSITY: BEYOND COVERAGE EFFECTS

393 We examine how diversity contributes to in-context learning (ICL) performance, distinguishing
 394 between its impact through *coverage* and through *mechanisms beyond coverage*, at both the example
 395 level and the task level.

396 **Example-level analysis.** In the GeoQuery dataset, the observation that diversity performs better on
 397 harder examples (see Table 3) aligns with the notion of enhanced coverage: difficult examples often
 398 require modeling more nuanced or rare local structures (Levy et al., 2023; Gupta et al., 2023), which
 399 diversity-based methods are more likely to capture.

400 However, in SQuAD, we observe a different pattern. Even when $k = 1$, TopK underperforms
 401 compared to Rand and Div, suggesting that coverage alone is insufficient to explain the performance
 402 gap. To probe this, we remove irrelevant noisy examples from the SQuAD dataset and rerun the
 403 comparison. This cleaning significantly improves TopK and TopK-Div, but has minimal impact
 404 on Rand and Div—indicating that the strength of diversity-based methods extends beyond simple
 405 structural alignment with the query.

406 We present detailed results and analysis in Appendix C.5 to support this claim.

407 **Task-level analysis.** As shown in Table 7, increasing the number of demonstrations (e.g., from 4 to 8
 408 shots) magnifies the benefits of diversity. While coverage-based reasoning suggests this may be due
 409 to broader inclusion of features, our findings point to a richer effect.

410 Specifically, when given more demonstrations, models appear to better synthesize the overall concep-
 411 tual structure of the task. Diversity enables this by exposing the model to varied facets of the task
 412 distribution, which helps form a more general and transferable representation. In contrast, with fewer
 413 shots, the model has limited capacity to form such abstractions, and similarity alone may suffice.

414 We further justify this effect theoretically in Appendix E, showing that diversity supports a form of
 415 generalization that cannot be fully explained by coverage alone.

416 3.3 PRACTICAL INSIGHTS

417 In summary, our findings provide the following guidelines for selecting demonstrations in ICL:

- 418 1. **Leverage similarity for simple tasks.** When the task is relatively easy (e.g., sentiment
 419 classification) and the model already exhibits sufficient ability, selecting demonstrations
 420 purely based on similarity to the query is generally sufficient to elicit strong performance.
- 421 2. **Use diversity to bridge distribution gaps.** When there is a significant mismatch between
 422 the test distribution and the available demonstration pool, incorporating diversity in selection
 423 helps the model generalize better by exposing it to a broader range of examples.
- 424 3. **Favor diversity for complex or knowledge-intensive tasks.** For tasks that require the model
 425 to extract and apply task-solving knowledge (e.g., math reasoning or reading comprehension),
 426 selecting diverse demonstrations provides broader coverage of relevant patterns or skills.

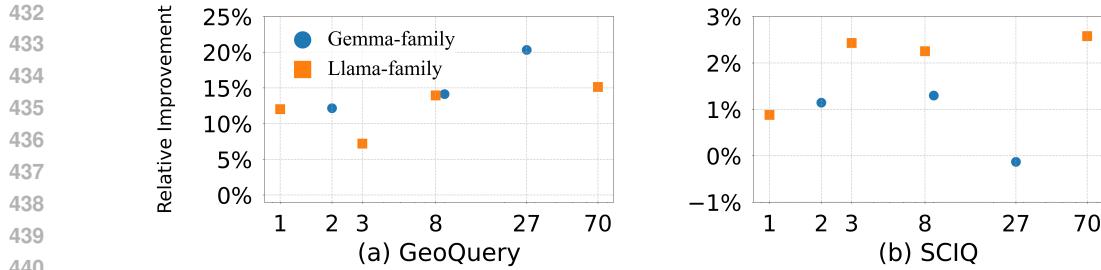


Figure 3: The relative improvement of diversity-aware methods over TopK. **Left:** relative improvement of TopK-Div over TopK on GeoQuery standard split. **Right:** relative improvement of Div over TopK on SCIQ.

4. **Adapt to noise levels.** For *low-noise datasets*, coverage-oriented (similarity-based) selection is more effective, as it aligns demonstrations closely with the query and helps the model lock onto the correct input-output mapping. In contrast, for *high-noise datasets*, increased diversity is beneficial to reduce overfitting to spurious correlations and enhance robustness.

3.4 ABLATION STUDIES

We conduct experiments to observe how the improvement of diversity-aware methods over TopK changes if we change the size of the LLM used, since it is possible that, as the models scale up, ICL is not sensitive to data selection, and thus the improvement of diversity over pure similarity diminishes.

Figure 3 shows the relative improvement on GeoQuery standard split and SCIQ, where we observe the clear benefit of the diversity-aware method in Section 3.1, on Llama-3.1/3.2 and Gemma-2 families with different sizes. We observe that in these two tasks, in general, the relative improvement does not decrease that much even if the model scales up, which indicates the importance of understanding the role of diversity in demonstration selection.

In Appendix D, we present experiments on additional models. We also report results across a range of settings, including fine-grained variations in k , different subset sizes for the Div method, fixed training sets, and changes in the embedding or decoding strategies. In particular, we implement a **purely** diversity-based method, K-Means, whose diversity score can exceed that of Div. Its superior performance on Math and Reading tasks further supports Finding 1. These ablation studies consistently reinforce our main findings, demonstrating the generality and robustness of our conclusions.

4 CONCLUSION, LIMITATIONS, AND FUTURE WORKS

We investigate the role of diversity in retrieval-based demonstration selection for in-context learning (ICL). Across a wide range of tasks and multiple model families, we find that incorporating diversity into selection strategies consistently improves performance, especially when the task is difficult, the query is challenging, or there is a distribution shift between the query and available demonstrations. These findings are further supported by comprehensive ablation studies.

In addition, we provide theoretical justification that explains when and why diversity offers advantages over purely similarity-based selection. Together, our empirical and theoretical insights offer practical guidance for selecting effective demonstrations in ICL and deepen the understanding of diversity's role in prompting large language models.

Note that the internal mechanism behind why diversity benefits still remains unclear. Part of our findings can be explained by coverage, which is aligned with previous literature, but the superior performance on math, reading comprehension, and OOD generalization, cannot be explained by simply incentivizing coverage. Potential future research directions include both theoretical and empirical explorations into why diversity aids demonstration selection beyond coverage. This could involve deeper analysis of model representations, interactions between diverse demonstrations, or alternative explanations grounded in information theory or representation learning. Additionally, our diversity heuristic is tested on English text only; cross-lingual robustness is left for future work.

486 REPRODUCIBILITY STATEMENT
487488 We have included in the supplementary materials the complete codebase used in our ICL experiments,
489 with all programs fully anonymized. In addition, the data folder contains all processed datasets
490 employed in our study. We guarantee that running the provided code will reproduce the results
491 reported in the paper.492
493 ETHICS STATEMENT
494495 This research fully aligns with the ethical principles outlined in the ICLR Code of Ethics, especially
496 in its commitment to responsible stewardship of AI research. Our work systematically investigates the
497 role of sample-selection diversity in *In-context learning (ICL)*, aiming to improve the performance,
498 robustness, and reliability of large language models.500 The primary motivation is to contribute positively to society and human well-being. By demonstrating
501 that diversity-aware selection of in-context examples can lead to improvements on complex tasks
502 (such as mathematical reasoning and code generation) and out-of-distribution queries, we hope to
503 foster AI systems that generalize better, thereby serving societal applications in research, education,
504 software development, and beyond. We pay particular attention to underrepresented or challenging
505 settings, in line with the ICLR principle of giving emphasis to less-advantaged groups.506 In striving for scientific excellence, we adhere to methodological rigor, transparency, and repro-
507 ducibility. Our conclusions are supported by systematic experiments across multiple tasks, datasets,
508 and models (including LLaMA 3.1, Gemma 2, Mistral-v0.3), and by a theoretical framework that
509 elucidates why diversity helps. We use publicly available benchmark datasets (e.g. SST-2, GSM8K,
510 GeoQuery) and open-source models, and we provide full details of experimental design, hyperparam-
511 eters, and evaluation procedures in the paper and appendix.512 We also commit to fairness and non-discrimination. Although bias mitigation is not a direct fo-
513 cus, our findings suggest that diversity-aware in-context selection can improve out-of-distribution
514 robustness, potentially helping models maintain performance even for underrepresented groups or
515 non-mainstream distributions. We view this as a positive step toward more equitable AI systems.516 Privacy and respect for intellectual labor are also core commitments. Our study uses only publicly
517 available, anonymized datasets; no new personal or sensitive data were collected, and no human
518 subjects were involved. We fully cite all utilized datasets, models, and prior work, giving due credit
519 to others' contributions.520 In summary, we believe this work is a responsible and beneficial contribution toward building more
521 robust and trustworthy large language models. We have carefully considered the relevant ethical
522 dimensions and commit to conducting our research according to the scientific and ethical standards
523 expected under ICLR's Code of Ethics.524
525 REFERENCES
526527 Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
528 algorithm is in-context learning? investigations with linear models. In *The Eleventh Interna-*
529 *tional Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.*
530 OpenReview.net, 2023. URL <https://openreview.net/forum?id=0g0X4H8yN4I>.531 Shengnan An, Zeqi Lin, Qiang Fu, Bei Chen, Nanning Zheng, Jian-Guang Lou, and Dongmei Zhang.
532 How do in-context examples affect compositional generalization? In Anna Rogers, Jordan L. Boyd-
533 Gruber, and Naoaki Okazaki, editors, *Proceedings of the 61st Annual Meeting of the Association for*
534 *Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023,*
535 *pages 11027–11052. Association for Computational Linguistics, 2023a. doi: 10.18653/V1/2023.*
536 *ACL-LONG.618. URL <https://doi.org/10.18653/v1/2023.acl-long.618>.*537 Shengnan An, Bo Zhou, Zeqi Lin, Qiang Fu, Bei Chen, Nanning Zheng, Weizhu Chen, and Jian-
538 Guang Lou. Skill-based few-shot selection for in-context learning. In Houda Bouamor, Juan
539 Pino, and Kalika Bali, editors, *Proceedings of the 2023 Conference on Empirical Methods*

540 in *Natural Language Processing*, pages 13472–13492, Singapore, December 2023b. Association
 541 for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.831. URL <https://aclanthology.org/2023.emnlp-main.831/>.

542

543 Sanjeev Arora and Anirudh Goyal. A theory for emergence of complex skills in language models.
 544 *arXiv preprint arXiv:2307.15936*, 2023.

545

546 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 547 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 548 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

549

550 Ting-Yun Chang and Robin Jia. Data curation alone can stabilize in-context learning. In *The 61st
 551 Annual Meeting Of The Association For Computational Linguistics*, 2023.

552

553 Laming Chen, Guoxin Zhang, and Eric Zhou. Fast greedy map inference for determinantal point
 554 process to improve recommendation diversity. *Advances in Neural Information Processing Systems*,
 555 31, 2018.

556

557 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
 558 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
 559 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

560

561 Yanda Chen, Chen Zhao, Zhou Yu, Kathleen McKeown, and He He. On the relation between sensi-
 562 tivity and accuracy in in-context learning. In *2023 Findings of the Association for Computational
 563 Linguistics: EMNLP 2023*, pages 155–167. Association for Computational Linguistics (ACL),
 564 2023.

565

566 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 567 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
 568 *arXiv preprint arXiv:1803.05457*, 2018.

569

570 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 571 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 572 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
 573 2021.

574

575 Ryan A. Cook, John P. Lalor, and Ahmed Abbasi. No simple answer to data complexity: An
 576 examination of instance-level complexity metrics for classification tasks. In Luis Chiruzzo, Alan
 577 Ritter, and Lu Wang, editors, *Proceedings of the 2025 Conference of the Nations of the Americas
 578 Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume
 579 1: Long Papers)*, pages 2553–2573, Albuquerque, New Mexico, April 2025. Association for
 580 Computational Linguistics. ISBN 979-8-89176-189-6. URL <https://aclanthology.org/2025.naacl-long.129/>.

581

582 Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can
 583 gpt learn in-context? language models secretly perform gradient descent as meta-optimizers. In
 584 *Findings of the Association for Computational Linguistics: ACL 2023*, pages 4005–4019, 2023.

585

586 Gilad Deutch, Nadav Magar, Tomer Natan, and Guy Dar. In-context learning and gradient descent
 587 revisited. In *Proceedings of the 2024 Conference of the North American Chapter of the Association
 588 for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pages
 589 1017–1028, 2024.

590

591 Aniket Didolkar, Anirudh Goyal, Nan Rosemary Ke, Siyuan Guo, Michal Valko, Timothy Lillicrap,
 592 Danilo Rezende, Yoshua Bengio, Michael Mozer, and Sanjeev Arora. Metacognitive capabilities
 593 of llms: An exploration in mathematical problem solving. *arXiv preprint arXiv:2405.12205*, 2024.

594

595 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 596 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 597 *arXiv preprint arXiv:2407.21783*, 2024.

598

599 Shuzheng Gao, Xin-Cheng Wen, Cuiyun Gao, Wenzuan Wang, and Michael R Lyu. Constructing
 600 effective in-context demonstration for code intelligence tasks: An empirical study. *CoRR*, 2023.

594 Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
 595 in-context? a case study of simple function classes. *Advances in Neural Information Processing*
 596 *Systems*, 35:30583–30598, 2022.

597 Petros Stylianos Giouroukis, Alexios Gidiotis, and Grigoris Tsoumakas. Dual: Diversity and
 598 uncertainty active learning for text summarization, 2025. URL <https://arxiv.org/abs/2503.00867>.

600 Shivanshu Gupta, Matt Gardner, and Sameer Singh. Coverage-based example selection for in-context
 601 learning. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pages
 602 13924–13950, 2023.

603 Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
 604 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
 605 Mistral 7b. *arXiv preprint arXiv:2310.06825*, 2023.

606 Hui Jiang. A latent space theory for emergent abilities in large language models. *arXiv preprint*
 607 *arXiv:2304.09960*, 2023.

608 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
 609 Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
 610 *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing*
 611 (*EMNLP*), pages 6769–6781, 2020.

612 Lilly Kumari, Shengjie Wang, Arnav Das, Tianyi Zhou, and Jeff Bilmes. An end-to-end sub-
 613 modular framework for data-efficient in-context learning. In Kevin Duh, Helena Gomez, and
 614 Steven Bethard, editors, *Findings of the Association for Computational Linguistics: NAACL 2024*,
 615 pages 3293–3308, Mexico City, Mexico, June 2024. Association for Computational Linguis-
 616 tics. doi: 10.18653/v1/2024.findings-naacl.209. URL <https://aclanthology.org/2024.findings-naacl.209>.

617 Itay Levy, Ben Bogin, and Jonathan Berant. Diverse demonstrations improve in-context compositional
 618 generalization. In *Proceedings of the 61st Annual Meeting of the Association for Computational*
 619 *Linguistics (Volume 1: Long Papers)*, pages 1401–1422, 2023.

620 Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng Kong, and Wei Bi. Gsm-plus: A comprehensive
 621 benchmark for evaluating the robustness of llms as mathematical problem solvers. In Lun-Wei
 622 Ku, Andre Martins, and Vivek Srikumar, editors, *Proceedings of the 62nd Annual Meeting of*
 623 *the Association for Computational Linguistics (Volume 1: Long Papers)*, *ACL 2024, Bangkok,*
 624 *Thailand, August 11-16, 2024*, pages 2961–2984. Association for Computational Linguistics, 2024.
 625 doi: 10.18653/V1/2024.ACL-LONG.163. URL <https://doi.org/10.18653/v1/2024.acl-long.163>.

626 Shuai Li, Zhao Song, Yu Xia, Tong Yu, and Tianyi Zhou. The closeness of in-context learning and
 627 weight shifting for softmax regression. *arXiv preprint arXiv:2304.13276*, 2023a.

628 Xiaonan Li and Xipeng Qiu. Finding support examples for in-context learning. In *Findings of the*
 629 *Association for Computational Linguistics: EMNLP 2023*, pages 6219–6235, 2023a.

630 Xiaonan Li and Xipeng Qiu. Finding support examples for in-context learning, 2023b. URL
 631 <https://arxiv.org/abs/2302.13539>.

632 Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
 633 as algorithms: Generalization and stability in in-context learning. In *International Conference on*
 634 *Machine Learning*, pages 19565–19594. PMLR, 2023b.

635 Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
 636 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. *arXiv preprint*
 637 *arXiv:2305.20050*, 2023.

638 Hui Lin and Jeff Bilmes. A class of submodular functions for document summarization. In *Proceed-
 639 ings of the 49th annual meeting of the association for computational linguistics: human language*
 640 *technologies*, pages 510–520, 2011.

648 Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
 649 makes good in-context examples for gpt-3? *arXiv preprint arXiv:2101.06804*, 2021.
 650

651 Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
 652 Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of the
 653 Association for Computational Linguistics*, 12:157–173, 2024.

654 Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
 655 prompts and where to find them: Overcoming few-shot prompt order sensitivity. *arXiv preprint
 656 arXiv:2104.08786*, 2021.

657 Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
 658 prompts and where to find them: Overcoming few-shot prompt order sensitivity. In *Proceedings
 659 of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
 660 Papers)*, pages 8086–8098, 2022.

661 Man Luo, Xin Xu, Zhuyun Dai, Panupong Pasupat, Mehran Kazemi, Chitta Baral, Vaiva Imbra-
 662 saite, and Vincent Y Zhao. Dr. icl: Demonstration-retrieved in-context learning. *arXiv preprint
 663 arXiv:2305.14128*, 2023.

664 Man Luo, Xin Xu, Yue Liu, Panupong Pasupat, and Mehran Kazemi. In-context learning with
 665 retrieved demonstrations for language models: A survey, 2024. URL <https://arxiv.org/abs/2401.11624>.

666 Xuetao Ma, Wenbin Jiang, and Hua Huang. Problem-solving logic guided curriculum in-context
 667 learning for llms complex reasoning, 2025. URL <https://arxiv.org/abs/2502.15401>.

668 Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
 669 Learning word vectors for sentiment analysis. In *Proceedings of the 49th annual meeting of the
 670 association for computational linguistics: Human language technologies*, pages 142–150, 2011.

671 Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: understanding rating dimen-
 672 sions with review text. In *Proceedings of the 7th ACM conference on Recommender systems*, pages
 673 165–172, 2013.

674 Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
 675 Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
 676 *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pages
 677 11048–11064, 2022.

678 Jane Pan, Tianyu Gao, Howard Chen, and Danqi Chen. What in-context learning “learns” in-context:
 679 Disentangling task recognition and task learning. In *Findings of the Association for Computational
 680 Linguistics: ACL 2023*, pages 8298–8319, 2023.

681 Adarsh Prasad, Stefanie Jegelka, and Dhruv Batra. Submodular meets structured: Finding diverse
 682 subsets in exponentially-large structured item sets. *Advances in Neural Information Processing
 683 Systems*, 27, 2014.

684 Chengwei Qin, Aston Zhang, Chen Chen, Anirudh Dagar, and Wenming Ye. In-context learning with
 685 iterative demonstration selection. *arXiv preprint arXiv:2310.09881*, 2023.

686 Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for
 687 machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras, editors, *Proceedings
 688 of the 2016 Conference on Empirical Methods in Natural Language Processing*, pages 2383–2392,
 689 Austin, Texas, November 2016. Association for Computational Linguistics. doi: 10.18653/v1/
 690 D16-1264. URL <https://aclanthology.org/D16-1264>.

691 N Reimers. Sentence-bert: Sentence embeddings using siamese bert-networks. *arXiv preprint
 692 arXiv:1908.10084*, 2019.

693 Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
 694 learning. In *Proceedings of the 2022 Conference of the North American Chapter of the Association
 695 for Computational Linguistics: Human Language Technologies*, pages 2655–2671, 2022.

702 Alexander Scarlatos and Andrew Lan. Reticl: Sequential retrieval of in-context examples with
 703 reinforcement learning. *arXiv preprint arXiv:2305.14502*, 2023.

704

705 Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
 706 approach, 2018. URL <https://arxiv.org/abs/1708.00489>.

707

708 Lingfeng Shen, Aayush Mishra, and Daniel Khashabi. Do pretrained transformers really learn
 709 in-context by gradient descent? *arXiv preprint arXiv:2310.08540*, 2023.

710

711 Lei Shi and Yi-Dong Shen. Diversifying convex transductive experimental design for active learning.
 712 In *IJCAI*, pages 1997–2003, 2016.

713

714 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
 715 Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,
 716 Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W.
 717 Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda
 718 Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, Anders Andreassen,
 719 Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew Dai, Andrew La, Andrew Lampinen,
 720 Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh Gupta, Anna Gottardi, Antonio Norelli,
 721 Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum, Arul Menezes, Arun Kirubarajan, Asher
 722 Mollokandov, Ashish Sabharwal, Austin Herrick, Avia Efrat, Aykut Erdem, Ayla Karakaş, B. Ryan
 723 Roberts, Bao Sheng Loe, Barret Zoph, Bartłomiej Bojanowski, Batuhan Öztyurt, Behnam Hedayatnia,
 724 Behnam Neyshabur, Benjamin Inden, Benno Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan
 725 Orinion, Cameron Dia, Cameron Dour, Catherine Stinson, Cedrick Argueta, César Ferri Ramírez,
 726 Chandan Singh, Charles Rathkopf, Chenlin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch,
 727 Chris Waites, Christian Voigt, Christopher D. Manning, Christopher Potts, Cindy Ramirez, Clara E.
 728 Rivera, Clemencia Siro, Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan
 729 Garrette, Dan Hendrycks, Dan Kilman, Dan Roth, Daniel Freeman, Daniel Khashabi, Daniel Levy,
 730 Daniel Moseguí González, Danielle Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito, Dar
 731 Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, Denis Emelin,
 732 Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta Misra, Dilyar Buzan,
 733 Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Dylan Schrader, Ekaterina Shutova, Ekin Dogus Cubuk,
 734 Elad Segal, Eleanor Hagerman, Elizabeth Barnes, Elizabeth Donoway, Ellie Pavlick, Emanuele Rodola,
 735 Emma Lam, Eric Chu, Eric Tang, Erkut Erdem, Ernie Chang, Ethan A. Chi, Ethan Dyer, Ethan
 736 Jerzak, Ethan Kim, Eunice Engefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fatemeh Siar,
 737 Fernando Martínez-Plumed, Francesca Happé, Francois Chollet, Frieda Rong, Gaurav Mishra,
 738 Genta Indra Winata, Gerard de Melo, Germán Kruszewski, Giambattista Parascandolo, Giorgio
 739 Mariani, Gloria Wang, Gonzalo Jaimovich-López, Gregor Betz, Guy Gur-Ari, Hana Galijasevic,
 740 Hannah Kim, Hannah Rashkin, Hannaneh Hajishirzi, Harsh Mehta, Hayden Bogar, Henry Shevlin,
 741 Hinrich Schütze, Hiromu Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap
 742 Jumelet, Jack Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac,
 743 James B. Simon, James Koppel, James Zheng, James Zou, Jan Kocoń, Jana Thompson, Janelle
 744 Wingfield, Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason
 745 Yosinski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse
 746 Engel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden,
 747 John Miller, John U. Balis, Jonathan Batchelder, Jonathan Berant, Jörg Frohberg, Jos Rozen,
 748 Jose Hernandez-Orallo, Joseph Boudeman, Joseph Guerr, Joseph Jones, Joshua B. Tenenbaum,
 749 Joshua S. Rule, Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakrishnan,
 750 Katerina Ignatyeva, Katja Markert, Kaustubh D. Dhole, Kevin Gimpel, Kevin Omondi,
 751 Kory Mathewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle
 752 Richardson, Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-
 753 Ochando, Louis-Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt,
 754 Luheng He, Luis Oliveros Colón, Luke Metz, Lütfi Kerem Şenel, Maarten Bosma, Maarten Sap,
 755 Maartje ter Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco
 Marelli, Marco Maru, Maria Jose Ramírez Quintana, Marie Tolkiehn, Mario Giulianelli, Martha
 Lewis, Martin Potthast, Matthew L. Leavitt, Matthias Hagen, Mátyás Schubert, Medina Orduna
 Baitemirova, Melody Arnaud, Melvin McElrath, Michael A. Yee, Michael Cohen, Michael Gu,
 Michael Ivanitskiy, Michael Starritt, Michael Strube, Michał Śwędrowski, Michele Bevilacqua,
 Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mitch Walker, Mo Tiwari,

756 Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T, Nanyun Peng,
 757 Nathan A. Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas Roberts, Nick
 758 Doiron, Nicole Martinez, Nikita Nangia, Niklas Deckers, Niklas Muennighoff, Nitish Shirish
 759 Keskar, Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang, Omar Agha,
 760 Omar Elbaghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth Doshi, Pascale
 761 Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy Liang, Peter Chang,
 762 Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Miłkowski, Piyush Patil, Pouya Pezeshkpour,
 763 Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade, Rachel Etta Rudolph, Raefer
 764 Gabriel, Rahel Habacker, Ramon Risco, Raphaël Millière, Rhythm Garg, Richard Barnes, Rif A.
 765 Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan Sikand, Roman Novak, Roman
 766 Sitelew, Ronan LeBras, Rosanne Liu, Rowan Jacobs, Rui Zhang, Ruslan Salakhutdinov, Ryan
 767 Chi, Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib Singh, Saif M. Mohammad, Sa-
 768 jant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruetter, Samuel R. Bowman,
 769 Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A. Rous, Sarik Ghazarian, Sayan
 770 Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann, Sebastian Schuster, Sepideh Sadeghi,
 771 Shadi Hamdan, Sharon Zhou, Shashank Srivastava, Sherry Shi, Shikhar Singh, Shima Asaadi,
 772 Shixiang Shane Gu, Shubh Pachchigar, Shubham Toshniwal, Shyam Upadhyay, Shyamolima,
 773 Debnath, Siamak Shakeri, Simon Thormeyer, Simone Melzi, Siva Reddy, Sneha Priscilla Makini,
 774 Soo-Hwan Lee, Spencer Torene, Sriharsha Hatwar, Stanislav Dehaene, Stefan Divic, Stefano
 775 Ermon, Stella Biderman, Stephanie Lin, Stephen Prasad, Steven T. Piantadosi, Stuart M. Shieber,
 776 Summer Misherghi, Svetlana Kiritchenko, Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li,
 777 Tao Yu, Tariq Ali, Tatsu Hashimoto, Te-Lin Wu, Théo Desbordes, Theodore Rothschild, Thomas
 778 Phan, Tianle Wang, Tiberius Nkinyili, Timo Schick, Timofei Kornev, Titus Tunduny, Tobias Ger-
 779 stenberg, Trenton Chang, Trishala Neeraj, Tushar Khot, Tyler Shultz, Uri Shabam, Vedant Misra,
 780 Vera Demberg, Victoria Nyamai, Vikas Raunak, Vinay Ramasesh, Vinay Uday Prabhu, Vishakh
 781 Padmakumar, Vivek Srikumar, William Fedus, William Saunders, William Zhang, Wout Vossen,
 782 Xiang Ren, Xiaoyu Tong, Xinran Zhao, Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair
 783 Lakretz, Yangqiu Song, Yasaman Bahri, Yejin Choi, Yichi Yang, Yiding Hao, Yifu Chen, Yonatan
 784 Belinkov, Yu Hou, Yufang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J.
 785 Wang, Zirui Wang, and Ziyi Wu. Beyond the imitation game: Quantifying and extrapolating the
 786 capabilities of language models, 2023. URL <https://arxiv.org/abs/2206.04615>.

787 Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi, Tianlu Wang, Jiayi Xin, Rui Zhang, Mari
 788 Ostendorf, Luke Zettlemoyer, Noah A. Smith, and Tao Yu. Selective annotation makes lan-
 789 guage models better few-shot learners. In *The Eleventh International Conference on Learning
 790 Representations*, 2023. URL <https://openreview.net/forum?id=qY1h1v7gwg>.

791 Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi, Noah A.
 792 Smith, and Yejin Choi. Dataset cartography: Mapping and diagnosing datasets with training
 793 dynamics. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, *Proceedings of the
 794 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online,
 795 November 16-20, 2020*, pages 9275–9293. Association for Computational Linguistics, 2020. doi:
 796 10.18653/V1/2020.EMNLP-MAIN.746. URL [https://doi.org/10.18653/v1/2020.
 797 emnlp-main.746](https://doi.org/10.18653/v1/2020.emnlp-main.746).

798 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
 799 answering challenge targeting commonsense knowledge. In *Proceedings of the 2019 Conference of
 800 the North American Chapter of the Association for Computational Linguistics: Human Language
 801 Technologies, Volume 1 (Long and Short Papers)*, pages 4149–4158, 2019.

802 Lappoon R Tang and Raymond J Mooney. Using multiple clause constructors in inductive logic
 803 programming for semantic parsing. In *European Conference on Machine Learning*, pages 466–477.
 804 Springer, 2001.

805 Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
 806 Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
 807 Gemma 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*,
 808 2024.

810 Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
 811 Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
 812 *International Conference on Machine Learning*, pages 35151–35174. PMLR, 2023a.
 813

814 Johannes Von Oswald, Maximilian Schlegel, Alexander Meulemans, Seijin Kobayashi, Eyvind
 815 Niklasson, Nicolas Zucchet, Nino Scherrer, Nolan Miller, Mark Sandler, Max Vladymyrov, et al.
 816 Uncovering mesa-optimization algorithms in transformers. *arXiv preprint arXiv:2309.05858*,
 817 2023b.

818 Zhijing Wan, Zhixiang Wang, Yuran Wang, Zheng Wang, Hongyuan Zhu, and Shin’ichi Satoh.
 819 Contributing dimension structure of deep feature for coresnet selection, 2024. URL <https://arxiv.org/abs/2401.16193>.
 820

821 Peiqi Wang, Yikang Shen, Zhen Guo, Matthew Stallone, Yoon Kim, Polina Golland, and Rameswar
 822 Panda. Diversity measurement and subset selection for instruction tuning datasets, 2024. URL
 823 <https://arxiv.org/abs/2402.02318>.
 824

825 Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Stevers, and William Yang Wang. Large language
 826 models are implicitly topic models: Explaining and finding good demonstrations for in-context
 827 learning. In *Workshop on Efficient Systems for Foundation Models@ ICML2023*.
 828

829 Xinyi Wang, Wanrong Zhu, and William Yang Wang. Large language models are implicitly topic
 830 models: Explaining and finding good demonstrations for in-context learning. *arXiv preprint*
 831 *arXiv:2301.11916*, page 3, 2023.

832 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 833 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 834 *neural information processing systems*, 35:24824–24837, 2022.
 835

836 Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
 837 In *Proceedings of the 3rd Workshop on Noisy User-generated Text*, pages 94–106, 2017.
 838

839 Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. *Advances in*
 840 *Neural Information Processing Systems*, 36:36637–36651, 2023.

841 Zhiyong Wu, Yaxiang Wang, Jiacheng Ye, and Lingpeng Kong. Self-adaptive in-context learning: An
 842 information compression perspective for in-context example selection and ordering. In *Proceedings*
 843 *of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*
 844 *Papers)*, pages 1423–1436, 2023.

845

846 Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
 847 learning as implicit bayesian inference. In *The Tenth International Conference on Learning*
 848 *Representations, ICLR 2022, Virtual Event, April 25-29, 2022*. OpenReview.net, 2022. URL
 849 <https://openreview.net/forum?id=RdJVFCHjUMI>.

850 Zhao Yang, Yuanzhe Zhang, Dianbo Sui, Cao Liu, Jun Zhao, and Kang Liu. Representative demonstra-
 851 tion selection for in-context learning with two-stage determinantal point process. In *Proceedings*
 852 *of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 5443–5456,
 853 2023.

854

855 Zhengyuan Yang, Zhe Gan, Jianfeng Wang, Xiaowei Hu, Yumao Lu, Zicheng Liu, and Lijuan Wang.
 856 An empirical study of GPT-3 for few-shot knowledge-based VQA. In *Thirty-Sixth AAAI Conference*
 857 *on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of*
 858 *Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial*
 859 *Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022*, pages 3081–3089. AAAI
 860 Press, 2022. doi: 10.1609/AAAI.V36I3.20215. URL <https://doi.org/10.1609/aaai.v36i3.20215>.
 861

862 Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, Ves Stoyanov, Greg Durrett, and Ramakanth Pasunuru.
 863 Complementary explanations for effective in-context learning. *Findings of the Association for*
 864 *Computational Linguistics: ACL 2023*, 2023.

864 Kang Min Yoo, Junyeob Kim, Hyuhng Joon Kim, Hyunsoo Cho, Hwiyeol Jo, Sang-Woo Lee, Sang-
 865 goo Lee, and Taeuk Kim. Ground-truth labels matter: A deeper look into input-label demonstrations.
 866 In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*,
 867 pages 2422–2437, 2022.

868 Dingli Yu, Simran Kaur, Arushi Gupta, Jonah Brown-Cohen, Anirudh Goyal, and Sanjeev Arora.
 869 SKILL-MIX: a flexible and expandable family of evaluations for AI models. In *The Twelfth Inter-
 870 national Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*.
 871 OpenReview.net, 2024. URL <https://openreview.net/forum?id=Jf5gplvglq>.

872 Suqin Yuan, Lei Feng, Bo Han, and Tongliang Liu. Enhancing sample selection against label noise by
 873 cutting mislabeled easy examples, 2025. URL <https://arxiv.org/abs/2502.08227>.

874 John M Zelle and Raymond J Mooney. Learning to parse database queries using inductive logic
 875 programming. In *Proceedings of the national conference on artificial intelligence*, pages 1050–
 876 1055, 1996.

877 Donglin Zhan, Leonardo F. Toso, and James Anderson. Coreset-based task selection for
 878 sample-efficient meta-reinforcement learning, 2025. URL <https://arxiv.org/abs/2502.02332>.

879 Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and Zhaoran Wang. What and how does in-context
 880 learning learn? bayesian model averaging, parameterization, and generalization. *arXiv preprint*
 881 *arXiv:2305.19420*, 2023a.

882 Zhiusheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompt-
 883 ing in large language models. In *The Eleventh International Conference on Learning Rep-
 884 resentations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023b. URL
 885 <https://openreview.net/forum?id=5NTt8GFjUHkr>.

886 Haoyu Zhao, Simran Kaur, Dingli Yu, Anirudh Goyal, and Sanjeev Arora. Can models learn
 887 skill composition from examples? *Advances in Neural Information Processing Systems*, 37:
 888 102393–102427, 2025.

889 Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
 890 few-shot performance of language models. In *International conference on machine learning*, pages
 891 12697–12706. PMLR, 2021.

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918	CONTENTS	
919		
920		
921	1 Introduction	1
922	1.1 Our contributions	2
923		
924	2 Background and notations	3
925		
926	3 Experiments and findings	4
927	3.1 Main findings	6
928	3.2 Understanding the Role of Diversity: Beyond Coverage Effects	8
929		
930	3.3 Practical insights	8
931		
932	3.4 Ablation studies	9
933		
934	4 Conclusion, limitations, and future works	9
935		
936	A More related works	19
937		
938	B More experiment details	19
939	B.1 Prompt template	19
940		
941	B.2 Dataset details	19
942		
943	B.3 Evaluation details	19
944		
945	C Additional experiments	21
946		
947	C.1 Results of 0/1-shot	21
948		
949	C.2 Additional supplement of Finding 1: Adjusting subset sizes for Div	22
950		
951	C.3 Additional supplement of Finding 1: Adjusting α for TopK-Div	22
952		
953	C.4 More results on OOD setting	22
954		
955	C.5 Results on perturbation of datasets	23
956		
957	D Additional ablation studies	24
958		
959	D.1 Results on more models	24
960		
961	D.2 Changing the number of shots	27
962		
963	D.3 More diversity-aware method	28
964		
965	D.4 Ablations on the size of training set	28
966		
967	D.5 Ablations on “better” embeddings	28
968		
969	D.6 Decoding method	30
970		
971	E Theoretical justification and simulations	30
972		
973	E.1 Proof of Theorem E.2: justification example I	31
974		
975	E.2 Proof of Theorem E.3: justification example II	33
976		
977	E.3 Experiment settings	35
978		
979	E.4 Result and discussions	35

972 A MORE RELATED WORKS
973

974 **Demonstration selection** Retrieval-based demonstration selection for ICL has long been studied,
975 and the most notable methods are the *similarity*-based methods (Liu et al., 2021; Yang et al., 2022;
976 Wu et al., 2023; Qin et al., 2023). These are often augmented by trainable deep learning retrievers
977 aimed at capturing core skills or features beyond mere semantic similarity (Karpukhin et al., 2020;
978 Rubin et al., 2022; Luo et al., 2023; Scarlatos and Lan, 2023; An et al., 2023b), or by incorporating
979 LLM feedback for refinement (Li and Qiu, 2023a; Chen et al., 2023; Wang et al., 2023). Conversely,
980 diversity-based, or more accurately, coverage-based methods are less prevalent in retrieval-based
981 selection. Existing studies in this vein typically address tasks with clear local structures where feature
982 coverage is advantageous (Levy et al., 2023; Ye et al., 2023; Gupta et al., 2023; An et al., 2023a). For
983 non-retrieval-based ICL, where a fixed set of demonstrations is selected for a specific task, diversity
984 is recognized as beneficial (Zhang et al., 2023b; Gao et al., 2023; Su et al., 2023; Yang et al., 2023).
985

986 **Understanding in-context learning** Efforts to understand ICL span both theoretical and empirical
987 investigations. Theoretical perspectives often frame ICL as either a Bayesian inference procedure (Xie
988 et al., 2022; Wang et al.; Wies et al., 2023; Jiang, 2023; Zhang et al., 2023a) or an implicit form of
989 meta-optimization akin to gradient descent (Dai et al., 2023; Von Oswald et al., 2023a;b; Deutch
990 et al., 2024; Shen et al., 2023). Research on ICL for regression tasks (Garg et al., 2022; Li et al.,
991 2023b;a; Akyürek et al., 2023) provides valuable insights; notably, (Akyürek et al., 2023) suggest
992 transformers can identify min-norm solutions in-context for linear regression, a finding that supports
993 the role of demonstration diversity. Empirical studies have further examined factors such as input-
994 label mapping (Min et al., 2022; Yoo et al., 2022; Pan et al., 2023), the influence of demonstration
995 order (Lu et al., 2022; Liu et al., 2024), and the importance of calibration for ICL efficacy (Zhao
996 et al., 2021).
997

998 B MORE EXPERIMENT DETAILS
9991000 B.1 PROMPT TEMPLATE
1001

1002 Table 4 lists the template we use for different tasks. We take $K = 2$ as an example.
1003

1004 B.2 DATASET DETAILS
1005

1006 To reduce computational cost, we performed random sampling on both the *demo* and *test* set for
1007 classification, multiple-choice and reading tasks. For classification tasks, the sampled datasets from
1008 IMDB and SST-2 are consistent with Chang and Jia (2023). A fixed random seed of 42 was used for
1009 all sampling procedures. For math tasks, since the *test* set sizes of PRM800K and GSM8K datasets
1010 are close to the sampled *test* set sizes of other tasks, we directly used their existing *demo* and *test* set.
1011 Detailed sampling statistics are provided in Table 5.
1012

1013 B.3 EVALUATION DETAILS
1014

1015 For the sentiment classification task (classification), given the prompt listed in Table 4, we compute
1016 the logit for “great” and “terrible” respectively, and predict the sentiment to be positive if the logit for
1017 “great” is larger than that for “terrible”, and vice versa. We report the accuracy metric.
1018

1019 For commonsense reasoning tasks (multiple-choice), given the prompt, we compute the average
1020 cross-entropy loss on each given option, conditioned on the prompt. Then we pick the option with
1021 the smallest average cross-entropy loss. We report the accuracy metric.
1022

1023 For reading comprehension (generation), given the prompt, we generate the answer using greedy
1024 decoding. We stop if we generate one of the following string: “\n\n”, “\n\n\n”, “Support”, “Support:”,
1025 “Question”, “Question:”. We compare the generated answer with the gold answer, and report the
exact match metric. There are several optional answers for the squad test sample, if the generated
answer exactly matches one of them, we consider it correct.
1026

1026

1027

Table 4: Prompt template for different tasks with 2 demonstrations. For Math problems, we also apply the chat template since we use the instruct models (done by applying the function “apply_chat_template” on the instruct models’ tokenizer).

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Name	Template
Sentiment Classification (SST-2, IMDB, Amazon)	Question: {input_1} Answer: {output_1} Question: {input_2} Answer: {output_2} Question: {input_query} Answer:
Commonsense Reasoning (ARC-Easy, CsQA)	Question: {input_1} Answer: {output_1} Question: {input_2} Answer: {output_2} Question: {input_query} Answer:
Reading Comprehension (SQuAD, SCIQ)	Support: {support_1} Question: {input_1} Answer: {output_1} Support: {support_2} Question: {input_2} Answer: {output_2} Support: {support_query} Question: {input_query} Answer:
text to SQL (Geo-Query)	Question: {input_1} Answer: {output_1} Question: {input_2} Answer: {output_2} Question: {input_query} Answer:
Math (GSM8K, PRM800K)	Question: {input_1} Answer: {output_1} Question: {input_2} Answer: {output_2} Let's think step by step. You need to solve the final → question and answer in the format: \n#### \{result\} Question: {input_query} Answer:

1080 Table 5: **Detailed dataset size before and after sampling.** We show the original and sampled size of
 1081 demonstration set and test set for all dataset we considered.

Dataset size	Classification			Multiple-choice		Math		Code		Reading	
	SST-2	Amazon	Imdb	ARC-Easy	CsQA	PRM800K	GSM8K	GSM-Plus-Mini	GeoQuery	SQuAD	SCIQ
Sampled demo set	1000	1000	1000	1000	1000	12000	7473	7473	600	10000	1000
Sampled test set	1000	1000	1000	1000	1000	500	1319	2400	280	1000	1000
Original demo set	67300	3600000	25000	2250	9740	12000	7473	7473	600	87600	11700
Original test set	1820	400000	25000	2380	1140	500	1319	2400	280	10600	1000

1088 Table 6: Performance of 0-shot and 1-shot Baseline in Code and Reading Tasks. When $k = 1$, there
 1089 is only one possible permutation, so we report a single result for both TopK and TopK-Div methods.
 1090 For Rand and Div approaches, we report the averaged results across ten random seeds. Embedding =
 1091 all-roberta-large-v1.

Model	Dataset	$K = 0$		$K = 1$				$K = 4$			
		-		Rand	Topk	Div	Topk-Div	Rand	Topk	Div	Topk-Div
Llama-3.1-8B	Code (Geoquery)	—		2.61	37.14	16.93	37.14	12.57	63.04	33.71	71.07
	Reading (SQuAD)	42.30		68.64	67.00	67.87	67.00	75.95	73.51	75.66	73.28
Gemma-2-9B	Code (Geoquery)	—		3.07	41.43	16.71	41.43	13.89	61.14	36.29	70.43
	Reading (SQuAD)	37.90		71.34	69.00	70.69	69.00	77.19	74.82	77.06	75.05
Mistral-7B-v0.3	Code (Geoquery)	—		2.75	40.71	18.39	40.71	12.14	60.14	34.89	71.46
	Reading (SQuAD)	30.50		69.12	66.30	67.80	66.30	76.70	75.04	75.96	74.43

1100
 1101 For text to SQL (generation), given the prompt, we generate the answer using greedy decoding.
 1102 We stop if we generate one of the following string: “\n\n”, “\n\n\n”, “Question”, “Question:”. We
 1103 compare the generated answer with the gold answer, and report the exact match metric.

1104 For math problem (generation), given the prompt, we generate the answer using greedy decoding.
 1105 We do not stop the generation process unless the instruct model generates the stop sign itself. We first
 1106 try to extract the math expression from the following format “#### {expression}”. If failed, we try to
 1107 extract from the following format “\{boxed\} {expression}”. If both failed, we extract the final math
 1108 expression from the answer. The report exact match metric.

1109 For each task, the selected examples in TopK and TopK-Div are fixed, and these two methods are
 1110 tested once. For Rand and Div, where example selection involves randomness, we test with ten
 1111 random seeds and report the average results.

1113 C ADDITIONAL EXPERIMENTS

1116 In this section, we present some addition (supplementary) experiment results for Section 3. This
 1117 section is structured as follows:

- 1119 • Appendix C.1 shows the results of different tasks under 0-shot or 1-shot, to justify the
 1120 effectiveness of in-context examples;
- 1121 • Appendix C.2 discusses the best subset_size in Div;
- 1122 • Appendix C.3 illustrates the gap between different levels of diversity in TopK-Div;
- 1123 • Appendix C.4 includes more results and discussions for the OOD setting;
- 1124 • Appendix C.5 contains the detailed experiments that imply the effect of diversity that is
 1126 beyond coverage.

1128 C.1 RESULTS OF 0/1-SHOT

1130 To verify whether the model inherently possesses the ability to solve certain tasks, we tested its 0-shot
 1131 and 1-shot performance on the SQuAD and GeoQuery datasets. For the Reading task, accuracy is
 1132 calculated only when the output exactly matches the answer, imposing strict format requirements.
 1133 Consequently, on SQuAD, once the model understood the output format in the 1-shot setting, the
 absolute performance gap compared to the 4-shot setting was less than 8%. However, on GeoQuery,

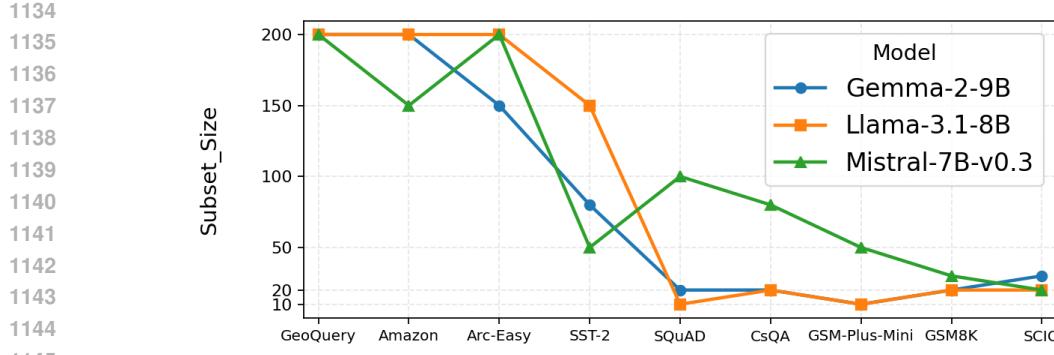


Figure 4: **(Optimal Subset_Size of the Div Method for Different Tasks)** We report the optimal subset_size of the Div method across different tasks. The results show that relatively easier tasks, such as Classification and Multiple-choice, tend to favor larger subset_size values (with data points concentrated on the left side of the x-axis), whereas more challenging tasks, such as Math and Reading, exhibit substantially smaller optimal subset_size values, with an overall average not exceeding 30 (with data points concentrated on the right side of the x-axis).

even after the model grasped the output format via the 1-shot example, the absolute performance gap compared to the 4-shot setting was still over 20%.

Therefore, the model possesses a strong inherent ability to solve the Reading task (a similar conclusion also holds for the Math task). Conversely, the model itself lacks domain-specific knowledge related to GeoQuery and thus needs to learn more from the provided context.

C.2 ADDITIONAL SUPPLEMENT OF FINDING 1: ADJUSTING SUBSET SIZES FOR Div

For each task, we identify the subset_size that yields the best performance for Div ($\text{subset_size} \in \{10, 20, 30, 50, 80, 100, 120, 150, 200\}$). On simpler tasks (e.g., Classification and Multiple-choice), the average optimal subset_size exceeds 100 (Figure 4), indicating that introducing less diversity is more beneficial. In contrast, on more complex tasks (e.g., Math and Reading), the average optimal subset_size is below 30, suggesting that incorporating more diversity is advantageous. GeoQuery serves as a typical example of a task that requires strong coverage, for which Div with small subset_size fails to achieve satisfactory performance.

C.3 ADDITIONAL SUPPLEMENT OF FINDING 1: ADJUSTING α FOR TopK-Div

Let Acc_α denotes the accuracy of TopK-Div parameterized by α (Equation (3)), We define:

$$\Delta = \frac{1}{5} \sum_{i=6}^{10} \text{Acc}_i/10 - \frac{1}{5} \sum_{i=1}^5 \text{Acc}_i/10. \quad (4)$$

The difference Δ quantifies the gap between the average accuracy of lower diversity and higher diversity in TopK-Div (e.g, $\Delta > 0$ means less diversity is better). As shown in Table 7, minimal diversity is optimal for simpler tasks, while higher diversity consistently enhances performance as task difficulty increases.

C.4 MORE RESULTS ON OOD SETTING

In this part, we show the OOD results of math problems on Llama-3.1-8B/70B and Gemma-2-9B/27B instruct-tuned models. We use GSM8K as the demonstration set and PRM800K (Lightman et al., 2023) as the query set. Table 8 summarizes our result. We observe that diversity-aware methods are more robust to this distribution shift. Even for Gemma models where TopK performs very well on ID tasks (demonstration and query set are all PRM800K), TopK is outperformed by diversity-aware methods on the OOD setting. A similar trend also holds for Llama models. One interesting finding is that for PRM800K, more demonstration might not lead to better performance, and also in our experiment, using GSM8K as demonstration works better than using PRM800K data as demonstrations.

Table 7: **Comparison of TopK-Div results with different α .** We report Δ (Equation (4)) for Classification, Multiple-choice and Reading task across six datasets. For each value of α in TopK-Div, we tested ten permutations and calculated the mean. For relatively simple tasks (SST-2, Amazon, ARC-Easy and CsQA), the average value 0.27% of Δ indicates that incorporating less diversity is more beneficial. In contrast, for relatively complex tasks (SCIQ, SQuAD), the average value -0.44% of Δ suggests that incorporating more diversity is advantageous. Specifically, the average Δ for SST-2 is 0.42%, for ARC-Easy is 0.34%, for CsQA is 0.07%, and for SCIQ is -0.53%. This trend is consistent with our understanding of task difficulty.

Model	K	Δ					
		SST-2	Amazon	ARC-Easy	CsQA	SCIQ	SQuAD
Llama-3.2-3B	4	0.11%	0.12%	0.45%	0.41%	-0.80%	0.40%
	8	1.05%	-0.01%	0.20%	0.06%	-0.74%	-1.01%
Gemma-2-2B	4	0.34%	0.50%	0.87%	-0.37%	-0.07%	0.04%
	8	0.19%	0.27%	-0.15%	0.18%	-0.49%	-0.82%

Table 8: **(Comparison of different methods on math when demonstration and query come from different distribution)** OOD setting for math problem where the test dataset is chosen to be PRM800K. We find that, diversity-aware methods are more superior than TopK in OOD setting. The method that achieves the best in each setting is highlighted.

Model	Shots	Demo.	Rand	TopK	Div	TopK-Div
Llama-3.1-8B	$K = 4$	PRM800K	43.50	41.40	44.86	44.80
		GSM8K	41.50	41.00	43.28	42.00
	$K = 8$	PRM800K	43.32	43.00	44.28	40.00
		GSM8K	41.66	42.00	43.46	40.80
Llama-3.1-70B	$K = 4$	PRM800K	57.78	58.20	57.42	59.40
		GSM8K	60.62	62.00	61.88	61.00
	$K = 8$	PRM800K	54.72	59.00	55.86	58.00
		GSM8K	61.14	59.60	60.96	60.00
Gemma-2-9B	$K = 4$	PRM800K	38.04	42.40	36.78	44.40
		GSM8K	42.10	41.00	41.04	42.20
	$K = 8$	PRM800K	40.66	46.20	39.20	44.40
		GSM8K	42.06	41.80	42.74	41.60
Gemma-2-27B	$K = 4$	PRM800K	46.06	49.20	47.80	49.60
		GSM8K	46.06	46.00	46.30	45.20
	$K = 8$	PRM800K	47.10	50.40	47.04	48.60
		GSM8K	45.40	44.80	45.92	45.20

C.5 RESULTS ON PERTURBATION OF DATASETS

To explore whether the way diversity works is by achieving better coverage, we noticed that even when $k = 1$, TopK still underperforms Rand/Div methods. We speculate this is because the support in the original dataset contains a lot of noise, causing similar examples not only to fail to provide effective information but also potentially to mislead the model into focusing on noisy information (“coverage” isn’t helpful in such case).

Using DeepSeek-R1, we removed information irrelevant to the answer from the support passages in SQuAD, reducing content by approximately 50%. Based on this, we constructed two variants: SQuAD-Cut, where only the training set is streamlined, and SQuAD-Both-Cut, where both the training and test sets are streamlined. As shown in Table 9, the more streamlined (i.e., higher-quality and less noisy) the dataset, the better the performance of TopK and TopK-Div. Notably, their improvement margins are significantly larger than that of Div (though still more than 1% lower than Div). This indicates that when the dataset quality is higher, the “Coverage” mechanism can focus on

1242 Table 9: Results for SQuAD with cut perturbation. We performed content trimming on the support
 1243 portion of the SQuAD dataset using Deepseek-r1, retaining only the top 1/3 most answer-relevant
 1244 content. SQuAD-Cut refers to trimming applied solely to the testing set, while SQuAD-Both-Cut
 1245 indicates trimming performed on both testing and training sets. The values in parentheses represent
 1246 performance improvements relative to the original SQuAD dataset.

1248 Model	1249 K	1250 Dataset	1251 Method			
			1252 Rand	1253 Topk	1254 Div	1255 Topk-Div
1256 Llama-3.1-8B	1	SQuAD	68.64	67.00	67.87	67.00
		SQuAD-Cut	69.43 (+0.79)	68.20 (+1.20)	68.45 (+0.58)	67.70 (+0.70)
		SQuAD-Both-Cut	69.71 (+1.07)	69.90 (+2.90)	69.47 (+1.60)	69.90 (+2.90)
	4	SQuAD	75.95	73.51	75.66	73.28
		SQuAD-Cut	77.15 (+1.2)	75.96 (+2.45)	77.00 (+1.34)	76.89 (+2.61)
		SQuAD-Both-Cut	76.95 (+1.00)	76.15 (+2.64)	77.76 (+2.10)	76.47 (+3.19)
	8	SQuAD	77.13	75.52	77.71	76.13
		SQuAD-Cut	79.10 (+1.97)	77.43 (+1.91)	79.43 (+1.72)	78.64 (+2.51)
		SQuAD-Both-Cut	79.39 (+2.26)	78.66 (+3.14)	79.26 (+1.55)	79.13 (+3.00)
1257 Gemma-2-9B	1	SQuAD	71.34	69.00	70.69	69.00
		SQuAD-Cut	72.96 (+1.62)	71.20 (+2.20)	72.25 (+1.56)	71.10 (+2.10)
		SQuAD-Both-Cut	73.14 (+1.80)	72.30 (+3.30)	72.67 (+1.98)	72.30 (+3.30)
	4	SQuAD	77.19	74.82	77.06	75.05
		SQuAD-Cut	78.75 (+1.56)	77.64 (+2.82)	78.23 (+1.17)	78.65 (+3.60)
		SQuAD-Both-Cut	78.72 (+1.53)	77.47 (+2.65)	78.54 (+1.48)	76.78 (+1.73)
	8	SQuAD	79.23	77.59	79.05	77.64
		SQuAD-Cut	80.41 (+1.18)	79.74 (+2.15)	80.45 (+1.40)	80.72 (+3.08)
		SQuAD-Both-Cut	80.22 (+0.99)	79.05 (+1.46)	80.10 (+1.05)	78.84 (+1.20)
1266 Mistral-7B-v0.3	1	SQuAD	69.12	66.30	67.80	66.30
		SQuAD-Cut	71.38 (+2.26)	69.70 (+3.40)	69.21 (+1.41)	69.70 (+3.40)
		SQuAD-Both-Cut	71.44 (+2.32)	70.70 (+4.40)	72.00 (+4.20)	70.70 (+4.40)
	4	SQuAD	76.70	75.04	75.96	74.43
		SQuAD-Cut	77.78 (+1.08)	77.78 (+2.74)	77.18 (+1.22)	78.70 (+4.37)
		SQuAD-Both-Cut	77.76 (+1.06)	77.92 (+2.88)	77.89 (+1.93)	77.40 (+2.97)
	8	SQuAD	77.30	77.05	77.67	77.44
		SQuAD-Cut-R1	79.00 (+1.70)	79.09 (+2.04)	78.64 (+0.97)	79.07 (+1.63)
		SQuAD-Both-Cut-R1	79.92 (+2.62)	78.76 (+1.71)	79.61 (+1.94)	79.64 (+2.20)

1274
 1275 high signal-to-noise ratio information (rather than incorrectly covering noise), and its effectiveness is
 1276 significantly enhanced. TopK-based methods are more likely to “cover” high-quality information
 1277 segments truly relevant to the answer, whereas Div, as an intrinsic metric, inherently includes
 1278 effective mechanisms not directly dependent on precise semantic coverage (e.g., structural diversity):
 1279 selecting examples with different sentence structures or argumentation styles). These mechanisms
 1280 already play a role in the original noisy data, avoiding overfitting to noise, causing it to outperform
 1281 noise-sensitive coverage strategies, and its baseline performance is already relatively robust. This
 1282 fully demonstrates that the value of *diversity* is “beyond coverage”.

1284 D ADDITIONAL ABLATION STUDIES

1285 D.1 RESULTS ON MORE MODELS

1288 We evaluated different model sizes from the Gemma and Llama families, including Llama-3.2-1B,
 1289 Gemma-2-2B, Llama-3.2-3B, Llama-3.1-8B, Gemma-2-9B, Gemma-2-27B, and Llama-3.1-70B.
 1290 For math tasks, we used the instruct version of the corresponding models. For other tasks, we used
 1291 the base models. For code tasks, we also tested domain-specific CodeLlama models, including
 1292 CodeLlama-7B-hf, CodeLlama-13B-hf, and CodeLlama-34B-hf. The results on CodeLlama were
 1293 consistent with those of other base models.

1294 We report the complete experimental results of the Llama family in Table 11, the Gemma family
 1295 results in Table 12, and the CodeLlama results in Table 13. The methods that performed well on the
 corresponding tasks in Table 1 also demonstrated good performance across different model sizes.

1296 Table 10: We supplemented the content omitted in Table 1. The main numerical values represent the
 1297 mean results over ten random seeds, while the subscript indicates their std. We still highlight the
 1298 result with the highest mean in bold. In most cases, the fluctuations within each method do not affect
 1299 our conclusions.

1301	Model	K	Method	Classification		Multiple-choice		Math	Code	Reading			
				SST-2	Amazon	ARC-Easy	CsQA	GSM8K	GSM-Plus-Mini	GeoQuery	SQuAD	SCIQ	
1302	Llama-3.1-7B	0	-	87.50	95.40	82.43	62.80	53.45	65.12	—	42.30	36.40	
1303		4	Rand	91.31 _{0.59}	96.38 _{0.25}	84.72 _{0.35}	71.15 _{0.65}	82.24 _{0.52}	66.90 _{0.59}	12.57 _{1.33}	75.95 _{0.55}	74.00 _{0.57}	
1304			TopK	94.13 _{0.21}	96.24 _{0.16}	86.10 _{0.32}	72.54 _{0.36}	81.99 _{0.55}	65.30 _{0.46}	63.04 _{1.96}	73.51 _{0.48}	72.70 _{0.40}	
1305			Div	91.50 _{0.63}	96.18 _{0.25}	85.06 _{0.27}	71.17 _{0.42}	82.14 _{0.45}	66.92 _{0.52}	33.71 _{1.35}	75.66 _{0.97}	74.47 _{0.62}	
1306			TopK-Div	92.75 _{0.33}	96.15 _{0.22}	85.83 _{0.38}	72.57 _{0.35}	81.74 _{0.53}	66.12 _{0.85}	71.07 _{1.11}	73.28 _{0.79}	73.87 _{0.35}	
1307		8	Rand	92.27 _{0.55}	96.63 _{0.27}	84.38 _{0.34}	72.23 _{0.34}	82.81 _{0.61}	66.72 _{0.72}	23.21 _{1.41}	77.13 _{0.80}	74.65 _{0.88}	
1308			TopK	93.64 _{0.36}	96.12 _{0.09}	85.91 _{0.29}	73.91 _{0.38}	82.26 _{0.65}	65.99 _{0.60}	72.04 _{0.93}	75.52 _{0.43}	74.72 _{0.65}	
1309			Div	92.95 _{0.35}	96.25 _{0.19}	84.97 _{0.32}	72.77 _{0.61}	82.98 _{0.34}	66.56 _{0.60}	38.54 _{0.90}	77.71 _{0.80}	75.17 _{0.53}	
1310			TopK-Div	93.33 _{0.36}	96.43 _{0.09}	85.39 _{0.40}	73.76 _{0.37}	82.63 _{0.57}	66.48 _{0.52}	78.36 _{1.24}	76.13 _{0.42}	75.07 _{0.49}	
1311	Gemma-2.9B	0	-	67.50	85.10	88.15	61.80	16.07	32.79	—	37.90	41.10	
1312		Rand	93.33 _{0.52}	96.15 _{0.23}	89.52 _{0.25}	74.77 _{0.70}	84.29 _{0.43}	74.40 _{0.47}	13.89 _{1.67}	77.19 _{0.89}	75.80 _{0.54}		
1313		TopK	94.47 _{0.48}	96.34 _{0.20}	90.50 _{0.16}	75.19 _{0.25}	84.25 _{0.73}	74.50 _{0.55}	61.14 _{1.33}	74.82 _{0.70}	75.24 _{0.34}		
1314		Div	93.45 _{0.46}	95.69 _{0.23}	90.03 _{0.24}	74.85 _{0.39}	84.44 _{0.91}	73.34 _{0.62}	36.29 _{0.05}	77.06 _{0.57}	75.96 _{0.55}		
1315	Mistral-7B-v0.3	4	TopK-Div	93.34 _{0.34}	96.57 _{0.16}	90.19 _{0.19}	75.60 _{0.54}	83.54 _{0.56}	74.47 _{0.63}	70.43 _{1.24}	75.05 _{0.41}	75.21 _{0.29}	
1316			Rand	93.30 _{0.36}	96.09 _{0.23}	89.39 _{0.28}	75.98 _{0.54}	84.34 _{0.54}	74.48 _{0.63}	24.36 _{1.19}	79.23 _{0.64}	76.28 _{0.50}	
1317			TopK	94.20 _{0.28}	96.59 _{0.16}	90.62 _{0.16}	76.14 _{0.61}	83.57 _{0.53}	75.36 _{0.43}	71.00 _{1.20}	77.59 _{0.42}	75.55 _{0.18}	
1318			Div	93.41 _{0.20}	95.94 _{0.25}	89.90 _{0.19}	76.60 _{0.32}	84.22 _{0.52}	74.69 _{0.64}	42.07 _{1.10}	79.05 _{0.93}	76.65 _{0.60}	
1319			TopK-Div	94.04 _{0.29}	96.58 _{0.04}	90.48 _{0.22}	76.53 _{0.21}	83.85 _{0.66}	75.16 _{0.32}	76.32 _{0.85}	77.64 _{0.63}	76.24 _{0.48}	
1320	Llama-3.2-1B	0	-	66.50	94.00	76.41	51.80	9.48	5.17	—	30.50	34.20	
1321		4	Rand	91.00 _{0.78}	94.02 _{0.61}	82.77 _{0.48}	69.83 _{0.81}	48.78 _{1.00}	37.20 _{0.69}	12.14 _{1.47}	76.70 _{0.72}	74.71 _{0.54}	
1322			TopK	93.57 _{0.25}	96.17 _{0.20}	85.21 _{0.38}	69.73 _{0.43}	49.28 _{1.17}	38.20 _{0.55}	60.14 _{0.82}	75.04 _{0.74}	73.73 _{0.59}	
1323			Div	91.98 _{0.46}	94.19 _{0.31}	82.98 _{0.25}	70.15 _{0.56}	49.49 _{0.87}	37.50 _{0.76}	34.89 _{1.39}	75.96 _{0.08}	75.83 _{0.57}	
1324			TopK-Div	92.73 _{0.30}	95.90 _{0.15}	84.55 _{0.49}	69.91 _{0.49}	49.99 _{1.02}	38.45 _{0.81}	71.46 _{1.35}	74.43 _{0.50}	73.16 _{0.28}	
1325		8	Rand	92.49 _{0.34}	95.35 _{0.36}	83.69 _{0.36}	71.65 _{0.60}	47.86 _{1.19}	36.32 _{0.71}	22.18 _{1.96}	77.30 _{0.54}	75.54 _{0.63}	
1326			TopK	93.61 _{0.32}	96.15 _{0.16}	85.17 _{0.25}	71.88 _{0.38}	48.43 _{1.02}	37.35 _{0.53}	70.50 _{1.36}	77.05 _{0.41}	75.44 _{0.43}	
1327			Div	92.55 _{0.29}	95.10 _{0.37}	84.27 _{0.41}	72.04 _{0.61}	48.33 _{1.10}	36.12 _{0.34}	39.14 _{1.40}	77.67 _{1.56}	76.30 _{0.31}	
1328			TopK-Div	93.47 _{0.41}	96.11 _{0.16}	84.85 _{0.34}	71.81 _{0.19}	48.60 _{0.71}	37.81 _{0.76}	77.93 _{1.70}	77.44 _{0.37}	75.22 _{0.42}	
1329	Llama-3.2-3B	0	-	Rand	90.40 _{0.66}	95.87 _{0.21}	78.62 _{0.44}	68.51 _{0.64}	69.64 _{0.98}	50.50 _{0.59}	9.86 _{1.28}	71.59 _{0.60}	72.43 _{0.70}
1330		4	TopK	92.87 _{0.31}	96.25 _{0.24}	81.51 _{0.34}	68.72 _{0.37}	70.05 _{0.86}	50.10 _{0.53}	54.04 _{1.68}	71.21 _{0.48}	70.87 _{0.46}	
1331			Div	90.87 _{0.59}	95.57 _{0.18}	80.41 _{0.60}	68.85 _{0.50}	68.71 _{0.75}	51.53 _{0.87}	31.21 _{1.82}	71.13 _{1.42}	72.58 _{0.61}	
1332			TopK-Div	93.03 _{0.29}	96.43 _{0.15}	81.71 _{0.30}	68.95 _{0.25}	69.14 _{0.86}	50.60 _{0.38}	59.75 _{2.03}	70.73 _{0.49}	71.28 _{0.40}	
1333		8	Rand	91.79 _{0.36}	96.09 _{0.14}	78.91 _{0.40}	69.89 _{0.68}	68.79 _{0.94}	51.12 _{0.81}	19.29 _{1.60}	73.14 _{0.63}	72.57 _{0.85}	
1334			TopK	93.71 _{0.40}	96.18 _{0.20}	81.03 _{0.36}	70.53 _{0.33}	69.40 _{0.89}	50.00 _{0.84}	61.89 _{1.40}	72.61 _{0.30}	71.83 _{0.46}	
1335			Div	91.99 _{0.47}	95.83 _{0.27}	80.68 _{0.34}	70.26 _{0.40}	66.54 _{1.14}	50.87 _{0.61}	36.71 _{1.39}	72.76 _{1.53}	74.07 _{0.49}	
1336			TopK-Div	93.55 _{0.35}	96.37 _{0.17}	81.57 _{0.30}	70.18 _{0.33}	69.38 _{0.98}	49.96 _{0.73}	72.11 _{1.77}	73.80 _{0.56}	72.08 _{0.53}	
1337	Llama-3.1-8B	0	-	Rand	91.31 _{0.59}	96.38 _{0.25}	84.72 _{0.35}	71.15 _{0.65}	82.24 _{0.52}	66.90 _{0.59}	12.57 _{1.33}	75.95 _{0.55}	74.00 _{0.57}
1338		4	TopK	94.13 _{0.21}	96.24 _{0.16}	86.10 _{0.32}	72.54 _{0.36}	81.99 _{0.55}	65.30 _{0.46}	63.04 _{1.96}	73.51 _{0.48}	72.70 _{0.40}	
1339			Div	91.50 _{0.63}	96.18 _{0.25}	85.06 _{0.27}	71.17 _{0.42}	82.14 _{0.45}	66.92 _{0.52}	33.71 _{1.35}	75.66 _{0.97}	74.47 _{0.62}	
1340			TopK-Div	92.75 _{0.33}	96.15 _{0.22}	85.83 _{0.38}	72.57 _{0.35}	81.74 _{0.53}	66.12 _{0.85}	71.07 _{1.11}	73.28 _{0.79}	73.87 _{0.35}	
1341		8	Rand	92.27 _{0.55}	96.63 _{0.27}	84.38 _{0.34}	72.23 _{0.34}	82.81 _{0.61}	66.72 _{0.72}	23.21 _{1.41}	77.13 _{0.80}	74.65 _{0.88}	
1342			TopK	93.64 _{0.36}	96.12 _{0.09}	85.91 _{0.29}	73.91 _{0.38}	82.26 _{0.65}	65.99 _{0.60}	72.04 _{0.93}	75.52 _{0.43}	74.72 _{0.65}	
1343			Div	92.95 _{0.35}	96.25 _{0.19}	84.97 _{0.32}	72.77 _{0.61}	82.98 _{0.34}	66.56 _{0.60}	38.54 _{0.90}	77.71 _{0.80}	75.17 _{0.53}	
1344			TopK-Div	94.66 _{0.36}	96.95 _{0.28}	89.84 _{0.28}	77.14 _{0.40}	89.47 _{0.54}	68.64 _{0.52}	77.14 _{0.39}	26.89 _{1.88}	82.62 _{0.47}	76.56 _{0.78}
1345	Llama-3.1-70B	0	-	Rand	94.16 _{0.33}	96.77 _{0.38}	89.76 _{0.16}	75.48 _{0.62}	88.64 _{0.48}	77.14 _{0.39}	17.50 _{1.88}	81.47 _{0.75}	75.51 _{0.87}
1346		4	TopK	94.81 _{0.34}	96.86 _{0.11}	90.57 _{0.28}	76.22 _{0.28}	88.87 _{0.52}	76.19 _{0.57}	66.46 _{1.23}	79.15 _{0.22}	75.67 _{0.38}	
1347			Div	94.34 _{0.28}	96.36 _{0.23}	90.14 _{0.30}	75.53 _{0.33}	89.27 _{0.53}	77.21 _{0.47}	39.00 _{1.87}	81.27 _{1.25}	77.75 _{0.44}	
1348			TopK-Div	94.20 _{0.18}	96.88 _{0.12}	90.46 _{0.32}	76.21 _{0.49}	88.67 _{0.42}	76.94 _{0.45}	77.32 _{0.95}	79.26 _{0.37}	75.59 _{0.33}	
1349		8	Rand	94.66 _{0.36}	96.95 _{0.28}	89.84 _{0.28}	77.14 _{0.40}	89.47 _{0.54}	76.93 _{0.77}	26.89 _{1.90}	82.62 _{0.47}	76.56 _{0.78}	
1350			TopK	94.18 _{0.32}	96.95 _{0.18}	90.24 _{0.25}	77.65 _{0.30}	89.33 _{0.29}	76.29 _{0.46}	75.68 _{1.08}	81.38 _{0.51}	76.70 _{0.63}	
1351			Div	94.95 _{0.30} </									

1350

1351

1352 Table 12: Performance of different algorithms for models belong to Gemma-family. Setting same as
1353 Table 1 while adding results from more models (Gemma-2-2b and Gemma-2-27b). Our finding that
1354 diversity helps for more challenging tasks still holds.

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

model	K	Method	Classification		Multiple-choice		Math GSM-Plus-Mini	Code GeoQuery	Reading	
			SST-2	Amazon	Arc-easy	CsQA			SQuAD	SCIQ
Gemma-2-2B	4	Rand	85.00 _{0.94}	92.34 _{0.75}	82.84 _{0.45}	68.89 _{0.61}	40.45 _{1.11}	33.43 _{0.69}	9.14 _{1.38}	69.03 _{0.34}
		TopK	90.67 _{0.55}	95.14 _{0.18}	84.57 _{0.35}	69.93 _{0.47}	41.33 _{0.85}	34.39 _{0.71}	53.39 _{1.88}	68.19 _{0.76}
		Div	89.63 _{0.54}	92.55 _{0.44}	84.21 _{0.37}	71.03 _{0.62}	40.55 _{2.15}	32.75 _{1.64}	31.29 _{1.47}	67.73 _{1.18}
		TopK-Div	91.66 _{0.57}	95.01 _{0.22}	84.51 _{0.32}	70.72 _{0.52}	42.74 _{0.57}	34.39 _{0.64}	61.04 _{1.55}	67.85 _{0.60}
Gemma-2-2B	8	Rand	89.96 _{0.51}	94.11 _{0.47}	82.62 _{0.33}	70.26 _{0.34}	36.44 _{0.82}	34.55 _{0.46}	16.68 _{2.01}	69.99 _{0.68}
		TopK	92.22 _{0.46}	95.58 _{0.23}	84.30 _{0.19}	71.06 _{0.44}	43.05 _{0.69}	36.45 _{0.42}	61.00 _{1.44}	69.15 _{0.44}
		Div	91.81 _{0.48}	94.57 _{0.37}	84.37 _{0.38}	72.22 _{0.62}	38.87 _{1.28}	34.07 _{1.12}	35.29 _{1.25}	69.31 _{0.99}
		TopK-Div	92.40 _{0.28}	95.53 _{0.20}	84.39 _{0.24}	71.99 _{0.36}	42.93 _{0.66}	36.47 _{0.47}	68.93 _{1.35}	70.09 _{0.54}
Gemma-2-9B	4	Rand	93.33 _{0.52}	96.15 _{0.23}	89.52 _{0.25}	74.70 _{0.70}	84.29 _{0.43}	74.40 _{0.47}	13.89 _{1.67}	77.19 _{0.89}
		TopK	94.47 _{0.48}	96.34 _{0.20}	90.50 _{0.16}	75.19 _{0.25}	84.25 _{0.73}	74.50 _{0.55}	61.14 _{1.33}	74.82 _{0.70}
		Div	93.45 _{0.46}	95.69 _{0.23}	90.03 _{0.24}	74.85 _{0.31}	84.44 _{0.91}	73.34 _{0.62}	36.29 _{1.05}	75.96 _{0.55}
		TopK-Div	93.34 _{0.34}	96.57 _{0.16}	90.19 _{0.19}	75.60 _{0.54}	83.54 _{0.56}	74.47 _{0.63}	70.43 _{1.24}	75.05 _{0.41}
Gemma-2-9B	8	Rand	93.30 _{0.36}	96.09 _{0.23}	89.39 _{0.28}	75.98 _{0.56}	84.34 _{0.54}	74.48 _{0.63}	24.36 _{1.19}	79.23 _{0.64}
		TopK	94.20 _{0.28}	96.55 _{0.16}	90.62 _{0.16}	76.14 _{0.63}	83.57 _{0.53}	75.36 _{0.43}	71.00 _{1.20}	77.59 _{0.42}
		Div	93.41 _{0.20}	95.94 _{0.25}	89.90 _{0.19}	76.60 _{0.32}	84.22 _{0.52}	74.69 _{0.64}	42.07 _{1.10}	79.05 _{0.93}
		TopK-Div	94.04 _{0.29}	96.58 _{0.04}	90.48 _{0.22}	76.53 _{0.21}	83.85 _{0.66}	75.16 _{0.32}	76.32 _{0.85}	77.64 _{0.63}
Gemma-2-27B	4	Rand	94.16 _{0.40}	96.06 _{0.26}	89.99 _{0.39}	76.15 _{0.41}	90.16 _{0.33}	70.76 _{0.71}	18.68 _{1.83}	80.54 _{0.59}
		TopK	95.00 _{0.33}	96.47 _{0.11}	89.64 _{0.15}	76.47 _{0.46}	89.73 _{0.38}	69.27 _{0.49}	67.75 _{1.45}	78.43 _{0.49}
		Div	94.15 _{0.43}	95.57 _{0.36}	89.78 _{0.40}	76.97 _{0.47}	90.68 _{0.23}	69.85 _{1.60}	41.75 _{2.16}	79.91 _{1.14}
		TopK-Div	94.43 _{0.18}	96.59 _{0.12}	89.76 _{0.16}	76.15 _{0.41}	89.55 _{0.23}	69.62 _{0.56}	79.11 _{0.97}	78.39 _{0.46}
Gemma-2-27B	8	Rand	94.59 _{0.45}	96.42 _{0.46}	89.62 _{0.21}	77.17 _{0.69}	90.23 _{0.25}	69.04 _{0.53}	30.36 _{2.04}	81.81 _{0.37}
		TopK	94.30 _{0.32}	96.60 _{0.18}	90.14 _{0.24}	77.20 _{0.42}	89.95 _{0.27}	66.54 _{0.37}	77.54 _{1.00}	80.72 _{0.38}
		Div	94.61 _{0.29}	95.95 _{0.27}	90.21 _{0.23}	78.47 _{0.41}	90.45 _{0.22}	70.02 _{0.91}	46.96 _{2.23}	81.38 _{0.89}
		TopK-Div	94.56 _{0.29}	96.43 _{0.13}	90.34 _{0.22}	77.29 _{0.31}	89.70 _{0.25}	68.48 _{0.38}	82.39 _{1.35}	80.90 _{0.53}

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

model	K	Method	GeoQuery			
			Standard	Tmcd	Template	Length
CodeLlama-7B-hf						
4	4	Rand	12.21	10.43	9.75	3.61
		TopK	57.86	35.68	36.90	25.91
		Div	33.11	21.95	27.22	13.16
		TopK-Div	67.86	40.00	50.34	33.64
8	8	Rand	21.11	17.25	17.93	8.05
		TopK	58.21	42.95	48.06	32.95
		Div	38.29	24.75	31.41	16.48
		TopK-Div	66.79	46.36	55.13	39.09
4	8	Rand	13.82	11.66	11.73	4.11
		TopK	63.57	37.73	38.04	29.77
		Div	37.43	23.23	26.51	18.07
		TopK-Div	72.14	44.32	53.99	40.68
8	8	Rand	24.89	18.64	21.16	9.52
		TopK	69.64	44.09	56.04	41.14
		Div	42.71	26.00	30.59	20.68
		TopK-Div	79.29	47.73	64.24	44.32
4	8	Rand	15.75	13.02	14.42	5.98
		TopK	63.57	42.05	43.51	30.23
		Div	39.86	24.75	32.92	19.18
		TopK-Div	72.50	48.18	56.72	44.55
8	8	Rand	25.46	20.50	24.76	11.73
		TopK	73.93	48.41	56.04	44.09
		Div	44.18	27.50	39.29	24.32
		TopK-Div	80.71	50.00	64.92	48.86

Table 14: Results of GPT-4o-mini and Deepseek-v3 in Math Task.

Model	K	Dataset	Method			
			Rand	TopK	Div	TopK-Div
GPT-4o-mini	4	GSM8K	93.03	91.06	92.80	92.27
		PRM800K	68.40	66.60	71.20	69.20
Deepseek-v3	4	GSM8K	96.13	95.75	95.91	95.45
		PRM800K	85.00	87.00	85.00	86.80

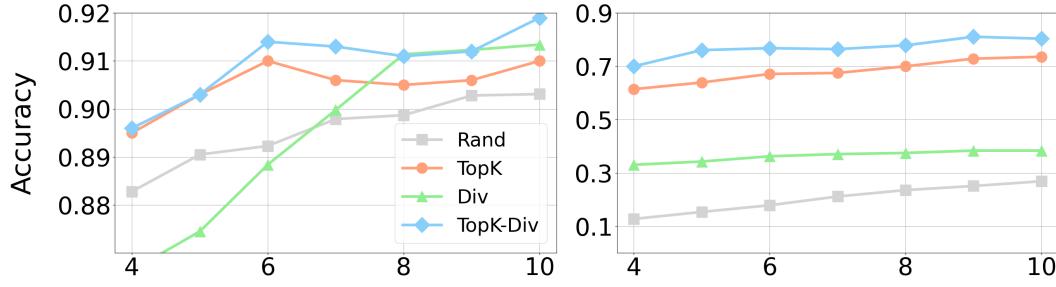


Figure 5: The performance of different demonstration selection methods with different number of shots K . **Left:** sentiment classification task with demonstrations come from Amazon and queries come from SST-2. **Right:** text to SQL task with demonstrations and query come from the training and test set of GeoQuery Standard Split.

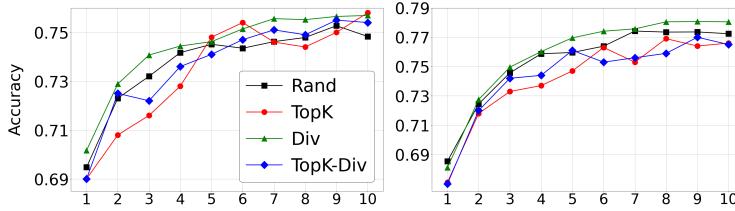


Figure 6: **(The accuracy of different methods with different number of shots K on reading comprehension tasks.)** We choose report the results on Llama-3.1-8B, with Sentence-BERT embeddings (all-roberta-large-v1). **Left:** results where demonstration and query come from SCIQ. **Right:** results where demonstration and query come from SQuAD.

D.2 CHANGING THE NUMBER OF SHOTS

In this section, we investigate how the performance advantage of diversity-aware methods over TopK evolves with increasing shot count. Our results in Figure 5 show that the improvement from diversity-aware selection (Div) remains substantial even with higher number of shots.

We believe that as the shot number increases, there is an increase in redundant information among the examples selected by the TopK method. In contrast, the TopK-Div method minimizes the occurrence of redundant information as much as possible, thereby enabling the model to more clearly identify the task theme.

Figure 5 presents the relative improvement on the GeoQuery standard split and SCIQ — two tasks where diversity-aware methods showed clear benefits (Section 3.1) — across different sizes of the Llama-3.1/3.2 and Gemma-2 model families. The results indicate that, in general, the relative improvement from diversity-aware selection does not diminish significantly as model size increases. This underscores the continued importance of understanding diversity’s role in demonstration selection.

We present the experimental results on reading comprehension task (SCIQ, SQuAD), where diversity-aware methods perform well, with different numbers of shots K ranging from 1 to 10. We test different methods on the Llama-3.1-8B model. Figure 6 summarizes. To our surprise, when $k = 1$, TopK performs significantly worse than Rand on both datasets, indicating that the accuracy of these

1458 Table 15: Results of K-Means Method in Math Task. We add the K-Means baseline based on Table 1
 1459 in our paper. The implementation of K-Means consists of two steps: First, partition the input into k
 1460 clusters using the k -Means method. Second, select k points as demonstrations by choosing the point
 1461 closest to the cluster center within each cluster.

1462

model	K	Dataset	Method				
			Rand	Topk	Div	Topk-Div	K-means
Llama-3.1-7B	4	GSM8K	82.24	81.99	82.14	81.74	83.89
		GSM-Plus-M	66.90	65.30	66.92	66.12	68.10
	8	GSM8K	82.81	82.26	82.98	82.63	82.36
		GSM-Plus-M	66.72	65.99	66.56	66.48	66.52
Gemma-2.9B	4	GSM8K	84.29	84.25	84.44	83.54	85.24
		GSM-Plus-M	74.40	74.50	73.34	74.47	74.52
	8	GSM8K	84.34	83.57	84.22	83.85	84.97
		GSM-Plus-M	74.48	75.36	74.69	75.16	76.29
Mistral-7B-v0.3	4	GSM8K	48.78	49.28	49.49	49.99	43.90
		GSM-Plus-M	37.20	38.20	37.50	38.45	35.50
	8	GSM8K	47.86	48.43	48.33	48.60	49.13
		GSM-Plus-M	36.32	37.35	36.12	37.81	36.41

1476

1477

1478 datasets is not solely related to the coverage of example sets. Under most settings of k , Div shows
 1479 significant advantages over TopK. Moreover, the correlation between example sets selected by Div
 1480 and test samples is relatively low. This sufficiently demonstrates that even when example samples do
 1481 not have coverage of test samples, they can still be high-quality examples, which is also consistent
 1482 with the good performance of Rand.

1483

1484

D.3 MORE DIVERSITY-AWARE METHOD

1485

1486

1487 In the main text, TopK-Div and Div are both diversity-aware methods that combine the TopK
 1488 method. We want to understand what happens when using a purely diversity-based method. Therefore,
 1489 we implemented the K-Means method: dividing the training set into k clusters by k-means algorithm
 1490 and then choose the nearest sample to the Centroid from each cluster (K-Means), K-Means can be
 1491 viewed as a purely diversity-based met.

1492

1493

1494 The results in Table 15 show that the K-Means method still has advantages compared to the TopK
 1495 method. In fact, we believe Rand can also be considered a purely diversity-based method. This
 1496 implies the advantage of diversity methods does not depend on the specific implementation.

1497

1498

D.4 ABALATIONS ON THE SIZE OF TRAINING SET

1499

1500

1501 To investigate whether the way diversity works is related to the size of the training set—for example,
 1502 whether the example selection strategy needs to change when the available training set is limited, We
 1503 conducted experiments on the SQuAD and SCIQ datasets by randomly sampling 50 examples from
 1504 each training set to create SCIQ-50 and SQuAD-50, while keeping the original testing set unchanged.

1505

1506

1507 When the available training set size is reduced, TopK still underperforms compared to Div, maintaining
 1508 an average performance gap of 1% in 4-shot and 8-shot settings.

1509

1510

D.5 ABLATIONS ON “BETTER” EMBEDDINGS

1511

1512 **“better” embedding in a cheating way.** All methods we test, except randomly chosen (Rand),
 1513 depend on an embedding model. It is always possible that the embedding model is not good enough.
 1514 Indeed, using Sentence-BERT on questions/input (optimized for semantic similarity) might not
 1515 be optimal for math tasks and text-to-SQL generation, and the ideal embedding might be highly
 1516 dependent on the structure or reasoning steps of the answer. In this section, we test if diversity
 1517 still helps when given a better embedding, computed in a “cheating” way: For math problems, we
 1518 append the gold answer after the question and compute the embedding using Sentence-BERT; For
 1519 text-to-SQL generation, we compute the occurrence of keywords in the answer (Levy et al., 2023).

1512 Table 16: Embedding on answer using Gemma-2-9B with 4 shots. Comparing to Table 1, the relative
 1513 ranking between the tested methods doesn't change.

		Rand	TopK	Div	TopK-Div
	GSM8K	82.21	84.53	84.14	84.69
	PRM800K	38.04	45.60	37.56	46.40
	GeoQuery(Standard)	13.71	79.64	54.32	84.29

1520
 1521 Table 17: **Results of different embeddings on Llama-3.1-8B.** We test different methods using
 1522 different similarity scores computation (“all-roberta-large-v1”, “BM25”, “BertScore”). We test
 1523 on Llama-3.1-8B model on math (using instruct model) and reading comprehension (using base
 1524 model). The numbers for embedding “all-roberta-large-v1” are copied from Table 1. The numbers
 1525 corresponding to Rand for BM25 and BertScore are also copied. We find that: (1) using another
 1526 embedding might affect the TopK performance, as we can observe an increase of performance for
 1527 TopK while changing to BM25 or BertScore. (2) Diversity still helps, since if we look at the best
 1528 performance with the best embedding, in most of the cases the best performance is still achieved by
 1529 diversity-aware methods.

Embedding	K	Method	Math		Reading	
			GSM8K	PRM800K	SQuAD	SCIQ
all-roberta-large-v1	4	Rand	82.40	43.50	75.87	74.17
		TopK	82.64	41.40	73.70	72.80
		Div	82.43	44.86	76.02	74.44
		TopK-Div	81.43	44.80	74.40	73.60
	8	Rand	82.77	43.32	77.35	74.79
		TopK	82.11	43.00	76.90	74.40
		Div	83.13	44.28	78.05	75.52
		TopK-Div	81.73	40.00	75.90	74.90
BM25	4	Rand	82.40	43.50	75.87	74.17
		TopK	81.88	42.00	73.80	74.40
		Div	82.47	44.12	76.65	72.74
		TopK-Div	81.20	45.00	75.50	74.30
	8	Rand	82.77	43.32	77.35	74.79
		TopK	82.94	44.80	76.60	75.20
		Div	83.44	43.92	78.97	74.12
		TopK-Div	83.02	45.60	77.50	74.50
BertScore	4	Rand	82.40	43.50	75.87	74.17
		TopK	81.58	45.60	75.00	74.30
		Div	82.81	44.06	74.16	73.06
		TopK-Div	81.05	44.40	74.90	73.20
	8	Rand	82.77	43.32	77.35	74.79
		TopK	82.34	42.60	76.40	75.50
		Div	83.09	43.68	76.00	74.95
		TopK-Div	81.58	44.00	75.70	74.70

1555 Table 16 summarizes the result using the “cheating” embeddings on Gemma-2-9B, and in general,
 1556 diversity still helps for these tasks.

1557
 1558 **Computing local structure for GeoQuery.** For the code-standard task, we tokenized the sample
 1559 answers at the word level and obtained 52 distinct tokens, with each dimension representing a token.
 1560 For a given sample, in its 52-dimensional vector, if the corresponding token appears in its answer, the
 1561 value at that position is 1, otherwise 0. We use this embedding as the code embedding on answers.

1562
 1563 **BM25 and BertScore for math and reading comprehension.** We conduct ablation studies on the
 1564 model to compute the similarity score, changing from cosine similarity from embeddings computed
 1565 by “all-roberta-large-v1” to BM25 and BertScore, and test different methods on math and reading
 comprehension tasks. Table 17 summarizes our results. We find that (1) using another embedding

1566 might affect the TopK performance, as we can observe an increase in performance for TopK while
 1567 changing to BM25 or BertScore. (2) Diversity still helps since if we look at the best performance
 1568 with the best embedding, in most cases, the best performance is still achieved by diversity-aware
 1569 methods.

1571 D.6 DECODING METHOD

1573 Table 18: Decode performance using Llama-3.1-8B on reading comprehension tasks. The number of
 1574 shot is fixed as 4.

1576	Decode	Test.	Rand	TopK	Div	TopK-Div
1577	Greedy	Squad	75.87	73.70	76.02	74.40
		Sciq	74.17	72.80	74.44	73.60
1579	Sampling	Squad	70.93	72.40	70.95	72.80
		Sciq	66.86	66.70	67.08	67.70

1582 In this part we show some preliminary results on changing the decoding strategy for reading comprehension
 1583 tasks (SQuAD and CommonsenseQA), since for code and math, greedy decoding is known to
 1584 perform well. By changing greedy decoding to sampling decoding (topP = 0.95, Temperature = 0.7),
 1585 we find that the performance of all tasks drops a lot (Table 18), which justifies our decoding strategy
 1586 selection.

1588 E THEORETICAL JUSTIFICATION AND SIMULATIONS

1590 In this section, we give a theoretical justification for combining diversity in demonstration selection
 1591 for ICL, even if the “embedding” is accurate (Theorems E.2 and E.3). Then we validate the superiority
 1592 of TopK-Div compared to TopK in more general settings. In Appendix E.3 and Appendix E.4, we
 1593 also employ the theoretical framework to conduct detailed simulation experiments.

1594 We consider the linear regression model, where there is a task vector $\theta_{\mathcal{T}} \in \mathbb{R}^d$. The data for this
 1595 task has embedded input $e \in \mathbb{R}^d$ and output $y = \langle \theta_{\mathcal{T}}, e \rangle$. We also have a demonstration set $D =$
 1596 $\{(e_i, y_i)\}_{i=1}^n$ with size n , where $y_i = \langle \theta_{\mathcal{T}}, e_i \rangle$ and e_i is drawn from the demonstration distribution
 1597 $\mathcal{D}_{\mathcal{E}}$. Now given a query e_q drawn from the query distribution $\mathcal{Q}_{\mathcal{E}}$, the goal of demonstration selection
 1598 is to select a subset $S = \{(e_{j_i}, y_{j_i})\}_{i=1}^K$, such that given the demonstrations $S = \{(e_{j_i}, y_{j_i})\}_{i=1}^K$, the
 1599 LLM predicts the output close to the gold label $y_q = \langle \theta_{\mathcal{T}}, e_q \rangle$, i.e., $y_q \approx \text{LLM}(S, e_q)$. We make the
 1600 following assumption on the mechanism of LLM for learning linear regression in-context, given the
 1601 demonstration S and the query e_q .

1602 **Assumption E.1 (ICL for linear regression).** Suppose that the task \mathcal{T} is to predict the value of
 1603 a linear function $y = \langle \theta_{\mathcal{T}}, e \rangle$ and K demonstrations $S = \{(e_{j_i}, y_{j_i})\}_{i=1}^K$ are selected. Denote
 1604 $E = [e_{j_1}, \dots, e_{j_K}]^{\top} \in \mathbb{R}^{K \times d}$ as the data matrix. Then given a query e_q , we assume that the
 1605 prediction given by the LLM is $y_{\text{pred}} = \langle e_q, E^{\dagger} E \theta_{\mathcal{T}} \rangle$. Namely, the LLM learns the min-norm solution
 1606 for the overparameterized linear regression.

1607 By this assumption, the prediction loss of e_q is

$$1608 \text{Loss}(e_q) := (y_{\text{pred}} - \langle \theta_{\mathcal{T}}, e_q \rangle)^2 = \langle \theta_{\mathcal{T}} - E^{\dagger} E \theta_{\mathcal{T}}, e_q \rangle^2.$$

1610 ICL for linear regression has been extensively studied, empirically and theoretically (Appendix A).
 1611 Theorem E.1 is also empirically justified, where (Akyürek et al., 2023) observed that after pretraining
 1612 an autoregressive transformer model on noiseless linear regression tasks, the transformer will learn
 1613 the min-norm solution for the linear regression in-context if the size of demonstrations $K < d$.

1614 We further assume that the embedding for each data $e \in \{0, 1\}^d$. This is inspired by the theoretical
 1615 framework that each problem from a specific task contains certain skills (or local structures), and an
 1616 LLM is able to solve that problem perfectly if the LLM knows all the skills (local structures) and is
 1617 able to compose the skills (local structures) together (Arora and Goyal, 2023; Yu et al., 2024; Zhao
 1618 et al., 2025). For example, for a specific math problem related to algebra, the skills required to solve
 1619 this problem are polynomial multiplication and solving equations, while for another math problem
 related to geometry, the skills required might be changed to coordinate systems and solving equations.

1620 It is also worth noting that the skill(local structure)-based embedding design also gains empirical
 1621 success. For example, (Levy et al., 2023; Didolkar et al., 2024) improves semantic parsing and (An
 1622 et al., 2023b) improves math ability by selecting demonstrations that require similar skills or local
 1623 structures to the query.

1624 **Example I: Diversity benefits from coverage.** We characterize the demonstration distribution $\mathcal{D}_{\mathcal{E}}$
 1625 and the query distribution $\mathcal{Q}_{\mathcal{E}}$ below. Let $l \geq 200$ be an even number and let $d = 4l$, where the
 1626 choice of 200 is to simplify the analysis. Let $\mathcal{D}_{\mathcal{E}}$ be: Uniformly draw a subset $T_1 \subseteq [2l]$ of size $l/2$
 1627 and a subset $T_2 \subseteq \{2l+1, \dots, 4l\}$ of size $l/2$, and output $e = e_{T_1 \cup T_2}$, i.e., the i -th entry of e is 1 iff
 1628 $i \in T_1 \cup T_2$. Assume the size n of D is sufficiently large that D covers the entire ground set of $\mathcal{D}_{\mathcal{E}}$.
 1629 Let $\mathcal{Q}_{\mathcal{E}}$ be: Uniformly draw a subset $T \subseteq [2l]$ of size l . We have the following theorem, whose proof
 1630 can be found in Appendix E.1.

1631 **Theorem E.2 (Justification example I).** *Suppose each entry of $\theta_{\mathcal{T}}$ is i.i.d. drawn from the uniform
 1632 distribution on $[0, 1]$. Let $K = 2$ and $\mathcal{D}_{\mathcal{E}}, \mathcal{Q}_{\mathcal{E}}$ be as defined above. For a query e_q drawn from $\mathcal{Q}_{\mathcal{E}}$,
 1633 let L, L' denote the expected prediction loss of e_q using TopK and TopK-Div, respectively, where
 1634 the randomness comes from $\theta_{\mathcal{T}}, e_q$, and the selection of demonstration examples. Then $L > L'$ for
 1635 any hyperparameter $\alpha \in (0, 1)$ for TopK-Div.*

1636 Intuitively, the selected two demonstration examples of TopK-Div must cover all non-zero entries
 1637 of e_q , while this property is unlikely to hold for TopK. This demonstrates that adding diversity may
 1638 increase the coverage of demonstration examples to queries and lead to a lower prediction loss,
 1639 aligning with the findings in Levy et al. (2023); Gupta et al. (2023); Ye et al. (2023).

1640 **Example II: Diversity is beyond coverage.** We again characterize $\mathcal{D}_{\mathcal{E}}$ and $\mathcal{Q}_{\mathcal{E}}$ below. Let $l \geq 3$ be
 1641 an integer and let $d = 4l$. Let $\mathcal{D}_{\mathcal{E}}$ be: Uniformly draw a subset $T_1 \subseteq [2l]$ of size $l-1$ and a subset
 1642 $T_2 \subseteq \{2l+1, \dots, 4l\}$ of size 1, and output $e = e_{T_1 \cup T_2}$. Assume the size n of D is sufficiently large
 1643 that D covers the entire ground set of $\mathcal{D}_{\mathcal{E}}$. Let $\mathcal{Q}_{\mathcal{E}}$ be: Uniformly draw a subset $T \subseteq [2l]$ of size l . We have the following theorem for this example, whose proof can be found in Appendix E.2.

1644 **Theorem E.3 (Justification example II).** *Suppose each entry of $\theta_{\mathcal{T}}$ is i.i.d. drawn from the uniform
 1645 distribution on $[0, 1]$. Let $K = 2$ and $\mathcal{D}_{\mathcal{E}}, \mathcal{Q}_{\mathcal{E}}$ be as defined above. For a query e_q drawn from $\mathcal{Q}_{\mathcal{E}}$,
 1646 let L, L' denote the expected prediction loss of e_q using TopK and TopK-Div, respectively, where
 1647 the randomness comes from $\theta_{\mathcal{T}}, e_q$, and the selection of demonstration examples. Then $L > L'$ if
 1648 hyperparameter $\alpha \geq 1 - 1/l$ for TopK-Div.*

1649 The demonstration examples of TopK and TopK-Div must cover all non-zero entries of e_q . The
 1650 smaller loss of TopK-Div is caused by selecting two demonstration examples with different non-
 1651 zero entries among $\{2l+1, \dots, 4l\}$, indicating that adding diversity could benefit ICL “beyond
 1652 coverage”.

1653 In Appendix E.3, we conduct simulations to validate that the advantage of TopK-Div over TopK,
 1654 driven by coverage and beyond, extends to more general settings, including the ID setting ($\mathcal{D}_{\mathcal{E}} = \mathcal{Q}_{\mathcal{E}}$)
 1655 and scenarios with different training scales for D .

1656 E.1 PROOF OF THEOREM E.2: JUSTIFICATION EXAMPLE I

1657 Fix a query e_q drawn from $\mathcal{Q}_{\mathcal{E}}$. By symmetry, we can assume the non-zero entry set of e_q is $[2l]$. For
 1658 simplicity, we let $\theta = \theta_{\mathcal{T}}$.

1659 **Demonstration example set for TopK-Div** We first analyze the demonstration example set for
 1660 TopK-Div, denoted by $S = \{s^{(1)}, s^{(2)}\} \subseteq D$. Let $T^{(t)}$ denote the non-zero entry set of $s^{(t)}$. By
 1661 the construction of \mathcal{D} , we first note that $|T^{(1)} \cap [l]| = \frac{l}{2}$. By the rule of TopK-Div, we also note
 1662 that $|T^{(2)} \cap [l]| = \frac{l}{2}$ and $T^{(1)} \cap T^{(2)} = \emptyset$. Such $s^{(2)}$ must exist since all elements in the ground set
 1663 of $\mathcal{D}_{\mathcal{E}}$ are contained in D , and is selected since it minimizes

$$1664 \alpha \cdot \text{Similarity}(e, e_q) + (1 - \alpha) \text{Diversity}(e, S)$$

1665 over all $e \in D - \{s^{(1)}\}$.

1666 **Demonstration example set for TopK** Next, we compute the expected prediction loss L for TopK.
 1667 Again, let its demonstration example set be $S = \{s^{(1)}, s^{(2)}\} \subseteq D$. Let $T^{(t)}$ denote the non-zero

entry set of $s^{(t)}$. By the construction of \mathcal{D} , we note that $|T^{(1)} \cap [l]| = |T^{(2)} \cap [l]| = \frac{l}{2}$. However, different from the case of TopK-Div, $|T^{(1)} \cap T^{(2)}|$ can vary from 0 to $l-1$. To handle this, we define $a = |T^{(1)} \cap T^{(2)} \cap [l]|$ and $b = |T^{(1)} \cap T^{(2)} \cap ([d] \setminus [l])|$, and define $L_{a,b}$ to be the expected prediction loss conditioned on pair (a, b) . Note that $0 \leq a, b \leq l/2$ and $a + b \leq l-1$.

Comparing L and L' We remark that L is a linear combination $\sum_{a,b} p_{a,b} L_{a,b}$ with $\sum_{a,b} p_{a,b} = 1$, where $p_{a,b}$ is the conditional probability with respect to intersection numbers (a, b) . Also, $L' = L_{0,0}$. By symmetry, we have the following observation:

$$\Pr[a \leq l/4 \leq b] \geq 0.25,$$

where $l/4$ is the expectation of a and b . Thus, we have

$$L \geq \sum_{a \leq l/4 \leq b} p_{a,b} L_{a,b} \geq \sum_{a,b \in l/4 \pm \sqrt{l}} p_{a,b} \cdot \min_{a \leq l/4 \leq b} L_{a,b} \geq 0.25 \min_{a \leq l/4 \leq b} L_{a,b}.$$

Thus, to prove $L > L'$, it suffices to prove the following lemma.

Lemma E.4 (Comparing $L_{a,b}$ and $L_{0,0}$). *For any $a \leq l/4 \leq b$, we have $L_{a,b} > 4L_{0,0}$.*

Proof. By symmetry, we assume $T^{(1)} = [\frac{l}{2}] \cup ([\frac{5}{2}l] - [2l])$, $T^{(2)} = ([l] - [a] - [\frac{l}{2} - a]) \cup ([3l - b] - [\frac{5}{2}l - b])$, $|T^{(1)} \cap T^{(2)} \cap [L]| = |T^{(1)} \cap T^{(2)} \cap [2L]| = a$, $|T^{(1)} \cap T^{(2)} \cap ([4L] - [2L])| = b$. The expected prediction loss for this setting equals $L_{a,b}$ since θ_i s are i.i.d. random variables. Let $\hat{\theta}$ denote the min-norm solution defined as in Assumption E.1. Then we have

$$\langle \hat{\theta} - \theta, e_{T^{(1)}} \rangle = \sum_{i=1}^{\frac{l}{2}} \hat{\theta}_i + \sum_{i=2l+1}^{\frac{5}{2}l} \hat{\theta}_i - \sum_{i=1}^{\frac{l}{2}} \theta_i - \sum_{i=2l+1}^{\frac{5}{2}l} \theta_i = 0, \quad (5)$$

and

$$\langle \hat{\theta} - \theta, e_{T^{(2)}} \rangle = \sum_{i=\frac{l}{2}-a+1}^{l-a} \hat{\theta}_i + \sum_{i=\frac{5}{2}l-b+1}^{3l-b} \hat{\theta}_i - \sum_{i=\frac{l}{2}-a+1}^{l-a} \theta_i - \sum_{i=\frac{5}{2}l-b+1}^{3l-b} \theta_i = 0. \quad (6)$$

To get the min-norm solution, we need to minimize the following Lagrangian multiplier

$$\mathcal{L}(\hat{\theta}, \lambda_1, \lambda_2) = \sum_{i=1}^{l-a} \hat{\theta}_i^2 - 2\lambda_1 \langle \hat{\theta} - \theta, e_{T^{(1)}} \rangle - 2\lambda_2 \langle \hat{\theta} - \theta, e_{T^{(2)}} \rangle.$$

To ensure the partial derivatives with respect to $\hat{\theta}$ equal to 0, we obtain that

$$\begin{aligned} \hat{\theta}_1 &= \dots = \hat{\theta}_{\frac{l}{2}-a} = \hat{\theta}_{2l+1} = \dots = \hat{\theta}_{\frac{5}{2}l-b} = \lambda_1, \\ \hat{\theta}_{\frac{l}{2}+1} &= \dots = \hat{\theta}_{l-a} = \hat{\theta}_{\frac{5}{2}l+1} = \dots = \hat{\theta}_{3l-b} = \lambda_2, \\ \hat{\theta}_{\frac{l}{2}-a+1} &= \dots = \hat{\theta}_{\frac{l}{2}} = \hat{\theta}_{\frac{5}{2}l-b+1} = \dots = \hat{\theta}_{\frac{5}{2}l} = \lambda_1 + \lambda_2, \\ \hat{\theta}_{l-a+1} &= \dots = \hat{\theta}_{2l} = \hat{\theta}_{3l-b+1} = \dots = \hat{\theta}_{4l} = 0. \end{aligned} \quad (7)$$

Adding Equations (5)-(7), we have

$$(l + a + b)(\lambda_1 + \lambda_2) = \sum_{i=1}^{\frac{l}{2}} \theta_i + \sum_{i=2l+1}^{\frac{5}{2}l} \theta_i + \sum_{i=\frac{l}{2}-a+1}^{l-a} \theta_i + \sum_{i=\frac{5}{2}l-b+1}^{3l-b} \theta_i. \quad (8)$$

1728 Thus, we conclude that
 1729

$$\begin{aligned}
 & \left[\sum_{i=1}^l \hat{\theta}_i - \sum_{i=1}^l \theta_i \right]^2 \\
 &= \left[\left(\frac{l}{2} - a \right) (\lambda_1 + \lambda_2) + a\lambda_1 + a\lambda_2 - \sum_{i=1}^l \theta_i \right]^2 \\
 &= \left[\frac{l}{2} (\lambda_1 + \lambda_2) - \sum_{i=1}^l \theta_i \right]^2 \\
 &= \left[\frac{\frac{l}{2}}{l+a+b} \left(\sum_{i=1}^{\frac{l}{2}} \theta_i + \sum_{i=2l+1}^{\frac{5}{2}l} \theta_i + \sum_{i=\frac{l}{2}-a+1}^{l-a} \theta_i + \sum_{i=\frac{5}{2}l-b}^{3l-b} \theta_i \right) - \sum_{i=1}^l \theta_i \right]^2 \\
 &= \left[-\frac{\frac{l}{2} + a + b}{l+a+b} \sum_{i=1}^{\frac{l}{2}-a} \theta_i - \frac{\frac{l}{2} + a + b}{l+a+b} \sum_{i=\frac{l}{2}+1}^{l-a} \theta_i - \frac{a+b}{l+a+b} \sum_{i=\frac{l}{2}-a+1}^{\frac{l}{2}} \theta_i \right. \\
 &\quad \left. + \frac{\frac{l}{2}}{l+a+b} \sum_{i=2l+1}^{\frac{5}{2}l} \theta_i + \frac{\frac{l}{2}}{l+a+b} \sum_{i=\frac{5}{2}l-b+1}^{3l-b} \theta_i \right]^2,
 \end{aligned}$$

1750 where the first equation follows from Equation (7) and the third equation follows from Equation (8).
 1751 Since each θ_i is i.i.d. drawn from the uniform distribution over $[0, 1]$, we have

$$\begin{aligned}
 L_{a,b} &= \mathbb{E} \left[(\hat{\theta} - \theta, e_q)^2 \right] \\
 &= \mathbb{E} \left[\left[\sum_{i=1}^l \hat{\theta}_i - \sum_{i=1}^l \theta_i \right]^2 \right] \\
 &= \frac{\left(\frac{l}{2} + a + b \right)^2 \left(\frac{l}{2} - a \right) + \frac{a(a+b)^2}{2} + \frac{l^3}{8} + \frac{3(bl-a^2-ab)^2}{2}}{6(l+a+b)^2}.
 \end{aligned}$$

1760 Thus, $L_{0,0} = \frac{l}{24}$. When $a \leq l/4 \leq b$, we have

$$\begin{aligned}
 L_{a,b} &> \frac{3(bl-a^2-ab)^2/2}{6(l+a+b)^2} \\
 &\geq \frac{(l^2/4 - 2(l/4)^2)^2}{4(2l)^2} \quad (a \leq l/4 \leq b) \\
 &= \frac{(l^2/8)^2}{16l^2} \\
 &= \frac{l^2}{1024} \\
 &\geq 4L_{0,0}. \quad (l \geq 200)
 \end{aligned}$$

1771 This completes the proof. □

1773 E.2 PROOF OF THEOREM E.3: JUSTIFICATION EXAMPLE II

1775 By symmetric, we fix $e_q = e_{[l]}$. Like the proof of Theorem E.2, we first study the demonstration
 1776 example sets, denoted by $S = \{s^{(1)}, s^{(2)}\} \subseteq D$, derived from TopK and TopK-Div. We observe
 1777 that for both algorithms, $|T^{(1)} \cap [l]| = |T^{(2)} \cap [l]| = l - 1$. Note that this property for TopK-Div
 1778 follows from the choice of $\alpha \geq 1 - \frac{1}{l}$, which ensures that $|T^{(2)} \cap [l]| \leq l - 2$ can not achieve the
 1779 minimum for

$$\alpha \cdot \text{Similarity}(e, e_q) + (1 - \alpha) \text{Diversity}(e, S)$$

1781 Thus, by symmetry, we can fix $T^{(1)} = [l - 1] \cup \{2l + 1\}$ and there are only three choices for $T^{(2)}$:

- 1782 • Case 1: $T^{(2)} = [l] \cup \{2l + 2\} - \{1\}$;
- 1783 • Case 2: $T^{(2)} = [l] \cup \{2l + 1\} - \{1\}$.
- 1784 • Case 3: $T^{(2)} = [l - 1] \cup \{2l + 2\}$.
- 1785
- 1786

1787 We define the expected prediction loss of these three cases to be L_1, L_2, L_3 , respectively. By the
 1788 definition of TopK-Div, we know that $L' = L_1$. Moreover, the expected prediction loss L of TopK
 1789 must be a linear combination of L_1, L_2, L_3 . Thus, it suffices to prove that $L_2 > L_1$ and $L_3 > L_1$.
 1790 Below, we compute L_1, L_2, L_3 separately.

1791 **Computing L_1 .** The computation idea is similar to that of Lemma E.4. Suppose $\hat{\theta}$ is the min-norm
 1792 solution and we have

$$1794 \sum_{i=1}^{l-1} \hat{\theta}_i + \hat{\theta}_{2l+1} - \sum_{i=1}^{l-1} \theta_i - \theta_{2l+1} = 0 \text{ and } \sum_{i=2}^l \hat{\theta}_i + \hat{\theta}_{2l+2} - \sum_{i=2}^l \theta_i - \theta_{2l+2} = 0.$$

1797 Again, consider the Lagrangian multiplier $\mathcal{L}(\hat{\theta}, \lambda_1, \lambda_2) = \sum_{i=1}^l (\hat{\theta}_i)^2 - 2\lambda_1 \langle \hat{\theta} - \theta, e_{T^{(1)}} \rangle - 2\lambda_2 \langle \hat{\theta} - \theta, e_{T^{(2)}} \rangle$. To ensure the partial derivative w.r.t. $\hat{\theta}$ equal to 0, we have

$$1801 \hat{\theta}_2 = \hat{\theta}_3 = \dots = \hat{\theta}_{l-1} = \lambda_1 + \lambda_2, \text{ and } \hat{\theta}_1 = \hat{\theta}_{2l+1} = \lambda_1, \hat{\theta}_l = \hat{\theta}_{2l+2} = \lambda_2.$$

1803 Combining the above equations, we have

$$1805 (2l - 2)(\lambda_1 + \lambda_2) = 2 \sum_{i=2}^{l-1} \theta_i + \theta_1 + \theta_l + \theta_{2l+1} + \theta_{2l+2}.$$

1808 Thus,

$$1810 \left(\sum_{i=1}^l \theta_i - \sum_{i=1}^l \hat{\theta}_i \right)^2 = [(l - 1)(\lambda_1 + \lambda_2) - \sum_{i=1}^l \theta_i]^2 = \left(\frac{\theta_{2l+1} + \theta_{2l+2} - \theta_1 - \theta_l}{2} \right)^2.$$

1813 Consequently, we have

$$1814 L_1 = \mathbb{E}[\langle \hat{\theta} - \theta, e_q \rangle^2] = \mathbb{E}\left[\left(\frac{\theta_{2l+1} + \theta_{2l+2} - \theta_1 - \theta_l}{2}\right)^2\right] = \frac{1}{12}.$$

1817 **Computing L_2 .** Similarly, we have

$$1819 \sum_{i=1}^{l-1} \hat{\theta}_i + \hat{\theta}_{2l+1} - \sum_{i=1}^{l-1} \theta_i - \theta_{2l+1} = 0, \text{ and } \sum_{i=2}^l \hat{\theta}_i + \hat{\theta}_{2l+2} - \sum_{i=2}^l \theta_i - \theta_{2l+2} = 0.$$

1822 Thus, using the Lagrangian multiplier, we obtain that

$$1823 \hat{\theta}_2 = \hat{\theta}_3 = \dots = \hat{\theta}_{l-1} = \hat{\theta}_{2l+1} = \lambda_1 + \lambda_2, \text{ and } \hat{\theta}_1 = \lambda_1, \hat{\theta}_l = \lambda_2.$$

1825 Combining the above equations, we have

$$1827 (2l - 1)(\lambda_1 + \lambda_2) = 2 \sum_{i=2}^{l-1} \theta_i + 2\theta_{2l+1} + \theta_1 + \theta_l.$$

1830 Thus,

$$1831 L_2 = \mathbb{E}\left[\left(\sum_{i=1}^l \theta_i - \sum_{i=1}^l \hat{\theta}_i\right)^2\right] = \mathbb{E}\left[\sum_{i=1}^l \theta_i - [(l - 1)(\lambda_1 + \lambda_2)]^2\right]$$

$$1832 = \mathbb{E}\left[\frac{1}{2l - 1} \sum_{i=2}^{l-1} \theta_i + \frac{l}{2l - 1} (\theta_1 + \theta_l) - \frac{2l - 2}{2l - 1} \theta_{2l+1}\right]^2 = \frac{9l^2 - 7l + 2}{12(12l - 1)^2} > L_1.$$

1836 **Computing L_3 .** Similarly, we have
 1837

$$1838 \quad \sum_{i=1}^{l-1} \hat{\theta}_i + \hat{\theta}_{2l+1} - \sum_{i=1}^{l-1} \theta_i - \theta_{2l+1} = 0, \text{ and } \sum_{i=1}^{l-1} \hat{\theta}_i + \hat{\theta}_{2l+2} - \sum_{i=1}^{l-1} \theta_i - \theta_{2l+2} = 0.$$

$$1839$$

$$1840$$

1841 Using the Lagrangian multiplier, we obtain that
 1842

$$1843 \quad \hat{\theta}_1 = \hat{\theta}_2 = \hat{\theta}_3 = \dots = \hat{\theta}_{l-1} = \lambda_1 + \lambda_2, \text{ and } \hat{\theta}_{2l+1} = \lambda_1, \hat{\theta}_{2l+2} = \lambda_2.$$

$$1844$$

1845 Combining the above equations, we have
 1846

$$1847 \quad (2l-1)(\lambda_1 + \lambda_2) = 2 \sum_{i=1}^{l-1} \theta_i + \theta_{2l+1} + \theta_{2l+2}.$$

$$1848$$

$$1849$$

1850 Thus,
 1851

$$1852 \quad L_3 = \mathbb{E}\left[\left(\sum_{i=1}^l \theta_i - \sum_{i=1}^l \hat{\theta}_i\right)^2\right] = \mathbb{E}\left[\sum_{i=1}^l \theta_i - [(l-1)(\lambda_1 + \lambda_2)]^2\right]$$

$$1853 = \mathbb{E}\left[\frac{1}{2l-1} \sum_{i=1}^{l-1} \theta_i + \theta_l - \frac{l-1}{2l-1} (\theta_{2l+1} + \theta_{2l+2})\right]^2 = \frac{9l^2 - 7l + 2}{12(2l-1)^2} > L_1.$$

$$1854$$

$$1855$$

$$1856$$

1857 Overall, we complete the proof of Theorem E.3.
 1858

1859 E.3 EXPERIMENT SETTINGS

1860 We consider the ID setting with $\mathcal{D}_{\mathcal{E}} = \mathcal{Q}_{\mathcal{E}}$.
 1861

1862 **Metric for coverage.** Given a sample (e, y_E) , let $T^{(e)}$ denote the non-zero entry set of e . Given a
 1863 demonstration example set $S \subseteq D$ and a query e_q , we define the coverage ratio of S with respect to
 1864 e_q to be:
 1865

$$1866 \quad r_S(e_q) := \frac{|(\bigcup_{e \in S} T^{(e)}) \cap T^{(e_q)}|}{|T^{(e_q)}|},$$

$$1867$$

1868 i.e., the ratio of non-zero entries of e_q covered by samples in S . By definition, $r_S(e_q) \in [0, 1]$ and a
 1869 larger $r_S(e_q)$ represents higher coverage. Specifically, when $r_S(e_q) = 1$, we say e_q is fully covered
 1870 by S . Moreover, given a method \mathcal{A} that generates a demonstration example set $A(e_q) \subseteq D$ for each
 1871 query e_q , we define

$$1872 \quad r(\mathcal{A}) := \mathbb{E}_{e_q \sim \mathcal{Q}_{\mathcal{E}}} [r_{\mathcal{A}(e_q)}(e_q)] \quad (9)$$

$$1873$$

1874 to be the expected value of its coverage ratio $r_{\mathcal{A}(e_q)}(e_q)$. If $r(\mathcal{A}) = 1$, we say every query is fully
 1875 covered by \mathcal{A} .

1876 We want to study the loss difference between TopK-Div and TopK under two scenarios: 1)
 1877 when query e_q is fully covered by both algorithms TopK-Div and TopK, i.e., $r(\text{TopK-Div}) =$
 1878 $r(\text{TopK}) = 1$; and 2) when the coverage ratio of TopK-Div is smaller than that of TopK, i.e.,
 1879 $r(\text{TopK-Div}) < r(\text{TopK})$.
 1880

1881 **Parameters.** Let $d = 200$. Let l vary from 3, 4, 8. Let $K = 4$ or 8. Let $\mathcal{D}_{\mathcal{E}} = \mathcal{Q}_{\mathcal{E}}$ be the
 1882 distribution that first samples a subset $T \subseteq [d]$ of size l and then generate e_T . We set the size of
 1883 training set D to be $|D| = d \times \text{train_scale}$, where $\text{train_scale} \in \{1, 5, 10\}$.

1884 For each pair (l, K) , we generate a testing set D_{test} of size 100. We ensure that $D_{\text{test}} \cap D = \emptyset$. We
 1885 report the expected prediction loss and coverage ratio of TopK and TopK-Div for each pair (l, K) .
 1886

1887 E.4 RESULT AND DISCUSSIONS

1888 The results, reported in Table 19, reveal key insights into the performance differences between
 1889 TopK and TopK-Div. We observe that when $l = 8$, the coverage ratio of TopK is lower than

1890 Table 19: **(Simulation of the min-norm solution)** “Coverage” represents the coverage ratio of
 1891 methods, defined as in Equation (9). For each random seed, we selected one hundred test samples.
 1892 We report the average results across 3 different random seeds for each metric.

1894 Method	1895 Shot	1896 Metric	1897 Train scale = 1			1898 Train scale = 5			1899 Train scale = 10		
			1900 $l = 3$	1901 $l = 4$	1902 $l = 8$	1903 $l = 3$	1904 $l = 4$	1905 $l = 8$	1906 $l = 3$	1907 $l = 4$	1908 $l = 8$
1909 TopK	1910 $K = 4$	1911 Loss	0.21	0.31	12.70	0.15	0.30	9.55	0.19	0.30	7.51
		1912 Coverage	1.00	1.00	0.55	1.00	1.00	0.61	1.00	1.00	0.66
1913 TopK-Div	1914 $K = 8$	1915 Loss	0.47	0.57	3.09	0.43	0.84	1.33	0.45	0.83	1.19
		1916 Coverage	1.00	1.00	0.75	1.00	1.00	0.80	1.00	1.00	0.81
1917	1918 $K = 4$	1919 Loss	0.19	0.32	10.25	0.18	0.31	5.47	0.21	0.29	3.97
		1920 Coverage	1.00	1.00	0.63	1.00	1.00	0.75	1.00	1.00	0.80
1921	1922 $K = 8$	1923 Loss	0.31	0.38	2.58	0.23	0.38	1.32	0.20	0.38	1.75
		1924 Coverage	1.00	1.00	0.87	1.00	1.00	0.94	1.00	1.00	0.94

1905 that of TopK-Div, while its loss is significantly higher. For example, when $l = 8$, $K = 4$, and
 1906 train_scale = 5, the coverage ratio is $r(\text{TopK}) = 0.61$, compared to $r(\text{TopK-Div}) = 0.75$, while
 1907 the loss for TopK is 9.55, notably larger than the 5.47 observed for TopK-Div. This demonstrates
 1908 that incorporating diversity can reduce prediction loss by improving coverage, aligning with Theorem
 1909 E.2.

1910 When $l = 3$ or 4, the coverage ratios of TopK and TopK-Div are both 1. We find that the loss of
 1911 TopK is comparable to or even lower than that of TopK-Div when $K = 4$, but significantly higher
 1912 when $K = 8$, across various training scales. For instance, when $l = 3$, $K = 8$, and train_scale = 5,
 1913 the loss for TopK is 0.43, whereas for TopK-Div it is 0.23. This supports our findings in Theorem
 1914 E.3, demonstrating that diversity can enhance in-context learning beyond just coverage. The inverse
 1915 trend in loss between $K = 4$ and $K = 8$ suggests that increasing coverage is beneficial when
 1916 the query is not fully covered but becomes redundant when the demonstration example set already
 1917 provides sufficient coverage.

1919 THE USE OF LARGE LANGUAGE MODELS (LLMs)

1920 We employed large language models (LLMs) solely for word-level grammar checking and minor
 1921 stylistic refinement of the manuscript. Beyond this limited function, LLMs did not contribute to
 1922 any other aspects of our research or writing, including conceptualization, experimental design, data
 1923 analysis, or interpretation of results.

1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943