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ABSTRACT

In-context learning (ICL) is a crucial capability of current large language models
(LLMs), where the selection of examples plays a key role in performance. While
most existing approaches focus on selecting the most similar examples to the
query, the impact of diversity in example selection remains underexplored. We
systematically investigate the role of diversity in in-context example selection
through experiments across a range of tasks, from sentiment classification to more
challenging math and code problems. Experiments on Llama-3.1, Gemma-2, and
Mistral-v0.3 families of models show that diversity-aware selection methods im-
prove performance, particularly on complex tasks like math and code, and enhance
robustness to out-of-distribution queries. To support these findings, we introduce
a theoretical framework that explains the benefits of incorporating diversity in
in-context example selection.

1 INTRODUCTION

In-context learning (ICL) (Brown et al., 2020) has emerged as one of the most significant and versatile
capabilities of large language models (LLMs). This paradigm allows a model to adapt to a vast array
of new tasks on the fly, simply by conditioning on a prompt containing a few input-output examples,
all without requiring updates to its parameters. The power and resource efficiency of ICL have made
it a cornerstone of LLM applications, ranging from simple text classification(Min et al., 2022) and
commonsense reasoning (Srivastava et al., 2023) to complex, multi-step tasks like mathematical
problem-solving(Wei et al., 2022) and code generation (Chen et al., 2021).

The effectiveness of ICL, however, is highly sensitive to the choice of in-context examples (Lu
et al., 2021; Liu et al., 2021; Chang and Jia, 2023). This makes example selection a critical area of
study. To address this, prior work has explored various selection strategies: choosing examples most
similar to the query in embedding space (Liu et al., 2021; Yang et al., 2022; Wu et al., 2023; Qin
et al., 2023), maximizing feature coverage (Levy et al., 2023; Ye et al., 2023; Gupta et al., 2023),
selecting based on difficulty (Ma et al., 2025; Swayamdipta et al., 2020; Yuan et al., 2025; Cook
et al., 2025), or choosing examples based on sensitivity (Chen et al., 2023). Other approaches train
deep neural retrievers (Karpukhin et al., 2020; Rubin et al., 2022; Luo et al., 2023; Scarlatos and
Lan, 2023) or leverage feedback from large language models to guide selection (Li and Qiu, 2023a;
Chen et al., 2023; Wang et al., 2023). More discussion can be found in Appendix A. Among these,
similarity-based methods remain the fundamental baseline due to their conceptual simplicity and
consistent empirical success. However, relying solely on similarity can lead to redundancy among
demonstrations and potentially omit important but less similar features (Levy et al., 2023; Gupta
et al., 2023).

Within machine learning, diversity is also a fundamental principle for building robust and generaliz-
able models, and its importance is widely recognized in related domains—such as fixed-prompt ICL
with global demonstration sets (Li and Qiu, 2023b; Luo et al., 2024), active learning (Giouroukis
et al., 2025; Shi and Shen, 2016), coreset construction (Wan et al., 2024; Zhan et al., 2025; Sener
and Savarese, 2018), and instruction tuning (Wang et al., 2024). By exposing a model to a varied set
of examples, we can prevent overfitting and encourage the learning of more abstract, transferable
patterns. Given its foundational role, a deep understanding of diversity is crucial for unlocking the
full potential of in-context learning.

Despite its importance, the explicit role of diversity in retrieval-based ICL remains underexplored.
While some recent work has incorporated feature coverage as a proxy for diversity (Levy et al., 2023;
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(a) TopK selection

“Coreset”
based on
diversity

(b) Div selection

1st picked

2nd picked

3rd picked

(c) TopK-Div selection

Figure 1: An illustrative example for TopK, Div, and TopK-Div methods. Point filled in black
denotes the query. (a) TopK: Select the most similar demonstrations (3 points filled in red) in the
embedding space. (b) Div: First select a “coreset” based on some diversity metric, which is fixed for
all queries (6 points filled in gray or red). Then select the most similar demonstrations (3 points filled
in red) among this “coreset”. (c) TopK-Div: Select the demonstrations sequentially based on the
linear combination of similarity to the query and the diversity with the selected examples. The first
example is the one most similar to the query. When picking the second, it is balanced between the
similarity to the query and the diversity from the first example.

Ye et al., 2023; Gupta et al., 2023), this approach is limited in scope. Coverage primarily aims to span
the concrete input features of a given query, which is a narrower goal than promoting the broader
representational variety that is central to true diversity; see also examples in Appendix E that compare
coverage with diversity. Other diversity-aware approaches have also been proposed, such as the S3
method from Kumari et al. (2024). However, that study was confined to simple classification and
selection tasks. Consequently, the effectiveness of diversity in more complex, reasoning-based ICL
applications remains an open question.

Furthermore, pursuing diversity without care can be counterproductive, as explicit diversity-aware
selection risks retrieving examples that are too dissimilar from the query, potentially harming
performance (An et al., 2023a). The field, therefore, lacks a systematic understanding of this trade-off.
It remains unclear whether and when explicit diversity is beneficial—especially for tasks that lack
clear local structure and demand more abstract reasoning. This gap in knowledge motivates the
following fundamental questions:

Should we explicitly consider diversity when selecting in-context examples? If
so, under what conditions does it outperform similarity-based methods? And
fundamentally, why does diversity help?

1.1 OUR CONTRIBUTIONS

We present, to the best of our knowledge, the first systematic investigation of the role of diversity in
in-context learning. Our study spans a broad range of tasks—including sentiment classification, com-
monsense reasoning, math generation, reading comprehension, and SQL code generation—covering
diverse types and varying levels of difficulty. We compare five demonstration selection methods:
(1) random selection (Rand); (2) selecting the K most similar examples to the query (TopK) (Liu
et al., 2021); (3) Select the most representative examples from a similarity-reduced subset (Div-S3)
(Kumari et al., 2024); (4) selecting similar examples from a diversity-reduced subset (Div) (Su et al.,
2023), which relates to DPP-based diversity (Chen et al., 2018); and (5) a sequential method that
balances similarity to the query and diversity among selected examples (TopK-Div). We are the first
to systematically evaluate methods for (4) and (5) in the ICL setting. Their approaches are particularly
compelling because they offer explicit control over the diversity level, enabling a tunable trade-off
between selecting highly relevant examples and avoiding redundancy—a key factor in optimizing
LLM performance within limited context windows. See Figure 1 for illustration and Section 2 for
formal definitions.

Through experiments on frontier open-source models (Llama-3.1 (Dubey et al., 2024), Gemma-
2 (Team et al., 2024), and Mistral-v0.3 (Jiang et al., 2023)), we reach the following findings.

Finding 1: Diversity-aware demonstration selection methods achieve better performance on more
“challenging” tasks like reading comprehension, math, and code. As task difficulty increases, diversity-
aware methods yield greater relative benefits, narrowing the gap with the TopK method or even
surpassing it.
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While changing the tasks and even the language model to use will change the ranking of the demon-
stration selection methods we test, in general we find that diversity-aware methods, namely Div,
TopK-Div and Div-S3, perform better on more challenging tasks like reading comprehension,
math, and simple code generation. On the other hand, on simple tasks like sentiment classification
and multiple-choice, TopK performs the best (Table 1). TopK-Div achieves, on average, more than
a 1% improvement over TopK on difficult tasks, whereas on simpler tasks TopK holds a marginal
0.14% average advantage over TopK-Div. Quantitative analysis of performance improvements under
varying levels of added diversity for TopK-Div and Div demonstrates that more challenging tasks
benefit more from increased diversity, further validating this finding (Figure 4,Table 7).

Finding 2: Diversity-aware methods work better for out-of-distribution queries. When the query and
demonstrations come from different distributions, diversity-aware methods are more likely to perform
well. For example, on sentiment classification, when both demonstration and query come from the
SST-2 dataset, which consists of movie reviews, TopK performs the best, and there is a gap with all
other methods (Table 2). The average performance gap between TopK and TopK-Div is 1.26%
across the two models. However, when changing the demonstrations from SST-2 to IMDB (which
also consists of movie reviews), TopK-Div outperforms TopK by 0.6% on average (Table 2). A
similar observation holds for various splits of Geoquery dataset (Figure 2).

Finding 3: In the same task, diversity-aware methods likely perform better on “harder” examples, e.g.
reading comprehension with longer context, or SQL code generation with more structures (Table 3).
On the easier samples from GeoQuery and SQuAD, TopK-Div achieves an average accuracy
improvement of 2.12% over TopK. On the more challenging samples, the average improvement
of TopK-Div over TopK increases to 6.47%. Our analysis also reveals that diversity exhibits a
“beyond-coverage” phenomenon, both at the task level and the example level (see discussion in
Section 3.1 and Appendix E).

We discuss these findings in detail in Section 3. In addition, we conduct ablation studies across model
scales (ranging from 1B to 70B parameters) and varying numbers of in-context demonstrations to
examine the robustness of our conclusions. Beyond empirical trends, we extract practical insights
from our study: our results offer actionable guidance for tuning the diversity level of demonstrations
depending on the task type, such as reasoning, generation, or classification. Overall, our findings
deepen the understanding of how diversity influences in-context learning, and inform principled
strategies for demonstration selection in real-world applications.

2 BACKGROUND AND NOTATIONS

In this section, we introduce the in-context learning (ICL) paradigm, relevant demonstration selection
methods, and associated notations.

In-context learning (ICL). A task T = (X ,Y, P (y|x)) defines a probabilistic mapping from an
input x ∈ X to an output y ∈ Y . For example, the task can be sentiment classification where the
input space contains reviews of products and the output space contains the customer’s corresponding
sentiment (positive or negative). We are provided with a demonstration set D = {(xi, yi)}ni=1, where
inputs xi are drawn from a demonstration distribution DX and yi ∼ PT (y|xi). Queries xq are
drawn from a query distribution QX , which may differ from DX (representing shifts in domain or
complexity). For math tasks, the demonstration set may contain many elementary-level problems,
while the query may require solving more advanced, middle-school-level problems. Now given a
query input xq ∼ QX , the in-context learning paradigm refers to the following capability of a large
language model.
Definition 2.1 (In-Context learning (ICL)). Given an LLM, a prompting strategy Prompt, a
demonstration set D = {(xi, yi)}ni=1, and a query xq, ICL involves selecting a small subset S =
{(xji , yji)}Ki=1 with shots K from the demonstrations D. The LLM then predicts the output yq for
xq as: PT (y|xq) ≈ LLM(Prompt(S, xq)).

Demonstration selection for ICL. Choosing a small subset S (see Theorem 2.1) is vital due to LLM
context limits, efficiency needs, and the observation that excessive demonstrations can impair perfor-
mance. Prior work has shown that ICL performance is highly sensitive to this selection (Liu et al.,
2021), and thus sparks the study for demonstration selection. While numerous selection strategies are
proposed , the most notable and effective methods are the ones that select the demonstrations most
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similar to the query in the embedding space. Efforts are also made to retrieve the demonstrations
using another model (can be another LLM), as well as considering diversity/coverage. However, there
is no consensus on which method to use in a specific setting, and there is nearly no understanding of
these methods (further discussed in Appendix A).

To analyze these methods and the role of diversity, we focus on five representative selection strategies:

Method 1: Rand. For a query xq, this method uniformly and randomly selects K demonstrations
from the set D. Note that Rand can also be viewed as a method that is aware of diversity, but it has
nothing to do with the coverage.

Method 2: TopK. This method selects K demonstrations from D that exhibit the highest cosine
similarity to the query xq within an embedding space mapped by E : X → E . It maximizes

Similarity(E(xi), E(xq)) :=
⟨E(xi),E(xq)⟩

∥E(xi)∥·∥E(xq)∥ . (1)

Method 3: Div-S3. This method, proposed by Kumari et al. (2024) for in-context demonstration
selection, combines a similarity-based pruning step with a greedy submodular optimization to select
examples that are both relevant and diverse. The approach aims to ensure representative coverage
while maintaining closeness to the query. Although submodular diversity techniques have been
well-studied in classical data selection (Lin and Bilmes, 2011; Prasad et al., 2014), their application
in ICL has not been systematically explored.

Method 4: Div. This approach first constructs a diverse “coreset” Dr ⊂ D of size m (where
K ≤ m ≤ n). Starting with one randomly chosen demonstration, Dr is built greedily by adding
(x, y) ∈ D \Dr that maximizes

Diversity(E(x), Dr) := 1− 1
|Dr|

∑
(xj ,yj)∈Dr

Similarity(E(x), E(xj)), (2)

we stop after Dr contains m examples. This is the procedure to get a diverse set of demonstrations for
a task (Su et al., 2023). Subsequently, TopK selection is applied to Dr to choose K demonstrations
for the query xq. The coreset size m controls the trade-off between diversity and similarity: setting
m = K emphasizes diversity by forcing selection from a small pool, while increasing m shifts the
method closer to TopK by enlarging the candidate set based on similarity.

Method 5: TopK-Div. This method serves as a combination of TopK and Div, which includes
some awareness of the diversity through similarity-based selection. It is also a greedy-like procedure
when selecting the demonstration set S. Suppose that S does not reach size K, then we select the
demonstration (x, y) ∈ D \K that maximize the following metric:

α · Similarity(E(x), eq) + (1− α) · Diversity(E(x), S), (3)

The hyperparameter α governs the balance between diversity and similarity: setting α = 0 empha-
sizes diversity among selected examples, while α = 1 recovers the TopK method that prioritizes
similarity to the query. We stop when S has size K. For the first demonstration (when S is empty),
Diversity(E(x), S) is defined as 0, thus prioritizing similarity.

The use of TopK-Div and Div methods for demonstration selection is, to our knowledge, new in
the ICL setting. Their flexibility in adjusting the diversity level offers practical value, as it enables
task-specific tuning to improve performance; see Section 3.1 for details.

3 EXPERIMENTS AND FINDINGS

This section empirically tests whether diversity-aware retrieval (Div, TopK-Div) yields more
reliable in-context learning than similarity-only baselines (TopK).

Tasks and datasets. We consider 5 tasks: sentiment classification (classification task), commonsense
reasoning (multiple-choice), text to SQL generation (generation), math (generation), and reading
comprehension (generation). For sentiment classification, we test on SST-2 (Scarlatos and Lan, 2023),
IMDB (Maas et al., 2011) and Amazon (polarity) (McAuley and Leskovec, 2013). For commonsense
reasoning, we use ARC-Easy (Clark et al., 2018) and CommonsenseQA (CsQA) (Talmor et al., 2019).
For text to SQL generation, we use GeoQuery (Zelle and Mooney, 1996; Tang and Mooney, 2001).
For math problems, we test on GSM8K (Cobbe et al., 2021) and GSM-Plus-Mini (Li et al., 2024)
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Table 1: (Comparison of different in-context example selection methods) We compare diversity-
aware methods Div and TopK-Div with randomly chosen (Rand) and similarity-based method
TopK on a variety of tasks using different models with different number of in-context examples
K. For TopK and TopK-Div, we test ten different permutations of the demonstration due to the
determined choice by these methods; For Rand and Div, we test ten different random seeds. We
use the corresponding instruct-tuned model for math tasks (GSM8K and GSM-Plus-Mini) and base
model for all other tasks. For TopK and TopK-Div methods - both being deterministic approaches -
we computed outcomes across ten distinct example permutations. For Rand and Div methods, we
report the averaged results across ten random seeds. There is a huge improvement when the shot
number increases from 0 to 4 / 8, which demonstrates the effectiveness of our example selection. Due
to the absence of prior knowledge for Geoquery in the zero-shot (k = 0) setting, we omit its k = 0
results. The bold entries indicate optimal performances. The std is no more than 1% in most cases;
see Appendix D for details.

Model K Method Classification Multiple-choice Math Code Reading
SST-2 Amazon ARC-Easy CsQA GSM8K GSM-Plus-Mini GeoQuery SQuAD SCIQ

L
la

m
a-

3.
1-

8B

0 - 87.50 95.40 82.43 62.80 53.45 65.12 — 42.30 36.40

4

Rand 91.31 96.38 84.72 71.15 82.24 66.90 12.50 75.95 74.00
TopK 94.13 96.24 86.10 72.54 81.99 65.30 62.79 73.51 72.70

Div-S3 92.89 96.81 85.81 72.28 82.52 66.97 34.54 77.95 74.61
Div 91.50 96.18 85.06 71.17 82.14 66.92 33.79 75.66 74.47

TopK-Div 92.75 96.43 85.83 72.57 81.74 66.12 71.14 73.28 73.87

8

Rand 92.27 96.63 84.38 72.23 82.81 66.72 23.11 77.13 74.65
TopK 93.64 96.12 85.91 73.91 82.26 65.99 72.04 75.52 74.72

Div-S3 93.65 96.74 85.50 73.04 83.00 66.82 43.61 79.41 75.15
Div 92.95 96.25 84.97 72.77 82.98 66.56 38.61 77.71 75.17

TopK-Div 93.33 96.57 85.39 73.76 82.63 66.48 78.68 76.13 75.07

G
em

m
a-

2-
9B

0 - 67.50 85.10 88.15 61.80 16.07 32.79 — 37.90 41.10

4

Rand 93.33 96.15 89.52 74.70 84.29 74.40 13.89 77.19 75.80
TopK 94.47 96.34 90.50 75.19 84.25 74.50 61.14 74.82 75.24

Div-S3 93.64 96.54 89.98 75.51 84.07 74.86 37.32 77.94 76.13
Div 93.45 95.69 90.03 74.85 84.44 73.34 36.29 77.06 75.96

TopK-Div 93.34 96.57 90.19 75.60 83.54 74.47 70.43 75.05 75.21

8

Rand 93.30 96.09 89.39 75.98 84.34 74.48 24.36 79.23 76.28
TopK 94.20 96.55 90.62 76.14 83.57 75.36 71.00 77.59 75.55

Div-S3 93.38 96.60 90.10 76.98 83.56 75.62 45.86 79.79 77.24
Div 93.41 95.94 89.90 76.60 84.22 74.69 42.07 79.05 76.65

TopK-Div 94.04 96.58 90.48 76.53 83.85 75.16 76.32 77.64 76.24

M
is

tr
al

-7
B

-v
0.

3

0 - 66.50 94.00 76.41 51.80 9.48 5.17 — 30.50 34.20

4

Rand 91.00 94.02 82.77 69.83 48.78 37.20 12.14 76.70 74.71
TopK 93.57 96.17 85.21 69.73 49.28 38.20 60.14 75.04 73.73

Div-S3 92.83 95.60 83.93 70.29 51.43 38.22 37.75 75.74 75.54
Div 91.98 94.15 82.98 70.15 49.49 37.50 34.89 75.96 75.83

TopK-Div 92.73 95.90 84.55 69.91 49.99 38.45 71.46 74.43 73.16

8

Rand 92.49 95.35 83.69 71.65 47.86 36.32 22.18 77.30 75.54
TopK 93.61 96.15 85.17 71.88 48.43 37.35 70.50 77.05 75.44

Div-S3 92.79 96.10 84.38 72.47 48.57 36.60 45.86 77.71 76.56
Div 92.55 95.10 84.27 72.04 48.33 36.12 39.14 77.67 76.30

TopK-Div 93.47 96.11 84.85 71.81 48.60 37.81 77.93 77.44 75.22

datasets. For reading comprehension, we use SQuAD (Rajpurkar et al., 2016) and SCIQ (Welbl et al.,
2017) datasets. We subsample some datasets to reduce the computation resources needed.
Models. Our main experiments are conducted on Llama 3.1 and Llama 3.2 (Dubey et al., 2024),
Gemma 2 (Team et al., 2024), and Mistral v0.3 (Jiang et al., 2023) families of models. For math
problems (GSM8K and GSM-Plus-Mini), we use the instruction-tuned LLMs, while for all other
datasets, we use the base model. For the main experiments, we use Sentence-BERT (Reimers, 2019)
to compute all the embeddings for TopK, Div, and TopK-Div. Experiments are conducted on 2
A100 GPUs.
Hyperparameters. For Div, we choose to first reduce the demonstration set D to a “coreset” Dr

with size 100. This choice balances full similarity selection (TopK) and methods focusing mainly
on diversity. For TopK-Div, we choose α = 1/2 to balance between similarity and diversity. For
Div-S3, we choose |Dr| = 100. For the classification task, we predict positive if the logit for
token great is larger than that for token terrible for the next token prediction given a prompt.
For multiple-choice tasks, we choose the option with the lowest average CE loss given a prompt.
For generation tasks (text to SQL, math, reading comprehension), we use greedy decoding. More
experimental details, including the prompt for each task, can be found in Appendix B.
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Figure 2: (Comparison of different methods on GeoQuery OOD setting) We report the relative improvement
of TopK-Div over TopK when demonstrations and queries come from different GeoQuery dataset splitting
ways. “standard” split denotes ID the setting. The relative improvement enlarges in the OOD setting.

3.1 MAIN FINDINGS

Finding 1: Diversity-aware methods perform better on more “challenging” tasks. Table 1 sum-
marizes our main results in the in-distribution (ID) setting, where the demonstration distribution DX
matches the query distribution QX . For simpler tasks like sentiment classification, TopK consistently
performs best, significantly outperforming diversity-emphasizing methods like Rand and Div (e.g.,
TopK outperforms these methods by at least 1% on average in SST-2), while TopK-Div (balanc-
ing similarity and diversity) typically ranks between these extremes. In commonsense reasoning
(multiple-choice), introducing some diversity via TopK-Div improves performance over pure TopK,
as observed in Commonsense QA, although the gains on ARC-Easy remain modest.

For more complex tasks—including reading comprehension, text-to-SQL generation, multi-step
mathematical reasoning, and GeoQuery—introducing diversity consistently improves performance
over the similarity-based TopK baseline. In GeoQuery specifically, diversity (TopK-Div) yields
at least a 7% absolute accuracy gain, likely due to enhanced feature coverage (Levy et al., 2023;
Ye et al., 2023).1 However, excessive diversity (Rand and Div) becomes detrimental, as overly
dissimilar examples fail to illustrate coherent solution patterns.

For math and reading comprehension tasks, methods that emphasize diversity—such as Div and
even Rand —outperform TopK. Interestingly, the effectiveness of random selection cannot be
explained solely by coverage, as random demonstrations do not systematically capture similar
problem structures. Instead, we observe that for tasks where the model already exhibits strong
zero-shot abilities (e.g., Math and Reading), incorporating diverse demonstrations encourages the
model to rely more on its general reasoning skills rather than memorizing surface-level patterns. To
support this interpretation, we present 0-shot and 1-shot performance results in Appendix C.1, which
highlight the model’s underlying capabilities.

Regarding Div-S3, we observe that it underperforms TopK on relatively simple classification tasks,
but shows a performance advantage on more complex tasks such as Math and Reading. These trends
are consistent with other diversity-based methods and complement the analysis in (Kumari et al.,
2024), extending their findings to a broader range of task types and difficulty levels.

To further verify the impact of diversity on different tasks, we also conducted experiments on both
Div and TopK-Div by varying their degree of diversity (Figure 4 and Table 7). We observe a
consistent pattern across both Div and TopK: for simpler tasks, introducing less diversity (i.e.,
employing larger subset size m for Div or higher α for TopK-Div) leads to better performance,
whereas for more complex tasks, incorporating greater diversity yields superior performance. Due to
space limit, we defer a more detailed discussion to Appendices C.2 and C.3.

Finding 2: Diversity helps out-of-distribution generalization. Table 2 presents results on sentiment
classification, commonsense reasoning, and reading comprehension, while Figure 2 shows text-to-
SQL generation performance in the out-of-distribution (OOD) setting, where the demonstration
distribution DX and query distribution QX differ.

1The correspondence between inputs and outputs is deterministic, and the model need to learn this mapping
from the provided examples. Better coverage of the query inputs implies that the model acquires a larger portion
of the mappings required for the query inputs.
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Table 2: (Comparison of different methods when demonstration and query come from different
distribution) We compare the methods on different tasks. The number of shots is fixed as K = 4. We
observe that diversity-aware methods are more robust to out-of-distribution query. The performance
drop from ID to OOD on TopK is in general larger than diversity-aware methods.

Test Demo. Rand TopK Div-S3 Div TopK-Div

L
la

m
a-

3.
1-

8B SST-2
SST-2 91.31 94.13 92.89 91.50 92.75
IMDB 88.85 90.80 86.90 90.71 90.80

Amazon 88.28 89.50 90.70 86.64 89.60

CsQA CsQA 71.15 72.54 72.28 71.17 72.57
ARC-Easy 66.86 66.70 66.50 67.08 67.70

SCIQ SCIQ 74.00 72.70 74.61 74.47 73.87
SQuAD 72.11 71.40 73.67 72.79 71.60

G
em

m
a-

2-
9B SST-2

SST-2 93.33 94.47 93.64 93.45 93.34
IMDB 88.66 89.90 85.50 88.59 91.10

Amazon 88.69 89.40 89.30 90.49 89.60

CsQA CsQA 74.70 75.19 75.51 74.85 75.60
ARC-Easy 68.30 68.90 68.80 68.58 69.50

SCIQ SCIQ 75.80 75.24 76.13 75.96 75.21
SQuAD 73.63 73.60 76.07 74.64 73.50

Table 3: Relative improvement of TopK-Div over TopK on GeoQuery and SQuAD on different
sets of the queries. For the GeoQuery dataset, we fine-tuned both base models on its training set. We
categorized questions in testing set as “Easy” if the fine-tuned models correctly answered them in
a 0-shot setting, and as “Hard” if these models failed to answer them correctly in the same 0-shot
setting. We report the performance of both methods in a 4-shot setting. For SQuAD, we split the
testing set only using the fine-tuned gemma-2-9B model, since fine-tuning the Llama-3.1-8B model
yielded poor results. We observe that TopK-Div exhibits greater improvement on “Hard” examples.

Split Method Gemma-2-9B Llama-3.1-8B
GeoQuery SQuAD GeoQuery SQuAD

Easy TopK 72.09 83.01 79.31 81.04
TopK-Div 77.91 82.66 83.71 79.65

Hard TopK 56.29 20.00 51.52 24.44
TopK-Div 67.11 23.70 62.13 25.19

Overall, diversity improves OOD in-context learning. In sentiment classification, TopK performs
best when both demonstrations and queries come from SST-2. However, when demonstrations shift
to IMDB (another movie review dataset), TopK and TopK-Div perform similarly. When using
Amazon (a shopping review dataset) as demonstrations, TopK-Div surpasses TopK. A similar trend
is observed in commonsense reasoning: replacing Commonsense QA (ID) demonstrations with ARC-
Easy (OOD) increases the performance gap between Div and TopK from 0.4% to 1.0%. Text-to-SQL
generation follows this pattern, with a larger improvement in OOD settings. Additionally, we note
that GSM-Plus-Mini serves as an OOD setting for GSM8K (Math in Table 1), as they share the same
training set. A larger improvement from adding diversity is also observed on GSM-Plus-Mini.

For reading comprehension, switching to an OOD demonstration dataset does not significantly
widen the gap between Div and TopK, but Div still outperforms TopK. We provide additional
out-of-distribution (OOD) results in Appendix C.4, which further reinforce our conclusions.

Beyond explicitly defined OOD settings, the contrast between the Amazon and SST-2 classification
tasks in Table 1 further illustrates the impact of distributional differences on the effectiveness of
diversity-based selection. While SST-2 consists of curated movie reviews with relatively homoge-
neous content—where TopK consistently outperforms diversity-based methods—Amazon reviews
span heterogeneous domains such as electronics, books, and household items. This broader domain
variability in Amazon leads to performance gains for diversity-driven methods like Rand, Div-S3
and Div, sometimes even surpassing TopK. These results are consistent with the patterns observed
in Table 2 and provide additional empirical support for our Finding 2.
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Finding 3: Diversity performs better on harder examples. Besides discussing the performance of
diversity-aware methods (TopK-Div, Div, and even Rand) at task levels, we also analyze which
specific examples benefit most from diversity. For this, we first provide a method to quantify the
“difficulty level” of examples. Motivated by (Swayamdipta et al., 2020), we use whether a model
can correctly answer a question after fine-tuning as an indicator of that question’s difficulty for a
specific language model. Therefore, we fine-tuned the corresponding base model on the dataset’s
training set using LoRA. Subsequently, based on whether this fine-tuned model could accurately
answer questions in the testing set under a zero-shot setting, we classified these questions as “easy”
or “hard”.

We examine this phenomenon in GEOQUERY and SQUAD, where TopK-Div consistently outper-
forms TopK. Table 3 shows that diversity yields greater benefits on harder examples. In GEOQUERY,
the absolute accuracy improvement of TopK-Div over TopK is 5.11% on easy examples (averaged
across two models), increasing to 10.72% on hard examples. In SQUAD, while TopK-Div slightly
underperforms TopK on easy examples by 0.87%, it outperforms TopK on hard examples by 2.23%.

3.2 UNDERSTANDING THE ROLE OF DIVERSITY: BEYOND COVERAGE EFFECTS

We examine how diversity contributes to in-context learning (ICL) performance, distinguishing
between its impact through coverage and through mechanisms beyond coverage, at both the example
level and the task level.

Example-level analysis. In the GeoQuery dataset, the observation that diversity performs better on
harder examples (see Table 3) aligns with the notion of enhanced coverage: difficult examples often
require modeling more nuanced or rare local structures (Levy et al., 2023; Gupta et al., 2023), which
diversity-based methods are more likely to capture.

However, in SQuAD, we observe a different pattern. Even when k = 1, TopK underperforms
compared to Rand and Div, suggesting that coverage alone is insufficient to explain the performance
gap. To probe this, we remove irrelevant noisy examples from the SQuAD dataset and rerun the
comparison. This cleaning significantly improves TopK and TopK-Div, but has minimal impact
on Rand and Div —indicating that the strength of diversity-based methods extends beyond simple
structural alignment with the query.

We present detailed results and analysis in Appendix C.5 to support this claim.

Task-level analysis. As shown in Table 7, increasing the number of demonstrations (e.g., from 4 to 8
shots) magnifies the benefits of diversity. While coverage-based reasoning suggests this may be due
to broader inclusion of features, our findings point to a richer effect.

Specifically, when given more demonstrations, models appear to better synthesize the overall concep-
tual structure of the task. Diversity enables this by exposing the model to varied facets of the task
distribution, which helps form a more general and transferable representation. In contrast, with fewer
shots, the model has limited capacity to form such abstractions, and similarity alone may suffice.

We further justify this effect theoretically in Appendix E, showing that diversity supports a form of
generalization that cannot be fully explained by coverage alone.

3.3 PRACTICAL INSIGHTS

In summary, our findings provide the following guidelines for selecting demonstrations in ICL:

1. Leverage similarity for simple tasks. When the task is relatively easy (e.g., sentiment
classification) and the model already exhibits sufficient ability, selecting demonstrations
purely based on similarity to the query is generally sufficient to elicit strong performance.

2. Use diversity to bridge distribution gaps. When there is a significant mismatch between
the test distribution and the available demonstration pool, incorporating diversity in selection
helps the model generalize better by exposing it to a broader range of examples.

3. Favor diversity for complex or knowledge-intensive tasks. For tasks that require the model
to extract and apply task-solving knowledge (e.g., math reasoning or reading comprehension),
selecting diverse demonstrations provides broader coverage of relevant patterns or skills.
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Figure 3: The relative improvement of diversity-aware methods over TopK. Left: relative improvement of
TopK-Div over TopK on GeoQuery standard split. Right: relative improvement of Div over TopK on SCIQ.

4. Adapt to noise levels. For low-noise datasets, coverage-oriented (similarity-based) selection
is more effective, as it aligns demonstrations closely with the query and helps the model
lock onto the correct input-output mapping. In contrast, for high-noise datasets, increased
diversity is beneficial to reduce overfitting to spurious correlations and enhance robustness.

3.4 ABLATION STUDIES

We conduct experiments to observe how the improvement of diversity-aware methods over TopK
changes if we change the size of the LLM used, since it is possible that, as the models scale up, ICL is
not sensitive to data selection, and thus the improvement of diversity over pure similarity diminishes.

Figure 3 shows the relative improvement on GeoQuery standard split and SCIQ, where we observe the
clear benefit of the diversity-aware method in Section 3.1, on Llama-3.1/3.2 and Gemma-2 families
with different sizes. We observe that in these two tasks, in general, the relative improvement does not
decrease that much even if the model scales up, which indicates the importance of understanding the
role of diversity in demonstration selection.

In Appendix D, we present experiments on additional models. We also report results across a range
of settings, including fine-grained variations in k, different subset sizes for the Div method, fixed
training sets, and changes in the embedding or decoding strategies. In particular, we implement
a purely diversity-based method, K-Means, whose diversity score can exceed that of Div. Its
superior performance on Math and Reading tasks further supports Finding 1. These ablation stud-
ies consistently reinforce our main findings, demonstrating the generality and robustness of our
conclusions.

4 CONCLUSION, LIMITATIONS, AND FUTURE WORKS

We investigate the role of diversity in retrieval-based demonstration selection for in-context learning
(ICL). Across a wide range of tasks and multiple model families, we find that incorporating diversity
into selection strategies consistently improves performance, especially when the task is difficult, the
query is challenging, or there is a distribution shift between the query and available demonstrations.
These findings are further supported by comprehensive ablation studies.

In addition, we provide theoretical justification that explains when and why diversity offers advantages
over purely similarity-based selection. Together, our empirical and theoretical insights offer practical
guidance for selecting effective demonstrations in ICL and deepen the understanding of diversity’s
role in prompting large language models.

Note that the internal mechanism behind why diversity benefits still remains unclear. Part of our
findings can be explained by coverage, which is aligned with previous literature, but the superior
performance on math, reading comprehension, and OOD generalization, cannot be explained by
simply incentivizing coverage. Potential future research directions include both theoretical and
empirical explorations into why diversity aids demonstration selection beyond coverage. This could
involve deeper analysis of model representations, interactions between diverse demonstrations, or
alternative explanations grounded in information theory or representation learning. Additionally, our
diversity heuristic is tested on English text only; cross-lingual robustness is left for future work.
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REPRODUCIBILITY STATEMENT

We have included in the supplementary materials the complete codebase used in our ICL experiments,
with all programs fully anonymized. In addition, the data folder contains all processed datasets
employed in our study. We guarantee that running the provided code will reproduce the results
reported in the paper.

ETHICS STATEMENT

This research fully aligns with the ethical principles outlined in the ICLR Code of Ethics, especially
in its commitment to responsible stewardship of AI research. Our work systematically investigates the
role of sample-selection diversity in In-context learning (ICL), aiming to improve the performance,
robustness, and reliability of large language models.

The primary motivation is to contribute positively to society and human well-being. By demonstrating
that diversity-aware selection of in-context examples can lead to improvements on complex tasks
(such as mathematical reasoning and code generation) and out-of-distribution queries, we hope to
foster AI systems that generalize better, thereby serving societal applications in research, education,
software development, and beyond. We pay particular attention to underrepresented or challenging
settings, in line with the ICLR principle of giving emphasis to less-advantaged groups.

In striving for scientific excellence, we adhere to methodological rigor, transparency, and repro-
ducibility. Our conclusions are supported by systematic experiments across multiple tasks, datasets,
and models (including LLaMA 3.1, Gemma 2, Mistral-v0.3), and by a theoretical framework that
elucidates why diversity helps. We use publicly available benchmark datasets (e.g. SST-2, GSM8K,
GeoQuery) and open-source models, and we provide full details of experimental design, hyperparam-
eters, and evaluation procedures in the paper and appendix.

We also commit to fairness and non-discrimination. Although bias mitigation is not a direct fo-
cus, our findings suggest that diversity-aware in-context selection can improve out-of-distribution
robustness, potentially helping models maintain performance even for underrepresented groups or
non-mainstream distributions. We view this as a positive step toward more equitable AI systems.

Privacy and respect for intellectual labor are also core commitments. Our study uses only publicly
available, anonymized datasets; no new personal or sensitive data were collected, and no human
subjects were involved. We fully cite all utilized datasets, models, and prior work, giving due credit
to others’ contributions.

In summary, we believe this work is a responsible and beneficial contribution toward building more
robust and trustworthy large language models. We have carefully considered the relevant ethical
dimensions and commit to conducting our research according to the scientific and ethical standards
expected under ICLR’s Code of Ethics.
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Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mitch Walker, Mo Tiwari,

14

https://arxiv.org/abs/1708.00489


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T, Nanyun Peng,
Nathan A. Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas Roberts, Nick
Doiron, Nicole Martinez, Nikita Nangia, Niklas Deckers, Niklas Muennighoff, Nitish Shirish
Keskar, Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang, Omar Agha,
Omar Elbaghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth Doshi, Pascale
Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy Liang, Peter Chang,
Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Miłkowski, Piyush Patil, Pouya Pezeshkpour,
Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade, Rachel Etta Rudolph, Raefer
Gabriel, Rahel Habacker, Ramon Risco, Raphaël Millière, Rhythm Garg, Richard Barnes, Rif A.
Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan Sikand, Roman Novak, Roman
Sitelew, Ronan LeBras, Rosanne Liu, Rowan Jacobs, Rui Zhang, Ruslan Salakhutdinov, Ryan
Chi, Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib Singh, Saif M. Mohammad, Sa-
jant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruetter, Samuel R. Bowman,
Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A. Rous, Sarik Ghazarian, Sayan
Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann, Sebastian Schuster, Sepideh Sadeghi,
Shadi Hamdan, Sharon Zhou, Shashank Srivastava, Sherry Shi, Shikhar Singh, Shima Asaadi,
Shixiang Shane Gu, Shubh Pachchigar, Shubham Toshniwal, Shyam Upadhyay, Shyamolima,
Debnath, Siamak Shakeri, Simon Thormeyer, Simone Melzi, Siva Reddy, Sneha Priscilla Makini,
Soo-Hwan Lee, Spencer Torene, Sriharsha Hatwar, Stanislas Dehaene, Stefan Divic, Stefano
Ermon, Stella Biderman, Stephanie Lin, Stephen Prasad, Steven T. Piantadosi, Stuart M. Shieber,
Summer Misherghi, Svetlana Kiritchenko, Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li,
Tao Yu, Tariq Ali, Tatsu Hashimoto, Te-Lin Wu, Théo Desbordes, Theodore Rothschild, Thomas
Phan, Tianle Wang, Tiberius Nkinyili, Timo Schick, Timofei Kornev, Titus Tunduny, Tobias Ger-
stenberg, Trenton Chang, Trishala Neeraj, Tushar Khot, Tyler Shultz, Uri Shaham, Vedant Misra,
Vera Demberg, Victoria Nyamai, Vikas Raunak, Vinay Ramasesh, Vinay Uday Prabhu, Vishakh
Padmakumar, Vivek Srikumar, William Fedus, William Saunders, William Zhang, Wout Vossen,
Xiang Ren, Xiaoyu Tong, Xinran Zhao, Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair
Lakretz, Yangqiu Song, Yasaman Bahri, Yejin Choi, Yichi Yang, Yiding Hao, Yifu Chen, Yonatan
Belinkov, Yu Hou, Yufang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J.
Wang, Zirui Wang, and Ziyi Wu. Beyond the imitation game: Quantifying and extrapolating the
capabilities of language models, 2023. URL https://arxiv.org/abs/2206.04615.

Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi, Tianlu Wang, Jiayi Xin, Rui Zhang, Mari
Ostendorf, Luke Zettlemoyer, Noah A. Smith, and Tao Yu. Selective annotation makes lan-
guage models better few-shot learners. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=qY1hlv7gwg.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi, Noah A.
Smith, and Yejin Choi. Dataset cartography: Mapping and diagnosing datasets with training
dynamics. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 9275–9293. Association for Computational Linguistics, 2020. doi:
10.18653/V1/2020.EMNLP-MAIN.746. URL https://doi.org/10.18653/v1/2020.
emnlp-main.746.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4149–4158, 2019.

Lappoon R Tang and Raymond J Mooney. Using multiple clause constructors in inductive logic
programming for semantic parsing. In European Conference on Machine Learning, pages 466–477.
Springer, 2001.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

15

https://arxiv.org/abs/2206.04615
https://openreview.net/forum?id=qY1hlv7gwg
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.18653/v1/2020.emnlp-main.746


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pages 35151–35174. PMLR, 2023a.

Johannes Von Oswald, Maximilian Schlegel, Alexander Meulemans, Seijin Kobayashi, Eyvind
Niklasson, Nicolas Zucchet, Nino Scherrer, Nolan Miller, Mark Sandler, Max Vladymyrov, et al.
Uncovering mesa-optimization algorithms in transformers. arXiv preprint arXiv:2309.05858,
2023b.

Zhijing Wan, Zhixiang Wang, Yuran Wang, Zheng Wang, Hongyuan Zhu, and Shin’ichi Satoh.
Contributing dimension structure of deep feature for coreset selection, 2024. URL https:
//arxiv.org/abs/2401.16193.

Peiqi Wang, Yikang Shen, Zhen Guo, Matthew Stallone, Yoon Kim, Polina Golland, and Rameswar
Panda. Diversity measurement and subset selection for instruction tuning datasets, 2024. URL
https://arxiv.org/abs/2402.02318.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large language
models are implicitly topic models: Explaining and finding good demonstrations for in-context
learning. In Workshop on Efficient Systems for Foundation Models@ ICML2023.

Xinyi Wang, Wanrong Zhu, and William Yang Wang. Large language models are implicitly topic
models: Explaining and finding good demonstrations for in-context learning. arXiv preprint
arXiv:2301.11916, page 3, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
In Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 94–106, 2017.

Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. Advances in
Neural Information Processing Systems, 36:36637–36651, 2023.

Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Lingpeng Kong. Self-adaptive in-context learning: An
information compression perspective for in-context example selection and ordering. In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1423–1436, 2023.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=RdJVFCHjUMI.

Zhao Yang, Yuanzhe Zhang, Dianbo Sui, Cao Liu, Jun Zhao, and Kang Liu. Representative demonstra-
tion selection for in-context learning with two-stage determinantal point process. In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 5443–5456,
2023.

Zhengyuan Yang, Zhe Gan, Jianfeng Wang, Xiaowei Hu, Yumao Lu, Zicheng Liu, and Lijuan Wang.
An empirical study of GPT-3 for few-shot knowledge-based VQA. In Thirty-Sixth AAAI Conference
on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of
Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial
Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, pages 3081–3089. AAAI
Press, 2022. doi: 10.1609/AAAI.V36I3.20215. URL https://doi.org/10.1609/aaai.
v36i3.20215.

Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, Ves Stoyanov, Greg Durrett, and Ramakanth Pasunuru.
Complementary explanations for effective in-context learning. Findings of the Association for
Computational Linguistics: ACL 2023, 2023.

16

https://arxiv.org/abs/2401.16193
https://arxiv.org/abs/2401.16193
https://arxiv.org/abs/2402.02318
https://openreview.net/forum?id=RdJVFCHjUMI
https://doi.org/10.1609/aaai.v36i3.20215
https://doi.org/10.1609/aaai.v36i3.20215


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Kang Min Yoo, Junyeob Kim, Hyuhng Joon Kim, Hyunsoo Cho, Hwiyeol Jo, Sang-Woo Lee, Sang-
goo Lee, and Taeuk Kim. Ground-truth labels matter: A deeper look into input-label demonstrations.
In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
pages 2422–2437, 2022.

Dingli Yu, Simran Kaur, Arushi Gupta, Jonah Brown-Cohen, Anirudh Goyal, and Sanjeev Arora.
SKILL-MIX: a flexible and expandable family of evaluations for AI models. In The Twelfth Inter-
national Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=Jf5gplvglq.

Suqin Yuan, Lei Feng, Bo Han, and Tongliang Liu. Enhancing sample selection against label noise by
cutting mislabeled easy examples, 2025. URL https://arxiv.org/abs/2502.08227.

John M Zelle and Raymond J Mooney. Learning to parse database queries using inductive logic
programming. In Proceedings of the national conference on artificial intelligence, pages 1050–
1055, 1996.

Donglin Zhan, Leonardo F. Toso, and James Anderson. Coreset-based task selection for
sample-efficient meta-reinforcement learning, 2025. URL https://arxiv.org/abs/2502.
02332.

Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and Zhaoran Wang. What and how does in-context
learning learn? bayesian model averaging, parameterization, and generalization. arXiv preprint
arXiv:2305.19420, 2023a.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompt-
ing in large language models. In The Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023b. URL
https://openreview.net/forum?id=5NTt8GFjUHkr.

Haoyu Zhao, Simran Kaur, Dingli Yu, Anirudh Goyal, and Sanjeev Arora. Can models learn
skill composition from examples? Advances in Neural Information Processing Systems, 37:
102393–102427, 2025.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In International conference on machine learning, pages
12697–12706. PMLR, 2021.

17

https://openreview.net/forum?id=Jf5gplvglq
https://arxiv.org/abs/2502.08227
https://arxiv.org/abs/2502.02332
https://arxiv.org/abs/2502.02332
https://openreview.net/forum?id=5NTt8GFjUHkr


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

1.1 Our contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background and notations 3

3 Experiments and findings 4

3.1 Main findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Understanding the Role of Diversity: Beyond Coverage Effects . . . . . . . . . . . 8

3.3 Practical insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4 Ablation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Conclusion, limitations, and future works 9

A More related works 19

B More experiment details 19

B.1 Prompt template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

B.2 Dataset details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

B.3 Evaluation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

C Additional experiments 21

C.1 Results of 0/1-shot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

C.2 Additional supplement of Finding 1: Adjusting subset sizes for Div . . . . . . . . 22

C.3 Additional supplement of Finding 1: Adjusting α for TopK-Div . . . . . . . . . . 22

C.4 More results on OOD setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

C.5 Results on perturbation of datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 23

D Additional ablation studies 24

D.1 Results on more models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

D.2 Changing the number of shots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

D.3 More diversity-aware method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

D.4 Abalations on the size of training set . . . . . . . . . . . . . . . . . . . . . . . . . 28

D.5 Ablations on “better” embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . 28

D.6 Decoding method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

E Theoretical justification and simulations 30

E.1 Proof of Theorem E.2: justification example I . . . . . . . . . . . . . . . . . . . . 31

E.2 Proof of Theorem E.3: justification example II . . . . . . . . . . . . . . . . . . . . 33

E.3 Experiment settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

E.4 Result and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A MORE RELATED WORKS

Demonstration selection Retrieval-based demonstration selection for ICL has long been studied,
and the most notable methods are the similarity-based methods (Liu et al., 2021; Yang et al., 2022;
Wu et al., 2023; Qin et al., 2023). These are often augmented by trainable deep learning retrievers
aimed at capturing core skills or features beyond mere semantic similarity (Karpukhin et al., 2020;
Rubin et al., 2022; Luo et al., 2023; Scarlatos and Lan, 2023; An et al., 2023b), or by incorporating
LLM feedback for refinement (Li and Qiu, 2023a; Chen et al., 2023; Wang et al., 2023). Conversely,
diversity-based, or more accurately, coverage-based methods are less prevalent in retrieval-based
selection. Existing studies in this vein typically address tasks with clear local structures where feature
coverage is advantageous (Levy et al., 2023; Ye et al., 2023; Gupta et al., 2023; An et al., 2023a). For
non-retrieval-based ICL, where a fixed set of demonstrations is selected for a specific task, diversity
is recognized as beneficial (Zhang et al., 2023b; Gao et al., 2023; Su et al., 2023; Yang et al., 2023).

Understanding in-context learning Efforts to understand ICL span both theoretical and empirical
investigations. Theoretical perspectives often frame ICL as either a Bayesian inference procedure (Xie
et al., 2022; Wang et al.; Wies et al., 2023; Jiang, 2023; Zhang et al., 2023a) or an implicit form of
meta-optimization akin to gradient descent (Dai et al., 2023; Von Oswald et al., 2023a;b; Deutch
et al., 2024; Shen et al., 2023). Research on ICL for regression tasks (Garg et al., 2022; Li et al.,
2023b;a; Akyürek et al., 2023) provides valuable insights; notably, (Akyürek et al., 2023) suggest
transformers can identify min-norm solutions in-context for linear regression, a finding that supports
the role of demonstration diversity. Empirical studies have further examined factors such as input-
label mapping (Min et al., 2022; Yoo et al., 2022; Pan et al., 2023), the influence of demonstration
order (Lu et al., 2022; Liu et al., 2024), and the importance of calibration for ICL efficacy (Zhao
et al., 2021).

B MORE EXPERIMENT DETAILS

B.1 PROMPT TEMPLATE

Table 4 lists the template we use for different tasks. We take K = 2 as an example.

B.2 DATASET DETAILS

To reduce computational cost, we performed random sampling on both the demo and test set for
classification, multiple-choice and reading tasks. For classification tasks, the sampled datasets from
IMDB and SST-2 are consistent with Chang and Jia (2023). A fixed random seed of 42 was used for
all sampling procedures. For math tasks, since the test set sizes of PRM800K and GSM8K datasets
are close to the sampled test set sizes of other tasks, we directly used their existing demo and test set.
Detailed sampling statistics are provided in Table 5.

B.3 EVALUATION DETAILS

For the sentiment classification task (classification), given the prompt listed in Table 4, we compute
the logit for “great” and “terrible” respectively, and predict the sentiment to be positive if the logit for
“great” is larger than that for “terrible”, and vice versa. We report the accuracy metric.

For commonsense reasoning tasks (multiple-choice), given the prompt, we compute the average
cross-entropy loss on each given option, conditioned on the prompt. Then we pick the option with
the smallest average cross-entropy loss. We report the accuracy metric.

For reading comprehension (generation), given the prompt, we generate the answer using greedy
decoding. We stop if we generate one of the following string: “\n\n”, “\n\n\n”, "Support", "Support:",
"Question", "Question:". We compare the generated answer with the gold answer, and report the
exact match metric. There are several optional answers for the squad test sample, if the generated
answer exactly matches one of them, we consider it correct.
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Table 4: Prompt template for different tasks with 2 demonstrations. For Math problems, we also
apply the chat template since we use the instruct models (done by applying the function “ap-
ply_chat_template” on the instruct models’ tokenizer).

Name Template

Sentiment Classifica-
tion (SST-2, IMDB,
Amazon)

Question: {input_1}
Answer: {output_1}

Question: {input_2}
Answer: {output_2}

Question: {input_query}
Answer:

Commonsense Rea-
soning (ARC-Easy,
CsQA)

Question: {input_1}
Answer: {output_1}

Question: {input_2}
Answer: {output_2}

Question: {input_query}
Answer:

Reading Comprehen-
sion (SQuAD, SCIQ)

Support: {support_1}
Question: {input_1}
Answer: {output_1}

Support: {support_2}
Question: {input_2}
Answer: {output_2}

Support: {support_query}
Question: {input_query}
Answer:

text to SQL (Geo-
Query)

Question: {input_1}
Answer: {output_1}

Question: {input_2}
Answer: {output_2}

Question: {input_query}
Answer:

Math (GSM8K,
PRM800K)

Question: {input_1}
Answer: {output_1}

Question: {input_2}
Answer: {output_2}

Let’s think step by step. You need to solve the final
↪→ question and answer in the format: \n#### \{result\}
Question: {input_query}
Answer:
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Table 5: Detailed dataset size before and after sampling. We show the original and sampled size of
demonstration set and test set for all dataset we considered.

Dataset size Classification Multiple-choice Math Code Reading
SST-2 Amazon Imdb ARC-Easy CsQA PRM800K GSM8K GSM-Plus-Mini GeoQuery SQuAD SCIQ

Sampled demo set 1000 1000 1000 1000 1000 12000 7473 7473 600 10000 1000
Sampled test set 1000 1000 1000 1000 1000 500 1319 2400 280 1000 1000

Original demo set 67300 3600000 25000 2250 9740 12000 7473 7473 600 87600 11700
Original test set 1820 400000 25000 2380 1140 500 1319 2400 280 10600 1000

Table 6: Performance of 0-shot and 1-shot Baseline in Code and Reading Tasks. When k = 1, there
is only one possible permutation, so we report a single result for both TopK and TopK-Div methods.
For Rand and Div approaches, we report the averaged results across ten random seeds. Embedding =
all-roberta-large-v1.

Model Dataset K = 0 K = 1 K = 4

- Rand Topk Div Topk-Div Rand Topk Div Topk-Div

Llama-3.1-8B Code (Geoquery) − 2.61 37.14 16.93 37.14 12.57 63.04 33.71 71.07
Reading (SQuAD) 42.30 68.64 67.00 67.87 67.00 75.95 73.51 75.66 73.28

Gemma-2-9B Code (Geoquery) − 3.07 41.43 16.71 41.43 13.89 61.14 36.29 70.43
Reading (SQuAD) 37.90 71.34 69.00 70.69 69.00 77.19 74.82 77.06 75.05

Mistral-7B-v0.3 Code (Geoquery) − 2.75 40.71 18.39 40.71 12.14 60.14 34.89 71.46
Reading (SQuAD) 30.50 69.12 66.30 67.80 66.30 76.70 75.04 75.96 74.43

For text to SQL (generation), given the prompt, we generate the answer using greedy decoding.
We stop if we generate one of the following string: “\n\n”, “\n\n\n”, "Question", "Question:". We
compare the generated answer with the gold answer, and report the exact match metric.

For math problem (generation), given the prompt, we generate the answer using greedy decoding.
We do not stop the generation process unless the instruct model generates the stop sign itself. We first
try to extract the math expression from the following format “#### {expression}”. If failed, we try to
extract from the following format “\{boxed}{expression}”. If both failed, we extract the final math
expression from the answer. The report exact match metric.

For each task, the selected examples in TopK and TopK-Div are fixed, and these two methods are
tested once. For Rand and Div, where example selection involves randomness, we test with ten
random seeds and report the average results.

C ADDITIONAL EXPERIMENTS

In this section, we present some addition (supplementary) experiment results for Section 3. This
section is structured as follows:

• Appendix C.1 shows the results of different tasks under 0-shot or 1-shot, to justify the
effectiveness of in-context examples;

• Appendix C.2 discusses the best subset_size in Div;

• Appendix C.3 illustrates the gap between different levels of diversity in TopK-Div;

• Appendix C.4 includes more results and discussions for the OOD setting;

• Appendix C.5 contains the detailed experiments that imply the effect of diversity that is
beyond coverage.

C.1 RESULTS OF 0/1-SHOT

To verify whether the model inherently possesses the ability to solve certain tasks, we tested its 0-shot
and 1-shot performance on the SQuAD and GeoQuery datasets. For the Reading task, accuracy is
calculated only when the output exactly matches the answer, imposing strict format requirements.
Consequently, on SQuAD, once the model understood the output format in the 1-shot setting, the
absolute performance gap compared to the 4-shot setting was less than 8%. However, on GeoQuery,
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Figure 4: (Optimal Subset_Size of the Div Method for Different Tasks) We report the optimal subset_size
of the Div method across different tasks. The results show that relatively easier tasks, such as Classification
and Multiple-choice, tend to favor larger subset_size values (with data points concentrated on the left side of
the x-axis), whereas more challenging tasks, such as Math and Reading, exhibit substantially smaller optimal
subset_size values, with an overall average not exceeding 30 (with data points concentrated on the right side of
the x-axis).

even after the model grasped the output format via the 1-shot example, the absolute performance gap
compared to the 4-shot setting was still over 20%.

Therefore, the model possesses a strong inherent ability to solve the Reading task (a similar conclusion
also holds for the Math task). Conversely, the model itself lacks domain-specific knowledge related
to GeoQuery and thus needs to learn more from the provided context.

C.2 ADDITIONAL SUPPLEMENT OF FINDING 1: ADJUSTING SUBSET SIZES FOR DIV

For each task, we identify the subset_size that yields the best performance for Div (subset_size ∈
{10, 20, 30, 50, 80, 100, 120, 150, 200}). On simpler tasks (e.g., Classification and Multiple-choice),
the average optimal subset_size exceeds 100 (Figure 4), indicating that introducing less diversity is
more beneficial. In contrast, on more complex tasks (e.g., Math and Reading), the average optimal
subset_size is below 30, suggesting that incorporating more diversity is advantageous . GeoQuery
serves as a typical example of a task that requires strong coverage, for which Div with small
subset_size fails to achieve satisfactory performance.

C.3 ADDITIONAL SUPPLEMENT OF FINDING 1: ADJUSTING α FOR TOPK-DIV

Let Accα denotes the accuracy of TopK-Div parameterized by α (Equation (3)), We define:

∆ = 1
5

10∑
i=6

Acci/10 − 1
5

5∑
i=1

Acci/10. (4)

The difference ∆ quantifies the gap between the average accuracy of lower diversity and higher
diversity in TopK-Div (e.g, ∆ > 0 means less diversity is better). As shown in Table 7, minimal
diversity is optimal for simpler tasks, while higher diversity consistently enhances performance as
task difficulty increases.

C.4 MORE RESULTS ON OOD SETTING

In this part, we show the OOD results of math problems on Llama-3.1-8B/70B and Gemma-2-9B/27B
instruct-tuned models. We use GSM8K as the demonstration set and PRM800K (Lightman et al.,
2023) as the query set. Table 8 summarizes our result. We observe that diversity-aware methods
are more robust to this distribution shift. Even for Gemma models where TopK performs very well
on ID tasks (demonstration and query set are all PRM800K), TopK is outperformed by diversity-
aware methods on the OOD setting. A similar trend also holds for Llama models. One interesting
finding is that for PRM800K, more demonstration might not lead to better performance, and also
in our experiment, using GSM8K as demonstration works better than using PRM800K data as
demonstrations.
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Table 7: Comparison of TopK-Div results with different α. We report ∆ (Equation (4)) for Clas-
sification, Multiple-choice and Reading task across six datasets. For each value of α in TopK-Div,
we tested ten permutations and calculated the mean. For relatively simple tasks (SST-2, Amazon,
ARC-Easy and CsQA), the average value 0.27% of ∆ indicates that incorporating less diversity is
more beneficial. In contrast, for relatively complex tasks (SCIQ, SQuAD), the average value -0.44%
of ∆ suggests that incorporating more diversity is advantageous. Specifically, the average ∆ for
SST-2 is 0.42%, for ARC-Easy is 0.34%, for CsQA is 0.07%, and for SCIQ is -0.53%. This trend is
consistent with our understanding of task difficulty.

Model K
∆

SST-2 Amazon ARC-Easy CsQA SCIQ SQuAD

Llama-3.2-3B 4 0.11% 0.12% 0.45% 0.41% -0.80% 0.40%

8 1.05% -0.01% 0.20% 0.06% -0.74% -1.01%

Gemma-2-2B 4 0.34% 0.50% 0.87% -0.37% -0.07% 0.04%

8 0.19% 0.27% -0.15% 0.18% -0.49% -0.82%

Table 8: (Comparison of different methods on math when demonstration and query come
from different distribution) OOD setting for math problem where the test dataset is chosen to be
PRM800K. We find that, diversity-aware methods are more superior than TopK in OOD setting. The
method that achieves the best in each setting is highlighted.

Model Shots Demo. Rand TopK Div TopK-Div

Llama-3.1-8B
K = 4

PRM800K 43.50 41.40 44.86 44.80
GSM8K 41.50 41.00 43.28 42.00

K = 8
PRM800K 43.32 43.00 44.28 40.00
GSM8K 41.66 42.00 43.46 40.80

Llama-3.1-70B
K = 4

PRM800K 57.78 58.20 57.42 59.40
GSM8K 60.62 62.00 61.88 61.00

K = 8
PRM800K 54.72 59.00 55.86 58.00
GSM8K 61.14 59.60 60.96 60.00

Gemma-2-9B
K = 4

PRM800K 38.04 42.40 36.78 44.40
GSM8K 42.10 41.00 41.04 42.20

K = 8
PRM800K 40.66 46.20 39.20 44.40
GSM8K 42.06 41.80 42.74 41.60

Gemma-2-27B
K = 4

PRM800K 46.06 49.20 47.80 49.60
GSM8K 46.06 46.00 46.30 45.20

K = 8
PRM800K 47.10 50.40 47.04 48.60
GSM8K 45.40 44.80 45.92 45.20

C.5 RESULTS ON PERTURBATION OF DATASETS

To explore whether the way diversity works is by achieving better coverage, we noticed that even
when k = 1, TopK still underperforms Rand/ Div methods. We speculate this is because the support
in the original dataset contains a lot of noise, causing similar examples not only to fail to provide
effective information but also potentially to mislead the model into focusing on noisy information
(“coverage” isn’t helpful in such case).

Using DeepSeek-R1, we removed information irrelevant to the answer from the support passages
in SQuAD, reducing content by approximately 50%. Based on this, we constructed two variants:
SQuAD-Cut, where only the training set is streamlined, and SQuAD-Both-Cut, where both the
training and test sets are streamlined. As shown in Table 9, the more streamlined (i.e., higher-quality
and less noisy) the dataset, the better the performance of TopK and TopK-Div. Notably, their
improvement margins are significantly larger than that of Div (though still more than 1% lower than
Div). This indicates that when the dataset quality is higher, the “Coverage” mechanism can focus on
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Table 9: Results for SQuAD with cut perturbation. We performed content trimming on the support
portion of the SQuAD dataset using Deepseek-r1, retaining only the top 1/3 most answer-relevant
content. SQuAD-Cut refers to trimming applied solely to the testing set, while SQuAD-Both-Cut
indicates trimming performed on both testing and training sets. The values in parentheses represent
performance improvements relative to the original SQuAD dataset.

Model K Dataset Method
Rand Topk Div Topk-Div

L
la

m
a-

3.
1-

8B

1
SQuAD 68.64 67.00 67.87 67.00

SQuAD-Cut 69.43 (+0.79) 68.20 (+1.20) 68.45 (+0.58) 67.70 (+0.70)
SQuAD-Both-Cut 69.71 (+1.07) 69.90 (+2.90) 69.47 (+1.60) 69.90 (+2.90)

4
SQuAD 75.95 73.51 75.66 73.28

SQuAD-Cut 77.15 (+1.2) 75.96 (+2.45) 77.00 (+1.34) 76.89 (+2.61)
SQuAD-Both-Cut 76.95 (+1.00) 76.15 (+2.64) 77.76 (+2.10) 76.47 (+3.19)

8
SQuAD 77.13 75.52 77.71 76.13

SQuAD-Cut 79.10 (+1.97) 77.43 (+1.91) 79.43 (+1.72) 78.64 (+2.51)
SQuAD-Both-Cut 79.39 (+2.26) 78.66 (+3.14) 79.26 (+1.55) 79.13 (+3.00)

G
em

m
a-

2-
9B

1
SQuAD 71.34 69.00 70.69 69.00

SQuAD-Cut 72.96 (+1.62) 71.20 (+2.20) 72.25 (+1.56) 71.10 (+2.10)
SQuAD-Both-Cut 73.14 (+1.80) 72.30 (+3.30) 72.67 (+1.98) 72.30 (+3.30)

4
SQuAD 77.19 74.82 77.06 75.05

SQuAD-Cut 78.75 (+1.56) 77.64 (+2.82) 78.23 (+1.17) 78.65 (+3.60)
SQuAD-Both-Cut 78.72 (+1.53) 77.47 (+2.65) 78.54 (+1.48) 76.78 (+1.73)

8
SQuAD 79.23 77.59 79.05 77.64

SQuAD-Cut 80.41 (+1.18) 79.74 (+2.15) 80.45 (+1.40) 80.72 (+3.08)
SQuAD-Both-Cut 80.22 (+0.99) 79.05 (+1.46) 80.10 (+1.05) 78.84 (+1.20)

M
is

tr
al

-7
B

-v
0.

3 1
SQuAD 69.12 66.30 67.80 66.30

SQuAD-Cut 71.38 (+2.26) 69.70 (+3.40) 69.21 (+1.41) 69.70 (+3.40)
SQuAD-Both-Cut 71.44 (+2.32) 70.70 (+4.40) 72.00 (+4.20) 70.70 (+4.40)

4
SQuAD 76.70 75.04 75.96 74.43

SQuAD-Cut 77.78 (+1.08) 77.78 (+2.74) 77.18 (+1.22) 78.70 (+4.37)
SQuAD-Both-Cut 77.76 (+1.06) 77.92 (+2.88) 77.89 (+1.93) 77.40 (+2.97)

8
SQuAD 77.30 77.05 77.67 77.44

SQuAD-Cut-R1 79.00 (+1.70) 79.09 (+2.04) 78.64 (+0.97) 79.07 (+1.63)
SQuAD-Both-Cut-R1 79.92 (+2.62) 78.76 (+1.71) 79.61 (+1.94) 79.64 (+2.20)

high signal-to-noise ratio information (rather than incorrectly covering noise), and its effectiveness is
significantly enhanced. TopK-based methods are more likely to “cover” high-quality information
segments truly relevant to the answer, whereas Div, as an intrinsic metric, inherently includes
effective mechanisms not directly dependent on precise semantic coverage (e.g., structural diversity:
selecting examples with different sentence structures or argumentation styles). These mechanisms
already play a role in the original noisy data, avoiding overfitting to noise, causing it to outperform
noise-sensitive coverage strategies, and its baseline performance is already relatively robust. This
fully demonstrates that the value of diversity is “beyond coverage”.

D ADDITIONAL ABLATION STUDIES

D.1 RESULTS ON MORE MODELS

We evaluated different model sizes from the Gemma and Llama families, including Llama-3.2-1B,
Gemma-2-2B, Llama-3.2-3B, Llama-3.1-8B, Gemma-2-9B, Gemma-2-27B, and Llama-3.1-70B.
For math tasks, we used the instruct version of the corresponding models. For other tasks, we used
the base models. For code tasks, we also tested domain-specific CodeLlama models, including
CodeLlama-7B-hf, CodeLlama-13B-hf, and CodeLlama-34B-hf. The results on CodeLlama were
consistent with those of other base models.

We report the complete experimental results of the Llama family in Table 11, the Gemma family
results in Table 12, and the CodeLlama results in Table 13. The methods that performed well on the
corresponding tasks in Table 1 also demonstrated good performance across different model sizes.
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Table 10: We supplemented the content omitted in Table 1. The main numerical values represent the
mean results over ten random seeds, while the subscript indicates their std. We still highlight the
result with the highest mean in bold. In most cases, the fluctuations within each method do not affect
our conclusions.

Model K Method Classification Multiple-choice Math Code Reading
SST-2 Amazon ARC-Easy CsQA GSM8K GSM-Plus-Mini GeoQuery SQuAD SCIQ

L
la

m
a-

3.
1-

8B

0 - 87.50 95.40 82.43 62.80 53.45 65.12 — 42.30 36.40

4

Rand 91.310.59 96.380.25 84.720.35 71.150.65 82.240.52 66.900.59 12.571.33 75.950.55 74.000.57
TopK 94.130.21 96.240.16 86.100.32 72.540.36 81.990.55 65.300.46 63.041.96 73.510.48 72.700.40
Div 91.500.63 96.180.25 85.060.27 71.170.42 82.140.45 66.920.52 33.711.35 75.660.97 74.470.62

TopK-Div 92.750.33 96.150.22 85.830.38 72.570.35 81.740.53 66.120.85 71.071.11 73.280.79 73.870.35

8

Rand 92.270.55 96.630.27 84.380.34 72.230.34 82.810.61 66.720.72 23.211.41 77.130.80 74.650.88
TopK 93.640.36 96.120.09 85.910.29 73.910.38 82.260.65 65.990.60 72.040.93 75.520.43 74.720.65
Div 92.950.35 96.250.19 84.970.32 72.770.61 82.980.34 66.560.60 38.540.90 77.710.80 75.170.53

TopK-Div 93.330.36 96.430.09 85.390.40 73.760.37 82.630.57 66.480.52 78.361.24 76.130.42 75.070.49

G
em

m
a-

2-
9B

0 - 67.50 85.10 88.15 61.80 16.07 32.79 — 37.90 41.10

4

Rand 93.330.52 96.150.23 89.520.25 74.700.70 84.290.43 74.400.47 13.891.67 77.190.89 75.800.54
TopK 94.470.48 96.340.20 90.500.16 75.190.25 84.250.73 74.500.55 61.141.33 74.820.70 75.240.34
Div 93.450.46 95.690.23 90.030.24 74.850.39 84.440.91 73.340.62 36.291.05 77.060.57 75.960.55

TopK-Div 93.340.34 96.570.16 90.190.19 75.600.54 83.540.56 74.470.63 70.431.24 75.050.41 75.210.29

8

Rand 93.300.36 96.090.23 89.390.28 75.980.56 84.340.54 74.480.63 24.361.19 79.230.64 76.280.50
TopK 94.200.28 96.550.16 90.620.16 76.140.63 83.570.53 75.360.43 71.001.20 77.590.42 75.550.18
Div 93.410.20 95.940.25 89.900.19 76.600.32 84.220.52 74.690.64 42.071.10 79.050.93 76.650.60

TopK-Div 94.040.29 96.580.04 90.480.22 76.530.21 83.850.66 75.160.32 76.320.85 77.640.63 76.240.48

M
is

tr
al

-7
B

-v
0.

3

0 - 66.50 94.00 76.41 51.80 9.48 5.17 — 30.50 34.20

4

Rand 91.000.78 94.020.61 82.770.48 69.830.81 48.781.00 37.200.69 12.141.47 76.700.72 74.710.54
TopK 93.570.25 96.170.20 85.210.30 69.730.43 49.281.17 38.200.55 60.140.82 75.040.74 73.730.59
Div 91.980.46 94.150.31 82.980.25 70.150.56 49.490.87 37.500.76 34.891.39 75.961.08 75.830.57

TopK-Div 92.730.30 95.900.15 84.550.20 69.910.49 49.991.02 38.450.81 71.461.35 74.430.50 73.160.28

8

Rand 92.490.34 95.350.36 83.690.36 71.650.60 47.861.19 36.320.71 22.181.96 77.300.54 75.540.63
TopK 93.610.32 96.150.16 85.170.25 71.880.38 48.431.02 37.350.53 70.501.36 77.050.41 75.440.43
Div 92.550.29 95.100.37 84.270.41 72.040.61 48.331.10 36.120.34 39.141.40 77.671.56 76.300.31

TopK-Div 93.470.41 96.110.16 84.850.34 71.810.19 48.600.71 37.810.76 77.931.70 77.440.37 75.220.42

Table 11: Performance of different algorithms for models belong to Llama-family. Setting same as
Table 1 while adding results from more models (Llama-3.2-1B, Llama-3.2-3B, Llama-3.1-70B). Our
finding that diversity helps for more challenging tasks still holds.

model K Method Classification Multiple-choice Math Code Reading
SST-2 Amazon Arc-easy CsQA GSM8K GSM-Plus-Mini GeoQuery SQuAD SCIQ

L
la

m
a-

3.
2-

1B 4

Rand 86.880.49 90.640.43 71.650.46 59.540.63 22.180.81 12.620.56 7.431.27 56.170.75 62.750.84
TopK 91.870.49 93.460.25 75.280.57 60.200.46 19.570.71 9.410.60 48.250.94 55.090.38 63.650.36

Div 88.351.19 91.140.43 73.520.54 60.600.65 21.291.05 13.160.73 29.461.70 55.401.18 63.380.54
TopK-Div 91.470.60 93.220.33 74.620.44 60.890.36 20.300.80 9.350.53 56.571.18 56.390.96 62.960.31

8

Rand 89.560.81 92.620.39 72.720.32 61.270.62 21.040.63 10.010.44 13.041.71 58.760.56 65.050.45
TopK 92.910.30 93.950.24 75.410.40 61.770.35 16.580.53 7.120.44 56.291.94 58.380.66 65.870.45
Div 87.961.14 92.720.34 73.530.45 62.240.55 22.240.93 11.731.55 32.751.46 58.371.16 65.890.94

TopK-Div 92.300.38 94.060.20 74.740.28 62.200.50 16.000.81 6.450.46 65.111.63 58.270.74 66.240.57

L
la

m
a-

3.
2-

3B 4

Rand 90.400.66 95.870.21 78.620.44 68.510.64 69.640.98 50.500.59 9.861.28 71.590.60 72.430.70
TopK 92.870.31 96.250.24 81.510.34 68.720.37 70.050.86 50.100.53 54.041.68 71.210.48 70.870.46
Div 90.870.59 95.570.18 80.410.60 68.800.57 68.710.75 51.530.87 31.211.82 71.131.42 72.580.61

TopK-Div 93.030.29 96.430.15 81.710.30 68.950.25 69.140.86 50.600.38 59.752.03 70.730.49 71.280.40

8

Rand 91.790.36 96.090.14 78.910.40 69.890.68 68.790.94 51.120.81 19.291.60 73.140.63 72.570.85
TopK 93.710.40 96.180.20 81.030.36 70.530.33 69.400.89 50.000.84 61.891.49 72.610.30 71.830.46
Div 91.990.47 95.830.27 80.680.34 70.260.40 66.541.14 50.870.61 36.711.39 72.761.53 74.070.49

TopK-Div 93.550.35 96.370.17 81.570.30 70.180.33 69.380.98 49.960.73 72.111.77 73.800.56 72.080.53

L
la

m
a-

3.
1-

8B 4

Rand 91.310.59 96.380.25 84.720.35 71.150.65 82.240.52 66.900.59 12.571.33 75.950.55 74.000.57
TopK 94.130.21 96.240.16 86.100.32 72.540.36 81.990.55 65.300.46 63.041.96 73.510.48 72.700.40
Div 91.500.63 96.180.25 85.060.27 71.170.42 82.140.45 66.920.52 33.711.35 75.660.97 74.470.62

TopK-Div 92.750.33 96.150.22 85.830.38 72.570.35 81.740.53 66.120.85 71.071.11 73.280.79 73.870.35

8

Rand 92.270.55 96.630.27 84.380.34 72.230.34 82.810.61 66.720.72 23.211.41 77.130.80 74.650.88
TopK 93.640.36 96.120.09 85.910.29 73.910.38 82.260.65 65.990.60 72.040.93 75.520.43 74.720.65
Div 92.950.35 96.250.19 84.970.32 72.770.61 82.980.34 66.560.60 38.540.90 77.710.80 75.170.53

TopK-Div 93.330.36 96.430.09 85.390.40 73.760.37 82.630.57 66.480.52 78.361.24 76.130.42 75.070.49

L
la

m
a-

3.
1-

70
B 4

Rand 94.160.33 96.770.38 89.760.16 75.480.62 88.640.48 77.140.39 17.501.88 81.470.75 75.510.87
TopK 94.810.34 96.860.11 90.570.28 76.220.28 88.870.52 76.190.57 66.461.23 79.150.22 75.670.38
Div 94.340.28 96.360.23 90.140.30 75.530.33 89.270.53 77.210.47 39.001.87 81.271.25 77.750.44

TopK-Div 94.200.18 96.880.12 90.460.32 76.210.49 88.670.42 76.940.45 77.320.95 79.260.37 75.590.33

8

Rand 94.660.36 96.950.28 89.840.28 77.140.40 89.470.54 76.930.77 26.891.90 82.620.47 76.560.78
TopK 94.180.32 96.950.18 90.240.25 77.650.30 89.330.29 76.290.46 75.681.08 81.380.51 76.700.63
Div 94.950.30 96.470.25 89.990.17 77.330.59 89.650.27 77.110.29 44.251.92 83.181.43 78.370.60

TopK-Div 94.750.19 97.270.11 90.710.25 77.240.31 89.170.42 76.740.92 81.391.16 81.470.23 76.770.41

Due to resource constraints, our experiments primarily focused on mainstream open-source models.
We tested the Math task on the commercial-grade models gpt-4o-mini and deepseek-v3. As shown in
Table 14, the Div method consistently outperformed TopK on both gsm8k and prm800k.
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Table 12: Performance of different algorithms for models belong to Gemma-family. Setting same as
Table 1 while adding results from more models (Gemma-2-2b and Gemma-2-27b). Our finding that
diversity helps for more challenging tasks still holds.

model K Method Classification Multiple-choice Math Code Reading
SST-2 Amazon Arc-easy CsQA GSM8K GSM-Plus-Mini GeoQuery SQuAD SCIQ

G
em

m
a-

2-
2B 4

Rand 85.000.94 92.340.75 82.840.45 68.890.61 40.451.11 33.430.69 9.141.38 69.030.34 71.270.63
TopK 90.670.55 95.140.18 84.570.35 69.930.47 41.330.85 34.390.71 53.391.88 68.190.76 71.090.49
Div 89.630.54 92.550.44 84.210.37 71.030.62 40.532.15 32.751.64 31.291.47 67.731.18 72.340.45

TopK-Div 91.660.57 95.010.22 84.510.32 70.720.52 42.740.57 34.390.64 61.041.55 67.850.60 71.640.30

8

Rand 89.960.51 94.100.47 82.620.33 70.260.34 36.440.82 34.550.46 16.682.01 69.990.68 72.120.29
TopK 92.220.46 95.580.23 84.300.19 71.060.44 43.050.69 36.450.42 61.001.44 69.150.44 72.350.44

Div 91.810.48 94.570.37 84.370.38 72.220.62 38.871.28 34.071.12 35.291.25 69.310.99 72.280.43
TopK-Div 92.400.28 95.530.20 84.390.24 71.990.36 42.930.66 36.470.47 68.931.35 70.090.54 72.300.37

G
em

m
a-

2-
9B 4

Rand 93.330.52 96.150.23 89.520.25 74.700.70 84.290.43 74.400.47 13.891.67 77.190.89 75.800.54
TopK 94.470.48 96.340.20 90.500.16 75.190.25 84.250.73 74.500.55 61.141.33 74.820.70 75.240.34
Div 93.450.46 95.690.23 90.030.24 74.850.39 84.440.91 73.340.62 36.291.05 77.060.57 75.960.55

TopK-Div 93.340.34 96.570.16 90.190.19 75.600.54 83.540.56 74.470.63 70.431.24 75.050.41 75.210.29

8

Rand 93.300.36 96.090.23 89.390.28 75.980.56 84.340.54 74.480.63 24.361.19 79.230.64 76.280.50
TopK 94.200.28 96.550.16 90.620.16 76.140.63 83.570.53 75.360.43 71.001.20 77.590.42 75.550.18
Div 93.410.20 95.940.25 89.900.19 76.600.32 84.220.52 74.690.64 42.071.10 79.050.93 76.650.60

TopK-Div 94.040.29 96.580.04 90.480.22 76.530.21 83.850.66 75.160.32 76.320.85 77.640.63 76.240.48

G
em

m
a-

2-
27

B 4

Rand 94.160.40 96.060.26 89.990.39 76.150.41 90.160.33 70.760.71 18.681.83 80.540.59 75.610.78
TopK 95.000.33 96.470.11 89.640.15 76.470.46 89.730.38 69.270.49 67.751.45 78.430.49 76.350.46
Div 94.150.43 95.570.36 89.780.40 76.970.47 90.680.23 69.851.60 41.752.16 79.911.14 76.730.61

TopK-Div 94.430.18 96.590.12 89.760.16 76.150.41 89.530.23 69.620.56 79.110.97 78.390.46 75.910.53

8

Rand 94.590.45 96.420.46 89.620.21 77.170.69 90.230.25 69.040.53 30.362.04 81.810.37 77.090.53
TopK 94.300.32 96.600.18 90.140.24 77.200.42 89.950.27 66.540.37 77.541.00 80.720.38 76.420.52
Div 94.610.29 95.950.27 90.210.23 78.470.41 90.450.22 70.020.91 46.962.23 81.380.89 77.840.51

TopK-Div 94.560.29 96.430.13 90.340.22 77.290.31 89.700.25 68.480.38 82.391.35 80.900.53 77.100.54

Table 13: CodeLlama-family results on GeoQuery dataset with different split. We observe that
on GeoQuery dataset, TopK-Div consistently works better than TopK, and there is also a large gap
between TopK and more diversity-aware methods like Div and Rand, which aligns with the results
in Table 11, Table 12, and Table 1 for Mistral-v0.3. The gap between different methods is wide and
std is small, so we omit the std.

model K Method GeoQuery
Standard Tmcd Template Length

C
od

eL
la

m
a-

7B
-h

f

4

Rand 12.21 10.43 9.75 3.61
TopK 57.86 35.68 36.90 25.91
Div 33.11 21.95 27.22 13.16

TopK-Div 67.86 40.00 50.34 33.64

8

Rand 21.11 17.25 17.93 8.05
TopK 58.21 42.95 48.06 32.95
Div 38.29 24.75 31.41 16.48

TopK-Div 66.79 46.36 55.13 39.09

C
od

eL
la

m
a-

13
B

-h
f

4

Rand 13.82 11.66 11.73 4.11
TopK 63.57 37.73 38.04 29.77
Div 37.43 23.23 26.51 18.07

TopK-Div 72.14 44.32 53.99 40.68

8

Rand 24.89 18.64 21.16 9.52
TopK 69.64 44.09 56.04 41.14
Div 42.71 26.00 30.59 20.68

TopK-Div 79.29 47.73 64.24 44.32

C
od

eL
la

m
a-

34
B

-h
f

4

Rand 15.75 13.02 14.42 5.98
TopK 63.57 42.05 43.51 30.23
Div 39.86 24.75 32.92 19.18

TopK-Div 72.50 48.18 56.72 44.55

8

Rand 25.46 20.50 24.76 11.73
TopK 73.93 48.41 56.04 44.09
Div 44.18 27.50 39.29 24.32

TopK-Div 80.71 50.00 64.92 48.86
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Table 14: Results of GPT-4o-mini and Deepseek-v3 in Math Task.

Model K Dataset Method
Rand TopK Div TopK-Div

GPT-4o-mini 4 GSM8K 93.03 91.06 92.80 92.27
PRM800K 68.40 66.60 71.20 69.20

Deepseek-v3 4 GSM8K 96.13 95.75 95.91 95.45
PRM800K 85.00 87.00 85.00 86.80

Figure 5: The performance of different demonstration selection methods with different number of
shots K. Left: sentiment classification task with demonstrations come from Amazon and queries
come from SST-2. Right: text to SQL task with demonstrations and query come from the training
and test set of GeoQuery Standard Split.

Figure 6: (The accuracy of different methods with different number of shots K on reading com-
prehension tasks.) We choose report the results on Llama-3.1-8B, with Sentence-BERT embeddings
(all-roberta-large-v1). Left: results where demonstration and query come from SCIQ. Right: results
where demonstration and query come from SQuAD.

D.2 CHANGING THE NUMBER OF SHOTS

In this section, we investigate how the performance advantage of diversity-aware methods over
TopK evolves with increasing shot count. Our results in Figure 5 show that the improvement from
diversity-aware selection (Div) remains substantial even with higher number of shots.

We believe that as the shot number increases, there is an increase in redundant information among
the examples selected by the TopK method. In contrast, the TopK-Div method minimizes the
occurrence of redundant information as much as possible, thereby enabling the model to more clearly
identify the task theme.

Figure 5 presents the relative improvement on the GeoQuery standard split and SCIQ — two tasks
where diversity-aware methods showed clear benefits (Section 3.1) — across different sizes of the
Llama-3.1/3.2 and Gemma-2 model families. The results indicate that, in general, the relative improve-
ment from diversity-aware selection does not diminish significantly as model size increases. This
underscores the continued importance of understanding diversity’s role in demonstration selection.

We present the experimental results on reading comprehension task (SCIQ, SQuAD), where diversity-
aware methods perform well, with different numbers of shots K ranging from 1 to 10. We test
different methods on the Llama-3.1-8B model. Figure 6 summarizes. To our surprise, when k = 1,
TopK performs significantly worse than Rand on both datasets, indicating that the accuracy of these
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Table 15: Results of K-Means Method in Math Task. We add the K-Means baseline based on Table 1
in our paper. The implementation of K-Means consists of two steps: First, partition the input into k
clusters using the k-Means method. Second, select k points as demonstrations by choosing the point
closest to the cluster center within each cluster.

model K Dataset Method
Rand Topk Div Topk-Div K-means

L
la

m
a-

3.
1-

8B 4 GSM8K 82.24 81.99 82.14 81.74 83.89
GSM-Plus-M 66.90 65.30 66.92 66.12 68.10

8 GSM8K 82.81 82.26 82.98 82.63 82.36
GSM-Plus-M 66.72 65.99 66.56 66.48 66.52

G
em

m
a-

2-
9B 4 GSM8K 84.29 84.25 84.44 83.54 85.24

GSM-Plus-M 74.40 74.50 73.34 74.47 74.52

8 GSM8K 84.34 83.57 84.22 83.85 84.97
GSM-Plus-M 74.48 75.36 74.69 75.16 76.29

M
is

tr
al

-7
B

-v
0.

3

4 GSM8K 48.78 49.28 49.49 49.99 43.90
GSM-Plus-M 37.20 38.20 37.50 38.45 35.50

8 GSM8K 47.86 48.43 48.33 48.60 49.13
GSM-Plus-M 36.32 37.35 36.12 37.81 36.41

datasets is not solely related to the coverage of example sets. Under most settings of k, Div shows
significant advantages over TopK. Moreover, the correlation between example sets selected by Div
and test samples is relatively low. This sufficiently demonstrates that even when example samples do
not have coverage of test samples, they can still be high-quality examples, which is also consistent
with the good performance of Rand.

D.3 MORE DIVERSITY-AWARE METHOD

In the main text, TopK-Div and Div are both diversity-aware methods that combine the TopK
method. We want to understand what happens when using a purely diversity-based method. Therefore,
we implemented the K-Means method: dividing the training set into k clusters by k-means algorithm
and then choose the nearest sample to the Centroid from each cluster (K-Means), K-Means can be
viewed as a purely diversity-based met.

The results in Table 15 show that the K-Means method still has advantages compared to the TopK
method. In fact, we believe Rand can also be considered a purely diversity-based method. This
implies the advantage of diversity methods does not depend on the specific implementation.

D.4 ABALATIONS ON THE SIZE OF TRAINING SET

To investigate whether the way diversity works is related to the size of the training set—for example,
whether the example selection strategy needs to change when the available training set is limited, We
conducted experiments on the SQuAD and SCIQ datasets by randomly sampling 50 examples from
each training set to create SCIQ-50 and SQuAD-50, while keeping the original testing set unchanged.

When the available training set size is reduced, TopK still underperforms compared to Div, maintaining
an average performance gap of 1% in 4-shot and 8-shot settings.

D.5 ABLATIONS ON “BETTER” EMBEDDINGS

“better” embedding in a cheating way. All methods we test, except randomly chosen (Rand),
depend on an embedding model. It is always possible that the embedding model is not good enough.
Indeed, using Sentence-BERT on questions/input (optimized for semantic similarity) might not
be optimal for math tasks and text-to-SQL generation, and the ideal embedding might be highly
dependent on the structure or reasoning steps of the answer. In this section, we test if diversity
still helps when given a better embedding, computed in a “cheating” way: For math problems, we
append the gold answer after the question and compute the embedding using Sentence-BERT; For
text-to-SQL generation, we compute the occurrence of keywords in the answer (Levy et al., 2023).
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Table 16: Embedding on answer using Gemma-2-9B with 4 shots. Comparing to Table 1, the relative
ranking between the tested methods doesn’t change.

Rand TopK Div TopK-Div

GSM8K 82.21 84.53 84.14 84.69
PRM800K 38.04 45.60 37.56 46.40

GeoQuery(Standard) 13.71 79.64 54.32 84.29

Table 17: Results of different embeddings on Llama-3.1-8B. We test different methods using
different similarity scores computation (“all-roberta-large-v1”, “BM25”, “BertScore”). We test
on Llama-3.1-8B model on math (using instruct model) and reading comprehension (using base
model). The numbers for embedding “all-roberta-large-v1” are copied from Table 1. The numbers
corresponding to Rand for BM25 and BertScore are also copied. We find that: (1) using another
embedding might affect the TopK performance, as we can observe an increase of performance for
TopK while changing to BM25 or BertScore. (2) Diversity still helps, since if we look at the best
performance with the best embedding, in most of the cases the best performance is still achieved by
diversity-aware methods.

Embedding K Method Math Reading
GSM8K PRM800K SQuAD SCIQ

al
l-

ro
be

rt
a-

la
rg

e-
v1

4

Rand 82.40 43.50 75.87 74.17
TopK 82.64 41.40 73.70 72.80
Div 82.43 44.86 76.02 74.44

TopK-Div 81.43 44.80 74.40 73.60

8

Rand 82.77 43.32 77.35 74.79
TopK 82.11 43.00 76.90 74.40
Div 83.13 44.28 78.05 75.52

TopK-Div 81.73 40.00 75.90 74.90

B
M

25

4

Rand 82.40 43.50 75.87 74.17
TopK 81.88 42.00 73.80 74.40
Div 82.47 44.12 76.65 72.74

TopK-Div 81.20 45.00 75.50 74.30

8

Rand 82.77 43.32 77.35 74.79
TopK 82.94 44.80 76.60 75.20
Div 83.44 43.92 78.97 74.12

TopK-Div 83.02 45.60 77.50 74.50

B
er

tS
co

re

4

Rand 82.40 43.50 75.87 74.17
TopK 81.58 45.60 75.00 74.30
Div 82.81 44.06 74.16 73.06

TopK-Div 81.05 44.40 74.90 73.20

8

Rand 82.77 43.32 77.35 74.79
TopK 82.34 42.60 76.40 75.50
Div 83.09 43.68 76.00 74.95

TopK-Div 81.58 44.00 75.70 74.70

Table 16 summarizes the result using the “cheating” embeddings on Gemma-2-9B, and in general,
diversity still helps for these tasks.

Computing local structure for GeoQuery. For the code-standard task, we tokenized the sample
answers at the word level and obtained 52 distinct tokens, with each dimension representing a token.
For a given sample, in its 52-dimensional vector, if the corresponding token appears in its answer, the
value at that position is 1, otherwise 0. We use this embedding as the code embedding on answers.

BM25 and BertScore for math and reading comprehension. We conduct ablation studies on the
model to compute the similarity score, changing from cosine similarity from embeddings computed
by “all-roberta-large-v1” to BM25 and BertScore, and test different methods on math and reading
comprehension tasks. Table 17 summarizes our results. We find that (1) using another embedding
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might affect the TopK performance, as we can observe an increase in performance for TopK while
changing to BM25 or BertScore. (2) Diversity still helps since if we look at the best performance
with the best embedding, in most cases, the best performance is still achieved by diversity-aware
methods.

D.6 DECODING METHOD

Table 18: Decode performance using Llama-3.1-8B on reading comprehension tasks. The number of
shot is fixed as 4.

Decode Test. Rand TopK Div TopK-Div

Greedy
Squad 75.87 73.70 76.02 74.40
Sciq 74.17 72.80 74.44 73.60

Sampling Squad 70.93 72.40 70.95 72.80
Sciq 66.86 66.70 67.08 67.70

In this part we show some preliminary results on changing the decoding strategy for reading compre-
hension tasks (SQuAD and CommonsenseQA), since for code and math, greedy decoding is known to
perform well. By changing greedy decoding to sampling decoding (topP = 0.95,Temperature = 0.7),
we find that the performance of all tasks drops a lot (Table 18), which justifies our decoding strategy
selection.

E THEORETICAL JUSTIFICATION AND SIMULATIONS

In this section, we give a theoretical justification for combining diversity in demonstration selection
for ICL, even if the “embedding” is accurate (Theorems E.2 and E.3). Then we validate the superiority
of TopK-Div compared to TopK in more general settings. In Appendix E.3 and Appendix E.4, we
also employ the theoretical framework to conduct detailed simulation experiments.
We consider the linear regression model, where there is a task vector θT ∈ Rd. The data for this
task has embedded input e ∈ Rd and output y = ⟨θT , e⟩. We also have a demonstration set D =
{(ei, yi)}ni=1 with size n, where yi = ⟨θT , ei⟩ and ei is drawn from the demonstration distribution
DE . Now given a query eq drawn from the query distribution QE , the goal of demonstration selection
is to select a subset S = {(eji , yji)}Ki=1, such that given the demonstrations S = {(eji , yji)}Ki=1, the
LLM predicts the output close to the gold label yq = ⟨θT , eq⟩, i.e, yq ≈ LLM(S, eq). We make the
following assumption on the mechanism of LLM for learning linear regression in-context, given the
demonstration S and the query eq .

Assumption E.1 (ICL for linear regression). Suppose that the task T is to predict the value of
a linear function y = ⟨θT , e⟩ and K demonstrations S = {(eji , yji)}Ki=1 are selected. Denote
E = [ej1 , . . . , ejK ]⊤ ∈ RK×d as the data matrix. Then given a query eq, we assume that the
prediction given by the LLM is ypred = ⟨eq, E†EθT ⟩. Namely, the LLM learns the min-norm solution
for the overparameterized linear regression.

By this assumption, the prediction loss of eq is

Loss(eq) := (ypred − ⟨θT , eq⟩)2 = ⟨θT − E†EθT , eq⟩2.

ICL for linear regression has been extensively studied, empirically and theoretically (Appendix A).
Theorem E.1 is also empirically justified, where (Akyürek et al., 2023) observed that after pretraining
an autoregressive transformer model on noiseless linear regression tasks, the transformer will learn
the min-norm solution for the linear regression in-context if the size of demonstrations K < d.

We further assume that the embedding for each data e ∈ {0, 1}d. This is inspired by the theoretical
framework that each problem from a specific task contains certain skills (or local structures), and an
LLM is able to solve that problem perfectly if the LLM knows all the skills (local structures) and is
able to compose the skills (local structures) together (Arora and Goyal, 2023; Yu et al., 2024; Zhao
et al., 2025). For example, for a specific math problem related to algebra, the skills required to solve
this problem are polynomial multiplication and solving equations, while for another math problem
related to geometry, the skills required might be changed to coordinate systems and solving equations.
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It is also worth noting that the skill(local structure)-based embedding design also gains empirical
success. For example, (Levy et al., 2023; Didolkar et al., 2024) improves semantic parsing and (An
et al., 2023b) improves math ability by selecting demonstrations that require similar skills or local
structures to the query.

Example I: Diversity benefits from coverage. We characterize the demonstration distribution DE
and the query distribution QE below. Let l ≥ 200 be an even number and let d = 4l, where the
choice of 200 is to simplify the analysis. Let DE be: Uniformly draw a subset T1 ⊆ [2l] of size l/2
and a subset T2 ⊆ {2l + 1, . . . , 4l} of size l/2, and output e = eT1∪T2

, i.e., the i-th entry of e is 1 iff
i ∈ T1 ∪ T2. Assume the size n of D is sufficiently large that D covers the entire ground set of DE .
Let QE be: Uniformly draw a subset T ⊂ [2l] of size l. We have the following theorem, whose proof
can be found in Appendix E.1.
Theorem E.2 (Justification example I). Suppose each entry of θT is i.i.d. drawn from the uniform
distribution on [0, 1]. Let K = 2 and DE ,QE be as defined above. For a query eq drawn from QE ,
let L,L′ denote the expected prediction loss of eq using TopK and TopK-Div, respectively, where
the randomness comes from θT , eq, and the selection of demonstration examples. Then L > L′ for
any hyperparameter α ∈ (0, 1) for TopK-Div.

Intuitively, the selected two demonstration examples of TopK-Div must cover all non-zero entries
of eq , while this property is unlikely to hold for TopK. This demonstrates that adding diversity may
increase the coverage of demonstration examples to queries and lead to a lower prediction loss,
aligning with the findings in Levy et al. (2023); Gupta et al. (2023); Ye et al. (2023).

Example II: Diversity is beyond coverage. We again characterize DE and QE below. Let l ≥ 3 be
an integer and let d = 4l. Let DE be: Uniformly draw a subset T1 ⊆ [2l] of size l − 1 and a subset
T2 ⊆ {2l + 1, . . . , 4l} of size 1, and output e = eT1∪T2

. Assume the size n of D is sufficiently large
that D covers the entire ground set of DE . Let QE be: Uniformly draw a subset T ⊂ [2l] of size l.
We have the following theorem for this example, whose proof can be found in Appendix E.2.
Theorem E.3 (Justification example II). Suppose each entry of θT is i.i.d. drawn from the uniform
distribution on [0, 1]. Let K = 2 and DE ,QE be as defined above. For a query eq drawn from QE ,
let L,L′ denote the expected prediction loss of eq using TopK and TopK-Div, respectively, where
the randomness comes from θT , eq, and the selection of demonstration examples. Then L > L′ if
hyperparameter α ≥ 1− 1/l for TopK-Div.

The demonstration examples of TopK and TopK-Div must cover all non-zero entries of eq. The
smaller loss of TopK-Div is caused by selecting two demonstration examples with different non-
zero entries among {2l + 1, . . . , 4l}, indicating that adding diversity could benefit ICL “beyond
coverage”.

In Appendix E.3, we conduct simulations to validate that the advantage of TopK-Div over TopK,
driven by coverage and beyond, extends to more general settings, including the ID setting (DE = QE )
and scenarios with different training scales for D.

E.1 PROOF OF THEOREM E.2: JUSTIFICATION EXAMPLE I

Fix a query eq drawn from QE . By symmetry, we can assume the non-zero entry set of eq is [2l]. For
simplicity, we let θ = θT .

Demonstration example set for TopK-Div We first analyze the demonstration example set for
TopK-Div, denoted by S =

{
s(1), s(2)

}
⊆ D. Let T (t) denote the non-zero entry set of s(t). By

the construction of D, we first note that |T (1) ∩ [l]| = l
2 . By the rule of TopK-Div, we also note

that |T (2) ∩ [l]| = l
2 and T (1) ∩ T (2) = ∅. Such s(2) must exist since all elements in the ground set

of DE are contained in D, and is selected since it minimizes

α · Similarity(e, eq) + (1− α)Diversity(e, S)

over all e ∈ D −
{
s(1)

}
.

Demonstration example set for TopK Next, we compute the expected prediction loss L for TopK.
Again, let its demonstration example set be S =

{
s(1), s(2)

}
⊆ D. Let T (t) denote the non-zero
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entry set of s(t). By the construction of D, we note that |T (1) ∩ [l]| = |T (2) ∩ [l]| = l
2 . However,

different from the case of TopK-Div, |T (1) ∩ T (2)| can vary from 0 to l − 1. To handle this, we
define a = |T (1) ∩ T (2) ∩ [l]| and b = |T (1) ∩ T (2) ∩ ([d] \ [l])|, and define La,b to be the expected
prediction loss conditioned on pair (a, b). Note that 0 ≤ a, b ≤ l/2 and a+ b ≤ l − 1.

Comparing L and L′ We remark that L is a linear combination
∑

a,b pa,bLa,b with
∑

a,b pa,b = 1,
where pa,b is the conditional probability with respect to intersection numbers (a, b). Also, L′ = L0,0.
By symmetry, we have the following observation:

Pr[a ≤ l/4 ≤ b] ≥ 0.25,

where l/4 is the expectation of a and b. Thus, we have

L ≥
∑

a≤l/4≤b

pa,bLa,b ≥
∑

a,b∈l/4±
√
l

pa,b · min
a≤l/4≤b

La,b ≥ 0.25 min
a≤l/4≤b

La,b.

Thus, to prove L > L′, it suffices to prove the following lemma.

Lemma E.4 (Comparing La,b and L0,0). For any a ≤ l/4 ≤ b, we have La,b > 4L0,0.

Proof. By symmetry, we assume T (1) = [ l2 ] ∪ ([ 52 l] − [2l]), T (2) = ([l] − [a] − [ l2 − a]) ∪ ([3l −
b] − [ 52 l − b]), |T (1) ∩ T (2) ∩ [L]| = |T (1) ∩ T (2) ∩ [2L]| = a, |T (1) ∩ T (2) ∩ ([4L] − [2L])| = b.
The expected prediction loss for this setting equals La,b since θis are i.i.d. random variables. Let θ̂
denote the min-norm solution defined as in Assumption E.1. Then we have

⟨θ̂ − θ, eT (1)⟩ =
l
2∑

i=1

θ̂i +

5
2 l∑

i=2l+1

θ̂i −
l
2∑

i=1

θi −
5
2 l∑

i=2l+1

θi = 0, (5)

and

⟨θ̂ − θ, eT (2)⟩ =
l−a∑

i= l
2−a+1

θ̂i +

3l−b∑
i= 5

2 l−b+1

θ̂i −
l−a∑

i= l
2−a+1

θi −
3l−b∑

i= 5
2 l−b+1

θi = 0. (6)

To get the min-norm solution, we need to minimize the following Lagrangian multiplier

L(θ̂, λ1, λ2) =

l−a∑
i=1

θ̂2i − 2λ1⟨θ̂ − θ, eT (1)⟩ − 2λ2⟨θ̂ − θ, eT (2)⟩.

To ensure the partial derivatives with respect to θ̂ equal to 0, we obtain that

θ̂1 = . . . = θ̂ l
2−a = θ̂2l+1 = . . . = θ̂ 5

2 l−b = λ1,

θ̂ l
2+1 = . . . = θ̂l−a = θ̂ 5

2 l+1 = . . . = θ̂3l−b = λ2,

θ̂ l
2−a+1 = . . . = θ̂ l

2
= θ̂ 5

2 l−b+1 = . . . = θ̂ 5
2 l

= λ1 + λ2,

θ̂l−a+1 = . . . = θ̂2l = θ̂3l−b+1 = . . . = θ̂4l = 0.

(7)

Adding Equations (5)-(7), we have

(l + a+ b)(λ1 + λ2) =

l
2∑

i=1

θi +

5
2 l∑

i=2l+1

θi +

l−a∑
i= l

2−a+1

θi +

3l−b∑
i= 5

2 l−b

θi. (8)
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Thus, we conclude that[
l∑

i=1

θ̂i −
l∑

i=1

θi

]2

=

[
(
l

2
− a)(λ1 + λ2) + aλ1 + aλ2 −

l∑
i=1

θi

]2

=

[
l

2
(λ1 + λ2)−

l∑
i=1

θi

]2

=

 l
2

l + a+ b

 l
2∑

i=1

θi +

5
2 l∑

i=2l+1

θi +

l−a∑
i= l

2−a+1

θi +

3l−b∑
i= 5

2 l−b

θi

−
l∑

i=1

θi

2

=

− l
2 + a+ b

l + a+ b

l
2−a∑
i=1

θi −
l
2 + a+ b

l + a+ b

l−a∑
i= l

2+1

θi −
a+ b

l + a+ b

l
2∑

i= l
2−a+1

θi

+
l
2

l + a+ b

5
2 l∑

i=2l+1

θi +
l
2

l + a+ b

3l−b∑
i= 5

2 l−b+1

θi

2

,

where the first equation follows from Equation (7) and the third equation follows from Equation (8).
Since each θi is i.i.d. drawn from the uniform distribution over [0, 1], we have

La,b =E
[
⟨θ̂ − θ, eq⟩2

]
=E

[ l∑
i=1

θ̂i −
l∑

i=1

θi

]2


=
( l
2 + a+ b)2( l

2 − a) + a(a+b)2

2 + l3

8 + 3(bl−a2−ab)2

2

6(l + a+ b)2
.

Thus, L0,0 = l
24 . When a ≤ l/4 ≤ b, we have

La,b >
3(bl − a2 − ab)2/2

6(l + a+ b)2

≥ (l2/4− 2(l/4)2)2

4(2l)2
(a ≤ l/4 ≤ b)

=
(l2/8)2

16l2

=
l2

1024
≥ 4L0,0. (l ≥ 200)

This completes the proof.

E.2 PROOF OF THEOREM E.3: JUSTIFICATION EXAMPLE II

By symmetric, we fix eq = e[l]. Like the proof of Theorem E.2, we first study the demonstration
example sets, denoted by S =

{
s(1), s(2)

}
⊆ D, derived from TopK and TopK-Div. We observe

that for both algorithms, |T (1) ∩ [l]| = |T (2) ∩ [l]| = l − 1. Note that this property for TopK-Div
follows from the choice of α ≥ 1− 1

l , which ensures that |T (2) ∩ [l]| ≤ l − 2 can not achieve the
minimum for

α · Similarity(e, eq) + (1− α)Diversity(e, S)

Thus, by symmetry, we can fix T (1) = [l − 1] ∪ {2l + 1]} and there are only three choices for T (2):

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

• Case 1: T (2) = [l] ∪ {2l + 2} − {1};

• Case 2: T (2) = [l] ∪ {2l + 1} − {1}.

• Case 3: T (2) = [l − 1] ∪ {2l + 2}.

We define the expected prediction loss of these three cases to be L1, L2, L3, respectively. By the
definition of TopK-Div, we know that L′ = L1. Moreover, the expected prediction loss L of TopK
must be a linear combination of L1, L2, L3. Thus, it suffices to prove that L2 > L1 and L3 > L1.
Below, we compute L1, L2, L3 separately.

Computing L1. The computation idea is similar to that of Lemma E.4. Suppose θ̂ is the min-norm
solution and we have

l−1∑
i=1

θ̂i + θ̂2l+1 −
l−1∑
i=1

θi − θ2l+1 = 0 and
l∑

i=2

θ̂i + θ̂2l+2 −
l∑

i=2

θi − θ2l+2 = 0.

Again, consider the Lagrangian multiplier L(θ̂, λ1, λ2) =
l∑

i=1

(θ̂i)
2 − 2λ1⟨θ̂ − θ, eT (1)⟩ − 2λ2⟨θ̂ −

θ, eT (2)⟩. To ensure the partial derivative w.r.t. θ̂ equal to 0, we have

θ̂2 = θ̂3 = . . . = θ̂l−1 = λ1 + λ2, and θ̂1 = θ̂2l+1 = λ1, θ̂l = θ̂2l+2 = λ2.

Combining the above equations, we have

(2l − 2)(λ1 + λ2) = 2

l−1∑
i=2

θi + θ1 + θl + θ2l+1 + θ2l+2.

Thus,

(

l∑
i=1

θi −
l∑

i=1

θ̂i)
2 = [(l − 1)(λ1 + λ2)−

l∑
i=1

θi]
2 = (

θ2l+1 + θ2l+2 − θ1 − θl
2

)2.

Consequently, we have

L1 = E[⟨θ̂ − θ, eq⟩2] = E[(
θ2l+1 + θ2l+2 − θ1 − θl

2
)2] =

1

12
.

Computing L2. Similarly, we have

l−1∑
i=1

θ̂i + θ̂2l+1 −
l−1∑
i=1

θi − θ2l+1 = 0, and
l∑

i=2

θ̂i + θ̂2l+1 −
l∑

i=2

θi − θ2l+1 = 0.

Thus, using the Lagrangian multiplier, we obtain that

θ̂2 = θ̂3 = . . . = θ̂l−1 = θ̂2l+1 = λ1 + λ2, and θ̂1 = λ1, θ̂l = λ2.

Combining the above equations, we have

(2l − 1)(λ1 + λ2) = 2

l−1∑
i=2

θi + 2θ2l+1 + θ1 + θl.

Thus,

L2 = E[(
l∑

i=1

θi −
l∑

i=1

θ̂i)
2] = E[

l∑
i=1

θi − [(l − 1)(λ1 + λ2)]
2]

= E[
1

2l − 1

l−1∑
i=2

θi +
l

2l − 1
(θ1 + θl)−

2l − 2

2l − 1
θ2l+1]

2] =
9l2 − 7l + 2

12(12l − 1)2
> L1.
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Computing L3. Similarly, we have

l−1∑
i=1

θ̂i + θ̂2l+1 −
l−1∑
i=1

θi − θ2l+1 = 0, and
l−1∑
i=1

θ̂i + θ̂2l+2 −
l−1∑
i=1

θi − θ2l+2 = 0.

Using the Lagrangian multiplier, we obtain that

θ̂1 = θ̂2 = θ̂3 = . . . = θ̂l−1 = λ1 + λ2, and θ̂2l+1 = λ1, θ̂2l+2 = λ2.

Combining the above equations, we have

(2l − 1)(λ1 + λ2) = 2

l−1∑
i=1

θi + θ2l+1 + θ2l+2.

Thus,

L3 = E[(
l∑

i=1

θi −
l∑

i=1

θ̂i)
2] = E[

l∑
i=1

θi − [(l − 1)(λ1 + λ2)]
2]

= E[
1

2l − 1

l−1∑
i=1

θi + θl −
l − 1

2l − 1
(θ2l+1 + θ2l+2)]

2] =
9l2 − 7l + 2

12(2l − 1)2
> L1.

Overall, we complete the proof of Theorem E.3.

E.3 EXPERIMENT SETTINGS

We consider the ID setting with DE = QE .

Metric for coverage. Given a sample (e, yE), let T (e) denote the non-zero entry set of e. Given a
demonstration example set S ⊆ D and a query eq , we define the coverage ratio of S with respect to
eq to be:

rS(eq) :=
|(
⋃

e∈S T (e)) ∩ T (eq)|
|T (eq)|

,

i.e., the ratio of non-zero entries of eq covered by samples in S. By definition, rS(eq) ∈ [0, 1] and a
larger rS(eq) represents higher coverage. Specifically, when rS(eq) = 1, we say eq is fully covered
by S. Moreover, given a method A that generates a demonstration example set A(eq) ⊆ D for each
query eq , we define

r(A) := Eeq∼QE [rA(eq)(eq)] (9)

to be the expected value of its coverage ratio rA(eq)(eq). If r(A) = 1, we say every query is fully
covered by A.

We want to study the loss difference between TopK-Div and TopK under two scenarios: 1)
when query eq is fully covered by both algorithms TopK-Div and TopK, i.e., r(TopK-Div) =
r(TopK) = 1; and 2) when the coverage ratio of TopK-Div is smaller than that of TopK, i.e.,
r(TopK-Div) < r(TopK).

Parameters. Let d = 200. Let l vary from 3, 4, 8. Let K = 4 or 8. Let DE = QE be the
distribution that first samples a subset T ⊂ [d] of size l and then generate eT . We set the size of
training set D to be |D| = d× train_scale, where train_scale ∈ {1, 5, 10}.

For each pair (l,K), we generate a testing set Dtest of size 100. We ensure that Dtest ∩D = ∅. We
report the expected prediction loss and coverage ratio of TopK and TopK-Div for each pair (l,K).

E.4 RESULT AND DISCUSSIONS

The results, reported in Table 19, reveal key insights into the performance differences between
TopK and TopK-Div. We observe that when l = 8, the coverage ratio of TopK is lower than
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Table 19: (Simulation of the min-norm solution) “Coverage” represents the coverage ratio of
methods, defined as in Equation (9). For each random seed, we selected one hundred test samples.
We report the average results across 3 different random seeds for each metric.

Method Shot Metric Train scale = 1 Train scale = 5 Train scale = 10

l = 3 l = 4 l = 8 l = 3 l = 4 l = 8 l = 3 l = 4 l = 8

TopK
K = 4

Loss 0.21 0.31 12.70 0.15 0.30 9.55 0.19 0.30 7.51
Coverage 1.00 1.00 0.55 1.00 1.00 0.61 1.00 1.00 0.66

K = 8
Loss 0.47 0.57 3.09 0.43 0.84 1.33 0.45 0.83 1.19

Coverage 1.00 1.00 0.75 1.00 1.00 0.80 1.00 1.00 0.81

TopK-Div
K = 4

Loss 0.19 0.32 10.25 0.18 0.31 5.47 0.21 0.29 3.97
Coverage 1.00 1.00 0.63 1.00 1.00 0.75 1.00 1.00 0.80

K = 8
Loss 0.31 0.38 2.58 0.23 0.38 1.32 0.20 0.38 1.75

Coverage 1.00 1.00 0.87 1.00 1.00 0.94 1.00 1.00 0.94

that of TopK-Div, while its loss is significantly higher. For example, when l = 8, K = 4, and
train_scale = 5, the coverage ratio is r(TopK) = 0.61, compared to r(TopK-Div) = 0.75, while
the loss for TopK is 9.55, notably larger than the 5.47 observed for TopK-Div. This demonstrates
that incorporating diversity can reduce prediction loss by improving coverage, aligning with Theorem
E.2.

When l = 3 or 4, the coverage ratios of TopK and TopK-Div are both 1. We find that the loss of
TopK is comparable to or even lower than that of TopK-Div when K = 4, but significantly higher
when K = 8, across various training scales. For instance, when l = 3, K = 8, and train_scale = 5,
the loss for TopK is 0.43, whereas for TopK-Div it is 0.23. This supports our findings in Theorem
E.3, demonstrating that diversity can enhance in-context learning beyond just coverage. The inverse
trend in loss between K = 4 and K = 8 suggests that increasing coverage is beneficial when
the query is not fully covered but becomes redundant when the demonstration example set already
provides sufficient coverage.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed large language models (LLMs) solely for word-level grammar checking and minor
stylistic refinement of the manuscript. Beyond this limited function, LLMs did not contribute to
any other aspects of our research or writing, including conceptualization, experimental design, data
analysis, or interpretation of results.
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