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Abstract

Pre-trained large language models (LLMs) based on Transformer have demon-
strated striking in-context learning (ICL) abilities. With a few demonstration
input-label pairs, they can predict the label for an unseen input without any parame-
ter updates. In this paper, we show an exciting phenomenon that SVD-based weight
pruning can enhance ICL performance, and more surprising, pruning weights in
deep layers often results in more stable performance improvements than in shallow
layers. However, the underlying mechanism of those findings still remains an open
question. To reveal those findings, we conduct an in-depth theoretical analysis
by presenting the implicit gradient descent (GD) trajectories of ICL and giving
the mutual information based generalization bounds of ICL via full implicit GD
trajectories. This helps us reasonably explain the surprising experimental findings.
Besides, based on all our experimental and theoretical insights, we intuitively pro-
pose a simple, model-compression and derivative-free algorithm for downstream
tasks in enhancing ICL inference. Experiments on benchmark datasets and open
source LLMs display the method effectiveness2.

1 Introduction

Recently, large language models (LLMs) based on the Transformer architecture [43] have emerged
striking in-context learning (ICL) capabilities: Given a prompt containing demonstration sample
and a test data, the model can make a prediction for the test data and achieve excellent performance
without any parameter updates [7, 26, 34, 6]. This leads considerable works that aim to shed light on
it [54, 21, 59, 3, 10, 16, 2, 46, 35] .

In this paper, we show our surprising findings in ICL inference by experimentally analyzing the
effect of singular value decomposition (SVD)-based pruning on the model performance at differ-
ent depth layers. As demonstrated in Figure 1: (i) SVD-based weight pruning can enhance ICL
performance. Across all cases, it is evident that SVD-based weight pruning can generally enhance
model performance at various depth layers, compared to the baseline performance without weight
pruning (indicated by the dashed lines); (ii) Pruning weights in deep layers often results in more
stable performance improvements than in shallow layers. Specially, deep layers weight matrices
can be drastically reduced without much degradation in model performance, and may even get large
improvements on it, while the model performance collapses after a sharp reduction at the shallow
layers (see Section 2 for details). A similar case in Sharma et al. [38] notes that a large portion of
singular values can be removed from linear layers in large language models without affecting or even
improving reasoning performance. However, the underlying mechanism of this phenomenon still
remains a mystery, and this paper seeks to explore the issue from the following two aspects.
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2The code is available at https://github.com/chen123CtrlS/EnhancingICL_SVDPruning.
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Figure 1: The effect of weight pruning across different layer types. The figure shows the phenomenon
observed on the benchmark datasets (SST-2, RTE, COPA) and open source LLMs (GPT-J-6B and
LLAMA2-7B). Each sub-figure corresponds only to the indicated type of dataset, model and module.
Notice that this figure mainly focuses on exhibiting the impact of weight pruning to the first two and
the last two layers of the model and different colors are used to distinguish between these layers. The
dashed line represents the pretrained model performance without SVD. We operate on the whole of
MLP or ATTN and specifically marked the points of highest performance. The amount of weight
pruning is severe, for instance, the highest model performance sometimes occurs at a clipping rate of
0.995. This is about 99.5% of the matrix’s original rank. For the definitions of “deep” and “shallow”,
please refer to Appendix B.2.

Why this phenomenon? We conduct an in-depth theoretical analysis to explain the findings. To
be more specific, we first analyse the ICL form with Transformer from the perspective of ICL as
implicit gradient descent fine-tuning, and we present the implicit gradient descent trajectories of ICL
in Theorem 1 in Section 3.2. Afterwards, we use the information-theoretic approaches [55, 32, 51]
to give the generalization bounds of ICL via full implicit GD trajectories in Theorem 2 in Section
3.3, explaining (Q1) why SVD-based weight pruning can enhance ICL performance? and (Q2) why
do deep and shallow layers exhibit different behaviors when their weight matrices are drastically
reduced?

How to better use this phenomenon (Q3)? Based on all our experimental and theoretical insights,
we intuitively propose a simple, derivative-free and model-compression algorithm in Section 3.4 for
downstream tasks in enhancing ICL inference, providing developers and researchers with an effective
approach for handling downstream tasks. Experimental results for our algorithm on benchmark
datasets [39, 58, 8, 12, 5, 11, 18] and open source LLMs [48, 42] verify that the method can visibly
influence performance across different language understanding tasks in ICL inference.

Our primary objective is to establish a general theoretical framework that uncovers the underlying
mechanism behind the phenomenon that SVD-based weight pruning can enhance ICL performance.
Based on our theoretical insights, one can design new ICL algorithms. Accordingly, we did not
directly compare our approach with other pruning methods. The algorithm in Section 3.4 is presented
solely to illustrate how theoretical analysis can guide experimental procedures effectively.
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1.1 Related Works

Model compression. In recent years, there has been growing theoretical and experimental evidence
that models can be significantly pruned with very little drop in accuracy, thereby significantly reducing
their storage requirements. To name a few, Frankle and Carbin [15] indicate that neural networks can
typically have over 90% of their weights eliminated with little to no loss in performance. Analogous
results have been demonstrated in both feed-forward and convolutional networks used for image
classification [24, 49, 22, 37]. More specifically, Sharma et al. [38] present that careful pruning done
at specific layers of Transformer models can produce significant boosts in performance on some tasks.
The discovery of this phenomenon heightens interest in the connection between generalization and
over-parameterization [56, 57], it also spurs research into developing pruning strategies that facilitate
efficient model inference [30]. Additionally, the works [19, 40] find that performance remains nearly
unchanged until a significant portion (up to half) of the layers are removed.

In-context learning and gradient descent. In order to better understand the ICL capabilities,
considerable works try to understand ICL capabilities from the perspective of gradient descent. Irie
et al. [21] and Dai et al. [10] explain ICL as implicit fine-tuning by figuring out a dual form of gradient
descent for linear Transformer attention. However, the linear attention setting is less commonly used
than Softmax attention in the LLMs and the details of gradient descent such as the choice of loss
function and training data have not been clearly defined. Therefore, by using weight construction, von
Oswald et al. [46] show the equivalence of linear self-attention mechanism and gradient descent on a
linear regression task and Akyiurek et al. [3] prove that based on gradient descent and closed-form
ridge regression, Transformers can learn linear models as learning algorithms. Further without using
weight construction, Ren and Liu [35] connect Softmax attention with kernels and then give a novel
interpretation that ICL with Transformer is really equivalent to a contrastive learning pattern.

Information-theoretic generalization bounds. The information-theoretic generalization bounds
have been developed to analyze the expected generalization error of a learning algorithm. Given
that they are dependent of distribution and algorithm, they are ideal tools to study the generalization
behaviour of models performed with a specific algorithm. Russo and Zou [36] and Xu and Raginsky
[55] first propose the Mutual information (MI) based bounds, which are then strengthened by
additional techniques [4, 31, 20, 51]. Specifically, Negrea et al. [31] derive MI-based bounds by
developing a PAC-Bayes-like bounding technique and Wang and Mao [51] develop generalization
bounds for SGD via constructing an auxiliary iterative noisy process.

2 SVD-Based Weight Pruning can Enhance ICL

This section shows our surprising findings in ICL inference by performing a motivating analysis
of three benchmark datasets in conjunction with two open source LLMs, the details are as follows.
We choose GPT-J (6B,28 layers) [48] and LLAMA2 (7B,32 layers) [42] as our primary models for
investigation, owing to their robust ICL performance and moderate model size, which align with our
hardware resource. The attention (ATTN) layers are made up of key, query, value, out matrices both
in GPT-J-6B and LLAMA2-7B. The mlp (MLP) layers in GPT-J-6B consist of input, output matrices,
while the MLP layers in LLAMA2-7B are made up of up, gate, down matrices. For datasets, we use
SST-2 [39] for sentiment analysis, RTE [5] for textual entailment and COPA [18] for causal inference.
Details regarding datasets and how they were used are shown in Appendix C.1 and C.3.

Specially, we use the optimal rank-r approximation mentioned later as SVD-based weight pruning
method to show the effect of weight pruning across different layer and module types in Section 2.1,
then we further analyze the effect of the ICL shot numbers on it in Section 2.2.

The optimal rank-r approximation and SVD. Given a matrix W ∈ Rm×n and a constant r ≤
min(m,n), r ∈ N. Eckart–Young–Mirsky theorem [14] provides an optimal solution W∗(r) =
U:rΣ:rV

T
:r, U:r,V:r are matrices containing the singular vectors corresponding to the largest r

singular values [σ]r1. Let ξ = 1− r
min(m,n) ∈ (0, 1) be the clipping rate.

2.1 Effect of Weight Pruning across Different Layer and Module Types

We plot the results of applying various amounts of clipping rate ξ to each module matrices in the
Transformer architecture on the corresponding evaluation index for each dataset, as depicted in Figure
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1. These plots are grouped, such that each sub-figure corresponds only to the indicated type of dataset,
model and module. Notice that this investigation mainly focuses on assessing the impact of weight
pruning to the first two and the last two layers of the model to further clarify the impact of layer depth
on the model’s performance and different colors are used to distinguish between these layers.

All sub-figures clearly show an interesting phenomenon about these models in ICL inference: SVD-
based weight pruning can enhance ICL performance in both shallow and deep layers across different
module types. More surprising, deep layers weight matrices can be drastically reduced without
much degradation in model performance, and may even get large improvements on it. This suggests
that pruning weights in deep layers can effectively reduce model complexity while maintaining or
enhancing model performance. And the model performance collapses to 0.5 (the expectation of a
random guess in the binary task) after a sharp reduction at the shallow layers by contrast, indicating a
higher sensitivity of the model to changes in shallow layers.

Based on the surprising findings in ICL inference mentioned above, three questions are certain to
arise: (Q1) Why SVD-based weight pruning can enhance ICL performance? (Q2) Why do deep and
shallow layers exhibit different behaviors when their weight matrices are drastically reduced? (Q3)
How can we better use the phenomena about ICL in downstream tasks? We will address the first two
questions theoretically in Section 3.3 and give a heuristic algorithm in Section 3.4 to answer the last.
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Figure 2: The effect of different ICL shot numbers is not uniform. Here we show the effect of
different ICL shot numbers on the phenomenon mentioned in Section 2.1 as studied on the SST-2
dataset. Each row represents the results of the same shot numbers in different layers and modules,
and each column represents the results of the different shot numbers in different layers of the same
module. We also specifically marked the points of highest performance.

2.2 Effect of Different ICL Shot Numbers

Given that ICL can achieve higher performance with more demonstrations [23, 1], we further analyze
the non-ignorable effect of different ICL shot numbers. To control for other influencing factors, we
focus on SST-2 dataset [39] and retain the same test set for a single random seed as Section 2.1.
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As shown in Figure 2, we compare the settings of three different ICL shot numbers: 0, 4 and 10.
Following this, we analyze how the phenomenon changes across different shot numbers.

Firstly, we note that without weight pruning, the performance of the model improves with an increase
in the number of ICL shots. Which is consistent with prior works. Besides, for every shot number, a
phenomenon consistent with what is described in Section 2.1 is observed: SVD-based weight pruning
can enhance ICL performance, pruning deep layer weight is more stable than pruning shallow weight.
Last but not the least, Figure 2 also demonstrates roughly that with a decrease in the number of shots,
the rate of performance collapse in the model slows down after a sharp reduction at the shallow layer.
Intuitively, this is because LLMs exhibit a shift in focus in the ICL setting, which results in a reduced
scope of the output space. The more shots there are, the more pronounced the shift becomes, and this
also leads to a faster collapse. We also theoretically discuss it in Section 3.2 and 3.3 (Remark 6).

3 Theoretical Analysis Results

In this section, we first describe the core components of our study by reviewing some basic notations
in Section 3.1, and present the implicit gradient descent trajectories of ICL in Section 3.2. Afterwards,
we give a mutual information based generalization bounds of ICL via full implicit GD trajectories
in Section 3.3. Based on all our experimental and theoretical insights, we intuitively propose a
derivative-free and effective method for downstream tasks in enhancing ICL inference in Section
3.4. Complete proofs can be found in the Appendix. For ease of qualitative analysis, our theoretical
analysis is mainly focuses on linear attention setting. We discuss the standard Softmax attention
setting in Appendix A.2 and feed-forward (MLP) layers in Appendix A.3.

3.1 Preliminaries

We let H be the instance space and µ be an unknown distribution on H, specifying random variable
h. In ICL setting, the model accepts a sequence of input H = [Hs,hN+1] drawn i.i.d. from µ ,
where Hs = [h1,h2, ...,hN ] represents the demonstration sample and hN+1 is the test data. In
the information-theoretic analysis framework, we let W ∈ Rd be the space of hypotheses related
to the model, and Transformer performs an implicit stochastic learning algorithm A which takes
the demonstration sample Hs as its input and outputs a hypothesis W ∈ W according to some
conditional distribution QW |Hs

. Similar to previous works [55, 51], we give the definition of
expected generalization error.

Expected generalization error. Given a loss function ℓ : W×H → R+, where ℓ(w,h) measures the
"unfitness" or "error" of any h ∈ H with respect to a hypothesis w ∈ W . We take ℓ as a continuous
function and assume that ℓ is differentiable almost everywhere with respect to w. The goal of learning
is to find a hypothesis w that minimizes the population risk, and for any w ∈ W , the population risk
is defined as Lµ(w) ≜ Eh∼µ[ℓ(w,h)]. However, since µ via the sample Hs can only be partially
observed, we instead turn to use the empirical risk, defined as LHs

(w) ≜ 1
N

∑N
i=1 ℓ(w,hi). Then

the expected generalization error of A is defined as

ẽrror ≜ EW,Hs
[Lµ(W )− LHs

(W )],

where the expectation is taken over (Hs,W ) ∼ µN ⊗QW |Hs
.

In-context learning with Transformers3. By prompt design, most context semantic understanding
tasks can be unified into classification tasks. Simplify the form of each token in H to hi = [xi,yi],
where [xi]

N
1 ∈ Rdin and [yi]

N
1 ∈ Rdout are encoded input text and corresponding labels respectively.

The test token has the form hN+1 = [xN+1,mask], where mask is the label needed to predict, and
usually set 0 as its initialization. Therefore, the form of attention with residual connection4 is as
follows:

Ĥ = H+WV HM Softmax
(
((WKH)TWQH)√

dscale

)
, (1)

3Please refer to Appendix B.1 for an explanation on how Eq.(1) and Eq.(2) can utilize the same mask.
4In real-world scenarios, the residual connection module in Transformers is indispensable.
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where WV ,WK ,WQ∈ R(dout+din)×(dout+din) are projection matrix, and the mask matrix M =(
IN×N 0

0 0

)
is included in the attention. Specifically, ĥN+1 can be formulated as

ĥN+1 = hN+1 +WV HM Softmax
(
((WKH)TWQhN+1)√

dscale

)
, (2)

and for ease of qualitative analysis, Eq.(2) can be approximated as a relaxed linear attention mecha-
nism by removing the Softmax operation and scale factor:

ĥN+1 = hN+1 +WV HM(WKH)TWQhN+1. (3)

3.2 The Implicit Gradient Descent Trajectories of ICL

To begin with, we present the implicit gradient descent of ICL, inspired by [21, 10, 35]. These works
describe how ICL with attention can be connected to a meta-optimizer which produces implicit
gradient. The following lemma demonstrates the result.
Lemma 1 (The Implicit Gradient Descent of ICL in a Single Linear Attention Layer). Consider
a Transformer consists of a single linear layer attention with residual connection, parameterized
by WV ,WK ,WQ as in Eq.(3). Same to Section 3.1, let H = [Hs,hN+1] be the input, where
Hs = [h1,h2, ...,hN ] represents the demonstration sample and hN+1 is the test data. And let ĥN+1

be the single layer output. Then, it holds that

∆Wicl = WV Hs(WKHs)
TWQ =

(
N∑
i=1

WV hi ⊗WKhi

)
WQ,

ĥN+1 = hN+1 +∆WiclhN+1,

where WV Hs is regarded as the meta-gradient of ICL, which is used to generate the implicit gradient
matrix ∆Wicl to act on the final feature output. See Appendix A.1 for a proof.
Remark 1. It is worth noting that rank(∆Wicl) ≤ rank(Hs) ≤ N by rank relations in matrix
multiplication, indicating that this is a low-rank operation. This explains why the effect of different
ICL shot numbers is not uniform in Section 2.2. Details of the discussion in standard Softmax
attention setting can be found in Appendix A.2. Plus, a significant body of work has discovered that
the ICL capabilities of models are not robust to the order of ICL sample. For instance, Lu et al. [28]
observed that large language models (LLMs) are sensitive to the sequence of ICL examples, and Liu
et al. [27] reported that the context-based ICL performance exhibits a U-shaped curve—models tend
to perform better with information that appears at the beginning or at the end of the input context.
This aligns with observations from actual model training where the sequence of training samples
affects outcomes especially when training with a batch size of 1.

According to the above, we further analyze the implicit gradient descent trajectories of ICL and
provide the following Theorem. We will denote ∆Wt

icl by ∆Wt when there is no ambiguity, where
t represents t-th layer.
Theorem 1 (The Implicit Gradient Descent Trajectories of ICL). Consider a Transformer as a stack
of L linear attention blocks with residual connection, parameterized by [Wt

V ]
L
1 ,[Wt

K ]L1 ,[Wt
Q]

L
1 .

Denote [ht
i]
N+1
1 as the output of the t-th layer, [h0

i ]
N+1
1 as the initial input. Then for t ∈ [L], it holds

that

Gt = ∆Wt(1 +Wt−1) = ∆Wt(1 +W0 +

t−1∑
j=1

Gj),

ht
N+1 = h0

N+1 +

t∑
j=1

Gth
0
N+1 = h0

N+1 +Wth
0
N+1,

where ∆Wt ≜
(∑N

i=1 W
t
V h

t−1
i ⊗Wt

Kht−1
i

)
Wt

Q, W0 = 0,Wt = Wt−1 + Gt and G1 =

∆W1. See Appendix A.4 for a proof.
Remark 2. Note that the exclusion of Transformer weight ([Wt

K ]L1 , [W
t
Q]

L
1 , [W

t
V ]

L
1 ) implies that

Gt is only dependent on Wt−1 and Hs, this is consistent with gradient descent in terms of relevance.
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3.3 Generalization Bounds of ICL via Full Implicit GD Trajectories

In this part, for simplicity of representation, we flatten the weight matrix into a vector form
(vec(Wt) = Wt ∈ Rd,vec(Gt) = Gt ∈ Rd) and conduct our analysis within the weight and
implicit gradient space of hypotheses W as detailed in Section 3.1. Notably, Ahn et al. [2] observe
that, with the optimal parameters, a single layer linear Transformer implements a single step of
preconditioned gradient descent and the preconditioning matrix not only adapts to the distribution of
input data but also to the variance caused by data inadequacy. Garg et al. [16] show empirically that
the trained Transformer is able to in-context learn the class of linear functions with respect to the
prompt distribution, performing comparably to the optimal least squares estimator for any number of
in-context examples considered, as exhibited in Figure 5a.

In addition, we also make a discussion on the noise of the implicit gradient in Section C.4, our
analytical discussion indicates that the implicit gradients produced by Transformers in practical
applications are noisy due to factors such as the extent of model pre-training and data characteristics
(e.g., ICL shot number). We first present the assumption used in this subsection.

Let Gt ≜ 1
N

∑N
i=1 ∇ℓi be the best implicit gradient of ICL that the model can produce, G̃t ≜

1
b

∑b
i=1 ∇ℓi be the implicit gradient of ICL generated by the model in practical applications. N is the

threshold and b is the the shot number in the actual input defined in Section C.4. And Vt ≜ Gt− G̃t is
the gradient noise caused by shot number, Ct ≜ N−b

b(N−1) (
1
N

∑N
i=1 ∇ℓi∇ℓTi −GtG

T
t ) is the implicit

gradient noise covariance. Similar to Wang and Mao [51]’s assumption in SGD, we approximate Vt

up to its second moment.
Assumption 1. Assume the implicit gradient noise Vt follows a Gaussian distribution, i.e., Vt ∼
N (0, Ct), then in ICL implicit gradient descent trajectories,

Wt = Wt−1 − ηG̃t = Wt−1 − ηGt + ηC
1/2
t Nt, (4)

where Nt ∼ N (0, Id) is the standard Gaussian5.

Remark 3. Regarding the validation of this assumption, empirical evidence from works [53, 25],
suggests that SGD and Eq.(4) can achieve the similar testing performance. Additionally, we refer
readers to some recent works [21, 16, 3, 10, 2, 46, 35], where the authors empirically verify that
in-context learning of Transformer can achieve the similar testing performance to SGD. Together
suggesting that studying Eq.(4) is arguably sufficient to understand generalization properties of ICL.

Theorem 1 indicates that the initial parameter W0 = 0, which is independent of all other random
variables. And an L-layer Transformer does implicit GD of ICL stops after L updates, outputting
WL as the implicit learned parameter. Our main results are mutual information based expected
generalization error bounds of ICL, as presented in Theorem 2.
Theorem 2 (The Generalization Bounds of ICL via Full Implicit Gradient Descent Trajectories).
Under the conditions of Theorem 1 and Assumption 1, assume the implicit gradient noise covariance
Ct is a positive-define matrix, the loss ℓ(w,h) is R-subGaussian for any w ∈ W ∈ Rd, then

ẽrror ≤

√√√√√√R2

N

L∑
t=1

EHs

Wt−1

d log
∥∆Wt∥2F ·

∥∥∥1 +∑t−1
j=1 Gj

∥∥∥2
F
+ tr{Ct}

d

− tr{logCt}

,
where vec(Gt) ∈ Rd, ∆Wt ≜

(∑N
i=1 W

t
V h

t−1
i ⊗Wt

Kht−1
i

)
Wt

Q and Gt = ∆Wt(1 +W0 +∑t−1
j=1 Gj) = ∆Wt(1 +Wt−1). tr{·} denotes the trace of a matrix, ∥·∥F denotes the Frobenius

norm of a matrix and EX
Y is the conditional expectation. Proof details in Appendix A.5.

Remark 4 (Deal with Q1). Theorem 2 indicates that one can control the generalization performance
of ICL via controlling the implicit gradient norm along the entire ICL implicit GD trajectories.
Specifically, modulating the norm of [Gt]

L
1 or [∆Wt]

L
1 may enhance performance when utilizing ICL.

Note that controlling implicit gradient norm can also control the magnitude of the trace of implicit

5Consider the continuous SDE: dW = −∇LHs(W )dt + [ηC(W )]1/2dθt, where C(W ) is the gradient
noise covariance at W and θt is a Wiener process. We can view Eq. (4) as discretization of the SDE.
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gradient noise covariance. This elucidates why weight pruning through SVD, even if it only alters a
single weight matrix, can confer advantages on the performance of Transformers in ICL inference. We
will present an example below demonstrating how weight pruning can affect the norm of Gt or ∆Wt,
thereby influencing the expected generalization error. Additional examples provided in Appendix A.6.
This is also why, as illustrated in Figure 1, the highest model performance sometimes occurs at a
clipping rate of 0.995. Furthermore, this could elucidate the utility of normalization in Transformers.
However, weight pruning also impacts the expressive power, implying that increased pruning does
not invariably lead to better outcomes. This clarifies why the highest model performance may also
occur at clipping rates lower than 0.995.

Example 1 (Prune WQ,WK ,WV ). Consider ∆Wk =
(∑N

i=1 W
k
V h

k−1
i ⊗Wk

Khk−1
i

)
Wk

Q

when t = k. And we primarily consider the changes in a upper bound written as UB(∥∆Wk∥2F ) ≜∑N
i=1

∥∥Wk
V h

k−1
i ⊗Wk

Khk−1
i

∥∥2
F

∥∥Wk
Q

∥∥2
F

. Let r represents the remained rank and δ represents
the potential noise consisting of parts with small singular values, that is, Wk

V = Wk
Vr

+ δV =

UV
:rΣ

V
:r(V

V
:r)

T + δV , the same operation is applied to Wk
Q and Wk

K as well. Then we have∥∥Wk
V h

k−1
i

∥∥2
2
=
∥∥(Wk

Vr
+ δV )h

k−1
i

∥∥2
2

=
∥∥Wk

Vr
hk−1
i

∥∥2
2
+ 2(Wk

Vr
hk−1
i )T (δV h

k−1
i ) +

∥∥δV hk−1
i

∥∥2
2

=
∥∥Wk

Vr
hk−1
i

∥∥2
2
+
∥∥δV hk−1

i

∥∥2
2
≥
∥∥Wk

Vr
hk−1
i

∥∥2
2
,

where Wk
Vr

= UV
:rΣ

V
:r(V

V
:r)

T and δV = UV
r:Σ

V
r:(V

V
r:)

T , and U:r,Ur: are orthometric (properties
of SVD), and further have

UB(∥∆Wk∥2F ) ≥
N∑
i=1

∥∥Wk
Vr
hk−1
i ⊗Wk

Khk−1
i

∥∥2
F

∥∥Wk
Q

∥∥2
F

(*)

≥
N∑
i=1

∥∥Wk
Vr
hk−1
i ⊗Wk

Kr
hk−1
i

∥∥2
F

∥∥Wk
Q

∥∥2
F

≥
N∑
i=1

∥∥Wk
Vr
hk−1
i ⊗Wk

Kr
hk−1
i

∥∥2
F

∥∥Wk
Qr

∥∥2
F
= UB(∥∆Wk(r)∥2F ), (**)

where Eq. (*) is by6

∥vec(A)⊗ vec(B)∥F =

√∑
i

∑
j

|vec(A)ivec(B)j |2 = max
i

|σi(vec(A)⊗ vec(B))|

and Eq. (**) is by ∥P∥F =
√∑

i σ
2
i (P) for any matrix A,B and ∥P∥F ≥ ∥P(r)∥F .

UB(∥∆Wk(r)∥2F ) is the upper bound on ∥∆Wk∥2F after using SVD.

Remark 5 (Deal with Q2). It is notable that Gt is highly correlated with the sequence
(∆W1, ...,∆Wt). More precisely, adjusting the weight matrix of the k-th layer, will invariably
impact the norm of [∆Wt]

L
t>k, further influence [Gt]

L
t>k. When we calibrate the weight matrix of

the k-th layer, the span of affected weight updates ∆Wt encompasses L − k + 1 matrices, this
indicates that the deeper the layer of the adjusted parameters is, the fewer the number of Gt affected.
It also suggests that tweaks to the deep layers yield a more steadfast influence on the global norm of
[Gt]

L
1 , thereby exerting a steadier influence over generalization performance. The enhanced stability

observed in adjusting deeper layers, as demonstrated in our experimental findings in Section 2, can
be theoretically explained based on the analysis presented above.

Remark 6 (How should Theorem 2 be interpreted?). Expected generalization error (Theorem 2) =
population risk (Lµ) - empirical risk (LHs

). More specifically, on the one hand, Theorem 2 shows

6For any vector a and b, rank(a ⊗ b) = 1, so the matrix (a ⊗ b) only has one non-zero singular
value. Combined with ||P||F =

√∑
i σ

2
i (P) and singular value is nonnegative, we can get ||a ⊗ b||F =√∑

i σ
2
i (a⊗ b) = maxi[σi(a ⊗ b)], therefore, the unique non-zero singular value will decrease after per-

forming SVD on a and/or b.
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that clipping weights controls the F-norm of the implicit gradient ([∆Wt]
L
1 /[Gt]

L
1 ), which helps

reduce the expected generalization error. On the other hand, we can evaluate the empirical risk
(LHs) by assessing the model’s performance on the validation set. If the generalization error is
known, it is possible to estimate the population risk (Lµ). Therefore, the most challenging aspect is
addressing the generalization error. Furthermore, we will illustrate the interpretation of Theorem
2 from the perspectives of pruning methods and the ICL shot numbers. (i) Adjusting the F-norm of
([∆Wt]

L
1 /[Gt]

L
1 ) could enhance performance when utilizing ICL, suggesting that other weight-based

pruning methods may also be effective. For example, magnitude-based pruning [52] directly controls
the matrix F-norm. Certainly, there are also some layer-based pruning methods (e.g., drop-layer
method [19]), we discuss in detail in Appendix B.6. (ii) Reducing the ICL shot numbers from N to
N

′
can indeed lead to more robust outcomes specifically in the “SVD weight pruning” operation,

rather than in the model’s overall performance. Experimentally, in Section 2.2, we analyze the
effect of different ICL shot numbers. As shown in Figure 2, with a decrease in the number of shots,
the rate of performance collapse in the model slows down after a sharp reduction at the shallow
layer. Theoretically, ∆W(N)−∆W(N

′
) =

(∑N
i=N ′+1 WV hi ⊗WKhi

)
WQ, suggesting that

the implicit gradient for N is expected to be more sensitive than that for N
′
.

3.4 Applications of Our Theoretical Understanding

In this portion, we deal with Q3. We further explore the relationship between model performance
improvement and SVD, as illustrated by a simple case study.
Case 1. Assuming that W has two unit eigenvectors x1,x2, based on the properties of eigenvectors:

Wx1 = λ1x1,Wx2 = λ2x2,

and for a vector b on the hyperplane, it can be decomposed into a linear combination of two
eigenvectors:

b = l1x1 + l2x2 = W

(
l1
λ1

x1 +
l2
λ2

x2

)
= Wx,

where l1, l2 are coefficients and λ1, λ2 are eigenvalues. Notice that if λ1 ≫ λ2, when point b moves
in the direction of x1, the value of l1 changes but the solution set x changes insignificantly. Conversely,
if it moves in the direction of x2, the value of l2 changes and the solution set x changes dramatically,
this is an ill-conditioned7 problem whose solution is highly biased under small perturbations.

Given that SVD can be considered to play a role in noise reduction in ICL inference, and that this noise
can cause significant disturbances to model output. We thus introduce the matrix ill-conditionedness,
which can be measured by the Matrix condition number defined as follows.

Matrix condition number8. Cond(W) = ||W||p||W−1||p. Specifically, the condition number
Cond(W) = σmax

σmin
when p = 2, where σmax, σmin denote the maximum and minimum singular

values respectively. Generally, for matrices of the same order, the higher the condition number of a
matrix is, the greater its ill-conditionedness will be.
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Figure 3: 2-norm condition number of GPTJ-6B&LLAMA2-7B. The condition numbers for MLP
are significantly lower than those for ATTN. In deeper layers, condition numbers tend to be higher.
These matrices are ill-conditioned for they satisfy σmax ≫ σmin.

7Now consider a linear system Wx = b, where the solution set x is highly sensitive to the coefficients of
W and b. In such cases, the system of equations is termed ill-conditioned.

8Matrix condition number is an option, any indicator that can guide the control of norms is a potential option.
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Then we analyze the matrix condition number of the models as shown in Figure 3. We observe that
the condition number of deeper layers (especially the last layers) in the model is generally higher,
indicating that the condition number may serve as a reference for adjusting the model.

Based on all our exciting insights, we find it intuitive to design ICL improvements based on them,
especially in downstream tasks. We propose a method where we first select layers with the top-k
largest condition numbers and then identify the layer with the largest number among these. We
perform a greedy search for the optimal clipping rate ξ∗ on the validation set and subsequently
evaluate it on the test set. This procedure is reported in Algorithm 1 in Appendix C.2.

Experimental setup. We conduct experiments for Algorithm 1 on widely adopted benchmark
datasets, including SST-2 [39], AGNEWS [58], EMOC [8], MRPC [12], RTE [5], CB [11], COPA
[18]. Please refer to Appendix C.1 and C.3 for more detailed dataset and prompt settings. And for
models, we use the same models as in Section 2.

Experimental results. As Figure 4 shows, the results indicate that Algorithm 1 can visibly influence
performance across different language understanding tasks in ICL inference. Specially, the effective-
ness of Algorithm 1 in enhancing performance varies not only by the model but also significantly
by the task, indicating a potential task-specific and model-specific threshold for the benefits derived
from algorithmic enhancements. More notably, Algorithm 1 is a derivative-free optimization method
and compresses the model to some extent, providing developers and researchers with an effective
approach for handling downstream tasks. We also invite readers to refer to Appendices B.3, B.4
and B.5 for discussions on What would be the effect of pruning only a single module?, Why optimal
clipping rate ξ varies? and What would happen if we apply the same clipping rate to other datasets?

SST-2 AGNEWS EMOC MRPC RTE CB COPA
0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

/F
1 

(0
-1

)

ICL(GPT-J-6B) ICL+Algorithm1(GPT-J-6B) ICL(LLAMA2-7B) ICL+Algorithm1(LLAMA2-7B)

Figure 4: The Model Performance on Test set by different tasks. The results are obtained by
comparing four scenarios: ICL (GPT-J-6B), ICL+Algorithm1 (GPT-J-6B), ICL (LLAMA2-7B) and
ICL+Algorithm1 (LLAMA2-7B). ICL+Algorithm1 demonstrates superior results over only ICL on
different tasks. See Appendix C.5 for detailed numbers.

4 Conclusion and Limitation

In this paper, we show our surprising findings in ICL inference: SVD-based weight pruning can
enhance ICL performance both in shallow and deep layers across different module types, and pruning
weights in deep layers often results in more stable performance improvements than in shallow layers.
We conduct an in-depth theoretical analysis and explanation of these findings. Specifically, we first
present the implicit gradient descent trajectories of ICL, afterwards, we give a mutual information
based generalization bounds of ICL via full implicit GD trajectories. Based on all our experimental
and theoretical insights, we intuitively propose a derivative-free and effective method for downstream
tasks in enhancing ICL inference. However, further studies are required on (i) how to extend our
generalization theory to a more standard Transformer architecture, (ii) do the results about ICL hold
true for tasks beyond natural language processing and (iii) how to minimize the cost of searching the
optimal clipping rate. Those will deepen our understanding of the ICL capabilities.
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A Omitted Proofs and Additional Results

A.1 Proof of Lemma 1

Proof. Given that numerous studies [21, 10, 35] describe ICL with attention can be connected to a
meta-optimizer which produces implicit gradient, we show the dual form between linear attention
and gradient descent. First, consider a very simple linear layer,

F (x) = Wx,

where W ∈ Rdout×din is the projection matrix. Given training inputs [xi]
N
i=1 ∈ Rdin with their

labels [yi]
N
i=1 ∈ Rdout and the loss function L with learning rate η , gradient descent process

produces the corresponding back-propagation signals [ei]Ni=1 ∈ Rdout, where ei = −η
(
∇y

′
i
L
)

and

y
′

i = Wxi. During test time, we can use a trained linear layer,

F̂ (xtest) = Ŵxtest = (W +∆W)xtest = Wxtest +

(
N∑
i=1

ei ⊗ xi

)
xtest, (5)

where ⊗ denotes the outer product according to the chain rule of differentiation. On the other hand,
this process can be associated with linear attention,

LinearAttn(V,K,q) = VKTq =

N∑
i=1

vi(k
T
i q) =

N∑
i=1

(vi ⊗ ki)q, (6)

where [ki]
N
1 ,[vi]

N
1 ∈ Rdin represent the key and value vectors respectively, forming the key and

value matrix K,V ∈ Rdin×N in the attention mechanism. Based on Eq.(6), rewrite Eq.(5) as:

F̂ (xtest) = Wxtest +

(
N∑
i=1

ei ⊗ xi

)
xtest = Wxtest + LinearAttn(E,X,xtest). (7)

Then let’s go back to the ICL process and approximate standard attention Eq.(2) as a relaxed linear
attention mechanism by removing the Softmax operation and scale factor:

Ficl(hN+1) ≈ ĥN+1 = hN+1 +WV HM(WKH)TWQhN+1

= hN+1 +WV Hs(WKHs)
TWQhN+1

= hN+1 +W0hN+1 +WV Hs(WKHs)
TWQhN+1

= hN+1 +W0hN+1 +

(
N∑
i=1

WV hi ⊗WKhi

)
WQhN+1

= hN+1 +W0hN+1 + LinearAttn(WV Hs,WKHs,WQhN+1)

= hN+1 +W0hN+1 +∆WiclhN+1

(8)

Where W0 = 0, and WV Hs is regarded as the meta-gradient of ICL, which is used to generate the
implicit gradient matrix ∆Wicl to act on the final feature output.

A.2 Softmax Attention and ICL Implicit GD

Inspired by Ren and Liu [35], by connecting Softmax Attention with Kernels, we can interpret ICL as
a gradient descent process in contrast learning pattern. For simplicity, as in Section 3.1, scale factors
are removed as follows:

A = Softmax((WKH)TWQH),Au = exp((WKH)TWQH),

A = D−1Au,D = diag(Au,1N ).
(9)

where exp(·) is element-wise. Following Choromanski et al. [9] and Ren and Liu [35], a Softmax
kernel function KSoftmax : Rdout × Rdout → R+ is defined as:

KSoftmax(x,y) = exp(xTy) = exp

(
∥x∥2

2

)
Kgauss(x,y) exp

(
∥y∥2

2

)
, (10)
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where Kgauss(x,y) = exp
(
−∥x−y∥2

2

)
is the Gaussian kernel with a variance σ2 = 1. According to

Mercer’s theorem [29], there exists some mapping function ϕ satisfying KSoftmax(x,y) = ϕ(x)Tϕ(y).
Thus, rewrite Eq.(9) as:

Au(i, j) = exp((WKhi)
TWQhj)

= KSoftmax(WKhi,WQhj)

= ϕ(WKhi)
Tϕ(WQhj),

(11)

then, connect with Eq.(2) we have,

ĥN+1 = hN+1 +WV HM Softmax
(
((WKH)TWQhN+1)√

dscale

)
≈ hN+1 +WV HM Softmax

(
((WKH)TWQhN+1)

)
= hN+1 +

1

D′ WV [Hs,hN+1]M[ϕ(WKHs), ϕ(WKhN+1)]
Tϕ(WQhN+1)

= hN+1 +
1

D′ WV Hsϕ(WKHs)
Tϕ(WQhN+1)

= hN+1 +
1

D′

[
N∑
i=1

(WV Hs)i ⊗ ϕ(WKHs)i

]
ϕ(WQhN+1)

= hN+1 +∆W
′

iclϕ(WQhN+1),

(12)

where D
′
= 1Nϕ(WKHs)

Tϕ(WQhN+1) + ϕ(WKhN+1)
Tϕ(WQhN+1) represents a constant

for the normalized attention scores. It can be considered that the mapping function ϕ, or rather the
effect of the Softmax function, is to project the original features into a higher-dimensional space to
capture more profound features. Subsequently, learning and meta-optimization are conducted under
this new feature space. It is also noteworthy that rank(∆W

′

icl) ≤ rank(Hs) ≤ N .

A.3 Feed-Forward and ICL Implicit GD

The LLMs based on the Transformer architecture not only contain an Attention mechanism, but also
include feed-forward (MLP) layers. It can be estimated that the feed-forward layers account for
approximately two-thirds of the parameters in a Transformer model [45, 44]. Thus, MLP layers are
essential for LLMs and there has been considerable work hypothesizing and analyzing the model’s
feed-forward layers. For example, Geva et al. [17], Qiu et al. [33] show that feed-forward layers
in Transformer based language models operate as key-value memories, Tian et al. [41] propose
Joint MLP/Attention (JoMA) dynamics by integrating out the self-attention layers in Transformers,
analyzes joint training of MLP and self-attention layers, and qualitatively explains dynamics of
multi-layer Transformers. Based on the inspiration above, we take MLP into consideration and
rewrite Eq. (3) as:

ĥN+1 = hN+1 + MLP(WV HM(WKH)TWQhN+1)

= hN+1 +Woutrelu(WinWV HM(WKH)TWQhN+1),

where WV ,WK ,WQ∈ R(dim1)×(dout+din),Win ∈ R(dim2)×(dim1),Wout ∈ R(dout+din)×(dim2)

are projection matrices and relu(·) is the activation function. And we can further relax the activation
function for ease of qualitative analysis:

ĥN+1 = hN+1 +WoutWinWV HM(WKH)TWQhN+1

= hN+1 +WMLPWV HM(WKH)TWQhN+1,

where WMLP ∈ R(dout+din)×(dim1), which can be seen as a dimensional adaptation.
And then do the similar derivation that we do in Appendix A.1, we can get ∆W

′′

icl =

WMLP

(∑N
i=1 WV hi ⊗WKhi

)
WQ.
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A.4 Proof of Theorem 1

Proof. Similar to A.1, Pay attention to the test token when i = N + 1,

h1
N+1 = h0

N+1 +∆W1h
0
N+1,

h2
N+1 = h1

N+1 +∆W2h
1
N+1

= h0
N+1 +∆W1h

0
N+1 +∆W2(1 + ∆W1)h

0
N+1,

h3
N+1 = h2

N+1 +∆W3h
2
N+1

= h0
N+1 +∆W1h

0
N+1 +∆W2(1 + ∆W1)h

0
N+1

+∆W3 (1 + ∆W1 +∆W2(1 + ∆W1))h
0
N+1,

......

Thus, we give the implicit GD trajectories [Gt]
L
1 of ICL, where Wt = Wt−1 +Gt,

W0 = 0,

G1 = ∆W1,

G2 = ∆W2(1 + ∆W1) = ∆W2(1 +G1),

G3 = ∆W3 (1 + ∆W1 +∆W2(1 + ∆W1)) = ∆W3(1 +G1 +G2),

......

GL = ∆WL(1 +

L−1∑
t=1

Gt).

(13)

On the one hand, Eq.(13) shows Gt = ∆Wt(1 + Wt−1), on the other hand, ∆Wt ≜(∑N
i=1 W

t
V h

t−1
i ⊗Wt

Kht−1
i

)
Wt

Q, which is only depend on ([h0
i ]

N
1 , [Wt

K ]L1 , [W
t
Q]

L
1 , [W

t
V ]

L
1 ).

So the exclusion of Transformer weight ([Wt
K ]L1 , [W

t
Q]

L
1 , [W

t
V ]

L
1 ) implies that Gt is only dependent

on Wt−1 and Hs.

And the prediction can be read from the corresponding position in L-th layer output hL
N+1 as follows,

hL
N+1 =

(
∗

ypred

)
= h0

N+1 +WLh
0
N+1 = (1 +WL)

(
xN+1

mask

)
.

A.5 Proof of Theorem 2

The origin form of the mutual information based bound is predicated on a sample-specific MI, which
quantifies the shared information between the output variable W and the input sample set Hs. The
following lemma shows the result:

Lemma 2. (Xu and Raginsky [55, Theorem 1.]). Assume the loss ℓ(w,h) is R-subGaussian for any
w ∈ W , then

ẽrror ≤
√

2R2

N
I(W ;HS),

where I(W ;HS) = DKL(QW,HS
∥QW ⊗ QHS

) is the mutual information and DKL denotes the
KL divergence.

Unroll the terminal parameters’ mutual information I(W ;HS) to the full trajectories’ mutual infor-
mation will get:

Lemma 3. (Wang and Mao [51, Lemma 4.]). Let Assumption 1 hold, then I(WL;HS) ≤∑L
t=1 I(−Gt + C

1/2
t Nt;HS |Wt−1). Let −Gt + C

1/2
t Nt ≜ Gt.
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Proof. Recall Assumption 1 Eq.(4), Wang and Mao [51] get,

I(WL;HS) = I(WL−1 + η(−GL + C
1/2
L NL);HS)

≤ I(WL, η(−GL + C
1/2
L NL);HS) (14)

= I(WL−1;HS) + I(η(−GL + C
1/2
L NL);HS |WL−1) (15)

= I(WL−1;HS) + I(−GL + C
1/2
L NL;HS |WL−1)

≤
L∑

t=1

I(−Gt + C
1/2
t Nt;HS |Wt−1) + I(W0;HS)

=

L∑
t=1

I(−Gt + C
1/2
t Nt;HS |Wt−1).

where Eq. (14) is by the data processing inequality (e.g., Z − (X,Y ) − (X + Y ) form a Markov
chain then I(X + Y,Z) ≤ I(X,Y ;Z)), Eq. (15) is by the chain rule of the mutual information, and
learning rate η is dropped since mutual information is scale-invariant. I(W0;HS) = 0 for W0 is
independent of all other random variables in Theorem 1 and Assumption 1.

Besides, we present the variational representation of mutual information:
Lemma 4. (Polyanskiy and Wu [32, Corollary 3.1.]). For two random variables X and Y , we have
I(X;Y ) = infP EX [DKL(QY |X ||P )], where the infimum is achieved at P = QY .
Lemma 5. (Wang and Mao [51, Lemma 5.]). At every time step t, let PÑt|Wt−1

be
any distribution satisfying DKL(PGt|Wt−1

∥PÑt|Wt−1
) < ∞, we have I(Gt;Hs|Wt−1) =

EWt−1

[
infPÑt|Wt−1

EWt−1

HS

[
DKL(QGt|Hs,Wt−1

∥PÑt|Wt−1
)
]]

, where the infimum is achieved when
PÑt|Wt−1

= QGt|Wt−1
. The KL divergence may be viewed as an estimate of the sensitivity of the full

batch implicit gradient to a specific demonstration sample Hs = Hs.

From Lemma 5, every choice of PÑt|Wt−1
gives rise to an upper bound of the MI of interest via

I(Gt;Hs|Wt−1) ≤ EWt−1

[
EWt−1

Hs

[
DKL(QGt|Hs,Wt−1

∥PÑt|Wt−1
)
]]

. Same to Wang and Mao [51],

choose an isotropic Gaussian prior PÑt|Wt−1
= N (g̃t, σ

2
t Id), where both g̃t and σt are only allowed

to depend on Wt−1 under Theorem 1, and optimize the KL divergence in Lemma 5 over σt for
a fixed g̃t . Additionally, Under Theorem 1 where we define the implicit GD trajectories of ICL,
assume Ct is a positive-definite matrix, for any t ∈ [L], we have,

I
(
−Gt + C

1/2
t Nt;Hs|Wt−1 = wt−1

)
≤ inf

g̃t,σt

EHs

[
DKL

(
P−Gt+C

1/2
t Nt|Wt−1=wt−1,Hs=Hs

∥P−g̃t+σtNt|Wt−1=wt−1

)]
= inf

g̃t,σt

EHs

[
1

2
log

(
det(σ2

t Id)

det(Ct)

)
− 1

2
d+

1

2σ2
t

(Gt − g̃t)
T I−1

d (Gt − g̃t) +
1

2σ2
t

tr
{
I−1
d Ct

}]
(16)

=
1

2
inf
g̃t,σt

EHs

[
1

σ2
t

(∥Gt − g̃t∥22 + tr {Ct}) + d log σ2
t − d− tr {logCt}

]
(17)

where Eq. (16) is by the KL divergence between two Gaussian distributions: DKL(p∥q) =
1
2

[
log

det(Σq)
det(Σp)

− k + (µp − µq)
TΣ−1

q (µp − µq) + tr(Σ−1
q Σp)

]
, and Eq. (17) is due to the fact that

GT
t Gt = tr(GtG

T
t ) and log det(Ct) = tr(logCt) when Ct is a positive-definite matrix.

Let A1(t) = EHs [∥Gt − g̃t∥22 + tr {Ct}] and A2(t) = EHs [tr {logCt}] and fix g̃t can rewrite
Eq. (17) as,

1

2
inf
σt≥0

1

σ2
t

A1(t) + d log σ2
t − d−A2(t)

=
1

2
d log

A1(t)

d
− 1

2
A2(t),
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where the optimal σ∗ =
√

A1(t)
d when we take the derivative of σt. Then combine Lemma 2 and

Lemma 3 , we can finish the proof of the following lemma.
Lemma 6. Under the conditions of Theorem 1, assume the implicit gradient noise covariance Ct is
a positive-define matrix, the loss ℓ(w,h) is R-subGaussian for any w ∈ W ∈ Rd. For any t ∈ [L],
let g̃t be any constant vector for a given wt−1, then

ẽrror ≤

√√√√R2

N

L∑
t=1

EWt−1
[d log(A1(t)/d)−A2(t)]

=

√√√√√√R2

N

L∑
t=1

EHs

Wt−1

d log

∥∥∥vec(∆Wt(1 +

∑t−1
j=1 Gj))− g̃t

∥∥∥2
2
+ tr{Ct}

d

− tr{logCt}

,
where A1(t) = EHs

Wt−1

[
∥Gt − g̃t∥22 + tr{Ct}

]
, A2(t) = EHs

Wt−1
[tr{logCt}], vec(Gt) = Gt,

tr{·} denotes the trace of a matrix and EX
Y is the conditional expectation.

Further, if we let g̃t = 0, reverse the process of flattening the weight matrix into a vector form, and
by Eq. (19) we obtain∥∥∥∥∥∥vec(∆Wt(1 +

t−1∑
j=1

Gj)))− g̃t

∥∥∥∥∥∥
2

2

+ tr{Ct} =

∥∥∥∥∥∥∆Wt(1 +

t−1∑
j=1

Gj)

∥∥∥∥∥∥
2

F

+ tr{Ct}

≤ ∥∆Wt∥2F ·

∥∥∥∥∥∥1 +
t−1∑
j=1

Gj

∥∥∥∥∥∥
2

F

+ tr{Ct}.

Then plug everything into Lemma 6, we conclude the proof.

A.6 Examples of Remark 4

First, we will present several expressions that will be utilized later. For any matrix A and B, we have,

∥vec(A)⊗ vec(B)∥F =

√∑
i

∑
j

|vec(A)ivec(B)j |2 = max
i

|σi(vec(A)⊗ vec(B))| (18)

∥AB∥F ≤ ∥A∥F ∥B∥F (19)
∥A+B∥F ≤ ∥A∥F + ∥B∥F (20)

Same in Lemma 1, ∆Wicl =
(∑N

i=1 WV hi ⊗WKhi

)
WQ, let r represents the remained rank

and δ represents the potential noise consisting of parts with small singular values. Some SVD
controlling the norm of ∆Wicl examples are as follows.
Example 2 (Prune WQ). Suppose we decompose WQ by SVD, WQ = WQr + δQ =

UQ
:rΣ

Q
:r(V

Q
:r)

T + δQ, let z ≜
(∑N

i=1 WV hi ⊗WKhi

)
for simplicity.

∥∆Wicl∥F =
∥∥∥zUQ

:rΣ
Q
:r(V

Q
:r)

T + zδQ

∥∥∥
F

≤ ∥zWQr
∥F + ∥zδQ∥F ,

where the inequality part takes advantage of the Eq. (20) , so the upper bound on ∥∆Wicl∥F is
decreasing when using SVD.
Example 3 (Prune WV or WK). Suppose we decompose WV by SVD, WV = WVr + δV =
UV

:rΣ
V
:r(V

V
:r)

T + δV , and consider the upper bound defined in Example 1,

UB(∥∆W∥2F ) =
N∑
i=1

∥WV hi ⊗WKhi∥2F ∥WQ∥2F

≥
N∑
i=1

∥WVr
hi ⊗WKhi∥2F ∥WQ∥2F , (21)
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where Eq. (21) is by Eq. (18), so the upper bound on ∥∆Wicl∥F is also decreasing. The same is true
for decomposing WK .

Example 4 (Prune WMLP ). Suppose we decompose WMLP by SVD, WMLP = WMLPr
+

δMLP = U:rΣ:rV
T
:r + δMLP , let z ≜

(∑N
i=1 WV hi ⊗WKhi

)
WQ for simplicity.∥∥∥∆W

′′

icl

∥∥∥
F
=
∥∥U:rΣ:rV

T
:rz+ δMLP z

∥∥
F

≤ ∥WMLPr
z∥F + ∥δMLP z∥F ,

where recall Appendix A.3, ∆W
′′

icl = WMLP

(∑N
i=1 WV hi ⊗WKhi

)
WQ. And the inequality

part takes advantage of the Eq. (20) , so the upper bound on
∥∥∥∆W

′′

icl

∥∥∥
F

is decreasing when using
SVD.

B More Discussions

B.1 Explanation of the Mask Matrix

Our notation here follows the related work [2], which explains: Note that the prompt is asymmetric
since the label for xN+1 is excluded from the input. To reflect this asymmetric structure, the
mask matrix M is included in the attention. More specifically, if you pay attention to the (N +
1)-th item, M is supposed to represent a causal mask (For H ∈ R(dout+din)×(N+1), HM =
(h1, ...,hN ,hN+1)M = (h1, ...,hN , 0) = Hs). Besides, this mask method is used in GLM training
[13]: Part A tokens can attend to each other, but cannot attend to any tokens in B. Part B tokens
can attend to Part A and antecedents in B, but cannot attend to any subsequent tokens in B. So it is
reasonable for Eq.(1) and Eq.(2) use the same mask.

B.2 Definitions of Deep and Shallow

Indeed, there is no universally accepted definition for the terms “deep” and “shallow” as their
interpretation can be subjective and dependent on the reference frame (e.g., model size). Intuitively,
in this paper, our definition is similar to that of work [50]: “shallow” layers refer to those closer to the
input, while “deep” layers are closer to the output. In Figure 1 and Figure 2 (Section 2), "shallow"
typically denotes the first few layers, and "deep" denotes the last few layers of the network.

B.3 The Effect of Pruning Only a Single Module

In our theory, the example (pruning only WK or WV ) is provided in Appendix A.6, demonstrating
how weight pruning can affect the norm of [∆Wt]

L
1 /[Gt]

L
t . Thus, it may confer advantages on the

performance of Transformers in ICL inference. However, in Theorem 2 (Remark 5), it also suggests
that modifications to the shallow layers have a less steady impact. Additionally, please review the
supplementary experimental results provided below. (We choose key projection matrix WK and
select the 3-layer (large matrix condition number in Figure 3) of GPT-J-6B, others are the same to
Section 2.1).

Task Name Optimal ξ∗ Test Accuracy/F1 Improve

SST-2 0.0 0.7828 - 0.7828
RTE 0.5 0.5413 - 0.5413

COPA 0.995 0.53 - 0.54
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B.4 Why Optimal Clipping Rate Varies?

As we mentioned in Section 3.3 and Section C.4, the implicit gradients produced by Transformers
in practical applications are noisy due to factors such as the extent of model pre-training and data
characteristics (e.g., ICL shot number/task difficulty). Therefore, [∆Wt]

L
1 /[Gt]

L
t in Theorem 1 have

varies noise. That is why optimal ξ varies.

Gradient quality derived from context (i.e., Gt).

• In Theorem 1 (Remark 2), Gt is only dependent on Wt−1 and Hs, this is consistent with
gradient descent in terms of relevance (Conventionally, gradients in training are only related
to the current parameters and the training samples).

• In real-world training scenarios, SGD computes gradient by selecting a small batch of
samples per iteration. This approach approximates the true gradient, inherently introducing
noise. Similarly, in In-Context Learning, a small subset of samples (context examples) is
used to generate implicit gradient (i.e., Gt), which also results in the introduction of noise.

B.5 Apply the Same Clipping Rate to Other Datasets

As we mentioned in Appendix B.4, [∆Wt]
L
1 /[Gt]

L
t in Theorem 1 exhibit varying levels of noise,

causing the optimal clipping rate to vary among different tasks, as it is dependent on the specific
task and data. So if we apply the clipping rate (0.95) as used in SST-2 to other datasets, the model
performance can either improve or deteriorate. Additionally, It is possible to conduct a certain number
of experiments to find a range of optimal clipping rate that is broadly applicable.

B.6 What Would Happen if the Layer Was Dropped Entirely?

Dropping the layer could be the best option specifically for optimizing generalization error. Here’s a
detailed analysis:
(1) In our theoretical framework, we model each layer of the Transformer do a single iteration of
implicit gradient descent (ICL) in Theorem 1. This scientific analysis references [46, 3, 10].
(2) In Theorem 2, L-layer Transformer:

Expected generalization error = population risk (Lµ) - empirical risk (LHs )

Expected generalization error =
√

R2

N

∑L
t=1 d log(∥∆Wt∥2F ∥Gt∥2F ) (only show the main part). If

you drop the entire layer, it will change from
∑L

t=1 to
∑L−1

t=1 . Therefore, dropping the layer may in
fact be the best option for generalization error.

(3) However, according to the traditional statistical learning viewpoint, performance can be bounded
by the sum of optimization error and generalization error (Please see Remark 6 for “How should
Theorem 2 be interpreted?”).

Thus, during the pruning process, there is a trade-off between optimization and generalization.
Therefore, as pruning increases, the model’s performance tends to first improve and then decline (the
drop-layer method [19] does not harm but also does not improve), as demonstrated in the experiments
shown in Figure 1.

In conclusion, dropping the entire layer can be a potential method (best option for generalization error)
in our theoretical framework, but it may not necessarily be the best option for model performance.

C Extension to Experiments

Computational resources. We use a single NVIDIA GeForce RTX 3090 GPU and most tests run
take 1-5 hours depending on dataset size and context length.
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C.1 Prompts

Table 1: The prompts of the datasets used in our experiments. Here regard the types of tasks:
classification, multiple-choice as (cls.), (mch.). <> represents input from the dataset. For (mch.)
tasks, we put in different candidates in the prompt and calculate the average log-likelihood of each
candidate, and select the candidate with the highest score.

Dataset Type Prompt
SST-2 (cls.) text: <text> sentiment: <label>

AGNEWS (cls.) text: <text> classification: <label>
EMOC (cls.) text: <text> sentiment: <label>
MRPC (cls.) sentence1: <sentence1> sentence2: <sentence2> label : <label>
RTE (cls.) <premise> Does this mean that <hypothesis> is true? select Yes

or No? <label>
CB (cls.) Suppose <premise> Can we infer that <hypothesis>? Yes, No, or

Maybe? <label>
COPA (mch.) <premise><question><choice>

C.2 Algorithm1

Algorithm 1 Search the Optimal Clipping Rate for Downstream Tasks

Require: Pretrained model M, dataset D, predefined clipping rate candidate set C,
predefined module O ∈ [ATTN, MLP]
Split D into ICL demonstration sample set Hs, validation set V , and test set T
Compute condition numbers for all layers in M
Select layers L with top-k largest condition numbers given O
Select the largest layer number l from L
Initialize ξ∗ = 0
Initialize score∗ = 0
for each ξ in C do

M′
= Clip(M, l, ξ,O)

score = Evaluate(M′
,V,Hs)

if score > score∗ then
ξ∗ = ξ
score∗ = score

end if
end for
M∗ = Clip(M, l, ξ∗,O)
test score = Evaluate(M∗, T ,Hs)
Output test score on T

The details. Firstly, the details of the algorithm can be reviewed in the code provided. Specifically,
the set of clipping rate candidates is predefined. In our study, the clipping rate candidates are set as
shown in Figures 1 and 2: [0, 0.1, 0.5, 0.75, 0.9, 0.95, 0.99, 0.995]. Besides, we analyze the impact
of different hyperparameters through comparative experiments (details in Section 2 and Section 3.4),
as detailed below. (1) Clipping rate ξ:We search for the optimal ξ in the predefined clipping rate
candidates. (2) Predefined module O: The module containing the target pruning weights, which
can be chosen from [k_proj, q_proj, v_proj, out_proj, fc_in, fc_out, all,mlp, attn]. (3) Selected
layer l : The layer containing the target pruning weights. For examlpe: In Section 2, we mainly focus
on comparing the impact of weight pruning to the first two and the last two layers of the model. (4)
ICL shot number : The demonstration number in ICL, we analyze the effect of different ICL shot
numbers in Section 2.2.
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C.3 Dataset Details

For experiments, we consider numerous classification datasets, including: SST-2 [39], AGNEWS
[58], EMOC [8], MRPC [12], RTE [5], CB [11]. We also include a multiple-choice dataset COPA
[18].

SST-2. SST-2 focuses on sentiment analysis, specifically the task of determining the sentiment of
movie reviews. The dataset consists of sentences labeled as having a positive or negative sentiment.
These sentences are divided into a training set, a validation set, and a test set. The training set
includes about 67,349 sentences, whereas the validation set contains around 872 sentences. The test
set comprises approximately 1,821 sentences without labels. We random sample N (10) data from the
train set as demonstration sample, 8,000 data from the train set as validation set to search the optimal
clipping rate, the rest 59,000+ data as test set.

AGNews. The AGNews dataset is a collection designed for text classification tasks, specifically for
news categorization. It consists of news articles gathered from the AG’s corpus of news on the web,
which is categorized into four main topics: World, Sports, Business, and Science/Technology. In
terms of structure, the AGNews dataset comprises approximately 120,000 training samples and 7,600
test samples. We random sample N (8) data from the train set as demonstration sample, 8000 data
from the train set as validation set to search the optimal clipping rate, the 7,600 test samples as test
set.

EmoC. The EmoC dataset focuses on contextual emotion detection in text. It consists of short text
conversations extracted from three-turn English Tweets. The dataset is annotated with four emotion
labels: happiness, sadness, anger, and others, we relabel the dataset with happiness and others. The
training set includes 30,160 samples, while the test set comprises 5,509 samples. We random sample
N (10) data from the train set as demonstration sample, 5,000 data from the train set as validation set
to search the optimal clipping rate, the 5,509 test samples as test set.

MRPC. The MRPC dataset focuses on paraphrase detection in text. It consists of sentence pairs
automatically extracted from online news sources. The dataset is annotated with binary labels
indicating whether the sentences are paraphrases of each other. The training set includes 3,668 pairs,
the validation set includes 408 pairs, while the test set comprises about 1,725 pairs. We random
sample N (10) data from the train set as demonstration sample, the 408 pairs from validation set to
search the optimal clipping rate, the 1,725 test samples as test set.

RTE. Recognizing Textual Entailment (RTE) task, which involves assessing the relationship between
a pair of sentences—a premise and a hypothesis. The objective of the task is to determine whether
the hypothesis can be logically inferred from the premise. Specifically, the model must evaluate
whether the relationship between the two sentences is one of "entailment," where the content of the
hypothesis is directly or indirectly supported by the premise, or "non-entailment," which includes
both contradiction and neutrality. In RTE from SuperGLUE [47], the training set includes about
2,490 items, whereas the validation set contains around 277 items. We random sample N (10) data
from the train set as demonstration sample, the remain items from train set to search the optimal
clipping rate, the 277 validation samples as test set.

CB. The CommitmentBank (CB) dataset is part of the SuperGLUE benchmark and focuses on
textual entailment with an emphasis on pragmatic inference. The task involves determining whether
a hypothesis can be logically inferred from a given text, which in this dataset, typically comprises a
premise followed by a hypothesis. The training set includes about 250 items, whereas the validation
set contains around 56 items. We random sample N (15) data from the train set as demonstration
sample, the remain 235 items from train set to search the optimal clipping rate, the 56 validation
samples as test set.

COPA. The Choice of Plausible Alternatives (COPA) dataset is specifically designed to evaluate
causal reasoning abilities in natural language processing models. This dataset presents a task where
models must determine causal relationships within simple scenarios. Each question in COPA consists
of a premise and two possible choices, one of which is the correct cause or effect of the premise.
COPA’s dataset is relatively straightforward and consists of 500 questions split evenly into training
(400) and validation (100) sets. We random sample N (10) data from the train set as demonstration
sample, the 200 items from train set to search the optimal clipping rate, the 100 validation samples as
test set.
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C.4 Noise Discussion of the Implicit Gradient

0 10 20 30 40
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

1.2
sq

ua
re

d 
er

ro
r

LR&500,000 Train Steps
Transformer
Least Squares

(a) Trained Transformer performs comparably to
the optimal least squares estimator
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Figure 5: Evaluating the trained Transformer on in-context learning linear functions. (a) Garg
et al. [16] consider the class of linear functions F = {f |f(x) = wTx,w ∈ Rd}, in d dimensions
where d = 20. They sample x1, . . . , xk, xquery, and w independently from the isotropic Gaussian
distribution N(0, Id). They then compute each yi = wTxi and construct the prompt as P =
(x1, y1, x2, y2, . . . , xk, yk, xquery). This figure plots the normalized squared error of the Transformer
((M(P )−wTxquery)

2/d), the errors are normalized so that the trivial zero estimator achieves an error
of 1 (dashed line). Besides, when the number of in-context examples reaches the problem dimension
d (here 20), least squares achieves 0 error while the Transformer achieves an error of 0.02. (b) We
follow the same setting of [16] in (a) to compare the Trained Transformer with different train steps.

As mentioned in Garg et al. [16]’s work, the trained model is able to learn unseen linear functions
from in-context examples with performance comparable to the optimal least squares estimator, this
can be seen in Figure 5a. More importantly, the number of in-context examples (shot number) plays a
significant role. In this case, the error approaches zero only when the shot number is greater than
or equal to d. This indicates that the implicit gradients of ICL are influenced by the shot number,
and there exists a threshold N , when the actual shot number b is below this threshold, the implicit
gradients are noisy. On the other hand, following the same setting of [16] in figure 5a, we compare the
performance of the Trained Transformer at different train steps as shown in figure 5b. This indicates
that the performance of the model varies with the number of train steps, which also means that the
implicit gradients of ICL generated by the model are influenced by the extent of its pre-training.

In conclusion, actual implicit gradient descent involves noise, which primarily stems from the shot
number and the degree of model pre-training.

C.5 The Detailed Results of Algorithm 1

Table 2: The results of Algorithm 1 on SST-2
Model Name Layer Number Module Name Optimal ξ∗ Test Acc Improve

GPT-J-6B 26 MLP 0.95 0.7527 - 0.8437(↑)
GPT-J-6B 27 ATTN 0.995 0.7527 - 0.7642(↑)

LLAMA2-7B 30 MLP 0.99 0.9228 - 0.9257(↑)
LLAMA2-7B 30 ATTN 0.95 0.9228 - 0.9287(↑)
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Table 3: The results of Algorithm 1 on AGNEWS
Model Name Layer Number Module Name Optimal ξ∗ Test Acc Improve

GPT-J-6B 26 MLP 0.1 0.76434 - 0.76947(↑)
GPT-J-6B 27 ATTN 0.95 0.76434 - 0.77026(↑)

LLAMA2-7B 30 MLP 0.995 0.77026 - 0.84881(↑)
LLAMA2-7B 30 ATTN 0.1 0.77026 - 0.77039(↑)

Table 4: The results of Algorithm 1 on EmoC
Model Name Layer Number Module Name Optimal ξ∗ Test Acc Improve

GPT-J-6B 26 MLP 0.1 0.69032 - 0.74278(↑)
GPT-J-6B 27 ATTN 0.5 0.69032 - 0.69758(↑)

LLAMA2-7B 30 MLP 0.1 0.77110 - 0.79106(↑)
LLAMA2-7B 30 ATTN 0.1 0.77110 - 0.76910(↓)

Table 5: The results of Algorithm 1 on MRPC
Model Name Layer Number Module Name Optimal ξ∗ Test Acc Improve

GPT-J-6B 26 MLP 0.995 0.66492 - 0.66492(−)
GPT-J-6B 27 ATTN 0.995 0.66492 - 0.66492(−)

LLAMA2-7B 30 MLP 0.5 0.66666 - 0.67536(↑)
LLAMA2-7B 30 ATTN 0.995 0.66666 - 0.66608(↓)

Table 6: The results of Algorithm 1 on RTE
Model Name Layer Number Module Name Optimal ξ∗ Test Acc Improve

GPT-J-6B 26 MLP 0.99 0.56884 - 0.57971(↑)
GPT-J-6B 27 ATTN 0 0.56884 - 0.56884(−)

LLAMA2-7B 30 MLP 0.75 0.56159 - 0.57608(↑)
LLAMA2-7B 30 ATTN 0.9 0.56159 - 0.57971(↑)

Table 7: The results of Algorithm 1 on CB
Model Name Layer Number Module Name Optimal ξ∗ Test Acc Improve

GPT-J-6B 26 MLP 0.95 0.58181 - 0.67272(↑)
GPT-J-6B 27 ATTN 0 0.58181 - 0.58181(−)

LLAMA2-7B 30 MLP 0.95 0.83636 - 0.85454(↑)
LLAMA2-7B 30 ATTN 0.99 0.83636 - 0.87272(↑)

Table 8: The results of Algorithm 1 on COPA
Model Name Layer Number Module Name Optimal ξ∗ Test F1 Improve

GPT-J-6B 26 MLP 0.95 0.58 - 0.59(↑)
GPT-J-6B 27 ATTN 0.99 0.58 - 0.58(−)

LLAMA2-7B 30 MLP 0.5 0.57 - 0.62(↑)
LLAMA2-7B 30 ATTN 0.99 0.57 - 0.56(↓)
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper discusses enhancements in in-context learning (ICL) performance
for pre-trained large language models (LLMs), particularly focusing on the effects of SVD-
based weight pruning. Key contributions made include: What is the phenomenon? Why this
phenomenon? How to better use this phenomenon?

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Section 4, we discuss the limitations of our work and identify them as
valuable future work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The full set of assumptions and complete proofs can be found in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: First, our code is available at the anonymous url https://anonymous.4open.
science/r/EnhancingICL_SVDPruning-5383/ (camera ready https://github.
com/chen123CtrlS/EnhancingICL_SVDPruning). Second, details regarding datasets
and how they were used are shown in Appendix C.1 and C.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: For details on data and model download, please refer to the
code. our code is available at the anonymous url https://anonymous.4open.
science/r/EnhancingICL_SVDPruning-5383/(camera ready https://github.com/
chen123CtrlS/EnhancingICL_SVDPruning).
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: First, details regarding datasets and how they were used are shown in Appendix
C.1 and C.3. Second, how hyperparameters were chosen is also detailed in paper and code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The primary focus of our paper is on the theoretical analysis of the underlying
mechanism of a phenomenon we discovered. While we have conducted experiments on
various publicly available datasets and different models to support our theoretical findings,
we did not include discussions on error bars. Our experiments across different datasets and

28

https://anonymous.4open.science/r/EnhancingICL_SVDPruning-5383/
https://anonymous.4open.science/r/EnhancingICL_SVDPruning-5383/
https://github.com/chen123CtrlS/EnhancingICL_SVDPruning
https://github.com/chen123CtrlS/EnhancingICL_SVDPruning
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


models reflect to some extent the correspondence between theory and practice. And due to
limitations in computational resources, we did not report error bars, confidence intervals, or
conduct statistical significance tests.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Section 3.4, we provide sufficient information on the computer resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics
in every respect, and we make sure to preserve anonymity.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work mainly focuses theoretically analysing the underlying mechanism of
a phenomenon that we found. For positive societal impacts, understanding the underlying
mechanism can contribute to use ICL. For negative societal impacts, the understanding of
the mechanism can not be used in harmful ways.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: We cite the original papers that produced the code packages or datasets. For
example, in Section C.4 we cite the original owner of Figure 5a.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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