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ABSTRACT

We introduce a novel, high-capacity associative memory capable of factorizing
compositional representations of variables. The approach is implemented as a
continuous-time oscillator neural network. By performing factorization with a
continuous-time dynamical system, the proposed Factorizing Oscillator Associa-
tive Memory (FOAM) provides efficient solutions to computationally hard prob-
lems such as inference in compositional representations and combinatorial op-
timization. We demonstrate favorable performance compared to existing ap-
proaches to factorization, efficient implementation, and relevance to standard tasks
such as the subset sum problem. We also identify concrete reasons why our model
exhibits improved capacity, by formulating methods to track its convergence.

1 INTRODUCTION

An important open problem for both computational neuroscience and machine learning is to main-
tain a memory of the world that can be used efficiently for future inference. Indeed, problems such
as perception, reasoning, and combinatorial optimization need to use prior knowledge to analyze
novel situations on-the-fly. Towards this end, associative memories have proven to be a simple yet
powerful component. Hopfield (1984) proposed a continuous-time dynamical system formulation
of a neural network model forming an associative memory. Such memories are capable of storing
binary patterns in a distributed fashion and can efficiently recall a stored pattern in the presence
of errors or erasures. It was then shown in Hopfield & Tank (1985) that networks with the same
dynamics can be used to solve hard combinatorial problems. While these networks operated on bi-
nary patterns, Noest (1987) showed that real-valued patterns can be stored in an associative memory
formed with phasor-valued representations and the corresponding continuous-time dynamics.

Still, a major ongoing challenge consists in scaling associative memories to handle the many com-
plex and diverse sensory input patterns that arise from interacting with the natural environment.
One strategy for addressing this challenge is to develop compositional representations, in which
memories (new and old) can be factored into modular parts. For this purpose, Frady et al. (2020)
proposed a resonator network that enables high-capacity storage and retrieval of patterns using com-
positional structure. Compositional representations are formed by a vector binding operation that
combines multiple factors. The resonator network can then infer the factors from such a represen-
tation, thereby acting as a compositional associative memory. Prior work has shown that resonator
networks exhibit favorable scaling in capacity (Kent et al., 2020) and can perform efficient inferences
over large search spaces (Kymn et al., 2025). In this paper, we demonstrate that using oscillatory
dynamics further increases the capacity.

While much prior work has examined circuit implementations of associative memories, it is not al-
ways known if the circuit will perform as well as the digital implementation. We show that even the
discrete-time simulation of an oscillator network outperforms the original algorithm in the ability to
recall stored patterns and factor representations with few iterations. We also demonstrate the useful-
ness of the network in representing both continuous and discrete phasor representations, providing
insights for novel implementations of resonator networks in neuromorphic hardware.
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2 FACTORIZING OSCILLATOR ASSOCIATIVE MEMORY (FOAM)

Attractor neural networks are simple neural circuits whose dynamics perform computations, such as
pattern cleanup or retrieval. In the simplest form they use binary-valued patterns but this formulation
can be generalized to complex-valued representations with unit amplitude (“phasors”). A seminal
paper on phasor neural networks by Noest (1987) describes a simple continuous-time oscillator
network.1 This model consists of an D-dimensional state vector of phases, ϕ ∈ RD, that is governed
by the following equation:

d

dt
ϕj = |hj | sin (arg(hj)− ϕj) ,where hj =

D∑
k=1

Wjk eiϕj , (1)

and where |hj | and arg(hj) denote the amplitude and phase of the complex number hj , respectively.
From these dynamics, it should be evident that we have a fixed point whenever ∀j, arg(hj) = ϕj .
Noest showed that this dynamical system has a Lyapunov function when the weights are Hermitian
symmetric (i.e., Wjk = W ∗

kj). We note that this formulation is similar in spirit to the well-studied
Kuramoto model, except that the magnitude of the oscillator input, |hj |, is included in the phase
dynamics. This has the effect of increasing the rate of change of the oscillator phase as the magnitude
of the input increases.

We now show how to adapt the dynamics of Noest (1987) to perform vector factorization. More
concretely, the objective is to factorize an input vector s = x∗ ⊙ y∗, where x∗,y∗, s are phasor
vectors of dimension D, and ⊙ denotes element-wise multiplication (Hadamard product). Sup-
pose also that x∗ and y∗ each come from a discrete set of candidates: x∗ ∈ {x(1),x(2), ...,x(m)},
y∗ ∈ {y(1),y(2), ...,y(m)}. Factorization amounts to recovering x∗ and y∗ given s and the sets of
possible vectors for each factor; thus, the total search space is m2. Here, we introduce a new model,
the Factorizing Oscillator Associative Memory (FOAM), which extends prior oscillator-based as-
sociative memory models to support compositional factorization. We formulate the dynamics as
follows:

d

dt
ϕ
(x)
j = |h(x)

j | sin
(

arg(h(x)
j )− ϕ

(x)
j

)
, and

d

dt
ϕ
(y)
j = |h(y)

j | sin
(

arg(h(y)
j )− ϕ

(y)
j

)
, (2)

where

h
(y)
j =

D∑
k=1

W
(y)
jk ( sj ⊙ e−iϕ

(x)
j ), and h

(x)
j =

D∑
k=1

W
(x)
jk (sj ⊙ e−iϕ

(y)
j ). (3)

Ideally, these dynamics will cause the states for each factor to become similar to the ground truth
vectors that generated the vector s. More concretely, the amplitude of the complex-valued inner
product between the state vector exp(ϕ(x)) and a candidate vector x(p) should be highest for the
ground truth vector x∗.

Finally, the matrices W(x) and W(y) are constructed with an outer product learning rule based on
the candidate vectors for each factor:

W(x) =

m∑
p=1

(x(p)x(p)† − ID) (4)

where † denotes the transpose conjugate, and ID is the D-dimensional identity matrix. We consider
the more general case, in which s is a product of R > 2 vectors, in Section 3.3 and Appendix A.

3 RESULTS

3.1 HIGHER CAPACITY WITH EFFICIENT IMPLEMENTATION

First, we analyze the performance of the new oscillator version compared to the baseline resonator
network. We examine how well networks of varying dimensions (D) recover the original factors
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Figure 1: Performance characteristics of factorizing oscillators. A) The continuous update equa-
tions (FOAM model, solid lines) provide a strong increase in performance relative to the standard,
discrete update resonator network baseline (dashed lines). Each line demonstrates the average ac-
curacy (over 200 trials) of the factorization solution for a model with two factors and a particular
dimension. Different colors indicate different dimension (D); higher dimensions have higher capac-
ity as expected from the study of Hopfield networks. B) Continuous-time dynamics can be simulated
efficiently. Plots show average accuracy (over 200 trials) with D = 1000,m = 300. Remarkably,
with adaptive step sizes, the number of iterations required for convergence is comparable for discrete
and continuous updates. In fact, the continuous case reaches 100 percent empirical accuracy faster.
The results for different order stepsizes (light and dark green) are comparable. C) Subharmonic
injection locking encourages phases to settle to particular values, which can be useful for readout
and neuromorphic implementations in oscillators. Each line shows the time evolution of one phasor,
and distinct colors denote distinct modules.

when m patterns are stored per module. The factorization is considered correct if and only if,
for every factor, the network state is closer to the ground truth vector than any other item in the
codebook. Here, the relevant notion of “closeness” is the amplitude of the inner product. The
accuracy curves in Figure 1 show the proportion of correct trials for varying dimensions and number
of patterns. As expected from prior studies of associative memory, the accuracy quickly falls off
after a critical number of patterns is stored. The capacity refers to the largest pattern load with
accuracy above a threshold (e.g., at least 0.99); its scaling laws can be estimated empirically (Kent
et al., 2020; Kymn et al., 2024a). We find that across a variety of dimensions, the capacity is much
higher for the continuous (ours) vs. discrete-dynamics (baseline) case. The analysis performed in
the next section indicates that this is due to benign instabilities which adversely affect the discrete
but not continuous case.

In addition, and perhaps surprisingly, we find that the continuous version can be implemented in
approximately the same number of time-steps as the discrete version (Figure 1B). This works in
part because we use adaptive step solver methods to simulate our dynamical systems, accelerating
convergence (Kidger, 2021). These results show that the continuous-time nature of the equations
can be efficiently implemented. Future work will examine the trade-offs between the improvement
in performance and the additional computations required for integrating the differential equations.

We also consider how to enforce phase discretization with continuous dynamics. Such discrete states
are known as Q-state phasors (Noest, 1988), and discretization can help reduce crosstalk between
patterns in the final, converged states. To address this scenario, we consider the inclusion of an
additional term to the dynamics (highlighted in blue):

d

dt
ϕ
(x)
j = |h(x)

j | sin
(

arg(h(x)
j )− ϕ

(x)
j

)
− sin(Qϕj)

t2

τ
, (5)

where Q corresponds to the number of phasor states, t is the time, and τ functions as a time con-
stant. The time-dependence of the term defines an annealing schedule, in which the constraint exerts
stronger influence over time. This additional term successfully ensures that each component con-
verges to one of these Q values (Figure 1C) and has previously been characterized in the study of
associative memory (Nishikawa et al., 2004; Bybee & Sommer, 2022).

3.2 INCREASED CAPACITY IS DUE TO “BENIGN INSTABILITY” WITH INCREASED PATTERNS

A critical question emerges from the results reported in Figure 1 : why is the capacity higher for
the continuous dynamics vs. the discrete one? It is observed that for the continuous dynamics, we
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Figure 2: Analysis of dynamics in three different regimes. Top row: in the stable regime (few
patterns per dimension), the dynamics behave ‘as if’ descending an energy function, system con-
verges rapidly to one pattern, and does not drift. Middle row: In the benign unstable regime, many
patterns converge to a spurious mixture, yet much more similar to the correct one than the rest. The
presence of cross-talk noise causes patterns to drift, but does not affect which pattern is most similar.
Bottom row: In the catastrophic unstable regime (too many patterns per dimension), no state stays
similar to the correct factor, and the network activity is not similar across time steps.

discover an unstable regime in which network states are no longer stable but this does not impact the
overall performance of the FOAM model. Therefore, we analyze its behavior by varying the num-
ber of stored patterns. To quantify this, we look at inner products of the system’s states and stored
patterns, “energy values”2 of each module, phase differences, and the normalized inner products be-
tween states at different time points (temporal correlation). Figure 2 shows three distinct examples,
with D = 2000 and m ∈ {40, 1300, 1900}; note that the effective search space for each example is
m2, which is much larger than D for the latter two cases.

We observe several different modes of activity, with typical behavior for each depicted on a row of
Figure 2:

1. Stable: Convergence to the correct factors proceeds rapidly and recall is nearly perfect.
Even though the weights are not symmetric, these points behave as if descending an energy
function. Indeed, the final state converges to a stable pattern.

2. Benign unstable: This mode is benign in the sense that the best pattern is most similar to
the correct factor compared to any other pattern. The correlation across time shows that
the state, although fluctuating, stays self-similar over time. The network tends to decrease
its values relative to the energy function, but not monotonically. Collectively, these results
show that the states convergence to a mixture of the true pattern cross-talk contributions
from other patterns.

3. Catastrophic unstable: In this mode, the correct factors can no longer be retrieved. The
temporal correlation is also low except among neighboring timepoints, indicating large
changes in the overall state.

Prior analysis of resonator networks by Kent et al. (2020) also observed the presence of accuracy-
reducing limit cycles, which may be an effect of the large “jumps” in the space induced by the
discrete-time dynamics. These jumps are doubly harmful, because the convergence criteria were
based on fixed-point convergence, making drift a failure mode. The FOAM model dynamics, how-
ever, may not settle to a fixed point yet stay in the correct basin of attraction. In summary, the
improved capacity can be explained by the existence of a “benign unstable” mode not present in the
discrete-time dynamics.
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3.3 EXAMPLE APPLICATION: SUBSET SUM PROBLEM

Finally, we evaluate the performance of the FOAM model on a combinatorial optimization problem
– the subset sum problem. Concretely, the problem asks: if given a target integer T and a multi-
set of integers S , is there a subset S∗ ⊆ S that sums to T ? The subset sum problem is simple
to state but under mild restrictions (e.g., positive only integers) is NP-complete. In fact, it can be
shown that there are interpretable computations that can map the subset sum problem onto the vector
factorization problem. Figure 3 provides an example of FOAM finding a successful solution. The
state vectors, corresponding to each item in the set, become similar over time to one of two vectors,
indicating the decision to include or omit (Figure 3A). This can be visualized by the evolution of
the “confidence” (Figure 3B), which shows the normalized difference in inner products between
the two different factors. The dimension required to achieve successful factorization is relatively
small (D = 50), which speaks to the relative computational efficiency of the approach. Additional
information about the methods are provided in Appendix B

Figure 3: Demonstration on the subset sum problem. T = 42,S = {3, 7, 8, 17, 22, 33},S∗ =
3, 17, 22. FOAM model is able to factor out the three variables that should be summed together to
obtain an exact match. A) We initialize one state vector per item in the set, with two possibilities:
include (1) or omit (0). We find that over time the states converge to one variable, showing the
“decision over the binary variable.” B) Evolution of the “confidence” as the network involves in time.
The confidence is the normalized difference in amplitudes of inner products. States are initialized
to be halfway state. This particular demo is with vectors of dimension D = 50, which is intended
to be smaller than the total search space, 26. If the dimension were higher, the final confidence for
each member of S would also be higher.

4 DISCUSSION

We propose a continuous-time dynamical system that implements a factorization mechanism based
on interconnected associative memories. It solves the problem of combinatorial search over a large
space of possible solutions by finding a set of factors that together must satisfy a number of con-
straints. The search is implemented through the non-linear dynamics of a network of coupled oscil-
lators, where the dynamics act directly on the phases of individual components. The system exhibits
higher memory capacity compared to existing methods, and we provide empirical evidence to sup-
port its success in large combinatorial search spaces. The model leads to practical optimization
solutions in several settings, such as the subset sum problem.

There is a rich history of solving computational problems, including combinatorial optimization
problems, using oscillators (Wang & Roychowdhury, 2019; Bybee et al., 2023) and resonator net-
works (Kleyko et al., 2022; Kymn et al., 2024b). More recently, there has also been increasing
interest in using oscillations in artificial neural networks to extract semantic information from vi-
sual scenes and solve constraint satisfaction problems (e.g., Bybee et al. (2022); Keller & Welling
(2023); Liboni et al. (2025); Löwe et al. (2024); Miyato et al. (2024)). Our work complements
these approaches by showing that structured compositional representations, when combined with
oscillatory dynamics, lead to efficient and transparent computations.

We envision that the present study can be extended in several promising ways. These include formal
mathematical analysis of the dynamics introduced here, implementation in a neuromorphic circuit,
and further evaluation on combinatorial optimization problems to quantitatively characterize scaling.
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Sindy Löwe, Phillip Lippe, Francesco Locatello, and Max Welling. Rotating features for object
discovery. In Advances in Neural Information Processing Systems (NeurIPS), 2024.
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A FORMULATION FOR AN ARBITRARY NUMBER OF FACTORS

The two-module network described in Equation 2 is provided as a simple example. In general, the
dynamical system provided here can support an arbitrary number of discrete modules. Some previ-
ous work has investigated the scaling capacities of resonator networks in the presence of multiple
modules.

For the more general case, suppose we have a vector s that is the product of R different modules:

z =

R⊙
r=1

x(r) (6)

where each x(r) is a D-dimensional vector. Then the phase dynamics for each module ϕ(r) are as
follows:
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d

dt
ϕ
(r)
j = |h(r)

j | sin
(

arg(h(r)
j )− ϕ

(x)
j

)
(7)

where

h
(r)
j =

D∑
k=1

W
(y)
jk (sj

⊙
r′ ̸=r

e−iϕ
(r′)
j ) (8)

While equation 7 appears structurally similar to equation 2, the pre-activation term, h(r)
j , now in-

cludes additional multiplication terms due to contributions from other factors.

B EXPERIMENTAL DETAILS: SUBSET SUM PROBLEM

To solve the subset sum problem, we make use of the fact that multiplying two complex numbers
adds their arguments. The problem formulation of subset sum as a vector factorization problem
mirrors the setup in Kymn et al. (2025), which did not use the FOAM architecture proposed here.

To formulate the subset sum problem as a vector factorization problem, we first define a randomized
mapping from integers to phasor-valued vectors. We first draw a seed vector of random phases:
z = [eiϕ1 , eiϕ2 , ..., eiϕD ], in order to define an encoding of integer values:

z(c) = [eiϕ1c, eiϕ2c, ..., eiϕDc] (9)

This technique is known as random Fourier features (Rahimi & Recht, 2007) or trajectory associa-
tion (Plate, 1992). This encoding has the useful algebraic property that z(c1)⊙z(c2) = z(c1+ c2).3

Therefore, to formulate the subset sum problem, we generate an encoding of our target, i.e., z(T ).
We then generate |S| factors, each with two patterns stored in the memory: z(0) and z(Si). These
two patterns reflect the binary decision to include the item in the set (or not). We initialize the FOAM
network states to be the average of these two vectors, although we observe strong convergence
empirically when these states are initialized randomly.

NOTES

1Noest (1987) also introduces discrete-time dynamics for phasor neural networks, and that the asynchronous
version is observed to have the same Lyapunov function as the original version.

2The energy values correspond to evaluations of the energy function from Noest (1987) according to the
weights for each module. Although our factorizing dynamics do not in general monotonically descend this
energy function, as we will show, measuring its changes over time helps us qualitatively characterize differences
in behavior based on pattern load.

3The intersection of random features and associative memory has received much attention in recent years
(e.g., Negri et al. (2023); Kalaj et al. (2024); Hoover et al. (2024)) and would be an exciting direction for future
work.
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