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ABSTRACT

Large image diffusion models enable novel view synthesis with high quality and
excellent zero-shot capability. However, such models based on image-to-image
translation have no guarantee of view consistency, limiting the performance for
downstream tasks like 3D reconstruction and image-to-3D generation. To em-
power consistency, we propose Consistent123 to synthesize novel views simul-
taneously by incorporating additional cross-view attention layers and the shared
self-attention mechanism. The proposed attention mechanism improves the inter-
action across all synthesized views, as well as the alignment between the condition
view and novel views. In the sampling stage, such architecture supports simulta-
neously generating an arbitrary number of views while training at a fixed length.
We also introduce a progressive classifier-free guidance strategy to achieve the
trade-off between texture and geometry for synthesized object views. Qualitative
and quantitative experiments show that Consistent123 outperforms baselines in
view consistency by a large margin. Furthermore, we demonstrate a significant
improvement of Consistent123 on varying downstream tasks, showing its great
potential in the 3D generation field.
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Figure 1: Given the input view and relative pose sequence, Consistent123 can synthesize consistent
novel views concurrently, while Zero123 fails at producing consistent views.

1 INTRODUCTION

Large diffusion models (Ramesh et al., 2022; Saharia et al., 2022; Rombach et al., 2022; Balaji et al.,
2022) have achieved remarkable performance in synthesizing high-quality images with significant
zero-shot capability. To migrate such generalizability to the 3D field, diffusion models have been
adapted to 3D object synthesis (Watson et al., 2023; Zhou & Tulsiani, 2023; Tseng et al., 2023; Liu
et al., 2023b; Xiang et al., 2023). To utilize the capability of diffusion architecture and the pre-trained
weights on large-scale images, the 3D synthesis process of these methods is naturally formulated as
the image-to-image translation from input view to target view with pose condition. Such formulation
yields excellent image quality but lacks alignment among synthesized views, leading to the loss of
view consistency.

Some methods (Watson et al., 2023; Tseng et al., 2023) attempt to improve the view consistency by
auto-regressively generating novel views, i.e., conditioning on previously generated views during
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view synthesis. While there has been some improvement in consistency, these methods still suffer
from the issues of accumulated errors and slow inference speed, struggling in the loop closure. Fur-
thermore, most of these methods are trained on a single or limited object categories (like ShapeNet),
thus failing at generalization to all kinds of object classes. Therefore, how to generate consistent
multi-views for objects of arbitrary categories still remains unexplored.

In this paper, we propose Consistent123, which generates multiple novel views simultaneously given
the condition view and a sequence of relative pose transformations. We carefully design the attention
mechanism inside the denoising U-Net. First, we introduce additional cross-view attention layers
as Video Diffusion Model (Ho et al., 2022) to allow interaction across all synthesized views. This
allows the model to synthesize views corresponding to an underlying 3D object, thus significantly
improving the consistency. Moreover, previous works like Zero123 (Liu et al., 2023b) are condi-
tioned on the semantic embedding (i.e., CLIP embedding), omitting the spatial layout information
of the condition view. To better align with the condition view, we introduce shared self-attention
inspired by (Cao et al., 2023), which shares the key and value in the self-attention layers of the con-
dition view with synthesized novel views. Note that the shared self-attention mechanism is applied
in both the training and inference stages without introducing additional trainable parameters. For
efficient training, the spatial layers of our model are initialized with the Zero123 pre-trained weights
and only the cross-view attention weights are trainable to preserve the zero-shot capability.

At the sampling stage, Consistent123 synthesizes all the novel views concurrently given the con-
dition view and relative poses. Since synthesized views are aligned only via attention layers, our
model can sample arbitrary numbers of views while training at a fixed length. Furthermore, we
found surprisingly that denoising a large number of views simultaneously is crucial for view con-
sistency. With more sampling views, there is more overlapping and interaction across views thus
the consistency is better. This contradicts the auto-regressive methods (Watson et al., 2023), whose
sampling quality usually worsens with increasingly more conditioning views. Besides the arbitrary
sampling, we also observe that the scale of classifier-free guidance (CFG) (Ho & Salimans, 2022)
greatly influences the sampling quality. Specifically, a large CFG scale contributes to the geometry
of synthesized object views while a low CFG scale helps to refine the texture details. Therefore,
we propose progressive classifier-free guidance (PCFG), dynamically decreasing the guidance scale
during the denoising process to achieve the trade-off between geometry and texture. With these
sampling strategies, the consistency and quality of synthesized novel views are further boosted.

The proposed model is evaluated on multiple benchmarks, including Objaverse (Deitke et al., 2023)
testset, GSO (Downs et al., 2022), and RTMV (Tremblay et al., 2022). We evaluate both the view
consistency score (Watson et al., 2023) and the similarity with ground truth on these datasets. Fur-
thermore, we demonstrate performance improvement in downstream applications like 3D recon-
struction and image-to-3D generation. We hope that Consistent123 will be a foundational model for
further 3D generation research.

The contribution of our paper can be summarized as follows:

• We propose Consistent123, which synthesizes consistent novel views simultaneously condi-
tioned on the input view and relative poses. We introduce cross-view attention and shared self-
attention mechanisms to achieve view alignment for better consistency.

• We show that Consistent123 supports synthesizing an arbitrary number of views. We also pro-
pose progressive classifier-free guidance to achieve the trade-off between geometry and texture.

• We demonstrate a great improvement aided by Consistent123 on multiple downstream tasks like
3D reconstruction and image-to-3D generation.

2 RELATED WORK

Geometric-aware 3D Object Synthesis. The primary solution of 3D object synthesis is to gener-
ate 3D representation directly, including NeRF-class methods (Yu et al., 2021; Niemeyer et al., 2022;
Jang & Agapito, 2021), tri-planes (Gao et al., 2022; Skorokhodov et al., 2023; Sargent et al., 2023)
and point clouds (Luo & Hu, 2021; Nichol et al., 2022; Zeng et al., 2022). With these geometric-
aware models, the objects are synthesized via volume rendering, and the view consistency is guar-
anteed by construction. While the consistency is preserved, most works are designed for some
well-aligned specific datasets, thus difficult to generalize for various objects. Only a tiny portion of
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methods (Skorokhodov et al., 2023; Sargent et al., 2023) can achieve multi-classes object synthesis,
but their performance is constrained by model capacity and 3D data scale, leading to low image
quality and limited generalizability.

Geometric-free 3D Object Synthesis. Geometry-free methods formulate the 3D object synthe-
sis as the image-to-image translation. Early methods (Rombach et al., 2021; Sajjadi et al., 2022;
Kulhánek et al., 2022) are mainly based on Transformer (Vaswani et al., 2017) architecture. With
the fast development of diffusion models, they are shown to have a high capability to synthesize
high-quality images (Ho et al., 2020; Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021; Song
et al., 2022; Karras et al., 2022). Recent works (Watson et al., 2023; Zhou & Tulsiani, 2023; Tseng
et al., 2023; Liu et al., 2023b) try to achieve novel view synthesis with the aid of diffusion models.
Zero123 (Liu et al., 2023b) finetunes pre-trained diffusion model on the large-scale 3D dataset to
support the camera control. For view consistency, Watson et al. (2023) proposed stochastic con-
ditioning to make the synthesized view aligned with previous views auto-regressively, while Zhou
& Tulsiani (2023) introduced additional distillation loss to optimize the final 3D representation.
With these post-processing methods, the view consistency of models is improved at the expense of
sampling flexibility, limiting the downstream applications of these models.

Unlike the above-mentioned methods, the proposed Consistent123 synthesizes all consistent views
simultaneously corresponding to an underlying object. Very recently, the concurrent work MVDif-
fusion (Tang et al., 2023) shares a similar spirit to synthesize all views simultaneously. However, it
is used for the text-to-scene task while our model is designed for generic 3D object synthesis, and
the attention mechanism inside the model significantly differs.

3 METHODS

This section first discusses the formulation of previous pose-guided image-to-image diffusion mod-
els in Section 3.1. Next, we present Consistent123 and the proposed attention mechanism in Section
3.2. Finally, two sampling techniques are introduced in Section 3.3 to boost image consistency and
quality further.

3.1 POSE-GUIDED IMAGE-TO-IMAGE DIFFUSION MODEL

Diffusion models (Ho et al., 2020) are probabilistic generative models that recover images from a
specified degradation process. The forward process adds Gaussian noise to the target image x:

q(xt|xt−1) = N (xt;
√
αtx

t−1, (1− αt)I) (1)

Here, α is a scheduling hyper-parameter and the diffusion timestep t ∈ [1, 1000]. Given the con-
dition image xc and the relative pose transformation from the condition view to the target view
∆p = (R, T ), the denoising process can be defined as follows:

p(xt−1|xt, c(xc,∆p)) = N (xt−1;µθ(x
t, t, c(xc,∆p),Σθ(x

t, t, c(xc,∆p))) (2)

where c(xc,∆p) represents the embedding of the condition image and relative pose, the mean func-
tion µθ is modeled by the denoising U-Net ϵθ and the variance can be either predefined constants or
trainable parameters. The training target is to minimize the reconstruction loss of noise ϵ sampled
from the standard normal distribution:

L(θ) = min
θ

Ex,t,ϵ∼N (0,1)∥ϵ− ϵθ(x
t, t, c(xc,∆p))∥22 (3)

Challenges. Leveraging the pre-trained image diffusion models can partially alleviate the gener-
alization of 3D objects caused by the limited 3D data scale and model capability. However, such
geometry-free models typically suffer from the alignment problem that the consistency across syn-
thesized views can not be guaranteed. Even if some auto-regressive sampling techniques can im-
prove the view consistency, they heavily limit the sampling process and further applications. It
remains unexplored how to synthesize 3D objects with zero-shot capabilities and view consistency.

3



Under review as a conference paper at ICLR 2024

Noisy Views

(a) Simultaneous Muti-view Generation (b) Shared Self-Attention

Noisy Input View

Noisy Novel Views

Self Attn

Q KV

Self Attn

Q KV
Cross 
Attn

Cross 
Attn

C
ro

ss
-v

ie
w

 A
ttn

Fixed Updated

… … …

Denoised Views

×t steps

Denoising U-Net 𝜖

… …

… …

CLIP + (R, T)

Input View

Figure 2: The overall method of Consistent123. (a) At the training stage, multiple noisy views
concatenated (denoted as ⊕) with the input view are fed into the denoising U-Net simultaneously,
conditioned on the CLIP embedding of the input view and the corresponding poses. For sampling,
views are denoised iteratively from the normal distribution through the U-Net. (b) In the shared
self-attention layer, all views query the same key and value from the input view, which provides
detailed spatial layout information for novel view synthesis. The input view and related poses are
injected into the model by the cross-attention layer, and synthesized views are further aligned via
the cross-view attention layer.

3.2 VIEW CONSISTENCY VIA LATENT ALIGNMENT

Simultaneous Multi-view Generation. Previous works show the excellent quality of image-based
diffusion models in synthesizing novel views. However, most of them lack view consistency due
to the image-to-image translation formulation, preventing the view interaction by design. We in-
stead propose to synthesize a sequence of novel views simultaneously to facilitate the interac-
tion of different novel views, which greatly improves the consistency among the generated novel
views. Given a sequence of target novel views X = (x1, x2, ..., xn) and relative pose sequence
∆P = (∆p1,∆p2, ...,∆pn), the denoising process can be adapted from Equation 2 as:

p(Xt−1|Xt, c(xc,∆P )) = N (Xt−1;µθ(X
t, t, c(xc,∆P ),Σθ(X

t, t, c(xc,∆P ))) (4)

Here n is the number of views used for simultaneous view generation. Sepeically, we use Zero123
(Liu et al., 2023b) as our base model and incorporate an additional trainable cross-view attention
layer after each self-attention layer within the denoising U-Net to uphold the learning of view con-
sistency. The weights of other components are simply loaded from the pre-trained Zero123 and kept
fixed during training.

Shared Self-attention. Zero123 (Liu et al., 2023b) employs two ways for utilizing conditioning
image: one involves concatenating it with input noise, and the other is applying the cross-attention
with its CLIP image embedding. For the first way, (Watson et al., 2023) argues that it is insufficient
in enhancing view consistency, especially when there exists a large view difference. The second
way provides the high-level semantic information of the conditioning view for the generator while
ignoring its detailed spatial layout information. Inspired by (Cao et al., 2023; Wu et al., 2023), we
propose to enable each target view to attend to the input view when performing self-attention. More
specifically, each target view queries the key and value of the input view for all self-attention layers
of denoising U-Net. Assume that Q,K, V are the query, key, and value matrices projected by the
spatial feature of view latent. The ith novel view only calculates its query matrix Qi to attend with
the shared key and value matrices of condition image Kc, Vc. The self-attention result Ai of ith
novel view can be formulated as follow:

Ai = softmax(
QiK

T
c√
d

)Vc (5)

This operation aligns the synthesized views with the input image without requiring additional train-
able parameters, thus preventing further overfitting. Besides, it reduces part of the computation of
self-attention layers by sharing condition intermediates Kc and Vc. For implementation, we feed the
condition image and n− 1 novel views into the U-Net. See Figure 2(b) for a visual depiction.
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3.3 SAMPLING TECHNIQUES FOR NOVEL VIEW SYNTHESIS

Arbitrary-length Sampling. Recall that in Section 3.2, a fixed number of views is fed into the
denoising U-Net simultaneously for training. In the sampling stage, it is natural to sample the same
number of views as training. But is it possible to synthesize more consistent views at once? Since our
model connects different views only via cross-view attention layers, this design allows us to sample
views in arbitrary lengths without further modification. We surprisingly find that if the number of
sampling views is expanded, the consistency of views also significantly increase. This contradicts
the auto-regressive methods, whose sampling quality usually becomes worse with the increasing
conditioning views (Watson et al., 2023). It is expected since the cross-view attention works better
with closer view intervals (i.e., smaller view differences). With this fantastic feature, our model can
synthesize more than 64 consistent views simultaneously (even trained at 8 views), which satisfies
most of the application scenarios. As for an extremely large number of views (e.g., over 256) or
low-memory devices, a compromise solution is to first synthesize an acceptable number of views,
and then predict their nearby views for the next round.

Progressive Classifier-free Guidance. Classifier-free Guidance (Ho & Salimans, 2022) is a com-
monly used sampling technique for diffusion models.

ϵ̃θ(zt, c(xc, R, T )) = (1 + w)ϵθ(zt, c(xc, R, T ))− wϵθ(zt) (6)

Low cfg scale (1.5) 

High cfg scale (10.0) 

Input

Low cfg scale (1.5) High cfg scale (10.0) Input
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High cfg scale (10.0) 

Input
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Figure 3: The synthesized views under
different CFG scales.

Here w is a scalar to control the used guidance scale. As
shown in Figure 3, we found that a small w (e.g., 1.5)
helps to synthesize detailed textures but with unaccept-
able artifacts. On the contrary, a large w (e.g., 10) can
guarantee excellent object geometry at the expense of tex-
tures. Based on this observation, we propose Progressive
Classifier-free Guidance (PCFG) schedule to decrease w
during the denoising process. The basic intuition is that
the model synthesizes the object outlines at the early de-
noising stage, where a large w can promise the geometry
and reduce the artifacts. At the later denoising stage, the
model concentrates on refining the object details thus a
relatively small w can improve the synthesized textures. We experiment with varying types of re-
duction functions, including linear, concave, and convex functions:

w(t) =


(we − ws)

t
T + ws (linear)

(we − ws)
t2

T 2 + ws (concave)
ws

1
t + we (convex)

(7)

where T represents the total denoising steps (commonly 50 steps), ws is the starting CFG scale and
we is the ending CFG scale. We found empirically that the concave function performs best.

4 EXPERIMENT RESULTS

4.1 EXPERIMENT SETUP

Benchmarks. Following Zero123 (Liu et al., 2023b), we use Objaverse (Deitke et al., 2023) to
finetune our model, which is a large-scale open-source dataset containing 800K+ 3D models created
by 100K+ artists. Besides, for more efficient learning of the consistency among views, we circularly
render 18 views for each object with 15◦ perturbation in elevation (i.e., the elevation angles range in
[75◦, 105◦]). The azimuth angle interval between the nearest views is randomly set at [10◦, 30◦]. We
separate 1% of the rendering for testing. Follow the settings of Liu et al. (2023b), the performance
of our model is evaluated on multiple benchmarks, including Objaverse (Deitke et al., 2023) testing
set, GSO (Downs et al., 2022) and RTMV (Tremblay et al., 2022). We randomly picked up 100
objects from Objaverse testset, and 20 from both GSO and RTMV as Zero123.

Metrics. Considering that our main contribution is to improve the view consistency, we use the
3D consistency score (Watson et al., 2023) to evaluate the model performance. Specifically, views
are first sampled from the models given the condition image and relative poses, then a NeRF-like
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Dataset Objaverse Testset GSO RTMV

Model PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Zero123 21.72 0.92 0.23 22.88 0.92 0.25 15.68 0.78 0.36
Zero123 + SC 22.09 0.92 0.21 22.30 0.93 0.21 15.88 0.76 0.36
Consistent123 24.98 0.96 0.14 27.98 0.98 0.11 18.76 0.85 0.25

Table 1: The overall comparison on consistency score. The proposed Consistent123 significantly
improves the view consistency compared with baselines by a large margin. SC means stochastic
conditioning.

Zero123Consistent123 Zero123 + SCInput

Figure 4: Qualitative comparison with baselines from different datasets. Two objects from
Objaverse testset, two are from GSO, and the final one is from RTMV. Consistent123 synthesizes
consistent multi-views while preserving high image quality.

neural field is trained on parts of the sampling views and evaluated on the remaining views. The
higher performance the trained NeRF achieves, the more consistent the synthesized views are with
each other. Here we use Instant-NGP (Müller et al., 2022) as the NeRF implementation to accel-
erate the metric calculation. We use the following metrics to evaluate the performance of methods
quantitatively: PSNR, SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018). Besides, for more
comprehensive experiments, we also compare the sampling views with the ground truth using the
above metrics.

Baselines. We compare our model with Zero123 (Liu et al., 2023b), a strong geometric-free base-
line in zero-shot 3D object synthesis with released pre-trained weight on Objaverse. Since 3DiM
(Watson et al., 2023) has not been released, we only apply stochastic conditioning (SC) on Zero123
to compare with its improvement in consistency.

Implementation Details. For efficient training, we initialize the spatial weight of Consistent123
with Zero123 pre-trained weights. The cross-view attention layers are additionally incorporated into
Consistent123 and trained on the renderings of Objaverse. We use AdamW (Loshchilov & Hutter,
2017) as the optimizer with β1 = 0.9 and β2 = 0.999 with a learning rate of 10−4 . Follow Liu et al.
(2023b), we reduce the image size to 256 × 256 and the corresponding latent dimension to 32 × 32.
The total sampling step T for all experiments is set to 50 with DDIM (Song et al., 2022) sampler.
We trained our model on an 8×A100-80GB machine for around 1 day.
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Dataset Objaverse Testset GSO RTMV

Model PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Consistent123 24.98 0.96 0.14 27.98 0.98 0.11 18.43 0.85 0.25

- Cross-view Attn 21.94 0.92 0.22 23.04 0.94 0.22 15.22 0.77 0.35
- Shared Self-attn 22.23 0.92 0.20 24.64 0.94 0.17 17.14 0.81 0.31
- PCFG 24.38 0.95 0.15 27.20 0.97 0.12 18.02 0.84 0.26

Table 2: Overall ablation study on consistency score. One of three components (cross-view atten-
tion, shared self-attention, and progressive classifier-free guidance) is removed for each experiment.

input w/o PCFG

w/o cross-view 
attention

w/o shared
self-attention

Consistent123

input

Figure 5: Qualitative ablation study for different components.

4.2 CONSISTENCY EVALUATION

We first evaluate the 3D consistency score of the Consistent123 model and several baselines. To
promise constructed NeRF quality, we sample 64 views for each object, where 7/8 views are used
for NeRF training and others for metrics evaluation. We use Objaverse Testset to evaluate the
in-distribution performance and GSO and RTMV to evaluate the out-of-distribution performance.
Zero123 (Liu et al., 2023b) is used as a strong baseline for novel view synthesis. And we apply
stochastic conditioning (SC) sampling (Watson et al., 2023) on Zero123 auto-regressively to im-
prove the view consistency further. As shown in Table 1 and Figure 4, the proposed Consistent123
significantly improves the view consistency compared with baselines by a large margin for either
in-distribution or out-of-distribution tests. From these results, Zero123 synthesizes high-quality but
inconsistent novel views. Stochastic conditioning helps to improve the view consistency but at the
expense of image quality. By building the connection among synthesized views, the proposed Con-
sistent123 can synthesize consistent multi-views without losing the image quality.

4.3 ABLATION STUDY

Overall Ablation Study. The ablation study is conducted for three important components of Con-
sistent123: cross-view attention, shared self-attention, and progressive classifier-free guidance. For
each ablation experiment, the consistency score is evaluated on several benchmarks, with one of
these three components removed and the others unchanged. As shown in Table 2 and Figure 5, the
cross-view attention is the most important component in Consistent123, revealing that interaction
across all views is crucial to promise consistency. The shared self-attention layers further connect
the condition image with synthesized images, enhancing the alignment of view content. Progressive
classifier-free guidance also helps to eliminate the artifacts of synthesized view while preserving
image quality, which slightly improves the model consistency.

The Number of Sampling Views. Aided with arbitrary-length sampling in Section 3.3, we can
sample views in arbitrary length while training at the fixed number of views. As shown in Figure 6,
we surprisingly found that as the number of sampling views increased, the synthesized views were
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Num = 64

8 16 32 648 16 32 64

Figure 6: The consistency comparison with different numbers of sampling views. As the number
of sampling views increases, the view consistency and quality are also improved due to the higher
overlapping and interaction across views.

Type PSNR↑ SSIM↑ LPIPS↓
Linear 27.05 0.97 0.12
Convex 24.07 0.94 0.14
Concave 27.98 0.98 0.11

(a) Types of reduction functions in PCFG.

Layers PSNR↑ SSIM↑ LPIPS↓
Encoder 25.92 0.96 0.14
Decoder 27.98 0.98 0.11

Whole U-Net 27.60 0.98 0.11

(b) U-Net layers for shared self-attention.

Table 3: Ablation study of components on GSO. (a) The consistency score of different types of re-
duction functions in PCFG. The concave reduction function can achieve the best performance among
the candidates. (b) The consistency score of different U-Net layers that apply shared self-attention.
Only applying shared self-attention in U-Net decoder layers can achieve the best performance.

more consistent. It is expected since there is more overlapping and interaction across views as the
number of sampling views increases.

Types of reduction functions in PCFG. For the reduction functions in Equation 7, we empiri-
cally set ws = 10 and we = 2. Table 3(a) shows the performance of different types of reduction
functions, including linear, convex, and concave functions. The concave function achieves the best
performance, showing that building the layout quickly and refining the details with more steps is a
better strategy to improve the view consistency.

U-Net layers for shared self-attention. In Table 3(b), we analyze different layers in denoising
U-Net for shared self-attention. Applying shared self-attention only in the U-Net decoder is slightly
better. The main reason is that the query features in shallow layers of U-Net (e.g., encoder part) may
not contain clear spatial layout information, thus the synthesized views are dominantly influenced
by the conditioned view.

4.4 NOVEL VIEW SYNTHESIS EVALUATION

Besides view consistency, the quality of each synthesized view is also important for 3D objects.
As common settings, we calculate the similarity metrics between novel views with ground truth.
Similar to previous sections, we synthesize 64 views for each object and compare them with the
object renderings. Note that the number of our evaluation views slightly differs from Liu et al.
(2023b), leading to a small difference in the final metrics. In Table 4, Consistent123 outperforms
most of the baselines in novel view synthesis. This demonstrates that Consistent123 can improve
view consistency without losing the quality of synthesized views.
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Dataset Objaverse Testset GSO RTMV

Model PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Zero123 15.52 0.85 0.15 17.42 0.86 0.15 10.10 0.64 0.33
Zero123 + SC 14.90 0.84 0.18 16.37 0.85 0.18 10.44 0.64 0.33
Consistent123 16.46 0.86 0.14 18.22 0.87 0.13 9.87 0.66 0.34

Table 4: The overall comparison on ground truth renderings. Note that the number of our
evaluation views slightly differs from Zero123, leading to a small difference in the final metrics.

(c) One-2-3-45(b) Dreamfusion(a) Neus Reconstruction

(c) One-2-3-45(a) NeuS Reconstruction (b) Dreamfusion

Figure 7: Boosted 3D lifting results with Consistent123. We experiment with varying downstream
tasks, including NeuS (Wang et al., 2021), Dreamfusion (Poole et al., 2023), and One-2-3-45 (Liu
et al., 2023a). For each object, the first row is from Zero123 while the second row is from Consis-
tent123 (the texture of the first Neus case is removed to show the geometry quality, which can be
found in the supplementary). The 3D lifting performance is significantly boosted via synthesized
consistent views.

5 LIFT CONSISTENT MULTI-VIEWS TO 3D

Native 3D Reconstruction Due to the inconsistent predictions by Zero123, there are numerous
distortions in native 3D reconstruction like NeRF (Mildenhall et al., 2021) or NeuS (Wang et al.,
2021). With Neus as an example in Figure 7(a), it shows that compared with Zero123, both the
geometry and texture of constructed 3D models are greatly improved with the synthesized consistent
views of Consistent123.

Image-to-3D Generation We also show the 3D lifting results with recent SOTA image-to-3D
methods, including DreamFusion (Poole et al., 2023) and One-2-3-45 (Liu et al., 2023a). It shows a
great improvement in image-to-3D generation quality with Consistent123. In Figure 7(b) and 7(c),
Zero123-based generation results (first row) encounter failure especially on the unseen side, due to
the inconsistent synthesized views. With Consistent123 as the view synthesis backbone, the objects
are successfully generated with relatively good quality (second row). Furthermore, we believe that
with the boosting consistency, there still exists a large exploring space to improve the lifting quality.

6 CONCLUSION

In this work, we have presented Consistent123, an image-to-3D model to synthesize consistent
multiple views. In the proposed model, synthesized views are aligned with cross-view attention
and shared self-attention. We also designed two sampling strategies to support sampling arbitrary
numbers of views and improve the view quality and consistency. Furthermore, we show that Con-
sistent123 can serve as a new foundation model in varying downstream tasks like native 3D recon-
struction and image-to-3D generation, which significantly boosts the quality of 3D lifting.
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A APPENDIX

A.1 MORE QUALITATIVE RESULTS

Input Synthesized consistent views 

Figure 8: More qualitative results on Objaverse.
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Input Synthesized consistent views 

Figure 9: More qualitative results on GSO.
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Input Synthesized consistent views 

Figure 10: Qualitative results for images in the wild.

Input Synthesized consistent views Prompt

A kungfu cat.

3D render of a 
pink balloon 

dog.

A bear in a 
cowboy suit.

A rocking horse 
chair.

A wooden 
mushroom.

A blueberry ice 
cream with a 
waffle cone.

Figure 11: Qualitative results for images generated by text-to-image models.
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Input Synthesized Views 

Consistent123

Syncdreamer

Zero123 XL

Consistent123

Syncdreamer

Zero123 XL

Consistent123

Syncdreamer

Zero123 XL

Consistent123

Syncdreamer

Zero123 XL

Figure 12: Qaulitative comparison with the very recent baselines (Zero123 XL, Syncdreamer).
It shows that the proposed model can synthesize high-quality novel views with good consistency.

16



Under review as a conference paper at ICLR 2024

Input Synthesized consistent views 

Figure 13: Qualitative results for more sophisticated input images (e.g., sophisticated texture
or spatial relation among objects). It shows that the proposed method can be well generalized to
more complicated input images.

Input Synthesized consistent views Reconstructed

Figure 14: Failure cases. The proposed method fails to reconstruct some complicated patterns of
the input images (e.g., text, thin objects).
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Input Renderings Views Renderings Mesh

Figure 15: More qualitative results for 3D reconstruction.

(a) Additional results of Dreamfusion

Input Renderings Views Input Renderings Views

(b) Additional results of One-2-3-45

Figure 16: More qualitative results for image-to-3D generation.
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Input Zero123 Consistent123

Figure 17: Qualitative results for Magic123. The proposed method greatly alleviates the multi-
face Janus problem with the boosted view consistency.

A.2 EVALUATION WITH DIFFERENT NUMBERS OF SAMPLING VIEWS

Figure 18: The consistency score with different numbers of sampling views on GSO. For the
varying evaluation number of views, Consistent123 outperforms Zero123 by a large margin.

The consistency score in previous experiments was calculated with 64 sampling views. In Figure
18, we also show the consistency score on GSO measured in other numbers of sampling views. It
shows that with different numbers of sampling views, our model consistently outperforms Zero123
by a large margin.

A.3 IMPLEMENTATION DETAILS FOR IMAGE-TO-3D GENERATION

In Section 5, we show the boosted 3D lifting quality by replacing Zero123 with Consistent123. For
image-to-3D generation methods, we make some necessary modifications to better utilize the power
of Consistent123.

DreamFusion. DreamFusion (Poole et al., 2023) has been adapted to achieve image-to-3D gen-
eration. For each training step, vanilla DreamFusion uniformly picks the noise scale ranging from
0.02 to 0.98. In our early experiments, we found that such a noisy scale schedule would result in
texture loss on the unseen side of objects. To solve this problem, we enlarged the noise scale at the
early training stage. Specifically, the lower bound of the noise scale is initially set near the upper
bound. As the training steps increase, the lower bound gradually decreases until approaches 0.02.
This helps to find a good texture initialization for Consistent123 to improve the synthesis quality.

One-2-3-45. Vanilla One-2-3-45 (Liu et al., 2023a) synthesizes 8 views in the first stage and then
predicts 4 nearby views for each of them in the second stage. This strategy prevents large pose
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transformations of Zero123, thus alleviating the inconsistency to some extent, However, Consis-
tent123 can directly synthesize all these views at once without losing view consistency and quality.
So we directly generate all required views concurrently in one stage with Consistent123, and both
the quality and speed are further improved.

A.4 DIFFERENT TRAINING RENDERINGS OF OBJAVERSE

Dataset Objaverse Testset GSO RTMV

Rendering Pose PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Spherical Sampling 24.18 0.95 0.17 25.82 0.96 0.15 17.84 0.84 0.28
Circular Perturbation 24.98 0.96 0.14 27.98 0.98 0.11 18.76 0.85 0.25

Table 5: Consistency score of Consistent123 trained with different Objaverse renderings.
Training with circular perturbation renderings improves the view consistency compared with spher-
ical sampling (training renderings of Zero123).

Dataset Objaverse Testset GSO RTMV

Rendering Pose PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Spherical Sampling 16.71 0.87 0.14 18.27 0.87 0.13 9.71 0.66 0.34
Circular Perturbation 16.46 0.86 0.14 18.22 0.87 0.13 9.87 0.66 0.34

Table 6: Ground truth comparison of Consistent123 trained with different Objaverse render-
ings. The model trained with circular perturbation achieves similar performance compared with
spherical sampling (training renderings of Zero123).

In Zero123 (Liu et al., 2023b), the random spherical renderings of Objaverse are used to train mod-
els. In this work, we render another version of Objaverse, whose poses are circularly sampled with
perturbation as described in Section 4.1. As shown in Table 5 and 6, Consistent123 trained with
circular perturbation renderings are more view-consistent while maintaining the similarity with the
ground truth. Therefore, we select the circular perturbation renderings of Objaverse as our final
training set to further improve the view consistency.

A.5 MORE QUANTITATIVE COMPARISON WITH BASELINES.

Comparison on novel view synthesis. To further show the effectiveness of Consistent123, we
also conduct comparisons with the very recent baselines Zero123 XL and Syncdreamer. Note that
Syncdreamer is constrained at fixed poses, thus we only compare with it qualitatively in Figure
12. In the following Table 7, we evaluate the consistency score on GSO dataset, which shows that
Consistent123 also outperforms Zero123 XL by a large margin.

Method PSNR SSIM LPIPS

Zero123 22.88 0.92 0.25
Zero123 XL 24.13 0.94 0.21

Consistent123 27.98 0.98 0.11

Table 7: Quantitative comparison with the stronger baseline Zero123 XL.

Comparison on 3D reconstruction. Following the settings of Zero123, we calculate the Chamfer
Distance and Volume IoU of image-to-3D reconstruction based on SDS loss in Table 8. Note that
these metrics only evaluate the geometry quality, ignoring the texture improvement of Consistent123
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Method Chamfer Distance↓ Volume IoU↑

Zero123 0.0880 0.4719
Consistent123 0.0843 0.4818

Table 8: Quantitative comparison with Zero123 on the dreamfusion-based 3D reconstruction.

(which is more significant compared with geometry improvement). Please refer to the updated video
supplementary (dreamfusion.mp4) for more qualitative comparisons.

A.6 MORE ABLATION STUDY

Constrained shared self-attention. Intuitively, with a larger pose difference between the input
view and synthesized view, the shared self-attention would become less activated. For these poses,
the non-shared self-attention (i.e., U-Net Encoder part) and cross-view attention layers can serve as
complementary and the performance can be maintained. For a better understanding of how shared
self-attention works, we conducted an ablation study. For the poses whose azimuth angle with
input view is larger than 90°, we set the shared self-attention to vanilla self-attention by force. We
evaluate the consistency score on GSO in Table 9. The table shows that the constrained version
of shared self-attention achieves similar performance as the vanilla self-attention. This indicates
that the performance will degrade when disabling shared self-attention when a large pose difference
exists, which makes the model harder to learn when attending keys and values from different views
(half of the views attend to the input view, half attend to themselves).

Method PSNR SSIM LPIPS

Vanilla Self-attention 24.64 0.94 0.17
Constrained Shared Self-attention 24.67 0.94 0.17

Shared Self-attention 27.98 0.98 0.11

Table 9: Quantitative results on constrained shared self-attention.

The number of evaluation objects on Objaverse. The evaluation of the consistency score is
quite time-consuming (constructing a Nerf per object), preventing us from using a large number of
evaluation objects. Moreover, our evaluation settings mainly borrow from Zero123, which only uses
20 objects in GSO (as well as most concurrent works). To demonstrate more convincing results, we
extend the number of evaluation objects to 1k in Table 10, which shows that the proposed model
consistently outperforms baselines by a large margin.

Method PSNR(100) SSIM(100) LPIPS(100) PSNR (1000) SSIM (1000) LPIPS (1000)

Zero123 21.72 0.92 0.23 20.90 0.89 0.25
Zero123 + SC 22.09 0.92 0.21 20.78 0.89 0.24
Consistent123 24.98 0.96 0.14 23.89 0.94 0.16

Table 10: Quantitative results of consistency score for more Objaverse evaluation objects.

Trained from scratch. For a fair comparison, we train Consistent123 from scratch on the same
renderings as Zero123. We show the consistency score evaluated on GSO in Table 11. In our
experiments, we found that it is challenging to simultaneously maintain the synthesized view quality
and consistency. Due to the limited scale of the existing 3D dataset, the model is easy to be trapped in
overfitting when directly trained from scratch. To reduce the overfitting, it is reasonable to enable the
model with novel view synthesis ability by training like Zero123, then improve the view consistency
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as Consistent123. Moreover, due to the slow training process (over 7 days for zero123), there is
no further time to explore a more effective optimization strategy. A better training strategy (e.g.,
Efficient 3DiM) may make it possible to train Consistent123 from scratch.

Method PSNR SSIM LPIPS

Zero123 22.88 0.92 0.25
Consistent123 (finetuned) 25.82 0.96 0.15

Consistent123 (from scratch) 23.59 0.92 0.17

Table 11: Quantitative results of Consistent123 trained from scratch

Trained with a dynamic number of views. We also conducted the ablation study to use a ran-
dom number of views during training. We implement it by selecting a random number of views
dynamically for each batch, which ranges from 8 views to 16 views (since we only render 18 views
for each object). We evaluate the consistency score on GSO as shown in Table 12. It shows that
training at a fixed number of views is already effective, and training at a random view may degrade
the performance. This is mainly because as the number of training views increases, the difference
among views is smaller. It becomes easier for cross-view attention to predict the novel views, thus
harming the robustness of the learned model and may lead to the overfitting issue.

Method PSNR SSIM LPIPS

Zero123 22.88 0.92 0.25
Zero123 + SC 22.30 0.93 0.21

Consistent123 (8 views) 27.98 0.98 0.11
Consistent123 (8 16 views) 26.25 0.96 0.14

Table 12: Quantitative results of Consistent123 trained with dynamic number of views.
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