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Abstract

Fine-tuning pre-trained LLMs typically requires a vast amount of GPU memory.
Standard first-order optimizers like SGD face a significant challenge due to the
large memory overhead from back-propagation as the size of LLMs increases,
which necessitates caching activations during the forward pass and gradients during
the backward pass. In contrast, zeroth-order (ZO) methods can estimate gradients
with only two forward passes and without the need for activation caching. Addi-
tionally, CPU resources can be aggregated and offloaded to extend the memory and
computational capacity of a single GPU. To enable efficient fine-tuning of LLMs
on a single GPU, we introduce ZO-Offloading, a framework that strategically
utilizes both CPU and GPU resources for ZO. ZO-Offloading dynamically offloads
model parameters to the CPU and retrieves them to the GPU as needed, ensuring
continuous and efficient computation by reducing idle times and maximizing GPU
utilization. Parameter updates are integrated with ZO’s dual forward passes to
minimize redundant data transfers, thereby improving the overall efficiency of
the fine-tuning process. With ZO-Offloading, for the first time, it becomes pos-
sible to fine-tune extremely large models, such as the OPT-175B with over 175
billion parameters, on a single GPU with just 24GB of memory—a feat previ-
ously unattainable with conventional methods. Moreover, our framework operates
without any additional time cost compared to standard ZO methodologies.

1 Introduction

As Large Language Models (LLMs) grow to hundreds of billions of parameters, exemplified by
OPT-175B [1] and Llama 3.1 405B [2], efficient GPU memory management becomes critical. This
challenge arises from the need to balance model performance with current hardware constraints. CPU
offloading has emerged as a key technique to address this issue, transferring less frequently accessed
data from GPU to the typically larger and more cost-effective CPU memory. While widely applied
in inference tasks such as KV cache offloading [3, 4] and Mixture of Experts (MoE) offloading
[5, 6], CPU offloading’s application in training, particularly fine-tuning, remains underexplored. This
paper examines the potential of CPU offloading in LLM fine-tuning, addressing the growing need for
efficient memory utilization in large-scale model development.

Recently, some works [7, 8] have tried to introduce CPU offloading into LLM training. However,
they are typically constrained by the capabilities of first-order optimizers such as SGD and Adaptive
Moment Estimation (AdamW) [9], and limited GPU memory, restricting large-scale model scalability
on single GPU systems. In detail, using first-order optimizers introduces two major inefficiencies in
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CPU offloading: (1) Multiple communication operations: During the training of LLMs, parameters
are used not only for computing the loss during the forward pass but also for gradient computation
in the backward pass. This necessitates offloading the same data (parameter) twice—once for
each pass (see Appendix Figure 3a for an illustration). Such redundancy not only doubles the
communication volume between the CPU and GPU but also introduces significant latency and
inefficiency due to repetitive data transfers. (2) Huge data transfer volume per communication
operation: Furthermore, both parameters and activations (hidden states) are required in the backward
pass to complete gradient computations. This means that parameters and activation values must be
offloaded during each forward pass and re-uploaded to the GPU for the backward pass. The result is
a significant increase in the volume of data transferred, which severely impacts training throughput
and efficiency.

On the other hand, compared to first-order optimization methods, zeroth-order (ZO) methods offer
a novel approach to fine-tuning LLMs [10, 11, 12]. These methods utilize dual forward passes to
estimate parameter gradients and subsequently update parameters, as illustrated in Figure 3b. This
approach eliminates the traditional reliance on backward passes, thereby streamlining the training
process by significantly reducing the number of computational steps required.

Figure 1: Memory usage comparison for training
LLMs across different optimizers (AdamW, SGD,
ZO, and ZO-Offloading) and model sizes (OPT-
6.7B, OPT-13B, OPT-30B, OPT-175B). The ‘0’
values indicate that training was not feasible due
to excessive memory demand.

Based on the above observations, we conjecture
that ZO’s architecture is particularly well-suited
for CPU offloading strategies. Intuitively, by
eliminating backward passes and the need to
store activation values, it can significantly re-
duce GPU memory demands through efficient
parameter offloading. However, despite these
advantages, ZO training via CPU offloading
introduces new challenges, particularly in the
realm of CPU-to-GPU communication. Trans-
ferring parameters between the CPU and GPU,
which is crucial for maintaining gradient com-
putation and model updates, becomes a critical
bottleneck due to inherent communication de-
lays. Although ZO methods inherently extend
computation times because of the dual forward
passes, potentially allowing for better overlap
between computation and communication (Sec-
tion 2.2), there remain significant inefficiencies.
The necessity to upload parameters to the GPU
for upcoming computations introduces a large volume of communications.

To tackle the inefficiencies highlighted, we introduce ZO-Offloading, a novel framework specifically
designed for ZO fine-tuning in LLMs with CPU offloading. These innovations make it feasible to
fine-tune extremely large models, such as the OPT-175B [1] with over 175 billion parameters, on a
single GPU equipped with just 24GB of memory (Figure 1). Our contributions can be summarized
as follows:

Innovative use of CPU-offloading for ZO methods. We pioneer the application of CPU offloading
in the context of ZO optimization methods to dramatically reduce GPU memory requirements. This
method allows for the efficient handling of model parameters by dynamically transferring inactive
data between the CPU and GPU, significantly extending the capacity to train large models like
OPT-175B on a single GPU.

Low memory but a high-throughput framework. We introduce a series of optimized features that
substantially reduce GPU memory use while maintaining high throughput. Our dynamic scheduler
improves GPU utilization by optimizing computation and communication overlaps. Reusable memory
blocks minimize overhead and stabilize memory use, while efficient parameter updating synchronizes
updates with dual forward passes to reduce data transfers.

Empirical validation and experimentation. Our experiments demonstrate that ZO-Offloading
can efficiently fine-tune the OPT-175B model, with over 175 billion parameters, on a single 24GB
GPU—previously impossible with traditional methods. Crucially, this is achieved with no additional
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time cost and decreases in accuracy, showcasing the framework’s effectiveness and efficiency for
large-scale model training.

2 Method

In this section, we first provide some related work and preliminaries in Appendix B and C, and then
present our ZO-Offloading framework.

2.1 Framework Overview

Figure 2: Workflow of the ZO-Offloading framework for fine-tuning LLMs.
ZO optimization procedure. To better illustrate this idea, we first describe the original version
of the computational workflow of the ZO optimizer for fine-tuning LLMs. Initially, input data
is loaded from the disk into the CPU and subsequently transferred to the GPU. Within the GPU,
each module—including the embedding layer, transformer blocks, and the language model (LM)
head—executes dual forward computations to estimate the projected gradient and update parameters.
From the system perspective, traditional deep learning frameworks like PyTorch [13] typically
manage both communication (via interconnections, e.g., PCIe) and computation tasks with a single
CUDA stream1, leading to significant inefficiencies.

Vanilla CPU-offloading and its limitations. Specifically, for ZO optimization, the i-th transformer
block is uploaded from the CPU to the GPU (the GPU is designated for computation-intensive tasks
using its CUDA and Tensor Cores, and the CPU memory is used for parameter storage), undergoes
dual forward computation, and then is offloaded back to the CPU. The i+ 1-th block must wait for
the offloading of the i-th block to finish before its uploading, leading to idle CUDA and Tensor Cores
during communication while the interconnection remains idle during computation. See Figure 4 in
Appendix for an illustration.

How ZO-Offloading is different. Central to our ZO-Offloading framework is the strategic utilization
of CPU and GPU resources (Section 2.2). This approach involves dynamically offloading model
parameters to the CPU and uploading them back to the GPU as needed for computation. Specifically,
for the transformer model structure, each transformer block is individually uploaded for processing
and subsequently offloaded post-computation, thus balancing communication and computation across
blocks. As illustrated in Figure 2, while the i-th transformer block is being computed, the i+ 1-th
block is pre-uploaded, and the i− 1-th block is offloaded simultaneously. This strategic overlapping
ensures continuous and efficient computation, reducing idle times and maximizing GPU utilization.
In the uploading phase of ZO-Offloading, transformer blocks are transferred into a reusable memory
space on the GPU, eliminating the extra time typically required for CUDA memory allocation
(Section D). Moreover, parameter updates are ingeniously fused with the dual forward passes to
minimize redundant data transfers, thereby enhancing the overall efficiency of the model training
process (Section E).

2.2 Dynamic Scheduler Design for Efficient Overlap
Asynchronous execution on CUDA streams. To overlap the data loading and computation process,
we propose a dynamic scheduler, utilizing the asynchronous execution on different CUDA streams.

1https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
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Algorithm 1 ZO-Offloading Dynamic Scheduler

Require: Transformer blocks {Wi}Ni=1 with number of transformer blocks N , embedding parameters
Embedding, and LM head LMhead.

1: Initialize a dynamic scheduler S{·} to control dual forward computation C(·), uploading U(·),
and offloading O(·) operations.

2: Asynchronously launch S{U(W1), C(Embedding)}.
3: for i = 1 to N − 1 do
4: Synchronously wait until U(Wi) finished.
5: if i = 1 then
6: Asynchronously launch S{U(Wi+1), C(Wi)}.
7: else
8: Synchronously wait until C(Wi−1) finished.
9: Asynchronously launch S{U(Wi+1), C(Wi), O(Wi−1)}.

10: end if
11: end for
12: Synchronously wait until U(WN ) and C(WN−1) finished.
13: Asynchronously launch S{C(WN ), O(WN−1)}.
14: Synchronously wait until C(WN ) finished.
15: Asynchronously launch S{C(LMhead), O(WN )}.

Specifically, our scheduler includes three CUDA streams (Figure 2), which are utilized to control
the i-th transformer block’s computation, the i + 1-th block’s uploading, and the i − 1-th block’s
offloading can occur concurrently. This design minimizes data transfer conflicts and maximizes GPU
utilization by keeping computational and communication channels active.

Locking mechanism. However, designing this dynamic scheduler presents challenges when commu-
nication tasks outlast computation tasks, leading to potential errors. For example, if the upload of the
i-th block is incomplete when its computation begins, this can lead to errors, as the GPU computes
with an incomplete set of parameters. Similarly, if the computation of the i-th block is still ongoing
when its offloading begins, it can also result in errors because the computation is disrupted by the
removal of necessary data. To address this, our scheduler implements a locking mechanism for each
block’s computation task, ensuring it only starts once its corresponding upload is confirmed complete.
While this solution mitigates the issue of incomplete parameters, it can still potentially create bottle-
necks if communication tasks consistently outlast computation tasks. Surprisingly, our evaluations
show that with ZO’s unique dual forward passes, which extend computation times, communication
delays are no longer the primary bottleneck in most scenarios. The detailed scheduler design to apply
ZO-Offloading on LLMs is shown in Algorithm 1.

3 Experiment

The experimental evaluation of our framework was conducted using the PyTorch deep learning library,
integrated with NVIDIA CUDA streams to optimize parallel computation tasks. We selected the
Open Pre-trained Transformer (OPT) [1] model family as the subject of our experiments due to
its open-source availability, widespread adoption in the research community, and diverse range of
model sizes, ranging from 125 million to 175 billion parameters, which allows for a comprehensive
assessment of our framework’s performance across varying scales of model complexity. In our
evaluation, MeZO [11] serves as the baseline method, as it is the most memory-throughput efficient
ZO method currently. Our framework builds upon MeZO, reducing GPU memory usage while
maintaining throughput and precision. All performance evaluation experiments are done with dataset
SST-2 ([14]). Additional experimental settings and experiments are included in Appendix F and G.

The performance results of our experiments are presented in Table 1, where we compare the GPU
memory usage and throughput of the MeZO and ZO-Offloading frameworks, employing both FP32
and FP16 data formats. The results demonstrate a consistent advantage of ZO-Offloading in terms of
GPU memory utilization across all model sizes, highlighting significant efficiency improvements,
especially in large-scale models like OPT-175B. This efficiency is attributed to ZO-Offloading’s
design, which strategically utilizes GPU memory to temporarily store only a limited number of
transformer blocks for computation rather than the entire model. Notably, the memory savings
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become more pronounced as the model size increases. For smaller models, the GPU memory savings
are less pronounced due to the significant proportion of memory allocated for input data, which
diminishes the relative impact of the memory optimization.

Table 1: Main results of ZO-Offloading performance for various model configurations and both
FP32 and FP16 modes. Instances of ‘-’ in the table indicate scenarios where the corresponding
method failed to execute due to memory constraints. The values in parentheses (x) represent the ratio
of each measurement compared to the baseline MeZO (first column) configuration.

Model GPU Memory Usage (MB) ↓ Throughput (tokens/sec) ↑
MeZO(32) ZO-Offload(32) MeZO(16) ZO-Offload(16) MeZO(32) ZO-Offload(32) MeZO(16) ZO-Offload(16)

OPT-125M 3091 2941(x0.95) 1801(x0.58) 1661(x0.54) 14889 13074(x0.89) 31058(x2.09) 31058(x2.09)
OPT-350M 4219 3393(x0.81) 2389(x0.57) 1643(x0.39) 5274 5099(x0.97) 13508(x2.56) 12284(x2.32)
OPT-1.3B 9117 4413(x0.48) 4887(x0.54) 2651(x0.29) 1954 1954(x1.00) 6788(x3.47) 6788(x3.47)
OPT-2.7B 15277 5261(x0.34) 7933(x0.52) 3111(x0.20) 1087 1087(x1.00) 4227(x3.89) 4227(x3.89)
OPT-6.7B 32083 8329(x0.26) 16311(x0.51) 4539(x0.14) 499 499(x1.00) 2455(x4.92) 2455(x4.92)
OPT-13B 58251 12113(x0.21) 29411(x0.50) 6445(x0.11) 270 270(x1.00) 1406(x5.21) 1340(x4.96)
OPT-30B - 18879 63953 10369 - 122 651 597
OPT-66B - 29937 - 14143 - 40 - 273

OPT-175B - 49203 - 24667 - 14 - 37

In terms of throughput, ZO-Offloading maintains a performance comparable to MeZO in most
tested scenarios without any additional time overhead. The instances where ZO-Offloading exhibits
a decrease in throughput, such as with the OPT-125M model in FP32 format, can be primarily
attributed to the dynamics of computation and communication. In these cases, the computation of each
transformer block’s dual forward passes completes quicker than their corresponding communication
tasks, leading to idle times as the dynamic scheduler (discussed in Section 2.2) synchronizes and
waits for these communication tasks to conclude. It is important to note that our results do not
show a consistent pattern where either smaller or larger models benefit more significantly from the
computation-communication overlap, indicating that the effectiveness of this overlap does not linearly
correlate with model size.

4 Conclusion

In this paper, we presented ZO-Offloading, an efficient framework that enables the training of
extremely large language models, such as the OPT-175B, on a single 24GB GPU—a capability
previously unattainable with traditional methods. By effectively integrating CPU offloading, high-
performance dynamic scheduler, efficient memory management, and efficient parameter updating,
our framework reduces GPU memory demands while maintaining high throughput without additional
time costs. These innovations not only lower the bar for teams with limited hardware resources and
advance the democratization of large models, but also open new avenues for advancing AI technology
more efficiently. Moving forward, we plan to further enhance ZO-Offloading, exploring synergies
with emerging hardware and optimization techniques to keep pace with the evolving demands of AI
model training.
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Appendix

A Additional Details on Motivations and Previous Approaches

(a) Model using first-order optimizer with forward-
backward passes workflow

(b) Model using zero-order optimizer with only forward
passes workflow

Figure 3: Motivation. Comparison of model workflows using first-order and zeroth-order optimizers.
(a) depicts a traditional first-order optimizer workflow with forward and backward passes, while (b)
shows a zeroth-order optimizer workflow utilizing only forward passes.

Why ZO is Suitable for CPU Offloading Figure 3 illustrates the distinct operational
differences between first-order and zeroth-order optimization methods applied to
model training. Figure 3(a) demonstrates a traditional first-order optimizer setup,
where the model employs a forward-backward pass sequence to update weights.
Here, the input X progresses through several linear transformations (Linear 1, 2, 3),
generating intermediate activations (X1, X2) and the final output Y , which is used to
compute the loss. Subsequent backward passes calculate gradients (dW1, dW2, dW3)
for each weight and derivatives for each activation (dX, dX1, dX2), necessary for
parameter updates through gradient descent.

In contrast, Figure 3(b) presents the zeroth-order optimizer’s workflow, which
simplifies the training process by eliminating the backward passes. This setup
involves dual forward passes through slightly perturbed versions of the model
weights (W ′

1,W
′
2,W

′
3) at each layer (Dual Linear 1, 2, 3). The resulting outputs

from each layer (X ′, X ′
1, X

′
2) and the final output Y ′ are used to compute a dual loss.
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This dual loss approximates the gradient required for updating the original weights,
relying solely on forward computations. This approach significantly reduces the
computational overhead and memory requirements by avoiding the need to store
activations for backpropagation, making it particularly advantageous for training
large models on limited hardware.

This comparison highlights how zeroth-order optimization offers a more memory-
efficient alternative by leveraging only forward passes, thereby facilitating the train-
ing of large-scale models in constrained environments.

Figure 4: Workflow of the naive and non-overlap ZO-Offloading framework with only dual forward
passes. This diagram demonstrates the sequential process without communication and computation
overlap, using the pure PyTorch framework.

Why the Dynamic Scheduler and Overlap Matter Figure 4 provides a visual depic-
tion of the workflow in the naive ZO-Offloading framework, specifically illustrating
the naive, non-overlapping approach to dual forward passes. In this workflow, data is
initially loaded from the CPU to the GPU, starting with the input processed through
the embedding layer. Each transformer block (from Block 1 to Block n) is then
sequentially processed: first uploaded to the GPU, where dual forward computations
occur, and then offloaded back to the CPU after computation is complete.

This step-by-step process highlights a significant inefficiency in the current imple-
mentation: the GPU must wait for each block to be offloaded back to the CPU
before the next block can be uploaded and processed. This results in substantial
idle times for the GPU during offloads, and the CPU during uploads, as each unit
must wait for the other to complete its task before proceeding. Such lack of overlap
between computation (green arrows) and communication (blue arrows) tasks demon-
strates a critical area for improvement, underlining the necessity for an overlapped
or asynchronous approach to enhance overall system efficiency and throughput.
By addressing this inefficiency, we can significantly reduce the training time and
increase the utilization of both CPU and GPU resources.

B Related Work

Zeroth-Order (ZO) Optimization. ZO optimization offers a gradient-free alterna-
tive to first-order (FO) optimization by approximating gradients through function
value-based estimates. These estimates theoretically require only two forward passes
but are believed to be prohibitively slow for optimizing large models. Despite this
limitation, ZO methods have been utilized in deep learning to generate adversarial
examples or adjust input embeddings [15, 16], though they have not been widely
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adopted for direct optimization of large-scale models [17]. Several acceleration tech-
niques have been proposed to address the scaling challenges of ZO optimization and
some of them have been used for LLM fine-tuning. These include using historical
data to improve gradient estimators [18], exploiting gradient structures [19] or spar-
sity to reduce the dependence of ZO methods on the size of the problem [20, 21, 22],
and reusing intermediate features [20] and random perturbation vectors [11] during
the optimization process. These advancements suggest that ZO optimization could
increasingly be applied to more complex and large-scale ML problems. While
previous ZO optimization efforts have primarily targeted algorithmic improvements
for GPU memory efficiency, our approach extends these optimizations to the system
level, enabling more robust memory management and enhanced performance for
large-scale machine learning applications.

CPU Offloading for LLMs. With recent advancements in LLMs, several approaches
have emerged to offload data to CPU memory, mitigating GPU memory limitations.
One such method is vLLM [23], which utilizes PagedAttention to dynamically
manage the key-value (KV) cache at a granular block level. Portions of the KV cache
can be temporarily swapped out of GPU memory to accommodate new requests.
Llama.cpp [24] addresses oversized LLMs by using static layer partitioning. It stores
certain contiguous layers in CPU memory while keeping others in GPU memory.
During computation, the CPU handles the layers in its memory, followed by the
GPU computing its assigned layers. FlexGen [4], a GPU-centric inter-layer pipeline
method, seeks to improve throughput by pinning some model weights in GPU
memory for each layer. During computation, it overlaps GPU processing of the
current layer with data loading for the next. DeepSpeed [7] introduces a technique to
offload the first-order optimizer state to the CPU, significantly reducing GPU memory
requirements during training. Zero-offload [8] extends the DeepSpeed approach by
not only offloading data to the CPU but also engaging the CPU in computational tasks.
Despite these advancements, the predominant focus of previous research has been on
optimizing LLM inference or first-order optimization through strategic CPU-GPU
data transfers. Our work, in contrast, introduces a novel approach by implementing
CPU offloading specifically for zeroth-order optimization and fine-tuning of LLMs.

C Preliminaries on ZO-SGD

ZO optimization offers a gradient-free alternative to first-order (FO) optimization by
approximating gradients through function value-based estimates. There are different
ZO optimizers for estimating the gradient. To better illustrate our framework, in
this paper, we focus on the randomized gradient estimator (RGE) proposed by [25],
which approximates the FO gradient using finite differences of function values along
randomly chosen direction vectors and has been used widely in the ZO optimization
literature. Our idea can be applied to other ZO optimizers.

Given a scalar-valued function f(·) and a model x, the RGE employed by [11],
referred to as ∇̂f(x), is to approximate ∇f(x) and is expressed using central
difference:

∇̂f(x) =
f(x+ ϵz)− f(x− ϵz)

2ϵ
z, (1)
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where z is a random direction vector drawn from the standard Gaussian distribution
N (0, I), and ϵ > 0 is a small perturbation step size, also known as the smoothing
parameter. The rationale behind RGE stems from the concept of the directional
derivative [26]. As ϵ approaches 0, the directional derivative provides us an unbiased
gradient estimator of ∇f(x). Thus, the RGE ∇̂f(x) can be interpreted as an approx-
imation of the FO gradient ∇f(x) using the directional derivative [10]. Zeroth-order
stochastic gradient descent (ZO-SGD) follows a similar algorithmic framework to
its first-order counterpart, SGD, but replaces the gradient with an estimated gradient
via zeroth order (function value) information for the descent direction.

Fine-tuning pre-trained LLMs typically demands substantial GPU memory. Previous
first-order SGD-based methods encounter major challenges as LLM sizes grow,
primarily due to the significant memory overhead required for backpropagation,
which involves storing activations during the forward pass and gradients during
the backward pass. In contrast, ZO-SGD can estimate gradients with only forward
passes, eliminating the need for activation caching. [11] utilized the classical ZO-
SGD algorithm (based on RGE), named MeZO, to fine-tune pre-trained LLMs with
up to 30 billion parameters on a single GPU. They capitalized on the memory-
efficient nature of ZO optimization, which eliminates the need for backpropagation
and reduces memory costs. Since CPU resources can be combined and offloaded
to expand the memory and computational capacity of a single GPU. To facilitate
efficient fine-tuning of LLMs on a single GPU, we introduce ZO-Offloading, a
framework that strategically leverages both CPU and GPU resources for ZO-SGD.

D Efficient Memory Management via Reusable One Block Space on GPU

We can further optimize memory management by initially pre-allocating a reusable
transformer block of memory on the GPU. This strategy is implemented to cir-
cumvent the substantial time overhead associated with repeated CUDA memory
allocations (malloc) and frees, which are typically required each time when data
is transferred between the CPU and the GPU. By establishing a dedicated memory
space initially and reusing it for each transformer block, we avoid the need for
multiple malloc and free operations overhead the training process.

This reusable memory space is dynamically assigned to accommodate the parameters
of each transformer block sequentially. Once a block’s computation is complete and
its data is offloaded back to the CPU, the same GPU memory space is immediately
prepared to receive the next block’s parameters from the CPU. This approach not
only expedites the data transfer process but also stabilizes the GPU’s memory usage,
preventing fluctuations that could otherwise impact computational efficiency and
performance.

E Efficient Parameter Update Strategy

In the ZO-Offloading framework, the parameter update strategy is meticulously
designed to precede the dual forward computations of each transformer block. Tradi-
tionally, each transformer block is subjected to two distinct data transfer phases: one
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for the dual forward computations and another for applying gradient updates. This
requirement stems from the fact that the (approximated) gradients are obtained only
after completing the dual forward computations for the entire model. Consequently,
parameters must be uploaded for the computation phase, offloaded upon completion,
and then re-uploaded and offloaded again for the gradient update phase. This iterative
process effectively doubles the communication load and extends the duration of
training.

By implementing preemptive parameter updates, the framework significantly curtails
the number of data transfers required per iteration. With this strategy, once blocks
are updated with the last iteration’s gradients, only a single upload and offload
cycle is necessary for each block. This adjustment not only halves the usage of
interconnection bandwidth but also enhances the efficiency of the training process,
thereby streamlining operations and reducing overhead.

F Experiment Settings

1. Model Specifications:

• Model Family: We used the Open Pre-trained Transformer (OPT) [1] model
family for our experiments, ranging from 125 million to 175 billion parame-
ters, to assess our framework’s scalability and performance across different
complexities.

• Baseline Model: The MeZO (Memory-efficient Zeroth-Order) serves as
the baseline for comparison, known for its efficiency in memory throughput
among Zeroth-Order offloading methods.

2. Dataset:

• Dataset Used: All performance evaluation experiments were conducted us-
ing the Stanford Sentiment Treebank (SST-2) dataset, a standard benchmark
for evaluating natural language processing models.

3. Hyperparameters:

• Learning Rate: 1× 10−7

• Steps: 100
• Batch Size: 1
• Sequence Length: 2048

4. Computational Resources:

• GPU: NVIDIA A100 with 80GB of memory.
• CPU: AMD Milan.
• Software: Experiments were conducted using PyTorch version 3.11, inte-

grated with CUDA version 12.1.

5. Evaluation Metrics:

• GPU Memory Usage: Measured in gigabytes (GiB).
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• Throughput: Evaluated as tokens per second to assess the efficiency of the
model training under various configurations.

G Ablation Study of Scheduler, Reusable Memory, and Efficient Updating

Table 2: Throughput (token/sec) results to validate proposed features.

Model MeZO ZO-Offloading ZO-Offloading ZO-Offloading ZO-Offloading(no scheduler overlap) (no reusable memory) (no efficient update)
OPT-1.3B 1954 1109 (x0.57) 735 (x0.38) 1567 (x0.80) 1954 (x1.00)
OPT-2.7B 1087 573 (x0.52) 422 (x0.39) 849 (x0.78) 1087 (x1.00)
OPT-6.7B 499 225 (x0.45) 184 (x0.37) 373 (x0.74) 499 (x1.00)

In order to discern the individual contributions of key features within the ZO-
Offloading framework to its overall performance, an ablation study was conducted
focusing on three critical components: the dynamic scheduler (Sec. 2.2), reusable
memory (Sec. D), and efficient parameter updating (Sec. E). This study mainly
focused on throughput because the primary objective of the three features under
investigation was to enhance throughput without impacting ZO-Offloading’s inherent
capability to reduce GPU memory usage. The main results, as presented earlier,
clearly demonstrated that ZO-Offloading effectively decreases GPU memory con-
sumption. Therefore, an ablation study on memory usage was deemed unnecessary,
as the CPU-offloading mechanism inherently manages to reduce memory demands
without the need for additional features aimed specifically at memory reduction.
Given the tightly integrated nature of our system, traditional ablation methodologies
that add one feature at a time to a baseline are impractical. Instead, we adopted
a reverse ablation approach where each feature was individually disabled. This
allowed us to observe the decrement in throughput relative to the fully operational
framework, thereby highlighting the significance of each component. We mainly use
OPT-1.3B, OPT-2.7B, and OPT-6.7B in the ablation study.

The results, presented in Table 2, provide a clear illustration of how the absence of
each feature impacts the system’s throughput: (1) Horizontal Comparison. Across
all models, the removal of reusable memory results in the most substantial decrease
in throughput, followed by the dynamic scheduler, and finally, the efficient parameter
updating. This order of impact suggests that while all three features are pivotal, the
overhead introduced by CUDA malloc operations, which are eliminated by reusable
memory, significantly outweighs the communication delays between the CPU and
GPU, managed by the dynamic scheduler and efficient parameter updating. For
instance, when reusable memory is not employed, the throughput drops to 37% of the
fully optimized framework for the OPT-6.7B model, highlighting its critical role in
enhancing performance. (2) Vertical Comparison. As the model size increases, the
relative importance of the dynamic scheduler and efficient parameter updating grows
more pronounced. This trend is observable from the throughput: for larger models
like OPT-6.7B, the reduction in throughput when the scheduler and efficient update
features are disabled is relatively larger than in small models. This indicates that as
models become larger, the complexities and overheads associated with managing
and optimizing communications between CPU and GPU become more critical to
maintaining performance. Conversely, the impact of reusable memory remains
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relatively constant across different model sizes, reinforcing the idea that while
CUDA malloc operations are significant, their relative burden does not scale in the
same way as communication overheads.
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