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Abstract

The training and generalization dynamics of the Transformer’s core mechanism, namely the
Attention mechanism, remain under-explored. Besides, existing analyses primarily focus
on single-head attention. Inspired by the demonstrated benefits of overparameterization
when training fully-connected networks, we investigate the potential optimization and
generalization advantages of using multiple attention heads. Towards this goal, we derive
convergence and generalization guarantees for gradient-descent training of a single-layer
multi-head self-attention model, under a suitable realizability condition on the data. We then
establish primitive conditions on the initialization that ensure realizability holds. Finally, we
demonstrate that these conditions are satisfied for a simple tokenized-mixture model. We
expect the analysis can be extended to various data-model and architecture variations.

1 Introduction

Transformers have emerged as a promising paradigm in deep learning, primarily attributable to their
distinctive self-attention mechanism. Motivated by the model’s state-of-the-art performance in natural
language processing (Devlin et al., 2019; Brown et al., 2020; Raffel et al., 2020) and computer vision
(Dosovitskiy et al., 2021; Radford et al., 2021; Touvron et al., 2021), the theoretical study of the attention
mechanism has seen a notable surge in interest recently. Numerous studies have already explored the
expressivity of Attention, e.g. (Baldi & Vershynin, 2022; Dong et al., 2021; Yun et al., 2020a;b; Sanford et al.,
2023; Bietti et al., 2023), and initial findings regarding memory capacity have been very recently studied
in (Baldi & Vershynin, 2022; Dong et al., 2021; Yun et al., 2020a;b; Mahdavi et al., 2023). In an attempt
to comprehend optimization aspects of training attention models, Sahiner et al. (2022); Ergen et al. (2022)
have investigated convex-relaxations, while Tarzanagh et al. (2023a) investigates the model’s implicit bias.
Additionally, Edelman et al. (2021) have presented capacity and Rademacher complexity-based generalization
bounds for Self-Attention. However, the exploration of the finite-time optimization and generalization
dynamics of gradient-descent (GD) for training attention models largely remains an open question.

Recent contributions in this direction, which serve as motivation for our work, include the studies by Jelassi
et al. (2022); Li et al. (2023a); Oymak et al. (2023). These works concentrate on single-layer attention models
with a single attention head. Furthermore, despite necessary simplifying assumptions made for the data, the
∗These authors contributed equally. Alphabetical ordering used.
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analyses are rather intricate and appear highly specialized on the individual attention and data model. These
direct and highly specialized analyses present certain challenges. First, it remains uncertain whether they
can be encompassed within a broader framework that can potentially be extended to more complex attention
architectures and diverse data models. Second, they appear disconnected from existing frameworks that
have been flourishing in recent years for conventional fully-connected and convolutional neural networks e.g.,
(Jacot et al., 2018; Ji & Telgarsky, 2020; Richards & Rabbat, 2021; Liu et al., 2020; Taheri & Thrampoulidis,
2023). Consequently, it is also unclear how the introduction of attention alters the analysis landscape.

In this work, we study the optimization and generalization properties of multi-head attention mechanism
trained by gradient methods. Our approach specifically leverages the use of multiple attention heads. Despite
the operational differences between attention heads in an attention model and hidden nodes in an MLP,
we demonstrate, from an analysis perspective, that this parallelism enables the exploitation of frameworks
developed for the latter to study the former. Particularly for the generalization analysis, we leverage recent
advancements in the application of the algorithmic-stability framework to overparameterized MLPs (Richards
& Kuzborskij, 2021; Taheri & Thrampoulidis, 2023).

Contributions. We study training and generalization of gradient descent optimization for a multi-head
attention (MHA) layer with H heads in a binary classification setting. For this setting, detailed in Section 2,
we analyze training with logistic loss both the attention weights (parameterizing the softmax logits), as well
as, the linear decoder that turns output tokens to label prediction.

In Section 3, we characterize key properties of the empirical loss L̂, specifically establishing that it is
self-bounded and satisfies a key self-bounded weak-convexity property, i.e. λmin(∇2L̂(θ)) ≳ − κ√

H
L̂(θ) for

a parameter κ that depends only mildly on the parameter vector θ. Establishing these properties (and
also quantifying κ) involves carefully computing and bounding the gradient and Hessian of the MHA layer,
calculations that can be useful beyond the context of our paper.

In Sections 4.1-4.2, we present our training and generalization bounds in their most general form. The
bounds are given in terms of the empirical loss L̂(θ) and the distance ∥θ − θ0∥ to initialization θ0 of an
appropriately chosen target vector θ. The distance to initialization also controls the minimum number of
heads H ≳ ∥θ − θ0∥6 required for the bounds to hold. The choice of an appropriate parameter θ that makes
the bounds tight is generically specific to the data setting and the chosen initialization. To guide such a
choice, in Section 4.3, we formalize primitive and straightforward-to-check conditions on the initialization θ0
that ensure it is possible to find an appropriate θ. In short, provided the model output at initialization is
logarithmic on the train-set size n and the data are separable with respect to the neural-tangent kernel (NTK)
features of the MHA model with constant margin γ, then Corollary 2 shows that with step-size η = Õ(1) and
Θ(n) gradient descent steps, the train loss and generalization gap is bounded by Õ(1/n) provided only a
polylogarithmic number of heads H = Ω(log6(n)). We remark that the aforementioned NTK separability
assumption, although related to, differs from the standard NTK analysis. Besides, while this assumption is
sufficient to apply our general bounds, it is not a necessary condition.

In Section 5, we investigate a tokenized mixture data model with label-(ir)relevant tokens. We show that after
one randomized gradient step from zero initialization, the NTK features of the MHA model separate the data
with margin γ⋆. Thus, applying our general analysis from Section 4.1, we establish training and generalization
bounds as described above, for a logarithmic number of heads. Towards assessing the optimality of these
bounds, we demonstrate that MHA is expressive enough to achieve margin γattn that is superior to γ⋆. The
mechanism to reach γattn involves selecting key-query weights of sufficiently large norm, which saturates the
softmax nonlinearity by suppressing label-irrelevant tokens. We identify the large-norm requirement as a
potential bottleneck in selecting those weights as target parameters in our theory framework and discuss
open questions regarding extending the analytical framework into this specific regime.

The remaining parts are organised as follows. Proof sketches of our main training/generalization bounds are
given in Section 6. The paper concludes in Section 7 with remarks on our findings’ implications and open
questions. Detailed proofs are in the appendix, where we also present synthetic numerical experiments.

Related work. We give a brief overview of the most relevant works on understanding optimiza-
tion/generalization of self-Attention or its variants. Please see Section H for more detailed exposition.
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Oymak et al. (2023) diverges from traditional self-Attention by focusing on a variant called prompt-Attention,
aiming to gain understanding of prompt-tuning. Jelassi et al. (2022) shed light on how ViTs learn spatially
localized patterns using gradient-based methods. Li et al. (2023a) provides sample complexity bounds for
achieving zero generalization error on training three-layer ViTs for classification tasks for a similar tokenized
mixture data model as ours. Contemporaneous work Tian et al. (2023) presents SGD-dynamics of single-layer
attention for next-token prediction by re-parameterizing the original problem in terms of the softmax and
classification logit matrices, while Tarzanagh et al. (2023b;a) study the implicit bias of training the softmax
weights W with a fixed decoder U . All these works focus on a single attention head; instead, we leverage the
use of multiple heads to establish connections to the literature on GD training of overparameterized MLPs.
Conceptually, Hron et al. (2020) drew similar connections, linking multi-head attention to a Gaussian process
in the limit as the number of heads approaches infinity. In contrast, we study the more practical regime of
finite heads and obtain finite-time optimization and generalization bounds.

Among the extensive studies on training/generalization of overparameterized MLPs, our work closely aligns
with Nitanda et al. (2019); Ji & Telgarsky (2020); Cao & Gu (2019); Chen et al. (2020); Telgarsky (2022);
Taheri & Thrampoulidis (2023) focusing on classification with logistic loss. Conceptually, our findings extend
this research to attention models. The use of algorithmic-stability tools towards order-optimal generalization
bounds for overparameterized MLPs has been exploited recently by Richards & Kuzborskij (2021); Richards
& Rabbat (2021); Taheri & Thrampoulidis (2023); Lei et al. (2022). To adapt these tools to the MHA
layer, we critically utilize the smoothness of the softmax function and derive bounds on the growth of the
model’s gradient/Hessian, which establish a self-bounded weak convexity property for the empirical risk (see
Corollary 1). Our approach also involves training both the classifier and attention weights, necessitating
several technical adjustments detailed in Section 6 and Appendix B.1.

2 Preliminaries
Notation. φ(⋅) ∶ RT → RT denotes the softmax map and φ′(v) ∶= ∇φ(v) = diag(φ(v)) − φ(v)φ(v)⊺ its
gradient at v ∈ RT . For t ∈ [T ], φt(v) is the t-th entry of φ(v) ∈ RT . For A ∈ Rn×m, Ai,∶ is its i-th row
and A∶,j is its j-th column. Recall the induced matrix norm ∥A∥p,q =max∥v∥p=1 ∥Av∥q and particularly the
following: ∥A∥2,∞ =maxi∈[n]∥Ai,∶∥, ∥A∥1,2 =maxj∈[m]∥A∶,j∥, and ∥A∥1,∞ =maxj∈[m]∥A∶,j∥∞. For simplicity,
∥A∥, ∥v∥ denote Euclidean norms and λmin(A) the minimum eigenvalue. We let a ∧ b = min{a, b} and
a ∨ b =max{a, b}. concat denotes vector concatenation. All logarithms are natural logarithms (base e). We
represent the line segment between w1,w2 ∈ Rd

′
as [w1,w2] = {w ∶w = αw1 + (1 − α)w2, α ∈ [0,1]}. Finally,

to simplify the exposition we use “≳” or “≲” notation to hide absolute constants. We also occasionally use
standard notations O,Ω and Õ, Ω̃ to hide poly-log factors. Unless otherwise stated these order-wise notations
are with respect to the training-set size n. Whenever used, exact constants are specified in the appendix.

Single-head Self-attention. A single-layer self-attention head ATTN ∶ RT×d → RT×d with context size T
and dimension d parameterized by key, query and value matrices WQ,WK ∈ Rd×dh ,WV ∈ Rd×dv is given by:

ATTN(X; WQ,WK ,WV ) ∶= φ(XWQW ⊺
KX⊺)XWV .

Here, X = [x1,x2, . . . ,xT ]⊺ ∈ RT×d is the input token matrix and φ(XWQW ⊺
KX⊺) ∈ RT×T is the attention

matrix. (Softmax applied to a matrix acts row-wise.) To turn the Attention output in a prediction label, we
compose ATTN with a linear projection head (aka decoder). Thus, the model’s output is∗

Φ(X; W ,U) ∶= ⟨U ,φ(XW X⊺)X⟩ . (1)

Note that we absorb the value weight matrix WV into the projector U = [u1, . . . ,uT ]⊺ ∈ RT×d. Also, we
parameterize throughout the key-query product matrix as W ∶=WQW ⊺

K .
Multi-head Self-attention. Our focus is on the multi-head attention (MHA) model with H heads:

∑
h∈[H]

ATTN(X; WQh,WKh,WV h)WOh,

∗While we focus on (i) Full-projection: trainable matrix U ∈ RT×d, our results also apply to (ii) Pooling: U = u1⊺T with trainable
u ∈ Rd, and (iii) Last-token output: U = [0d×(T−1) u]

⊺ with trainable u ∈ Rd.
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for output matrices WOh ∈ Rdv×d. Absorbing WV hWOh into a projection layer (similar to the single-head
attention) and parameterizing Wh ∶=WQhWK

⊺
h we arrive at the following MHA model:

Φ̃(X; W̃ , Ũ) ∶= 1√
H
∑h∈[H]Φ(X; Wh,Uh) =

1√
H
∑h∈[H]⟨Uh,φ(XWhX⊺)X⟩ , (2)

parameterized by W̃ ∶= concat ({Wh}h∈[H]) and Ũ ∶= concat ({Uh}h∈[H]). The 1/
√
H scaling is analogous to

the normalization in MLP literature e.g. (Du et al., 2019; Ji & Telgarsky, 2021; Richards & Kuzborskij, 2021),
ensuring the model variance is of constant order when Uh is initialized OH(1). Note that these relaxations
sacrifice some generality since it is common practice to set dh and dv such that dv = d/H < d, thus imposing
low-rank restrictions on matrices WQhWK

⊺
h, WV hWOh. We defer a treatment of these to future work.

Throughout, we will use θh ∶= concat(Uh,Wh) ∈ RdT+d
2
, to denote the trainable parameters of the h-attention

head and θ̃ ∶= concat({θh}h∈[H]) ∈ RH(dT+d
2) for the trainable parameters of the overall model. More generally,

we use the convention of applying “ ⋅̃ ” notation for quantities relating to the multi-head model. Finally,
with some slight abuse of notation, we define: ∥θ̃∥2,∞ ∶=maxh∈[H] ∥θh∥.
Training. Given training set (Xi, yi)i∈[n], with n IID samples, we minimize logistic-loss based empirical risk

L̂(θ̃) ∶= 1
n
∑
i∈[n]

ℓ(yiΦ̃(Xi; θ̃)) ∶= 1
n
∑
i∈[n]

log(1 + e−yiΦ̃(Xi;θ̃)) .

Our analysis extends to any convex, smooth, Lipschitz and self-bounded loss.† The empirical risk is minimized
as an approximation of the test loss defined as L(θ̃) ∶= E(X,y)[ℓ(yΦ̃(X; θ̃))] . We consider standard gradient-
descent (GD) applied to empirical risk L̂. Formally, initialized at θ̃(0) and equipped with step-size η > 0, at
each iteration k ≥ 0, GD performs the following update:

θ̃(k+1) = θ̃(k) − η∇L̂(θ̃(k)) .

3 Gradient and Hessian bounds of soft-max attention

This section establishes bounds on the gradient and Hessian of the logistic empirical risk L̂(.) evaluated on the
multi-head attention model. To do this, we first derive bounds on the Euclidean norm and spectral-norm for the
gradient and Hessian of the self-attention model. In order to simplify notations, we state here the bounds for
the single-head model (see App. A.1 for multi-head model): Φ(X; θ) ∶= Φ(X; W ,U) = ⟨U ,φ(XW X⊺)X⟩ .
Lemma 1 (Gradient/Hessian formulas). For all a ∈ RT , b,c ∈ Rd the model’s gradients satisfy:

● ∇U Φ(X; θ) = φ(XW X⊺)X , and ∇W Φ(X; θ) =
T

∑
t=1

xtu
⊺
tX

⊺φ′(XW ⊺xt)X .

● ∇W ⟨a,∇U Φ(X; θ)b⟩ =
T

∑
t=1

xtatb
⊺X⊺φ′(XW ⊺xt)X , and

∇W ⟨c,∇W Φ(X; θ)b⟩ =
T

∑
t=1
(c⊺xt)xtd⊺ φ′(XW ⊺xt)X

where d ∶= diag(Xb)Xut −Xutb
⊺X⊺φ(XW ⊺xt) −Xbu⊺

tX
⊺φ(XW ⊺xt) .

These calculations imply the following useful bounds.

Proposition 1 (Model Gradient/Hessian bounds). The Euclidean norm of the gradient and the spectral
norm of the Hessian of the single-head Attention model (1) are bounded as follows:

● ∥∇θΦ(X; θ)∥ ≤ 2 ∥X∥22,∞
T

∑
t=1
∥Xut∥∞ +

√
T ∥X∥2,∞ .

● ∥∇2
θΦ(X; θ)∥ ≤ 6d ∥X∥22,∞ ∥X∥21,∞

T

∑
t=1
∥Xut∥∞ + 2

√
T d ∥X∥22,∞ ∥X∥1,∞ .

†A function ℓ ∶ R→ R is self-bounded if ∃ C > 0 such that ∣ℓ′(t)∣ ≤ Cℓ(t).
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Next, we focus on the empirical loss L̂. To derive bounds on its gradient and Hessian, we leverage the model’s
bounds from Proposition 1 and the fact that logistic loss is self-bounded, i.e., ∣ℓ′(t)∣ ≤ ℓ(t). To provide
concrete statements, we introduce first a mild boundedness assumption.

Assumption 1 (Bounded data). Data (X, y) ∈ RT×d × R satisfy the following conditions almost surely:
y ∈ {±1}, and for some R ≥ 1, it holds for all t ∈ [T ] that ∥xt∥ ≤ R.
Corollary 1 (Loss properties). Under Assumption 1, the objective’s gradient and Hessian satisfy the bounds:‡

(1) ∥∇L̂(θ̃)∥ ≤ β1(θ̃) L̂(θ̃) , β1(θ̃) ∶=
√
T R (2R2 ∥θ̃∥2,∞ + 1) .

(2) ∥∇2L̂(θ̃)∥ ≤ β2(θ̃) , β2(θ̃) ∶= 1√
H
β3(θ̃) + 1

4 β1(θ̃)2 .

(3) λmin(∇2L̂(θ̃)) ≥ −β3(θ̃)√
H
L̂(θ̃) β3(θ̃) ∶= 2

√
T dR3 (3

√
dR2 ∥θ̃∥2,∞ + 1) .

The loss properties above are crucial for the training and generalization analysis. Property (1) establishes
self-boundedness of the empirical loss, which is used to analyze stability of GD updates for generalization.
Property (2) is used to establish descent of gradient updates for appropriate choice of step-size η. Note that
the smoothness upper bound is θ̃-dependent, hence to show descent we need to also guarantee boundedness
of the updates. Finally, property (3) establishes a self-bounded weak-convexity property of the loss, which is
crucial to both the training and generalization analysis. Specifically, as the number of heads H increases, the
minimum eigenvalue becomes less negative, indicating an approach towards convex-like behavior.

4 Main results

In this section, we present our training and generalization bounds for multi-head attention.

4.1 Training bounds

We state our main result on train loss convergence in the following theorem. See App. B for exact constants
and the detailed proofs.
Theorem 1 (Training loss). Fix iteration horizon K ≥ 1 and any θ̃ ∈ RH(dT+d

2) and H satisfying
√
H ≳ dT 1/2R5∥θ̃∥2,∞∥θ̃ − θ̃(0)∥3. (3)

Fix step-size η ≤ 1 ∧ 1/ρ(θ̃) ∧ ∥θ̃−θ̃(0)∥2

KL̂(θ̃) ∧
∥θ̃−θ̃(0)∥2

L̂(θ̃(0)) , with ρ(θ̃) ≲ d3/2 T 3/2R13 ∥θ̃∥22,∞ ∥θ̃ − θ̃(0)∥2. Then, the
following bounds hold for the training loss and the weights’ norm at iteration K of GD:

L̂(θ̃(K)) ≤ 1
K

K

∑
k=1

L̂(θ̃k) ≤ 2L̂(θ̃) + 5∥θ̃ − θ̃(0)∥2
4ηK

, (4)

∥θ̃(K) − θ̃(0)∥ ≤ 4∥θ̃ − θ̃(0)∥.

Yielding a concrete train loss bound requires an appropriate set of target parameters θ̃ in the sense of
minimizing the bound in (4). Hence, θ̃ should simultaneously attain small loss (L̂(θ̃)) and distance to
initialization (∥θ̃ − θ̃(0)∥). This desiderata is formalized in Assumption 2 below. The distance to initialization,
as well as ∥θ̃∥2,∞, determine how many heads are required for our bounds to hold. Also, in view of the bound
in (4), it is reasonable that an appropriate choice for θ̃ attains L̂(θ̃) of same order as ∥θ̃ − θ̃(0)∥2/K. Hence,
the theorem’s restriction on the step-size is governed by the inverse local-smoothness of the loss: η ≲ 1/ρ(θ̃).

4.2 Generalization bounds

Next we bound the expected generalization gap. Expectations are with respect to (w.r.t) randomness of the
train set. See App. C for the detailed proof, which is based on algorithmic-stability.
‡In all the bounds in this paper involving ∥θ̃∥2,∞, it is possible to substitute this term with maxh∈[H] ∥Uh∥. However, for the
sake of notation simplicity, we opt for a slightly looser bound maxh∈[H] ∥Uh∥ ≤maxh∈[H] ∥θh∥ =∶ ∥θ̃∥2,∞.
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Theorem 2 (Generalization loss). Fix any K ≥ 1, any θ̃ and H satisfying (3), and any step-size η satisfying
the conditions of Thm. 1. Then the expected generalization gap at iteration K satisfies,

E[L(θ̃(K)) − L̂(θ̃(K))] ≤ 4
n

E[2K L̂(θ̃) + 9∥θ̃ − θ̃(0)∥2
4η

] . (5)

The condition on the number of heads is same up to constants to the corresponding condition in Theorem 1.
Also, the generalization-gap bound translates to test-loss bound by combining with Thm. 1. Finally, similar
to Thm. 1, we can get concrete bounds under the realizability assumption; see Cor. 4 in App. C.2. For the
generalization analysis, we require that the realizability assumption holds almost surely over all training sets
sampled from the data distribution.

The bounds on optimization and generalization are up to constants same as analogous bounds for logistic
regression (Soudry et al., 2018; Ji & Telgarsky, 2018; Shamir, 2021). Yet, for these bounds to be valid, we
require sufficiently large number of heads as well as the existence of an appropriate set of target parameters
θ̃, as stated in the conditions of theorem. Namely, these conditions are related to the realizability condition,
which guarantees small training error near initialization. The next assumption formalizes these conditions.
Assumption 2 (Realizability). There exist non-increasing functions g ∶ R+ → R+ and g0 ∶ R+ → R+ such
that ∀ϵ > 0, there exists model parameters θ̃(ϵ) ∈ RH(dT+d

2) for which: (i) the empirical loss over n data
samples satisfies L̂(θ̃(ε)) ≤ ε, (ii) ∥θ̃(ε) − θ̃(0)∥ ≤ g0(ε), and, (iii) ∥θ̃(ε)∥2,∞ ≤ g(ε).

With this assumption, we can specialize the result of Thms. above to specific data settings; see Cor. 3 and 4
in App. B.5 and C.2. In the next section we will further show how the realizability assumption is satisfied.

4.3 Primitive conditions for checking realizability

Here, we introduce a set of more primitive and straightforward-to-check conditions on the data and initialization
that ensure the realizability Assumption 2 holds.

Definition 1 (Good initialization). We say θ̃(0) = concat(θ(0)1 , . . . ,θ
(0)
H ) is a good initialization with respect

to training data (Xi, yi)i∈[n] provided the following three properties hold.
P1. Parameter L2,∞-bound: There exists parameter B2 ≥ 1 such that ∀h ∈ [H] it holds ∥θ(0)h ∥2 ≤ B2 .

P2. Model bound: There exists parameter BΦ ≥ 1 such that ∀i ∈ [n] it holds ∣Φ̃(Xi; θ̃(0))∣ ≤ BΦ.
P3. NTK separability: There exists θ̃⋆ ∈ RH(dT+d

2) and γ > 0 such that ∥θ̃⋆∥ =
√

2 and ∀i ∈ [n], it holds
yi ⟨∇Φ̃ (Xi; θ̃(0)) , θ̃⋆⟩ ≥ γ.

Prop. 7 in the appendix shows that starting from a good initialization we can always find θ̃(ϵ) satisfying the
realizability Assumption 2 provided large enough number of heads. Thus, given good initialization, we can
immediately apply Theorems 1 and 2 to get the following concrete bounds.
Corollary 2 (General bounds under good initialization). Suppose good initialization θ̃(0) and let

√
H ≳ dT 1/2R5B2

2 (g0(1/K))
3
, where g0(

1
K
) = 2BΦ + log(K)

γ
.

Further fix step-size η ≤ 1 ∧ 1/ρ(K) ∧ 4B2
Φ

γ2 log(1+eBΦ) with ρ(K) ≳ d3/2 T 3/2R13 g0( 1
K
)4. Then, it holds that

L̂(θ̃(K)) ≤ 2
K
+ 5 (2BΦ + log(K))2

4γ2 ηK
, and E[L(θ̃(K)) − L̂(θ̃(K))] ≤ 17 (2BΦ + log(K))2

γ2 η n
.

Consider training loss after K GD steps: Assuming BΦ = ÕK(1) and γ = OK(1), then choosing η = ÕK(1),
the corollary guarantees train loss is ÕK( 1

K
) provided polylogarithmic number of heads H = Ω(log6(K)).

Moreover, after K ≈ n GD steps the expected test loss is O(1/n).
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Remark 1. The last two conditions (P2 and P3) for good initialization are similar to the conditions needed
in (Taheri & Thrampoulidis, 2023; Ji & Telgarsky, 2020; Nitanda et al., 2019) for analysis of two-layer MLPs.
Compared to (Ji & Telgarsky, 2020; Nitanda et al., 2019) which assume random Gaussian initialization
θ̃(0), and similar to (Taheri & Thrampoulidis, 2023) the NTK separability assumption (P3) can potentially
accommodate deterministic θ̃(0). Condition (P1) appears because we allow training both layers of the model.
Specifically the L2,∞ norm originates from the Hessian bounds in Corollary 1.

5 Application to tokenized-mixture model

We now demonstrate through an example how our results apply to specific data models.

Data model: An example. Consider M +2 distinct patterns {µ+,µ−,ν1,ν2, ...,νM}, where discriminative
patterns µ± correspond to labels y = ±1. The tokens are split into (i) a label-relevant set (R) and (ii) a
label-irrelevant set (Rc ∶= [T ]/R). Conditioned on the label and R, the tokens xt, t ∈ [T ] are IID as follows

xt∣y =
⎧⎪⎪⎨⎪⎪⎩

µy , t ∈R
νjt + zt , jt ∼ Unif(1, ...,M) and t ∈Rc,

(DM1)

where zt are noise vectors. Let D denote the joint distribution induced by the described (X, y) pairs.
Assumption 3. The labels are equi-probable and we further assume the following:
● Orthogonal, equal-energy means: All patterns are orthogonal to each other, i.e. µ+ ⊥ µ− ⊥ νℓ ⊥
νℓ′ , ∀ ℓ, ℓ′ ∈ [M]. Also, for all y ∈ {±1}, ℓ ∈ [M] that ∥µy∥ = ∥νℓ∥ = S, where S denotes the signal strength.
● Sparsity level: The number of label-relevant tokens is ∣R∣ = ζT ; for sparsity level ζ ∈ (0,1).
● Noise distribution: The noise tokens zt are sampled from a distribution Dz, such that it holds almost
surely for zt ∼ Dz that ∣⟨zt,µy⟩∣ ≤ Zµ, y ∈ {±1} and ∣⟨zt,νℓ⟩∣ ≤ Zν/M, ∀ ℓ ∈ [M] . Moreover, ∥zt∥ ≤ Z . Overall,
Assumption 1 is satisfied with R =

√
S2 +Z2 + 2Zν/M .

The above assumptions can be relaxed, but without contributing new insights. We have chosen to present a
model that is representative and transparent in its analysis.

5.1 Finding a good initialization

To apply the general Corollary 2 to the specific data model DM1, it suffices to find good initialization. While
we cannot directly show that θ̃(0) = 0 is good, we can show this is the case for first step of gradient descent
θ̃(1). Thus, we consider training in two phases as follows.

First phase: One step of GD as initialization. We use n1 training samples to update the model
parameters by running one-step of gradient descent starting from zero initialization. Specifically,

(U (1)h ,W
(1)
h ) = θ

(1)
h = θ

(0)
h − αh

√
H ⋅ ∇θh

L̂n1(θ
(0)
h ), where θ

(0)
h = 0 ∀ h ∈ [H].

Here, αh denotes the step-size for head h ∈ [H] and the scaling by
√
H guarantees the update of each head

is O (1). The lemma below shows that at the end of this phase, we have ∥U (1)h − ζαh

2 1Tu⊺
⋆∥F = O(1/

√
n1) ,

where u⋆ is the oracle classifier u⋆ = µ+ −µ−. On the other hand, the attention weight-matrix does not get
updated; the interesting aspect of the training lies in the second phase, which involves updating W .

Lemma 2 (First phase). After the first-gradient step as described above, we have U
(1)
h = αh 1T ( ζ2 u⊺

⋆ + p⊺)
and W

(1)
h = 0. where with probability at least 1 − δ ∈ (0,1) over the randomness of labels there exists positive

universal constant C > 0 such that

∥p∥ ≤ C (2S +Z) (
√

d

n1
+
√

log(1/δ)
n1

) =∶ P . (6)

7
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Second phase: GD with constant step size. During the second phase, K gradient steps are performed
on n new samples (distinct from those used in the first phase). Concretely, θ̃(k+1) = θ̃(k)−η ⋅∇θ̃L̂n(θ̃(k)), k =
1, . . . ,K , with θ̃(1) = concat ({θ(1)h }h∈[H]) the step obtained by the first-phase update and η the step-size of
the second phase. In order to analyze the second phase, during which both W̃ and Ũ get updated, we employ
the general results of Section 4. To do so, we show that θ̃(1) serves as good initialization as per Definition 1.
Proposition 2. Consider the first-phase iterate {θ(1)h }h∈[H] and condition on the event ∥p∥ ≤ P (depending
only on the data randomness in the first phase) of Lemma 2. Suppose the step-size of the first phase is chosen
IID αh ∼ Unif(±1), h ∈ [H]. Then, the initialization θ̃(1) = concat (θ(1)1 , . . . ,θ

(1)
H ) is good with respect to data

sampled from DM1 and satisfying Assumption 3. Specifically, the three desired properties hold as follows.
● Almost surely, P1 holds with B2 =

√
T (S + P ) .

● With probability 1 − δ ∈ (0,1), P2 holds with BΦ = TR(S + P )
√

2 log(n/δ) .
● Suppose

√
H ≳ R4T (S+P )

γ⋆
⋅
√

2 log(n/δ) . Then, with probability 1 − δ ∈ (0,1), P3 holds with γ = γ⋆/2 where

γ⋆ ∶=
T (1 − ζ)ζ(ζS4 − 7Z̄S2 − 12Z̄2 − 16 Z̄

3

S2 )
4
√

2(M + 1)
− PT 5/2(S +Z)3 +

S
√
T(ζ − 2(1 − ζ)Zµ

S2 )
√

2
, (7)

and Z̄ ∶= Zµ ∨ Zν . The randomness is with respect to the sampling of αh, h ∈ [H].

The parameter γ⋆ in (7) represents the NTK margin of the model at initialization θ̃(1). By Corollary 2, larger
margin translates to better train/generalization bounds and smaller requirements on the number of heads.
For a concrete example, suppose T ∨ M = O (1) and Z ∨ Z̄ = O (S). Then, provided first-phase sample
size n1 ≳ S2d so that P = O (1), it holds γ⋆ = γlin +Ω(ζ2(1 − ζ)S4), where γlin = Ω(ζS) is the margin of a
linear model for the same dataset (see App. F). Overall, applying Cor. 2 for K = n and a polylogarithmic
polylog(n) number of heads leads to Õ ( 1

ηγ2⋆n
) train loss and expected generalization gap.

5.2 Proof sketch of P3: NTK separability

It is instructive to see how P3 follows as it sheds light on the choice of an appropriate target parameter θ̃ as
per Thms. 1 and 2. We choose

W⋆ = µ+µ⊺
+ +µ−µ⊺

− + ∑
ℓ∈[M]

νℓ(µ+ +µ−)⊺ and U⋆ = 1Tu⊺
⋆ = 1T (µ+ −µ−)⊺ ,

and normalize parameters such that θ⋆ ∶= (U⋆ = 1
∥U⋆∥F U⋆ , sign(α)W ⋆ = sign(α) 1

∥W⋆∥F W⋆) . It is easy to
see that U⋆ is the optimal classifier for the label-relevant tokens. To gain intuition on the choice of W⋆, note
that W⋆ =WK,⋆W ⊺

Q,⋆, with key-query matrices chosen as WK,⋆ = [µ+ µ− ν1 ⋯ νM ] ∈ Rd×(M+2) and
WQ,⋆ = [µ+ µ− µ+ +µ− ⋯ µ+ +µ−] ∈ Rd×(M+2). With these choices, the relevance scores (aka softmax
logits) of relevant tokens turn out to be strictly larger compared to the irrelevant tokens. Concretely, we show
in App. D.2.3 that the t-th row rt(X; W⋆) =XW ⊺

⋆ xt of the softmax-logit matrix satisfies the following:

∀t ∶ [rt]t′ =
⎧⎪⎪⎨⎪⎪⎩

O (S4) , t′ ∈R ,
O (S2) , t′ ∈Rc .

(8)

Thus, under this parameter choice, softmax can attend to label-relevant tokens and supresses noisy irrelevant
tokens. In turn, this increases the signal-to-noise ratio for classification using U⋆.

We now show how to compute Eθ(1) y⟨∇θΦ(X; θ(1)),θ⋆⟩ for a single head. Recall θ⋆ consists of U⋆, W ⋆. First,
since W (1) = 0, using Assumption 3, a simple calculation shows y ⟨∇U Φ(X; θ(1)),U⋆⟩ ≥ S

√
T√

2 (ζ−2(1−ζ)Zµ

S2 ).
Second, to compute Eα∼Unif(±1)y⟨∇W Φ (X; θ(1)) ,sign(α)W ⋆⟩ it follows from Lemma 1 that

∇W Φ(X; θ(1)) = αζ
2 ∑

t∈[T ]
xtu

⊺
⋆X⊺φ′(0)X + α ∑

t∈[T ]
xtp

⊺X⊺φ′(0)X .

8
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Note the first term is dominant here since the second term can be controlled by making ∥p∥2 small as per
Lemma 2. Thus, ignoring here the second term (see Appendix D.2.3 for full calculation) y⟨∇W Φ(X; θ(1)),W⋆⟩
is governed by the following term: αζ

2 ∑t∈[T ] yu⊺
⋆X⊺φ′(0)XW ⊺

⋆ xt = αζ
2 ∑t∈[T ] yu⊺

⋆X⊺φ′(0)rt . Note that
φ′(0) = I − 1

T
1T1

⊺
T . To simplify the exposition here, let us focus on the identity component and leave

treatment of the the rank-one term to the detailed proof. The corresponding term then becomes

αζ

2 ∑
t∈[T ]

∑
t′∈[T ]

(yu⊺
⋆xt′)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
class. logits

⋅ ([rt]t′)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

softmax logits

,

which involves for each output token t, the sum of products over all tokens t′ ∈ [T ] of softmax logits (i.e.
relevant scores [rt]t′) and corresponding classification logits (i.e. yu⊺

⋆xt′). Note that by choice of u⋆ and
W⋆, both the classification and softmax logits are large from label-relevant tokens, while being small for noise
tokens. Intuitively, this allows for a positive margin γ⋆ as stated in Proposition 2. We defer the detailed
calculations to Appendix D.2.3.

In the appendix, we also detail how to yield the computation for the MHA, which builds on the calculations
for the single-head attention model above. In short, we simply choose multi-head parameter θ̃⋆ as θ̃⋆ =

1√
H

concat (θ⋆(θ(1)1 ), . . . ,θ⋆(θ
(1)
H )) . This guarantees that ∥θ̃⋆∥ =

√
2 and maintains the multi-head NTK

margin be at least γ⋆ in expectation. To complete the proof, it remains to get a high-probability version of
this bound. To do this, notice that θ

(1)
h are IID, hence we can apply Hoeffding’s inequality, which finally

gives the desired bound on the NTK margin provided sufficient number of heads H, which controls the degree
of concentration when applying Hoeffding’s inequality. See Lemmas 14 and 15 for details.

5.3 Is the NTK margin optimal?

Below, we discuss the optimality of the NTK margin γ⋆. First, define set of parameters θopt ∶= (Uopt,Wopt):

Uopt ∶=
1

S
√

2T
U⋆ and Wopt ∶=

1
S2
√

2(M + 1)
W⋆ , (9)

normalized so that ∥θopt∥F =
√

2. Recall here the definitions of U⋆,W⋆ in the section above. As we already
explained above, this choice of parameters guarantees that relevant tokens are assigned larger relevance and
classification scores compared to irrelevant ones. Specifically about W⋆, we saw in Eq. (8) that it ensures a
gap of O(S2) between relevance scores of label-relevant and label-irrelevant tokens. Thanks to this gap, it is
possible for softmax to fully attend to the label-relevant tokens by saturating the softmax. To do this, it
suffices to scale-up W⋆ by an amount ∝ 1/S2. This is formalized in the proposition below.
Proposition 3 (Attention expressivity for tokenized mixture model). Consider single-head attention
model. Suppose the noise level is such that Zµ = Zν ≤ S2/8. For any ϵ > 0, consider Γϵ satisfying
Γϵ ≥ 8

√
2(M+1)
3S2 log ( ζ

−1−1
ϵ
) . Then, the attention scores corresponding to weights Γϵ ⋅Wopt satisfy

∀t ∈ [T ] ∶ 0 ≤ 1 − ∑
t′∈R

φt′(x⊺
t ΓϵWopt XT ) = ∑

t′∈Rc

φt′(x⊺
t ΓϵWopt XT ) ≤ ϵ . (10)

Thus, almost surely over data (X, y) generated from data model DM1 the margin of single-head attention
with parameters (Uopt,Γϵ ⋅Wopt) satisfies

yΦ(X; Uopt,Γϵ ⋅Wopt) ≥ γattn ∶= γattn(ϵ) ∶=
√
T√
2S
(S2(1 − ϵ) − 2ϵZµ) . (11)

From Eq. (10), note that as ϵ → 0 and Γϵ →∞, the softmax map saturates, i.e. it approaches a hard-max
map that attends only to the label-relevant tokens (R) and suppress the rest (Rc). As a consequence of
this, Eq. (11) shows that the achieved margin approaches γattn ∶= S

√
T /
√

2. Note this is independent of the
sparsity level ζ. In particular, γattn ≥ γ⋆ ≥ γlin and the gap increases with decreasing sparsity. See appendix
for experiments and discussion regarding the margin achieved by GD for data model DM1.

9
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Following Proposition 3, a natural question arises: Is it possible to choose “good” parameters θ̃ = (Ũ ,W̃ )
based on the set of optimal parameters θopt? This would then yield train-loss and expected generalization-gap
bounds Õ (1/(ηγ2

attnn)) after Θ(n) steps of GD starting at θ̃(0) = 0. To investigate this question, define the
following parameters for each head, aligning with the aforementioned “good” directions of Proposition 3:

Uh ∶=
log(n)
γattn

1
H1/2 Uopt, Wh ∶=

C

Hp
Wopt ,

for some C > 0, p > 0, and∀h ∈ [H]. To yield the margin γattn of (10), we need that each Wh has norm at
least Γϵ ∝ 1/S2. Thus, we need ∥Wh∥ ≳ 1

S2 Ô⇒ S2 ≳ 1
C
⋅Hp . Now, in order to apply Thms. 1 and 2, the

requirement on the number of heads H in terms of distance of θ̃ to θ̃(0) = 0 yields the following condition:

H1/2 ≳ S5∥θ̃∥3 . (12)

Note that ∥Ũ∥ = log(n)
γattn

≈ log(n)
S

, ∥W̃ ∥ = C ⋅H1/2−p. Hence, in computing ∥θ̃∥, we distinguish two cases.
First, assume that ∥W̃ ∥ ≥ ∥Ũ∥ which implies that S ≳ log(n)

C
⋅Hp−1/2 and ∥θ̃∥ ≳ ∥W̃ ∥ ∨ ∥Ũ∥ = C ⋅H1/2−p. Since

S ≳ 1
C1/2 ⋅H

p/2 ∨ log(n)
C

⋅Hp−1/2 ,

by using Eq. (12), we get the following conditions on H:

H1/2 ≳ S5 ⋅C3 ⋅H3/2−3p ≳ C1/2 ⋅H3/2−p/2 ∨ log5(n)
C2 ⋅H2p−1 Ô⇒ Hp−2 ≳ C and Hp−1/4 ≲ C

log5/2(n)
.

Combining these two gives C ≲ C
log5/2(n) Ô⇒ log(n) ≲ 1 , a contradiction since n > 1. Thus, there are no

possible choices for p and C that satisfy both conditions. The case ∥W̃ ∥ ≤ ∥Ũ∥ can be treated similarly
leading to the same conclusion; thus, is omitted for brevity.

Intuitively, this contradiction arises because of the large ∥Wh∥ requirement to achieve margin γattn. Finally,
one can ask if it is possible to resolve the contradiction by changing the scaling of normalization with respect
to H in the MHA model Eq. (2), from 1/H1/2 to 1/Hc for c > 0. It can be shown via the same argument
that no such value of c exists for which θ̃ constructed above satisfies the overparameterization requirement
Hc ≳ S5∥θ̃∥3. We thus conclude that the construction of weights in Proposition 3 does not yield a target
parameter that simultaneously achieves low empirical loss and allows choosing H large enough as per (3).
This triggers interesting questions for future research: Does GD converge to weights attaining margin γattn
as in Proposition 3? If so, under what conditions on initialization? See also the remarks in Section 7.

6 Proof Sketch of Section 4

Throughout this section we drop the ⋅̃ in θ̃ and Φ̃(Xi; θ̃) as everything refers to the full model. Moreover,
θ̃(K) and θ̃(0) are denoted by θK and θ0. Refer to Figure 1 in the App. for a summary of the sketch.

6.1 Training analysis

The proof begins by showing step-wise descent for any iteration k ≥ 0 of GD (see Lemma 7), where step-size
at each iteration ηk ≤ 1

ρk
depends on the objective’s local smoothness parameters ρk = β2(θk) ∨ β2(θk+1):

L̂(θk+1) ≤ L̂(θk) −
ηk
2
∥∇L̂ (θk)∥

2
. (13)

Now, using Taylor’s theorem we can link L̂(θk) to L̂(θ) for any θ as follows:

L̂(θ) ≥ L̂(θk) + ⟨∇L̂(θk),θ − θk⟩ +
1
2

min
θkα

λmin (∇2L̂(θkα)) ∥θ − θk∥2, (14)

10
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where θkα ∶= αθk + (1 − α)θ, α ∈ [0,1]. We can plug this into (13) to relate the loss at iterates θk and θk+1.
To continue, we need to lower bound minθkα

λmin (∇2L̂(θkα)). For this, we use the following property of
the loss objective from Corollary 1: ∀θ ∶ λmin (∇2L̂(θ)) ≥ −κ(θ) ⋅ L̂(θ), where κ(θ) ∶= β3(θ)√

H
. Note from the

definition of β3(⋅) that ∀θ1,θ2 ∶ maxθ∈[θ1,θ2] β3(θ) = β3(θ1) ∨ β3(θ2) . Thus, the above property of the loss
implies the following local self-bounded weak convexity property on the line [θ1,θ2] for arbitrary points θ1,θ2:

∀θ1,θ2 ∶ min
θ∈[θ1,θ2]

λmin (∇2L̂(θ)) ≥ −β3(θ1) ∨ β3(θ2)√
H

⋅ max
θ∈[θ1,θ2]

L̂(θ) . (15)

Therefore, using Eq. (15) in Eq. (14), we can get:

L̂(θ) ≥ L̂(θk) + ⟨∇L̂(θk),θ − θk⟩ −
1
2
β3(θ1) ∨ β3(θ2)√

H
⋅ max
α∈[0,1]

L̂(θkα) ∥θ − θk∥2 . (16)

To apply the Descent Lemma in (13), we need to fix a step-size such that satisfies the condition of the Lemma
at each iteration η ≤ ηk for all k < K. Then, combining with Eq. (16) and applying standard telescope
summation, we arrive at the following:

1
K

K

∑
k=1

L̂(θk) ≤ L̂(θ) +
∥θ − θ0∥2

2ηK
+ 1

2K

K−1
∑
k=0

β3(θ) ∨ β3(θk)√
H

⋅ max
α∈[0,1]

L̂(θkα)∥θ − θk∥2 . (17)

Next, we use the following generalized local quasi-convexity (GLQC) of the loss function.
Proposition 4 (GLQC property: Slight variation of Prop. 8 of Taheri & Thrampoulidis (2023)). Let θ1 and
θ2 be two points that are sufficiently close to each other, such that

2 (β3(θ1) ∨ β3(θ2)) ∥θ1 − θ2∥2 ≤
√
H . (18)

Then, maxθ∈[θ1,θ2] L̂(θ) ≤ 4
3 (L̂(θ1) ∨ L̂(θ2)) .

Using Proposition 4 in Eq. (17) and assuming sufficiently large heads H such that
√
H ≥

2 (β3(θ) ∨ β3(θk)) ∥θ − θk∥2, we can get the advertised regret bound in (4).

In order to remove the dependence of H on iteration k, by an induction argument we can show bounded
iterates-norm i.e. ∥θk − θ∥ ≤ 3∥θ − θ0∥ (see Lemma 10). Using this and the definition of β3(⋅) we can
control β3(θ) ∨ β3(θk) as (β3(θ) ∨ β3(θk)) ≲ ∥θ − θ0∥ + ∥θ∥2,∞ to get the desired requirement of heads√
H ≳ ∥θ∥2,∞∥θ − θ0∥3 stated in Eq. (3).

The remaining piece to guarantee descent at each step is establishing a ρ(θ) such that ρk ≤ ρ(θ) for
all k < K. To do this, we recall that ρk = β2(θk) ∨ β2(θk+1). By definition of β2(⋅) in Corollary 1,
we can control β2(θk) ∨ β2(θk+1) with controlling ∥θk∥2,∞ ∨ ∥θk+1∥2,∞ as (∥θk∥2,∞ ∨ ∥θk+1∥2,∞) ≲ ∥θ −
θk∥ + ∥θ∥2,∞ + 1. Using iterates-norm bound and setting ρ(θ) = ( 2

√
T dR3
√
H

+ T R2

4 )α(θ)
2 with α(θ) ∶=

3
√
dR2 [3

√
T R3 (3 ∥θ − θ0∥ + ∥θ∥2,∞) + 2

√
T R], satisfies the desired condition for the Descent Lemma

completing the proof.

6.2 Generalization analysis

In order to bound the expected generalization gap, we leverage the algorithmic stability framework. To begin,
consider the leave-one-out (loo) training loss L̂¬i(θ) ∶= 1

n ∑j≠i ℓj(θ) for i ∈ [n], where ℓj(θ) ∶= ℓ(yjΦ(Xj ; θ))
denotes the j-th sample loss. With these, define the loo model updates of GD on the loo loss for η > 0:

θ¬ik+1 ∶= θ¬ik − η∇L̂¬i(θ¬ik ), k ≥ 0, θ¬i0 = θ0 .

The following lemma relates expected generalization loss to average model stability for any G-Lipschitz loss.
Lemma 3 (Lei & Ying (2020), Thm. 2). For G-Lipschitz loss and for all iterates K, it holds that
E[L(θK) − L̂(θK)] ≤ 2G ⋅ E[ 1

n ∑
n
i=1 ∥θK − θ¬iK ∥] .

11
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To bound the average model-stability on the r.h.s of the lemma’s inequality, we use GD expansiveness.
Specifically applying (Taheri & Thrampoulidis, 2023, Lemma B.1.) to our setting, gives ∀θ, θ′:

∥(θ − η∇L̂(θ)) − (θ′ − η∇L̂(θ′))∥ ≤ max
α∈[0,1]

{(1 + ηβ3(θα)√
H

L̂(θα)) ∨ ηβ2(θα)}∥θ − θ′∥ , (19)

where, θα = αθ + (1 − α)θ′, α ∈ [0,1]. Using this and gradient self-boundedness from Corollary 1, we get:

∥θk+1 − θ¬ik+1∥ ≤ max
α∈[0,1]

{(1 +
ηβ3(θ¬ikα

)
√
H

L̂¬i(θ¬ikα
)) ∨ ηβ2(θ¬ikα

)} ⋅ ∥θk − θ¬ik ∥ +
ηβ1(θk)

n
ℓi (θk) , (20)

where θ¬ikα
∶= αθk + (1 − α)θ¬ik for α ∈ [0,1]. Further using the bounded iterates-norm property from the

training analysis, we can control β2(θ¬ikα
) ≤ β̃2(θ) and β3(θ¬ikα

) ≤ β̃3(θ) making them independent of k (See
Lemma 11 for the definitions of β̃2(⋅), β̃3(⋅)). In order to invoke the Descent Lemma, we set the step-size
same as in the training analysis. Thus, (20) becomes:

∥θk+1 − θ¬ik+1∥ ≤ ((1 +
ηβ̃3(θ)√

H
) max
α∈[0,1]

L̂¬i(θ¬ikα
)) ∥θk − θ¬ik ∥ +

ηβ1(θk)
n

ℓi (θk) . (21)

As in the training analysis, we can control the loo empirical loss L̂¬i for any point on the line [θk,θ¬ik ] of two
sufficiently close points satisfying

√
H ≥ 2 (β3(θk) ∨ β3(θ¬ik )) ∥θk − θ¬ik ∥2. Using Prop. 4, Eq. (21) becomes

∥θk+1 − θ¬ik+1∥ ≤ (1 + αk,i) ∥θk − θ¬ik ∥ +
ηβ̃1(θ)
n

ℓi (θk) , (22)

where αk,i ∶= 4ηβ̃3(θ)
3
√
H
(L̂¬i(θk) + L̂¬i(θ¬ik )) and β1(θk) ≤ β̃1(θ) similar to β2(⋅), β3(⋅) using bounded iterates-

norm. Unrolling the iterates in (22), summing over i ∈ [n] and using training regret bounds, we have the
following average model stability bound for any iterate K: 1

n ∑
n
i=1 ∥θK − θ¬iK ∥ ≤

2ηβ̃1(θ)
n
(2KL̂(θ) + 9∥θ−θ0∥2

4η ) ,
Combining this with an application of Lemma 3 for our objective, which is G ≤ β̃1(θ)-Lipschitz from Corollary
1, and using η ≤ 1

ρ(θ) ≤
1

(β̃1(θ))2
, we get the desired generalization gap stated in Thm. 2.

7 Concluding remarks

We studied convergence and generalization of GD for training a multi-head attention layer in a classification
task. Our training and generalization bounds hold under an appropriate realizability condition asking for the
existence of an a target model θ̃ achieving good train loss while being sufficiently close to initialization. In
particular, from the condition on the number of heads H in (3), we need θ̃ is at most Õ (d−1/3T −1/6R−5/3H1/6)
far from initialization (provided ∥θ̃∥2,∞ = O (1)). In Sec. 4.3 we showed that such a model exists if the
initialization is chosen appropriately. Specifically it suffices that ∥θ̃(0)∥2,∞ = O (1), the model output at
initialization is Õ (1)-bounded and that the data are linearly separable with margin γ with respect to the
NTK features of the model at initialization. Then, O (d2TR10 polylog(n)/γ6) number of heads guarantee
that Θ(n) GD steps result in train and test loss bounds Õ (1/(ηγ2n)). In Sec. 5 we applied our results to a
tokenized-mixture model. We showed that after one randomized gradient step from 0, the model satisfies the
above conditions for good intialization. For this initialization, we computed the NTK margin γ⋆ which in
turn governs the guaranteed rate of convergence and generalization based on our general bounds. This opens
several interesting questions for future work.

First, does random initialization of attention weights satisfy NTK separability, and if so, what is the
corresponding margin? Second, are there other initialization strategies that guarantee the realizability
conditions are satisfied? Here, note that our conditions for good initialization are only shown to be sufficient
for realizability leaving room for improvements. Third, how suboptimal is the best NTK margin (among other
potential natural initializations) compared to the model’s global margin arg max∥θ̃∥=√2 mini∈[n] yiΦ̃(Xi; θ̃)?
In Proposition 3 we showed for the data model DM1 that there exists single-head attention model θopt =

12
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(Uopt,Wopt) with ∥θopt∥ =
√

2 such that yΦ(X; Uopt,Γϵ ⋅Wopt) = S
√
T√
2 ((1 − ϵ) − 2ϵZµ/S) for all Γϵ ≳

log((ζ−1−1)/ϵ)
S

and any ϵ ∈ (0,1) (see App. E). In particular, as ϵ → 0 and Γϵ → ∞ (for which the softmax
map gets saturated and attends to tokens with highest relevance score) the achieved margin approaches
γattn ∶= S

√
T /
√

2, which is independent of the sparsity level ζ. In particular, γattn ≥ γ⋆ ≥ γlin and the gap
increases with decreasing sparsity. Is it possible to establish finite-time convergence bounds to models with
margin ≈ γattn under appropriate initialization? How is the answer affected by the fact that the optimal
attention weights in this case are diverging in norm (Γϵ →∞)? Using our approach, we argued in Sec. 5.3 that
the key challenge is the saturation of norm of Wopt (Γϵ), which does not allow the appropriate realizability
condition to hold (at least for 0 initialization). Finally, it is interesting to consider other data models for
which multiple heads are necessary to interpolate the data.
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A Gradients and Hessian Calculations

We define the following for convenience

L̂′(θ) = 1
n
∑
i∈[n]
∣ℓ′(yiΦ(Xi,θ))∣ , and L̂′′(θ) = 1

n
∑
i∈[n]
∣ℓ′′(yiΦ(Xi,θ))∣ .
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For logistic loss ℓ(z) ∶= log(1 + e−z):

L̂′(θ) ≤ L̂(θ) ≤ 1 , and L̂′′(θ) ≤ 1
4
. (24)

We use A⃗ to denote the the vectorization of a matrix A and ⊙ to denote the Hadamard product. Finally, we
define e(n)i as the i-th standard basis vector in Rn.

A.1 Gradient/Hessian calculations for multihead-attention

Lemma 4. Let the softmax attention model Φ(X; θ) in Eq. (1). Then, for all vectors a ∈ RT and b,c ∈ Rd it
holds:

1. ∇U Φ(X; θ) = φ(XW X⊺)X .

2. ∇W Φ(X; θ) =
T

∑
t=1

xtu
⊺
tX

⊺φ′(XW ⊺xt)X .

3. ∇W ⟨a,∇U Φ(X; θ)b⟩ =
T

∑
t=1

xtatb
⊺X⊺φ′(XW ⊺xt)X .

4. ∇W ⟨c,∇W Φ(X; θ)b⟩ =
T

∑
t=1

c⊺xt xt(u⊺
tX

⊺ diag(Xb) −φ(XW ⊺xt)⊺Xb (Xut)⊺

−φ(XW ⊺xt)⊺Xut (Xb)⊺)φ′(XW ⊺xt)X .

Proof. For simplicity, we denote G ∶=XW X⊺ and the rows of φ(G) as φ(gt) = φ(XW ⊺xt), t ∈ [T ]. Recall,
for any v ∈ Rd,

φ′(d) = ∇vφ(v) = diag(φ(v)) −φ(v)φ(v)⊺ , (25)

i.e.,

φ(v + δ) = φ(v) + (diag(φ(v)) −φ(v)φ(v)⊺)δ + o(∥δ∥2) . (26)

We start with the gradient with respect to U ,

∇U Φ(X; θ) = φ(G)X . (27)

Next step is to compute the gradient with respect to W , ∇W Φ(X; θ) = ∑Tt=1∇W (u⊺
tX

⊺φ(gt)) . Using Eq.
(26),

u⊺
tX

⊺φ(X(W +∆)⊺xt) = u⊺
tX

⊺ (φ(gt) + (diag(φ(gt)) −φ(gt)φ(gt)⊺)X∆⊺xt) + o(∥∆∥2)
= u⊺

tX
⊺φ(gt) + tr(xtu⊺

tX
⊺φ′(XW ⊺xt)X∆⊺) + o(∥∆∥2) .

Thus,

∇W (u⊺
tX

⊺φ(gt)) = xtu
⊺
tX

⊺φ′(XW ⊺xt)X (28)

and

∇W Φ(X; θ) =
T

∑
t=1

xtu
⊺
tX

⊺φ′(XW ⊺xt)X . (29)
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For the third statement of the lemma, we have the following sequence of equalities,

∇W ⟨a,∇U Φ(X; θ)b⟩ = ∇W ⟨a,φ(G)Xb⟩ = ∇W (a⊺φ(G)Xb)

= ∇W tr (ba⊺φ(G)X) =
T

∑
t=1
∇W (atb⊺X⊺φt(g))

=
T

∑
t=1

xtatb
⊺X⊺φ′(XW ⊺xt)X , (30)

where in the last equality we used Eq. (28).
For the Hessian with respect to W , we have:

∇W ⟨c,∇W Φ(X; θ)b⟩ =
T

∑
t=1
∇W (c⊺xtu

⊺
tX

⊺

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p⊺t

φ′(XW ⊺xt) Xb
´¸¶

qt

)

=
T

∑
t=1
(∇W p⊺t diag(qt)φ(gt)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

TermI

−∇W p⊺tφ(gt)q⊺t φ(gt)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

TermII

) , (31)

where we used the property diag(a1)a2 = diag(a2)a1 for vectors a1,a2 ∈ RT .
First, we compute the TermI above. Using Eq. (26):

p⊺t diag(qt)φ(X(W +∆)⊺xt) = p⊺t diag(qt) (φ(gt) +φ′(XW ⊺xt)X∆⊺xt) + o(∥∆∥2)
= p⊺t diag(qt)φ(gt) + tr(xtp⊺t diag(qt)φ′(XW ⊺xt)X∆⊺) + o(∥∆∥2) . (32)

Therefore,

∇W p⊺t diag(qt)φ(gt) = xtp
⊺
t diag(qt)φ′(XW ⊺xt)X

= xt c⊺xtu⊺
tX

⊺ diag(Xb)φ′(XW ⊺xt)X . (33)

Similarly for TermII we have:

p⊺tφ(X(W +∆)⊺xt)q⊺t φ(X(W +∆)⊺xt) = (p⊺tφ(gt) + p⊺tφ
′(XW ⊺xt)X∆⊺xt + o(∥∆∥2))

(q⊺t φ(gt) + q⊺t φ′(XW ⊺xt)X∆⊺xt + o(∥∆∥2))

= p⊺tφ(gt)q⊺t φ(gt) + tr (xt(q⊺φ(gt)p⊺

+ p⊺φ(gt)q⊺)φ′(XW ⊺xt)X∆⊺) + o(∥∆∥2) . (34)

Thus,

∇W p⊺tφ(gt)q⊺t φ(gt) = xt(q⊺φ(gt)p⊺ + p⊺φ(gt)q⊺)φ′(XW ⊺xt)X
= c⊺xt xtφ(gt)⊺ (Xut (Xb)⊺ +Xb (Xut)⊺)φ′(XW ⊺xt)X . (35)

Combining Eqs. (33) and (35) and plugging in Eq. (31) we conclude that

∇W ⟨c,∇W Φ(X; θ)b⟩ =
T

∑
t=1

c⊺xt xt(u⊺
tX

⊺ diag(Xb) −φ(gt)⊺Xb (Xut)⊺

−φ(gt)⊺Xut (Xb)⊺)φ′(XW ⊺xt)X . (36)

We restate Proposition 1 here for convenience.
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Proposition 5 (Restatement of Prop. 1). Let the softmax attention model Φ(X; θ) in Eq. (1). Then, it
holds:

1. ∥∇U⃗ Φ(X; θ)∥ ≤
√
T ∥X∥2,∞ .

2. ∥∇W⃗ Φ(X; θ)∥ ≤ 2 ∥X∥22,∞
T

∑
t=1
∥Xut∥∞ .

3. ∥∇θΦ(X; θ)∥ ≤ 2 ∥X∥22,∞
T

∑
t=1
∥Xut∥∞ +

√
T ∥X∥2,∞ .

4. ∥∇2
θΦ(X; θ)∥ ≤ 6d ∥X∥22,∞ ∥X∥21,∞

T

∑
t=1
∥Xut∥∞ + 2

√
T d ∥X∥22,∞ ∥X∥1,∞ .

Moreover, if Assumption 1 holds,

1. ∥∇θΦ(X; θ)∥ ≤
√
T R (2R2 ∥U∥F + 1) .

2. ∥∇2
θΦ(X; θ)∥ ≤ 2

√
T dR3 (3

√
dR2 ∥U∥F + 1) .

Proof. Using the first statement of Lemma 4,

∥∇U⃗ Φ(X; θ)∥ =

¿
ÁÁÀ T

∑
t=1
∥X⊺φ(gt)∥22 ≤

¿
ÁÁÀ T

∑
t=1
∥X⊺∥21,2∥φ(gt)∥21

=
√
T max
t∈[T ]
∥xt∥ =

√
T ∥X∥2,∞ , (37)

where we used that ∥φ(gt)∥1 = 1.
Using Lemma 4 for the gradient with respect to W ,

∇W Φ(X; θ) =
T

∑
t=1

xtu
⊺
tX

⊺φ′(XW ⊺xt)X . (38)

Therefore, by applying triangle inequality,

∥∇W⃗ Φ(X; θ)∥ ≤
T

∑
t=1
∥xt∥∥X⊺φ′(gt)Xut∥ .

In the next step we bound ∥X⊺φ′(gt)Xut∥,

∥X⊺φ′(XW ⊺xt)Xut∥ ≤ ∥X⊺ diag(φ(gt))Xut∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

TermI

+ ∥X⊺φ(gt)φ(gt)⊺Xut∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

TermII

. (39)

For TermI we do as follows:

∥X⊺ diag(φ(gt))Xut∥ = max
v∈Rd and ∥v∥=1

(Xv)⊺ diag(φ(gt))Xut

= max
∥v∥=1

T

∑
τ=1
[diag(φ(gt))]ττ [Xut]τ [Xv]τ

= max
∥v∥=1

φ(gt)⊺ ((Xut)⊙ (Xv))

≤ max
∥v∥=1
∥φ(gt)∥1 ∥(Xut)⊙ (Xv)∥∞

≤ ∥Xut∥∞ max
∥v∥=1
∥Xv∥∞

= ∥Xut∥∞ ∥X∥2,∞ , (40)
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where we used Hölder’s inequality in the first inequality.
Then, we compute TermII:

∥X⊺φ(gt)φ(gt)⊺Xut∥ = max
v∈Rd and ∥v∥=1

(Xv)⊺φ(gt)φ(gt)⊺Xut

≤ max
∥v∥=1
∥φ(gt)∥21 ∥Xut∥∞ ∥Xv∥∞

= ∥Xut∥∞ max
∥v∥=1
∥Xv∥∞

= ∥Xut∥∞ ∥X∥2,∞ , (41)

where we used Hölder’s inequality in the first inequality. Combining Eqs. (40) and (41) and plugging in Eq.
(39) yields

∥(Xut)⊺φ′(gt)X∥ ≤ 2∥Xut∥∞ ∥X∥2,∞ . (42)

Therefore,

∥∇W⃗ Φ(X; θ)∥ ≤ 2 ∥X∥2,∞
T

∑
t=1
∥xt∥ ∥Xut∥∞ . (43)

Using Eqs. (37) and (43) we conclude that

∥∇Φ(X; θ)∥ ≤ 2 ∥X∥22,∞
T

∑
t=1
∥Xut∥∞ +

√
T ∥X∥2,∞ . (44)

By using Assumption 1 to simplify Eq. (44),

∥∇θΦ(X; θ)∥ ≤ 2R2
T

∑
t=1
∥Xut∥∞ +

√
T R , (45)

or

∥∇θΦ(X; θ)∥ ≤ 2
√
T R3 ∥U∥F +

√
T R . (46)

We need to derive the Hessian to bound the greatest eigenvalue of it.

∇2
θΦ(X; θ) = [ ∇

2
U⃗

Φ(X; θ) ∇2
W⃗ U⃗

Φ(X; θ)
∇2

W⃗ U⃗
Φ(X; θ)⊺ ∇2

W⃗
Φ(X; θ) ] .

First, we compute the Hessian with respect to U ,

∇2
U⃗

Φ(X; θ) = ∇U(φ(G)X) = 0Td×Td . (47)

In the next step, we use the third statement of Lemma 4 and set a = e(T )t and b = e(d)j to compute the Hessian
with respect to W and U ,

∇W ([∇U Φ(X; θ)]tj) = xtX
⊺
∶,jφ

′(gt)X . (48)

recall, X∶,j is the j-th column of X. Therefore,

∇2
W⃗ U⃗

Φ(X; θ) =
⎡⎢⎢⎢⎢⎢⎣

∇W ([∇U Φ(X; θ)]11) . . . ∇W ([∇U Φ(X; θ)]1d)
⋮ ⋱ ⋮

∇W ([∇U Φ(X; θ)]T1) . . . ∇W ([∇U Φ(X; θ)]Td)

⎤⎥⎥⎥⎥⎥⎦
. (49)

Lastly, in order to compute the Hessian with respect to W , we use the last statement of Lemma 4 and set
c = e(d)i and b = e(d)j ,

∇W ([∇W Φ(X; θ)]ij) =
T

∑
t=1
Xtixt(u⊺

tX
⊺ diag(X∶,j) −φ(gt)⊺X∶,ju

⊺
tX

⊺

−φ(gt)⊺XutX
⊺
∶,j)φ′(gt)X . (50)
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Thus,

∇2
W⃗

Φ(X; θ) =
⎡⎢⎢⎢⎢⎢⎣

∇W ([∇W Φ(X; θ)]11) . . . ∇W ([∇W Φ(X; θ)]1d)
⋮ ⋱ ⋮

∇W ([∇W Φ(X; θ)]d1) . . . ∇W ([∇W Φ(X; θ)]dd)

⎤⎥⎥⎥⎥⎥⎦
. (51)

To find the maximum eigenvalue of the Hessian we need to upper-bound

max
∥v∥=1
⟨v,∇2

θΦ(X; θ)v⟩ ,

where

v = concat (p1, . . . ,pT ,q1, . . . ,qd) ∈ RTd+d
2

and pt ∈ Rd , t ∈ [T ] and qj ∈ Rd , j ∈ [d] .

Then,

∥∇2
θΦ(X; θ)∥

≤ max
∥v∥=1

d

∑
i=1

d

∑
j=1

T

∑
t=1
Xti q

⊺
i xt ((Xut)⊺ diag(X∶,j) −φ(gt)⊺X∶,j(Xut)⊺ −φ(gt)⊺XutX

⊺
∶,j)φ′(gt)Xqj

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term1

+ 2 max
∥v∥=1

d

∑
j=1

T

∑
t=1

p⊺txtX⊺
∶,jφ

′(gt)Xqj

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term2

. (52)

First, we bound Term1:

max
∥v∥=1

d

∑
i=1

d

∑
j=1

T

∑
t=1
Xti q

⊺
i xt ((Xut)⊺ diag(X∶,j) −φ(gt)⊺X∶,j(Xut)⊺ −φ(gt)⊺XutX

⊺
∶,j)φ′(gt)Xqj

≤ ∥X∥1,∞ ∥X∥2,∞
⎛
⎝

max
∥v∥=1

d

∑
i=1

d

∑
j=1

T

∑
t=1
∥qi∥ ∥qj∥ ∥(Xut)⊺ diag(X∶,j)φ′(gt)X∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
TermI

+

max
∥v∥=1

d

∑
i=1

d

∑
j=1

T

∑
t=1
∥qi∥ ∥qj∥ ∥φ(gt)⊺X∶,j(Xut)⊺φ′(gt)X∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
TermII

+

max
∥v∥=1

d

∑
i=1

d

∑
j=1

T

∑
t=1
∥qi∥ ∥qj∥ ∥φ(gt)⊺XutX

⊺
∶,jφ

′(gt)X∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
TermIII

⎞
⎠
. (53)

For TermI, we have:

max
∥v∥=1

d

∑
i=1

d

∑
j=1

T

∑
t=1
∥qi∥ ∥qj∥ ∥(Xut)⊺ diag(X∶,j)φ′(gt)X∥

≤ 2 max
∥v∥=1

d

∑
i=1

d

∑
j=1

T

∑
t=1
∥qi∥ ∥qj∥ ∥X∥2,∞ ∥diag(X∶,j)Xut∥∞

≤ 2 max
∥v∥=1

d

∑
i=1

d

∑
j=1

T

∑
t=1
∥qi∥ ∥qj∥ ∥X∥2,∞ ∥X∶,j∥∞∥Xut∥∞ ≤ 2d ∥X∥2,∞ ∥X∥1,∞

T

∑
t=1
∥Xut∥∞ , (54)
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where in the last inequality we used Cauchy-Schwarz inequality. Similarly for TermII we can write:

max
∥v∥=1

d

∑
i=1

d

∑
j=1

T

∑
t=1
∥qi∥ ∥qj∥ ∥φ(gt)⊺X∶,j(Xut)⊺φ′(gt)X∥

≤ 2 max
∥v∥=1

d

∑
i=1

d

∑
j=1

T

∑
t=1
∥qi∥ ∥qj∥ ∣φ(gt)⊺X∶,j ∣ ∥X∥2,∞ ∥Xut∥∞ ≤ 2d ∥X∥2,∞ ∥X∥1,∞

T

∑
t=1
∥Xut∥∞ , (55)

where we used Hölder’s inequality in the last inequality. And at the end, for TermIII we have:

max
∥v∥=1

d

∑
i=1

d

∑
j=1

T

∑
t=1
∥qi∥ ∥qj∥ ∥φ(gt)⊺XutX⊺

∶,jφ
′(gt)X∥

≤ 2 max
∥v∥=1

d

∑
i=1

d

∑
j=1

T

∑
t=1
∥qi∥ ∥qj∥ ∣φ(gt)⊺Xut∣ ∥X∥2,∞ ∥X∶,j∥∞ ≤ 2d ∥X∥2,∞ ∥X∥1,∞

T

∑
t=1
∥Xut∥∞ . (56)

Then, we upper-bound Term2:

2 max
∥v∥=1

d

∑
j=1

T

∑
t=1

p⊺txtX⊺
∶,jφ

′(gt)Xqj ≤ 2 max
∥v∥=1

d

∑
j=1

T

∑
t=1
∥pt∥ ∥qj∥ ∥X∥2,∞ ∥X⊺

∶,jφ
′(gt)X∥

≤ 4
√
T d

2
∥X∥22,∞ ∥X∥1,∞ = 2

√
T d ∥X∥22,∞ ∥X∥1,∞ . (57)

The last inequality comes from the calculation of the gradient concluded in Eq. (42). Plugging in Eqs. (54),
(55), (56), and (57) in Eq. (52), we conclude that

∥∇2
θΦ(X; θ)∥ ≤ 6d ∥X∥22,∞ ∥X∥21,∞

T

∑
t=1
∥Xut∥∞ + 2

√
T d ∥X∥22,∞ ∥X∥1,∞ . (58)

Applying Assumption 1, we have:

∥∇2
θΦ(X; θ)∥ ≤ 6dR4

T

∑
t=1
∥Xut∥∞ + 2

√
T dR3 , (59)

or

∥∇2
θΦ(X; θ)∥ ≤ 6dR4

T

∑
t=1

max
τ∈[T ]

x⊺
τut + 2

√
T dR3

≤ 6dR4
T

∑
t=1

max
τ∈[T ]
∥xτ∥∥ut∥ + 2

√
T dR3

≤ 6
√
T dR5 ∥U∥F + 2

√
T dR3 , (60)

where in the second and the last inequalities we used Cauchy-Schwartz inequality.

We now derive bounds for the multi-head attention model.
Lemma 5. Recall the multihead model in Eq. (2).

Φ̃(X; θ̃) = 1√
H

H

∑
h=1
⟨Uh,φ(XWhX⊺)X⟩ . (61)

The following are true under Assumption 1.

1. ∥∇θ̃Φ̃(X; θ̃)∥ ≤
√
T R (2R2 max

h∈[H]
∥Uh∥F + 1) .
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2. ∥∇2
θ̃
Φ̃(X; θ̃)∥ ≤ 2

√
T dR3
√
H

(3
√
dR2 max

h∈[H]
∥Uh∥F + 1) .

Proof. From Equation (46) for single-head attention,

∥∇θ̃Φ̃(X; θ̃)∥2 ≤ 1
H

H

∑
h=1
(2
√
T R3 ∥Uh∥F +

√
T R)

2

≤ (2
√
T R3 max

h∈[H]
∥Uh∥F +

√
T R)

2
. (62)

Denote v⊺ = [v⊺1 ⋯ v⊺H] ∈ RH(Td+d
2), where ∥v∥ = 1. Using Equation (60),

⟨v,∇2
θ̃
Φ̃(X; θ̃)v⟩ ≤ 1√

H
(6
√
T dR5 max

h∈[H]
∥Uh∥F + 2

√
T dR3)

H

∑
h=1
∥vh∥2

= 1√
H
(6
√
T dR5 max

h∈[H]
∥Uh∥F + 2

√
T dR3) . (63)

A.2 Proof of Corollary 1: Objective’s Gradient/Hessian

Corollary 1 follows immediately by the result of Lemma 6 below and using a more relaxed bound
maxh∈[H]∥Uh∥F ≤ ∥θ̃∥2,∞.
Lemma 6 (Tight version of Corollary 1). Let Assumption 1 hold and we use logistic loss function. Then, the
following are true for the loss gradient and Hessian:

1. ∥∇L̂(θ̃)∥ ≤
√
T R (2R2 max

h∈[H]
∥Uh∥F + 1) L̂(θ̃) .

2. ∥∇2L̂(θ̃)∥ ≤ 2
√
T dR3
√
H

(3
√
dR2 max

h∈[H]
∥Uh∥F + 1) + T R

2

4
(2R2 max

h∈[H]
∥Uh∥F + 1)

2

.

3. λmin(∇2L̂(θ̃)) ≥ −2
√
T dR3
√
H

(3
√
dR2 max

h∈[H]
∥Uh∥F + 1) L̂(θ̃) .

Proof. The loss gradient is derived as follows,

∇L̂(θ̃) = 1
n

n

∑
i=1
ℓ′(yi Φ̃(Xi; θ̃)) yi∇θ̃Φ̃(Xi; θ̃) .

Recalling that yi ∈ {±1}, we can write

∥∇L̂(θ̃)∥ = 1
n
∥
n

∑
i=1
ℓ′(yi Φ̃(Xi; θ̃)) yi∇θ̃Φ̃(Xi; θ̃)∥ ≤ 1

n

n

∑
i=1
∣ℓ′(yi Φ̃(Xi; θ̃))∣ ∥∇θ̃Φ̃(Xi; θ̃)∥ .

Thus, using Lemma 5 to bound the norm of the model’s gradient:

∥∇L̂(θ̃)∥ ≤
√
T R (2R2 max

h∈[H]
∥Uh∥F + 1) L̂(θ̃) . (64)

For the Hessian of loss, note that

∇2L̂(θ̃) = 1
n

n

∑
i=1
ℓ′′(yi Φ̃(Xi; θ̃))∇θ̃Φ̃(Xi; θ̃)∇θ̃Φ̃(Xi; θ̃)⊺ + ℓ′(yi Φ̃(Xi; θ̃)) yi∇2

θ̃
Φ̃(Xi; θ̃) . (65)
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It follows that

∥∇2L̂(θ̃)∥ = ∥ 1
n

n

∑
i=1
ℓ′′(yi Φ̃(Xi; θ̃))∇θ̃Φ̃(Xi; θ̃)∇θ̃Φ̃(Xi; θ̃)⊺ + ℓ′(yiΦ(Xi; θ̃)) yi∇2

θ̃
Φ̃(Xi; θ̃)∥

≤ 1
n

n

∑
i=1
∣ℓ′(yi Φ̃(Xi; θ̃))∣ ∥∇2

θ̃
Φ̃(Xi; θ̃)∥ + ∣ℓ′′(yi Φ̃(Xi; θ̃))∣ ∥∇θ̃Φ̃(Xi; θ̃)∥2

≤ 2
√
T dR3
√
H

(3
√
dR2 max

h∈[H]
∥Uh∥F + 1) + T R

2

4
(2R2 max

h∈[H]
∥Uh∥F + 1)

2

. (66)

To lower-bound the minimum eigenvalue of the Hessian of loss, note that ℓ(⋅) is convex and thus ℓ′′(⋅) ≥ 0.
Therefore, the first term in (65) is positive semi-definite and the second term can be lower-bounded as follows,

λmin(∇2L̂(θ̃)) ≥ − 1
n

n

∑
i=1
∥ℓ′(yi Φ̃(Xi; θ̃)) yi∇2

θ̃
Φ̃(Xi; θ̃)∥

≥ − 1
n

n

∑
i=1
∣ℓ′(yi Φ̃(Xi; θ̃))∣ ∥∇2

θ̃
Φ̃(Xi; θ̃)∥

≥ −2
√
T dR3
√
H

(3
√
dR2 max

h∈[H]
∥Uh∥F + 1) L̂(θ̃) .

B Training Analysis

B.1 Preliminaries

Throughout this section we drop the ⋅̃ in θ̃ and Φ̃(Xi; θ̃) as everything refers to the full model. Moreover,
θ̃(K) and θ̃(0) are denoted by θK and θ0.

The proof of both the training and generalization analysis follows the high-level steps outlined in Taheri
& Thrampoulidis (2023). However, our analysis focuses on the self-attention model, which differs from the
two-layer perceptron studied in the referenced work. Notably, we train both the attention weights and the
classifier head, whereas Taheri & Thrampoulidis (2023) assumes fixed outer layer weights. This introduces a
new challenge as the smoothness and curvature of the objective function at point θ become dependent on θ
itself (see Corollary 1). Consequently, we make careful adjustments in the proof to account for this challenge.

Our analysis critically uses the following property of the loss objective from Corollary 1: ∀θ ∶ λmin (∇2L̂(θ)) ≥
−κ(θ) ⋅ L̂(θ), κ(θ) ∶= β3(θ)√

H
. Note from the definition of β3(⋅) that ∀θ1,θ2 ∶ maxθ∈[θ1,θ2] β3(θ) = β3(θ1) ∨

β3(θ2) . Thus, the above property of the loss implies the following local self-bounded weak convexity property
on the line [θ1,θ2]:

∀θ1,θ2 ∶ min
θ∈[θ1,θ2]

λmin (∇2L̂(θ)) ≥ −β3(θ1) ∨ β3(θ2)√
H

⋅ L̂(θ). (67)

In turn, Equation (67) can be used to prove that the loss satisfies a generalized local quasi-convexity (GLQC)
property as formalized in the proposition below. The proposition is only a slight modification of (Taheri &
Thrampoulidis, 2023, Prop. 8). While, a direct application of their result is not possible since the self-bounded
weak convexity property in (67) holds only locally on the line [θ1,θ2], an inspection of their proof shows
that this is sufficient.

B.2 Proof of Proposition 4

First, we restate the proposition below for the reader’s convenience.
Proposition 6 (GLQC property). Let θ1,θ2 be points sufficiently close to each other, such that

2 (β3(θ1) ∨ β3(θ2)) ∥θ1 − θ2∥2 ≤
√
H .
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Then, the following generalized local quasi-convexity (GLQC) property holds:

max
θ∈[θ1,θ2]

L̂(θ) ≤ 4
3
(L̂(θ1) ∨ L̂(θ2)) .

Proof. Although the loss L̂ is not uniformly self-bounded weakly convex as assumed in (Taheri & Thram-
poulidis, 2023, Prop. 8), an inspection of their proof shows that for every θ1,θ2 it suffices that the loss is locally
self-bounded weakly convex. With this observation, we can apply their proposition with κ← κ(θ1) ∨ κ(θ2),
which gives the desired.

B.3 Key Lemmas

The proof of Theorem 1 consists of several intermediate lemma, which we state and prove in this section.
Lemma 7 (Descent Lemma). Let Assumption 1 hold. Then, for any iteration k ≥ 0 we have step-wise
descent:

L̂(θk+1) ≤ L̂(θk) −
η

2
∥∇L̂ (θk)∥

2
, (68)

provided η ≤ 1
ρk

where ρk is the objective’s local smoothness parameter defined as below,

ρk ∶= β2(θk) ∨ β2(θk+1).

Proof. By Taylor’s expansion, there exists a θ′ ∈ [θk,θk+1] such that,

L̂ (θk+1) = L̂ (θk) + ⟨∇L̂ (θk) ,θk+1 − θk⟩ +
1
2
⟨θk+1 − θk,∇2L̂(θ′) (θk+1 − θk)⟩

≤ L̂ (θk) + ⟨∇L̂ (θk) ,θk+1 − θk⟩ +
1
2

max
θ′∈[θk,θk+1]

∥∇2L̂(θ′)∥ ⋅ ∥θk+1 − θk∥2

≤ L̂ (θk) − η ∥∇L̂ (θk)∥
2 + η

2ρk
2
⋅ ∥∇L̂ (θk)∥

2
,

where the last step follows from Corollary 1, and using maxθ′∈[θk,θk+1] β2(θ′) = β2(θ) ∨ β2(θk) = ρk. For
η ≤ 1

ρk
, we conclude the claim.

Lemma 8. Assume η > 0 such that step-wise descent (68) holds for all k ∈ [K − 1]. Then, for any θ, the
following holds:

1
K

K

∑
k=1

L̂(θk) ≤ L̂(θ) +
∥θ − θ0∥2

2ηK
+ 1

2K

K−1
∑
k=0

τk∥θ − θk∥2 , (69)

where τk ∶= 1√
H
(β3(θ) ∨ β3(θk))maxα∈[0,1] L̂(θkα).

Proof. By Taylor’s theorem, for θkα ∶= αθk + (1 − α)θ, α ∈ [0,1] we know that:

L̂(θ) ≥ L̂(θk) + ⟨∇L̂(θk),θ − θk⟩ +
1
2
λmin (∇2L̂(θkα)) ∥θ − θk∥2.

Using (68), we get:

L̂(θk+1) ≤ L̂(θ) + ⟨∇L̂(θk),θk − θ⟩ − 1
2
λmin (∇2L̂(θkα)) ∥θ − θk∥2 −

η

2
∥∇L̂(θk)∥2

≤ L̂(θ) + ∥θ − θk∥2
2η

− ∥θ − θk+1∥2
2η

+ 1
2
τk∥θ − θk∥2, (70)

where the last step follows by completion of squares using θk+1 − θk = −η∇L̂(θk), and also uses Corollary
1 with τk ∶= maxα∈[0,1] τkα , where τkα =

β3(θkα)√
H

L̂(θkα). Telescoping in (70) for k = 0, ...,K − 1, we get the
desired.
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Next, we use the generalized local quasi-convexity property (Proposition 4) to obtain explicit regret bound
from Lemma 8.
Lemma 9. Suppose the assumptions of Lemma 8 hold. Moreover, assume for all k ∈ [K − 1] it holds that√
H ≥ 2 (β3(θ) ∨ β3(θk)) ∥θ − θk∥2. Then,

1
K

K

∑
k=1

L̂(θk) ≤ 2L̂(θ) + 3∥θ − θ0∥2
4ηK

+ L̂(θ0)
2K

. (71)

Proof. We have minθ′∈[θ,θk] λmin(∇2L̂(θ′)) ≥ −β3(θ)∨β3(θk)√
H

maxθ′∈[θ,θk] L̂(θ′) from Corollary 1. Thus, using
Proposition 4, we can control maxα∈[0,1] L̂(θkα). Specifically, by assumption we have for all k ∈ [K − 1] that

√
H ≥ 2 (β3(θ) ∨ β3(θk)) ∥θ − θk∥2 = 2 max

α∈[0,1]
β3(θkα) ∥θ − θk∥2 .

Then, by Proposition 4, we have

max
α∈[0,1]

L̂(θkα) ≤
4
3

max{L̂(θk), L̂(θ)} ≤
4
3
L̂(θk) +

4
3
L̂(θ) .

Thus, applying this to (69) we have:

1
K

K

∑
k=1

L̂(θk) ≤ L̂(θ) +
∥θ − θ0∥2

2ηK
+ 2

3K

K−1
∑
k=0

1√
H
(β3(θ) ∨ β3(θk)) (L̂(θk) + L̂(θ))∥θ − θk∥2

≤ L̂(θ) + ∥θ − θ0∥2
2ηK

+ 1
3K

K−1
∑
k=0
(L̂(θk) + L̂(θ))

≤ 4
3
L̂(θ) + ∥θ − θ0∥2

2ηK
+ 1

3K

K

∑
k=0

L̂(θk), (72)

where we use the condition on H in the second inequality. Rearranging terms above we conclude the claim of
the lemma.

Lemma 10 (Iterates-norm bound). Suppose the descent property (68) holds ∀k ∈ [K −1], and let Assumption
1 hold. Further, assume that

∥θ − θ0∥2 ≥max{ηKL̂(θ), ηL̂(θ0)} . (73)

and

√
H ≥ 36

√
T dR3 (3

√
dR2 (3∥θ − θ0∥ + ∥θ∥2,∞) + 1) ∥θ − θ0∥2 , (74)

Then, for all k ∈ [K],

∥θk − θ∥ ≤ 3∥θ − θ0∥ . (75)

Proof. Denote Ak = ∥θk − θ∥. Start by recalling from Eq. (70) that for all k:

A2
k+1 ≤ A2

k + 2ηL̂(θ) − 2ηL̂(θk+1) + η ( max
α∈[0,1]

τkα)A2
k , (76)

where recall that τkα =
β3(θkα)L̂(θkα)√

H
. We will prove the desired statement (75) using induction. For k = 0,

A0 = ∥θ − θ0∥. Thus, the assumption of induction holds. Now assume (75) is correct for j ∈ [k − 1], i.e.
Aj ≤ 3∥θ − θ0∥,∀j ∈ [k − 1]. We will then prove it holds for k.
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By induction hypothesis for all j ∈ [k − 1], and all α ∈ [0,1]:

√
H ≥ 36

√
T dR3 (3

√
dR2 (3∥θ − θ0∥ + ∥θ∥2,∞) + 1) ∥θ − θ0∥2

≥ 4
√
T dR3 (3

√
dR2 (3∥θ − θ0∥ + ∥θ∥2,∞) + 1) ∥θ − θj∥2

≥ 4
√
T dR3 (3

√
dR2 (∥θ − θj∥2,∞ + ∥θ∥2,∞) + 1) ∥θ − θj∥2

≥ 4
√
T dR3 (3

√
dR2 ∥θjα∥2,∞ + 1) ∥θ − θj∥2 = 2β3(θjα)∥θ − θj∥2 .

Thus, by Proposition 4, ∀j ∈ [k − 1]

max
α∈[0,1]

L̂(θjα) ≤
4
3
L̂(θj) +

4
3
L̂(θ) . (77)

Using this in (76) we find for all j ∈ [k − 1],

A2
j+1 ≤ A2

j + 2ηL̂(θ) − 2ηL̂(θj+1) + η
maxα∈[0,1] β3(θjα)A2

j√
H

(4
3
L̂(θj) +

4
3
L̂(θ))

≤ A2
j + 2ηL̂(θ) − 2ηL̂(θj+1) + η (

2
3
L̂(θj) +

2
3
L̂(θ)) ,

where in the second inequality we used (77). We proceed by telescoping the above display over j = 0, 1, . . . , k−1
to get

A2
k ≤ A2

0 +
8
3
ηkL̂(θ) + 2

3
ηL̂(θ0) −

4
3
η
k−1
∑
j=1

L̂(θj) − 2ηL̂(θk)

≤ A2
0 +

8
3
ηkL̂(θ) + 2

3
ηL̂(θ0)

≤ ∥θ − θ0∥2 +
8
3
∥θ − θ0∥2 +

2
3
∥θ − θ0∥2

≤ 9∥θ − θ0∥2 , (78)

where the second line follows by non-negativity of the loss. Thus, Ak ≤ 3∥θ−θ0∥. This completes the induction
and proves the lemma.

B.4 Proof of Theorem 1

We restate the theorem here for convenience, this time also including exact constants.
Theorem 3 (Restatement of Thm. 1). Fix any θ and H satisfying

√
H ≥ 36

√
T dR3 (3

√
dR2 (3∥θ − θ0∥ + ∥θ∥2,∞) + 1) ∥θ − θ0∥2.

Further, denote for convenience

α(θ) ∶= 3
√
dR2 [3

√
T R3 (3 ∥θ − θ0∥ + ∥θ∥2,∞) + 2

√
T R]

and ρ(θ) = ( 2
√
T dR3
√
H

+ T R2

4 ) α(θ)
2. Then, for any step-size η ≤ 1 ∧ 1/ρ(θ) ∧ ∥θ−θ0∥2

KL̂(θ) ∧
∥θ−θ0∥2

L̂(θ0)
, the following

bounds hold for the training loss and the weights’ norm at iteration K of GD:

L̂(θK) ≤
1
K

K

∑
k=1

L̂(θk) ≤ 2L̂(θ) + 5∥θ − θ0∥2
4ηK

and ∥θK − θ0∥ ≤ 4∥θ − θ0∥. (79)
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Proof. Define

αη(θ) = 3
√
dR2 [(2η

√
T R3 + 1) (3 ∥θ − θ0∥ + ∥θ∥2,∞) + η

√
T R + 1] ,

and

ρη(θ) ∶= (
2
√
T dR3
√
H

+ T R
2

4
) αη(θ)2 .

From Lemma 7 recall that:

ρk ∶= β2(θk) ∨ β2(θk+1) .

Now, recalling the definition of β2(θ) from Corollary 1, we see that ρk, the objective’s smoothness parameter
at step k depends on ∥θk∥2,∞ ∨ ∥θk+1∥2,∞, where:

∥θk∥2,∞ ∨ ∥θk+1∥2,∞ ≤ (∥θ − θk∥ + ∥θ∥2,∞) ∨ (∥θ − θk+1∥ + ∥θ∥2,∞)
≤ (∥θ − θk∥ + ∥θ∥2,∞) ∨ (∥θ − θk∥ + ∥θk+1 − θk∥ + ∥θ∥2,∞)
= ∥θ − θk∥ + ∥θk+1 − θk∥ + ∥θ∥2,∞
≤ η
√
TR (2R2 ∥θk∥2,∞ + 1) + ∥θ − θk∥ + ∥θ∥2,∞

≤ (2η
√
TR3 + 1) (∥θ − θk∥ + ∥θ∥2,∞) + η

√
TR =∶ Θk ,

where the second-last inequality follows from Corollary 1. For each ρk, define corresponding ρη(Θk) ∶=
2
√
T dR3
√
H

(3
√
dR2 Θk + 1) + T R2

4 (2R2 Θk + 1)2. Consider ρ0, it is easy to see that ρ0 ≤ ρη(Θ0) ≤ ρη(θ).
Hence, the descent property of GD holds in first iteration as per Lemma 7. Since, for η ≤ 1, ρη(θ) ≤ ρ(θ).
Thus, η ≤ 1 ∨ 1

ρ(θ) Ô⇒ η ≤ 1
ρ(θ) ≤

1
ρη(θ) ≤

1
ρη(Θ0) ≤

1
ρ0

. Moreover, note that the assumptions of Lemma 10
are satisfied. Thus, by induction over Lemmas 9-10 and noting that ρk ≤ ρη(Θk) ≤ ρη(θ) for all k ∈ [K − 1]
by using a similar argument as above, we obtain for any η ≤ 1

ρ(θ) ,

∀k ∈ [K] ∶ ∥θk − θ∥ ≤ 3∥θ − θ0∥ ,

and 1
K

K

∑
k=1

L̂(θk) ≤ 2L̂(θ) + 3∥θ − θ0∥2
4ηK

+ L̂(θ0)
2K

. (80)

Moreover, by assumptions of the theorem we immediately find that 1
2K L̂(θ0) ≤ ∥θ−θ0∥2

2ηK . We also have
∥θk − θ0∥ ≤ ∥θ − θk∥ + ∥θ − θ0∥ ≤ 4∥θ − θ0∥. This completes the proof.

The training proof is summarized in Figure 1.

B.5 Corollary 3

Corollary 3 (Training loss under realizability). Let Assumptions 1 and 2 hold. Fix K ≥ 1. Assume any H
such that

√
H ≥ 36

√
T dR3 (3

√
dR2 (3g0(

1
K
) + g( 1

K
)) + 1) g0(

1
K
)2 . (81)

Further, denote for convenience

α(K) ∶= 3
√
dR2 [3

√
T R3 (3g0(

1
K
) + g( 1

K
)) + 2

√
T R]

and ρ(K) = ( 2
√
T dR3
√
H

+ T R2

4 ) α(K)
2. Then, for any step-size η ≤ 1 ∧ 1/ρ(K) ∧ g0(1)2 ∧ g0(1)2

L̂(θ0)
, the following

bounds hold for the weights’ norm and objective at iteration K of GD:

L̂(θK) ≤
2
K
+

5g0( 1
K
)2

4ηK
and ∥θK − θ0∥ ≤ 4g0(

1
K
) . (82)
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Figure 1: Training proof schema.

Proof. According to Assumption 2, for any sufficiently small ε > 0, there exists a θ(ε) such that L̂(θ(ε)) ≤ ε
and ∥θ(ε) − θ0∥ = g0(ε). Pick ε = 1

K
. Let the step-size η > 0, satisfy the assumption of Descent Lemma 7.

Since L̂(θ(1/K)) ≤ 1
K

, we have:

∥θ(1/K) − θ0∥2

KL̂(θ(1/K))
≥ ∥θ(1/K) − θ0∥2 = g0(

1
K
)2 ≥ g0(1)2 ,

and

∥θ(1/K) − θ0∥2

L̂(θ0)
=
g0( 1

K
)2

L̂(θ0)
≥ g0(1)2

L̂(θ0)
.

Therefore, following our assumption on step-size η, we can conclude that

η ≤ g0(1)2 ∧
g0(1)2

L̂(θ0)
≤ ∥θ

(1/K) − θ0∥2

KL̂(θ(1/K))
∧ ∥θ

(1/K) − θ0∥2

L̂(θ0)
. (83)

where in the second inequality we used the fact that g0(⋅) is a non-increasing function. The desired result is
obtained by Theorem 1.

C Generalization Analysis

Throughout this section we drop the ⋅̃ in θ̃ and Φ̃(Xi; θ̃) as everything refers to the full model. Moreover,
θ̃(K) and θ̃(0) are denoted by θK and θ0.

For the stability analysis below, recall the definition of the leave-one-out (loo) training loss for i ∈ [n] and
note that by denoting ℓj(θ) ∶= ℓ(yjΦ(Xj ; θ)) to be the j-th sample loss: L̂¬i(θ) ∶= 1

n ∑j≠i ℓj(θ). With these,
define the loo model updates of GD on the loo loss for some η > 0:

θ¬ik+1 ∶= θ¬ik − η∇L̂¬i(θ¬ik ), k ≥ 0, θ¬i0 = θ0.
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Lemma 11. Assume the conditions of Theorem 1 hold and
√
H ≥ 256

√
T dR3 (3

√
dR2 (3∥θ − θ0∥ + ∥θ∥2,∞) + 1) ∥θ − θ0∥2 . (84)

Then, the on-average model stability at iteration K of GD satisfies,

1
n

n

∑
i=1
∥θK − θ¬iK ∥ ≤

2η
n
(
√
T R (2R2 (3∥θ − θ0∥ + ∥θ∥2,∞) + 1)) (2KL̂(θ) + 9∥θ − θ0∥2

4η
) .

Proof. First recall from Corollary 1 that gradient and hessian’s norm satisfy

∥∇L̂(θ)∥ ≤ β1(θ) L̂(θ) ,
∥∇2L̂(θ)∥ ≤ β2(θ) ,

λmin(∇2L̂(θ)) ≥ −β3(θ)√
H

L̂(θ) .

Applying (Taheri & Thrampoulidis, 2023, Lemma B.1.), two arbitrary points θ,θ′ satisfy the following
GD-expansiveness inequality:

∥(θ − η∇L̂(θ)) − (θ′ − η∇L̂(θ′))∥ ≤ max
α∈[0,1]

{(1 + ηβ3(θα)√
H

L̂(θα)) ∨ ηβ2(θα)} ∥θ − θ′∥ , (85)

where θα = αθ + (1 − α)θ′ denotes a point parameterized by α ∈ [0,1] in the line segment between θ and θ′.
We aim to bound the on-average model stability in the r.h.s of the inequality in Lemma 3. Based on Eq. (85),

∥θk+1 − θ¬ik+1∥ = ∥(θk − η∇L̂¬i (θk)) − (θ¬ik − η∇L̂¬i (θ¬ik )) −
η

n
∇ℓi (θk)∥

≤ ∥(θk − η∇L̂¬i (θk)) − (θ¬ik − η∇L̂¬i (θ¬ik ))∥ +
η

n
∥∇ℓi (θk)∥

≤ ∥(θk − η∇L̂¬i (θk)) − (θ¬ik − η∇L̂¬i (θ¬ik ))∥ +
ηβ1(θk)

n
ℓi (θk)

≤ ( max
α∈[0,1]

{(1 +
ηβ3(θ¬ikα

)
√
H

L̂¬i(θ¬ikα
)) ∨ ηβ2(θ¬ikα

)})∥θk − θ¬ik ∥ +
ηβ1(θk)

n
ℓi (θk) . (86)

In the above we denoted θ¬ikα
∶= αθk + (1−α)θ¬ik . We note that based on our guarantees for the weights’ norm

during training (75) it can be deduced that for all α ∈ [0,1],

β3(θ¬ikα
) = 2

√
T dR3 (3

√
dR2 ∥αθk + (1 − α)θ¬ik ∥2,∞ + 1)

= 2
√
T dR3 (3

√
dR2 (∥θk∥2,∞ ∨ ∥θ¬ik ∥2,∞) + 1)

≤ 2
√
T dR3 (3

√
dR2 ((∥θk − θ∥ + ∥θ∥2,∞) ∨ (∥θ¬ik − θ∥ + ∥θ∥2,∞) + 1)

≤ 2
√
T dR3 (3

√
dR2 (3∥θ − θ0∥ + ∥θ∥2,∞) + 1) =∶ β̃3(θ) . (87)

Similarly, we obtain

β2(θ¬ikα
) = 2

√
T dR3
√
H

(3
√
dR2 ∥θ¬ikα

∥2,∞ + 1) + T R
2

4
(2R2 ∥θ¬ikα

∥2,∞ + 1)
2

≤ 2
√
T dR3
√
H

(3
√
dR2 (3∥θ − θ0∥ + ∥θ∥2,∞) + 1)

+ T R2

4
(2R2 (3∥θ − θ0∥ + ∥θ∥2,∞) + 1)

2

=∶ β̃2(θ) . (88)
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Hence, by the notation introduced above and noting that by our assumption on the step-size it holds
η ≤ 1/β̃2(θ), we can rewrite Eq. (86) as follows,

∥θk+1 − θ¬ik+1∥ ≤ ((1 +
ηβ̃3(θ)√

H
) max
α∈[0,1]

L̂¬i(θ¬ikα
)) ∥θk − θ¬ik ∥ +

ηβ1(θk)
n

ℓi (θk) .

Assume
√
H ≥ 128 β̃3(θ) ∥θ − θ0∥2 ≥ 4 β̃3(θ) (∥θk − θ0∥2 + ∥θ¬ik − θ0∥2) ≥ 2 β̃3(θ) ∥θk − θ¬ik ∥2

≥ 2 (β3(θk) ∨ β3(θ¬ik )) ∥θk − θ¬ik ∥2,

where we used Theorem 1 in the first inequality. We also have

min
α∈[0,1]

λmin(∇2L̂¬i(θ¬ikα
)) ≥ −β3(θk) ∨ β3(θ¬ik )√

H
L̂¬i(θ¬ikα

) .

Thus, by applying Proposition 4 on the leave-one-out loss, it holds that for all α ∈ [0,1],

max
α∈[0,1]

L̂¬i(θ¬ikα
) ≤ 4

3
(L̂¬i(θk) + L̂¬i(θ¬ik )) .

Thus,

∥θk+1 − θ¬ik+1∥ ≤ ((1 +
4ηβ̃3(θ)

3
√
H
) ⋅ (L̂¬i(θk) + L̂¬i(θ¬ik ))) ∥θk − θ¬ik ∥ +

ηβ1(θk)
n

ℓi (θk) . (89)

In order to remove the dependence on k, note that

β1(θk) ≤
√
T R(2R2 ∥θk∥2,∞ + 1)

≤
√
T R(2R2 (∥θ − θk∥2,∞ + ∥θ∥2,∞) + 1)

≤
√
T R(2R2 (∥θ − θk∥ + ∥θ∥2,∞) + 1)

≤
√
T R(2R2 (3∥θ − θ0∥ + ∥θ∥2,∞) + 1) =∶ β̃1(θ) . (90)

For simplicity of exposition, denote αk,i ∶= 4ηβ̃3(θ)
3
√
H
(L̂¬i(θk) + L̂¬i(θ¬ik )). Then by unrolling the iterates we

have,

∥θk+1 − θ¬ik+1∥ ≤ (1 + αk,i) ∥θk − θ¬ik ∥ +
ηβ̃1(θ)
n

ℓi (θk)

≤ (1 + αk,i)(1 + αk−1,i) ∥θk−1 − θ¬ik−1∥ +
(1 + αk,i)ηβ̃1(θ)

n
ℓi (θk−1) +

ηβ̃1(θ)
n

ℓi (θk)

≤
k

∑
j=1

k

∏
l=j
(1 + αl,i)ηβ̃1(θ)

ℓi(θj−1)
n

+ ηβ̃1(θ)
ℓi (θk)
n

≤
k

∑
j=1

exp(
k

∑
l=j
αl,i)ηβ̃1(θ)

ℓi(θj−1)
n

+ ηβ̃1(θ)
ℓi (θk)
n

≤
k

∑
j=1

exp(
k

∑
l=1
αl,i)ηβ̃1(θ)

ℓi(θj−1)
n

+ ηβ̃1(θ)
ℓi (θk)
n

, (91)
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where in the above we used that θ0 = θ¬i0 in unrolling the iterates as well as the fact that for x ≥ 0 ∶ 1 + x ≤ ex.
Note that by definition L̂¬i(θk) ≤ L̂(θk). By training loss guarantees from Eq. (79), we have

k

∑
l=1
αl,i ≤

4ηβ̃3(θ)
3
√
H

k

∑
l=1
(L̂¬i(θl) + L̂¬i(θ¬il ))

≤ 4ηβ̃3(θ)
3
√
H

k

∑
l=1
(L̂(θl) + L̂(θ¬il ))

≤ 4ηβ̃3(θ)
3
√
H
(5kL̂(θ) + 5∥θ − θ0∥2

2η
)

≤ 10β̃3(θ)∥θ − θ0∥2√
H

≤ 1
10
,

where the last step stems from the condition on
√
H. Proceeding from Eq. (91), we find that for the last

iterate

∥θK − θ¬iK ∥ ≤ 2ηβ̃1(θ)
K−1
∑
k=1

ℓi(θk−1)
n

+ ηβ̃1(θ)
ℓi (θK−1)

n

≤ 2ηβ̃1(θ)
K−1
∑
k=0

ℓi(θk)
n

. (92)

It follows that the on-average model stability satisfies,

1
n

n

∑
i=1
∥θK − θ¬iK ∥ ≤

2ηβ̃1(θ)
n2

n

∑
i=1

K−1
∑
k=0

ℓi(θk)

= 2ηβ̃1(θ)
n

K−1
∑
k=0

L̂(θk) .

Applying our training loss guarantees from Eq. (80) to the r.h.s. above yields,

1
n

n

∑
i=1
∥θK − θ¬iK ∥ ≤

2ηβ̃1(θ)
n

(2KL̂(θ) + 9∥θ − θ0∥2
4η

) ,

where here we used the assumption that, L̂(θ0) ≤ ∥θ − θ0∥2/η to simplify the final result. This completes the
proof.

C.1 Proof of Theorem 2

We restate the theorem here for convenience, this time also including exact constants.
Theorem 4 (Restatement of Thm. 2). Fix any θ and H satisfying

√
H ≥ 256

√
T dR3 (3

√
dR2 (3∥θ − θ0∥ + ∥θ∥2,∞) + 1) ∥θ − θ0∥2.

Further, denote for convenience

α(θ) ∶= 3
√
dR2 [3

√
T R3 (3 ∥θ − θ0∥ + ∥θ∥2,∞) + 2

√
T R]

and ρ(θ) = ( 2
√
T dR3
√
H

+ T R2

4 ) α(θ)
2. Then, for any step-size η ≤ 1 ∧ 1/ρ(θ) ∧ ∥θ−θ0∥2

KL̂(θ) ∧
∥θ−θ0∥2

L̂(θ0)
, the expected

generalization gap at iteration K satisfies,

E[L(θ̃(K)) − L̂(θ̃(K))] ≤ 4
n

E[2K L̂(θ̃) + 9∥θ̃ − θ̃(0)∥2
4η

] . (93)
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Proof. Note that the assumptions of Lemma 11 are satisfied. Moreover, as per Corollary 1 the objective is
Lipschitz at all iterates with parameter β̃1(θ) since ∀k ∈ [K] ∶ ∥θk∥2,∞ ≤ 3∥θ −θ0∥+ ∥θ∥2,∞. Thus, by Lemma
3 and Lemma 11 we have,

E[L(θK) − L̂(θK)] ≤
4
n

E [η (β̃1(θ))
2 (2K L̂(θ) + 9∥θ − θ0∥2

4η
)] . (94)

Recalling the condition on step-size η ≤ 1
ρ(θ) ≤

1
(β̃1(θ))2

concludes the proof.

C.2 Corollary 4

Corollary 4 (Generalization loss under realizability). Let boundedness Assumption 1 hold. Also let realizability
assumption 2 holds almost surely over the data distribution. Fix K ≥ 1. Assume any H such that

√
H ≥ 256

√
T dR3 (3

√
dR2 (3g0(

1
K
) + g( 1

K
)) + 1) g0(

1
K
)2 . (95)

Let the step-size satisfy η ≤ 1 ∧ 1/ρ(K) ∧ g0(1)2 ∧ g0(1)2

L̂(θ0)
where ρ(K) is as defined in Corollary 3. Then the

expected generalization gap at iteration K of GD satisfies,

E[L(θK) − L̂(θ̃K)] ≤
17 g0( 1

K
)2

η n
. (96)

Proof. According to Assumption 2, for any sufficiently small ε > 0, there exists a θ(ε) such that L̂(θ(ε)) ≤ ε
and ∥θ(ε) − θ̃0∥ = g0(ε). Pick ε = 1

K
. Let the step-size, η > 0 satisfies the assumption of Descent Lemma 7.

Since L̂(θ(1/K)) ≤ 1
K

, we have:

∥θ(1/K) − θ0∥2

KL̂(θ(1/K))
≥ ∥θ(1/K) − θ0∥2 = g0(

1
K
)2 ≥ g0(1)2

and

∥θ(1/K) − θ0∥2

L̂(θ0)
=
g0( 1

K
)2

L̂(θ0)
≥ g0(1)2

L̂(θ0)
.

Therefore, we can conclude that

η ≤ g0(1)2 ∧
g0(1)2

L̂(θ0)
≤ ∥θ

(1/K) − θ0∥2

KL̂(θ(1/K))
∧ ∥θ

(1/K) − θ0∥2

L̂(θ0)
. (97)

where in the second inequality we used the fact that g0(⋅) is a non-increasing function. The desired result is
obtained by Theorem 2 and the fact that

KL̂(θ(1/K)) ≤ ∥θ
(1/K) − θ0∥2

η
=
g0( 1

K
)2

η
.

C.3 From good initialization to realizability

The proposition below shows that starting from a good initialization we can always find θ(ϵ) satisfying the
realizability Assumption 2 provided the number of heads is large enough.
Proposition 7 (From good initialization to realizability). Suppose good initialization θ0 as per Definition 1.
Fix any 1 ≥ ε > 0 and let

√
H ≥ 5

√
T dR3B2
BΦ

⋅ (3
√
dR2 + 1) ⋅ (2BΦ + log(1/ε)

γ
)

2

⋅ (1 ∨ 2BΦ + log(1/ε)
γ

) . (98)

Then, the realizability Assumption 2 holds with g0(ε) = 1
γ
(2BΦ + log(1/ε)) and g(ϵ) = B2 + g0(ϵ).
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Proof. By Taylor expansion there exists θ′ ∈ [θ,θ0] such that,

yiΦ(Xi; θ) = yiΦ(Xi; θ0) + yi ⟨∇Φ (Xi; θ0) ,θ − θ0⟩ +
1
2
yi ⟨θ − θ0,∇2Φ(Xi; θ′) (θ − θ0)⟩ . (99)

Pick
θ ∶= θ(ε) = θ0 +

2BΦ + log(1/ε)
γ

θ⋆ .

Substituting this in (99) and using that θ0 is a good initialization, we obtain for all i ∈ [n]:

yiΦ(Xi; θ) ≥ − ∣yiΦ(Xi; θ0)∣ + (2BΦ + log(1/ε)) − 1
2
∥∇2Φ(Xi; θ′)∥2 ∥θ − θ0∥2

≥ −BΦ + (2BΦ + log(1/ε)) − 1
2
∥∇2Φ(Xi; θ′)∥2 (

2BΦ + log(1/ε)
γ

)
2

. (100)

To continue, we show in Lemma 5 in the appendix that ∥∇2Φ(Xi; θ′)∥2 ≤ β3(θ′)/
√
H where recall β3(θ) ∶=

2
√
T dR3 (3

√
dR2 ∥θ∥2,∞ + 1) defined in Corollary 1. Now, note that

β3(θ′) ≤ β3(θ(ε)) + β3(θ0) ≤
2BΦ + log(1/ε)

γ
⋅ β3(θ⋆) + 2β3(θ0)

≤ 2
√

2
√
T dR3B2 (3

√
dR2 + 1) ⋅ (2 + 2BΦ + log(1/ε)

γ
)

≤ 10
√
T dR3B2 (3

√
dR2 + 1) ⋅ (1 ∨ 2BΦ + log(1/ε)

γ
) ,

where the first two inequalities follow by triangle inequality and the inequality after those follows because
∥θ⋆∥2,∞ ≤ ∥θ⋆∥2 ≤

√
2, 1 ≤ B2 and also ∥θ0∥2,∞ ≤ B2 by good initialization assumption.

Plugging in this bound in (100) and using the assumption on H yields that yiΦ(Xi; θ) ≥ log(1/ϵ) for all
i ∈ [n]. This in turn implies that L̂i(θ) ∶= ℓ(yiΦ(Xi; θ)) ≤ log(1 + ε) ≤ ε, and thus L̂(θ) ≤ ε as desired.
Furthermore, note by definition of θ(ϵ) that g0(ϵ) = 2BΦ+log(1/ε)

γ
and g(ϵ) = B2 + g0(ϵ) . For the latter, we

used triangle inequality and the rough bound ∥θ⋆∥2,∞ ≤ ∥θ⋆∥2 ≤
√

2 . This completes the proof.

C.4 Proof of Corollary 2

We restate the corollary here for convenience, this time also including exact constants.
Corollary 5 (Restatement of Cor. 2). Suppose good initialization θ0 and let

√
H ≥ 256

√
T dR3B2 (3

√
dR2 (4 g0(

1
K
) + B2) + 1) g0(

1
K
)2 ,

where g0( 1
K
) = 2BΦ+log(K)

γ
. Further, denote for convenience

α(K) ∶= 3
√
dR2 [3

√
T R3 (4g0(

1
K
) +B2) + 2

√
T R]

and ρ(K) = ( 2
√
T dR3
√
H

+ T R2

4 ) α(K)
2. Then, for any fixed step-size

η ≤ 1 ∧ 1/ρ(K) ∧ 4B2
Φ

γ2 ⋅
1

log(1 + eBΦ) ,

the following bounds hold:

L̂(θK) ≤
2
K
+ 5 (2BΦ + log(K))2

4γ2 ηK
and E[L(θK) − L̂(θK)] ≤

17 (2BΦ + log(K))2

γ2 η n
. (101)
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Proof. First, we prove that the given assumption on H satisfies the conditions of Proposition 7 for ε = 1
K

.

√
H ≥ 256

√
T dR3B2 (3

√
dR2 (4 g0(

1
K
) + B2) + 1) g0(

1
K
)2

= 256
√
T dR3B2 (3

√
dR2 (3 g0(

1
K
) + g( 1

K
)) + 1) g0(

1
K
)2 .

If 1 > g0( 1
K
),

√
H ≥ 256

√
T dR3B2 (3

√
dR2 (4 g0(

1
K
) + B2) + 1) g0(

1
K
)2

≥ 5
√
T dR3B2 (3

√
dR2 + 1) g0(

1
K
)2 .

It means that the condition of Proposition 7 on
√
H is satisfied. Moreover, if 1 ≤ g0( 1

K
),

√
H ≥ 256

√
T dR3B2 (3

√
dR2 (4 g0(

1
K
) + B2) + 1) g0(

1
K
)2

≥ 256
√
T dR3B2 (12

√
dR2 g0(

1
K
)) g0(

1
K
)2

≥ 5
√
T dR3B2 (3

√
dR2 + 1) g0(

1
K
)3 ,

and again the condition of Proposition 7 on
√
H is satisfied. Then, we can apply the results of Corollaries 3

and 4 for a fixed K which satisfies K ≥ 1. Note that

g0(1) =
2BΦ
γ

, and L̂(θ0) ≤ log(1 + eBΦ) .

Thus, the condition on step-size simplifies to η ≤ 1 ∧ 1/ρ(K) ∧ 4B2
Φ

γ2 ⋅ 1
log(1+eBΦ) . This completes the proof.

D Proofs for Section 5

D.1 Useful facts

Fact 1. Let x ∈ Rd be subgaussian vector with ∥x∥ψ2 ≤ K. Then, for any δ ∈ (0,1) and absolute constant
C > 0 it holds with probability at least 1 − δ that ∥x∥2 ≤ CK(

√
d +
√

log(1/δ)) .
Fact 2. Suppose Xh, h ∈ [H] are IID realizations of random variable X for which E[X] = µ and ∣X ∣ ≤ B
almost surely. Then, for any δ ∈ (0,1), with probability at least 1 − δ it holds that

RRRRRRRRRRRR

1
H
∑
h∈[H]

Xh − µ
RRRRRRRRRRRR
≤ 2B

√
log(1/δ)

2H
.

D.2 Proof of Proposition 2

Recall

Φ̃(X; θ̃) = 1√
H
∑
h∈[H]

Φh(X; Wh,Uh) =
1√
H
∑
h∈[H]

⟨Uh,φ(XWhX⊺)X⟩ ,

where θ̃ = concat(θ1,θ2, ...,θH) denotes the trainable parameters. After completing the first phase of training,
the initialization for the second phase is as follows for all h ∈ [H]:

θ
(1)
h = concat(U (1)h ,W

(1)
h ) ∶ W

(1)
h = 0, U

(1)
h = αh

⎛
⎝
ζ

2
1Tu⊺

⋆ + 1Tp⊺
⎞
⎠
, (102)
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where recall that αh ∼ Unif(±1) and from Lemma 2 it holds with probability 1 − δ that ∥p∥ ≤ P where the
parameter P is defined in (6). Onwards, we condition on this good event.

We prove the three properties P1,P2, and P3 in the order stated below.

D.2.1 Proof of P1: Bounded norm per head

This is straightforward by noting that for all h ∈ [H]:

∥θ(1)h ∥2 = ∥U
(1)
h ∥F ≤

ζ

2
√
T ∥u⋆∥2 +

√
T ∥p∥2 ≤

ζ

2
√
T
√

2S +
√
TP .

D.2.2 Proof of P2: Bounded initialization

Lemma 12 (Initialization bound). Let any X sampled from DM1 and satisfying Assumption 3. Given the
initialization in (102), for any δ ∈ (0,1) it holds with probability at least 1 − δ that

∣Φ̃(X; θ̃(1))∣ ≤ T R(S + P )
√

2 log(1/δ) .

Proof.

Φ̃(X; θ̃(1)) = 1√
H
∑
h∈[H]

Φh(X; θ
(1)
h ) =

1√
H
∑
h∈[H]

⟨U (1)h ,φ(XW
(1)
h X⊺)X⟩.

Using the initialization in (102) and recalling φ(0) = 1T1⊺T /T , we have

1√
H
∑
h∈[H]

⟨U (1)h ,φ(XW
(1)
h X⊺)X⟩ = 1√

H
∑
h∈[H]

αh
T
⟨U (1)h ,1T1

⊺
TX⟩ =∶ 1√

H
∑
h∈[H]

Xh . (103)

Note for each h ∈ [H] that Xh in (103) depends only on the random variable αh. Recall that αh, h ∈ [H] are
IID Unif(±1). Thus, {Xh}h∈[H] are IID with 0 mean as Eα = 0. Further, note that

∣Xh∣ = ∣
α

T
⟨U (1),1T1⊺TX⟩∣ = ∣α

T
⟨ζ

2
1Tu⊺

⋆ + 1Tp⊺,1T1
⊺
TX⟩∣

≤ 1
T
(ζ

2
√
T ∥u⋆∥ +

√
T ∥p∥)

√
T ∥ ∑

t∈[T ]
xt∥ ≤

1
T
(ζ

2
√
T ∥u⋆∥ +

√
T ∥p∥)

√
TRT ≤ TR(S + P ).

Thus, using Hoeffding’s inequality (see Fact 2) we have for some absolute constant c > 0, with probability at
least 1 − δ:

∣Φ̃(X; θ̃(1))∣ ≤ TR(S + P )
√

2 log(1/δ).

D.2.3 Proof of P3: NTK separability

We prove property P3 in two steps each stated in a separate lemma below
Lemma 13. Let

W⋆ = µ+µ⊺
+ +µ−µ⊺

− + ∑
ℓ∈[M]

νℓ(µ+ +µ−)⊺, (104)

U⋆ = 1Tu⊺
⋆. (105)

Given the initialization θ(1) in (102) and θ⋆ ∶= (U⋆, sign(α)W ⋆) we have for any (X, y) sampled from DM1
and satisfying Assumption 3:

Eθ(1) y⟨∇θΦ(X; θ(1)),θ⋆⟩ ≥ γ⋆,
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where the expectation is taken over α ∼ Unif(±1) and

γ⋆ ∶=
T (1 − ζ)ζ

4
√

2(M + 1)
(ζS4 − 7Z̄S2 − 12Z̄2 − 16 Z̄

3

S2 ) − PT
5/2(S +Z)3 + S

√
T√

2
(ζ − 2(1 − ζ)Zµ

S2 ),

where Z̄ = Zµ ∨ Zν , and U⋆,W ⋆ denote normalized U⋆,W⋆, respectively.

Proof.

⟨∇θΦ(X; θ(1)),θ⋆⟩ = sign(α)⟨∇W Φ(X; θ(1)),W ⋆⟩ + ⟨∇U Φ(X; θ(1)),U⋆⟩ .

Using θ(1) = concat(U (1),0) and U⋆ = U⋆
∥U⋆∥F =

1
S
√

2T 1Tu⊺
⋆, we have:

y ⟨∇U Φ(X; θ(1)),U⋆⟩ = y ⟨φ(XW (1)X⊺)X,U⋆⟩ =
y

TS
√

2T
⟨1T1⊺TX,1Tu⊺

⋆⟩

= y

S
√

2T
u⊺
⋆ (∑

t

xt) ≥
S
√
T√

2
(ζ − 2(1 − ζ)Zµ

S2 ) . (106)

The gradient with respect to W evaluated at θ(1) = concat(U (1),0) is

∇W Φ(X; θ(1)) = αζ
2 ∑

t∈[T ]
xtu

⊺
⋆X⊺RtX + α ∑

t∈[T ]
xtp

⊺X⊺RtX ,

where
Rt =R0 ∶=

1
T
⋅ IT −

1
T 2 ⋅ 1T1

⊺
T , ∀t ∈ [T ].

Thus,

y⟨∇W Φ (X; θ(1)) ,sign(α)W ⋆⟩

= ∣α∣
∥W⋆∥F

(ζ
2
y ∑
t∈[T ]

u⊺
⋆X⊺R0rt(X; W⋆)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
TermI

+ y ⟨ ∑
t∈[T ]

xtp
⊺X⊺R0X,W⋆⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
TermII

), (107)

where we set for convenience:
rt(X; W⋆) =XW⋆

⊺xt ∈ RT .

To compute rt(X; W⋆), we consider two cases where row corresponds to a signal relevant of noisy token. We
denote the t′ ∈ [T ] entry of rt as [rt]t′ ∈ R.

Case 1. Relevance scores of signal tokens: Consider signal token t ∈R so that xt = µy. Using orthogonality
in Assumption 3 we can compute for all t′ ∈ [T ]

t ∈R ∶ [rt]t′ =
⎧⎪⎪⎨⎪⎪⎩

S4 , t′ ∈R ,
S2(µ⊺

yzt′) , t′ ∈Rc .
(108)

Therefore, again using Assumption 3,

t ∈R ∶ [rt]t′
⎧⎪⎪⎨⎪⎪⎩

= S4 , t′ ∈R ,
≤ S2Zµ , t′ ∈Rc .

(109)

Case 2. Relevance scores of noisy tokens: Similar to the calculations above, using Assumption 3 for parame-
ters W ⋆ as in (126) it holds for noisy tokens t ∈Rc that

t ∈Rc ∶ [rt]t′ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S4 + S2(µ⊺
yzt) + S2(∑ℓ ν⊺

ℓ zt) , t′ ∈R
(µ⊺

+zt)(µ⊺
+zt′) + (µ⊺

−zt)(µ⊺
−zt′) , t′ ∈Rc

+∑ℓ(ν⊺
ℓ zt)(µ⊺

+zt′) +∑ℓ(ν⊺
ℓ zt)(µ⊺

−zt′) + S2(µ+ +µ−)⊺zt′

(110)
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Now, we can start to bound each of the two terms in (107) separately below.

Bounding TermI: Recall the data matrix complies with Assumption 3, hence.

[Xu⋆]t′ =
⎧⎪⎪⎨⎪⎪⎩

yS2 , t′ ∈R
z⊺t′(µ+ −µ−) , t′ ∈Rc

. (111)

Using this, we can compute:

y

T
∑
t∈[T ]

u⊺
⋆X⊺rt(X; W ∗) = y

T

⎧⎪⎪⎨⎪⎪⎩
∑
t∈R

u⊺
⋆X⊺rt(X; W⋆) + ∑

t∈Rc

u⊺
⋆X⊺rt(X; W⋆)

⎫⎪⎪⎬⎪⎪⎭

= y
T

⎧⎪⎪⎨⎪⎪⎩
∑
t∈R
(∑
t′∈R
[Xu⋆]t′ rt(X; W⋆)t′ + ∑

t′∈Rc

[Xu⋆]t′ rt(X; W⋆)t′)

+ ∑
t∈Rc

(∑
t′∈R
[Xu⋆]t′ rt(X; W⋆)t′ + ∑

t′∈Rc

[Xu⋆]t′ rt(X; W⋆)t′)
⎫⎪⎪⎬⎪⎪⎭

= y
T

⎧⎪⎪⎨⎪⎪⎩
ζT (ζT yS2 S4 + ∑

t′∈Rc

z⊺t′(µ+ −µ−)S2(µ⊺
yzt′))

+ ∑
t∈Rc

[ζTyS2 ⋅
⎛
⎝
S4 + S2(µ⊺

yzt) + S2(∑
jt

ν⊺
jt

zt)
⎞
⎠

+ ∑
t′∈Rc

z⊺t′(µ+ −µ−) ⋅ ((µ⊺
+zt)(µ⊺

+zt′) + (µ⊺
−zt)(µ⊺

−zt′)

+ ∑
jt

(ν⊺
jt

zt)(µ⊺
+zt′) +∑

jt

(ν⊺
jt

zt)(µ⊺
−zt′) + S2(µ+ +µ−)⊺zt′)]

⎫⎪⎪⎬⎪⎪⎭
.

Further using the noise bounds in Assumption 3, and rt(X; W⋆) from (127), (110) we have:

y

T
∑
t∈[T ]

u⊺
⋆X⊺rt(X; W⋆)

≥ ζT [ζS6 − 2(1 − ζ)Z2
µS

2] + (1 − ζ)T [ζS6 − ζ(Zµ +Zν)S4 − 2Zµ(1 − ζ)(2Z2
µ + 2ZµZν + 2ZµS2)]

≥ T[ζ S6 − ζ (1 − ζ) (Zµ +Zν)S4 − 2(1 − ζ) (ζ + 2(1 − ζ))Z2
µ S

2 − 4 (1 − ζ)2Z2
µ (Zµ +Zν)] . (112)

For the second part of TermI:

− y
T 2 ∑

t∈[T ]
u⊺
⋆X⊺1T1

⊺
Trt(X; W⋆) = −

y

T 2 ∑
t∈[T ]

1⊺TXu⋆ 1
⊺
Trt(X; W⋆)

= − 1
T 2 {∑

t′∈R
y2S2 + ∑

t′∈Rc

yz⊺t′(µ+ −µ−)} ⋅
⎧⎪⎪⎨⎪⎪⎩
∑
t∈R
[∑
t′∈R

S4 + ∑
t′∈Rc

S2z⊺t′µy]

+ ∑
t∈Rc

[ ∑
t′∈R

⎛
⎝
S4 + S2z⊺t µy + S2∑

jt

ν⊺
jt

zt
⎞
⎠
+ ∑
t′∈Rc

((z⊺t µ+)(z⊺t′µ+) + (z⊺t µ−)µ−)

+ (∑
jt

ν⊺
jt

zt)(z⊺t′µ+) + (∑
jt

ν⊺
jt

zt)(z⊺t′µ−) + S2z⊺t′(µ+ +µ−))]
⎫⎪⎪⎬⎪⎪⎭
.
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Using Assumption 3 to simplify the second term:

− y

T 2 ∑
t∈[T ]

u⊺
⋆X⊺1T1

⊺
Trt(X; W⋆)

≥ T[ − ζ3S6 − ζ2(1 − ζ)ZµS4 − ζ2(1 − ζ)S6 − ζ2(1 − ζ)(Zµ +Zν)S4 − 2ζ(1 − ζ)2ZµS4

− 2ζ(1 − ζ)2Zµ(Zµ +Zν)S2 − 2ζ2(1 − ζ)ZµS4 − 2ζ(1 − ζ)2Z2
µS

2 − 2ζ(1 − ζ)2ZµS4

− 2ζ(1 − ζ)2Zµ(Zµ +Zν)S2 − 4(1 − ζ)3Z2
µS

2 − 4(1 − ζ)3Z2
µ(Zµ +Zν)] .

Therefore,

− y
T 2 ∑

t∈[T ]
u⊺
⋆X⊺1T1

⊺
Trt(X; W⋆) ≥ T[ − ζ2S6 − ζ(1 − ζ)(4Zµ + ζZν)S4 − 2(1 − ζ)2((2 + ζ)Zµ

+ 2ζZν)ZµS2 − 4(1 − ζ)3Z2
µ(Zµ +Zν)] . (113)

Bounding TermII:

y⟨ ∑
t∈[T ]

xtp
⊺X⊺R0X,W⋆⟩ ≥ − ∑

t∈[T ]
∥xt∥∥p∥∥X⊺R0X∥F ∥W⋆∥F

≥ −P (ζTS + (1 − ζ)T (S +Z))∥R0∥F ∥X∥2FS2
√

2(M + 1)
≥ −
√

2(M + 1)S2PT 5/2(ζS + (1 − ζ)(S +Z))(ζS2 + (1 − ζ)(S +Z)2) . (114)

Combining (112), (113), (114) in (107) we get:

y⟨∇W Φ(X; θ(1)),W⋆⟩

≥ α
⎧⎪⎪⎨⎪⎪⎩

Tζ

2
[ζ S6 − ζ (1 − ζ) (Zµ +Zν)S4 − 2(1 − ζ) (ζ + 2(1 − ζ))Z2

µ S
2 − 4 (1 − ζ)2Z2

µ (Zµ +Zν)]

− Tζ
2
[ζ2S6 + ζ(1 − ζ)(4Zµ + ζZν)S4 + 2(1 − ζ)2((2 + ζ)Zµ + 2ζZν)ZµS2 + 4(1 − ζ)3Z2

µ(Zµ +Zν)]

−
√

2(M + 1)S2PT 5/2(ζS + (1 − ζ)(S +Z))(ζS2 + (1 − ζ)(S +Z)2)
⎫⎪⎪⎬⎪⎪⎭

= α
⎧⎪⎪⎨⎪⎪⎩

T (1 − ζ)ζ
2

[ζS6 − ζ(5Zµ + (1 + ζ)Zν)S4 − 2((4 − ζ2)Zµ + 2ζ(1 − ζ)Zν)ZµS2

− 4(1 − ζ)(2 − ζ)(Zµ +Zν)Z2
µ] −

√
2(M + 1)S2PT 5/2(S + (1 − ζ)Z)(ζS2 + (1 − ζ)(S +Z)2)

⎫⎪⎪⎬⎪⎪⎭

≥ α
⎧⎪⎪⎨⎪⎪⎩

T (1 − ζ)ζ
2

[ζS6 − (5Zµ + 2Zν)S4 − 4(2Zµ +Zν)ZµS2 − 8(Zµ +Zν)Z2
µ]

−
√

2(M + 1)S2PT 5/2(S +Z)(S2 + (S +Z)2)
⎫⎪⎪⎬⎪⎪⎭

≥ α{T (1 − ζ)ζ
2

(ζS6 − 7Z̄S4 − 12Z̄2S2 − 16Z̄3) − 2
√

2(M + 1)PT 5/2S2(S +Z)3}, (115)
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where Z̄ = Zµ ∨ Zν . Using this, we get

µ ∶ = Eα∼Unif(±1)y ⟨∇W Φ(X; θ(1)), sign(α)W⋆

∥W⋆∥F
⟩

≥ Eα∼Unif(±1)
∣α∣
∥W⋆∥

{T (1 − ζ)ζ
2

(ζS6 − 7Z̄S4 − 12Z̄2S2 − 16Z̄3) − 2
√

2(M + 1)PT 5/2S2(S +Z)3}

≥ T (1 − ζ)ζ
4
√

2(M + 1)
(ζS4 − 7Z̄S2 − 12Z̄2 − 16 Z̄

3

S2 ) − PT
5/2(S +Z)3 . (116)

Combining (106) and (116) concludes the proof.

Lemma 14 (NTK Separability). Assume initialization θ̃(1) = concat (θ(1)1 , . . . ,θ
(H)
1 ) as in (102) and IID

αh ∼ Unif(±1) for all h ∈ [H]. Recall γ⋆ and θ⋆(⋅) from Lemma 13 above. Set

θ̃⋆ =
1√
H

concat (θ⋆(θ(1)1 ), . . . ,θ⋆(θ
(1)
H )) .

Let any (X, y) from DM1. Then, with probability at least 1 − δ over the randomness of αh, h ∈ [H] it holds

y ⟨∇Φ̃ (X; θ̃(1)) , θ̃⋆⟩ ≥ γ⋆ − 2 (2R3T (S + P ) +
√
TR)

√
2 log(1/δ)

H
.

Proof. We start by expanding the empirical margin:

y ⟨∇Φ̃ (X; θ̃(1)) , θ̃⋆⟩ =
1
H
∑
h∈[H]

y⟨∇θΦ (X; θ
(1)
h ) ,θ⋆(θ

(1)
h )⟩ =∶

1
H
∑
h∈[H]

Xh . (117)

Note that each summand Xh defined above depends only on αh, h ∈ [H]. Thus, {Xh}h∈[H] are IID random
variables because {αh}h∈[H] are IID random variables. Moreover, Xh is almost-surely bounded satisfying

∣Xh∣ ≤ ∥∇θΦ (X; θ
(1)
h ) ∥∥θ⋆(θ

(1)
h )∥ ≤

√
2T R (2R2 ∥θ(1)h ∥F + 1) ≤ 2 (2R3T (S + P ) +

√
TR) . (118)

where the second inequality follows by Proposition 1 and by the assumption ∥θ⋆(θ(1)h )∥2 =
√

2 for all h ∈ [H],
and the last inequality follows because ∥θ(1)h ∥ ≤

ζ
2
√
T ∥u⋆∥2 +

√
T ∥p∥2 ≤

√
T (S + P ).

Finally, note that E[Xh] ≥ γ⋆ from Lemma 13. Given these the desired claim follows by applying Hoeffding’s
inequality (see Fact 2) to (117).

Lemma 15 (Margin). Define Z̄ ∶= Zµ ∨ Zν and

γ⋆ ∶=
T (1 − ζ)ζ

4
√

2(M + 1)
(ζS4 − 7Z̄S2 − 12Z̄2 − 16 Z̄

3

S2 ) − PT
5/2(S +Z)3 + S

√
T√

2
(ζ − 2(1 − ζ)Zµ

S2 ) . (119)

Suppose
√
H ≥ 4 ⋅ 2R

3T (S + P ) +
√
TR

γ⋆
⋅
√

2 log(n/δ) .

Then, with probability 1 − δ ∈ (0,1), P3 holds with γ = γ⋆/2.

Proof. The proof is straightforward by using union bound and plugging the condition of H in the result of
Lemma 14.
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D.3 Proof of Lemma 2

The proof of the lemma follows directly by combining the two lemmas below and using ζ ≤ 1.

Lemma 16. Fix any h ∈ [H]. Suppose zero initialization θ
(0)
h = 0 and consider first gradient step as in (102).

It then holds that W
(1)
h = 0 and U

(1)
h ∈ RT×d has identical rows all equal to

ζαh
2

u⋆ +
ζαh

2
( 1
n
∑
i∈[n1]

yiµyi −u⋆)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p1

+αh(1 − ζ)
2

1
n
∑
i∈[n1]

yi
1

(1 − ζ)T ∑t∈Rc
i

(νjt + zi,t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p2

. (120)

where recall that u⋆ = µ+ −µ−.

Proof. We start by computing

n∇θh
L̂(θ(0)h ) = ∑

i∈[n1]
∇θh

ℓ(yiΦ̃(X; θ
(0)
h )) = ∑

i∈[n1]
yiℓ

′(yiΦ̃(X; θ
(0)
h ))∇θh

Φ̃(X; θ
(0)
h )

= ℓ′(0) ∑
i∈[n1]

yi∇θh
Φ̃(X; θ

(0)
h ) =

ℓ′(0)√
H

∑
i∈[n1]

yi∇θh
Φh(X; θ

(0)
h )

= 1
2
√
H
∑
i∈[n1]

yi∇θh
Φh(X; θ

(0)
h )

where we used that Φh(X; θ
(0)
h ) = Φ̃h(X; θ

(0)
h ) = 0 because Uh = 0 and also ℓ′(0) = 1/2 for the logistic

loss. Now, recall that Φh(X; θh) = ⟨Uh,ATTNh(X; Wh)⟩. Hence, ∇Wh
Φh(X; θ

(0)
h ) = 0, which gives us

W
(1)
h =W

(0)
h . Also,

∇Uh
Φh(X; θ

(0)
h ) = ATTN(X; W

(0)
h ) = φ(0)X = 1

T
1T1

⊺
TX .

Hence, the τ -th column of U
(1)
h becomes for all τ ∈ [T ]:

[U (1)h ]∶,τ =
1

2nT
αh ∑

i∈[n1]
yi ∑
t∈[T ]

xi,t

= ζ

2n
αh ∑

i∈[n1]
yiµyi +

1
2nT

αh ∑
i∈[n1]

yi ∑
t∈Rc

i

(νjt + zi,t) .

The claim of the lemma follows by rearranging the above.

Lemma 17. Suppose labels are IID and equal probable, i.e. yi ∼ Rad(±1). Then for the two terms p1,p2 in
(120) it holds with probability at least 1 − 2δ and absolute constant C > 0 over the randomness of labels that

∥p1∥ ≤ CS(
√

d

n1
+
√

log(1/δ)
n1

) , (121)

and

∥p2∥ ≤ C(S +Z)(
√

d

n1
+
√

log(1/δ)
n1

) . (122)

Proof. For arbitrary ∥v∥ = 1, let Xv = ⟨v, 1
n ∑i∈[n1] yiµyi⟩. Then,

∥Xv∥ψ2 =
1
n
∥ ∑
i∈[n1]

yi⟨v,µyi⟩∥ψ2 ≤
C

n

√
∑
i∈[n1]

∥yi⟨v,µyi⟩∥2ψ2
≤ C S
√
n1

.
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where in the second inequality we used approximate rotation invariance of subgaussians and in the last step
we used that for all i ∈ [n1], ∣yi⟨v,µyi⟩∣ ≤ S, thus they are subgaussians with parameter CS. Further note
that Note that E[Xv] = ⟨v,u⋆⟩. Thus, by centering property of subgaussians ⟨v,p1⟩ is also subgaussian with
same constant CS/√n1. Since this holds for all v on the sphere, we conclude that p1 is CS/√n1-subgaussian.
From this, we can directly apply Fact 1 for concentration of Euclidean norm of random vectors to arrive at
(121).

We can follow exactly same steps to prove (122) for p2. The only difference is noting that for all i ∈ [n1] and
unit norm v: RRRRRRRRRRRR

yi
1

(1 − ζ)T ∑t∈Rc
i

⟨νjt + zi,t,v⟩
RRRRRRRRRRRR
≤ S +Z .

E Optimal Model

We first restate the optimal parameters θopt = (Uopt,Wopt):

Uopt ∶=
1

S
√
T
1d(µ+ −µ−)⊺ , (123)

Wopt ∶=
1

S2
√

2(M + 1)
(µ+µ⊺

+ +µ−µ⊺
− + ∑

ℓ∈[M]
νℓ(µ+ +µ−)⊺) , (124)

normalized so that ∥θopt∥F =
√

2.

The following lemma about saturation in softmax scores is used to prove Proposition 3.
Lemma 18 (Softmax saturation). Let relevance-scores vector r = [r1, . . . , rT ] ∈ RT be such that for some
L ∈ [T ] and A,B ∈ R:

r1 ≥ r2 ≥ . . . ≥ rL ≥ A and B ≥max{ri ∣ i = L + 1, . . . , T}.

Further assume A > 2B. Fix any ϵ > 0 and

Γ ≥ 2
A

log (T /L − 1
ϵ
) .

Then, for the attention weights a = [a1, . . . , aT ] ∶= φ(Γr) ∈ RT it holds that

0 ≤ 1 − ∑
i∈[L]

ai =
T

∑
i=L+1

ai ≤ ϵ . (125)

Proof. For convenience denote D ∶= ∑j∈[T ] eΓrj . Note that D ≥ LeΓA. Consider any i > L. Then,

ai =
eΓri

D
≤ e

ΓB

D
≤ eΓB

LeΓA =
1

LeΓ(A−B) ≤
1

LeΓA/2 .

Suppose Γ ≥ 2
A

log (C
ϵ
), which ensures that

eΓA/2 ≥ C/ϵ

Setting C = T−L
L
= T
L
− 1, and combining the above two displays yields the desired:

ai ≤
ϵ

T −L, i > L .

Thus, ∑i>L ai ≤ ϵ. The proof is complete by recalling that ∑i∈[T ] ai = 1, hence ∑i∈[L] ai ≥ 1 − ϵ.
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E.1 Proof of Proposition 3

First, we compute the attention matrix when the parameter W is set to the value below:

W = µ+µ⊺
+ +µ−µ⊺

− + ∑
ℓ∈[M]

νℓ(µ+ +µ−)⊺ . (126)

For convenience, use the notation r⊺t ∶= x⊺
tW X⊺ ∈ RT for the t-th row of matrix used to find attention scores.

Similar to the proof of Lemma 13 we consider two cases where row corresponds to a signal relevant of noisy
token. We denote the t′ ∈ [T ] entry of rt as [rt]t′ ∈ R.

Case 1. Relevance scores of signal tokens: Consider signal token t ∈R so that xt = µy. Then for weights W
in (126), and using orthogonality in Assumption 3 we can compute for all t′ ∈ [T ]

t ∈R ∶ [rt]t′ =
⎧⎪⎪⎨⎪⎪⎩

S4 , t′ ∈R ,
S2(µ⊺

yzt′) , t′ ∈Rc .

Therefore, again using Assumption 3,

t ∈R ∶ [rt]t′
⎧⎪⎪⎨⎪⎪⎩

= S4 , t′ ∈R ,
≤ S2Zµ , t′ ∈Rc .

(127)

Case 2. Relevance scores of noisy tokens: Similar to the calculations above, using Assumption 3 for parame-
ters W as in (126) it holds for noisy tokens t ∈Rc that

t ∈Rc ∶ [rt]t′ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S4 + S2(µ⊺
yzt) + S2(∑ℓ ν⊺

ℓ zt) , t′ ∈R
(µ⊺

+zt)(µ⊺
+zt′) + (µ⊺

−zt)(µ⊺
−zt′) , t′ ∈Rc

+∑ℓ(ν⊺
ℓ zt)(µ⊺

+zt′) +∑ℓ(ν⊺
ℓ zt)(µ⊺

−zt′) + S2(µ+ +µ−)⊺zt′

Therefore, using the noise bound assumptions, we have

t ∈Rc ∶ [rt]t′
⎧⎪⎪⎨⎪⎪⎩

≥ S4 − S2(Zµ +Zν) , t′ ∈R
≤ 2Z2

µ + 2ZµZν + 2S2Zµ , t′ ∈Rc .
(128)

Combining the above two cases, specifically Equations (127) and (128), we find that for all t ∈ [T ] the
relevance-score vectors rt are such that

t ∈ [T ] ∶ [rt]t′
⎧⎪⎪⎨⎪⎪⎩

≥ S4 − S2(Zµ +Zν) ∶= A , t′ ∈R
≤ 2(Z2

µ +ZµZν + S2Zµ) ∶= B , t′ ∈Rc ,
(129)

where we defined the parameters A and B for convenience. Note from assumption that

Zµ = Zν ≤
S2

8
Ô⇒ A ≥ 3

4
S4 > 1.25

4
S4 ≥ 2B .

Thus, the conditions of Lemma 18 hold for L = ∣R∣ = ζT . Applying the lemma we can immediately conclude
that for

Γ∗ ≥
8

3S4 log(ζ
−1 − 1
ϵ
) ≥ 2

A
log(ζ

−1 − 1
ϵ
) .

it holds:

∀t ∈ [T ] ∶ 0 ≤ 1 − ∑
t′∈R
[φ(Γ∗rt)]t′ = ∑

t′∈Rc

[φ(Γ∗rt)]t′ ≤ ϵ . (130)
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Now, recall that
W⋆ = Γ̃W for Γ̃ = Γ/(S2

√
2(M + 1)) .

Thus, it holds for all t ∈ [T ] that φ(x⊺
tW⋆XT ) = φ(Γ̃rt) . Combining this with (130) and the proposition’s

assumption on Γ (satisfying Γ̃ ≥ Γ∗), we have found that

∀t ∈ [T ] ∶ 0 ≤ 1 − ∑
t′∈R
[φ(x⊺

tW⋆XT )]
t′ = ∑

t′∈Rc

[φ(x⊺
tW⋆XT )]

t′ ≤ ϵ . (131)

In the rest of the proof, we use (131) to lower-bound the margin:

yΦ(X; θ⋆) = y⟨U⋆,ATTN(X; W⋆)⟩ =
y

S
√

2T
∑
t∈[T ]

∑
t′∈[T ]

[ϕ(x⊺
tW⋆XT )]

t′ (µ+ −µ−)⊺xt′ =∶
y

S
√

2T
∑
t∈[T ]

ψt ,

where we defined ψt, t ∈ [T ] for convenience. For any t ∈ [T ], we have

ψt = ∑
t′∈R
[ϕ(x⊺

tW⋆XT )]
t′ yS

2 + ∑
t′∈Rc

[ϕ(x⊺
tW⋆XT )]

t′ (µ+ −µ−)⊺zt′

≥ yS2 ∑
t′∈R
[ϕ(x⊺

tW⋆XT )]
t′ − 2Zµ ∑

t′∈Rc

[ϕ(x⊺
tW⋆XT )]

t′

≥ yS2(1 − ϵ) − 2ϵZµ .

Putting the last two displays together and using y2 = 1 completes the proof of the proposition.

F Linear Model

To gain additional insights into the classification of the data model DM1 and also contrast our results to a
simplified model, we examine here a linear classifier:

Φlin(X; U) = ⟨U ,X⟩ .

For this linear model, consider the oracle classifier

U⋆ =
1

S
√

2T
1Tu⊺

⋆, with u⋆ = µ+ −µ− ,

and normalization such that ∥U⋆∥F = 1 . By using Assumption 3, almost surely for all examples (X, y) the
margin of the oracle classifier is lower bounded by:

yΦlin(X; U⋆) =
1

S
√

2T
(∣R∣ ⋅ S2 + y ∑

t∈Rc

⟨µ+ −µ−,zt⟩)

≥ 1
S
√

2T
(∣R∣ ⋅ S2 − 2∣Rc∣ ⋅Zµ) =

S
√
T√

2
(ζ − 2(1 − ζ)Zµ

S2 ) =∶ γlin . (132)

G Experiments

In this section we provide some experiments discussing the role of number of heads H in the training dynamics
on synthetic data models.

Data Model DM1 We set the number of tokens T = 10 and sparsity level ζ = 0.1. We set
{µ+,µ−,ν1,ν2, ...,νM} as the canonical basis vectors in Rd, with d = 4,M = 2 and signal strength S = 2.
Noisy tokens z are sampled from a Gaussian N (0, σ2Id), with σ = 0.1. We use n = 100 training samples in
each experiment and evaluate on a test set of size 300 (total 5 trials). All models are initialized as θ̃(0) = 0.

Figure 2 shows the effect of increasing the number of heads when running GD with constant step-size η = 1.0
and data generated from data model DM1. Notice that rate of train loss decay reduces as we increase H,
highlighting a potential downside of overparameterization. A similar observation has been recently noted by
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Xu & Du (2023) when optimizing with GD to learn a single neuron with ReLU activation under Gaussian
input. We also observe that at least for smaller H, GD indeed achieves margin γattn. It is worth noting that
these observations do not contradict our theoretical findings in Theorems 1 and 2 which guarantee training
convergence and generalization decay given sufficiently large number of heads H, without making an explicit
connection between the rates of convergence as we increase H. We also test how these rates change if we
scale step-size as η = O (

√
H) for GD (Figure 3, left) or optimize with Adam (Figure 3, right) using constant

step-size η = 0.06. It is interesting to observe that in both these cases, the convergence speeds up for larger
H, especially when optimizing with Adam, but somewhat strangely the margin attained by GD for larger H
continues to fall away from γattn. Further, note that our theory only covers step-size η = O (1) and the trends
observed in Figure 3 with η = O (

√
H) for GD fall outside this regime. In essence, we believe that it would

be interesting future work to see how well these observations generalize to different datasets and develop
theory that explains the relation of overparameterization to rates of convergence.

GD with η = O (1)

Figure 2: For data model DM1. Effect of number of heads H on convergence rates when
trained with GD for constant step-size η = O (1). The average ∥⋅∥ illustrates 1/H and 1/

√
H

average for W and U across heads, respectively. Attn-score denotes the softmax scores for the
relevant tokens averaged across all train samples and heads. The average ∥W ∥ indicates the
saturation of softmax scores and consequently the token-selection (attn-score), and the average
∥U∥ controls the loss behaviour. Results demonstrate that overparameterization slows down
GD with constant step-size. The circled area shows a O(1/t) trend similar to what our training
and generalization bounds predict.

Planted data model Fix some W ∗ ∈ Rd×d, U∗ ∈ RT×d. Entries within X are sampled IID Xij ∼ N (0, 1), ∀i ∈
[T ], j ∈ [d]. Given such an X ∈ RT×d, generate the label y using W ∗ as the attention matrix and U∗ as the
projection classifier:

y = sign(Φ(X; W ∗,U∗)) = sign(⟨U∗,φ(XW ∗X⊺)X⟩) . (DM2)

Data generated using model DM2 is used to train a multi-head self-attention model as given in equation
(2). Such a teacher-student setting (train the student network to learn the ground truth parent) has been
well explored in the past in the context of neural networks (Zhou et al., 2021; Safran et al., 2021). We set
d = 5, T = 10. The train set contains n = 1000 samples in each experiment and we evaluate on a test set of
size 3000. Each result is averaged over 5 trials. For numerical ease, while generating (example, label) pairs
we drop the samples for which ∣output logit∣ ≤ γattn, where we call γattn > 0 to be margin for the data model.
We set γattn = 0.2 in all the experiments. All models are initialized as θ̃(0) = 0. From Figure 4 we observe
that overparameterization somewhat improves convergence speeds for GD with step-size O (

√
H), similar to

tokenized mixture model (Figure 3, left). Addition of momentum significantly helps speeding up convergence
(see Figure 5, left) and so does optimizing with Adam (Figure 5, right). Interesting to note that all the
models reach the expected margin γattn which was not the case for large H for the tokenized mixture model.
Further, we can observe that initializing at θ̃(0) = 0, all the optimizers find the planted model.
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GD with η = O (
√
H) Adam with η = O (1)

Figure 3: For data model DM1. Effect of number of heads H on convergence rates when
(left) trained with GD when scaling step-size as η = O (

√
H); (right) trained with Adam with

constant step-size η = O (1). Quantities plotted are same as in Figure 2. Results demonstrate
that overparameterization speeds-up with train and test loss convergence in both the scenarios.

SST2 dataset We conduct an additional experiment on a simple real-world dataset. The SST2 dataset
(Socher et al., 2013) consists of sentences, with each sentence having a associated binary label to classify the
sentiment. We fine-tune RoBERTa based models with varying number of heads using AdamW (Loshchilov &
Hutter, 2019) optimizer with a learning rate of 5e−6. We train all the models for 5 epochs, with the batch-size
set to 32. We use the Hugging Face pytorch-transformers implementation of the roberta-base
model, with pretrained weights (Liu et al., 2019). In Figure 6 we see that increasing the number of heads
speeds up the optimization and generalization. This behaviour is similarly observed for GD with momentum
and Adam in Figure 5.

GD with η = O (
√
H)

Figure 4: For data model DM2. Effect of number of heads H on convergence rates when
trained with GD when scaling step-size as η = O (

√
H). See Figure 2 caption for to get more

context on average ∥⋅∥. Alignment of W with the planted-head W̃ ⋆ at any iteration k is given
by ⟨W̃k,W̃

⋆⟩
∥W̃k∥∥W̃ ⋆∥ , where W̃ ⋆ ∶= concat ({W ⋆}h∈[H]) contains W ⋆ repeated H times. Alignment

between Ũ and Ũ⋆ is computed similarly.

H Related work

This section elaborates on the paragraph on related work in Section 1.
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GD with η = O (
√
H) + momentum Adam with η = O (1)

Figure 5: For data model DM2. Effect of number of heads H on convergence rates when
trained with (left) GD + momentum where step-size scales as η = O (

√
H); (right) Adam with

constant step-size η = O (1). Quantities plotted are same as in Figure 4. Results demonstrate
that overparameterization speeds up convergence in both scenarios.

Figure 6: For SST-2 dataset (Socher et al., 2013). Effect of number of heads H on
convergence rates when trained with AdamW. Results demonstrate that increasing the number
of heads speeds up the training and generalization dynamics.

Transformers and Self-attention. The landscape of NLP and machine translation was profoundly
reshaped by the advent of Transformers, as pioneered by Vaswani et al. (2017) building upon earlier
investigations into self-attention as explored in the works of Cheng et al. (2016); Lin et al. (2017); Parikh
et al. (2016). More recent developments include the transformative success of large language models like,
LLaMA (Touvron et al., 2023), ChatGPT (OpenAI, 2022), and GPT4 (OpenAI, 2023). Despite this, the
learning dynamics of the self-attention mechanism remain largely unknown. Some recent works have focused
on understanding the expressive power (Baldi & Vershynin, 2022; Dong et al., 2021; Yun et al., 2020a;b;
Sanford et al., 2023; Bietti et al., 2023) and memory capacity of the attention mechanism (Baldi & Vershynin,
2022; Dong et al., 2021; Yun et al., 2020a;b; Mahdavi et al., 2023). Other aspects which are explored include
obtaining convex reformulations for the training problem (Sahiner et al., 2022; Ergen et al., 2022), studying
sparse function representations in self-attention mechanism (Edelman et al., 2021; Likhosherstov et al.,
2021) and investigating the inductive bias of masked self-attention models. Additionally, a sub-area gaining
increasing popularity is theoretical investigation of in-context learning, e.g. (von Oswald et al., 2022; Zhang
et al., 2023; Akyürek et al., 2023; Li et al., 2023b).
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Here, we discuss works that aim to understand the optimization and generalization dynamics of self-Attention
or its variants. Oymak et al. (2023) diverges from traditional self-Attention by focusing on a variant called
prompt-Attention, aiming to gain understanding of prompt-tuning. Lu et al. (2021) show that for a bag
of words model, an attention model optimized with gradient flow for a topic classification task discovers
the “topic” word as training proceeds. However, they don’t provide finite-time optimization-generalization
rates. Jelassi et al. (2022) shed light on how ViTs learn spatially localized patterns, even though this spatial
structure is no longer explicitly represented after the image is split into patches. Specifically, they show that
for binary classification using gradient-based methods from random initialization, transformers implicitly
prefer the solution that learns the spatial structure of the dataset. Li et al. (2023a) provided theoretical
results on training three-layer ViTs for classification tasks for a similar data model as ours (tokenized mixture
data). They provide sample complexity for achieving zero generalization error, and also examined the degree
of sparsity in attention maps when trained using SGD. Contemporaneous works include (Tian et al., 2023;
Tarzanagh et al., 2023a): The former presents SGD-dynamics of single-layer transformer for the task of
next-token prediction by re-parameterizing the original problem in terms of the softmax and classification
logit matrices, and analyzing their training dynamics instead. The latter studies the implicit bias of training
the softmax weights W with a fixed decoder U via a regularization path analysis. All these works focus
on a single attention head. Instead, we leverage the use of multiple heads to establish connections to the
literature on GD training of overparameterized neural networks. Conceptually similar connections have also
been studied by Hron et al. (2020) who connect multi-head attention to a limiting Gaussian process when the
number of heads increase to infinity. In contrast, we study performance in the more practical regime of finite
number of heads and obtain and obtain finite-time optimization and generalization bounds.

Overparameterized MLPs. There has been an abundance of literature that discusses NN training
convergence and generalization dynamics via an NTK type approach, e.g. (Allen-Zhu et al., 2019; Oymak
& Soltanolkotabi, 2020; Arora et al., 2019; Nguyen & Mondelli, 2020; Banerjee et al., 2022; Nguyen et al.,
2021; Zhu et al., 2023). However, most of these works focus on GD dynamics on regression problems using
square loss and relate the training convergence and generalization to the minimum eigenvalue of the Hessian
of the NTK. On the other hand, relatively fewer works focus on classification with logistic loss under an NTK
separable data assumption, and (Nitanda et al., 2019; Ji & Telgarsky, 2020; Cao & Gu, 2019; Chen et al.,
2020; Telgarsky, 2013; Taheri & Thrampoulidis, 2023) are most relevant works that share overlapping ideas
with our work. We refer the reader to these for a more thorough overview of the NTK-regime analysis for
NNs.

Other than these, Richards & Kuzborskij (2021); Richards & Rabbat (2021); Taheri & Thrampoulidis (2023);
Lei et al. (2022) use algorithmic-stability based tools to understand the training dynamics and generalization
of GD in shallow NNs. Lei et al. (2022); Richards & Kuzborskij (2021) establish generalization bounds with
polynomial width Ω̃(poly(n)) requirement while minimizing square loss. Here, we make use of the tools
developed by Taheri & Thrampoulidis (2023) who work with self-bounded Lipschitz loss functions, like logistic
loss, similar to our analysis. The algorithmic stability arguments in the analysis of the above referenced
papers are rooted on a technique to bound generalization gap by directly relating it to train loss based on the
notion of average model stability introduced by Lei & Ying (2020). This technique has also been leveraged
by Schliserman & Koren (2022) to study linear logistic regression and Nikolakakis et al. (2022) who establish
generalization-risk bounds for Lipschitz function optimization with bounded optimal set.
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