
Probabilistic Weather Forecasting with Hierarchical
Graph Neural Networks

Joel Oskarsson
Linköping University

joel.oskarsson@liu.se

Tomas Landelius
Swedish Meteorological and

Hydrological Institute
tomas.landelius@smhi.se

Marc Peter Deisenroth
University College London
m.deisenroth@ucl.ac.uk

Fredrik Lindsten
Linköping University

fredrik.lindsten@liu.se

Abstract

In recent years, machine learning has established itself as a powerful tool for
high-resolution weather forecasting. While most current machine learning mod-
els focus on deterministic forecasts, accurately capturing the uncertainty in the
chaotic weather system calls for probabilistic modeling. We propose a probabilistic
weather forecasting model called Graph-EFM, combining a flexible latent-variable
formulation with the successful graph-based forecasting framework. The use of a
hierarchical graph construction allows for efficient sampling of spatially coherent
forecasts. Requiring only a single forward pass per time step, Graph-EFM allows
for fast generation of arbitrarily large ensembles. We experiment with the model
on both global and limited area forecasting. Ensemble forecasts from Graph-EFM
achieve equivalent or lower errors than comparable deterministic models, with the
added benefit of accurately capturing forecast uncertainty.

1 Introduction

Forecasting the dynamics of Earth’s atmosphere is a scientific problem of utmost importance. Society
is dependent on fast and informative weather forecasts for planning in areas such as transportation
and agriculture and for balancing the energy system [3]. Especially important is the use of forecasts to
issue warnings for extreme weather events [1]. Recent advances in Machine-Learning-based Weather
Prediction (MLWP) have enabled models that produce accurate forecasts in a fraction of the time of
traditional physics-based systems [37, 4, 23]. So far these developments have largely been focused
on deterministic modeling. However, forecasting only one likely weather scenario ignores the many
uncertainties in predicting future weather.

Weather is a chaotic system, resulting in high forecast uncertainty [52]. This uncertainty comes from
both imperfect representations of initial states and inaccurate descriptions of the function mapping
from one time step to the next [26]. Accurately modeling this uncertainty significantly increases the
value of weather forecasts. Such uncertainty can be communicated to end-users to improve decision
making or be used in downstream products, for example to compute a distribution over solar power
generation. Capturing the full forecast uncertainty requires us to predict not just a single likely state
trajectory, but a collection of possible future weather states. Due to the complexity and dimensionality
of the weather system the feasible way to achieve this is by generating samples from a modeled
distribution. Such ensemble forecasting is today performed using physics-based methods, where a
number of ensemble members are simulated as samples from this distribution. The computational
cost of this is however massive, often limiting the spatial resolution or size of the ensemble [3].

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

MLWP is a promising approach for addressing this limitation and enabling large ensemble forecasts.
However, for the ensemble to add value the machine learning model needs to accurately represent
the distribution. Initial attempts at MLWP ensemble forecasting either rely on ad-hoc initial state
perturbations [10, 37, 4] or have not been scaled to spatial resolutions of interest [19]. Also diffusion
models [18] have been applied to the problem, but sampling forecasts from these is computationally
expensive and can be prohibitively slow [39]. We propose a Graph-based Ensemble Forecasting
Model (Graph-EFM), enabling efficient sampling of ensemble members with only one forward-pass
per time step. The method builds on graph-based MLWP [20, 23], which is a flexible framework
that can be adapted to different geometries and state grid representations [24]. By combining a
latent-variable formulation with a hierarchical Graph Neural Network (GNN) the distribution is
modeled in a lower-dimensional space and sampled forecasts are spatially coherent.

MLWP models are typically trained for and evaluated on global weather forecasting [40, 23, 4].
Another common forecasting setup in practice is the use of Limited Area Models (LAMs) to produce
high-resolution regional forecasts [11]. Such LAMs are for example used by local weather services
in order to provide forecasts tailored to the geographical properties and societal needs of the region
[38, 44, 7, 32]. These high-resolution models are also invaluable to various industrial sectors,
including energy forecasters, who rely on precise weather predictions to manage supply and demand.
This motivates research into also constructing MLWP LAMs, which brings new challenges related to
the high resolution and boundary conditions of the limited area. In this work we experiment not just
with global forecasting, but consider also how probabilistic LAMs can be trained to produce forecasts
for the Nordic region.

Our main contributions are: 1) We develop a hierarchical GNN framework for both deterministic
and probabilistic MLWP. The hierarchical construction encourages spatially coherent fields in
forecasts. 2) We use this framework to define the probabilistic weather forecasting model Graph-EFM,
capable of efficient sampling of arbitrarily large ensemble forecasts. 3) We develop a training
method targeting both forecast quality and ensemble calibration. 4) We experiment with both global
forecasting on 1.5° resolution and a novel limited-area modeling task at 10 km resolution.

2 Related Work

Deterministic MLWP Multiple machine learning methods have been successfully applied to
large-scale weather forecasting. These include graph-based models [20, 23, 24], transformers
[4, 8, 10, 33, 25, 34] and neural operators [37, 5]. While large neural network models learn weather
dynamics purely from data, there are also parallel developments in building hybrid physics-MLWP
models [22, 50].

Ensembles from perturbations Most existing methods for MLWP ensemble forecasting follow
closely the physics-based methods, where initial states and model parameters are perturbed to create
ensemble diversity. A number of MLWP works create ensembles by ad-hoc perturbing initial states
with random noise [10, 37, 4, 16, 6]. More informed perturbations have been re-used from physics
based ensembles [39, 6] and created based on model-informed singular vectors [43]. Others try
to perturb the forecast model itself, rolling out ensemble members using different neural network
parameters [51, 43]. Such multi-model approaches require training, or at least fine-tuning, a pre-
defined number of MLWP models. Graubner et al. [16] use the SWAG method [30] to allow for
constructing multi-model ensembles of arbitrary size.

Generative modeling Probabilistic machine learning approaches aim to directly learn generative
models producing ensemble members. Similar to our approach, the SwinVRNN model [19] uses a
latent variable formulation, but combined with a Swin Transformer architecture [29]. SwinVRNN is
developed for global forecasting at 5° resolution and scales poorly to higher spatial resolutions. Also
building on the graph-based framework, Price et al. [39] train a diffusion model [18, 46] to sample
each time step. Their Gencast model produces ensemble forecasts of 0.25° global data with 12 h time
steps. Diffusion models produce realistic-looking samples, but typically require solving an ordinary
differential equation involving multiple passes through the neural network to sample each time step.
For GenCast, this results in a sampling time of 8 minutes for a single 15 day forecast on a TPUv5
device [39]. Other works use diffusion models to increase the size of physics-based ensembles [27]
or stochastically downscale deterministic forecasts [9, 31].

2

Hierarchical GNNs Motivated by capturing multiple spatial scales, hierarchical GNNs have been
used for modeling general partial differential equations [14, 28]. The overall hierarchical framework
shares much of its structure with the popular U-Net architecture [41] for computer vision tasks, but
extended to a general graph setting.

3 Background

3.1 Problem Definition

The weather forecasting problem can be summarized as mapping from a set of initial states
X−1:0 = (X−1, X0) to the sequence of future states X1:T = (X1, . . . , XT). A table of notation is
provided in appendix A. Each weather state Xt ∈ RN×dx here contains dx variables modeled at N
different locations. Geospatial data is often represented as regular grids, in which case these locations
correspond to the grid cells. The dx variables can include both atmospheric variables, modeled at
multiple vertical levels, and surface variables. As is common in MLWP we assume the initial states
to consist of two time steps, which allows for capturing first-order state dynamics. To produce a
forecast, a set of forcing inputs F 1:T are also available. These contain known quantities, such as
the time of day. There are also static features associated with the grid cells, such as the orography,
which we here consider part of the forcing.

Many variables impact the chaotic weather system, all of which are not fully captured in initial
states represented on finite grids. This induces forecast uncertainty, which we view as a distribution
p
(
X1:T |X−1:0, F 1:T

)
. In deterministic forecasting we seek a model that minimizes the Mean

Squared Error (MSE) to the future weather states [23, 33, 34]. This is equivalent to modeling only
the mean of the distribution. In probabilistic forecasting we instead aim to model the full distribution.
Note that we here specifically model the conditional distribution p

(
X1:T |X−1:0, F 1:T

)
, rather than

p
(
X1:T

∣∣F 1:T
)
. Hence we do not marginalize over uncertainty in initial states.

3.2 Graph-based Weather Forecasting

Graph-based MLWP models use an autoregressive mapping X̂t = f(Xt−2:t−1, F t) consisting of
a sequence of GNNs [20, 23, 24]. Starting from the initial states, this mapping can be iteratively
applied to roll out a full forecast X1:T . Central to the graph-based framework is the idea of mapping
from the original N grid locations to a mesh graph GM = (VM , EM). In the graph-context we refer
to the grid locations as a set VG of grid nodes. By choosing |VM | < |VG| = N it becomes efficient
to perform the majority of computations on the mesh. Such a mesh graph can also be tailored to the
forecasting setting, for example to respect the spherical geometry in global forecasting [20]. The
mapping f realizes a single-step prediction by passing Xt−2:t−1 and F t through a series of GNN
layers. In sequence, these layers: 1) map grid inputs to representations on the mesh graph; 2) perform
a number of processing steps on the mesh; 3) map back to the grid to produce the prediction for Xt.
Steps 1 and 3 use bipartite graphs GG2M = (VG ∪ VM , EG2M) and GM2G = (VG ∪ VM , EM2G) with
edges connecting the grid and mesh nodes. The GNN layers in each step compute updates for node
representations H ∈ R|V|×dz and edge representations E ∈ R|E|×dz in the graphs. For simplicity all
representation vectors have dimensionality dz .

Interaction Networks The specific GNN layers used in previous works are Interaction Networks
[2, 23]. The layers in these networks pass messages from a set of sender nodes along directed graph
edges to a set of receiver nodes. Based on these messages the edge and receiver node representations
are then updated. For a graph G = (V, E) let eα→β ∈ Rdz be the row of E corresponding to the
edge (α, β) ∈ E . Let HS be the matrix with rows containing sender node representations and HR

the corresponding matrix for receiver nodes. Interaction Networks then implement the representation
update HR, E ← GNN(G, HS , E,HR) as

ẽα→β ← MLP
(
eα→β , H

S
α , H

R
β

)
(1a)

eα→β ← eα→β + ẽα→β HR
β ← HR

β +MLP
(
HR

β ,
∑

α∈Ne(β)ẽα→β

)
(1b)

where Ne(β) = {α : (α, β) ∈ E} are the incoming neighbors of node β. Parameters in Multi-Layer
Perceptrons (MLPs) are shared across nodes and edges in the graph, but not between GNN layers.

3

Figure 1: Overview of our Graph-EFM model, with example data and graphs for a Limited Area
Model. The corresponding overview for the global setting is given in fig. 6 in appendix C.

Global mesh graphs Keisler [20] proposed to construct a mesh graph for global MLWP as an
icosahedral grid covering the globe. This approach was extended in the GraphCast model [23] by
introducing a multi-scale mesh graph with edges of varying length. Such multi-scale edges are
capable of propagating information and capturing statistical dependencies both locally and over long
distances in the graph. The multi-scale mesh graph is created by sequentially splitting the faces of
an icosahedron into a sequence of graphs GL, . . . ,G1 with node sets satisfying VL ⊂ · · · ⊂ V1 by
construction. The original icosahedron GL has the longest edges EL, stretching far across the globe,
whereas the final graph G1 has short edges E1 only connecting nodes locally. The final multi-scale
mesh graph is constructed as GMS = (V1, EL ∪ · · · ∪ E1), taking the nodes from the final graph but
connecting these using edges of all different lengths [23].

4 Weather Forecasting with Hierarchical Graph Neural Networks

Two great challenges in weather forecasting is to accurately capture processes unfolding over different
spatial scales and modeling the uncertainty in the chaotic system [52]. To tackle these challenges, we
propose to construct a hierarchical mesh graph, working with different length scales at each level
in the hierarchy. We use a sequence G1, . . . ,GL of graphs as the different levels in the hierarchy,
additionally adding connections between the nodes of adjacent levels. This construction is also highly
suitable as a basis for building probabilistic forecasting models, as discussed below. Figure 1 shows
an overview of the hierarchical mesh used in our model. See figs. 12 and 14 in the appendix for
illustrations of how this differs from the multi-scale graph.

There are multiple benefits to such a hierarchical mesh construction for MLWP. By keeping the
graphs at different levels separate, we can define GNN layers with independent parametrizations
at each level. This adds flexibility by allowing the model to learn different representation updates
for edges of different spatial scales. A hierarchical mesh graph also offers a natural, spatially-aware
dimensionality reduction, as the state in the grid is encoded into a few nodes at the top level. Such
a representation can capture the general structure of each weather state, with finer details added as
this is propagated down through the hierarchy. We leverage this property to construct a probabilistic
model by imposing a distribution over these lower-dimensional representations at the top level. This
allows for efficiently drawing spatially coherent samples from the distribution of future weather states.

4.1 Hierarchical Graph

Our hierarchical mesh graph consists of L graph levels G1, . . . ,GL with Gl = (Vl, El). Only
level 1 of the hierarchy is connected to the grid, so we re-define GG2M = (VG ∪ V1, EG2M) and
GM2G = (VG ∪ V1, EM2G). The number of nodes |Vl| decreases with the level l. The smallest set of
nodes are found at the top level L.

To pass information between the levels of the hierarchy we introduce additional graphs connecting
the different levels. Let Gl,l+1 = (Vl ∪ Vl+1, El,l+1) be a graph containing directed edges from mesh
level l to level l+1. We make use of a graph sequence G1,2, . . . ,GL−1,L to propagate information up
through the hierarchy and similarly a sequence GL,L−1, . . . ,G2,1 in the downward direction. The exact
layout of nodes and edges at and in-between levels are design choices that should be tailored to the
specific forecasting setting. Examples for global and limited-area forecasting are given in section 5.

4

4.2 Graph-FM: Deterministic Forecasting

The hierarchical graph allows for defining GNN layers both on and in-between the different levels. By
sequentially updating node and edge representations at different levels in the hierarchy, information
can be propagated up from the grid to the different levels. As these levels have edges of different
lengths, the processing at each level happens on different spatial scales. Note that this differs from
the multi-scale graph approach, where information processing over all different spatial scales happen
in the same GNN layer [23]. As a step towards our probabilistic model, we define an alternative
deterministic Graph-based Forecasting Model Graph-FM1, operating on the hierarchical graph.

In Graph-FM one processing step on the mesh graph is defined as a complete sweep through the
hierarchy. GNNs are applied sequentially to the inter-level and intra-level graphs in the order
G1,G1,2,G2, . . . ,GL−1,L,GL, updating edge and node representations at the different levels. Process-
ing steps going up the hierarchy are alternated with similar steps going down from level L to 1. The
single step mapping f consists of multiple such sweeps up and down (see appendix C.2).

4.3 Graph-EFM: Probabilistic Forecasting

Figure 2: Graphical
model for eq. (3).

To capture the uncertainty in the chaotic weather system we next aim to
construct a probabilistic model from the ground up to capture the full
distribution p

(
X1:T |X−1:0, F 1:T

)
. We start by assuming the weather

system to satisfy a second-order Markov assumption, decomposing

p
(
X1:T |X−1:0, F 1:T

)
=

∏T
t=1p

(
Xt

∣∣Xt−2:t−1, F t
)
. (2)

Factoring the distribution over time steps allows us to work with forecasts
of varying length. Specifying the model for single-step prediction avoids
having to learn separate parameters for different lead times. Next, we seek a flexible, but computa-
tionally efficient parametrization for the distribution p

(
Xt

∣∣Xt−2:t−1, F t
)
. This can be achieved by

introducing a latent random variable Zt, and letting

p
(
Xt

∣∣Xt−2:t−1, F t
)
=

∫
p
(
Xt|Zt, Xt−2:t−1, F t

)
p
(
Zt

∣∣Xt−2:t−1, F t
)
dZt. (3)

Here the stochasticity in Zt should capture the uncertainty over Xt at each time step. The corre-
sponding graphical model is shown in fig. 2. We impose a spatial structure over the latent variable by
letting Zt be |VL| × dz matrix-valued, with each row a dz-dimensional vector associated with one
node in the top level GL of the mesh graph.

The single-step model consists of two components, a latent map p
(
Zt

∣∣Xt−2:t−1, F t
)

and predictor
p
(
Xt|Zt, Xt−2:t−1, F t

)
. The latent map is parametrized using GNNs, mapping the conditioning

variables to parameters of a Gaussian distribution. We consider the predictor to be concentrated
around its mean, and realize p

(
Xt|Zt, Xt−2:t−1, F t

)
as a deterministic mapping of a similar form

as Graph-FM. By sampling Zt and passing this through the predictor we can draw a sample of Xt

from eq. (3). This sample can then be conditioned on at the next time step, continuing this sampling
process to roll out a forecast following eq. (2). This forecast constitutes one ensemble member,
and the process can be repeated to sample an ensemble of arbitrary size. We call our Graph-based
Ensemble Forecasting Model Graph-EFM. Full details about the model are given in appendix C.

Latent map We let the latent map be an isotropic Gaussian

p
(
Zt

∣∣Xt−2:t−1, F t
)
=

∏
α∈VL

N
(
Zt
α

∣∣µZ

(
Xt−2:t−1, F t

)
α
, I
)

(4)

with the mean as a function of the conditioning variables. The variance is fixed, imposing a fixed
scale for the learned latent space. The mean function µZ consists of a sequence of GNNs. These
take the inputs at the grid, propagate representations up through the hierarchical mesh graph, and
finally predicts the mean of Zt

α at each node α at level L. In appendix L.2 we verify empirically the
importance of using the latent map over a static distribution for Zt.

1The deterministic Graph-FM model was first proposed in a preliminary version of this work [35], but there
only for the LAM setting under the name Hi-LAM.

5

Predictor The predictor is a deterministic mapping

X̂t = g
(
Zt, Xt−2:t−1, F t

)
= Xt−1 + g̃

(
Zt, Xt−2:t−1, F t

)
. (5)

With the small time steps used in MLWP, Xt does not change dramatically in a single step. We
thus follow the common practice of including a skip connection to the previous state [23, 5, 19].
The predictor takes both inputs Xt−2:t−1, F t at the grid and Zt at the top of the mesh graph. To
incorporate both we design g similar to Graph-FM, performing sweeps up and down through the mesh
hierarchy. At the top of the hierarchy Zt is added to node representations HL through the residual
connections in the GNN layers. A sampled value of Zt then affects the prediction X̂t through the
downward sweep. While multiple such sweeps are possible, we found one to be sufficient in practice.

Spatial dependencies We want each sample of Xt to contain spatially coherent atmospheric fields.
One approach would be to impose spatial dependencies in the joint distribution over Zt. However,
learning and sampling from such a distribution typically comes with computational challenges [19].
Instead, we impose spatial dependencies by integrating the latent variable formulation with the
hierarchical graph. We argue that as the independent components of Zt are propagated down through
the mesh graph, gradually increasing the spatial resolution, spatial dependencies are introduced by
the model in the GNN layers. The hierarchical graph is key to this property, as the stochasticity in Zt

is necessarily spread out over the forecast region, rather than only affecting the output locally.

4.4 Training Objective

Deterministic forecasting models can be straightforwardly trained by minimizing a weighted
MSE [23] or Negative Log-Likelihood (NLL) loss [8] for rolled out forecasts. To train Graph-
EFM we instead leverage the fact that the single-step model has a structure similar to a (conditional)
Variational AutoEncoder (VAE) [21, 45], allowing us to use a variational objective. We introduce a
variational approximation q

(
Zt

∣∣Xt−2:t−1, Xt, F t
)

at each time step, approximating the true poste-
rior p

(
Zt

∣∣Xt−2:t−1, Xt, F t
)

over Zt. This variational distribution is parametrized in a similar way
as the latent map, with GNN layers mapping to a Gaussian over Zt. Note however that q also depends
on Xt, since it approximates the posterior. Using q, we can then define

LVar
(
Xt−2:t−1, Xt, F t

)
= λKLDKL

(
q
(
Zt

∣∣Xt−2:t−1, Xt, F t
)∥∥p(Zt

∣∣Xt−2:t−1, F t
))

−Eq(Zt|Xt−2:t−1,Xt,F t)

[∑
α∈VG

∑dx

j=1 logN
(
Xt

α,j

∣∣∣g(Zt, Xt−2:t−1, F t
)
α,j

, σ2
α,j

)] (6)

which is equal to the (negative) Evidence Lower Bound (ELBO) when the weighting is λKL = 1.
While the predictor g is a deterministic mapping, we introduce a Gaussian likelihood in eq. (6) to
get a well-defined learning problem. This setup corresponds to the common practice in VAEs of
assuming Gaussian observation noise, but not adding this to samples from the model [42]. The
standard deviation σα,j can either be a second output from the predictor or manually chosen (see
appendix D for details). As with deterministic models [23, 20, 8, 34], we found it crucial to fine-tune
on rolled out forecasts of multiple time steps. This improves stability and performance for longer
lead times. In the final fine-tuning we include also a Continuous Ranked Probability Score (CRPS)
loss term LCRPS [15, 22]. The full objective function is then L = LVar + λCRPSLCRPS, with λCRPS a
weighting hyperparameter. Including this CRPS loss improves the calibration of ensemble forecasts.

4.5 Improved GNN Layers: Propagation Networks

In Graph-EFM there is a large amount of information that needs to be propagated between the grid
and Zt. However, the Interaction Network GNNs are biased towards keeping old representations of
receiver nodes, rather than updating this with new information from incoming edges. Note in eq. (1)
that if the MLPs are initialized to give outputs close to 0, there will be no change to eα→β and HR

β .

In practice the model has a hard time learning to propagate useful information up from the grid to Zt.
Even when trained purely as an auto-encoder (λKL = 0), Zt easily ends up being ignored. To remedy
this we propose an alternative GNN formulation that we call Propagation Network, defined by

ẽα→β ← HS
α +MLP

(
eα→β , H

S
α , H

R
β

)
eα→β ← eα→β + ẽα→β (7a)

H̃R
β ←

1

|Ne(β)|
∑

α∈Ne(β)ẽα→β HR
β ← H̃R

β +MLP
(
HR

β , H̃R
β

)
. (7b)

6

For MLPs initialized with outputs close to 0, Propagation Networks reduce to averaging the values of
neighboring nodes. This encourages the propagation of information from HS to HR by construction.
Propagation Networks were found to perform better also in the deterministic model (see comparison
in appendix L.1), so we employ these in both Graph-FM and Graph-EFM.

5 Experiments

To evaluate our models we conduct experiments on both global and limited area forecasting. The mod-
els are implemented2 in PyTorch and trained on 8 A100 80 GB GPUs in a data-parallel configuration.
Training takes 700–1400 total GPU-hours for the global models, and around half of that for the limited
area models. The computational demands prevent us from re-training multiple models for statistical
analysis. Once trained, sampling from Graph-EFM is highly efficient. Using batched sampling on
a single GPU, 80 ensemble members are produced in 200 s (2.5 s per member) for global forecasting.

Metrics We measure the skill of deterministic models by Root Mean Squared Error (RMSE). For
probabilistic models we compute the RMSE for the ensemble mean. Good skill in terms of RMSE is
however not enough for ensemble forecasts, where we want to capture the full distribution. For these
we also assess the ensemble calibration by computing the Spread-Skill-Ratio (SpSkR). Calibrated
uncertainty corresponds to SpSkR ≈ 1 [13]. We additionally use CRPS to measure how well the
marginal distributions of the model matches the data. For deterministic models the CRPS reduces to
Mean Absolute Error (MAE). Complete definitions of all metrics are given in appendix E.

Models Achieving a fair comparisons of the actual machine learning methodology in MLWP is
challenging due to models using different spatial resolution, variables and initial states. We here
train an illustrative set of models on the same data and with comparable training setups. Our full
Graph-EFM model is compared to: 1) Graph-EFM (ms), a version of Graph-EFM using a multi-
scale mesh graph instead of the hierarchical one. 2) Graph-FM, our deterministic model using the
hierarchical graph. 3) GraphCast*, a reimplementation of GraphCast [23], adapted and trained
on our datasets. 4) GraphCast*+SWAG, a multi-model ensemble created by applying Stochastic
Weight Averaging Gaussian (SWAG) [30] to GraphCast*. Inspired by Graubner et al. [16], this
represents a simple way to augment a deterministic model to perform ensemble forecasting. Further
details about the baseline models are given in appendix C.5. For ensemble models we sample 80
members for the global experiments and 100 members for limited area forecasting. In appendix L.3
we investigate the impact of ensemble size on the evaluation. We find that improvements in metric
values quickly saturate when increasing the ensemble size. This shows that sampling even more
members would have negligible impact on the results of our experiments.

5.1 Global Forecasting with ERA5

Data and graphs We experiment on global weather forecasting up to 10 days with 6 h time steps.
The dataset used for training and evaluation is a 1.5° version of the global ERA5 reanalysis3 [17],
provided through the WeatherBench 2 benchmark [40]. The models forecast dx = 83 different
variables in total, including both surface-level variables and atmospheric variables at 13 different
pressure levels. We use the years 1959–2017 for training, 2018–2019 for validation and 2020 as a test
set. Forecasts are always started from initial conditions taken directly from ERA5, both during training
and evaluation. For global forecasting we use the graph generation process from GraphCast [23]. The
multi-scale graph GMS is created by refining the icosahedron 4 times. The hierarchical graph contains
4 levels of such icosahedral grids. More details on the global experiments are given in appendix H.

Results As the models forecast many different variables we present only a selection of results in the
main paper. Metric values for geopotential (z500) and 2 m temperature (2t) are listed in table 1 and
results for mean sea level pressure (msl) plotted in fig. 3. Line plots for all metrics and a large number
of variables are given in appendix J.1. In the appendix we also show comparisons to additional models
from the literature, trained on different data, as well as the physics-based IFS-ENS model [12]. The

2Our code is available at https://github.com/mllam/neural-lam/tree/prob_model_global
(global forecasting) and https://github.com/mllam/neural-lam/tree/prob_model_lam (LAM).

3Provided by the Copernicus Climate Change Service under the ECMWF Copernicus License.

7

https://github.com/mllam/neural-lam/tree/prob_model_global
https://github.com/mllam/neural-lam/tree/prob_model_lam

Table 1: Selection of results for global forecasting, including geopotential at 500 hPa (z500) and 2 m
temperature (2t). For RMSE and CRPS lower values are better, and SpSkR should be close to 1 for a
calibrated ensemble. The best metric values are marked with bold and second best underlined.

Lead time 5 days Lead time 10 days

Variable Model RMSE CRPS SpSkR RMSE CRPS SpSkR

z500 GraphCast* 387 236 - 808 498 -
Graph-FM 363 223 - 825 510 -
GraphCast*+SWAG 437 269 0.07 960 590 0.12
Graph-EFM (ms) 472 211 0.77 756 333 0.83
Graph-EFM 399 169 1.18 695 299 1.15

2t GraphCast* 1.65 1.00 - 2.82 1.69 -
Graph-FM 1.57 0.94 - 2.82 1.66 -
GraphCast*+SWAG 2.03 1.20 0.06 3.58 2.04 0.13
Graph-EFM (ms) 1.76 0.77 0.75 2.55 1.09 0.82
Graph-EFM 1.64 0.71 0.98 2.32 1.00 0.99

GraphCast* Graph-FM Graph-EFM (ms) Graph-EFM GraphCast*+SWA Calibrated

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0

250

500

750

(a) RMSE

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0

200

400

(b) CRPS

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(c) SpSkR

Figure 3: Results for global forecasting of mean sea level pressure (msl) at all lead times.

ensemble mean from Graph-EFM often shows improvements in RMSE over the deterministic models,
especially for longer lead times. Across the ensemble models, Graph-EFM achieves lower CRPS
values, better capturing the distribution of the weather data. Without any perturbations to initial states
Graph-EFM reaches a SpSkR close to 1. We note that GraphCast*+SWAG does not produce useful
ensemble forecasts, as these are poorly calibrated and in general do not lead to improved forecast
errors. Figure 4 shows an example forecast from Graph-EFM for specific humidity (q700) at 10 days
lead time. Examples for other variables are given in appendix J.2.

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

0.000

0.005

0.010

kg
/k

g

0.001

0.002

0.003

St
d.

-D
ev

.

Figure 4: Example Graph-EFM ensemble forecast for specific humidity at 700 hPa (q700), for lead
time 10 days. The bottom row shows 3 ensemble members, randomly chosen out of the 80.

8

Table 2: Selection of results for LAM forecasting, including geopotential at 500 hPa (z500) and
integrated column of water vapor (wvint).

Lead time 24 h Lead time 57 h

Variable Model RMSE CRPS SpSkR RMSE CRPS SpSkR

z500 GraphCast* 153 108 - 201 138 -
Graph-FM 230 162 - 354 238 -
GraphCast*+SWAG 219 136 0.08 376 206 0.10
Graph-EFM (ms) 400 261 0.22 711 470 0.23
Graph-EFM 172 91 0.84 219 115 0.75

wvint GraphCast* 1.51 1.01 - 2.06 1.32 -
Graph-FM 1.64 1.08 - 2.48 1.58 -
GraphCast*+SWAG 1.78 1.17 0.05 2.34 1.50 0.05
Graph-EFM (ms) 2.39 1.43 0.16 3.51 2.12 0.13
Graph-EFM 1.61 0.79 0.57 2.08 1.00 0.53

Extreme weather case study An important use case for ensemble forecasting is modeling extreme
weather events. While higher resolutions than 1.5° are generally desirable for accurately capturing
such extremes, we conduct one case study on using Graph-EFM for forecasting hurricane Laura. The
full case study with visualized forecasts is available in appendix F. For this example we show that there
exists ensemble members accurately predicting the landfall location of the hurricane at 7 days lead
time, while the deterministic models still show no sign of the hurricane in the region. Closer to the land-
fall event the ensemble forecast from Graph-EFM indicates uncertainties associated with the landfall
location and wind intensity. This demonstrates the added value of a probabilistic forecasting model.

5.2 Limited Area Modeling with MEPS Data

In LAMs weather forecasts are produced for a bounded region of the globe. LAM forecasting allows
for higher resolution modeling and regionally tailored model configurations [11], properties that can
be inherited by MLWP models by training on LAM data. To model weather over a limited domain,
boundary conditions need to be taken into account. In physics-based LAMs these are typically
given by a global forecast [38, 44, 7, 32]. We adapt a similar approach for MLWP LAMs, by taking
boundary conditions as additional forcing along the boundary of the forecast area. The problem of
LAM forecasting is thus about simulating physics not just based on the initial state, but also consistent
with these boundary inputs. In the models we introduce Nb additional grid nodes along the area
boundary, for the boundary forcing Bt ∈ RNb×dx . Boundary forcing Bt is always fed together with
Xt to the model. Grid nodes on the boundary and within the area are treated identically by the GNN
layers. We perform this adaptation to all models in our experiment.

Data and graphs We experiment with a dataset containing 6069 forecasts from the MetCoOp
Ensemble Prediction System (MEPS) LAM. Training on forecasts, the goal is here to learn a fast
surrogate model for MEPS. We use forecasts started during April 2021 – Jun 2022 for training and
validation, and forecasts from July 2022 – March 2023 as a test set. The data is laid out in a 238×268
grid with spatial resolution 10 km, covering the Nordic region. This dataset contains in total dx = 17
weather variables, some repeated on multiple vertical levels. Forecasts are rolled out with 3 h time
steps up to lead time 57 h. In this experiment we take also the boundary forcing directly from the
MEPS dataset. We define the boundary as the outermost 10 grid positions. Using the same dataset
for the area and boundary allows us to investigate the modeling choices in a controlled experimental
setup. In an operational scenario the boundary forcing would instead come from a re-gridded global
forecast. In the LAM setting we define our graphs as regular quadrilateral meshes covering the MEPS
forecasting area, but with far fewer nodes than the original grid. The graph hierarchy G1, . . . ,GL is
created by constructing such meshes at different resolutions. By placing each node in Gl at the center
of 3× 3 nodes in Gl−1, we can merge 4 such graph levels to create GMS. In the hierarchical graph
we instead introduce edges from each node in Gl to the 3× 3 nodes in the level below. More details
about the MEPS data and experiment can be found in appendix I.

Results A selection of metrics are shown in table 2 and full results given in appendix K. At
these shorter lead times there is no clear benefit of probabilistic modeling in terms of RMSE. Still,

9

Figure 5: Example forecasts for net solar longwave radiation (nlwrs) at lead time 57 h.

as exemplified by the standard-deviation plotted in fig. 5, probabilistic modeling provides useful
information about the forecast uncertainty. Comparing the ensemble members in fig. 5 highlights the
improved spatial coherency of the hierarchical graph in Graph-EFM. In contrast, the Graph-EFM (ms)
forecast looks patchy and lacks physically intuitive features. There are also clear visual artifacts, that
can be traced to the multi-scale graph structure. We discuss this more in-depth in appendix G. In the
LAM setting all models are under-dispersed, with SpSkR < 1. One explanation for this is that the
boundary forcing constrains the space of plausible forecasts, hindering the ensemble spread.

6 Discussion

In this paper we have explored MLWP ensemble weather forecasting using graph-based latent variable
models. Our Graph-EFM model is capable of efficiently producing accurate ensemble forecasts.
This paves the way for large-scale MLWP ensemble forecasting both in operational use and research
settings. In appendix B we further discuss the societal impact of this research. With this work we hope
to emphasize that MLWP models are not just deterministic mappings, but parametrize distributions
of weather states. It follows that ensemble forecasting should not be achieved by perturbing models,
but by directly modeling the distribution of interest.

Limitations The training process comes with some complications in terms of choosing a training
schedule and hyperparameters λKL and λCRPS. While the CRPS fine-tuning is an important training
step, we have found that choosing a too high λCRPS can introduce visual artifacts, especially for
the Graph-EFM (ms) model (see appendix G). While Graph-EFM produces diverse and physically
plausible ensemble members, the forecasts still suffer from some of the blurriness common to
deterministic models [23, 40]. We here trade off some of the visual fidelity achieved for example by
diffusion models [39] for more efficient sampling of ensemble members.

Future work Interesting avenues for future work include learning probabilistic weather models
based on other types of autoencoders [48, 49], or by directly optimizing scoring rules [36, 22].
Another approach for achieving efficient ensemble forecasting is to explore techniques for speeding
up diffusion model sampling [47].

Acknowledgments and Disclosure of Funding

This research is financially supported by the Swedish Research Council via the project Handling
Uncertainty in Machine Learning Systems (contract number: 2020-04122), the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg
Foundation, the Excellence Center at Linköping–Lund in Information Technology (ELLIIT), and the
project OWGRE, funded by partners of the ERA-Net Smart Energy Systems and Mission Innovation
through the Joint Call 2020. As such, this project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement no. 883973. Our computa-
tions were enabled by the Berzelius resource at the National Supercomputer Centre, provided by the
Knut and Alice Wallenberg Foundation.

10

References
[1] M. Astitha and E. Nikolopoulos. Definition of extreme weather events (subchapter 1.1). In

Extreme Weather Forecasting, pages 1–7. Elsevier, 2023.

[2] P. Battaglia, R. Pascanu, M. Lai, D. Jimenez Rezende, and K. Kavukcuoglu. Interaction
networks for learning about objects, relations and physics. In Advances in Neural Information
Processing Systems, volume 29, 2016.

[3] P. Bauer, A. Thorpe, and G. Brunet. The quiet revolution of numerical weather prediction.
Nature, 2015.

[4] K. Bi, L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian. Accurate medium-range global weather
forecasting with 3d neural networks. Nature, 2023.

[5] B. Bonev, T. Kurth, C. Hundt, J. Pathak, M. Baust, K. Kashinath, and A. Anandkumar. Spherical
Fourier neural operators: Learning stable dynamics on the sphere. In Proceedings of the 40th
International Conference on Machine Learning, 2023.

[6] C. Bülte, N. Horat, J. Quinting, and S. Lerch. Uncertainty quantification for data-driven weather
models. arXiv preprint arXiv:2403.13458, 2024.

[7] M. Bush, I. Boutle, J. Edwards, A. Finnenkoetter, C. Franklin, K. Hanley, A. Jayakumar,
H. Lewis, A. Lock, M. Mittermaier, S. Mohandas, R. North, A. Porson, B. Roux, S. Webster,
and M. Weeks. The second met office unified model–JULES regional atmosphere and land
configuration, RAL2. Geoscientific Model Development, 2023.

[8] K. Chen, T. Han, J. Gong, L. Bai, F. Ling, J.-J. Luo, X. Chen, L. Ma, T. Zhang, R. Su, Y. Ci,
B. Li, X. Yang, and W. Ouyang. FengWu: Pushing the skillful global medium-range weather
forecast beyond 10 days lead. arXiv preprint arXiv:2304.02948, 2023.

[9] L. Chen, F. Du, Y. Hu, Z. Wang, and F. Wang. Swinrdm: integrate swinrnn with diffusion
model towards high-resolution and high-quality weather forecasting. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, 2023.

[10] L. Chen, X. Zhong, F. Zhang, Y. Cheng, Y. Xu, Y. Qi, and H. Li. Fuxi: a cascade machine
learning forecasting system for 15-day global weather forecast. npj Climate and Atmospheric
Science, 2023.

[11] J. Coiffier. Fundamentals of numerical weather prediction. Cambridge University Press, 2011.

[12] ECMWF. Ifs documentation cy46r1 - part v: Ensemble prediction system, 2019. URL
https://www.ecmwf.int/node/19309.

[13] V. Fortin, M. Abaza, F. Anctil, and R. Turcotte. Why should ensemble spread match the RMSE
of the ensemble mean? Journal of Hydrometeorology, 2014.

[14] M. Fortunato, T. Pfaff, P. Wirnsberger, A. Pritzel, and P. Battaglia. Multiscale meshgraphnets.
In ICML 2022 2nd AI for Science Workshop, 2022.

[15] T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and estimation. Journal
of the American Statistical Association, 2007.

[16] A. Graubner, K. Kamyar Azizzadenesheli, J. Pathak, M. Mardani, M. Pritchard, K. Kashinath,
and A. Anandkumar. Calibration of large neural weather models. In NeurIPS 2022 Workshop
on Tackling Climate Change with Machine Learning, 2022.

[17] H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas,
C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo,
P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. De Chiara, P. Dahlgren, D. Dee, M. Dia-
mantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S. Healy,
R. J. Hogan, E. Hólm, M. Janisková, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti,
P. de Rosnay, I. Rozum, F. Vamborg, S. Villaume, and J.-N. Thépaut. The ERA5 global
reanalysis. Quarterly Journal of the Royal Meteorological Society, 2020.

11

https://www.ecmwf.int/node/19309

[18] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In Advances in Neural
Information Processing Systems, volume 33, 2020.

[19] Y. Hu, L. Chen, Z. Wang, and H. Li. SwinVRNN: A data-driven ensemble forecasting model
via learned distribution perturbation. Journal of Advances in Modeling Earth Systems, 2023.

[20] R. Keisler. Forecasting global weather with graph neural networks. arXiv preprint
arXiv:2202.07575, 2022.

[21] D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In International Conference
on Learning Representations, 2014.

[22] D. Kochkov, J. Yuval, I. Langmore, P. Norgaard, J. Smith, G. Mooers, M. Klöwer, J. Lottes,
S. Rasp, P. Düben, S. Hatfield, P. Battaglia, A. Sanchez-Gonzalez, M. Willson, M. P. Brenner,
and S. Hoyer. Neural general circulation models for weather and climate. Nature, 2024.

[23] R. Lam, A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato, F. Alet, S. Ravuri,
T. Ewalds, Z. Eaton-Rosen, W. Hu, A. Merose, S. Hoyer, G. Holland, O. Vinyals, J. Stott,
A. Pritzel, S. Mohamed, and P. Battaglia. Learning skillful medium-range global weather
forecasting. Science, 2023.

[24] S. Lang, M. Alexe, M. Chantry, J. Dramsch, F. Pinault, B. Raoult, M. C. A. Clare, C. Lessig,
M. Maier-Gerber, L. Magnusson, Z. B. Bouallègue, A. P. Nemesio, P. D. Dueben, A. Brown,
F. Pappenberger, and F. Rabier. AIFS-ECMWF’s data-driven forecasting system. arXiv preprint
arXiv:2406.01465, 2024.

[25] C. Lessig, I. Luise, B. Gong, M. Langguth, S. Stadler, and M. Schultz. AtmoRep: A stochastic
model of atmosphere dynamics using large scale representation learning. arXiv preprint
arXiv:2308.13280, 2023.

[26] M. Leutbecher and T. Palmer. Ensemble forecasting. Journal of Computational Physics, 2008.

[27] L. Li, R. Carver, I. Lopez-Gomez, F. Sha, and J. Anderson. Generative emulation of weather
forecast ensembles with diffusion models. Science Advances, 2024.

[28] M. Lino, C. Cantwell, A. A. Bharath, and S. Fotiadis. Simulating continuum mechanics with
multi-scale graph neural networks. arXiv preprint arXiv:2106.04900, 2021.

[29] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021.

[30] W. J. Maddox, P. Izmailov, T. Garipov, D. P. Vetrov, and A. G. Wilson. A simple baseline for
bayesian uncertainty in deep learning. In Advances in Neural Information Processing Systems,
volume 32, 2019.

[31] M. Mardani, N. Brenowitz, Y. Cohen, J. Pathak, C.-Y. Chen, C.-C. Liu, A. Vahdat, K. Kashinath,
J. Kautz, and M. Pritchard. Residual diffusion modeling for km-scale atmospheric downscaling.
arXiv preprint arXiv:2309.15214, 2023.

[32] M. Müller, M. Homleid, K.-I. Ivarsson, M. A. Ø. Køltzow, M. Lindskog, K. H. Midtbø, U. An-
drae, T. Aspelien, L. Berggren, D. Bjørge, P. Dahlgren, J. Kristiansen, R. Randriamampianina,
M. Ridal, and O. Vignes. AROME-MetCoOp: A nordic convective-scale operational weather
prediction model. Weather and Forecasting, 2017.

[33] T. Nguyen, J. Brandstetter, A. Kapoor, J. K. Gupta, and A. Grover. ClimaX: A foundation model
for weather and climate. In Proceedings of the 40th International Conference on Machine
Learning, 2023.

[34] T. Nguyen, R. Shah, H. Bansal, T. Arcomano, S. Madireddy, R. Maulik, V. Kotamarthi, I. Foster,
and A. Grover. Scaling transformer neural networks for skillful and reliable medium-range
weather forecasting. arXiv preprint arXiv:2312.03876, 2023.

12

[35] J. Oskarsson, T. Landelius, and F. Lindsten. Graph-based neural weather prediction for limited
area modeling. In NeurIPS 2023 Workshop on Tackling Climate Change with Machine Learning,
2023.

[36] L. Pacchiardi, R. A. Adewoyin, P. Dueben, and R. Dutta. Probabilistic forecasting with
generative networks via scoring rule minimization. Journal of Machine Learning Research,
2024.

[37] J. Pathak, S. Subramanian, P. Harrington, S. Raja, A. Chattopadhyay, M. Mardani, T. Kurth,
D. Hall, Z. Li, K. Azizzadenesheli, P. Hassanzadeh, K. Kashinath, and A. Anandkumar. Four-
castnet: A global data-driven high-resolution weather model using adaptive fourier neural
operators. arXiv preprint arXiv:2202.11214, 2022.

[38] T. V. Pham, C. Steger, B. Rockel, K. Keuler, I. Kirchner, M. Mertens, D. Rieger, G. Zängl, and
B. Früh. ICON in climate limited-area mode (ICON release version 2.6.1): a new regional
climate model. Geoscientific Model Development, 2021.

[39] I. Price, A. Sanchez-Gonzalez, F. Alet, T. Ewalds, A. El-Kadi, J. Stott, S. Mohamed, P. Battaglia,
R. Lam, and M. Willson. Gencast: Diffusion-based ensemble forecasting for medium-range
weather. arXiv preprint arXiv:2312.15796, 2023.

[40] S. Rasp, S. Hoyer, A. Merose, I. Langmore, P. Battaglia, T. Russel, A. Sanchez-Gonzalez,
V. Yang, R. Carver, S. Agrawal, M. Chantry, Z. B. Bouallegue, P. Dueben, C. Bromberg, J. Sisk,
L. Barrington, A. Bell, and F. Sha. WeatherBench 2: A benchmark for the next generation of
data-driven global weather models. arXiv preprint arXiv:2308.15560, 2023.

[41] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation. In Medical Image Computing and Computer-Assisted Intervention. Springer
International Publishing, 2015.

[42] O. Rybkin, K. Daniilidis, and S. Levine. Simple and effective vae training with calibrated
decoders. In Proceedings of the 38th International Conference on Machine Learning, 2021.

[43] S. Scher and G. Messori. Ensemble methods for neural network-based weather forecasts.
Journal of Advances in Modeling Earth Systems, 2021.

[44] Y. Seity, P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, and V. Masson.
The AROME-france convective-scale operational model. Monthly Weather Review, 2011.

[45] K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep conditional
generative models. In Advances in Neural Information Processing Systems, volume 28, 2015.

[46] Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

[47] Y. Song, P. Dhariwal, M. Chen, and I. Sutskever. Consistency models. In Proceedings of the
40th International Conference on Machine Learning, 2023.

[48] I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schoelkopf. Wasserstein auto-encoders. In
International Conference on Learning Representations, 2018.

[49] A. van den Oord, O. Vinyals, and k. kavukcuoglu. Neural discrete representation learning. In
Advances in Neural Information Processing Systems, volume 30, 2017.

[50] Y. Verma, M. Heinonen, and V. Garg. ClimODE: Climate forecasting with physics-informed
neural ODEs. In International Conference on Learning Representations, 2024.

[51] J. A. Weyn, D. R. Durran, R. Caruana, and N. Cresswell-Clay. Sub-seasonal forecasting with a
large ensemble of deep-learning weather prediction models. Journal of Advances in Modeling
Earth Systems, 2021.

[52] J.-I. Yano, M. Z. Ziemiański, M. Cullen, P. Termonia, J. Onvlee, L. Bengtsson, A. Carrassi,
R. Davy, A. Deluca, S. L. Gray, V. Homar, M. Köhler, S. Krichak, S. Michaelides, V. T. J.
Phillips, P. M. M. Soares, and A. A. Wyszogrodzki. Scientific challenges of convective-scale
numerical weather prediction. Bulletin of the American Meteorological Society, 2018.

13

Appendix Table of Contents

A Table of Notation 14

B Societal Impact 14

C Model Details 16

D Training Objectives 21

E Metric Definitions 23

F Extreme Weather Case Study: Hurricane Laura 24

G Spatial Coherency of Forecasts 24

H Experiment Details: Global Forecasting with ERA5 28

I Experiment Details: Limited Area Modeling with MEPS Data 32

J Additional Results: Global Forecasting with ERA5 36

K Additional Results: Limited Area Modeling with MEPS Data 50

L Additional experiments 65

A Table of Notation

Notation used throughout the paper is listed in table 3.

B Societal Impact

Extreme weather Due to climate change the prevalence and severity of extreme weather events is
expected to increase substantially, endangering both property and human life [56]. These events are
also getting harder to predict and the cost of damages per event has increased nearly 77% over the
past five decades [62]. In order to detect extreme events, there is a need for ensemble forecasting to
better capture the full distribution of possible weather states. While ensemble forecasting historically
has been limited by computational costs [3], efficient MLWP ensemble models have the potential to
vastly improve our ability to model extreme weather. In appendix F we present a case study showing
how our Graph-EFM could be used for forecasting Hurricane Laura. More extensive evaluation of the
abilities of MLWP models to capture extreme events is a complex, but important issue [54, 55]. We
view these capabilities as one of the main motivations for further developments of MLWP ensemble
forecasting models.

Forecast failures There will always be cases where weather forecasting systems fail, and produce
inaccurate predictions for future weather. Depending on the weather event, such forecast errors can
have disastrous consequences. In these cases the lack of interpretability of black-box MLWP systems
can be a problem, making it hard to understand why the model was wrong. Traditional physics-based
systems can also be tough to interpret due to their complexity, but at their core are physical equations
understood by researchers. With the rapid progress of MLWP, it is likely that we will soon see a
landscape where the physical models take the back seat to a plethora of skillful MLWP forecasting
systems. In such a scenario the question of how to investigate forecast failures becomes pressing. It
seems desirable to be able to fall back on physical models for understanding impactful events poorly

14

Table 3: Table of notation

Xt Weather state at time step t

X̂t Predicted weather state at time step t
Xt,(m) Ground truth weather state at time step t in sample m from dataset
X̂t,(m) Predicted weather state at time step t in sample m from dataset

X̂t,(m),(k) Prediction of ensemble member k at time step t in sample m from dataset
F t Forcing inputs at time step t
Zt Latent random variable for time step t
Bt Boundary forcing input at time step t, for limited area modeling
H Matrix with node representation vectors as rows
E Matrix with edge representation vectors as rows

eα→β Representation vector for the edge going from node α to node β

f Autoregressive mapping predicting the next state in deterministic models
g Predictor part of Graph-EFM, predicting the next state conditioned on a sample of Zt

g̃ Predictor output before skip connection
µZ Mean function of latent map, mapping to the mean of Zt

T Length of one forecast, in discrete time steps
N Number of grid nodes (grid cells)
Nb Number of grid nodes in the boundary region, for limited area modeling
L Number of levels in hierarchical graph
S Number of samples (forecasts) in dataset
K Ensemble size, number of members in ensemble forecast
dx Weather state dimensionality (total number of variables) in each grid node
dz Latent dimensionality, dimensionality of each node or edge representation vector

GM Mesh graph
VM Nodes of mesh graph
EM Edges between the nodes of the mesh graph
VG Grid nodes, corresponding to grid cells in the data
GG2M Graph connecting grid nodes to the mesh
EG2M Edges of GG2M, going from grid nodes to mesh nodes
GM2G Graph connecting the mesh to grid nodes
EM2G Edges of GM2G, going from mesh nodes to grid nodes
GMS Multi-scale graph
Gl Intra-level graph at level l in hierarchical mesh graph
Vl Nodes at level l of hierarchical mesh graph
El Edges of Gl, intra-level edges at level l in hierarchical mesh graph
Gl,l+1 Inter-level graph with edges from level l to level l + 1 in hierarchical mesh graph
El,l+1 Edges of Gl,l+1, from level l to level l + 1 in hierarchical mesh graph
Ne(β) Incoming neighbors of node β, {α : (α, β) ∈ E}
wα Area weighting for node α, proportional to the area of corresponding grid cell
λKL Weighting for KL-term in variational training objective
λCRPS Weighting for CRPS term in fine-tuning objective of Graph-EFM
σ Standard deviation used in NLL or variational training objective

15

Algorithm 1 Single-step prediction f for graph-based MLWP

1: HG ← MLP(Xt−2:t−1, F t) ▷ Embedd grid inputs to dz-dimensional vectors
2: HM , · ← GNN(GG2M, HG, EG2M, HM) ▷ Map grid representation to mesh
3: for all mesh processing steps do
4: HM , EM2M ← GNN(GM , HM , EM2M, HM) ▷ Update mesh representations
5: end for
6: HG ← HG +MLP(HG)
7: HG, · ← GNN(GM2G, H

M , EM2G, HG) ▷ Map mesh representation back to grid
8: if outputs σ then
9: [Y, U]← MLP

(
HG

)
10: return Xt−1 + Y, Softplus(U) ▷ Return prediction of Xt and σ for loss
11: else
12: return Xt−1 +MLP(HG) ▷ Return prediction of Xt

13: end if

forecast by MLWP. However, to allow this we can not do away with all infrastructure and expertise
related to physical modeling. These are important considerations as weather forecasting moves into
an era of operational MLWP.

Renewable energy The production of renewable energy, such as solar and wind power, can be
highly volatile [60]. This creates challenges for including these sources in the larger energy system.
Accurate weather forecasts, translated into forecasts of energy production, fill an important role as
enablers of these energy sources by making their output predictable. Detailed probability estimates
from ensemble forecasting can additionally allow for improved cost-loss decision making in these
systems.

The energy footprint of weather forecasting Traditional weather forecasting systems utilize
massive computing clusters [11], resulting in a substantial energy footprint of the forecasting process.
In comparison, MLWP models are highly energy efficient, even when taking into account their initial
training process. The total energy required to train the large global MLWP model FourCastNet is
comparable to running a 10 day forecast with 50 ensemble members using a traditional forecasting
system [37]. Producing a forecast using the same model uses four orders of magnitude less energy
than a physics-based model. A similar reduction in energy footprint is to be expected for our models,
if applied at the same scale. For ensemble forecasting the total energy saving is even greater, as it
is multiplied by the number of ensemble members. However, one has to beware of rebound effects,
where efficiency improvements result in more extensive use of resources. If ensemble forecasting
becomes 1000 times more energy efficient and we run 1000 times as many ensemble members there
is no energy saved in the end.

C Model Details

We here give more details about the different models discussed in the main paper.

C.1 Deterministic graph-based models [23, 20]

Deterministic graph-based MLWP models represent the single-step prediction function
X̂t = f(Xt−2:t−1, F t) as a sequence of MLPs and GNN layers. Algorithm 1 describes the full
prediction process. Note that for some of the GNN layers the edge representations are not updated,
as these edges are not used in later steps of the process. We denote this by H, · ← GNN(. . .) in
algorithm 1. MLPs always act on the last dimension of its concatenated inputs. Mesh node and edge
representations are initialized by embedding related static features using additional MLPs. These
static features contain information about node and edge positions (see appendices H.1 and I.1). The
number of processing steps to run on the mesh is a hyperparameter. Each such step contains one
GNN layer, and these GNNs do not share parameters. The mapping f can optionally output also
standard deviations σ, which we use when training with NLL loss (see appendix D.1). We restrict σ
to be positive by applying the Softplus function.

16

Algorithm 2 Single-step prediction f in Graph-FM

1: HG ← MLP(Xt−2:t−1, F t) ▷ Embedd grid inputs to dz-dimensional vectors
2: H1, · ← GNN(GG2M, HG, EG2M, H1) ▷ Map from the grid . . .
3: for l = 2, . . . , L do ▷ . . . and up through the whole mesh hierarchy
4: H l, El−1,l ← GNN(Gl−1,l, H

l−1, El−1,l, H l)
5: end for
6: for number of mesh processing steps / 2 do ▷ Each iteration contains two steps, down and up
7: HL, EL ← GNN(GL, HL, EL, HL)
8: for l = (L− 1), . . . , 1 do ▷ Downward pass of sweep
9: H l, El+1,l ← GNN(Gl+1,l, H

l+1, El+1,l, H l)
10: H l, El ← GNN(Gl, H l, El, H l)
11: end for
12: H1, E1 ← GNN(G1, H1, E1, H1)
13: for l = 2, . . . , L do ▷ Upward pass of sweep
14: H l, El−1,l ← GNN(Gl−1,l, H

l−1, El−1,l, H l)
15: H l, El ← GNN(Gl, H l, El, H l)
16: end for
17: end for
18: for l = (L− 1), . . . , 1 do
19: H l, · ← GNN(Gl+1,l, H

l+1, El+1,l, H l) ▷ Map down through the mesh hierarchy . . .
20: end for
21: HG ← HG +MLP(HG)
22: HG, · ← GNN(GM2G, H

1, EM2G, HG) ▷ . . . and finally to the grid
23: if outputs σ then
24: [Y, U]← MLP

(
HG

)
25: return Xt−1 + Y, Softplus(U) ▷ Return prediction of Xt and σ for loss
26: else
27: return Xt−1 +MLP(HG) ▷ Return prediction of Xt

28: end if

C.2 Graph-FM

In the hierarchical graph there are node representations associated with every level and edge represen-
tations associated with each subset of edges. We let H l be the representations associated with nodes
Vl at level l in the mesh hierarchy. Similarly, let El contain representations of intra-level edges El,
El,l+1 representations of upwards edges El,l+1, and El,l−1 representations of downward edges El,l−1.
As in the non-hierarchical case, all representations associated with the mesh graph are initialized by
MLPs applied to static features. Independent MLPs are used for the different levels of the hierarchy.

Forecasting using Graph-FM follows a similar structure as previous works, but replaces the mappings
between the grid and mesh to encompass all levels and changes the processing steps into sweeps
through the hierarchy. Recall that for the hierarchical graph we re-define GG2M = (VG∪V1, EG2M) and
GM2G = (VG ∪ V1, EM2G). The full prediction mapping f for Graph-FM is described in algorithm 2.
We define one processing step in Graph-FM as one update to all node and edge representations in the
graph, keeping a similar interpretation as processing steps in non-hierarchical graphs. This means
that one sweep down and up (lines 7 to 16 in algorithm 2) is counted as two processing steps. It
follows that only even numbers of processing steps are reasonable in Graph-FM. Note also here that
GNNs only share parameters across nodes and edges in the specific graph they operate on. There is
no parameter sharing across processing steps nor levels in the hierarchy. We include Propagation
Networks in Graph-FM, but not all parts of the model can be expected to benefit from this change.
For some steps of algorithm 2 we want to keep the inductive bias of Interaction Networks to retain
information. Specifically, we use Propagation Networks for the mappings directly between the grid
and lowest mesh level (lines 2 and 22) and for the upward processing steps (line 14).

17

Figure 6: Overview of our Graph-EFM model, with example data and graphs for global forecasting.
The corresponding overview for the LAM setting is given in fig. 1. Note that the predictor part of the
model has the same structure as one sweep through the hierarchy in Graph-FM.

Algorithm 3 Sampling of ensemble member from p
(
X1:T |X−1:0, F 1:T

)
1: X̂−1:0 ← X−1:0

2: for t = 1, . . . , T do
3: Zt ∼ p

(
Zt

∣∣∣X̂t−2:t−1, F t
)

▷ Sample Zt from latent map

4: X̂t ← X̂t−1 + g
(
Zt, X̂t−2:t−1, F t

)
▷ Compute next state using predictor

5: end for
6: return X̂1:T

C.3 Graph-EFM

An overview of the Graph-EFM model with global graphs is shown in fig. 6. At each tim step
Graph-EFM takes as input Xt−2:t−1, F t and produces a sample of Xt. By feeding the sample from
the model back at the next time step, an ensemble member can be rolled out. This process is described
in algorithm 3, where we let X̂t be an initial state for t < 1 and then assign it sampled predictions
for the actual forecast time steps 1, . . . , T .

When creating an ensemble of size K from deterministic initial conditions some care has to be
taken as to how many members to sample. If we at each time t would sample K values of Xt for
each realization of Xt−2:t−1 we would end up with KT members at time T . Instead, we sample K
realizations of X1 given the initial conditions and after that only one realization of Xt for each of the
members. This is equivalent to doing K independent runs of algorithm 3. Note that since we can
always draw new samples of Zt we are never restricted in the ensemble size.

Latent map The latent map is defined as

p
(
Zt

∣∣Xt−2:t−1, F t
)
=

∏
α∈VL

N
(
Zt
α

∣∣µZ

(
Xt−2:t−1, F t

)
α
, I
)

(8)

where the mean function µZ is realized as a sequence of GNN layers mapping up through the
hierarchy. The exact process is described in algorithm 4. Since only one upward pass is performed we
do not update any of the edge representations. The final MLP at line 8 maps from node representations
at mesh level L to the mean of p

(
Zt

∣∣Xt−2:t−1, F t
)
. In the latent map we use exclusively Propagation

Networks, encouraging the model to encode useful information from the grid into Zt.

Predictor The predictor p
(
Xt|Zt, Xt−2:t−1, F t

)
is chosen as a dirac measure, with all probability

mass concentrated in one point. It thus takes the form of a deterministic mapping

X̂t = g
(
Zt, Xt−2:t−1, F t

)
= Xt−1 + g̃

(
Zt, Xt−2:t−1, F t

)
. (9)

This choice emphasizes that all randomness in p
(
Xt

∣∣Xt−2:t−1, F t
)

should come from the latent
variable Zt. An alternative would be to parametrize the predictor as a diagonal Gaussian. We found
this inferior in practice, as that would require also sampling from this Gaussian when rolling out

18

Algorithm 4 Latent map mean function µZ

1: HG ← MLP(Xt−2:t−1, F t) ▷ Embedd grid inputs to dz-dimensional vectors
2: H1, · ← GNN(GG2M, HG, EG2M, H1)
3: H1, · ← GNN(G1, H1, E1, H1)
4: for l = 2, . . . , L do ▷ Propagate up the hierarchy
5: H l, · ← GNN(Gl−1,l, H

l−1, El−1,l, H l)
6: H l, · ← GNN(Gl, H l, El, H l)
7: end for
8: return MLP

(
HL

)
▷ Return mean of p

(
Zt

∣∣Xt−2:t−1, F t
)

Algorithm 5 Predictor function g

1: HG ← MLP(Xt−2:t−1, F t) ▷ Embedd grid inputs to dz-dimensional vectors
2: H1, · ← GNN(GG2M, HG, EG2M, H1)
3: for l = 1, . . . , L− 1 do ▷ Upward pass of sweep
4: H l, El ← GNN(Gl, H l, El, H l)
5: if l = L− 1 then
6: HL, · ← GNN(GL−1,L, H

L−1, EL−1,L, Zt) ▷ Incorporate Zt through GNN
7: else
8: H l+1, · ← GNN(Gl,l+1, H

l, El,l+1, H l+1)
9: end if

10: end for
11: HL, · ← GNN(GL, HL, EL, HL)
12: for l = (L− 1), . . . , 1 do ▷ Downward pass of sweep
13: H l, · ← GNN(Gl+1,l, H

l+1, El+1,l, H l)
14: H l, · ← GNN(Gl, H l, El, H l)
15: end for
16: HG ← HG +MLP(HG)
17: HG, · ← GNN(GM2G, H

1, EM2G, HG)
18: if outputs σ then
19: [Y, U]← MLP

(
HG

)
20: return Xt−1 + Y, Softplus(U) ▷ Return prediction of Xt and σ for loss
21: else
22: return Xt−1 +MLP(HG) ▷ Return prediction of Xt

23: end if

forecasts. This sampling would simply entail adding independent Gaussian noise to the forecasts,
which only degrades their quality. We still re-introduce the Gaussian form in the variational objective
(eq. (6)), as some choice of likelihood is necessary for a well-defined learning problem. The
interpretation of this is that the forecast is rolled out as a latent process with all randomness coming
from Zt. Observation noise is then assumed added to this forecast independently at each time step.
We use the latent, noise-free forecast as our prediction. Connecting back to the VAE analogue of
our model, this setup corresponds to the common practice in the VAE literature of using a Gaussian
likelihood but treating the mean as the generated sample [42].

The exact form of the predictor function is described in algorithm 5. It has a similar form as Graph-
FM, doing sweeps up and down the mesh hierarchy. We found it sufficient to perform one sweep up
and down in the predictor, but it can easily be generalized to multiple sweeps as in Graph-FM. The
predictor function optionally returns also the σ to be used in our variational objective. In the predictor
we use Interaction Networks in the upward direction and Propagation Networks in the downward
direction. This is to guarantee that randomness and useful information encoded in Zt at the top level
reaches all the way down to the grid. Note that on line 6 Zt is combined with HL−1 through the
Interaction Network layer mapping from level L− 1 to L. For the details of how this combination
happens, see eq. (1), where Zt takes the role of the receiver node representations HR. Note that edge
and node representations updated on line 4 in the upward sweep then re-appear in the downward
pass. This constitutes residual connections between the upward and downward passes, as illustrated
in fig. 6.

19

Algorithm 6 Parameter mappings µq, σq of variational approximation

1: HG ← MLP(Xt−2:t−1, Xt, F t) ▷ Embedd grid inputs (including Xt) to dz-dim. vectors
2: H1, · ← GNN(GG2M, HG, EG2M, H1)
3: H1, · ← GNN(G1, H1, E1, H1)
4: for l = 2, . . . , L do ▷ Propagate up the hierarchy
5: H l, · ← GNN(Gl−1,l, H

l−1, El−1,l, H l)
6: H l, · ← GNN(Gl, H l, El, H l)
7: end for
8: [Y, U]← MLP

(
HL

)
9: return Y,Softplus(U) ▷ Return mean and standard deviation of q

(
Zt

∣∣Xt−2:t−1, Xt, F t
)

Variational approximation Defining the ELBO for the model requires a variational approximation
q
(
Zt

∣∣Xt−2:t−1, Xt, F t
)

at each time step, approximating the true posterior p
(
Zt

∣∣Xt−2:t−1, Xt, F t
)

over Zt. Due to the autoregressive structure of the model, it is sufficient to condition q on states
at time steps t − 2, t − 1 and t. This conditioning removes all dependence between Zt and other
variables (see fig. 2), simplifying the parametrization and training of q. We choose the variational
approximation to have a similar Gaussian form as the latent map

q
(
Zt

∣∣Xt−2:t−1, Xt, F t
)
=∏

α∈VL

dz∏
j=1

N
(
Zt
α,j

∣∣∣µq

(
Xt−2:t−1, Xt, F t

)
α,j

, σq

(
Xt−2:t−1, Xt, F t

)2
α,j

)
.

(10)

For added flexibility we also model the variance of q. Here both µq and σq are functions mapping
from the grid inputs to |VL| × dz matrices. These functions are implemented jointly as described in
algorithm 6. This mapping is similar to the latent map, with the differences being that Xt is taken as
an input and both mean and standard deviation returned. Similarly to the latent map, all GNNs used
in the variational approximation are Propagation Networks.

C.4 MLP parametrization

Following Lam et al. [23], all MLPs have one hidden layer with Swish activation functions [59]. With
the exception of MLPs outputting predictions or distribution parameters, we apply LayerNorm [53]
to all other MLP outputs.

While MLPs in different GNN layers never share parameters, we use some parameter sharing across
the embedding MLPs in the different components of Graph-EFM. Specifically, the latent map and
predictor share parameters for the MLP embedding the grid input (line 1 in algorithm 4 and line 1
in algorithm 5). The MLPs that embedd static graph features, for initializing graph representation
vectors, are also shared across all components of the Graph-EFM model.

C.5 Baseline models

GraphCast* GraphCast* is a reimplementation of the GraphCast model [23] in our codebase.
This was done to allow for a fair comparison by using the same data and multi-scale graphs as other
models in our experiments.

Graph-EFM (ms) The Graph-EFM (ms) model is a version of Graph-EFM, but using a multi-
scale mesh graph GMS [23], instead of the hierarchical one. We replace the sweeps up and down
the hierarchy with multiple processing steps performed on the same mesh graph, similar to the
deterministic case described in algorithm 1. In the predictor of this model, the latent Zt is integrated
already in the mapping from the grid to the mesh as

HM , · ← GNN(GG2M, HG, EG2M, Zt). (11)

Note that as Zt here is associated with the nodes of GMS, it has shape |V1| × dz as opposed to
|VL| × dz for Graph-EFM. As V1 has many more nodes, the total dimensionality of Zt is higher for
Graph-EFM (ms). This is a consequence of the multi-scale graph offering no further dimensionality
reduction beyond mapping from the grid to the mesh.

20

GraphCast*+SWAG One simple way to create an MLWP ensemble is by re-training multiple
deterministic models from random initializations. Training many large weather models from scratch
is however infeasible in practice. It also limits the number of ensemble members to the number of
models trained. Inspired by Graubner et al. [16], we create a multi-model ensemble baseline using
SWAG [30]. SWAG is a technique for approximate Bayesian inference based on running Stochastic
Gradient Descent (SGD) training with a constant high learning rate. At regular intervals throughout
this optimization process the model parameters are saved. The full SWAG process includes estimating
a high-dimensional Gaussian over these parameters and drawing samples to create the ensemble.
This gets around the limitation of needing to decide the maximum ensemble size when training
the model. As we never require more ensemble members than saved during the SGD training we
skip estimating this Gaussian and resampling. Instead, we directly use a subset of the saved model
parameters to create our ensemble members. Graubner et al. [16] combine SWAG with initial state
perturbations, but as we model the conditional distribution p

(
X1:T |X−1:0, F 1:T

)
we do not include

any such perturbations to the initial states.

To create our GraphCast*+SWAG ensemble we start from the trained GraphCast* model and run
SGD training for T = 8 unrolled steps and with a fixed learning rate (10−3 for the global experiment
and 5× 10−5 for MEPS). Even higher learning rates led to numerical issues or the model training
diverging. Model parameters are then saved every 100 gradient descent steps. During evaluation these
parameters are loaded one after another and used to produce the forecast for each ensemble member.
The error and spread of the GraphCast*+SWAG ensemble is highly dependent on the correlation of
consecutively saved model parameters. Given the poor spread of GraphCast*+SWAG we tested also
saving parameters with 1000 steps in-between, but this led to similar results.

D Training Objectives

We here give detailed definitions of the objectives used to train our models.

D.1 Deterministic models

Weighted MSE Deterministic forecasting models can be trained by minimizing a weighted MSE
[23] of rolled-out forecasts

LWMSE =
1

TN

T∑
t=1

∑
α∈VG

dx∑
j=1

wαωjλj

(
X̂t

α,j −Xt
α,j

)2

(12)

where we recall that N = |VG| and:

• wα is the normalized area weighting for grid cell α. These are computed as described by
Rasp et al. [40].

• λj is the inverse variance of time differences for variable j. These can be computed directly
from iterating over the data.

• ωj is a weight associated with the vertical level of variable j. For global experiments we use
the same weights ωj as Lam et al. [23].

Negative Log-Likelihood loss For the MEPS data however, choosing weights ωj is challenging
due to the many different variables and their irregular vertical levels. In such cases, an alternative
approach is to use an NLL loss, where the model itself determines the trade-offs between different
variables [8]. As the MEPS area has grid cells of approximately equal size we can also simply set
wα = 1. For the MEPS experiments we thus use

LNLL = − 1

TN

T∑
t=1

∑
α∈VG

dx∑
j=1

wα logN
(
Xt

α,j

∣∣∣X̂t
α,j , σ

2
α,j

)
. (13)

The standard deviation σα,j is here a second output from the mapping f . When unrolling forecasts
we do not sample from this Gaussian, but feed the mean X̂t to the next time steps. Note that eq. (13)
decomposes into weighted squared error terms and log-determinant terms preventing too large σ

21

outputs. The weighted MSE in eq. (12) can therefore also be viewed as a special case of the NLL loss,
up to an additive constant. This relationship corresponds to eq. (13) with constant variances given by

σ2
α,j =

1

2ωjλj
. (14)

D.2 Probabilistic model

For the probabilistic model we can not directly apply the training objectives above, as they only seek
to match the first moments of the model distribution to the data. To train the probabilistic model we
instead leverage the fact that the single-step model has a structure similar to a (conditional) VAE
[21, 45]. We can therefore optimize a variational objective, the ELBO, to match the distribution of
the data.

Variational objective For a single time step, our variational objective is

L̃Var
(
Xt−2:t−1, Xt, F t

)
= λKLDKL

(
q
(
Zt

∣∣Xt−2:t−1, Xt, F t
)∥∥p(Zt

∣∣Xt−2:t−1, F t
))

−Eq(Zt|Xt−2:t−1,Xt,F t)

[∑
α∈VG

∑dx

j=1wα logN
(
Xt

α,j

∣∣∣g(Zt, Xt−2:t−1, F t
)
α,j

, σ2
α,j

)]
.

(15)

We include a weight λKL in front of the KL-regularizer to allow for some tuning between the two
parts of the objective function [61]. In practice we found this useful to make sure the model does
not collapse to pure deterministic predictions. Note that when λKL = 1 this is exactly equal to the
(negative) ELBO. The NLL from eq. (13) here shows up again in the second term. Similarly to the
deterministic models, σα,j can either be output by the model (the predictor in this case) or chosen as a
constant. For global experiments we choose σα,j as in eq. (14), reducing the term to a weighted MSE
loss. For the MEPS data we again let each σα,j be output by the model. Equation (15) can in practice
be computed efficiently by using a single-sample Monte Carlo estimate for the expectation and the
reparametrization trick [21]. The KL-divergence is available in closed form as both distributions
are Gaussian. As with deterministic models [23, 20, 8, 34], it is crucial to fine-tune on rolled out
forecasts of multiple time steps. This induces stability and improves performance for longer lead
times. We thus define our fine-tuning objective as

LVar =
∑T

t=1L̃Var

(
X̂t−2:t−1, Xt, F t

)
(16)

where X̂t is an initial state from the dataset for t < 1 and otherwise sampled using the variatonal
approximation for Zt. In eq. (16) Xt is always from the training data.

CRPS fine-tuning In practice we found that fine-tuning the model with only LVar tends to result in
underdispersed ensemble forecasts, underestimating the variance of the distribution. To remedy this,
we include an additional fine-tuning objective based on the CRPS [15, 63, 22]. The CRPS measures
how well a univariate distribution matches the observed data and is defined as

CRPS(p(x), y) = E[|x− y|]− 1

2
E[|x− x′|] (17)

where x, x′ are independent copies of a random variables with distribution p(x) and y the observed
data. The CRPS is minimized only when the predicted distribution matches that of the data [15],
making it suitable for calibrating our ensemble forecasting model. We define our CRPS fine-tuning
loss as an unbiased two-sample estimator, summed over all dimensions of the predictive distribution

LCRPS =

T∑
t=1

∑
α∈VG

dx∑
j=1

wα
1

2

(∣∣∣X̂t
α,j −Xt

α,j

∣∣∣+ ∣∣X̌t
α,j −Xt

α,j

∣∣− ∣∣∣X̂t
α,j − X̌t

α,j

∣∣∣) (18)

with X̂t and X̌t coming from two independent ensemble members sampled from the model.

Note that the CRPS objective targets only the marginal distributions, while spatio-temporally coherent
samples requires matching the joint distribution of the data. To avoid degenerate solutions we
weight LCRPS by λCRPS and combine it with the variational objective for the final fine-tuning loss
L = LVar + λCRPSLCRPS. Computing L requires rolling out three forecasts, one for LVar (using
samples from q) and two for LCRPS (using samples from the latent map). This can have a substantial

22

memory cost. It is however sufficient to include the CRPS term only in the final steps of the training
process, making this less of an issue in practice.

Empirically we found that including the CRPS objective improves both ensemble calibration and
forecast accuracy. The accuracy improvement can be attributed to the MAE terms in eq. (18). Note
that in LVar forecasts are rolled out by sampling Zt from the variational approximation, while in
LCRPS these samples are from the latent map. This matches how forecasting is carried out at test time.
As a consequence the CRPS loss has an additional effect of bridging the gap between the variational
training and the final forecasting.

E Metric Definitions

We here give full definitions for the metrics used to evaluate our models.

E.1 Deterministic Metrics

We define evaluation metrics based on set of S forecasts, each a sequence X̂1,(m), . . . , X̂T,(m)

of predicted weather states. Metrics are computed per lead-time and variable. For deterministic
forecasting we define the RMSE of variable j at lead time t as

RMSEt,j =

√√√√ 1

SN

S∑
m=1

∑
α∈VG

wα

(
X̂

t,(m)
α,j −X

t,(m)
α,j

)2

. (19)

In all metrics we include area weighting wα to handle the fact that the grid cells for the global data
has different area. These weights are computed as described in Rasp et al. [40]. For the MEPS data
these are all set to wα = 1. Note that the square root is applied after sample averaging, following
standard convention and the WeatherBench 2 benchmark [40].

E.2 Probabilistic Metrics

In the probabilistic setting we evaluate an ensemble forecast of K members. Let X̂t,(m),(k) be the
prediction of ensemble member k. For ensemble forecasts we compute the RMSE of the ensemble
mean as

RMSEt,j =

√√√√ 1

SN

S∑
m=1

∑
α∈VG

wα

(
X̄

t,(m)
α,j −X

t,(m)
α,j

)2

(20)

X̄t,(m) =
1

K

K∑
k=1

X̂t,(m),(k). (21)

To measure the calibration of uncertainty expressed by the ensemble we use the (bias-corrected)
Spread-Skill-Ratio

SpSkRt,j =

√
K + 1

K

Spreadt,j
RMSEt,j

(22a)

Spreadt,j =

√√√√ 1

SKN

S∑
m=1

K∑
k=1

∑
α∈VG

wα

(
X̄

t,(m)
α,j − X̂

t,(m),(k)
α,j

)2

. (22b)

If the ensemble members represent realistic forecasts, and observe exchangeability with the ground
truth, SpSkRt,j ≈ 1 [13].

As a probabilistic metric we also use the CRPS [15], here computed as a finite sample estimate [63]
over all the ensemble members

CRPSt,j =
1

SN

S∑
m=1

∑
α∈VG

wα

(
1

K

K∑
k=1

∣∣∣X̂t,(m),(k)
α,j −X

t,(m)
α,j

∣∣∣
− 1

2K(K − 1)

K∑
k=1

K∑
k′=1

∣∣∣X̂t,(m),(k)
α,j − X̂

t,(m),(k′)
α,j

∣∣∣).
(23)

23

Note that this is a spatial average over marginal CRPS values and does not take any covariance
structure of the data or model distributions into account. To avoid the quadratic sum in eq. (23) we in
practice use the idea of Zamo and Naveau [63] to compute this with linear memory by sorting the
ensemble members. For deterministic models the CRPS reduces to MAE. See this for example from
eq. (23) by letting all ensemble members be the same predicted value.

F Extreme Weather Case Study: Hurricane Laura

One key motivations for probabilistic weather forecasting is to allow for better predictions of extreme
events and improved estimates of uncertainties associated with these. To exemplify this we include
here a case study looking at forecasts for Hurricane Laura, using the global models.

In August of 2020 Laura developed in the Atlantic Ocean and reached hurricane levels in the Gulf
of Mexico, eventually making landfall in Louisiana and causing major damages [58]. We study
here forecasts for 2020-08-27T12 UTC, which is 6 hours after the hurricane hit land. All forecasts
are for this exact time point, but initialized a varying number of days before. We here run 50
member ensemble forecasts using Graph-EFM and deterministic forecasts using the GraphCast* and
Graph-FM models. Figure 7 shows 10 m wind speeds in ERA5 and the forecasts. For Graph-EFM
we plot both forecasts from randomly sampled ensemble members and a cherry-picked best member
that was deemed to most closely match ERA5. Note that the 1.5° resolution that we work with
makes determining similarity or exact positions somewhat challenging. The resolution also puts some
limitations on how well the most extreme wind speeds can be captured.

We see in fig. 7 that at 7 days lead time there is great uncertainty, and the deterministic models do not
show the hurricane at all. In the ensemble forecast from Graph-EFM there exists however already
members indicating the possibility of a hurricane making landfall a week ahead (see for example
the cherry-picked “Best member”). While the ensemble includes many possible scenarios, a total of
7 members show the development of a hurricane in the area. Having information of such possible
scenarios a long time ahead allows for planning and readying disaster response efforts that might be
needed. Note that discovering these scenarios is only possible through an ensemble forecast, as the
deterministic models do not indicate such an event. At 5 days lead time all models are indicating the
development of a hurricane. While the deterministic models do a good job here, they are indicating a
landfall location slightly too far eastward. The ensemble members from Graph-EFM however show
a range of different positions for the hurricane, indicating the uncertainty in the landfall location.
At 3 days ahead 42 out of 50 ensemble members show the hurricane making landfall, but still with
some uncertainty about the exact location. At 1 day lead time all models give an accurate forecast
of the position of the hurricane. Apart from position, it is also interesting to consider how the
models capture the intensity in terms of wind speeds. At 1 day ahead the deterministic models are
somewhat underestimating the wind speed. The Graph-EFM ensemble shows a range of possible
values, indicating the uncertainty in the exact wind intensity. Overall this study exemplifies how
ensemble forecasts from a machine learning model can be used to discover possible extreme weather
scenarios at long lead times and uncover the uncertainties associated with them.

G Spatial Coherency of Forecasts

Apart from giving a low forecast error, it is also important for forecasts to look realistic. Specifically,
we want forecasts to be physical, containing features that are possible under laws of atmospheric
physics. This is necessary for forecasts to be interpretable by meteorologists and builds trust in the
MLWP model. One key property for realistic forecasts is that of spatial coherency. Forecasts should
take realistic values not just locally, in each grid cell, but show larger-scale features that are consistent
over the forecasting area. This is important since the weather system contains spatial dependencies
on multiple different scales. Note that in the probabilistic setting this connects closely to capturing
the correct joint distribution spatially, rather than just the marginal distributions in each grid cell. As
the metrics commonly used to evaluate MLWP models only consider the marginal distributions, it is
important to also inspect sample forecasts to gauge the spatial coherency.

This modeling aspect is especially relevant for probabilistic models, since being able to visualize and
interpret individual ensemble members is an important capability of ensemble forecasting. Other
uncertainty quantification techniques can be applied to estimate forecast uncertainty [6], but these

24

2020-08-27T12 7 days 5 days 3 days 1 day

ER
A5

Be
st

 M
em

be
r

M
em

be
r 1

M
em

be
r 2

M
em

be
r 3

M
em

be
r 4

G
ra

ph
Ca

st
*

G
ra

ph
-F

M

0
2

4
6
8
10
12

14
16
18

W
in

d
Sp

ee
d

(m
/s

)

G
ra

ph
-E

FM

Lead Time

Figure 7: Example forecasts of 10 m wind speeds during Hurricane Laura, all for 2020-08-27T12
UTC. The first column shows the wind speeds in ERA5, with the red arrow indicating the location of
the hurricane. Remaining columns show model forecasts for the specific time, initialized at different
lead times ahead. For Graph-EFM we plot both 4 randomly sampled ensemble members and one
cherry-picked member that was deemed to best match ERA5.

25

(a) nlwrs
Graph-EFM

(b) nlwrs
Graph-EFM (ms)

(c) 2r
Graph-EFM

(d) 2r
Graph-EFM (ms)

(e) u65
Graph-EFM

(f) u65
Graph-EFM (ms)

(g) v65
Graph-EFM

(h) v65
Graph-EFM (ms)

Figure 8: Example forecasts from Graph-EFM and Graph-EFM (ms) trained on the MEPS data. All
forecasts are from single ensemble members, plotted for lead time 57 h.

generally do not generate samples of possible future weather states. Having samples to inspect can
build trust and understanding of the model. If one member is predicting an extreme event, it is
possible to inspect this forecast and see what sequence of events in the atmosphere could lead to this
outcome.

For the final Graph-EFM model forecasts are generally spatially coherent and represent physically
plausible scenarios. Examples of this is shown in appendices J.2 and K.2. In this appendix we contrast
this with some of the shortcomings of baseline models. We also discuss some of the challenges that
we have encountered with achieving spatially coherent forecasts and ways to tackle these.

G.1 Limited Area Modeling with MEPS Data

In the MEPS experiment the benefits of the hierarchical graph structure become the most clear when
visually inspecting forecasts. Figure 8 shows a comparison between a few forecasts from Graph-EFM
and Graph-EFM (ms). In the Graph-EFM (ms) model samples tend to be more patchy and poorly
reproduce spatial features. We connect this to the fact that the randomness in Zt is more local, as
it is associated with the nodes in GMS which directly connect to the grid. While the randomness
introduced from sampling Zt can spread to the full forecast area using the multi-scale graph, this is
something the model has to explicitly learn. For matching marginal distributions in grid cells it can
be enough for Graph-EFM (ms) to just have the randomness in each mesh node impact the connected
grid nodes locally. We can contrast this to Graph-EFM, where Zt is associated with nodes at the
top of the hierarchical graph. For this randomness to affect the prediction it must necessarily be
propagated down the hierarchy, which disperses it spatially by construction.

We have observed that the CRPS fine-tuning (see appendix D.2) can be central to the performance
of Graph-EFM. This aligns the model distribution with the distribution of the data. However, since
this objective only encourages matching of the marginal distributions it is not sufficient for making
the model capture the full joint distribution. This has to be achieved by constraints to the model or
through additional parts of the training objective. We have observed that the weighting λCRPS used for
the CRPS term can have a large impact on the spatial coherency of forecasts. When λCRPS is chosen
too high the models trade off the ability to generate meaningful large-scale patterns for capturing

26

(a) nlwrs (b) 2r (c) z1000

Figure 9: Examples of artifacts appearing in Graph-EFM (ms) forecasts when trained with too high
λCRPS on the MEPS data. The checkerboard-like pattern can be related to the layout of the multi-scale
graph used.

(a) pres0s
Graph-FM

(b) pres0s
GraphCast*

(c) u65
Graph-FM

(d) 2r
GraphCast*

Figure 10: Examples of artifacts in smaller versions of the deterministic models. The circular artifacts
in GraphCast* become much more prevalent when the model capacity is limited. These models use 4
processing steps, dz = 64 and are trained using NLL loss.

local variations. This is especially severe for the Graph-EFM (ms) model, forcing us to use lower
λCRPS values in order to still get physical-looking forecasts. Figure 9 shows an example of the type
of local noise-patterns that can appear when training Graph-EFM (ms) with a too high λCRPS.

Another problem observed with the multi-scale graph GMS in the LAM setting is the appearance of
circular artifacts over the forecasting area. These appear in samples from Graph-EFM (ms) (see
figs. 8b and 8d), but can also be found in deterministic forecasts from GraphCast*. These artifacts
can be traced to the heterogeneous structure of the multi-scale graph. Due to how GMS is constructed,
mesh nodes can have different number of neighbors. The artifact positions match the positions of
mesh nodes with many neighbors. Note that the hierarchical graph does not have this issue, as G1
(that connects to the grid) has a more uniform structure. We noticed that these artifacts are even more
prevalent for smaller models, as shown in fig. 10. This points to the fact that with increased capacity,
the GraphCast* model can to some extent learn to compensate for this problem.

G.2 Global Forecasting with ERA5

We have found it less challenging to achieve spatially coherent forecasts in the global setting. Both
Graph-EFM and Graph-EFM (ms) generally produce samples with realistic physical features. Early
in the training process we observe some hexagonal patterns for longer lead times (also noted by
Keisler [20]), but these disappear as we train the models on longer rollouts.

One challenge that we encountered with the global probabilistic models was the appearance of small
areas of instabilities when rolling out the models to longer lead times. In fig. 11 we show some
examples of this in forecasts from preliminary models. These unphysical artifacts typically covered

27

(a) msl
Graph-EFM

(b) msl
Graph-EFM (ms)

(c) u700
Graph-EFM

(d) u700
Graph-EFM (ms)

Figure 11: Examples of artifacts in preliminary version of the global models unrolled to 10 days lead
time. Small patches of deviating values appear and impact multiple variables. While these were more
prevalent in Graph-EFM (ms), we did also observe this issue in Graph-EFM.

only a few grid-cells, but are of course undesirable in a forecasting model. To remedy this for
Graph-EFM we found it sufficient to train on longer rollouts. The stabilizing effect of unrolling up to
T = 12 time steps during training did suppress these issues. This was however not enough to solve
the problem for Graph-EFM (ms), for which we additionally needed to further lower λCRPS.

H Experiment Details: Global Forecasting with ERA5

In this appendix we give further detail about the graphs, data and experimental setup used in our
global forecasting experiment.

H.1 Graph Construction

Multi-scale graph The global multi-scale graph is created in the same way as in GraphCast [23],
by recursively splitting the faces of an icosahedron. As we work with data on a coarser resolution, we
perform only 4 steps of such splitting, resulting in the graphs G5, . . . ,G1. These are all then merged
to create GMS, used by GraphCast* and Graph-EFM (ms). By splitting 4 times we end up with a
ratio of N

|VM | ≈ 11 between grid nodes and mesh nodes. This can be compared with the 6 splitting
steps of GraphCast, resulting in a ratio N

|VM | ≈ 25 for their 0.25°data. We initially experimented also
with splitting only 3 times (resulting in N

|VM | ≈ 45), but models using these graphs showed inferior
performance.

Hierarchical graph As the original icosahedron G5 contains very few nodes, we do not use this
for the hierarchical mesh graph, but rather construct the hierarchy using G4, . . . ,G1. Edges El,l+1

between levels are constructed by connecting each mesh node at level l with nodes at level l + 1
within a distance of 1.1 times the edge length in Gl. This guarantees that each node at level l has 1 or
2 connection to the level above (see fig. 12g). Downward edges El+1,l are created by simply flipping
the edge directions of El,l+1. We visualize the global mesh graphs in fig. 12 and list the exact number
of nodes and edges in table 4.

28

(a) G1 (b) G2 (c) G3 (d) G4

(e) Multi-scale mesh graph GMS (f) Hierarchical mesh graph

(g) Inter-level graph G3,4

Figure 12: Mesh graphs used in the global experiment. Note that the vertical positioning (away from
earth’s surface) is purely for visualization purposes.

29

Table 4: Global graph statistics.
Graph Nodes Edges

Hierarchical

G1 2562 15 360
G2 642 3840
G3 162 960
G4 42 240
G1,2/G2,1 - 4482
G2,3/G3,2 - 1122
G3,4/G4,3 - 282

Total 3408 32 172

GMS 2562 20 460

GG2M - 46 158
GM2G - 87 120

Grid 29 040 -

Connecting the grid and mesh Edges connecting the grid and mesh graph are also constructed
following Lam et al. [23]. The edges EG2M are created by connecting each grid node to mesh nodes
within a distance of 0.6 times the edge length in G1. Edges EM2G are constructed by for each grid
node finding the triangle in G1 containing it, and adding three edges from the corner mesh nodes of
that triangle. Note that the edge sets EG2M and EM2G are identical for the multi-scale and hierarchical
mesh graphs, since GMS and G1 contain the same nodes. Since the grid nodes are laid out in a
latitude-longitude grid and the mesh is icosahedral all mesh nodes will not be connected to the
same number of grid nodes. Specifically, mesh nodes close to the poles will have many more grid
connections than mesh nodes around the equator.

Static features All mesh nodes are associated with static features related to their position, specifi-
cally cos(Latitude), sin(Longitude) and cos(Longitude). Edges (in the mesh, EG2M and EM2G) have
static features containing the edge length and vector difference between its endpoints (see Lam et al.
[23] for details). Edge features are normalized by the length of the longest edge.

H.2 Dataset Details

We use a version of ERA5 [17] re-gridded to 1.5° latitude-longitude gridding, provided through the
WeatherBench 2 benchmark [40]. Data from the period 1959-01-01T12 to 2017-12-31T12 is used for
training, 2017-12-31T18 to 2019-12-31T12 for validation and 2019-12-31T18 to 2021-01-10T18
for testing. These exact time stamps guarantee that there is no overlap between the subsets. For
evaluation we consider forecasts initialized at times 00 and 12 UTC each day of 2020, following
WeatherBench 2. We perform 10 day forecasts using 6 h time steps. During training we also start
forecasts at times 06 and 18 UTC.

The exact set of forecast variables, forcing and static fields is listed in table 5. We use the same inputs
as Lam et al. [23]. The forcing is windowed over three consecutive time steps, meaning that each F t

contains forcing from times t− 1, t and t+ 1 as well as the the static fields. For training we rescale
the values of each variable to zero mean and unit variance.

H.3 Model and Training Configurations

We train all models using the AdamW optimizer [57] and utilize BFloat16 mixed precision to save
GPU memory. The training costs for the models makes extensive hyperparameter tuning unfeasible.
We choose hyperparameters based on initial experimentation with smaller models. For Graph-EFM
the important weightings λKL and λCRPS in L can be chosen based on monitoring the model behavior
during training. This was done by plotting example forecasts throughout the training process and
monitoring metrics on the validation set. The weight λKL was tuned to prevent the model from
collapsing to deterministic predictions, and to still achieve useful predictions when Zt was sampled

30

Table 5: Variables, forcing and static fields from ERA5 used in our global forecasting experiments.
† kg of water vapour per kg of air.

Abbreviation Unit Vertical Levels

Variables

Geopotential z m2/s2

50 hPa, 100 hPa, 150 hPa, 200 hPa,
250 hPa, 300 hPa, 400 hPa,
500 hPa, 600 hPa, 700 hPa,
850 hPa, 925 hPa, 1000 hPa

Specific humidity q kg/kg†

Temperature t K
u-component of wind u m/s
v-component of wind v m/s
Vertical velocity w Pa/s

Temperature t K 2 m above surface
u-component of wind u m/s 10 m above surface
v-component of wind v m/s 10 m above surface
Mean sea level pressure msl Pa Sea level
Total precipitation (Acc. over 6 h) tp m Surface

Forcing

Top of atm. solar radiation flux toa W/m2 Top of atmosphere
Sine-encoded time of day sin_tod - -
Cosine-encoded time of day cos_tod - -
Sine-encoded time of year sin_toy - -
Cosine-encoded time of year cos_toy - -

Static Fields

Land-sea mask water [0, 1] Surface
Surface geopotential (topography) topography m2/s2 Surface
cos(Latitude) cos_lat - -
sin(Longitude) sin_lon - -
cos(Longitude) cos_lon - -

Table 6: Details of model architectures and training times for global forecasting.
Model dz Processing steps Parameters Training time (GPU-hours)

GraphCast* 256 8 5.2 × 106 716
Graph-FM 256 8 30.9 × 106 1040
Graph-EFM (ms) 256 µZ : 2, g: 4, q: 4 7.7 × 106 1372
Graph-EFM 256 - 16.3 × 106 1264

from the latent map. The CRPS weight λCRPS was tuned to achieve a good ensemble spread while
avoiding artifact issues, as discussed in appendix G.

The exact model configurations and training times for our global experiments are listed in table 6.
Parameter counts for probabilistic models include parameters in the variational approximation,
although this component does not play a role during forecasting. We report training times as hours of
active computations on a single GPU. In practice we use 8 80GB NVIDIA A100 GPUs in parallel,
meaning that the wall-clock time of our training is given by dividing the numbers in table 6 by 8.
For the Graph-FM model one processing step on the mesh graph constitutes a full pass through
the hierarchy (either from the grid up or from level L down). In Graph-EFM (ms) multiple GNN
processing steps operate on GMS. We list the number of such steps in table 6 separately for the latent
map (µZ), predictor (g) and variational approximation (q).

We train all models by a sequence of training step, starting from single-step prediction and then
unrolling predictions T steps. For the probabilistic models we first train in a pure auto-encoder setup
with λKL = 0, encouraging q to encode useful information in the distribution over Zt. We find this
useful for preventing the model from ignoring Zt and collapsing to purely deterministic forecasting.

31

Table 7: Training schedule for deterministic models (GraphCast* and Graph-FM) on global data.
Epochs Learning Rate Unrolling T

70 10−3 1
20 10−4 4
20 10−4 8

Table 8: Training schedule for Graph-EFM on global data. For Graph-EFM (ms) we use the same
schedule but with different constants (λKL = 1, λCRPS = 103).

Epochs Learning Rate Unrolling T λKL λCRPS

50 10−3 1 0 0
75 10−4 1 0.1 0
20 10−4 4 0.1 0
10 10−4 8 0.1 0

2 10−4 12 0.1 104

The probabilistic models additionally include the fine-tuning using CRPS as a final training step. The
full training schedule for the deterministic models is given in table 7 and for the probabilistic models
in table 8. Note that we here define one epoch as initializing the model at each possible time in the
training set (00, 06, 12 and 18 UTC in each day) such that all unrolled lead times are still within the
training set period. The reason for probabilistic models being unrolled to a longer lead time T is
mainly to combat the artifacts discussed in appendix G.2.

I Experiment Details: Limited Area Modeling with MEPS Data

In this appendix we give further detail about the graphs, data and experimental setup used in our
experiments with the MEPS data.

I.1 Graph Construction

Multi-scale graph In this limited-area setting we construct graphs as regular quadrilateral meshes
covering the rectangular MEPS forecasting area. To create these we lay out mesh nodes in regular
rows and columns over the area. Each node is then connected with bidirectional edges to its neighbors
horizontally, vertically and diagonally (see fig. 13a). This results in all nodes (except those at the
edge of the area) having 8 neighbors. The procedure is repeated at 4 different resolutions, tripling the
distance between nodes at each resolution. This means that a node at resolution level l is positioned
at the center of a group of 3× 3 nodes at resolution level l − 1, sharing its exact position with the
center node of the group (illustrated in fig. 13b). To create the multi-scale mesh graph GMS we then
merge the graphs at different resolutions, combining any nodes that sit at the same coordinates into
one node. Note that this is possible due to how nodes align across the resolution levels.

Hierarchical graph For the hierarchical model the graphs of different resolution are not merged,
but used as the different levels of the hierarchy. We include only the 3 finest meshes G1, G2 and G3,
as G4 contains only 9 nodes. Additional inter-level edge sets El,l+1 and El+1,l are then created for all
adjacent levels. Each set El,l+1 of upwards edges is created by connecting each node on level l with
the closest node on level l + 1. This means that each node at levels l > 1 will have 9 incoming edges
from the level below. The downward edges El+1,l are a copy of El,l+1 with the direction of each edge
flipped. The mesh graphs used for the MEPS experiment are visualized in fig. 14 and the number of
nodes and edges in each graph listed in table 9.

Connecting the grid and mesh To form EG2M, each grid node is connected to mesh nodes closer
than 0.67 times the distance between nodes in G1. All distances are here 2-dimensional euclidean,
computed in the MEPS Lambert projection coordinates. The set EM2G is constructed by iterating over
the grid nodes, and at each creating edges from the 4 closest mesh nodes to the node in the grid.

32

(a) Each mesh node α is connected
to its neighbors horizontally, vertically
and diagonally.

(b) Alignment of mesh nodes in Gl with mesh
nodes in Gl−1.

Figure 13: Illustration of mesh graph construction in the LAM setting.

(a) Multi-scale mesh graph GMS

(b) Hierarchical mesh graph (c) Mesh levels G1,G2,G3

Figure 14: Mesh graphs used in the MEPS experiment. Note that the vertical positioning and size of
nodes is purely for visualization purposes.

33

Table 9: MEPS graph statistics.
Graph Nodes Edges

Hierarchical

G1 6561 51 520
G2 729 5512
G3 81 544
G1,2/G2,1 - 6561
G2,3/G3,2 - 729

Total 7371 72 156

GMS 6561 57 616

GG2M - 100 656
GM2G - 255 136

Grid 63 784 -

Figure 15: Overview of the period covered in the dataset and the training/validation/test split.

Static features The static features associated with mesh nodes are their 2-dimensional coordinates
in the MEPS Lambert projection, normalized by the maximum coordinate value. All edges have
static features including the length of the edge and the vector difference between the source and
target nodes (using the projection coordinates). The edge features are normalized by the length of the
longest edge in the whole mesh graph.

I.2 Dataset Details

Dataset The MEPS dataset consists of archived forecasts from the operational MEPS system during
the period April 2021 – March 2023. This period was chosen due to the system configuration being
reasonably stable, preventing distributional shifts within the dataset. From the chosen period we
extract the forecasts started at 00 and 12 UTC each day. At each initialization time there are 5
ensemble forecasts, started from slightly different initial conditions. This results in 10 forecasts per
day (assuming no ensemble members are missing due to operational issues). When retrieving the data
we additionally downsample the spatial resolution from the original 2.5 km to 10 km. This results
in a dataset of 6069 forecasts of length 66 h with 1 h time steps. We split the forecasts into training,
validation and test sets according to fig. 15. The specific validation months were chosen to reasonably
cover the seasonal variations. Note that the dataset contains around 46 years of individual time steps.
However, since there are obvious correlations between ensemble members and successively started
forecasts the actual information content is far lower than in a 46 year reanalysis dataset.

Variables and forcing At each grid cell we model 17 weather variables, including a broad range of
different quantities and different vertical levels in the atmosphere. All variables, forcing and static
fields are described in table 10. The particular choice of variables was motivated by a combination of
meteorological relevance, data availability and striving for a diverse set of variables to evaluate the
model on. We use the same type of windowing for the forcing and standardization of variables as
in the global experiment. For solar radiation (nlwrs and nswrs) we consider the net flux at ground
level, aggregated over the past 3 hours (since the last time step). Apart from the solar radiation all
other variables are instantaneous. For the MEPS data we use the fraction of open water in the grid
cell as a forcing input. We assume this to be constant over the forecast period and take the value from
the time of the initial state. In the global experiment the land-sea mask is static, but treating this as
forcing could be useful for taking into account seasonal fluctuations of the ice cover in the Nordic
region. The boundary forcing Bt consists of the same variables as listed in table 10. We include a
static binary indicator variable describing if a node is in the boundary or forecast area.

34

Table 10: Variables, forcing and static fields in the MEPS dataset. †In the MEPS system 65 vertical
model levels are defined from the ground to the top of the atmosphere [32]. The lowest MEPS level
(Lvl65) sits at approximately 12.5 m above ground.

Abbreviation Unit Vertical Levels

Variables
Atmospheric pressure pres Pa Ground level (0g), Sea level (0s)
Net longwave solar radiation flux nlwrs W/m2 Surface
Net shortwave solar radiation flux nswrs W/m2 Surface
Relative humidity r [0, 1] 2 m, Lvl65† (65)
Temperature t K 2 m, Lvl65† (65), 500 hPa, 850 hPa
u-component of wind u m/s Lvl65† (65), 850 hPa
v-component of wind v m/s Lvl65† (65), 850 hPa
Water vapor, integrated column wvint kg/m2 Full column
Geopotential z m2/s2 500 hPa, 1000 hPa

Forcing

Top of atm. solar radiation flux toa W/m2 Top of atmosphere
Fraction of open water water [0, 1] Surface
Sine-encoded time of day sin_tod - -
Cosine-encoded time of day cos_tod - -
Sine-encoded time of year sin_toy - -
Cosine-encoded time of year cos_toy - -

Static Fields

Surface geopotential (topography) topography m2/s2 Surface
x-coordinate in MEPS projection x_coord - -
y-coordinate in MEPS projection y_coord - -
On-boundary binary indicator boundary 0/1 -

Forecast steps and length The original data uses 1 h time steps, but our MLWP models predict
in 3 h steps. Because of this we can extract 3 training samples from each forecast in the dataset
(i.e. original time steps {1, 4, 7, . . .}, {2, 5, 8, . . .} and {3, 6, 9, . . .}). As we train on only T ≤ 8
rollout steps, we also only need a subset of each such time series for each training iteration. To make
maximum use of the data during training we randomly sample which time step to use as initial state
for unrolling the model. The combination of 1) the 3 h time steps, 2) using the last two weather states
as model inputs, 3) including forcing from multiple times as input, means that we reduce the effective
length of our ground truth forecasts in pre-processing. This explains why we predict for 57 h rather
than the original 66 h. Note however that nothing prevents us from unrolling the models to create
forecasts for 66 h or beyond. Although this is possible, we do not have ground truth data to compare
against past 57 h and therefore view such experiments to be of limited interest. There is still no reason
to expect the model performance to become drastically worse specifically past 57 h, as all models are
anyhow fine-tuned on shorter rollouts than this.

I.3 Boundary Forcing

In all models we use boundary forcing Bt in order to include information about the surrounding area.
At each time step boundary forcing Bt−2:t−1 is passed to the model together with Xt−2:t−1, F t, as
described in fig. 16. There is a separate set of grid nodes used for the boundary input. These nodes
are treated identically as grid nodes within the forecasting area by the GNN layers. As the boundary
forcing is only a change to the model inputs this does not require any substantial re-design and we
can adapt all models in our experiments to this LAM setting. Note that we use a boundary area that
lays inside the original MEPS area, allowing us to use parts of the ground truth forecasts as boundary
forcing. We specifically define the boundary as the 10 grid cells closest to the edge of the limited
area. In the operational system the boundary area is defined along the edge outside the MEPS area.
There is no major conceptual difference between these and one could easily re-define the different
areas to match the operational MEPS system.

35

Figure 16: Schematic showing how we feed boundary forcing as input to the model in each autore-
gressive step.

Table 11: Details of model architectures and training times for LAM forecasting.
Model dz Processing steps Parameters Training time (GPU-hours)

GraphCast* 128 6 1.1× 106 336
Graph-FM 128 6 4.5× 106 432
Graph-EFM (ms) 128 µZ : 2, g: 4, q: 2 1.7× 106 456
Graph-EFM 128 - 3.1× 106 556

I.4 Model and Training Configurations

For the MEPS experiment we again use the AdamW optimizer [57], but not mixed precision compu-
tations. Hyperparameter tuning follows a similar strategy as for the global experiment. The exact
model configurations and training times for our MEPS experiments are listed in table 11. The training
schedule for the deterministic models is given in table 12 and for the probabilistic models in table 13.
These tables follow the same formats as tables 6 to 8, and we refer to the global experiment details in
appendix H.3 for further explanations. In the MEPS case one epoch means training on one sub-sample
(see description of sub-sampling in appendix I.2) of each forecast in the training set once.

J Additional Results: Global Forecasting with ERA5

In this appendix we present additional results for global forecasting.

J.1 Metrics

Comparisons between existing MLWP models are challenging, due to the many factors that impact
forecast quality. While most global models proposed in the literature are trained on ERA5, the

Table 12: Training schedule for deterministic models (GraphCast* and Graph-FM) on MEPS data.
Epochs Learning Rate Unrolling T

600 10−3 1
300 10−4 4
200 10−4 8

36

Table 13: Training schedule for Graph-EFM on MEPS data. For Graph-EFM (ms) we use the same
schedule but with different constants (λKL = 100, λCRPS = 104, fine-tuning learning rate 10−4).

Epochs Learning Rate Unrolling T λKL λCRPS

300 10−3 1 0 0
100 10−3 1 1 0
200 5× 10−4 4 1 0

50 5× 10−4 4 1 106

100 5× 10−4 6 1 106

exact choice of train/test split, spatial resolution and forecasted variables can vary (compare for
example Keisler [20], Pathak et al. [37] and Hu et al. [19]). Models that operate on a higher spatial
resolution and with more variables get more information in initial states, and should therefore be
expected to produce better forecasts. When it comes to MLWP ensemble forecasting, an even greater
challenge is that different initial conditions are used [39, 6, 16]. Given this situation, it is hard to
disentangle the proposed machine learning methods from their surrounding design choices and make
fair comparisons of model architectures.

We approach these complications by re-training a smaller set of models on the same data and
experimental setup. Our focus is on graph-based, non-hybrid MLWP models, as this is the regime
of Graph-FM and Graph-EFM. The baseline models are described in detail in appendix C.5. In this
appendix we also include additional metrics taken directly from the WeatherBench 2 Benchmark [40].
These are for the original GraphCast model [23], KeislerNet [20] and the IFS-ENS operational
ensemble from the European Centre for Medium-Range Weather Forecasts (ECMWF) [12]. The
evaluation setup for these results match ours (evaluation against 2020 from ERA5, identical metrics
computed on 1.5° data). However, as discussed above there are differences in the exact training data,
variables and operating resolutions compared to our models.

Metric values from our global experiments are presented in figs. 17 to 19. We here showcase values
for surface variables and atmospheric variables at pressure levels 500, 700 and 850 hPa. The results
taken directly from WeatherBench 2 are shown in gray, to emphasize that any comparison with these
comes with caveats. Note that results for all variables are not available for all models.

J.2 Example Forecasts

In fig. 20 we showcase example forecasts from different models at lead time 10 days. Note that
forecasting this far into the future is challenging, and sampled ensemble members show only one
possible scenario predicted by the models.

Figure 21 shows example ensemble forecasts from Graph-EFM for surface variables, atmospheric
variables at 700 hPa, z500 and t850. All forecasts are for 10 days lead time. For practical reasons
we use only 20 members to estimate the ensemble mean and standard deviation in these plots.

37

GraphCast*
Graph-FM

Graph-EFM (ms)
Graph-EFM

GraphCast*+SWA GraphCast KeislerNet IFS-ENS

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

1

2

3

(a) 2t

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

2

4

(b) 10u

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

2

4

(c) 10v

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0

250

500

750

(d) msl

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

5E-4

1E-3

2E-3

2E-3

(e) tp

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0

500

1000

(f) z500

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0

2

(g) t500

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

3E-4

5E-4

8E-4

(h) q500

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

2.5

5.0

7.5

(i) u500

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

5

10

(j) v500

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.125

0.150

0.175

(k) w500

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0

250

500

750

(l) z700

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0

2

4

(m) t700

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

5E-4

1E-3

2E-3

(n) q700

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

2

4

6

(o) u700

38

GraphCast*
Graph-FM

Graph-EFM (ms)
Graph-EFM

GraphCast*+SWA GraphCast KeislerNet IFS-ENS

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

2

4

6

(p) v700

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.125

0.150

0.175

(q) w700

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0

200

400

600

(r) z850

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0

2

4

(s) t850

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

5E-4

1E-3

2E-3

2E-3

(t) q850

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

2

4

6

(u) u850

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

2

4

6

(v) v850

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.10

0.12

0.14

0.16

(w) w850

Figure 17: RMSE results for global experiment.

39

GraphCast*
Graph-FM

Graph-EFM (ms)
Graph-EFM

GraphCast*+SWA GraphCast KeislerNet IFS-ENS

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.5

1.0

1.5

2.0

(a) 2t

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

1

2

3

(b) 10u

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

1

2

3

(c) 10v

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0

200

400

(d) msl

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

2E-4

4E-4

6E-4

8E-4

(e) tp

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0

200

400

600

(f) z500

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0

1

2

(g) t500

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

2E-4

4E-4

6E-4

(h) q500

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

2

4

6

(i) u500

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

2

4

6

(j) v500

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.06

0.08

0.10

0.12

(k) w500

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0

200

400

(l) z700

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0

1

2

(m) t700

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

5E-4

1E-3

(n) q700

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

2

4

(o) u700

40

GraphCast*
Graph-FM

Graph-EFM (ms)
Graph-EFM

GraphCast*+SWA GraphCast KeislerNet IFS-ENS

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

2

4

(p) v700

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.06

0.08

0.10

0.12

(q) w700

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0

200

400

(r) z850

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

1

2

(s) t850

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

5E-4

1E-3

(t) q850

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

2

4

(u) u850

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

2

4

(v) v850

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.06

0.08

0.10

(w) w850

Figure 18: CRPS results for global experiment.

41

Graph-EFM (ms) Graph-EFM GraphCast*+SWA Calibrated

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(a) 2t

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(b) 10u

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(c) 10v

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(d) msl

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(e) tp

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(f) z500

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(g) t500

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(h) q500

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(i) u500

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(j) v500

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(k) w500

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(l) z700

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(m) t700

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(n) q700

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(o) u700

42

Graph-EFM (ms) Graph-EFM GraphCast*+SWA Calibrated

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(p) v700

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(q) w700

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(r) z850

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(s) t850

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(t) q850

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(u) u850

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(v) v850

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(w) w850

Figure 19: SpSkR results for global experiment.

43

(a) 10u
Ground Truth

(b) 10u
GraphCast*

(c) 10u
Graph-FM

(d) 10u
Graph-EFM (ms), Ens. Member

(e) 10u
Graph-EFM, Ens. Member

(f) q700
Ground Truth

(g) q700
GraphCast*

(h) q700
Graph-FM

(i) q700
Graph-EFM (ms), Ens. Member

(j) q700
Graph-EFM, Ens. Member

(k) z500
Ground Truth

(l) z500
GraphCast*

(m) z500
Graph-FM

(n) z500
Graph-EFM (ms), Ens. Member

(o) z500
Graph-EFM, Ens. Member

Figure 20: Comparison of global model forecasts at 10 days lead time for u-component of 10 m wind
(10u), specific humidity at 700 hPa (q700) and geopotential at 500 hPa (z500). For probabilistic
models we show sampled ensemble members.

44

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

225

250

275

300

K

2.5

5.0

7.5

10.0

St
d.

-D
ev

.

(a) 2t

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

−20

0

20

m
/s

5

10

St
d.

-D
ev

.

(b) 10u

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

−20

0

20

m
/s

2.5

5.0

7.5

10.0

St
d.

-D
ev

.

(c) 10v

45

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

95000

97500

100000

102500

Pa

500

1000

1500

2000

St
d.

-D
ev

.

(d) msl

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

0.00

0.02

0.04

0.06

m

0.005

0.010

0.015

St
d.

-D
ev

.

(e) tp

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

45000

50000

55000

m
²/s

²

500

1000

1500

2000

St
d.

-D
ev

.

(f) z500

46

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

240

260

280

300

K

2

4

6

8

St
d.

-D
ev

.

(g) t850

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

0.000

0.005

0.010

kg
/k

g

0.001

0.002

0.003

St
d.

-D
ev

.

(h) q700

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

22500

25000

27500

30000

m
²/s

²

500

1000

1500
St

d.
-D

ev
.

(i) z700

47

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

240

260

280

K

2

4

6

8

St
d.

-D
ev

.

(j) t700

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

−20

0

20

40

m
/s

5

10

15

St
d.

-D
ev

.

(k) u700

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

−40

−20

0

20

40

m
/s

5

10

15

St
d.

-D
ev

.

(l) v700

48

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

−2.5

0.0

2.5

5.0

Pa
/s

0.5

1.0

1.5

St
d.

-D
ev

.

(m) w700

Figure 21: Example Graph-EFM global ensemble forecasts at lead time 10 days.

49

K Additional Results: Limited Area Modeling with MEPS Data

In this appendix we show additional results from our experiment with the MEPS data.

K.1 Metrics

Figures 22 to 24 show metric values for all variables and lead times in the MEPS dataset.

The poor performance of the Graph-EFM (ms) model is noteworthy, both in terms of forecast accuracy
and ensemble calibration. This can to a large extent be attributed to the exact training objective (see
table 13), particularly a lower weighting λCRPS. Using a lower value for λCRPS in the multi-scale
model was necessary to avoid the artifacts discussed in appendix G. The does however mean that
Graph-EFM (ms) does not gain as much of the benefits that come with the CRPS fine-tuning.

K.2 Example Forecasts

A comparison between example forecasts from different models is given in fig. 25. Note that ensemble
members sampled from Graph-EFM show more detailed features than deterministic forecasts.

In fig. 26 we plot example ensemble forecasts from the Graph-EFM model for all variables in the
MEPS data. Note that these plots include the boundary area, which is not forecast, as a faded
border in each plot. All forecasts are for lead time 57 h. Rolling out a LAM ensemble forecast from
Graph-EFM to 57 h is even faster than generating the global ensemble. Using batched sampling on a
single GPU, we can produce 100 ensemble members in 140 s (1.4 s per member).

GraphCast* Graph-FM Graph-EFM (ms) Graph-EFM GraphCast*+SWA

1 2

Lead time (Days)

200

400

600

(a) pres0g

1 2

Lead time (Days)

200

400

600

(b) pres0s

1 2

Lead time (Days)

2E+5

4E+5

(c) nlwrs

1 2

Lead time (Days)

5E+5

1E+6

(d) nswrs

1 2

Lead time (Days)

0.04

0.06

0.08

0.10

(e) 2r

1 2

Lead time (Days)

0.050

0.075

0.100

(f) r65

50

GraphCast* Graph-FM Graph-EFM (ms) Graph-EFM GraphCast*+SWA

1 2

Lead time (Days)

1

2

3

(g) 2t

1 2

Lead time (Days)

0.5

1.0

1.5

2.0

(h) t65

1 2

Lead time (Days)

1

2

(i) t500

1 2

Lead time (Days)

1

2

(j) t850

1 2

Lead time (Days)

1

2

3

4

(k) u65

1 2

Lead time (Days)

1

2

3

(l) v65

1 2

Lead time (Days)

2

4

6

(m) u850

1 2

Lead time (Days)

2

4

6

(n) v850

1 2

Lead time (Days)

1

2

3

(o) wvint

1 2

Lead time (Days)

200

400

600

(p) z500

1 2

Lead time (Days)

200

400

(q) z1000

Figure 22: RMSE for MEPS experiment.

51

GraphCast* Graph-FM Graph-EFM (ms) Graph-EFM GraphCast*+SWA

1 2

Lead time (Days)

200

400

(a) pres0g

1 2

Lead time (Days)

200

400

(b) pres0s

1 2

Lead time (Days)

1E+5

2E+5

3E+5

4E+5

(c) nlwrs

1 2

Lead time (Days)

2E+5

4E+5

6E+5

(d) nswrs

1 2

Lead time (Days)

0.02

0.04

0.06

(e) 2r

1 2

Lead time (Days)

0.02

0.04

0.06

(f) r65

1 2

Lead time (Days)

0.5

1.0

(g) 2t

1 2

Lead time (Days)

0.5

1.0

(h) t65

1 2

Lead time (Days)

0.5

1.0

1.5

(i) t500

1 2

Lead time (Days)

0.5

1.0

1.5

(j) t850

1 2

Lead time (Days)

0.5

1.0

1.5

2.0

(k) u65

1 2

Lead time (Days)

0.5

1.0

1.5

2.0

(l) v65

1 2

Lead time (Days)

1

2

3

4

(m) u850

1 2

Lead time (Days)

1

2

3

4

(n) v850

1 2

Lead time (Days)

0.5

1.0

1.5

2.0

(o) wvint

52

GraphCast* Graph-FM Graph-EFM (ms) Graph-EFM GraphCast*+SWA

1 2

Lead time (Days)

200

400

(p) z500

1 2

Lead time (Days)

100

200

300

(q) z1000

Figure 23: CRPS for MEPS experiment.

Graph-EFM (ms) Graph-EFM GraphCast*+SWA Calibrated

1 2

Lead time (Days)

0.0

0.5

1.0

(a) pres0g

1 2

Lead time (Days)

0.0

0.5

1.0

(b) pres0s

1 2

Lead time (Days)

0.0

0.5

1.0

(c) nlwrs

1 2

Lead time (Days)

0.0

0.5

1.0

(d) nswrs

1 2

Lead time (Days)

0.0

0.5

1.0

(e) 2r

1 2

Lead time (Days)

0.0

0.5

1.0

(f) r65

53

Graph-EFM (ms) Graph-EFM GraphCast*+SWA Calibrated

1 2

Lead time (Days)

0.0

0.5

1.0

(g) 2t

1 2

Lead time (Days)

0.0

0.5

1.0

(h) t65

1 2

Lead time (Days)

0.0

0.5

1.0

(i) t500

1 2

Lead time (Days)

0.0

0.5

1.0

(j) t850

1 2

Lead time (Days)

0.0

0.5

1.0

(k) u65

1 2

Lead time (Days)

0.0

0.5

1.0

(l) v65

1 2

Lead time (Days)

0.0

0.5

1.0

(m) u850

1 2

Lead time (Days)

0.0

0.5

1.0

(n) v850

1 2

Lead time (Days)

0.0

0.5

1.0

(o) wvint

1 2

Lead time (Days)

0.0

0.5

1.0

(p) z500

1 2

Lead time (Days)

0.0

0.5

1.0

(q) z1000

Figure 24: SpSkR for MEPS experiment.

54

(a) u850
Ground Truth

(b) u850
GraphCast*

(c) u850
Graph-FM

(d) u850
Graph-EFM (ms)

Ens. Member

(e) u850
Graph-EFM

Ens. Member

(f) 2r
Ground Truth

(g) 2r
GraphCast*

(h) 2r
Graph-FM

(i) 2r
Graph-EFM (ms)

Ens. Member

(j) 2r
Graph-EFM

Ens. Member

Figure 25: Comparison of LAM forecasts for u-component of wind at 850 hPa (u850) and 2 m relative
humidity (2r) at 57 h lead time. For probabilistic models we show sampled ensemble members.

55

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

80000

85000

90000

95000

100000

Pa

0

50

100

150

200

St
d.

-D
ev

.

(a) pres0g

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

99500

100000

100500

101000

101500

102000

Pa

0

50

100

150

200

St
d.

-D
ev

.

(b) pres0s

56

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

−1.5

−1.0

−0.5

0.0

W
/m

²

×106

0

100000

200000

300000

400000

St
d.

-D
ev

.

(c) nlwrs

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

0

1

2

3

4

5

6

W
/m

²

×106

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

St
d.

-D
ev

.

×106

(d) nswrs

57

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

0.4

0.6

0.8

1.0

-

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

St
d.

-D
ev

.

(e) 2r

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

St
d.

-D
ev

.

(f) r65

58

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

265

270

275

280

285

290

295

300

K

0.0

0.5

1.0

1.5

2.0

2.5

St
d.

-D
ev

.

(g) 2t

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

270

275

280

285

290

295

K

0.0

0.5

1.0

1.5

2.0

St
d.

-D
ev

.

(h) t65

59

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

240

245

250

255

260

K

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

St
d.

-D
ev

.

(i) t500

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

265

270

275

280

285

290

K

0.0

0.5

1.0

1.5

2.0

St
d.

-D
ev

.

(j) t850

60

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

−15

−10

−5

0

5

10

15

m
/s

0

1

2

3

4

5

6

7

St
d.

-D
ev

.

(k) u65

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

−10

0

10

20

m
/s

0

1

2

3

4

5

St
d.

-D
ev

.

(l) u850

61

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

−15

−10

−5

0

5

10

15

20

m
/s

0

1

2

3

4

5

6

St
d.

-D
ev

.

(m) v65

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

−20

−10

0

10

20

m
/s

0

1

2

3

4

5

6

St
d.

-D
ev

.

(n) v850

62

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

5

10

15

20

25

30

35

40

kg
/m

²

0

1

2

3

4

5

6

7

St
d.

-D
ev

.

(o) wvint

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

52000

53000

54000

55000

56000

m
²/s

²

0

50

100

150

200

250

St
d.

-D
ev

.

(p) z500

63

Ground Truth Ens. Mean Ens. Std.-Dev.

Ens. Members

−500

0

500

1000

1500

m
²/s

²

0

25

50

75

100

125

150

175

St
d.

-D
ev

.

(q) z1000

Figure 26: Example Graph-EFM LAM ensemble forecasts at lead time 57 h.

64

L Additional experiments

L.1 Comparing Interaction and Propagation Networks in Graph-FM

Given the usefulness of Propagation Networks in Graph-EFM it is reasonable to ask if these could be
beneficial to use also in the deterministic Graph-FM model. Also Graph-FM uses a hierarchical mesh
graph, so the propagation of information between levels is important also for this model. We test this
empirically, by training versions of Graph-FM using Interaction and Propagation networks. As the
retention of information is also important for some parts of the architecture, we do not replace all
GNNs with Propagation Networks (see appendix C.2). We compare models on both global and LAM
forecasting, using the same experimental setups as described in appendices H and I.

Global forecasting with ERA5 Figure 27 shows RMSEs for highlighted variables from ERA5
and Graph-FM using Interaction and Propagation Networks. The models have very similar errors for
almost all variables. However, for variables in the upper atmosphere the Propagation Network model
shows lower errors.

Limited area modeling with MEPS data In fig. 28 we compare RMSEs for Graph-FM models
using the different GNN layers on MEPS data. Here we see a greater advantage of the Propagation
Networks. We hypothesize that this relates to the boundary forcing. Using Propagation Networks the
information from boundary nodes should easier reach the top graph level, where it can faster spread
throughout the forecasting area. Motivated by these results we use Propagation Networks in our final
Graph-FM architecture, both for global and LAM forecasting.

L.2 Importance of Latent Map

In Graph-EFM we define the latent map p
(
Zt

∣∣Xt−2:t−1, F t
)

using a neural network with explicit
dependence on Xt−2:t−1, F t. Given that also the predictor takes Xt−2:t−1, F t as inputs, it is not
immediately clear that conditioning on this also in the latent map is necessary. Indeed, due to the
ability of deep neural networks to well approximate arbitrary functions, the predictor network should
internally be able to transform a simple Zt ∼ N (0, I) to introduce the dependence on Xt−2:t−1, F t.
This does however assume infinite flexibility in the predictor, which might be far from the situation in
practice.

To investigate the importance of a learnable latent map we compare our Graph-EFM model on the
MEPS dataset with one where Zt is sampled from a static distribution N (0, I). This experiment
was carried out using an earlier version of Graph-EFM, with the same architecture but a slightly
different training schedule. To save on computations we here only sample 16 ensemble members
from each model. RMSE, CRPS and SpSkR are shown in figs. 29 to 31. In terms of RMSE
and CRPS there is a clear benefit to letting the distribution over Zt be a learnable mapping. The
SpSkR in fig. 31 shows no clear trends between the models. For practical network architectures the
latent map does add flexibility, changing the mean of Zt that enters the predictor. The learnable
latent map should also simplify the inference problem solved when optimizing our variational
objective. With the dependence on previous states we can expect a smaller discrepancy between
p
(
Zt

∣∣Xt−2:t−1, F t
)

and p
(
Zt

∣∣Xt−2:t−1, Xt, F t
)
, simplifying the optimization of the variational

approximation q
(
Zt

∣∣Xt−2:t−1, Xt, F t
)
. We believe that this is an important aspect of the observed

empirical benefit of a using the latent map.

L.3 Impact of Ensemble Size

We here study how the performance of the model, in terms of metric values, varies when sampling
different numbers of ensemble members. To investigate this we ran the evaluation of Graph-EFM
with 5–80 members for the global model and 5–100 for the LAM model. Results for a selection of
variables are shown in fig. 32 (global, ERA5) and fig. 33 (LAM, MEPS). As expected the RMSE of
the ensemble mean decreases when sampling more members. However, already when sampling 20
or 25 members the results are fairly close to the full ensemble. For SpSkR the differences are even
smaller. As the CRPS is a property of the distribution of the model forecast, its true value does not
depend on the number of samples drawn. In practice we compute CRPS using an unbiased estimator,
and the variance of this estimator decreases with ensemble size. When averaged spatially and over

65

Propagation Networks Interaction Networks

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0

250

500

750

(a) z500

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.5

1.0

1.5

(b) q700

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

1

2

3

(c) t850

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

1

2

(d) 2t

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

1

2

3

(e) t100

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.018

0.020

0.022

(f) w100

Figure 27: RMSE of Graph-FM models with Propagation and Interaction Networks, evaluated on the
ERA5 test set

Propagation Networks Interaction Networks

1 2

Lead time (Days)

200

400

(a) z500

1 2

Lead time (Days)

1

2

3

(b) wvint

1 2

Lead time (Days)

1E+5

2E+5

2E+5

2E+5

(c) nlwrs

1 2

Lead time (Days)

0.5

1.0

1.5

(d) 2t

1 2

Lead time (Days)

1

2

3

(e) u65

1 2

Lead time (Days)

1

2

(f) v65

Figure 28: RMSE of Graph-FM models with Propagation and Interaction Networks, evaluated on the
MEPS test set.

66

Latent map Static

1 2

Lead time (Days)

0.5

1.0

1.5

(a) 2t

1 2

Lead time (Days)

1

2

(b) wvint

1 2

Lead time (Days)

2

3

(c) u850

Figure 29: RMSE for Graph-EFM models with a static distribution for Zt or a learnable latent map,
evaluted on the MEPS validation dataset.

Latent map Static

1 2

Lead time (Days)

0.4

0.6

0.8

(a) 2t

1 2

Lead time (Days)

0.5

1.0

(b) wvint

1 2

Lead time (Days)

1.0

1.5

(c) u850

Figure 30: CRPS for Graph-EFM models with a static distribution for Zt or a learnable latent map,
evaluted on the MEPS validation dataset.

Latent map Static Calibrated

1 2

Lead time (Days)

0.0

0.5

1.0

(a) 2t

1 2

Lead time (Days)

0.0

0.5

1.0

(b) wvint

1 2

Lead time (Days)

0.0

0.5

1.0

(c) u850

Figure 31: SpSkR for Graph-EFM models with a static distribution for Zt or a learnable latent map,
evaluted on the MEPS validation dataset.

67

5 10 20 40 80

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

250

500

750

(a) z500, RMSE

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

100

200

300

(b) z500, CRPS

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(c) z500, SpSkR

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

1

2

(d) 2t, RMSE

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.4

0.6

0.8

1.0

(e) 2t, CRPS

1 2 3 4 5 6 7 8 9 10

Lead time (Days)

0.0

0.5

1.0

(f) 2t, SpSkR

Figure 32: Metric values for z500 and 2t from the global experiment when sampling different
numbers of ensemble members from Graph-EFM.

the whole test set we do however not see any difference in CRPS for different ensemble sizes. All
these trends hold consistently for all variables in both the ERA5 and MEPS datasets.

In our main experiments in section 5 we use the full 80/100 member ensembles. Given that any
improvements to metrics saturate, we would not expect results to meaningfully change from sampling
even more members than this. It should however be noted that the motivation for sampling very large
ensembles is mainly not to improve on metrics such as these. More important motivations for large
ensembles include estimating probabilities of rare events or studying different possible scenarios of
extreme weather.

68

5 10 25 50 100

1 2

Lead time (Days)

1E+5

2E+5

2E+5

(a) nlwrs, RMSE

1 2

Lead time (Days)

6E+4

8E+4

1E+5

(b) nlwrs, CRPS

1 2

Lead time (Days)

0.0

0.5

1.0

(c) nlwrs, SpSkR

1 2

Lead time (Days)

1.0

1.5

(d) 2t, RMSE

1 2

Lead time (Days)

0.4

0.6

(e) 2t, CRPS

1 2

Lead time (Days)

0.0

0.5

1.0

(f) 2t, SpSkR

Figure 33: Metric values for nlwrs and 2t from the LAM experiment when sampling different
numbers of ensemble members from Graph-EFM.

Appendix References
[53] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,

2016.

[54] Z. B. Bouallègue, M. C. A. Clare, L. Magnusson, E. Gascón, M. Maier-Gerber, M. Janoušek,
M. Rodwell, F. Pinault, J. S. Dramsch, S. T. K. Lang, B. Raoult, F. Rabier, M. Chevallier,
I. Sandu, P. Dueben, M. Chantry, and F. Pappenberger. The rise of data-driven weather
forecasting: A first statistical assessment of machine learning-based weather forecasts in an
operational-like context. Bulletin of the American Meteorological Society, 2024.

[55] A. J. Charlton-Perez, H. F. Dacre, S. Driscoll, S. L. Gray, B. Harvey, N. J. Harvey, K. M. R.
Hunt, R. W. Lee, R. Swaminathan, R. Vandaele, and A. Volonté. Do AI models produce better
weather forecasts than physics-based models? a quantitative evaluation case study of storm
ciarán. npj Climate and Atmospheric Science, 2024.

[56] Core writing team, H. Lee, and J. R. (eds.). IPCC, 2023: Climate change 2023: Synthesis report.
contribution of working groups I, II and III to the sixth assessment report of the intergovern-
mental panel on climate change. Technical report, Intergovernmental Panel on Climate Change
(IPCC), 2023.

[57] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Conference
on Learning Representations, 2019.

[58] National Weather Service. Hurricane laura, 2020. URL https://www.weather.gov/lch/
2020Laura.

[59] P. Ramachandran, B. Zoph, and Q. V. Le. Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017.

[60] R. Sims, P. Mercado, W. Krewitt, G. Bhuyan, D. Flynn, H. Holttinen, G. Jannuzzi, S. Khennas,
Y. Liu, L. J. Nilsson, J. Ogden, K. Ogimoto, M. O’Malley, H. Outhred, Ø. Ulleberg, and F. v.
Hulle. Integration of renewable energy into present and future energy systems. In IPCC Special
Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University
Press, 2012.

69

https://www.weather.gov/lch/2020Laura
https://www.weather.gov/lch/2020Laura

[61] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther. Ladder variational
autoencoders. Advances in neural information processing systems, 29, 2016.

[62] J. Whitt and S. Gordon. This is the economic cost of extreme weather. In World Eco-
nomic Forum Annual Meeting, 2023. URL https://www.weforum.org/agenda/2023/
01/extreme-weather-economic-cost-wef23/.

[63] M. Zamo and P. Naveau. Estimation of the continuous ranked probability score with limited
information and applications to ensemble weather forecasts. Mathematical Geosciences, 2018.

70

https://www.weforum.org/agenda/2023/01/extreme-weather-economic-cost-wef23/
https://www.weforum.org/agenda/2023/01/extreme-weather-economic-cost-wef23/

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We outline the scope and contributions of our work in the introduction. See
specifically the last paragraph where we list our main contributions.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in section 6.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not present theoretical results.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide enough details about the model architecture and experimental
setups to reproduce our results. Apart from the descriptions in the main paper, model details
are given in appendix C and experimental details in appendices H and I. Our code is also
openly available.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code is openly available, together with instructions on how to run it. Along
with details given in the appendices this allows for reproducing our results. The ERA5
dataset is openly available. The MEPS data is available to other researchers upon request.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See appendices H and I.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The main sources of randomness in our experiments relate to the random seed
used for parameter initialization and sampling. A proper statistical analysis would require
training and evaluating multiple models. However, the computational cost associated makes
it unfeasible to train enough models to draw any well founded conclusions.

8. Experiments Compute Resources

71

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See section 5, tables 6 and 11.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See section 1 and appendix B.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not judge the shared models to have a high risk of misuse.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We explicitly refer to the ERA5 license. The MEPS dataset is used with
permission from the the Swedish Meteorological and Hydrological Institute.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We are releasing our code and models with the paper. The code comes with
documentation to the degree that other researchers can reproduce and extend our work.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:

72

https://neurips.cc/public/EthicsGuidelines

	Introduction
	Related Work
	Background
	Problem Definition
	Graph-based Weather Forecasting

	Weather Forecasting with Hierarchical Graph Neural Networks
	Hierarchical Graph
	Graph-FM: Deterministic Forecasting
	Graph-EFM: Probabilistic Forecasting
	Training Objective
	Improved GNN Layers: Propagation Networks

	Experiments
	Global Forecasting with ERA5
	Limited Area Modeling with MEPS Data

	Discussion
	Table of Notation
	Societal Impact
	Model Details
	Training Objectives
	Metric Definitions
	Extreme Weather Case Study: Hurricane Laura
	Spatial Coherency of Forecasts
	Experiment Details: Global Forecasting with ERA5
	Experiment Details: Limited Area Modeling with MEPS Data
	Additional Results: Global Forecasting with ERA5
	Additional Results: Limited Area Modeling with MEPS Data
	Additional experiments

