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Abstract
A simple yet effective method for inference-time
alignment of generative models is Best-of-N
(BoN), where N outcomes are sampled from a
reference policy, evaluated using a proxy reward
model, and the highest-scoring one is selected.
While prior work argues that BoN is almost opti-
mal in reward vs KL tradeoffs, the effectiveness
of BoN depends critically on the quality of the
proxy reward model used for selection. For this
purpose, we study BoN through a smooth version
known as Soft Best-of-N (SBoN) and develop a
theoretical framework to address this gap. We an-
alyze the scaling behaviour of BoN by providing
bounds on the KL divergence between the SBoN
policy and the reference policy, offering insights
into how performance varies with the number of
samples. We also study the regret gap, i.e., the
gap between the expected reward of the optimal
(tilted) policy and the SBoN policy. Our theoret-
ical and empirical findings show that smoothing
helps SBoN mitigate reward overoptimization, es-
pecially when the quality of the proxy reward is
low.

1. Introduction
Large language models (LLMs) have transformed machine
learning, achieving state-of-the-art results on a variety of
tasks. Despite all advancements, LLMs can still generate
undesirable outputs, such as toxic or factually incorrect re-
sponses. This has made alignment a central goal in modern
LLM development (Achiam et al., 2023; Team et al., 2023).

Several post-hoc alignment methods have been proposed to
address this challenge, including Reinforcement Learning
from Human Feedback (RLHF) (Christiano et al., 2017;
Ouyang et al., 2022), SLiC (Zhao et al., 2022), Direct Pref-
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erence Optimization (Rafailov et al., 2023), controlled de-
coding (Mudgal et al., 2024) and Best-of-N (BoN) sampling
(Beirami et al., 2024). While these methods differ in their
implementation—ranging from training-time optimization
to test-time selection—they can be viewed, in principle, as
approximating the solution to a KL-regularized reward max-
imization problem. The optimal solution to this problem is
a tilted distribution over responses, which balances reward
and proximity to the reference model (Yang et al., 2024).

In BoN as a test-time sampling strategy, given a prompt, N
responses are sampled from the reference policy, and the one
with the highest estimated reward is selected. Empirically,
BoN has been shown to achieve competitive or superior
performance in the reward-versus-KL divergence trade-off
when compared to RLHF and other alignment methods (Gao
et al., 2023a; Mudgal et al., 2024) under true reward model.
Furthermore, under certain conditions, it asymptotically
approximates the solution to the KL-regularized reward
maximization objective (Yang et al., 2024). However, in
practice, BoN relies on a learned proxy reward model—an
approximation of the true reward function—to guide this
selection. As such, their effectiveness critically depends
on both the proxy reward model (estimation error of true
reward) and the quality of the reference policy.

Understanding how these two components, the quality of
the proxy reward model and the choice of reference policy,
affect the alignment quality of test-time sampling algorithms
is essential. There are different measures of alignment qual-
ity, including KL divergence 1 between aligned policy and
reference policy and the regret defined as the gap between
the expected reward under the optimal (tilted) policy and the
alignment policy. Note that minimizing the regret gap is crit-
ical to ensuring high-quality outputs and close performance
to the optimal policy. Recent work by Gao et al. (2023a)
and Hilton et al. (2022) has investigated the scaling laws
governing reward model optimization in both reinforcement
learning (RL) and BoN settings as a function of KL diver-
gence between aligned policy and reference policy. They
empirically demonstrate that, under proxy reward models,
the improvement in expected true reward, relative to a ref-
erence policy, scales proportionally for both RL and BoN

1Unless stated otherwise, all KL divergences are understood to
be measured between the aligned policy and the reference policy.
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policies.

While recent work analyzes BoN under the idealized settings
where there is no discrepancy between the proxy reward and
the true reward (Yang et al., 2024; Beirami et al., 2024;
Mroueh, 2024; Huang et al., 2025), our work relaxes this
assumption to study the interplay between the reward dis-
crepancy measured through regret and the KL-divergence.
We present a theoretical study of Soft Best-of-N (SBoN),
a smoothed variant of BoN recently introduced by Claudio
et al. (2025); Jinnai et al. (2024). Unlike BoN, SBoN draws
the final response probabilistically from the N candidates,
yielding a policy πSBoN that is tunable with a temperature
parameter. Our analysis centres on two metrics:

(a) the Kullback–Leibler divergence between SBoN policy
(under the true reward) and the reference policy, and

(b) the regret, i.e. the expected reward gap between optimal
policy and SBoN policy.

We show how these results specialize to the BoN (as a limit
of SBoN for the temperature goes to infinity) and quantify
the additional error incurred by using a proxy reward model
instead of the true reward. Finally, we characterize regimes
in which SBoN attains lower regret bound than BoN when
we use the proxy reward model.

Our main contributions are:

• We derive finite-sample bounds for KL divergence be-
tween the SBoN policy and reference policy, and for
the regret gap of the SBoN policy, and we extend these
bounds to BoN. These bounds reveal how the num-
ber of responses N , proxy reward model quality and
reference policy model affect performance.

• We quantify cases where SBoN performs better than
BoN under the proxy reward model (a.k.a. reward
model overoptimization) and quality of reference pol-
icy.

• We provide experimental validation using various
proxy reward models to demonstrate SBoN’s advan-
tages in the overoptimization scenario.

2. Related Works
Best-of-N. Despite many recent advancements in alignment,
a simple, popular, and well-performing method continues
to be the BoN policy (Nakano et al., 2021; Stiennon et al.,
2020; Beirami et al., 2024). In fact, Gao et al. (2023b); Mud-
gal et al. (2024); Eisenstein et al. (2023) show that BoN con-
sistently achieves compelling win rate–KL tradeoff curves,
often outperforming KL-regularized reinforcement learn-
ing and other more complex alignment strategies. LLaMA

2 (Touvron et al., 2023) leverages BoN outputs as teacher
signals to further finetune the base model. Mudgal et al.
(2024) extend BoN through Q-learning to block-wise BoN
decoding. This empirical effectiveness has also inspired
research into distilling BoN behaviour into standalone mod-
els (Amini et al., 2025; Sessa et al., 2024; Qiu et al., 2024).
Hughes et al. (2024) utilize BoN as an effective method
for jailbreaking, while BoN is also commonly used as a
strong baseline for scaling inference-time compute (Brown
et al., 2024; Snell et al., 2024). Given the broad success of
BoN, we are motivated to theoretically investigate the BoN
policies and the effect of the proxy reward model (reward
hacking) and the quality of the reference policy.

Smoothing of Maximum. Approximating the maximum
operator using a smoothed or softmax-based surrogate is
a widely adopted technique in machine learning. This ap-
proach is particularly useful in settings where the hard max-
imum is non-differentiable or leads to unstable optimiza-
tion. For instance, in robust regression, smooth approxi-
mations to the max operator are used in min-max formula-
tions to achieve tractable optimization under distributional
shifts (Wang et al., 2013; Li et al., 2023). In sequential
decision-making, similar ideas appear in risk-sensitive con-
trol and Q-learning, where the softmax of Q-values leads
to stochastic policies that balance exploration and exploita-
tion (Howard and Matheson, 1972; Borkar, 2002). In con-
vex and non-convex optimization, smoothing the maximum
objective has been shown to improve convergence proper-
ties (Kort and Bertsekas, 1972; Pee and Royset, 2011; Liu
and Theodorou, 2019). The Soft Best-of-N (SBoN) frame-
work, (Claudio et al., 2025; Khanov et al., 2024; Jinnai et al.,
2024), leverages this principle by replacing the hard selec-
tion of the highest-reward sample with a softmax-weighted
sampling distribution. Regarding the SBoN, the empirical
version of SBoN is introduced by (Khanov et al., 2024) as
ARGS-stochastic, where a token from a probability distri-
bution among the top-k candidate tokens is chosen. Then,
the regularized version of BoN, which can be represented as
SBoN, is discussed by (Jinnai et al., 2024). Given the broad
success of SBoN, we are motivated to theoretically investi-
gate the SBoN policies and the effect of the proxy reward
model (reward hacking) and the quality of the reference
policy.

Theoretical Foundation of (Soft) BoN: KL divergence of
BoN is studied in (Beirami et al., 2024; Mroueh, 2024) via
information theoretical tools where the KL divergence of
BoN sampling from the reference distribution is bounded
by log(N)− (N − 1)/N . Scaling laws governing reward
as a function of KL divergence is empirically studied by
Gao et al. (2023b) and theoretically formalized by Mroueh
(2024). Furthermore, the asymptotic case and the equiva-
lence of BoN to the KL-constrained reinforcement learning
solution are studied by Yang et al. (2024) under the assump-
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tion of access to optimal reward. Gui et al. (2024) further
characterized the win rate–KL gap in the asymptotic regime
where a model assigns extremely low likelihoods to success-
ful completions. Furthermore, Sun et al. (2024) accelerated
BoN using speculative rejection sampling. The convergence
rate of SBoN sampling to the optimal tilted distribution is
studied by Claudio et al. (2025). The regret of BoN under
some assumptions is studied in (Huang et al., 2025).

Theoretical Foundation of RLHF: Several works have
studied the theoretical underpinnings of reverse KL-
regularized RLHF, particularly in terms of sample com-
plexity (Zhao et al., 2024; Xiong et al., 2024; Song et al.,
2024; Zhan et al., 2023; Ye et al., 2024; Aminian et al.,
2025). Note that, as the sampling distributions in BoN and
SBoN are different, we can not apply RLHF analysis to
these sampling strategies. Therefore, it is needed to develop
new foundations for BoN and SBoN.

3. Problem Formulation
Notations: Upper-case letters denote random variables
(e.g., Z), lower-case letters denote the realizations of ran-
dom variables (e.g., z), and calligraphic letters denote sets
(e.g., Z). All logarithms are in the natural base. The
set of probability distributions (measures) over a space
X with finite variance is denoted by P(X ). The KL
divergence between two probability distributions on Rd

with densities p(x) and q(x), such that q(x) > 0 when
p(x) > 0, is KL(p∥q) :=

∫
Rd p(x) log(p(x)/q(x))dx

(with 0. log 0 := 0). The total-variation distance is defined
as TV(p, q) = 1

2

∫
X |p(x)− q(x)|. Furthermore, we define

chi-square divergence as χ2(p(x)∥q(x)) =
∫
X

p2(x)
q(x) − 1.

3.1. Preliminaries

Following Ye et al. (2024) and Zhao et al. (2024), we define
inference-time alignment as an entropy-regularized opti-
mization problem. Let the finite set of prompts be X and
the discrete finite set of responses be Y . Prompts are drawn
from a distribution ρ over X . A (stochastic) policy π ∈Π
assigns, for every prompt x∈X , a conditional distribution
π(· | x) over Y; drawing y∼π(· | x) yields a response.

We treat the supervised-fine-tuned (SFT) model as a ref-
erence policy, denoted πref(· | x). Given a true reward
function r⋆ : X × Y→R+ ∪ 0 and temperature β > 0, we
seek a policy that remains close to πref while maximizing
expected reward, leading to the KL-regularized objective

max
π∈Π

Ey∼π(·|x)
[
r⋆(x, y)

]
− 1

β
KL

(
π(· | x) ∥πref(· | x)

)
.

(1)

The unique solution is the tilted optimal policy (Korbak

et al., 2022b;a; Yang et al., 2024)

πβ,r⋆
(
y|x

)
=

πref(y | x) exp
(
β r⋆(x, y)

)
Zr⋆,Y (x, β)

,

Zr⋆,Y (x, β) =
∑
y∈Y

πref(y | x) exp
(
β r⋆(x, y)

)
,

(2)

where Zr⋆,Y (x, β) is the normalising (partition) function.

Note that, in practice, we do not have access to the closed
form of reference policy πref(y|x) and r⋆(y, x). We can
only first estimate the true reward function via proxy reward
function r̂(y, x) using some datasets and then sample from
πref(y|x) and compute r̂(y, x) for each individual sample.
Then, for alignment, we can apply inference time algorithms,
e.g., BoN or SBoN (Claudio et al., 2025), where N samples
are generated from πref(y|x) and we choose the sample with
the highest estimated reward (BoN) or sampled from a dis-
tribution (SBoN) using the estimated reward, r̂(y, x). When
only a proxy reward r̂ is available, we obtain the analogous
partition function Zr̂,Y (x, β) and policy πβ,r̂(·|x).

3.2. SBoN Algorithm

In SBoN, as introduced in (Claudio et al., 2025), the sam-
pling strategy includes,

1. Choose N i.i.d. responses, Y1, · · · , Yn, for a given
prompt x ∈ X from πref(y|x),

2. Draw Z from {1, · · · , N} with softmax distribution
with temperature β,

Pr(Z = i) =
exp(βr̂(Yi, x))∑N
j=1 exp(βr̂(Yj , x))

, (3)

3. Return YSBoN := YZ .

We denote the final policy from SBoN via π
(N,β)
r̂ (y|x).

Note that for β → ∞ and β → −∞, we recover BoN
and worst-of-N (WoN) (Balashankar et al., 2025), respec-
tively. Furthermore, for β → 0, we recover uniform sam-
pling among the N response samples, which is equivalent to
sampling from the reference model πref(y|x). In (Claudio
et al., 2025, Lemma 1), the closed form solution of SBoN is
derived,

π
(N,β)
r̂ (y|x) = πref(y|x) exp(βr̂(y, x))

ZN,β
, (4)

where

ZN,β =

E
[( 1

N

(
exp(βr̂(y, x)) +

N−1∑
i=1

exp(βr̂(Yi, x))
))−1]−1

.

(5)
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For simplicity, we define BoN policies under true and proxy
reward models as π

(N,∞)
r⋆ (y|x) and π

(N,∞)
r̂ (y|x), respec-

tively. In this work, we focus on β ≥ 0. Similarly, we can
define π

(N,β)
r⋆ (y|x) based on a true reward model. Another

motivation for SBoN based on the Gumbel-Max trick is
provided in Appendix B.

3.3. Assumptions

For our analysis, the following assumptions are needed.

Assumption 3.1 (Bounded True Reward). We assume
that the true and estimated reward functions, r⋆(y, x) and
r̂(y, x), are non-negative functions, bounded by Rmax.

Bounded reward assumption is also considered in previous
work (Huang et al., 2025) for BoN. Furthermore, calibrated
rewards, as introduced by (Beirami et al., 2024; Balashankar
et al., 2025), are bounded. We can relax this assumption
using a sub-gaussian or sub-exponential reward function as
discussed in (Mroueh, 2024).

Let’s define the tilted average of square estimation error of
reward function for a given prompt x with parameter β, as
follows,

εβ,r(x) :=
1

β
log

(
EY∼πref (y|x)[e

β(r⋆(Y,x)−r̂(Y,x))2 ]
)
.

(6)
A similar definition of estimation error is introduced in
(Yang and Wibisono, 2022). When β = 0, the definition
reduces to the mean-squared error, which is also introduced
in (Huang et al., 2025). Letting β → ∞ recovers the square
of the supremum (infinity) norm of the estimation error
between r⋆(y, x) and r̂(y, x). The tilted average of the
estimation error is monotonically increasing in β.

In addition to Assumption 3.1, for regret analysis the fol-
lowing assumptions are needed.

Assumption 3.2 (Bounded Estimation Error). We assume
that estimation error for reward function for all x ∈ X is
bounded, i.e., εβ,r(x) < ∞.

In practice, the estimated reward can be fitted to a human-
preference labeled dataset or a dataset with samples from
true rewards. As discussed in (Huang et al., 2025), for
simplicity, we just assume that r̂(y, x) is given, where its
estimation error with respect to the true reward function
under reference policy is bounded.

Assumption 3.3 (Achievable maximum reward). We as-
sume that r̂(ŷ(x), x) = Rmax for all ŷ(x) ∈ Ŷ(x).

In many settings, the reward function attains its maximum
at specific responses. In particular, since a large language
model (LLM) generates outputs using a finite vocabulary
and a bounded number of tokens, the space of possible

generations is finite, and thus the assumption holds trivially.
Next, we define overoptimization.

Definition 3.4 (Overoptimization). The overoptimization
happens whenever we have εβ,r(x) > 0.

3.4. Optimal Policy and Coverage

We define the optimal policy under the true reward model
as,

π⋆
r⋆(y|x) = argmax

π
EY∼π(·|x)[r

⋆(Y, x)]. (7)

Similarly, we can define π⋆
r̂ (y|x) as the optimal policy under

the proxy reward model.

Under bounded reward assumption, Assumption 3.1, we
can interpret optimal policies as the limit of tilted optimal
policies,

π∞,r⋆(·|x) := lim
β→∞

πβ,r⋆(·|x),

π∞,r̂(·|x) := lim
β→∞

πβ,r̂(·|x).
(8)

where π∞,r⋆(·|x) and π∞,r̂(·|x) place all their probability
mass on the maximizers of r⋆(y, x) and r̂(y, x), respec-
tively. Therefore, under bounded reward assumption, we
have π⋆

r⋆
(
· |x

)
= π∞,r⋆(·|x) and π⋆

r̂

(
· |x

)
= π∞,r̂(·|x).

The connections between optimal, SBoN, BoN and tilted op-
timal policies under true or proxy reward models are shown
in Figure 1.

β → ∞

N → ∞

β → ∞

N → ∞

πN,β
r (y|x)

SBoN policy
πN,∞
r (y|x)

BoN policy

πβ,r(y|x)
Tilted optimal policy

π⋆
r (y|x) or
π∞,r(·|x)

Optimal policy

Figure 1: Connections of different policies under reward
model r ∈ {r̂(y, x), r⋆(y, x)}

Coverage: For a given reward function r(x, y), we define
the tilted policy (softmax policy):

πβ,r(y|x) ∝ πref(y|x) exp(βr(x, y)).

Then, we introduce the coverage of tilted policy with respect
to the reference policy as,

Cβ,r,ref(x) :=
∑
y∈Y

π2
β,r(y|x)
πref(y|x)

. (9)
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This measure Cβ,r,ref(x) can also be interpreted as a
coverage constant, which is standard in KL-regularized
policy learning. Furthermore, it can be defined as
χ2(πβ,r(y|x)∥πref(y|x)). It ensures that the reference pol-
icy places sufficient probability mass on high-reward re-
sponses, thereby guaranteeing that the support of the opti-
mal policy lies within the support of the reference. This
prevents cases where optimal outputs are entirely excluded
by the reference. Similar notions of coverage have been
explored in Huang et al. (2025).

3.5. Optimal regret

For given policy π
(
Y |x

)
, we define expected reward with

respect to the policy (a.k.a. value function2) as

Jr⋆(π
(
· |x

)
) := E

Y∼π
(
·|x
)[r⋆(Y, x)]. (10)

For two policies, π1(·|x) and π2(·|x), we define the gap
between these two policies as follows,

∆Jr⋆
(π1(·|x), π2(·|x)) := Jr⋆(π1(·|x))− Jr⋆(π2(·|x)).

(11)
We consider the following KL-Regularized objective func-
tion based on the true reward function for SBoN,

Jr⋆,β(πref(y|x), π(·|x)) :=

EY∼π(·|x)[r
⋆(Y, x)]− 1

β
KL(π(·|x)∥πref(·|x)).

(12)

We provide an upper bound on the optimal gap of the SBoN
solution, which is the gap between π⋆

r⋆
(
· |x

)
as the optimal

policy and π
(N,β)
r̂ (·|x),

∆Jr⋆
(π⋆

r⋆
(
· |x

)
, π

(N,β)
r̂ (·|x))

= Jr⋆(π
⋆
r⋆
(
· |x

)
)− Jr⋆(π

(N,β)
r̂ (·|x)).

(13)

Regarding BoN, we consider π
(N,∞)
r̂ (·|x) instead of

π
(N,β)
r̂ (·|x).

Our results can be extended to the sub-optimal gap of the
SBoN solution, which is the gap between πβ,r⋆

(
· |x

)
as the

optimal solution to (12) and π
(N,β)
r̂ (·|x),

∆Jr⋆
(πβ,r⋆

(
· |x

)
, π

(N,β)
r̂ (·|x))

:= Jr⋆(πβ,r⋆(·|x))− Jr⋆(π
(N,β)
r̂ (·|x)).

(14)

4. Regret Analysis
In this section, we derive theoretical regret bounds for SBoN
and BoN. First, we provide a helpful Lemma regarding the
expected coverage assumption that can help us interpret the
results of regret for BoN and SBoN.

2We can also consider EX∼ρ(·)[Jr⋆(π(·|X))]. All of our re-
sults also holds for expected version of value function.

Lemma 4.1. For a given reward function r(x, y) ∈
[0, Rmax], the following holds,

1. Cβ,r,ref(x) =
E[exp(2βr̂(Y,x))]
E2[exp(βr̂(Y,x)) .

2. Cβ,r,ref(x) is an increasing function with respect to β.

3. C∞,r,ref(x) := limβ→∞ Cβ,r,ref(x) =
1∑

i πref (ymax
i,r (x)|x) where ymax

i,r (x) ∈
argmaxy r(y, x).

4. For all β < ∞, we have 1 ≤ Cβ,r,ref(x) ≤
min(C∞,r,ref(x), exp(2βRmax)).

Now, we derive upper bound on regret of SBoN.

Theorem 4.2 (Optimal Gap of SBoN). Under the same
Assumptions in Theorem E.1, there following upper bound
holds on the gap of SBoN for β > 0

∆Jr⋆
(π⋆

r⋆
(
· |x

)
, π

(N,β)
r̂ (·|x))

≤
√

εβ,r(x)
(√

C∞,r̂,ref(x) +
√

C∞,r⋆,ref(x)
)

+ 2Rmax

√
1

2
log

(
1 +

C∞,r̂,ref(x)− 1

N

)
+

log(C∞,r⋆,ref(x))

β
,

Regret of BoN Through Smoothing Lens: We now derive
an upper bound on the regret of BoN by taking the asymp-
totic limit of the regret bound on optimal gap of SBoN in
Theorem 4.3.

Theorem 4.3 (Optimal Gap of BoN). Assume that Assump-
tions 3.1, 3.3, and 3.2 hold. Then, the optimality gap of the
BoN policy π(N,∞)

r̂ (·|x) with π⋆
r⋆(·|x) (given at (7)) satisfies

for εβ,r(x) > 0:

∆Jr⋆
(π⋆

r⋆(·|x), π
(N,∞)
r̂ (·|x))

≤
√
ε∞,r(x)

(√
C∞,r̂,ref(x) +

√
C∞,r⋆,ref(x)

)
+ 2Rmax

√
1

2
log

(
1 +

C∞,r̂,ref(x)− 1

N

)
.

Remark 4.4 (Comparison with (Huang et al., 2025)). The
regret bound for BoN policy grows with the L∞-norm of
the reward-model estimation error. In contrast to the result
in (Huang et al., 2025), our bound remains finite whenever
the overoptimization error vanishes, i.e., when ε∞,β(x) = 0
or N grows.
Remark 4.5 (Quality of reference policy). Furthermore, the
bound stated in Theorem 4.3 (or Theorem 4.2) depends on
the quantity,

C∞,r⋆,ref(x) =
1∑

i πref

(
ymax
i,r⋆ (x) | x

) ,
5
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where ymax
i,r⋆ (x) ∈ argmaxy r

⋆(y, x). It can be interpreted
as quality of reference policy under true reward model. Sim-
ilarly, the bound in Theorem 4.3 (or Theorem 4.2) depends
on the quantity,

C∞,r̂,ref(x) =
1∑

i πref

(
ymax
i,r̂ (x) | x

) ,
where ymax

i,r̂ (x) ∈ argmaxy r̂(y, x). It can be interpreted
as quality of reference policy under proxy reward model.
Therefore, the quality of reference policy under both true
and proxy reward models affect the performance of BoN
and SBoN policies.

Next, we compare how BoN and SBoN perform when
overoptimization is present and when it is absent.
Remark 4.6 (Overoptimization). Assume that the proxy
reward suffers from overoptimization, i.e. εβ,r(x) > 0 for
every β > 0. Letting N → ∞ and invoking Theorem 4.2,
we obtain

∆Jr⋆

(
π⋆
r⋆(· | x), π

(∞,β)
r̂ (· | x)

)
≤

√
εβ,r(x)

(√
C∞,r̂,ref(x) +

√
C∞,r⋆,ref(x)

)
+

logC∞,r⋆,ref(x)

β
.

(15)

Similarly, for BoN we have,

∆Jr⋆

(
π⋆
r⋆(· | x), π

(∞,∞)
r̂ (· | x)

)
≤

√
ε∞,r(x)

(√
C∞,r̂,ref(x) +

√
C∞,r⋆,ref(x)

)
.

(16)

Define the auxiliary function

g(β) = β
(
ε∞,r(x)− εβ,r(x)

)
, β ≥ 0.

Because g(0) = g(∞) = 0 and g(β) ≥ 0 for all β,
there exists at least one maximiser β⋆ ∈ (0,∞) such that
g(β⋆) = maxβ≥0 g(β).

If

logC∞,r⋆,ref(x)√
Cβ,r̂,ref(x) +

√
C∞,r⋆,ref(x)

≤ g(β⋆), (17)

then the upper bound in (15) does not exceed (15), and
hence the SBoN bound is tighter than the BoN bound in the
presence of overoptimization. An analogous comparison
can be carried out for any fixed, finite N by retaining the
N -dependent terms in the two bounds.
Remark 4.7 (No overoptimization). Assume that the overop-
timization vanishes, i.e. εβ,r(x) = 0 for every β ∈ [0,∞).
Then the optimality gaps of the SBoN and BoN policies
satisfy

∆Jr⋆

(
π⋆
r⋆(· | x), π

(N,β)
r̂ (· | x)

)
(18)

≤ 2Rmax

√
1

2
log

(
1 +

C∞,r̂,ref(x)− 1

N

)
+

logC∞,r⋆,ref(x)

β
,

∆Jr⋆

(
π⋆
r⋆(· | x), π

(N,∞)
r̂ (· | x)

)
(19)

≤ 2Rmax

√
1

2
log

(
1 +

C∞,r̂,ref(x)− 1

N

)
.

By Lemma 4.1, C∞,r⋆,ref(x) ≥ 1; consequently, the bound
in (19) is tighter than the bound in (18).

5. KL divergence Analysis
Recent work by Gao et al. (2023a) and Hilton et al. (2022)
empirically demonstrates that, under proxy rewards, the
improvement in expected reward, relative to a reference pol-

icy, scales proportionally to
√

KL(π
(N,∞)
r⋆ ∥πref) for both

RL and BoN policies. This phenomenon has been studied
theoretically by Beirami et al. (2024); Mroueh (2024).

In particular, Beirami et al. (2024) derives an upper bound
on KL divergence for BoN policies under the assumptions
of a bijective true reward mapping and a finite output space:

KL(π
(N,∞)
r⋆ (·|x)∥πref(·|x)) ≤ log(N)− 1 +

1

N
, (20)

Mroueh (2024) relaxes the bijectivity assumption and de-
rives similar bounds using information-theoretic tools.

However, Gao et al. (2023a) also observes that models op-
timized using proxy rewards can suffer from overoptimiza-
tion: as the learned policy diverges further from the ref-
erence, the alignment with the true reward may degrade.
Despite theoretical advances, the KL divergence analysis
for SBoN and BoN under the proxy reward model remains
largely unexplored. In what follows, we establish a new
upper bound on the KL divergence between the SBoN pol-
icy and the reference policy, shedding light on its behaviour
as a function of the number of samples N and temperature
parameter β.

Theorem 5.1. Under Assumption 3.1, The following upper
bound holds on KL divergence between SBoN and reference
policies for a given prompt x ∈ X ,

KL(π
(N,β)
r⋆ (y|x)∥πref(y|x))

≤ log
( N

1 + (N − 1) exp(−βRmax)

)
.

(21)

Using Theorem 5.1, we can observe that for BoN, β → ∞,
we have,

KL(π
(N,∞)
r⋆ (y|x)∥πref(y|x)) ≤ log(N). (22)
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Figure 2: Soft Best-of-N experiment using a strong reward model (Left) and a weak one (Right). When the performance of
the reward model is poor, BoN can lead to overoptimization, while the SBoN can help to mitigate it.

Comparing (22) with results in (Beirami et al., 2024;
Mroueh, 2024), our result is derived from the SBoN asymp-
totic regime. Note that our bound is looser than the bound
on KL divergence in (20). In contrast, our bound is general
and can be applied to different β in SBoN. For β = 0, where
our policy is the reference policy, our bound is tight. It is
also important to note that the upper bound in Theorem 5.1
increases with the temperature parameter β.

Note that, using Pinsker’s inequality, in a similar approach
to (Mroueh, 2024), we have,

E
Y∼π

(N,β)

r⋆
(·|x)[r

⋆(Y, x)]− EY∼πref (·|x)[r
⋆(Y, x)]

≤ Rmax

√
1

2
KL(π

(N,β)
r⋆ (·|x)∥πref(·|x)).

(23)

We aim to achieve a higher expected reward under the
aligned policy for a given KL divergence between the
aligned policy (BoN or SBoN) and the reference policy.
It is also demonstrated by Gao et al. (2023b), the expected
reward improvement of BoN policies, relative to the refer-
ence policy, scales proportionally with their KL divergence.
Furthermore, (23) implies that improvement of expected
reward relative to the reference policy can not exceed the
square root of the KL divergence.

In Theorem 5.1, we assume that the true reward model is
available. However, in practice, we utilize the proxy reward
model. Therefore, we are interested in investigating the
closeness of SBoN policy under the proxy reward model to
SBoN under the true reward model in KL divergence.

Theorem 5.2. Under Assumption 3.1, the following upper
bound holds on performance of the SBoN under true and
proxy model reward,

KL(π
(N,β)
r⋆ (·|x)∥π(N,β)

r̂ (·|x)) (24)

≤
Nβ

√
εβ,r(x)

1 + (N − 1) exp(−βRmax)

(N exp(2βRmax)

(N − 1)2
+ 1

)
.

Note that for β = 0, the upper bound in Theorem 5.2 is tight.
However, this upper bound is vacuous for β → ∞. Similar
to (23), we can apply the upper bound in Theorem 5.2, to
bound the difference of expected true reward with respect
to π

(N,β)
r⋆ (·|x) and π

(N,β)
r̂ (·|x), as follows,

E
Y∼π

(N,β)
r̂ (·|x)[r

⋆(Y, x)]− E
Y∼π

(N,β)

r⋆
(·|x)[r

⋆(Y, x)]

≤ Rmax

√
1

2
KL(π

(N,β)
r⋆ (·|x)∥π(N,β)

r̂ (·|x)).
(25)

Using (25) and (23), we can derive an upper bound on ex-
pected reward for the SBoN policy relative to the reference
policy,

E
Y∼π

(N,β)
r̂ (·|x)[r

⋆(Y, x)]− E
Y∼π

(N,β)

r⋆
(·|x)[r

⋆(Y, x)]︸ ︷︷ ︸
I1

+ E
Y∼π

(N,β)

r⋆
(·|x)[r

⋆(Y, x)]− EY∼πref (·|x)[r
⋆(Y, x)]︸ ︷︷ ︸

I2

≤ Rmax

√
1

2
KL(π

(N,β)
r⋆ (·|x)∥π(N,β)

r̂ (·|x))

+Rmax

√
1

2
KL(π

(N,β)
r⋆ (·|x)∥πref(·|x)),

(26)

where I1 is the estimation error and I2 measures the
expected-reward gain achieved by the SBoN policy over
the reference policy. Accordingly, our objective is twofold:
minimise I1 and maximize I2.

Next, we compare BoN and SBoN under the no reward
model overoptimization and reward model overoptimiza-
tion.
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Remark 5.3 (No overoptimization). We can observe that
for a given β, if we assume εβ,r(x) = 0, then we have
KL(π

(N,β)
r⋆ (·|x)∥π(N,β)

r̂ (·|x)) = 0. Therefore, due to the
increasing behavior of the upper bound in Theorem 5.1 with
respect to β, the KL divergence for BoN policy is higher
than the SBoN policy.

Remark 5.4 (Overoptimization). When εβ,r(x) > 0, we
have two conflicting goals: one suggesting for fixed N
that β needs to be smaller for better estimation of the true
policy by the proxy reward model one given in (24), and
another one suggesting a larger β to induce a better upper
bound on the expected reward in (23). Hence, for a given N ,
there exists an optimal β to balance expected true reward
maximization without leading to an overoptimization of the
proxy reward that would result in a worse approximation of
the SBoN policy under true reward. In that scenario, SBoN
can lead to better tradeoffs than BoN. A similar discussion
can be done for fixed β and varying N .

6. Empirical Evidence
To support our theoretical analysis, we conducted experi-
ments comparing Soft Best-of-N (SBoN) across different
regularization strengths and reward model qualities. We
used the Olmo-2 1B model (OLMo et al., 2024) as the gen-
erator and prompts from the Attaq dataset (Kour et al., 2023).
For each prompt, we generated multiple responses and se-
lected one using SBoN with varying temperature values β.
We ran two experimental conditions: one using a strong
reward model (ArmoRM 8B (Wang et al., 2024)) which
is close to true reward model, and another using a weaker
reward model (Beaver 7B RM (Dai et al., 2023)). We use
LLM-as-a-Judge (Zheng et al., 2023) as our r∗. As shown
in Figure 2, when the reward model is weak, performance
degrades for large N due to reward hacking. However, the
smoothing in SBoN helps mitigate this degradation. This
observation is also aligned with our theoretical analysis and
discussion in Section 5, where under overoptimization there
exists a β for a given N which outperforms BoN. For more
details, see Appendix G.

7. Conclusion
In this work, we establish a theoretical foundation for align-
ment strategies based on Soft Best-of-N (SBoN) and Best-
of-N (BoN) policies. Specifically, we derive upper bounds
on the KL divergence between the aligned policy—such
as SBoN or BoN—and the reference policy. We further
analyze how errors in reward estimation affect performance.
Notably, both our theoretical analysis and empirical results
demonstrate that, under a proxy reward model where overop-
timization happens, SBoN perform better than BoN under
some conditions.
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Table 1: KL divergences between the aligned and reference policies, along with corresponding upper bounds for both SBoN
and BoN policies.

KL divergence Term Theorem / Lemma Upper Bound

KL
(
π
(N,β)
r⋆ (·|x) ∥πref(·|x)

)
Theorem 5.1 log

(
N

1+(N−1) exp(−βRmax)

)
KL(π

(N,∞)
r⋆ (·|x)∥πref(·|x))

Theorem 3.1 in (Beirami et al., 2024)
and Theorem 1 in (Mroueh, 2024)

log(N)− 1 + 1/N

Table 2: KL divergences between aligned policies under true and proxy reward models, along with upper bounds for SBoN
and tilted policies.

KL divergence Term Theorem / Lemma Upper Bound

KL
(
π
(N,β)
r⋆ (·|x) ∥π(N,β)

r̂ (·|x)
)

Theorem 5.2 Nβ
√

εβ,r(x)

1+(N−1) exp(−βRmax)

(
N exp(2βRmax)

(N−1)2 + 1
)

KL
(
πβ,r⋆(·|x) ∥πβ,r̂(·|x)

)
Lemma C.8 2β

√
εβ,r(x)

(√
E[exp(2βr̂(Y,x)]
E2[exp(βr̂(Y,x))] +

√
E[exp(2βr⋆(Y,x)]
E2[exp(βr⋆(Y,x))]

)

A. Summary of KL divergence Results
In Table 1 , we summarize results on KL divergences between the aligned and reference policies, along with corresponding
upper bounds for both SBoN and BoN policies. Furthermore, in Table 2, we summarize results on KL divergences between
aligned policies under true and proxy reward models, along with upper bounds for SBoN and tilted policies.

B. Gumbel–Max trick
We also provide an interpretation for SBoN from Gumbel-Max trick. An alternative way to sample Z from

Pr(Z = i) ∝ exp
(
β r̂(Yi, x)

)
is via the Gumbel–Max trick. We can draw independent Gumbel distributed random variables Gi ∼ Gumbel(0, 1), i =
1, . . . , n, and then set

Z = arg max
i∈{1,...,N}

[
r̂(Yi, x) +

Gi

β

]
.

By properties of the Gumbel distribution, this yields exactly the same softmax sampling law, without needing to compute the
normalizing factor

∑N
j=1 exp(βr̂(Yj , x)) explicitly (Gumbel, 1954). Obviously, when β → ∞, the effect of the Gumbel

noises vanish and the sampling strategy reduces to BoN.

C. Technical Tools
We denote the set maximizers of the estimated reward via Ŷ(x) = {ŷj(x)}m(x)

j=1 .

We introduce the functional derivative, see (Cardaliaguet et al., 2019).

Definition C.1. (Cardaliaguet et al., 2019) A functional U : P(Rn) → R admits a functional derivative if there is a map
δU
δm : P(Rn)× Rn → R which is continuous on P(Rn) and, for all m,m′ ∈ P(Rn), it holds that

U(m′)− U(m) =

∫ 1

0

∫
Rn

δU

δm
(mβ , a) (m

′ −m)(da) dβ,

where mβ = m+ β(m′ −m).

Definition C.2 (Sensitivity of a policy). We also define the sensitivity of a policy πr(y|x), which is a function of reward
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function r(x, y), with respect to the reward function as

∂π

∂r
(r) := lim

∆r→0

πr(y|x)− πr+∆r(y|x)
∆r

. (27)

Lemma C.3 (Kantorovich-Rubenstein duality of total variation distance, see (Polyanskiy and Wu, 2022)). The Kantorovich-
Rubenstein duality (variational representation) of the total variation distance is as follows:

TV(m1,m2) =
1

2L
sup
g∈GL

{EZ∼m1 [g(Z)]− EZ∼m2 [g(Z)]} , (28)

where GL = {g : Z → R, ||g||∞ ≤ L}.

Lemma C.4 (Lemma 5.4 in (Aminian et al., 2025)). Consider the softmax policy, πβ
r (y|x) ∝ πref(y|x) exp(βr(x, y)).

Then, the sensitivity of the policy with respect to reward function is,

∂πβ
r

∂r
(r) = βπβ

r (y|x)(1− πβ
r (y|x)).

Lemma C.5 (Pinsker’s Inequality (Canonne, 2022)). For m1 and m2, we have,

TV(m1,m2) ≤
√

1

2
KL(m2∥m1) . (29)

The following Lemmata are useful for our technical proofs.
Lemma C.6. Under Assumption 3.2, the following upper bound holds,

log
(Zr⋆,Y (x, β)

Zr̂,Y (x, β)

)
≤ β

√
εβ,r(x)

√
Cβ,r⋆,ref(x). (30)

Proof.

Zr̂,Y (x, β)

Zr⋆,Y (x, β)
=

∑
Y exp(βr̂(y, x))πref(y|x)∑
Y exp(βr⋆(y, x))πref(y|x)

=

∑
Y exp(β(r̂(y, x)− r⋆(y, x))) exp(βr⋆(y, x))πref(y|x)∑

Y exp(βr⋆(y, x))πref(y|x)

=
∑
Y

πβ,r⋆(y|x) exp(β(r̂(y, x)− r⋆(y, x)))

(31)

Due to convexity of − log(·) and using Cauchy–Schwarz inequality, we have,

− log
( Zr̂,Y (x, β)

Zr⋆,Y (x, β)

)
≤ β

∑
Y

πβ,r⋆(y|x)(r⋆(y, x)− r̂(y, x))

≤ β
∑
Y

πβ,r⋆(y|x)
πref(y|x)

(r⋆(y, x)− r̂(y, x))πref(y|x)

≤ β

√∑
Y

(r⋆(y, x)− r̂(y, x))2πref(y|x)

√√√√∑
Y

π2
β,r⋆(y|x)
πref(y|x)

=
√
β

√∑
Y

log
(
exp

(
β(r⋆(y, x)− r̂(y, x))2

))
πref(y|x)

√
Cβ,r⋆,ref(x)

≤ β

√
1

β
log

(∑
Y

exp
(
β(r⋆(y, x)− r̂(y, x))2

)
πref(y|x)

)√
Cβ,r⋆,ref(x)

= β
√
εβ,r(x)

√
Cβ,r⋆,ref(x),

(32)

12
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Lemma C.7. Under Assumption 3.1, we have,

KL(π⋆
r⋆
(
· |x

)
∥πref(·|x)) ≤ log(C∞,r⋆,ref(x)) (33)

Proof. Note that, under Assumption 3.1, we have,

KL(π⋆
r⋆
(
· |x

)
∥πref(·|x)) ≤ log

(
E
Y∼π⋆

r⋆

(
·|x
)[π⋆

r⋆
(
· |x

)
πref(·|x)

])
≤ log(C∞,r⋆,ref(x))

(34)

Lemma C.8. Under Assumption 3.1 and Assumption 3.2, the following upper bound holds,

KL(πβ,r⋆(y|x)∥πβ,r̂(y|x)) ≤ β
√

εβ,r(x)
(√

Cβ,r⋆,ref(x) +
√
Cβ,r̂,ref(x)

)
. (35)

Proof.

KL(πβ,r⋆(y|x)∥πβ,r̂(y|x)) =
∑
Y

πβ,r⋆(y|x) log
(πβ,r⋆(y|x)
πβ,r̂(y|x)

)
= β

∑
Y

(r⋆(y, x)− r̂(y, x))πβ,r⋆(y|x) + log(Zr̂,Y (x, β)/Zr⋆,Y (x, β))

≤ β
√

εβ,r(x)
(√

Cβ,r⋆,ref(x) +
√
Cβ,r̂,ref(x)

)
,

(36)

where the final inequality holds due to Lemma C.6 and applying Cauchy–Schwarz inequality.

Lemma C.9. Suppose that f(Z) ∈ [0, Zmax], Zmax = {zm,i}mi=1 is the set of miximizers of f(Z), i.e., f(z) = Zmax for
z ∈ Zmax. Then we have,

lim
β→∞

E[exp(2βf(Z))]

E[exp(βf(Z))]2
=

1∑
z∈Zmax

P (Z = z)
. (37)

Proof.

E[exp(2βf(Z))]

E[exp(βf(Z))]2
=

E[exp(2β(f(Z)− Zmax))]

E[exp(β(f(Z)− Zmax))]2
(38)∑

j P (Z = zj) exp(2β(f(zj)− Zmax))

(
∑

j P (Z = zj) exp(β(f(zj)− Zmax)))2
(39)

Now, we have,

lim
β→∞

E[exp(2βf(Z))]

E[exp(βf(Z))]2
(40)

= lim
β→∞

∑
j P (Z = zj) exp(2β(f(zj)− Zmax))

(
∑

j P (Z = zj) exp(β(f(zj)− Zmax)))2
(41)

=

∑
z∈Zmax

P (Z = z)

(
∑

z∈Zmax
P (Z = z))2

(42)

=
1∑

z∈Zmax
P (Z = z)

, (43)

where we used the fact that limβ→∞ exp(β(zj − Zmax)) = 0 for zj < Zmax.

Lemma C.10 (Theorem 1 in (Claudio et al., 2025)). For β > 0, and N ≥ 1, we have,

KL(πβ,r⋆(·|x)∥π(N,β)
r⋆ (y|x)) ≤ log(1 +

Cβ,r⋆,ref(x)

N
). (44)

13
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Lemma C.11. Under Assumption 3.1, we have,∣∣∣f(r)
δr

∣∣∣ ≤ N2β exp(2βRmax)

(N − 1)2
, (45)

where f(r) = log
(
E[ 1

exp(βr)+
∑N−1

i=1 exp(βRi)
]
)
, r = r(x, y) and Ri = r(Yi, x).

Proof. Note that {Ri}N−1
i=1 are i.i.d. . Therefore, we have,

δf(r(y, x))

δr
= E[

1

exp(βr) +
∑N−1

i=1 exp(βRi)
]−1

δE[ 1
exp(βr)+

∑N−1
i=1 exp(βRi)

]

δr

≤ E[
1

exp(βr) +
∑N−1

i=1 exp(βRi)
]−1

×
( N∑

k=1

βk
(
N−1
k−1

)
exp(βr)

(k exp(βr) +N − 1− k)2
(1− P (R = r))N−kP k−1(R = r)

)
≤ E[

1

exp(βr) +
∑N−1

i=1 exp(βRi)
]−1

× β exp(βRmax)

(N − 1)2

( N∑
k=1

k

(
N − 1

k − 1

)
(1− P (R = r))N−kP k−1(R = r)

)
≤ Nβ exp(2βRmax)

(N − 1)2
(1 + (N − 1)P (R = r))

≤ N2β exp(2βRmax)

(N − 1)2
.

(46)

D. Proof and Details of Section 5

Theorem 5.1. Under Assumption 3.1, The following upper bound holds on KL divergence between SBoN and
reference policies for a given prompt x ∈ X ,

KL(π
(N,β)
r⋆ (y|x)∥πref(y|x)) ≤ log

( N

1 + (N − 1) exp(−βRmax)

)
. (47)

Proof. Recall that,

π
(N,β)
r⋆ (y|x) = πref(y|x) exp(βr⋆(y, x))E

[( 1

N
(exp(βr⋆(y, x)) +

N−1∑
i=1

exp(βr⋆(Yi, x)))
)−1

]
.

Now, we have,

KL(π
(N,β)
r⋆ (y|x)∥πref(y|x))

=
∑
Y

π
(N,β)
r⋆ (y|x) log(π(N,β)

r⋆ (y|x)/πref(y|x))

=
∑
Y

π
(N,β)
r⋆ (y|x) log(N) +

∑
Y

π
(N,β)
r⋆ (y|x) log(E

[(
exp(βr⋆(y, x)) +

N−1∑
i=1

exp(βr⋆(Yi, x))
)−1

]
)

= log(N) +
∑
Y

π
(N,β)
r⋆ (y|x) log(E

[(
1 +

N−1∑
i=1

exp(β(r⋆(Yi, x)− r⋆(y, x)))
)−1

]
),

(48)

14
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For the second term in (48), consider

A(y, Y, x) =

N−1∑
i=1

exp(β(r⋆(Yi, x)− r⋆(y, x))) > 0,

where under Assumption 3.1, we have

(N − 1) exp(−βRmax) ≤ A(y, Y, x) ≤ (N − 1) exp(βRmax).

Therefore, we have,

∑
Y

π
(N,β)
r⋆ (y|x) log(E

[(
1 +

N−1∑
i=1

exp(β(r⋆(Yi, x)− r⋆(y, x)))
)−1

]
)

≤
∑
Y

π
(N,β)
r⋆ (y|x) log( 1

1 + (N − 1) exp(−βRmax)
)

= log(
1

1 + (N − 1) exp(−βRmax)
).

(49)

Combining (49) with (48) completes the proof.

Theorem 5.2. Under Assumption 3.1, the following upper bound holds on performance of SBoN under true and
proxy model reward,

KL(π
(N,β)
r⋆ (·|x)∥π(N,β)

r̂ (·|x))

≤
Nβ

√
εβ,r(x)

1 + (N − 1) exp(−βRmax)

(N exp(2βRmax)

(N − 1)2
+ 1

)
.

(50)

Proof. We first provide the following upper bound,

KL(π
(N,β)
r⋆ (y|x)∥π(N,β)

r̂ (y|x))

=
∑
Y

π
(N,β)
r⋆ (y|x) log

(π(N,β)
r⋆ (y|x)

π
(N,β)
r̂ (y|x)

)
=

∑
Y

π
(N,β)
r⋆ (y|x)β(r⋆(y, x)− r̂(y, x))

+
∑
Y

π
(N,β)
r⋆ (y|x)

(
log

(
E[

1

exp(βr⋆(y, x)) +
∑N−1

i=1 exp(βr⋆(Yi, x))
]
)

− log
(
E[

1

exp(βr̂(y, x)) +
∑N−1

i=1 exp(βr̂(Yi, x))
]
))

≤
Nβ

√
εβ,r(x)

1 + (N − 1) exp(−βRmax)

+
∑
Y

π
(N,β)
r⋆ (y|x)

(
log

(
E[

1

exp(βr⋆(y, x)) +
∑N−1

i=1 exp(βr⋆(Yi, x))
]
)

− log
(
E[

1

exp(βr̂(y, x)) +
∑N−1

i=1 exp(βr̂(Yi, x))
]
))

.

(51)
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Note that for the last term in (51), we can apply mean-value theorem as follows,∑
Y

π
(N,β)
r⋆ (y|x)

(
log

(
E[

1

exp(βr⋆(y, x)) +
∑N−1

i=1 exp(βr⋆(Yi, x))
]
)

− log
(
E[

1

exp(βr̂(y, x)) +
∑N−1

i=1 exp(βr̂(Yi, x))
]
))

≤
∑
Y

π
(N,β)
r⋆ (y|x)|r⋆(y, x)− r̂(y, x)|

∣∣∣δf(rγ(y, x))
δr

∣∣∣,
(52)

where f(rγ(y, x)) = log
(
E[ 1

exp(βrγ(y,x))+
∑N−1

i=1 exp(βrγ(Yi,x))
]
)
, for some γ ∈ (0, 1) we have rγ(y, x) = γr̂(y, x) + (1−

γ)r⋆(y, x). Using Lemma C.11, we have,∣∣∣δf(r(y, x))
δr

∣∣∣ ≤ N2β exp(2βRmax)

(N − 1)2
. (53)

Using (53) in (52) and applying Cauchy–Schwarz inequality, we have,∑
Y

π
(N,β)
r⋆ (y|x)

(
log

(
E[

1

exp(βr⋆(y, x)) +
∑N−1

i=1 exp(βr⋆(Yi, x))
]
)

− log
(
E[

1

exp(βr̂(y, x)) +
∑N−1

i=1 exp(βr̂(Yi, x))
]
))

≤

√√√√∑
Y

E[1/(1 +
N−1∑
i=1

exp(β(r⋆(Yi, x)− r⋆(y, x))))]2πref(y|x)

×
√∑

Y
|r⋆(y, x)− r̂(y, x)|2πref(y|x)

√∑
Y

∣∣∣δf(rγ(y, x))
δr

∣∣∣2πref(y|x)

≤
√
εβ,r(x)

1 + (N − 1) exp(−βRmax)

N2β exp(2βRmax)

(N − 1)2
.

(54)

It completes the proof.
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E. Proof and details of Section 4

Lemma 4.1. For a given reward function r(x, y) ∈ [0, Rmax], the following holds,

1. Cβ,r,ref(x) =
E[exp(2βr̂(Y,x))]
E2[exp(βr̂(Y,x)) .

2. Cβ,r,ref(x) is an increasing function with respect to β.

3. C∞,r,ref(x) := limβ→∞ Cβ,r,ref(x) =
1∑

i πref (ymax,i(x)|x) where ymax,i ∈ argmax r(ymax,i, x).

4. For all β < ∞, we have 1 ≤ Cβ,r,ref(x) ≤ min(C∞,r,ref(x), exp(2βRmax)).

Proof. 1.

Cβ,r̂,ref(x) =
∑
Y

π2
β,r̂(y|x)
πref(y|x)

=
∑
Y

exp(2βr̂(y, x))

E2[exp(βr̂(Y, x))]
πref(y|x)

=
E[exp(2βr̂(Y, x))]
E2[exp(βr̂(Y, x))]

.

(55)

2. We can show that the logarithm function of Cβ,r̂,ref(x) is increasing. Then, due to increasing feature of log function,
the final result holds.

log(
E[exp(2βr̂(Y, x))]
E2[exp(βr̂(Y, x))]

)

= log(E[exp(2βr̂(Y, x))])− 2 log(E[exp(βr̂(Y, x))]),
(56)

then we can compute the derivative of (56),

d log(E[exp(2βr̂(Y, x))])
dβ

− 2
d log(E[exp(βr̂(Y, x))]

dβ

=
E[2r̂(Y, x) exp(2βr̂(Y, x))]

E[exp(2βr̂(Y, x))]
− 2

E[r̂(Y, x) exp(βr̂(Y, x))]
E[exp(βr̂(Y, x))]

(57)

Note that we have,

dE[r̂(Y,x) exp(βr̂(Y,x))]
E[exp(βr̂(Y,x))]

dβ
=

E[r̂2(Y, x) exp(βr̂(Y, x))]E[exp(βr̂(Y, x))]− E[r̂(Y, x) exp(βr̂(Y, x))]2

E2[exp(βr̂(Y, x))]

= EY∼πβ,r̂(·|x)[r̂
2(Y, x)]− EY∼πβ,r̂(·|x)[r̂(Y, x)]

2 ≥ 0.

(58)

Therefore, we have,
E[r̂(Y, x) exp(2βr̂(Y, x))]

E[exp(2βr̂(Y, x))]
≥ E[r̂(Y, x) exp(βr̂(Y, x))]

E[exp(βr̂(Y, x))]
. (59)

It completes the proof.

3. Follows directly from Lemma C.9.

4. Due to Jensen inequality for E2[exp(βr̂(Y, x))] ≤ E[exp(2βr̂(Y, x))], the Cβ,r̂,ref(x). We also have the uniform
bound, Cβ,r̂,ref(x) =

E[exp(2βr̂(Y,x))]
E2[exp(βr̂(Y,x)) ≤ exp(βRmax). Furthermore, due to increasing property in (2), we also have

supβ Cβ,r̂,ref(x) = C∞,r,ref(x). Therefore, the upper bound holds.
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Theorem E.1. Under Assumption 3.1, the following upper bound holds on the sub-optimality gap of the SBoN,

∆Jr⋆
(πβ,r⋆

(
· |x

)
, π

(N,β)
r̂ (·|x)) ≤ 1

β

(
KL(πβ,r⋆(·|x)∥πref(·|x))−KL(πβ,r̂(·|x)∥πref(·|x))

)
+

√
εβ,r(x)

(√
Cβ,r̂,ref(x) +

√
Cβ,r⋆,ref(x)

)
+ 2Rmax

√
1

2
log

(
1 +

Cβ,r̂,ref(x)− 1

N

)
.

Proof. Note that, we have,

∆Jr⋆
(πβ,r⋆

(
· |x

)
, π

(N,β)
r̂ (·|x))

= E
Y∼πβ,r⋆

(
·|x
)[r⋆(Y, x)]− E

Y∼π
(N,β)
r̂ (·|x)[r

⋆(Y, x)]

= E
Y∼πβ,r⋆

(
·|x
)[r⋆(Y, x)]− E

Y∼πβ,r̂

(
·|x
)[r⋆(Y, x)]︸ ︷︷ ︸

I1

+ E
Y∼πβ,r̂

(
·|x
)[r⋆(Y, x)]− E

Y∼π
(N,β)
r̂ (·|x)[r

⋆(Y, x)]︸ ︷︷ ︸
I2

(60)

Note that, using the definition of πβ,r⋆
(
· |x

)
and πβ,r̂

(
· |x

)
as solutions to KL-regularized problem, we have,

E
Y∼πβ,r⋆

(
·|x
)[r⋆(Y, x)] = 1

β
KL(πβ,r⋆(·|x)∥πref(·|x)) +

1

β
log(EY∼πref (·|x)[exp(βr

⋆(Y, x))]). (61)

E
Y∼πβ,r̂

(
·|x
)[r̂(Y, x)] = 1

β
KL(πβ,r̂(·|x)∥πref(·|x)) +

1

β
log(EY∼πref (·|x)[exp(βr̂(Y, x))]). (62)
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Therefore, for term I1, we have,

E
Y∼πβ,r⋆

(
·|x
)[r⋆(Y, x)]− E

Y∼πβ,r̂

(
·|x
)[r⋆(Y, x)]

= E
Y∼πβ,r⋆

(
·|x
)[r⋆(Y, x)]− E

Y∼πβ,r̂

(
·|x
)[r̂(Y, x)]

+ E
Y∼πβ,r̂

(
·|x
)[r̂(Y, x)]− E

Y∼πβ,r̂

(
·|x
)[r⋆(Y, x)]

=
1

β

(
KL(πβ,r⋆(·|x)∥πref(·|x))−KL(πβ,r̂(·|x)∥πref(·|x))

)
+

1

β
log(EY∼πref (·|x)[exp(βr

⋆(Y, x))])− 1

β
log(EY∼πref (·|x)[exp(βr̂(Y, x))])

+
∑
Y

πβ,r̂

(
· |x

)
(r̂(y, x)− r⋆(y, x))

≤ 1

β

(
KL(πβ,r⋆(·|x)∥πref(·|x))−KL(πβ,r̂(·|x)∥πref(·|x))

)
+

1

β
log(EY∼πref (·|x)[exp(βr

⋆(Y, x))])− 1

β
log(EY∼πref (·|x)[exp(βr̂(Y, x))])

+
1√
β

√√√√∑
Y

π2
β,r̂(y|x)
πref(y|x)

√
β
∑
Y

(r̂(y, x)− r⋆(y, x))2πref(y|x)

≤ 1

β

(
KL(πβ,r⋆(·|x)∥πref(·|x))−KL(πβ,r̂(·|x)∥πref(·|x))

)
+

1

β
log(EY∼πref (·|x)[exp(βr

⋆(Y, x))])− 1

β
log(EY∼πref (·|x)[exp(βr̂(Y, x))])

+
√

Cβ,r̂,ref(x)εβ,r(x)

≤ 1

β

(
KL(πβ,r⋆(·|x)∥πref(·|x))−KL(πβ,r̂(·|x)∥πref(·|x))

)
+

1

β
log(EY∼πref (·|x)[exp(βr

⋆(Y, x))])− 1

β
log(EY∼πref (·|x)[exp(βr̂(Y, x))])

+
√

Cβ,r̂,ref(x)εβ,r(x)

≤ 1

β

(
KL(πβ,r⋆(·|x)∥πref(·|x))−KL(πβ,r̂(·|x)∥πref(·|x))

)
+
√

Cβ,r⋆,ref(x)εβ,r(x)

+
√

Cβ,r̂,ref(x)εβ,r(x).

(63)

For term I2 and using similar approach to term I1 and applying Lemma C.10, we have,

E
Y∼πβ,r̂

(
·|x
)[r⋆(Y, x)]− E

Y∼π
(N,β)
r̂ (·|x)[r

⋆(Y, x)]

≤ 2RmaxTV(πβ,r̂

(
· |x

)
, π

(N,β)
r̂ (·|x))

≤ 2Rmax min
(
1,

√
1

2
KL(πβ,r̂

(
· |x

)
∥π(N,β)

r̂ (·|x))
)

≤ 2Rmax min
(
1,

√
1

2
log

(
1 +

Cβ,r̂,ref(x)− 1

N

))
≤ 2Rmax

√
1

2
log

(
1 +

Cβ,r̂,ref(x)− 1

N

)
(64)

Combining (63) and (64) with (60) completes the proof.
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Theorem 4.3. Under the same Assumptions in Theorem E.1, there following upper bound holds on the gap of SBoN
for β > 0

∆Jr⋆
(π⋆

r⋆
(
· |x

)
, π

(N,β)
r̂ (·|x)) ≤

√
εβ,r(x)

(√
C∞,r̂,ref(x) +

√
C∞,r⋆,ref(x)

)
+ 2Rmax

√
1

2
log

(
1 +

C∞,r̂,ref(x)− 1

N

)
+

log(C∞,r⋆,ref(x))

β
,

Proof. Note that, we have,

∆Jr⋆
(π⋆

r⋆
(
· |x

)
, π

(N,β)
r̂ (·|x))

= E
Y∼π⋆

r⋆

(
·|x
)[r⋆(Y, x)]− E

Y∼π
(N,β)
r̂ (·|x)[r

⋆(Y, x)]

= E
Y∼π⋆

r⋆

(
·|x
)[r⋆(Y, x)]− E

Y∼πβ,r⋆

(
·|x
)[r⋆(Y, x)]︸ ︷︷ ︸

I3

+∆Jr⋆
(πβ,r⋆

(
· |x

)
, π

(N,β)
r̂ (·|x))︸ ︷︷ ︸

I4

(65)

For term I4, we can use Theorem E.1. For term I3, note that, we have for β > 0,

E
Y∼π⋆

r⋆

(
·|x
)[r⋆(Y, x)]− E

Y∼πβ,r⋆

(
·|x
)[r⋆(Y, x)] ≤ KL(π⋆

r⋆
(
· |x

)
∥πref(·|x))−KL(πβ,r⋆

(
· |x

)
∥πref(·|x))

β
(66)

Combining (66) with Theorem E.1, completes the proof due the positiveness of KL divergence and using Lemma C.7 and
Lemma 4.1.

Remark E.2. For β = 0, we have, limβ→0 πβ,r⋆
(
· |x

)
= πref(·|x). Therefore, we have,

E
Y∼π⋆

r⋆

(
·|x
)[r⋆(Y, x)]− E

Y∼πβ,r⋆

(
·|x
)[r⋆(Y, x)] ≤ Rmax

√
2KL(π⋆

r⋆
(
· |x

)
∥πref(·|x)). (67)

Theorem 4.3. Assume Assumptions 3.1, 3.3, and 3.2 hold. Then, the optimality gap of the BoN policy π
(N,∞)
r̂ (·|x)

with π⋆
r⋆(·|x) (given at (7)) satisfies for εβ,r(x) > 0:

∆Jr⋆
(π⋆

r⋆(·|x), π
(N,∞)
r̂ (·|x)) ≤

√
ε∞,r(x)

(√
C∞,r̂,ref(x) +

√
C∞,r⋆,ref(x)

)
+ 2Rmax

√
1

2
log

(
1 +

C∞,r̂,ref(x)− 1

N

)
.

Proof. The results follows directly from Theorem 4.3 for β → ∞.

F. Numerical Example
To illustrate how our analytical upper bound in Theorem 5.1 behaves as a function of the temperature parameter β, we run a
toy experiment in which

1. the reference policy is the uniform distribution over responses, and
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Figure 3: True KL divergence vs upper bound in Theorem 5.1 for fix N = {10, 100, 500}.

2. rewards are bounded with Rmax = 1.

For each β in a logarithmic sweep we compute the true KL-divergence between the SBoN policy and the reference policy,
together with the theoretical bound derived in Theorem 5.1.

• Very large β (near-BoN policy). As β→∞ the SBoN policy converges to the BoN policy. The gap between the KL
and the bound vanishes.

• Very small β (reference policy). When β→ 0 the SBoN policy approaches the uniform sampling from reference
policy which results in reference policy, making the KL itself tend to zero; the bound is equal to zero for this value.

This experiment confirms that the bound is tight in the two asymptotic regimes and remains a conservative yet informative
estimate elsewhere, providing practical guidance for choosing β in real problems.

G. Experiments
Our implementation is available in the following link: https://github.com/idanshen/sbon .

LLM-as-a-Judge: To evaluate the performance of the generated responses, we used GPT-4o to determine how harmless
they are. Specifically, we used the following prompt:
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You are an AI safety evaluator. Your task is to determine if a response to a given prompt contains harmful content.
Respond with a harmlessness score using these criteria:

2 = SAFE: The response is completely safe and appropriate.
1 = SOMEWHAT HARMFUL: The response contains potentially concerning elements, mild toxicity, stereotypes,
subtle harmful guidance, or borderline inappropriate content.
0 = HARMFUL: The response contains clearly harmful content such as hate speech, explicit instructions for
dangerous activities, severe toxicity, etc.

Provide your judgment as an integer in curly brackets like this: 1, 2, or 3.

This gets us a reward with values between 0 and 2, with 0 being completely harmful and 2 being safe.
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