
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADAMEZO: ADAM-STYLE ZEROTH-ORDER OPTI-
MIZER FOR LLM FINE-TUNING WITHOUT MAINTAIN-
ING THE MOMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning LLMs is necessary for dedicated downstream uses, but classic back-
propagation approaches necessitate a large amount of GPU memory. To this end,
a recent work, MeZO, which relies solely on forward passes to fine-tune LLMs,
significantly reduces GPU requirements at the cost of slower convergence due to
its indifference to loss landscapes. Standard solutions, such as Adam, explore loss
landscapes by estimating the first and second-order moments and storing them in
memory to guide the models in moving faster through dimensions with smaller
curvature and vice versa. However, directly applying Adam negates MeZO’s ad-
vantage as it will triple the memory requirement. In light of this, we propose
AdaMeZO, a zeroth-order optimizer enhanced by Adam-style first and second
moments estimates, but without maintaining them in memory. We present a theo-
retical analysis of AdaMeZO, corroborated by extensive experiments demonstrat-
ing AdaMeZO’s performance, showing that AdaMeZO can outperform MeZO
while requiring up to 70% fewer forward passes. Visualizations of trajectories
on toy functions to affirm AdaMeZO’s ability to adapt to different loss land-
scapes. Codes are available at https://anonymous.4open.science/r/
AdaMeZO-4547/.

1 INTRODUCTION

Table 1: Key features for AdaMeZO and methods in comparison. P in the first column denotes the
amount of memory required to store the model weight, and B ≫ P denotes the amount of memory
required to perform backpropagation. δ ≪ 1 is a small positive number. “FP” abbreviates forward
pass.

Param. memory FP per step 1st moment 2nd moment
Adam Kingma & Ba (2014) 3P +B 1 ✓ ✓
MeZO Malladi et al. (2023) P 2 × ×

HELENE Zhao et al. (2024a) 3P 2 ✓ ✓
HiZOO Zhao et al. (2024b) 2P 3 × ✓

AdaMeZO (1+ δ)P 2 ✓ ✓

Fine-tuning LLMs is necessary for dedicated downstream uses and has gained significant attention
recently. Many works have emerged that aim to tune models while accessing as little memory as
possible. Popular first-order methods known as parameter-efficient fine-tuning (PEFT) to alleviate
the heavy memory cost by modifying only a small (potentially extra) part of the whole model Hu
et al. (2022); Li & Liang (2021); Lester et al. (2021); Dettmers et al. (2023); Pan et al. (2024).
Additionally, a zeroth-order method Malladi et al. (2023) implies the possibility of discarding back-
propagation, the primary memory cost contributor in LLM fine-tuning, making it accessible for
resource-limited devices.

As shown in Table 1, MeZO features an SGD-styled Rumelhart et al. (1986); Bottou et al. (2018)
update rule, allowing in-place parameter modification. After in-place model perturbation for gra-
dient projection estimation, the gradients are not dumped into memory but generated by a pseudo-

1

https://anonymous.4open.science/r/AdaMeZO-4547/
https://anonymous.4open.science/r/AdaMeZO-4547/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) RoBERTa-Large SST-2. (b) OPT-1.3b SST-2. (c) LLaMA-3b SST-2.

Figure 1: Loss curves of MeZO and AdaMeZO on the SST2 task. When fine-tuning RoBERTa-large,
OPT-1.3b, LLaMA-3b, AdaMeZO took 69.75%, 70.48%, 70.90% fewer forward passes to reach the
loss values of MeZO at terminations, respectively. Hyperparameters and terminal conditions are
detailed in Section B.3.

random number generator (PRNG) before being scaled by the previously computed projection, so
the memory cost for fine-tuning is reduced to the equivalent of deploying one. However, updating
the model with only the most recent gradient estimation can result in worse convergence, especially
with noisy and isotropic zeroth-order gradient estimations. In comparison, adaptive optimizers like
Adam Kingma & Ba (2014) and AdamW Loshchilov & Hutter (2017) that correct updates with
preconditioners are more widely adopted options since the loss landscapes of LLMs exhibit compli-
cated curvature spectra across different dimensions as documented in Sagun et al. (2016); Ghorbani
et al. (2019); Zhang et al. (2023); Das et al. (2024).

However, adaptive optimizers keep historical gradient information in memory. In the case of Adam,
they are the first and second moments, which are the accumulation of gradients and quadratic gra-
dients. In other words, two vectors of the same size as the model need to be kept in memory.
Considering that first-order methods use backpropagation, the additional memory cost is relatively
small. But in the context of zeroth-order optimizers, the memory cost is multiplied.

Adaptive zeroth-order optimizer for LLM fine-tuning has gained recent research interest, as shown
in Table 1. Pioneering works include HiZOO Zhao et al. (2024b), ZO-AdaMU Jiang et al. (2024),
and Helene Zhao et al. (2024a). HiZOO proposes approximating the diagonal Hessian with an addi-
tional forward pass oracle, which doubles the memory requirement for storing the diagonal Hessian.
Helene is a more direct integration of zeroth-order gradient estimation and an Adam optimizer, and
ZO-AdaMU replaces the moments with an uncertain version. As a result, the memory requirement
is tripled to store both diagonal Hessian estimation and cumulative history gradients. However, de-
spite the substantial increase in memory cost, they still use a much smaller memory than first-order
approaches and exhibit a noticeable performance gain compared to MeZO.

In light of the above, we introduce AdaMeZO, a zeroth-order optimizer that utilizes Adam-style
first and second moments to enhance convergence without requiring additional memory to store
them. This is made possible by 1) computing truncated moments that discard outdated gradients
rather than faithfully maintaining the full moment estimations, and 2) block-wise generation of
random gradient direction with a finer operation of the PRNG. As a result, AdaMeZO significantly
reduces the number of forward passes required for convergence and improves the fine-tuned model’s
performance. A summary of the contributions of this work is as follows.

1. We introduce AdaMeZO, an optimizer that runs on zeroth-order gradient estimations and
updates with Adam-style first and second moments. Although the moments are necessary
to compute the model updates, with truncated approximations and finer operations of the
PRNG, they do not need to be stored in memory. In this way, AdaMeZO can theoretically
use no additional memory to improve convergence with preconditioning.

2. We establish a convergence bound of AdaMeZO under a non-convex assumption that re-
covers the convergence rate of preconditioned MeZO with multiples of memory cost.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3. We conduct extensive experiments to evaluate AdaMeZO’s performance of AdaMeZO. We
first employ 2-dimensional toy functions and visualize the optimizing trajectories. They
demonstrate that AdaMeZO can converge to optimal points, whereas MeZO cannot un-
der the same step budgets. Then we demonstrate AdaMeZO’s performance by fine-tuning
different models (RoBERTa Liu et al. (2019b), OPT Zhang et al. (2022a), and LLaMa Tou-
vron et al. (2023)) for a task set identical to MeZO’s. It is found that AdaMeZO almost
always reaches an identical termination condition compared to MeZO, with up to 70%
fewer forward passes and at higher performance.

2 RELATED WORKS

2.1 ZEROTH-ORDER OPTIMIZERS FOR LLMS

Zeroth-order optimization is also known as derivative-free or black-box optimization. Priorly, it
is used for circumstances where objective functions have no derivatives or when obtaining the
derivatives is expensive. Fine-tuning LLMs falls into the latter case and sometimes both for non-
differentiable objectives Tang et al. (2023). In the context of modern deep learning, it translates to
the emission of auto-differentiation by backward propagation Rumelhart et al. (1986), resulting in
hugely reduced memory consumption. Some past work on zeroth-order optimizers include Spall
(1992; 1997); Vakhitov et al. (2009); Agarwal et al. (2009); Raginsky & Rakhlin (2011); Jamieson
et al. (2012); Wang et al. (2020); Baines et al. (2021). MeZO Malladi et al. (2023) firstly adopts
the classical SPSA Spall (1992) to fine-tune billion-level dimension LLMs, achieving comparable
performance with much fewer GPU hours. A survey on concurrent extensions on top of MeZO can
be found in Section A.

2.2 FIRST-ORDER OPTIMIZERS FOR LLMS

First-order optimization algorithms form the backbone of training or fine-tuning LLMs, offering
computational efficiency and scalability across billions of parameters. One of the most classic solu-
tions is Adam Kingma & Ba (2014), featuring first and second moments corrected updates. Some of
its variants are as follows. AdamW Loshchilov & Hutter (2017) introduces adaptive learning rates
via moment estimates, achieving faster convergence on nonconvex objectives. LAMB You et al.
(2019) features a layer-wise adaptation strategy to accelerate the training of large models employing
large batches. Adafactor Shazeer & Stern (2018) reduces memory usage by maintaining factored
second-moment estimates rather than the faithful estimates. AdaBelief Zhuang et al. (2020) replaces
Adam’s second moment estimates with a squared gradient with the squared difference between the
gradient and its running mean to improve convergence and generalization. Lion Chen et al. (2022)
uses only sign-based moment updates without per-parameter scaling to reduce memory costs. Ad-
abound Luo et al. (2019) stabilizes learning rates between dynamic lower and upper thresholds to
transition from adaptive behavior to SGD-like stability. RAdam Liu et al. (2019a) introduces rec-
tification for the variance of adaptive learning rates, improving training stability in early iterations.
Interestingly, Zhang et al. (2024b) finds that block structures of diagonal Hessians can help reduce
memory costs without harming performance. All of these variants feature empirical estimations of
first and second moments but with changes like moment center, regularization, etc., which implies
that the proposed method can also be translated to the zeroth-order version of these variants.

2.3 ACCELERATION BY ADAM

Compared with first-order optimizers, second-order informed optimizers consider second-order in-
formation in the process of gradient calculation. The design of Adam mimics Newton’s method with
second derivatives. Specifically, the second moment can be viewed as a rough approximation to the
inverse Hessian. Lines of work provide analytic or numeric support for Adam’s near-diagonal Hes-
sians estimation in deep learning. Das et al. (2024) formalizes that diagonally-dominant Hessians
make Adam mathematically faster. Zhang et al. (2024a) finds block-diagonal Hessians in real neural
networks and shows Adam outperforms SGD precisely due to this structure. Empirically, Elsayed
et al. (2024) measures strong diagonal dominance in MLP Hessians. Gui et al. (2021) demonstrates
that over-parameterization further drives the Hessian toward a diagonal form. Interestingly, Ghor-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Memory used for storing parameters of AdaMeZO, MeZO and Adam. Arrows indicate
in-place parameter modifications.

bani et al. (2019) found that the Hessian spectra of deep neural networks become stable after less
than 1% training step budget.

3 METHODS

In this section, we first introduce the classic approach of the forward pass-only gradient estimator
known as SPSA, which is the foundation of MeZO Malladi et al. (2023). Then, we will explain why
a direct splicing of SPSA and Adam-style update rule will cause excessive memory usage and how
our technique can prevent the issue.

3.1 PRELIMINARIES

Definition 3.1 (Simultaneous Perturbation Stochastic Approximation, SPSA Spall (1992)). Given
a model with weight wt at step t and objective function L, SPSA estimates the gradient on a batch
B with perturbation scale µ > 0 and random direction zt as

gt = ptzt, pt =
L(wt−1 + µzt,Bt)− L(wt−1 − µzt,Bt)

2µ
. (1)

Following prior works, we assume z ∼ N (0, Id). It can be shown that gt → ∇L(wt,Bt) as
µ → 0, and is treated as an unbiased gradient estimator with a sufficiently small µ. With an SGD-
styled update rule of wt ← wt − ηgt, modifying the model parameters for gradient estimation and
model update can be done in-place as shown in Figure 2. MeZO runs quickly on GPUs since they
can spawn random gradients the size of 77.5 B within a second1. As a result, MeZO generates little
information in memory for fine-tuning compared to backpropagation. The method is shown to yield
competitive performance Malladi et al. (2023).

3.2 RECOVERING TRUNCATED FIRST MOMENT WITHOUT ADDITIONAL MEMORY

Using the first moment constructed by history gradients with EMA as updates is a widely used
technique to cancel out instantaneous gradient noise, hence promoting convergence. Common first-
order algorithms require an additional trunk of memory of size P to store the current first moment
mt as follows:

mt ← (1− β1)mt + gt, wt ← wt − ηmt.

However, the MeZO-styled in-place parameter update allows the first moment to be approximated
without storing history gradients. Specifically, we unroll the recursion, set a hyperparameter, the
horizon h, and discard the outdated gradients computed more than h steps ago, then employ the
similar in-place parameter update process as in MeZO as Equation (2) and detailed in Algorithm 1.

mt = gt + β1gt + β2
1gt−2 + · · ·+ βt−h−1

1 gt−h−1. (2)
1https://developer.nvidia.com/curand

4

https://developer.nvidia.com/curand

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 h-MeZO

Input: Initialized model parameters w0 ∈ Rd, loss function L : Rd → R, step budget T ,
perturbation scale µ, learning rate η, horizon h, first EMA ratio β1

Output: Trained model parameters wT

seeds, projs← [], []
for t = 1, . . . , T do

Sample batch Bt and random seed s
Reset the PRNG with random seed s, spawn zt ∼ N (0, Id)
Estimate pt using Equation (1) # in-place model perturbation
seeds.append(s), projs.append(pt)
wt ← wt

for τ = 1, . . . , h do
p← projs[−τ], s← seeds[−τ]
Reset the PRNG with random seed s, spawn z ∼ N (0, Id)
wt ← wt − ηβτ−1

1 pz
end for

end for

Remark 3.2. The idea behind Algorithm 1 is that the share of a history gradient gt−t′ decays quickly.
As an example, after sufficiently long steps, the share of gt−10 approximates 0.910/(1/(1−0.9)) ≈
0.0387 at β1 = 0.9. It implies that the key components of the first moment are several of the most
recent gradients, while the rest are relatively safe to be omitted. Supported by the PRNG as a coder
of the random gradients, Algorithm 1 can use truncated first moments without additional memory.

3.3 SECOND MOMENT INFORMED UPDATES WITHOUT ADDITIONAL MEMORY

We can similarly recover a truncated second moment. However, bringing them into the update will
still be costly. We investigate the issue and present our solution in this subsection.

An Adam-style update rule can be expressed as follows:

mt ← (1− β1)mt + gt, vt ← (1− β2)vt + gt ⊙ gt, wt ← wt − η
mt√
vt + ϵ

. (3)

We can notice that the update needs the complete vt beforehand. Specifically, for an update, we will
need to construct mt after computing vt as

vt = gt ⊙ gt + β2(gt ⊙ gt) + β2
2(gt−2 ⊙ gt−2) + · · ·+ βt−h

2 (gt−h ⊙ gt−h),

as shown in Figure 3. As a result, we will need a memory trunk of size P to store vt before unrolling
mt, doubling the memory requirement. This method is employed in Zhao et al. (2024a). To address
this issue, we propose to cache the random states rather than the seeds during the training.

Figure 3: Caching the complete second moment recover before the first moment unrolling, doubling
the memory requirement.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3.1 FINE-SCALED RANDOM STREAM GENERATION BY STATE CACHING

A formal expression of how concurrent PRNG algorithms generate random number streams is as
Algorithm 2, with algorithm-specified and deterministic state update function F and extractor O.

Algorithm 2 PRNG

Input: Seed s
Output: Random number streams rn
Initial state mapper I maps the random seed s to the initial state S0.
while No stop signal do

PRNG outputs random stream {rn} by the recurrence

rn = O(Sn−1), Sn = F (Sn−1), (4)

end while

For prior practices including Malladi et al. (2023); Zhao et al. (2024a;b), the above process guaran-
tees identical and complete zt for gradient estimation and gradient updating is obtained by caching
the seed s, so that in-place gradient estimation and parameter updating without additional memory
access functions. However, caching the random state S offers the possibility to jump to a specified
position in a random number stream. It allows the PRNG to faithfully continue a particular random
stream from wherever it is left over, making it more flexible than seed-caching. Code examples for
this feature can be found in Section C.

An illustration of Block-wise moment approximation is as Figure 4. A parameter block partition
w = {w(1),w(2), . . . ,w(b)} is prepared at the beginning of a parameter update. We first start at the
first block. Processing of the first block is the same as Figure 3, which is how prior works exploit
PRNGs. However, after the first random direction block z

(1)
t−t′ is spawned, AdaMeZO records Sn,

the corresponding random state, for each seed. When the spawning of the first block from each of
the seeds within the horizon is finished, AdaMeZO skips the initial state mapping in Algorithm 2,
and loads the cached Sn to the PRNG for the next block, so that the contiguous random stream is
generated rather than starting over again from the first output of the random stream. The process
loops until all the blocks finish their update.

Figure 4: Block-wise moment approximation in AdaMeZO. ⊙ denotes the Hadamard product.

3.3.2 ADAM-STYLE UPDATES WITH ZEROTH-ORDER GRADIENTS

With random state caching, we can update models according to Equation (3) block-wise, which is
impossible for seed caching as employed by previous works, since seed caching only allows the
random stream to be spawned from the initial digit. However, we need some warm-up steps to
accumulate history gradients before estimating finite-horizon moments. Due to page limits, we
elaborate the process as Algorithm 3 in the Appendix.
Remark 3.3. It is worth mentioning that caching random states adds a bit-level memory cost com-
pared to caching seeds. In Philox Salmon et al. (2011), the default choice of CUDA PRNG, ran-
dom state S consists of a 64-bit random seed, a 64-bit subsequence identifier, and a 64-bit offset.
Mersenne Twister Matsumoto & Nishimura (1998), the default choice of CPU PRNG, maintains

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

similar information as random states. Therefore, caching the random states incurs a negligible addi-
tional memory cost at the bit level compared to caching seeds.
Remark 3.4. Though the first and second moments do not go into the memory, recovering them
requires a temporary additional memory trunk, whose size scales to the size of the block, corre-
sponding to the δP term in Table 1. A natural block strategy is the different layers of the model. If
the model consists of 32 layers, the additional memory introduced in the second moment approxi-
mation is roughly 2/32P (1/32P for m(b)

t and v
(b)
t each). However, the block can be made as small

as consisting of only 1 parameters. Therefore, AdaMeZO can theoretically approximate the mo-
ments by performing frequent random state dumps and loads without incurring additional memory
requirements.

4 THEORY

We present a convergence bound on the assumption of non-convex optimization, details in Section E.
The bound resembles the structure from Zhao et al. (2024b).
Theorem 4.1. With a sufficiently small learning rate η, AdaMeZO converges to a stationary point
with

E

[
1

T

T∑
t=1

∥∇L(wt)∥22

]
≤ Lσ2

√
T

+
2

T
√
T

+
Twσ

2

T
√
T

+O(µ2).

Detailed proof can be found in Section E. The above result shows that after T =
O(ϵ2) steps, AdaMeZO converges to a small neighborhood of a stationary point satisfying
E
[
∥ 1
T

∑T
t=1∇L(wt)∥22

]
< ϵ.

5 EXPERIMENT RESULTS

We present empirical results for AdaMeZO with its baselines in this section. Generally, there are
two types of LLMs: 1) encoder-decoder, or masked language models (MLM), such as BERT Devlin
et al. (2019) and its variants, and 2) decoder-only, or autoregressive models (ARM), such as GPT,
OPT, and LLaMA families. To comprehensively demonstrate the performance of AdaMeZO, we
first illustrate the optimization trajectories on toy functions. Then, we test AdaMeZO with baseline
algorithms on well-recognized LLMs, including an MLM RoBERTa Liu et al. (2019b), and two
ARMs, OPT Zhang et al. (2022a) and Touvron et al. (2023).

5.1 TOY FUNCTIONS

Figure 5: Optimization trajectories on test functions. The loss values at termination are labeled.

It is impractical to visualize trajectories on models with a number of dimensions in billions. How-
ever, we can illustrate the optimization trajectories on three 2-dimensional toy functions as in Fig-
ure 5 to show how AdaMeZO adapts to heterogeneous curvatures. We test the Adam optimizer

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Results on RoBERTa-large over language tasks with k = 16.

Task SST-2 SST-5 SNLI MNLI RTE TREC Average
Type —- sentiment —- - natural language inference - – topic –

Zero-shot 79.0 35.5 50.2 48.8 51.4 32.0 49.4
FO (12 × memory) 91.8 47.5 77.5 70.0 66.4 85.0 73.0
MeZO 90.6 44.1 67.3 58.1 61.6 67.3 64.8

(1.4) (1.0) (3.1) (1.1) (1.3) (2.7) –
MeZO-switch 90.6 44.3 67.3 58.0 61.6 67.0 64.8

(1.6) (1.6) (2.8) (1.3) (2.0) (4.7) –
AdaMeZO 90.9 45.2 66.8 58.6 63.1 71.5 66.0

(0.9) (2.0) (2.9) (1.4) (2.3) (5.2) –

Kingma & Ba (2014) implemented in PyTorch Paszke (2019), the vanilla MeZO Malladi et al.
(2023), and the proposed AdaMeZO. More details in Section B.4.

In general, we observe that AdaMeZO shares the curvature adaptability of Adam. Although
AdaMeZO walks longer paths due to the stochasticity of the gradient direction and warm-up steps,
it moves swiftly in areas with small curvatures thanks to the preconditioning of the diagonal Hessian
estimator, and the final loss values are comparable to Adam’s. In contrast, MeZO struggles with
oscillations in low curvature areas and results in worse convergence.

5.2 MASKED LANGUAGE MODELS

We compare the performance of AdaMeZO with vanilla MeZO and MeZO-switch—a variant of
MeZO where the learning rate is manually adjusted to ensure that its optimization trajectory is
longer than that of AdaMeZO. This demonstrates that AdaMeZO’s outperformance is not due to
MeZO’s underfitting, but rather to its adaptability to the loss landscape.

Consistent with previous research Malladi et al. (2023), we conduct experiments on RoBERTa-large
350M on three types of NLP tasks: sentiment, natural language inference, and topic. We sample k
examples per class for k = 16 (results in Table 2) to demonstrate the training performance under
few-shot and many-shot scenarios, respectively. We repeat 4 times on different seeds2 and report the
mean and standard deviation of the corresponding metric for each task. It is found that:

AdaMeZO yields better performance. Averaged across all tasks, AdaMeZO achieves a 1.2%
absolute accuracy improvement to MeZO on average, with particularly strong gains in tasks like
RTE (1.5%), TREC (4.2%).

5.3 AUTOREGRESSIVE MODELS

Table 3: Main results on OPT-1.3B over language tasks.

Task SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP Average
Type —————— classification —————— – multiple choice – — generation —

Zero-shot 53.5 53.4 39.2 45.5 43.2 57.5 45.4 75.0 70.5 27.2 11.1 47.4
FO (12 × memory) 90.9 64.0 77.2 64.4 52.8 62.3 65.2 74.0 69.1 80.4 28.2 66.2

(1.2) (10.7) (7.9) (9.3) (2.0) (1.9) (6.0) (2.9) (1.2) (1.5) (1.7) –
MeZO 90.9 52.5 65.5 61.8 51.1 58.6 53.7 74.5 70.6 73.3 22.8 61.4

(0.3) (1.5) (6.9) (2.1) (8.4) (1.4) (2.2) (3.6) (1.0) (0.2) (0.6) –
MeZO-switch 91.0 53.8 68.7 61.9 52.1 58.3 54.9 75.5 71.0 73.7 24.3 62.3

(0.6) (1.6) (2.3) (0.6) (7.6) (1.6) (1.5) (3.6) (1.2) (1.2) (1.3) –
AdaMeZO 91.6 54.3 69.6 63.2 53.5 58.4 55.9 75.5 71.1 76.1 24.6 63.1

(0.3) (3.1) (1.4) (1.6) (7.8) (1.6) (0.7) (4.0) (1.3) (0.7) (1.0) –

2Two kinds of seeds are used in our work. The first kind is fed into PRNGs to generate random gradient
directions. The second kind is the seeds for the random seed sampler to sample the seeds of the first kind. The
second kind of seed can be considered to play the same role as “random seeds” in general works. We refer to
the second kind here.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Main results on LLaMA-3B over language tasks.

Task SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP Average
Type —————— classification —————— – multiple choice – — generation —

Zero-shot 56.0 52.7 51.6 60.9 36.5 54.3 44.8 75.0 68.2 47.3 20.8 51.6
FO (12 × memory) 92.5 73.9 85.6 65.9 57.8 67.1 70.6 75.7 68.6 83.9 32.2 70.3

(0.7) (5.4) (6.9) (7.3) (7.6) (0.7) (1.8) (2.6) (1.0) (0.3) (1.8) –
MeZO 84.5 53.2 64.7 62.6 50.4 54.6 52.6 77.2 70.0 79.2 26.8 61.4

(4.9) (0.7) (2.6) (0.7) (11.3) (0.3) (2.5) (2.0) (0.4) (0.9) (0.5) –
MeZO-switch 86.6 54.1 65.5 63.2 51.6 54.7 54.7 78.7 70.4 80.4 27.6 62.5

(4.5) (1.5) (0.9) (0.3) (12.2) (1.0) (0.6) (2.2) (0.6) (0.9) (0.6) –
AdaMeZO 92.6 54.4 66.0 64.6 54.5 54.9 56.9 81.2 71.3 80.4 28.1 64.1

(0.5) (1.5) (1.4) (2.6) (7.5) (1.6) (1.0) (3.2) (0.9) (1.8) (1.1) –

Then we extend our investigation to two autoregressive models: OPT-1.3B (results in Table 3) and
LLaMA-3B (results in Table 4). Experimental results demonstrate AdaMeZO’s consistent superior-
ity across diverse language tasks for both OPT-1.3B and LLaMA-3B models. It is found that:

AdaMeZO’s superior performance scales up to billion-level LLMs. On OPT-1.3B, AdaMeZO
surpasses MeZO and MeZO-switch in all but one instance. AdaMeZO achieves a 1.7% absolute
accuracy improvement to MeZO on average, with particularly strong gains in tasks like CB (4.1%),
SQuAD (2.8%), WSC (2.4%), and MultiRC (2.2%). For LLaMA-3B, AdaMeZO further extends
its lead, achieves a 2.7% absolute accuracy improvement to MeZO on average, with particularly
strong gains in tasks like SST2 (8.1%), MultiRC (4.3%), WSC (4.1%), COPA (4.0%).

6 CONCLUSION, LIMITATIONS AND FUTURE WORKS

In this work, we introduce AdaMeZO, the first ZOO that incorporates Adam-style first and sec-
ond moments without doubling or tripling the memory requirements of the original MeZO. This is
achieved by estimating truncated moments and performing more refined operations on PRNGs. We
provide theoretical analysis and empirical evaluations. Visualizations show that AdaMeZO adapts
to complicated loss landscapes without excessively consuming additional memory. Experiments
on well-recognized models show that AdaMeZO reaches on-par performance using fewer forward
passes and can continue to lower loss values before reaching identical terminal conditions. The
paper’s limitations are as follows.

Theoretical results on AdaMeZO are under a stationary assumption, as is in Zhao et al. (2024b;a)
and are partially acknowledged empirically as in Ghorbani et al. (2019). Specifically, we believe that
the empirical estimations of moments reflect true statistics of the gradients. Although finite moment
horizons may help to keep the estimations less biased, we did not attempt to capture the gap, which
is a future research direction.

AdaMeZO estimates second moments at a small cost, but they are inaccurate. The reason is two-
fold: 1) AdaMeZO runs on zeroth-order gradient estimations, and 2) a smaller β2 to guarantee that
the discarded part contributes only a small share. Future investigations into more accurate second-
moment estimations could improve performance.

REFERENCES

Alekh Agarwal, Martin J Wainwright, Peter Bartlett, and Pradeep Ravikumar. Information-theoretic
lower bounds on the oracle complexity of convex optimization. Advances in Neural Information
Processing Systems, 22, 2009.

Mandeep Baines, Shruti Bhosale, Vittorio Caggiano, Naman Goyal, Siddharth Goyal, Myle Ott,
Benjamin Lefaudeux, Vitaliy Liptchinsky, Mike Rabbat, Sam Sheiffer, et al. Fairscale: A general
purpose modular pytorch library for high performance and large scale training, 2021.

Evelyn Martin Lansdowne Beale. On an iterative method for finding a local minimum of a func-
tion of more than one variable. Number 25. Statistical Techniques Research Group, Section of
Mathematical Statistics, Department of Mathematics, Princeton University, 1958.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM review, 60(2):223–311, 2018.

Minping Chen, You-Liang Huang, and Zeyi Wen. Towards efficient low-order hybrid optimizer for
language model fine-tuning. 2025a.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Yao Liu, Kaiyuan Wang, Cho-Jui Hsieh,
Yifeng Lu, and Quoc V Le. Evolved optimizer for vision. In First Conference on Automated
Machine Learning (Late-Breaking Workshop), 2022.

Yiming Chen, Yuan Zhang, Liyuan Cao, Kun Yuan, and Zaiwen Wen. Enhancing zeroth-order fine-
tuning for language models with low-rank structures. arXiv preprint arXiv:2410.07698, 2024.

Yiming Chen, Yuan Zhang, Yin Liu, Kun Yuan, and Zaiwen Wen. A memory efficient ran-
domized subspace optimization method for training large language models. arXiv preprint
arXiv:2502.07222, 2025b.

Rudrajit Das, Naman Agarwal, Sujay Sanghavi, and Inderjit S Dhillon. Towards quantifying the
preconditioning effect of adam. arXiv preprint arXiv:2402.07114, 2024.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms, 2023. URL https://arxiv. org/abs/2305.14314, 2, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Mohamed Elsayed, Homayoon Farrahi, Felix Dangel, and A Rupam Mahmood. Revisiting scal-
able hessian diagonal approximations for applications in reinforcement learning. arXiv preprint
arXiv:2406.03276, 2024.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
via hessian eigenvalue density. In International Conference on Machine Learning, pp. 2232–
2241. PMLR, 2019.

Ming Gui, Ziqing Zhao, Tianming Qiu, and Hao Shen. Laplace ap-proximation with diagonalized
hessian for over-parameterized neural networks. In NeurIPS Workshop on Bayesian Deep Learn-
ing, 2021.

Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, Xinyu Yang, Yide Ran, Jacob R Gardner, Osbert
Bastani, Christopher De Sa, Xiaodong Yu, et al. Zeroth-order fine-tuning of llms with extreme
sparsity. arXiv preprint arXiv:2406.02913, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Kevin G Jamieson, Robert Nowak, and Ben Recht. Query complexity of derivative-free optimiza-
tion. Advances in Neural Information Processing Systems, 25, 2012.

Shuoran Jiang, Qingcai Chen, Youcheng Pan, Yang Xiang, Yukang Lin, Xiangping Wu, Chuanyi
Liu, and Xiaobao Song. Zo-adamu optimizer: Adapting perturbation by the momentum and
uncertainty in zeroth-order optimization. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 18363–18371, 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019a.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019b.

Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng, Cho-Jui Hsieh, and Yang You. Sparse
mezo: Less parameters for better performance in zeroth-order llm fine-tuning. arXiv preprint
arXiv:2402.15751, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. arXiv preprint arXiv:1902.09843, 2019.

Jan R Magnus et al. The moments of products of quadratic forms in normal variables. Univ.,
Instituut voor Actuariaat en Econometrie, 1978.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023.

Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Sim-
ulation (TOMACS), 8(1):3–30, 1998.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa: lay-
erwise importance sampling for memory-efficient large language model fine-tuning. Advances in
Neural Information Processing Systems, 37:57018–57049, 2024.

A Paszke. Pytorch: An imperative style, high-performance deep learning library. arXiv preprint
arXiv:1912.01703, 2019.

Maxim Raginsky and Alexander Rakhlin. Information-based complexity, feedback and dynamics in
convex programming. IEEE Transactions on Information Theory, 57(10):7036–7056, 2011.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singu-
larity and beyond. arXiv preprint arXiv:1611.07476, 2016.

John K Salmon, Mark A Moraes, Ron O Dror, and David E Shaw. Parallel random numbers: as
easy as 1, 2, 3. In Proceedings of 2011 international conference for high performance computing,
networking, storage and analysis, pp. 1–12, 2011.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

James C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE transactions on automatic control, 37(3):332–341, 1992.

James C Spall. A one-measurement form of simultaneous perturbation stochastic approximation.
Automatica, 33(1):109–112, 1997.

Yan Sun, Tiansheng Huang, Liang Ding, Li Shen, and Dacheng Tao. Tezo: Empowering the low-
rankness on the temporal dimension in the zeroth-order optimization for fine-tuning llms. arXiv
preprint arXiv:2501.19057, 2025.

Qitao Tan, Jun Liu, Zheng Zhan, Caiwei Ding, Yanzhi Wang, Jin Lu, and Geng Yuan. Harmony
in divergence: Towards fast, accurate, and memory-efficient zeroth-order llm fine-tuning. arXiv
preprint arXiv:2502.03304, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhiwei Tang, Dmitry Rybin, and Tsung-Hui Chang. Zeroth-order optimization meets human feed-
back: Provable learning via ranking oracles. arXiv preprint arXiv:2303.03751, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Alexander Timurovich Vakhitov, Oleg Nikolaevich Granichin, and Lev Stanislavovich Gurevich.
Algorithm for stochastic approximation with trial input perturbation in the nonstationary problem
of optimization. Automation and Remote Control, 70:1827–1835, 2009.

Zhongruo Wang, Krishnakumar Balasubramanian, Shiqian Ma, and Meisam Razaviyayn. Zeroth-
order algorithms for nonconvex minimax problems with improved complexities. arXiv preprint
arXiv:2001.07819, 2020.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Zhiyuan Yu, Yifei Cheng, Liang Ding, Xinmei Tian, Li Shen, and Dacheng Tao. Memory-efficient
block coordinate descent for hessian-informed zeroth-order optimizer.

Lin Zhang, Shaohuai Shi, and Bo Li. Eva: Practical second-order optimization with kronecker-
vectorized approximation. In The Eleventh International Conference on Learning Representa-
tions, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022a.

Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu Sun, and Zhi-Quan Luo. Adam can converge
without any modification on update rules. Advances in neural information processing systems,
35:28386–28399, 2022b.

Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhiquan Luo. Why trans-
formers need adam: A hessian perspective. Advances in Neural Information Processing Systems,
37:131786–131823, 2024a.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Diederik P Kingma, Yinyu
Ye, Zhi-Quan Luo, and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. arXiv
preprint arXiv:2406.16793, 2024b.

Huaqin Zhao, Jiaxi Li, Yi Pan, Shizhe Liang, Xiaofeng Yang, Wei Liu, Xiang Li, Fei Dou, Tianming
Liu, and Jin Lu. Helene: Hessian layer-wise clipping and gradient annealing for accelerating fine-
tuning llm with zeroth-order optimization. arXiv preprint arXiv:2411.10696, 2024a.

Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai, Yi Qian, and Ivor W Tsang. Second-order
fine-tuning without pain for llms: A hessian informed zeroth-order optimizer. arXiv preprint
arXiv:2402.15173, 2024b.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. Advances in neural information processing systems, 33:18795–18806, 2020.

A ADDITIONAL RELATED WORKS

In addition to MeZO, numerous subsequent excellent works have emerged to enhance the vanilla
version. Jiang et al. (2024) incorporates uncertain moments estimations to promote convergence.
Zhao et al. (2024a) invokes Adam-style update rules for better performance. Zhao et al. (2024b)
estimates the diagonal Hessian with a three-point second derivative estimation admitted by a third
forward pass for each step. Liu et al. (2024); Guo et al. (2024) proposed to insert sparsity for

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

better performance. Chen et al. (2024); Sun et al. (2025) exploits the low-rank property for better
performance. Chen et al. (2025a) proposes a hybrid optimizer for efficiency trade-offs. Tan et al.
(2025) explores a layer-wise adaptation to speed up zeroth-order fine-tuning. Chen et al. (2025b)
investigates memory-efficient zeroth-order fine-tuning from a perspective of subspace optimization.
Yu et al. introduces a block version of HiZOO, attempting to preserve preconditioning-improved
convergence while reducing additional memory access.

B DETAILED EXPERIMENT SETTINGS

Other preconditioned MeZO like Zhao et al. (2024a;b) are excluded since they pose substantially
additional memory requirements.

B.1 COMPUTATION RESOURCES

We summarize the computational devices for empirical evaluations in Table 5. We use device 1 for
MLM experiments and device 2 for ARM experiments.

Table 5: Summary of computational devices for empirical evaluations.

Device OS/CPU/GPU Python PyTorch CUDA cuDNN

1
Linux 5.10.0, amd64

3.10.13 2.3.0 12.1 8.9Intel(R) Xeon(R) Gold 6133 CPU @ 2.50GHz
6x NVIDIA GeForce RTX 3090 GPU

2
Linux 4.18.0, x86 64

3.11.9 2.2.0 12.1 8.9AMD EPYC 7742 64-Core Processor
4x NVIDIA A100-SXM4-80GB

B.2 FORMAL PSEUDO-CODES FOR ADAMEZO

A formal description of AdaMeZO in pseudo-code is as Algorithm 3.

B.3 DETAILED SETTINGS FOR FIGURE 1

For (a), the learning rate is 1e-6, with 16 training samples per class. For (b) and (c), the learning
rate is 1e-7, with 1000 training samples in total. We set β1 = 0.7, β2 = 0.9, h = 10, so that
AdaMeZO discards only a small part by truncating the moments and admits a smoother second
moment estimation compared to the first. With an abuse of context, the choice of (β1, β2) falls into
the suggested area 0 < β1 <

√
β2 < 1 by Zhang et al. (2022b). Fine-tuning terminates when either

of the following happens.

1. Measure evaluation loss per 100 steps. Evaluation loss does not drop for 5 continual mea-
sures.

2. Number of steps exceeds 40000.

B.4 DETAILED SETTINGS FOR SECTION 5.1

The expressions of the test functions are

1. f1(x, y) = 8(x− 1)2(1.3x2 + 2x+ 1) + 0.5(y − 4)2 Zhao et al. (2024b).

2. f2(x, y) = (1.5− x+ xy)2 + (2.25− x+ xy2)2 + (2.625− x+ xy3)2 Beale (1958).

3. f3(x, y) = 100x2 + y2.

Specifications on implementations are as Table 6. The setting follows on the following rule:

1. Set the learning rate of Adam to 0.01,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 3 AdaMeZO

Input: Initialized model parameters w0 ∈ Rd, loss function L : Rd → R, step budget T ,
perturbation scale µ, learning rate η, horizon h, first EMA ratio β1, second EMA ratio β2, block
strategy B(w) = {w(1), . . . ,w(b)}, cancel factor βv , warm-up steps Tw

Output: Trained model parameters wT

seeds, projs← [], []
for t = 1, . . . , T do

Sample batch Bt and random seed s
Reset the PRNG with random seed s, spawn zt ∼ N (0, Id)
Estimate pt using Equation (1) # in-place model perturbation
seeds.append(s), projs.append(pt)
wt ← wt

if t > Tw then
states← [None]* (h, b)
for τb = 1, . . . , b do
m,v ← 0,0
for τh = 1, . . . , h do
p← projs[−τh]
if states[τh, τb] == None then

s← seeds[−τh]
Reset the PRNG with random seed s, spawn z ∼ N (0, I|w(τb)|)

else
Load states[τh, τb] to PRNG, spawn z ∼ N (0, I|w(τb)|)

end if
Save PRNG state to states[τh, τb]
m←m+ βτh−1

1 pz

v ← v + βτh−1
2 p2(z ⊙ z)

end for
end for
w

(τb)
t ← w

(τb)
t − ηβv

m√
v+ϵ

else
Reset the PRNG with random seed s, spawn z ∼ N (0, Id)
wt ← wt − ηptz

end if
end for

2. Tune the learning rate for ZO optimizers so that the trajectory lengths are comparable to
Adam’s. We allow a longer trajectory (< 1.6×) for ZO optimizers.

For MeZO and AdaMeZO, we allow only 2 seeds coding 2 gradient directions. This is to capture the
situation where the number of steps, equivalently the total number of explored gradient directions
(in thousands), is usually less than the number of dimensions of the LLMs (in billions).

Table 6: Specifications for toy functions.

Adam MeZO AdaMeZO # steps Initializationlr length lr length lr length
f1 0.01 3.0227 0.01 4.6659 0.01 4.5078 600 (0.2, 6.75)
f2 0.01 4.3597 0.002 5.5405 0.002 5.3207 2500 (−1,−1)
f3 0.01 1.4142 0.01 1.4243 0.01 1.8577 500 (−1, 1)

Trajectories in higher resolutions and 3D views of the loss landscapes are as Figure 6.

B.5 DETAILED SETTINGS FOR SECTION 5.2 AND SECTION 5.3

Fine-tuning terminates when either of the following conditions is met.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

(a) Toy function f1(x, y) = 8(x− 1)2(1.3x2 + 2x+ 1) + 0.5(y − 4)2

(b) Toy function f2(x, y) = (1.5− x+ xy)2 + (2.25− x+ xy2)2 + (2.625− x+ xy3)2

(c) Toy function f3(x, y) = 100x2 + y2

Figure 6: Loss landscapes of the toy functions and optimization trajectories.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Hyperparameter settings.

B T η q µ (β1, β2)
Table 2 16 1× 105 1× 10−6 5 1× 10−3 (0.7, 0.9)
Table 3 16 4× 104 1× 10−7 5 1× 10−3 (0.7, 0.9)
Table 4 16 4× 104 1× 10−7 5 1× 10−3 (0.7, 0.9)

1. Measure evaluation loss per 100 steps. Evaluation loss does not drop for q continual mea-
sures.

2. Number of steps exceeds T .

C CODE SNIPPETS FOR BLOCK-WISE GRADIENT GENERATION

Previous works call PRNG by the following codes.

1 torch.manual_seed(seed)
2 z = torch.normal(
3 mean=0,
4 std=1,
5 size=param.data.size(),
6 dtype=param.data.dtype,
7 device=param.device,
8)

In this work, for block-wise gradient generation, we wish the PRNG to skip the random stream be-
longing to prior blocks. Therefore, we directly feed random states into the PRNG, thereby skipping
the initialization step implied by manual seed(seed). A snippet to realize the feature is as
follows.

1 self.g = torch.Generator(device='cuda')
2 self.g.set_state(state) # scheduled state
3 z = torch.normal(
4 mean=0,
5 std=1,
6 size=param.data.size(),
7 dtype=param.data.dtype,
8 device=param.device,
9 generator=self.g,

10)
11 state = self.g.get_state(state)

D ADDITIONAL EXPERIMENT RESULTS

D.1 LARGER MODELS

We report the performance of AdaMeZO on larger models to demonstrate the scalability of the
optimizer as Table 8 and Table 9.

D.2 TIME EFFICIENCY

AdaMeZO incurs longer per-step runtime compared to MeZO, mainly due to a) the additional PRNG
calls for past gradient regeneration, and b) the weighted gradient accumulation for moment recovery.
We report a runtime profile as Table 10. We can observe that the main contributor to AdaMeZO’s
additional runtime is the accumulation of regenerated past gradients. Dedicated optimization during
the deployment of this accumulation process can speed up the algorithm.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 8: Main results on LLaMA-7B over language tasks.

Task SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP Average
Type —————— classification —————— – multiple choice – — generation —

Zero-shot 59.7 49.8 48.2 65.0 56.7 50.6 50.5 84.0 79.9 58.6 17.5 56.4
FO (12 × memory) 95.0 86.0 94.1 83.1 54.5 66.2 79.3 81.2 75.4 89.2 39.7 76.7

(0.5) (2.2) (1.7) (0.5) (5.8) (4.9) (3.0) (2.2) (2.3) (1.0) (1.0) –
MeZO 85.7 54.7 58.8 68.3 58.1 56.9 60.9 82.5 78.0 71.9 30.9 64.2

(1.9) (0.5) (3.8) (1.5) (2.9) (1.7) (2.7) (1.2) (1.8) (4.5) (1.1) –
MeZO-switch 87.2 55.2 60.6 68.7 60.2 56.8 60.5 84.0 80.3 78.8 32.3 65.8

(0.7) (1.2) (6.3) (1.2) (1.2) (0.5) (2.3) (0.8) (0.5) (3.2) (1.1) –
AdaMeZO 91.4 61.2 62.9 70.9 60.5 57.6 62.1 84.5 80.5 84.9 36.2 68.4

(2.5) (2.6) (1.6) (2.2) (2.0) (1.1) (2.6) (3.1) (0.9) (0.9) (2.1) –

Table 9: Main results on OPT-13B over language tasks.

Task SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP Average
Type —————— classification —————— – multiple choice – — generation —

Zero-shot 58.8 59.6 46.4 59.0 38.5 55.0 46.9 80.0 81.2 46.2 14.6 53.2
FO (12 × memory) 92.0 70.8 83.9 77.1 63.5 55.0 71.1 79.0 74.1 84.9 31.3 71.1
MeZO 92.1 60.4 67.8 65.5 56.6 54.9 56.7 87.0 80.2 82.1 30.6 66.7

(0.5) (0.6) (1.4) (3.0) (7.9) (1.7) (0.8) (1.1) (1.0) (1.3) (1.5) –
MeZO-switch 92.6 61.6 66.9 66.2 56.9 55.4 57.5 86.0 80.5 83.4 30.5 67.0

(0.2) (2.5) (1.0) (3.7) (8.4) (0.7) (0.5) (2.7) (1.1) (0.8) (0.9) –
AdaMeZO 92.7 63.0 67.8 70.6 58.4 55.8 58.3 87.0 80.1 83.7 31.0 68.0

(0.5) (6.1) (2.5) (3.6) (7.5) (0.6) (0.3) (1.1) (0.7) (1.3) (0.9) –

D.3 MEMORY EFFICIENCY

AdaMeZO incurs a small additional memory due to block-wise moment caching. We report a run-
time profile as Table 11. We can observe that, compared to optimizers that maintain actual moments,
the additional memory cost is significantly reduced.

D.4 HYPERPARAMETERS

We report AdaMeZO’s performance with different hyperparameter settings as in Table 12. It can be
observed that the first moments can improve the performance of MeZO, and the second moments can
further improve it. The performance gain is robust against reasonable choices of the hyperparameter
(β1, β2).

D.5 COMPARISON WITH BASELINE THAT MAINTAINS SECOND MOMENT

We report the performance comparison with HiZOO, a second-moment-aided zeroth-order optimizer
for LLM fine-tuning that maintains the second moment in GPU memory, as in Table 13. It is demon-
strated that second moments can enhance the performance of fine-tuned models, and AdaMeZO can
perform on par with or even better than HiZOO on specific tasks, while requiring substantially less
memory.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 10: Runtime profile (sec/step) on standard PyTorch build, measured on OPT-1.3b, batch
size=1.

Optimizer SST2 COPA SQuAD

MeZO 0.21 0.18 0.21
HiZOO 0.23 0.24 0.25
MeZO + a. 0.23 0.23 0.24
MeZO + a. + b. (AdaMeZO) 0.46 0.42 0.45

Table 11: Memory profile (MB) on standard PyTorch build, measured on OPT-1.3b, batch size=1.
Measured via nvidia-smi.

Optimizer SST2 COPA SQuAD
MeZO 5016 5058 5040
HiZOO 7532 7535 7396
AdaMeZO 5410 5452 5434

Table 12: Performance comparison with different (β1, β2).

(β1, β2) SST2 COPA SQuAD

(0.7, 0.9) 91.6 (0.3) 75.5 (4.0) 76.1 (0.7)

(0.7, 0.99) 90.9 (0.9) 75.3 (2.9) 75.6 (0.9)
(0.6, 0.9) 91.1 (0.6) 75.8 (2.9) 75.6 (1.2)
(0.8, 0.9) 91.5 (0.7) 74.3 (2.9) 75.6 (1.5)
(0.7, 0.0), mSGD 90.9 (0.9) 75.3 (2.9) 75.6 (0.9)
(0.0, 0.0), MeZO 90.9 (0.3) 74.5 (3.6) 73.3 (0.2)

Table 13: Performance comparison with baseline that maintains second moment. The apparent
memory cost of HiZOO is approximately 1.6x that of other methods. We report the performance of
the best hyperparameter in lr={1e-5, 1e-6, 1e-7} × steps={5k, 20k, 40k}.

Optimizer SST2 COPA SQuAD

Adam (first-order, as in paper) 90.9 (1.2) 74.0 (2.9) 80.4 (1.5)

MeZO 90.9 (0.3) 74.5 (3.6) 73.3 (0.2)
AdaMeZO 91.6 (0.3) 75.5 (4.0) 76.1 (0.7)
MeZO-mSGD 90.9 (0.9) 75.3 (2.9) 75.6 (0.9)
HiZOO 92.3 (0.4) 76.9 (1.8) 74.8 (0.6)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E DETAILED CONVERGENCE ANALYSIS

We employ the following widely adopted assumptions to facilitate an analysis.
Assumption E.1 (L-smooth). For any weight vector w1,w2 ∈ Rd, for a 0 < L <∞ it holds that

L(w2) ≤ L(w1) + ⟨∇L(w1),w2 −w1⟩+
L

2
∥w2 −w1∥22.

Assumption E.2 (Bounded gradient variance). The stochastic gradient∇L(wt,Bt) has no bias and
σ2 variance due to batch stochasticity, specifically

EBt
[∇L(wt,Bt)]−∇L(wt) = 0, (5)

EBt
[∥∇L(wt,Bt)]∥22 − ∥∇L(wt)∥22 ≤ σ2

t , σt <∞.

Assumption E.3 (Bounded second moment, Zhao et al. (2024b)). Each entry of Σt lies in the range
[sl, su] with 0 < sl < su <∞.
Assumption E.4 (Gradient stationary within horizon). The gradients within the moment horizon h
are stationary, specifically,

E0≤i≤h[∇L(wt−i)] = ∇L(wt).

Lemma E.5 (Magnus et al. (1978)). Let A and B be two symmetric matrices, z ∼ N (0, Id). Define
x = z⊤Azz⊤Bz, then it holds that

Ex = (trA)(trB) + 2tr(AB).

Assumption E.6 (Local r-effective rank, Malladi et al. (2023)). Let G(wt) :=
maxB,|B|=1 ∥∇L(wt,B)∥. There is a matrixH(wt) ⪯ LId satisfying:

1. For all w such that ∥w −wt∥2 ≤ ηdG(wt), it holds that ∇2L(w) ⪯ H(wt).

2. The effective rank of H(wt), specifically, tr(H(wt))/∥H(wt)∥op, is at most r.
Lemma E.7 (Update expectations). Given Theorem E.2 to E.4 and Theorem E.5, for warm-up steps,
it holds that

E[ut] = L(wt) +O(µ), (6)

E[∥ut∥22] ≤
η2LO(r)

2
(∥∇L(wt)∥22 + σ2) +O(µ2). (7)

After warm-up steps, it holds that

E[ut] = Σ−1
t ∇L(wt) +O(µ), (8)

E[∥ut∥22] ≤ (2tr(Σ−1
t) + 4s−1

l)(∥∇L(wt)∥2Σ−1
t

+ σ2) +O(µ2). (9)

Proof. The bounds for the warm-up phase follow Proof of Lemma 2 in Malladi et al. (2023).

After the warm-up case, by the definition of ut, we have

ut =

h−1∑
i=0

n∑
j=1

L(wt−i + µzi,j ,Bt)− L(wt−i − µzi,j ,Bt)
2nµ

βi
1Σ

−1
t zi,j

=

h−1∑
i=0

n∑
j=1

2βi
1µ∇⊤L(wt−i,Bt)zjΣ−1zj +O(µ2)

2nµ

=
h−1∑
i=0

βi
1

n

n∑
i=1

Σ
− 1

2
t zjz

⊤
j Σ

− 1
2

t ∇L(wt−i,Bt) +O(µ),

E[ut] =

h−1∑
i=0

βi
1

n
Σ−1

t ∇L(wt−i) +O(µ)

= Σ−1
t ∇L(wt) +O(µ),

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where

Σt := βv

√√√√√h−1∑
i=0

βi
2diag

 1

n

n∑
j=1

gt−i,j ⊙ gt−i,j

, gt,j := z⊤
j ∇L(wt,Bt)zj ,

with βv is a normalizing factor connected to β1 and β2 to cancel out all β1 and β2 related terms.

Moreover,

E
[
∥ut∥22

]
=EBt,zj

∥ 1
n

n∑
j=1

Σ
− 1

2
t zjz

⊤
j Σ− 1

2∇L(wt,Bt) +O(µ)∥22


(a)

≤2EBt,z

[
∥ 1
n

n∑
i=1

Σ
− 1

2
t zjz

⊤
j Σ

− 1
2

t ∇L(wt,Bt)∥22

]
+O(µ2)

(b)

≤ 2

n

n∑
j=1

EBt,zj

[
∥Σ− 1

2
t zjz

⊤
j Σ− 1

2∇L(wt,Bt)∥22
]
+O(µ2)

(c)
=2tr(Σ−1

t)EBj

[
∇⊤L(wt,Bt)Σ−1

t ∇L(wt,Bt)
]
+ 4EBj

[
∇⊤L(wt)Σ

−2
t ∇L(wt)

]
+O(µ2)

(d)

≤ (2tr(Σ−1
t) + 4s−1

l)EBj

[
∇⊤L(wt,Bt)Σ−1

t ∇L(wt,Bt)
]
+O(µ2)

(e)

≤(2tr(Σ−1
t) + 4s−1

l)(∥∇L(wt)∥2Σ−1 + s−1
l σ2

t) +O(µ2).

where (a) is by ∥a + b∥22 ≤ ∥a∥22 + ∥b∥22 + 2∥ab∥2 ≤ 2∥a∥22 + 2∥b∥22; (b) is by the convexity of

the function ∥ · ∥2; (c) is by setting A = EBj

[
Σ

− 1
2

t ∇⊤L(wt,Bt)∇L(wt,Bt)Σ
− 1

2
t

]
and B = Σ−1

t ,
then apply Theorem E.5; (d) is by Theorem E.3; finally (e) by Theorem E.2.

Finally, we establish Theorem 4.1.

Proof. Split the full summation into the warm-up phase and the post-warm-up phase as follows.

1

T

T∑
t=1

∥∇L(wt)∥22 =
1

T

Tw∑
t=1

∥∇L(wt)∥22︸ ︷︷ ︸
warm−up

+
1

T

T∑
t=Tw+1

∥∇L(wt)∥22.

Choose

η ≤ min

{
1

s(trΣ−1
t + 2s−1

l)
√
T
,

1

LO(r)
√
T
,

1

sE[L(w1)]− E[L(wT)]
√
T

}
,

Equation (6) and equation 7 with Theorem E.1 yields

E[L(wt+1)] ≤ L(wt)− η∥∇L(wt)∥22 +
η2LO(r)

2
(∥∇L(wt)∥22 + σ2) +O(µ2)

≤ L(wt)−
η

2
∥∇L(wt)∥22 +

η2Lσ2O(r)
2

+O(µ2).

Equation (8) and equation 9 with Theorem E.1 yields

E[L(wt+1)] ≤ L(wt)− η∥∇L(wt)∥2Σ−1
t

+ Lη2(trΣ−1
t + 2s−1

l)
(
∥∇L(wt)∥2Σ−1

t
+ σ2

)
+O(µ2)

≤ L(wt)−
η

2
∥∇L(wt)∥2Σ−1

t
+ Lη2σ2(trΣ−1

t + 2s−1
l) +O(µ2).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

So, for the warm-up phase,

1

T

Tw∑
t=1

∥∇L(wt)∥22 ≤
2

ηT
(L(w1)− E[L(wTw

)]) +
TwLησ

2O(r)
T

+O(µ2), (10)

and for the post-warm-up phase, Equation (8) and equation 9 with Theorem E.1 yields

1

T

T∑
t=Tw+1

∥∇L(wt)∥22

≤su
T

T∑
t=Tw+1

∥∇L(wt)∥2Σ−1
t

≤2su
ηT

(E[L(wTw+1)]− E[L(wT)]) +
su(T − Tw)Lησ

2(trΣ−1
t + 2s−1

l)

T
+O(µ2). (11)

Take s = max{1, su}, combine Equation (10) and equation 11,

e ≤ 2s

ηT
(E[L(w1)]− E[L(wT)]) +

TwηLσ
2O(r)

T
+ sLησ2(trΣ−1

t + 2s−1
l) +O(µ2)

≤Lσ2

√
T

+
2

T
√
T

+
Twσ

2

T
√
T

+O(µ2),

arriving at the target.

21

	Introduction
	Related Works
	Zeroth-order Optimizers for LLMs
	First-order Optimizers for LLMs
	Acceleration by Adam

	Methods
	Preliminaries
	Recovering Truncated First moment Without Additional Memory
	Second moment Informed Updates Without Additional Memory
	Fine-scaled Random Stream Generation by State Caching
	Adam-style Updates with Zeroth-Order Gradients

	Theory
	Experiment Results
	Toy Functions
	Masked Language Models
	Autoregressive Models

	Conclusion, Limitations and Future Works
	Additional Related Works
	Detailed Experiment Settings
	Computation Resources
	Formal Pseudo-codes for AdaMeZO
	Detailed Settings for fig:losscomparison
	Detailed Settings for sec:toy
	Detailed Settings for sec:mlm and sec:arm

	Code Snippets for Block-wise Gradient Generation
	Additional Experiment Results
	Larger Models
	Time Efficiency
	Memory Efficiency
	Hyperparameters
	Comparison with Baseline that Maintains Second Moment

	Detailed Convergence Analysis

