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ABSTRACT

Fine-tuning LLMs is necessary for dedicated downstream uses, but classic back-
propagation approaches necessitate a large amount of GPU memory. To this end,
a recent work, MeZO, which relies solely on forward passes to fine-tune LLMs,
significantly reduces GPU requirements at the cost of slower convergence due to
its indifference to loss landscapes. Standard solutions, such as Adam, explore loss
landscapes by estimating the first and second-order moments and storing them in
memory to guide the models in moving faster through dimensions with smaller
curvature and vice versa. However, directly applying Adam negates MeZO’s ad-
vantage as it will triple the memory requirement. In light of this, we propose
AdaMeZO, a zeroth-order optimizer enhanced by Adam-style first and second
moments estimates, but without maintaining them in memory. We present a theo-
retical analysis of AdaMeZO, corroborated by extensive experiments demonstrat-
ing AdaMeZO’s performance, showing that AdaMeZO can outperform MeZO
while requiring up to 70% fewer forward passes. Visualizations of trajectories
on toy functions to affirm AdaMeZQO’s ability to adapt to different loss land-
scapes. Codes are available athttps://anonymous.4open.science/r/
AdaMez0-4547/\

1 INTRODUCTION

Table 1: Key features for AdaMeZO and methods in comparison. P in the first column denotes the
amount of memory required to store the model weight, and B > P denotes the amount of memory
required to perform backpropagation. § < 1 is a small positive number. “FP” abbreviates forward
pass.

Param. memory FP per step 1st moment 2nd moment

Adam|Kingma & Bal (2014) 3P+ B 1 v v
MeZO Malladi et al.| (2023)) P 2 X X
HELENE |Zhao et al.[(2024al) 3P 2 v v
HiZOO [Zhao et al.| (2024Db) 2P 3 X v
T AdaMeZO  (1+o0)P 2, v v

Fine-tuning LLMs is necessary for dedicated downstream uses and has gained significant attention
recently. Many works have emerged that aim to tune models while accessing as little memory as
possible. Popular first-order methods known as parameter-efficient fine-tuning (PEFT) to alleviate
the heavy memory cost by modifying only a small (potentially extra) part of the whole model [Hu
et al.| (2022); L1 & Liang| (2021); [Lester et al.| (2021); |[Dettmers et al.| (2023); |Pan et al.| (2024).
Additionally, a zeroth-order method Malladi et al.|(2023)) implies the possibility of discarding back-
propagation, the primary memory cost contributor in LLM fine-tuning, making it accessible for
resource-limited devices.

As shown in Table E], MeZO features an SGD-styled Rumelhart et al.| (1986)); Bottou et al.| (2018)
update rule, allowing in-place parameter modification. After in-place model perturbation for gra-
dient projection estimation, the gradients are not dumped into memory but generated by a pseudo-
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Figure 1: Loss curves of MeZO and AdaMeZO on the SST?2 task. When fine-tuning RoBERTa-large,
OPT-1.3b, LLaMA-3b, AdaMeZO took 69.75%, 70.48%, 70.90% fewer forward passes to reach the
loss values of MeZO at terminations, respectively. Hyperparameters and terminal conditions are
detailed in Section[B.3]

random number generator (PRNG) before being scaled by the previously computed projection, so
the memory cost for fine-tuning is reduced to the equivalent of deploying one. However, updating
the model with only the most recent gradient estimation can result in worse convergence, especially
with noisy and isotropic zeroth-order gradient estimations. In comparison, adaptive optimizers like
Adam [Kingma & Ba| (2014) and AdamW |Loshchilov & Hutter| (2017)) that correct updates with
preconditioners are more widely adopted options since the loss landscapes of LLMs exhibit compli-
cated curvature spectra across different dimensions as documented in|Sagun et al.| (2016)); Ghorbani
et al.| (2019); Zhang et al.[(2023);|Das et al.|(2024).

However, adaptive optimizers keep historical gradient information in memory. In the case of Adam,
they are the first and second moments, which are the accumulation of gradients and quadratic gra-
dients. In other words, two vectors of the same size as the model need to be kept in memory.
Considering that first-order methods use backpropagation, the additional memory cost is relatively
small. But in the context of zeroth-order optimizers, the memory cost is multiplied.

Adaptive zeroth-order optimizer for LLM fine-tuning has gained recent research interest, as shown
in Table E} Pioneering works include HiZOO [Zhao et al.| (2024b)), ZO-AdaMU Jiang et al.| (2024),
and Helene|Zhao et al.|(2024a). HiZOO proposes approximating the diagonal Hessian with an addi-
tional forward pass oracle, which doubles the memory requirement for storing the diagonal Hessian.
Helene is a more direct integration of zeroth-order gradient estimation and an Adam optimizer, and
Z0-AdaMU replaces the moments with an uncertain version. As a result, the memory requirement
is tripled to store both diagonal Hessian estimation and cumulative history gradients. However, de-
spite the substantial increase in memory cost, they still use a much smaller memory than first-order
approaches and exhibit a noticeable performance gain compared to MeZO.

In light of the above, we introduce AdaMeZO, a zeroth-order optimizer that utilizes Adam-style
first and second moments to enhance convergence without requiring additional memory to store
them. This is made possible by 1) computing truncated moments that discard outdated gradients
rather than faithfully maintaining the full moment estimations, and 2) block-wise generation of
random gradient direction with a finer operation of the PRNG. As a result, AdaMeZO significantly
reduces the number of forward passes required for convergence and improves the fine-tuned model’s
performance. A summary of the contributions of this work is as follows.

1. We introduce AdaMeZO, an optimizer that runs on zeroth-order gradient estimations and
updates with Adam-style first and second moments. Although the moments are necessary
to compute the model updates, with truncated approximations and finer operations of the
PRNG, they do not need to be stored in memory. In this way, AdaMeZO can theoretically
use no additional memory to improve convergence with preconditioning.

2. We establish a convergence bound of AdaMeZO under a non-convex assumption that re-
covers the convergence rate of preconditioned MeZO with multiples of memory cost.
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3. We conduct extensive experiments to evaluate AdaMeZO’s performance of AdaMeZO. We
first employ 2-dimensional toy functions and visualize the optimizing trajectories. They
demonstrate that AdaMeZO can converge to optimal points, whereas MeZO cannot un-
der the same step budgets. Then we demonstrate AdaMeZO’s performance by fine-tuning
different models (RoBERTa|Liu et al.| (2019b), OPT Zhang et al.|(2022a)), and LL.aMa|Tou-
vron et al.| (2023))) for a task set identical to MeZQ’s. It is found that AdaMeZO almost
always reaches an identical termination condition compared to MeZO, with up to 70%
fewer forward passes and at higher performance.

2 RELATED WORKS

2.1 ZEROTH-ORDER OPTIMIZERS FOR LLMs

Zeroth-order optimization is also known as derivative-free or black-box optimization. Priorly, it
is used for circumstances where objective functions have no derivatives or when obtaining the
derivatives is expensive. Fine-tuning LLMs falls into the latter case and sometimes both for non-
differentiable objectives Tang et al.[(2023). In the context of modern deep learning, it translates to
the emission of auto-differentiation by backward propagation Rumelhart et al.| (1986)), resulting in
hugely reduced memory consumption. Some past work on zeroth-order optimizers include [Spall
(19925 1997); |Vakhitov et al.| (2009); |Agarwal et al.| (2009); Raginsky & Rakhlin| (2011); Jamieson
et al| (2012); [Wang et al.| (2020); Baines et al.| (2021). MeZO Malladi et al.| (2023)) firstly adopts
the classical SPSA |Spall (1992) to fine-tune billion-level dimension LLMs, achieving comparable
performance with much fewer GPU hours. A survey on concurrent extensions on top of MeZO can
be found in Section [Al

2.2  FIRST-ORDER OPTIMIZERS FOR LLMS

First-order optimization algorithms form the backbone of training or fine-tuning LLMs, offering
computational efficiency and scalability across billions of parameters. One of the most classic solu-
tions is Adam Kingma & Bal(2014), featuring first and second moments corrected updates. Some of
its variants are as follows. AdamW |Loshchilov & Hutter| (2017)) introduces adaptive learning rates
via moment estimates, achieving faster convergence on nonconvex objectives. LAMB [You et al.
(2019) features a layer-wise adaptation strategy to accelerate the training of large models employing
large batches. Adafactor Shazeer & Stern| (2018) reduces memory usage by maintaining factored
second-moment estimates rather than the faithful estimates. AdaBelief|Zhuang et al.|(2020) replaces
Adam’s second moment estimates with a squared gradient with the squared difference between the
gradient and its running mean to improve convergence and generalization. Lion |Chen et al.| (2022)
uses only sign-based moment updates without per-parameter scaling to reduce memory costs. Ad-
abound Luo et al|(2019) stabilizes learning rates between dynamic lower and upper thresholds to
transition from adaptive behavior to SGD-like stability. RAdam |Liu et al.[(2019a)) introduces rec-
tification for the variance of adaptive learning rates, improving training stability in early iterations.
Interestingly, Zhang et al.| (2024b) finds that block structures of diagonal Hessians can help reduce
memory costs without harming performance. All of these variants feature empirical estimations of
first and second moments but with changes like moment center, regularization, etc., which implies
that the proposed method can also be translated to the zeroth-order version of these variants.

2.3 ACCELERATION BY ADAM

Compared with first-order optimizers, second-order informed optimizers consider second-order in-
formation in the process of gradient calculation. The design of Adam mimics Newton’s method with
second derivatives. Specifically, the second moment can be viewed as a rough approximation to the
inverse Hessian. Lines of work provide analytic or numeric support for Adam’s near-diagonal Hes-
sians estimation in deep learning. [Das et al.| (2024) formalizes that diagonally-dominant Hessians
make Adam mathematically faster. [Zhang et al.| (2024a) finds block-diagonal Hessians in real neural
networks and shows Adam outperforms SGD precisely due to this structure. Empirically, [Elsayed
et al.| (2024) measures strong diagonal dominance in MLP Hessians. |Gui et al.| (2021)) demonstrates
that over-parameterization further drives the Hessian toward a diagonal form. Interestingly, Ghor-
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Figure 2: Memory used for storing parameters of AdaMeZO, MeZO and Adam. Arrows indicate
in-place parameter modifications.

(2019) found that the Hessian spectra of deep neural networks become stable after less
than 1% training step budget.

3 METHODS

In this section, we first introduce the classic approach of the forward pass-only gradient estimator
known as SPSA, which is the foundation of MeZO |Malladi et al.[(2023). Then, we will explain why
a direct splicing of SPSA and Adam-style update rule will cause excessive memory usage and how
our technique can prevent the issue.

3.1 PRELIMINARIES

Definition 3.1 (Simultaneous Perturbation Stochastic Approximation, SPSA (1992)). Given
a model with weight w; at step t and objective function L, SPSA estimates the gradient on a batch
B with perturbation scale pn > 0 and random direction z; as

L(wi—q + pze, By) — L(wi—1 — pze, By)

gi = PtZ¢, Pt = 5 . e
"

Following prior works, we assume z ~ A(0, ;). It can be shown that g; — VL(wy, By) as
1 — 0, and is treated as an unbiased gradient estimator with a sufficiently small x. With an SGD-
styled update rule of w; < w; — ng;, modifying the model parameters for gradient estimation and
model update can be done in-place as shown in Figure[2] MeZO runs quickly on GPUs since they
can spawn random gradients the size of 77.5 B within a secon(ﬂ As aresult, MeZO generates little
information in memory for fine-tuning compared to backpropagation. The method is shown to yield

competitive performance |Malladi et al.|(2023)).

3.2 RECOVERING TRUNCATED FIRST MOMENT WITHOUT ADDITIONAL MEMORY

Using the first moment constructed by history gradients with EMA as updates is a widely used
technique to cancel out instantaneous gradient noise, hence promoting convergence. Common first-
order algorithms require an additional trunk of memory of size P to store the current first moment
m; as follows:

my < (1= B1)my +gi,  wi < wp — nmy.
However, the MeZO-styled in-place parameter update allows the first moment to be approximated
without storing history gradients. Specifically, we unroll the recursion, set a hyperparameter, the

horizon h, and discard the outdated gradients computed more than h steps ago, then employ the
similar in-place parameter update process as in MeZO as Equation (2) and detailed in Algorithm|T]

mi = gi + 019t + B7gi o+ + B g . 2

'https://developer.nvidia.com/curand
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Algorithm 1 h-MeZO

Input: Initialized model parameters wy € R, loss function £ : R? — R, step budget T',
perturbation scale p, learning rate 7, horizon h, first EMA ratio 31
Output: Trained model parameters wr
seeds, projs<+ []1, []
fort=1,...,T do
Sample batch B; and random seed s
Reset the PRNG with random seed s, spawn z; ~ N (0, 1)
Estimate p; using Equation (1) # in-place model perturbation
seeds.append(s), projs.append (p;)
Wy < Wy
forr=1,...,hdo
p < projs[—7], s < seeds[—T]
Reset the PRNG with random seed s, spawn z ~ N(0, I)
w; — wy — nﬂfflpz
end for
end for

Remark 3.2. The idea behind Algorithm(T]is that the share of a history gradient g;_ decays quickly.
As an example, after sufficiently long steps, the share of g;_10 approximates 0.91°/(1/(1—0.9)) ~
0.0387 at 81 = 0.9. It implies that the key components of the first moment are several of the most
recent gradients, while the rest are relatively safe to be omitted. Supported by the PRNG as a coder
of the random gradients, Algorithm[I]can use truncated first moments without additional memory.

3.3 SECOND MOMENT INFORMED UPDATES WITHOUT ADDITIONAL MEMORY
We can similarly recover a truncated second moment. However, bringing them into the update will
still be costly. We investigate the issue and present our solution in this subsection.

An Adam-style update rule can be expressed as follows:
my
RV —+ € ’

We can notice that the update needs the complete v; beforehand. Specifically, for an update, we will
need to construct my after computing v, as

my— (1=Bi)my+g¢, v (1=P2)ve+9: O g, Wy wy—1 3)

Ve =g: ®gi+ Pa(gr © gi) + B5(gGr—2 O gr2) + - + ﬂé_h(gt—h © Gi—n),

as shown in Figure[3] As a result, we will need a memory trunk of size P to store v; before unrolling
m,, doubling the memory requirement. This method is employed in|Zhao et al.|(2024a). To address
this issue, we propose to cache the random states rather than the seeds during the training.

=== PRNG generated random streams

h
—&thtl = Piohitl XIZipp1 |
® i Seed switch
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Figure 3: Caching the complete second moment recover before the first moment unrolling, doubling
the memory requirement.
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3.3.1 FINE-SCALED RANDOM STREAM GENERATION BY STATE CACHING

A formal expression of how concurrent PRNG algorithms generate random number streams is as
Algorithm 2] with algorithm-specified and deterministic state update function F" and extractor O.

Algorithm 2 PRNG

Input: Seed s
Output: Random number streams 7,
Initial state mapper I maps the random seed s to the initial state Sp.
while No stop signal do
PRNG outputs random stream {r,, } by the recurrence

Tn = O(Sn—l)a Sn = F(Sn—1)7 (4)

end while

For prior practices including |Malladi et al.| (2023); |Zhao et al.| (2024aib), the above process guaran-
tees identical and complete z; for gradient estimation and gradient updating is obtained by caching
the seed s, so that in-place gradient estimation and parameter updating without additional memory
access functions. However, caching the random state S offers the possibility to jump to a specified
position in a random number stream. It allows the PRNG to faithfully continue a particular random
stream from wherever it is left over, making it more flexible than seed-caching. Code examples for
this feature can be found in Section

An illustration of Block-wise moment approximation is as Figure ] A parameter block partition
w = {w® w®, . . .  w®} is prepared at the beginning of a parameter update. We first start at the
first block. Processing of the first block is the same as Figure [3] which is how prior works exploit
PRNGs. However, after the first random direction block zt(i)t, is spawned, AdaMeZO records .S,
the corresponding random state, for each seed. When the spawning of the first block from each of
the seeds within the horizon is finished, AdaMeZO skips the initial state mapping in Algorithm 2]
and loads the cached .5,, to the PRNG for the next block, so that the contiguous random stream is
generated rather than starting over again from the first output of the random stream. The process
loops until all the blocks finish their update.

1 et
g =ponn xi2 e |

2 e
g;—)/wl = Pt—h+1 Xf‘if)hﬂ ‘ I =

® ' Seed switchJ f ® ! l—State switchJ
n L) L,‘ I ] @ _ @ I = T
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Figure 4: Block-wise moment approximation in AdaMeZO. ® denotes the Hadamard product.

3.3.2 ADAM-STYLE UPDATES WITH ZEROTH-ORDER GRADIENTS

With random state caching, we can update models according to Equation (3)) block-wise, which is
impossible for seed caching as employed by previous works, since seed caching only allows the
random stream to be spawned from the initial digit. However, we need some warm-up steps to
accumulate history gradients before estimating finite-horizon moments. Due to page limits, we
elaborate the process as Algorithm@ in the Appendix.

Remark 3.3. Tt is worth mentioning that caching random states adds a bit-level memory cost com-
pared to caching seeds. In Philox [Salmon et al.| (2011), the default choice of CUDA PRNG, ran-
dom state S consists of a 64-bit random seed, a 64-bit subsequence identifier, and a 64-bit offset.
Mersenne Twister [Matsumoto & Nishimural (1998)), the default choice of CPU PRNG, maintains
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similar information as random states. Therefore, caching the random states incurs a negligible addi-
tional memory cost at the bit level compared to caching seeds.

Remark 3.4. Though the first and second moments do not go into the memory, recovering them
requires a temporary additional memory trunk, whose size scales to the size of the block, corre-
sponding to the § P term in Table[T] A natural block strategy is the different layers of the model. If
the model consists of 32 layers, the additional memory introduced in the second moment approxi-
mation is roughly 2/32P (1/32P for mgb) and vgb) each). However, the block can be made as small
as consisting of only 1 parameters. Therefore, AdaMeZO can theoretically approximate the mo-
ments by performing frequent random state dumps and loads without incurring additional memory
requirements.

4 THEORY

We present a convergence bound on the assumption of non-convex optimization, details in Section[E}
The bound resembles the structure from [Zhao et al. (2024b).

Theorem 4.1. With a sufficiently small learning rate n, AdaMeZO converges to a stationary point
with

E <4
VT ~TVT TVT

T

1 Lo? 2 T,0°

=3 ||vz<wt>||%] < 0(1:2)
t=1

Detailed proof can be found in Section [E| The above result shows that after 7 =
O(e?) steps, AdaMeZO converges to a small neighborhood of a stationary point satisfying

E [l X1, VL) 3] <

5 EXPERIMENT RESULTS

We present empirical results for AdaMeZO with its baselines in this section. Generally, there are
two types of LLMs: 1) encoder-decoder, or masked language models (MLM), such as BERT [Devlin|
(2019) and its variants, and 2) decoder-only, or autoregressive models (ARM), such as GPT,
OPT, and LLaMA families. To comprehensively demonstrate the performance of AdaMeZO, we
first illustrate the optimization trajectories on toy functions. Then, we test AdaMeZO with baseline
algorithms on well-recognized LLMs, including an MLM RoBERTa (2019b), and two

ARMs, OPT [Zhang et al.| (2022a)) and [Touvron et al.| (2023).

5.1 Toy FUNCTIONS

Test Function 1

Test Function 3

Test Function 2

3.0
0.00 0.25 0.50 0.75 1.00 125 150
X X

Figure 5: Optimization trajectories on test functions. The loss values at termination are labeled.

It is impractical to visualize trajectories on models with a number of dimensions in billions. How-
ever, we can illustrate the optimization trajectories on three 2-dimensional toy functions as in Fig-
ure [5| to show how AdaMeZO adapts to heterogeneous curvatures. We test the Adam optimizer
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Table 2: Results on RoBERTa-large over language tasks with & = 16.

Task SST-2 SST-5 SNLI MNLI RTE TREC Average
Type —- sentiment —- - natural language inference - — topic —
Zero-shot 79.0 355 50.2 48.8 514 32.0 494
FO (12 x memory)  91.8 475 77.5 70.0 66.4 85.0 73.0
“MezO 90.6 441 673 581 616 673 648
(1.4) (1.0 @3.1) (1.1 (1.3) 2.7) -
MeZO-switch 90.6 443 67.3 58.0 61.6 67.0 64.8
(1.6) (1.6) 2.8) (1.3) (2.0) 4.7) -
AdaMeZO 90.9 45.2 66.8 58.6 63.1 71.5 66.0
(0.9) (2.0) 29 (14 (2.3) (5.2) -

Kingma & Bal (2014) implemented in PyTorch Paszke| (2019), the vanilla MeZO Malladi et al.
(2023), and the proposed AdaMeZO. More details in Section [B.4]

In general, we observe that AdaMeZO shares the curvature adaptability of Adam. Although
AdaMeZO walks longer paths due to the stochasticity of the gradient direction and warm-up steps,
it moves swiftly in areas with small curvatures thanks to the preconditioning of the diagonal Hessian
estimator, and the final loss values are comparable to Adam’s. In contrast, MeZO struggles with
oscillations in low curvature areas and results in worse convergence.

5.2 MASKED LANGUAGE MODELS

We compare the performance of AdaMeZO with vanilla MeZO and MeZO-switch—a variant of
MeZO where the learning rate is manually adjusted to ensure that its optimization trajectory is
longer than that of AdaMeZO. This demonstrates that AdaMeZO’s outperformance is not due to
MeZO’s underfitting, but rather to its adaptability to the loss landscape.

Consistent with previous research|[Malladi et al.| (2023)), we conduct experiments on RoOBERTa-large
350M on three types of NLP tasks: sentiment, natural language inference, and topic. We sample &k
examples per class for k& = 16 (results in Table |2)) to demonstrate the training performance under
few-shot and many-shot scenarios, respectively. We repeat 4 times on different seedf] and report the
mean and standard deviation of the corresponding metric for each task. It is found that:

AdaMeZO yields better performance. Averaged across all tasks, AdaMeZO achieves a 1.2%
absolute accuracy improvement to MeZO on average, with particularly strong gains in tasks like
RTE (1.5%), TREC (4.2%).

5.3 AUTOREGRESSIVE MODELS

Table 3: Main results on OPT-1.3B over language tasks.

Task SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP Average
Type ———classification ————— — multiple choice — — generation —
Zero-shot 535 534 392 455 432 575 454 750 70.5 272 111 474

FO (12 X memory) 909 64.0 77.2 644 528 623 652 740 69.1 804 282  66.2
(1.2) (10.7)(7.9) (9.3) (2.0) (1.9) (6.0)0 (2.9 (1.2) 1.5 a7 -

MeZO 909 525 655 61.8 51.1 58.6 53.7 745 70.6 733 228 614
0.3) (1.5) (6.9 (2.1) 84) (1.4) (22) (3.6) (1.0) 0.2) (0.6) -
MeZO-switch 91.0 53.8 68.7 61.9 52.1 583 549 755 71.0 73.7 243 62.3
0.6) (1.6) (2.3) (0.6) (7.6) (1.6) (1.5) (3.6) (1.2) (12) (1.3) -
AdaMeZO 91.6 54.3 69.6 63.2 535 584 559 755 71.1 76.1 246 63.1

0.3) 3.1) (1.4) (1.6) (7.8) (1.6) (0.7) (4.0 (1.3) 0.7 (1.0) -

>Two kinds of seeds are used in our work. The first kind is fed into PRNGs to generate random gradient
directions. The second kind is the seeds for the random seed sampler to sample the seeds of the first kind. The
second kind of seed can be considered to play the same role as “random seeds” in general works. We refer to
the second kind here.
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Table 4: Main results on LLaMA-3B over language tasks.

Task SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP Average
Type ——classification ————— — multiple choice — — generation —
Zero-shot 56.0 52.7 51.6 609 36.5 543 448 75.0 68.2 473 208 516

FO (12 x memory) 92.5 73.9 85.6 659 57.8 67.1 706 757 68.6 839 322 703
0.7) 5.4) (6.9 (7.3) (7.6) (0.7) (1.8) (2.6) (1.0) 0.3)  (1.8) -

MeZO 845 530 647 62.6 504 546 526 772 ~ 70.0 7927 7268 ~ 614
4.9) (0.7)(2.6) (0.7) (11.3)(0.3) (25 (200 (04 (09 (05 -
MeZO-switch 86.6 54.1 655 632 51.6 547 547 787 704 804 276 625
4.5) (1.5)(0.9) (0.3) (12.2) (1.0) (0.6) (22) (0.6) (09 (0.6 -
AdaMeZO 92.6 54.4 660 64.6 54.5 549 569 812 713 804 281 64.1

0.5) (1.5 (14) 2.6) (7.5 (1.6) (1.0) (32) (09 (1.8 d1.1) -

Then we extend our investigation to two autoregressive models: OPT-1.3B (results in Table [3) and
LLaMA-3B (results in Table[d). Experimental results demonstrate AdaMeZO’s consistent superior-
ity across diverse language tasks for both OPT-1.3B and LLaMA-3B models. It is found that:

AdaMeZQ’s superior performance scales up to billion-level LLMs. On OPT-1.3B, AdaMeZO
surpasses MeZO and MeZO-switch in all but one instance. AdaMeZO achieves a 1.7% absolute
accuracy improvement to MeZO on average, with particularly strong gains in tasks like CB (4.1%),
SQuAD (2.8%), WSC (2.4%), and MultiRC (2.2%). For LLaMA-3B, AdaMeZO further extends
its lead, achieves a 2.7% absolute accuracy improvement to MeZO on average, with particularly
strong gains in tasks like SST2 (8.1%), MultiRC (4.3%), WSC (4.1%), COPA (4.0%).

6 CONCLUSION, LIMITATIONS AND FUTURE WORKS

In this work, we introduce AdaMeZO, the first ZOO that incorporates Adam-style first and sec-
ond moments without doubling or tripling the memory requirements of the original MeZO. This is
achieved by estimating truncated moments and performing more refined operations on PRNGs. We
provide theoretical analysis and empirical evaluations. Visualizations show that AdaMeZO adapts
to complicated loss landscapes without excessively consuming additional memory. Experiments
on well-recognized models show that AdaMeZO reaches on-par performance using fewer forward
passes and can continue to lower loss values before reaching identical terminal conditions. The
paper’s limitations are as follows.

Theoretical results on AdaMeZO are under a stationary assumption, as is in |[Zhao et al.| (2024bjal))
and are partially acknowledged empirically as in|Ghorbani et al.|(2019)). Specifically, we believe that
the empirical estimations of moments reflect true statistics of the gradients. Although finite moment
horizons may help to keep the estimations less biased, we did not attempt to capture the gap, which
is a future research direction.

AdaMeZO estimates second moments at a small cost, but they are inaccurate. The reason is two-
fold: 1) AdaMeZO runs on zeroth-order gradient estimations, and 2) a smaller 35 to guarantee that
the discarded part contributes only a small share. Future investigations into more accurate second-
moment estimations could improve performance.
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A ADDITIONAL RELATED WORKS

In addition to MeZO, numerous subsequent excellent works have emerged to enhance the vanilla
version. [Jiang et al. (2024) incorporates uncertain moments estimations to promote convergence.
Zhao et al.| (20244) invokes Adam-style update rules for better performance. Zhao et al. (2024b)
estimates the diagonal Hessian with a three-point second derivative estimation admitted by a third
forward pass for each step. |[Liu et al.| (2024); |Guo et al.| (2024) proposed to insert sparsity for
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better performance. (Chen et al.| (2024)); |Sun et al.| (2025)) exploits the low-rank property for better
performance. |Chen et al.| (2025a) proposes a hybrid optimizer for efficiency trade-offs. [Tan et al.
(2025) explores a layer-wise adaptation to speed up zeroth-order fine-tuning. |Chen et al.[ (2025b)
investigates memory-efficient zeroth-order fine-tuning from a perspective of subspace optimization.
Yu et al.| introduces a block version of HiZOO, attempting to preserve preconditioning-improved
convergence while reducing additional memory access.

B DETAILED EXPERIMENT SETTINGS

Other preconditioned MeZO like Zhao et al.|(2024azb)) are excluded since they pose substantially
additional memory requirements.

B.1 COMPUTATION RESOURCES

We summarize the computational devices for empirical evaluations in Table[5] We use device 1 for
MLM experiments and device 2 for ARM experiments.

Table 5: Summary of computational devices for empirical evaluations.

Device OS/CPU/GPU Python PyTorch CUDA cuDNN

Linux 5.10.0, amd64
1 Intel(R) Xeon(R) Gold 6133 CPU @ 2.50GHz 3.10.13 2.3.0 12.1 8.9
6x NVIDIA GeForce RTX 3090 GPU

Linux 4.18.0, x86_64
2 AMD EPYC 7742 64-Core Processor 3.11.9 220 12.1 8.9
4x NVIDIA A100-SXM4-80GB

B.2 FORMAL PSEUDO-CODES FOR ADAMEZO

A formal description of AdaMeZO in pseudo-code is as Algorithm [3]

B.3 DETAILED SETTINGS FOR FIGURE(]]

For (a), the learning rate is 1e-6, with 16 training samples per class. For (b) and (c), the learning
rate is le-7, with 1000 training samples in total. We set 51 = 0.7, 852, = 0.9,h = 10, so that
AdaMeZO discards only a small part by truncating the moments and admits a smoother second
moment estimation compared to the first. With an abuse of context, the choice of (1, 82) falls into
the suggested area 0 < 31 < /B2 < 1 by|Zhang et al.[(2022b). Fine-tuning terminates when either
of the following happens.

1. Measure evaluation loss per 100 steps. Evaluation loss does not drop for 5 continual mea-
sures.

2. Number of steps exceeds 40000.
B.4 DETAILED SETTINGS FOR SECTION[3.]]
The expressions of the test functions are

L. fi(z,y) = 8(x — 1)*(1.32% + 2z + 1) + 0.5(y — 4)? |Zhao et al.[(2024b).
2. falw,y) = (1.5 — 2 + 2y)? + (2.25 — 2 + 2y°)? + (2.625 — = + 2y>)? Beale| (1958).
3. f3(z,y) = 10022 + o2

Specifications on implementations are as Table[6] The setting follows on the following rule:

1. Set the learning rate of Adam to 0.01,

13



Under review as a conference paper at ICLR 2026

Algorithm 3 AdaMeZO

Input: Initialized model parameters wy € R4, loss function £ : R? — R, step budget T,
perturbation scale p, learning rate 7, horizon h, first EMA ratio 31, second EMA ratio (32, block
strategy B(w) = {w™ ... w®}, cancel factor 3, warm-up steps T},
Output: Trained model parameters wr
seeds, projs+< []1, I[]
fort=1,...,Tdo
Sample batch B; and random seed s
Reset the PRNG with random seed s, spawn z; ~ N(0, I)
Estimate p; using Equation (1) # in-place model perturbation
seeds.append(s), projs.append (p;)
Wy < Wy
if t > T, then
states < [None]l~ (h,b)
for, =1,...,bdo
m,v < 0,0
fort, =1,...,hdo
p < projs[—74)
if states [7,,7,] == None then
s < seeds[—7p,]
Reset the PRNG with random seed s, spawn z ~ N(0, I 7))
else
Load states [T, 7y] to PRNG, spawn z ~ N(O,I|w<fb)|)
end if
Save PRNG state to states [73, 7]
m —m+ 7" pz
v v+ B TPz 0 2)

end for
en(d t)‘or (7o)
w," e w, ™ *7751;\/%
else

Reset the PRNG with random seed s, spawn z ~ N(0, 1)
Wy < Wy — NPLz
end if
end for

2. Tune the learning rate for ZO optimizers so that the trajectory lengths are comparable to
Adam’s. We allow a longer trajectory (< 1.6x) for ZO optimizers.

For MeZO and AdaMeZO, we allow only 2 seeds coding 2 gradient directions. This is to capture the

situation where the number of steps, equivalently the total number of explored gradient directions
(in thousands), is usually less than the number of dimensions of the LLMs (in billions).

Table 6: Specifications for toy functions.

Adam MeZO AdaMeZO
Ir length Ir length Ir length
fi 0.01 3.0227 0.01 4.6659 0.01 4.5078 600 (0.2,6.75)
fo 0.01 4.3597 0.002 5.5405 0.002 5.3207 2500 (-1,-1)
fs 0.01 1.4142 0.01 1.4243 0.01 1.8577 500 (-1,1)

#steps Initialization

Trajectories in higher resolutions and 3D views of the loss landscapes are as Figure[6]

B.5 DETAILED SETTINGS FOR SECTION[3.2]AND SECTION[3.3]

Fine-tuning terminates when either of the following conditions is met.
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Figure 6: Loss landscapes of the toy functions and optimization trajectories.
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Table 7: Hyperparameter settings.

B T n q 2 (B1,B2)
Table] 16 1x10° 1x10° 5 1x10° (0.7,0.9)
Table] 16 4x10* 1x1077 5 1x10™® (0.7,0.9)
Tabled 16 4x10* 1x1077 5 1x107® (0.7,0.9)

1. Measure evaluation loss per 100 steps. Evaluation loss does not drop for ¢ continual mea-
sures.

2. Number of steps exceeds 7T'.

C CODE SNIPPETS FOR BLOCK-WISE GRADIENT GENERATION

Previous works call PRNG by the following codes.

torch.manual_seed (seed)

z = torch.normal (
mean=0,
std=1,
size=param.data.size(),
dtype=param.data.dtype,
device=param.device,

In this work, for block-wise gradient generation, we wish the PRNG to skip the random stream be-
longing to prior blocks. Therefore, we directly feed random states into the PRNG, thereby skipping
the initialization step implied by manual_seed (seed). A snippet to realize the feature is as
follows.

self.g = torch.Generator (device="'cuda')

self.g.set_state(state) # scheduled state
z = torch.normal (

mean=0,

std=1,

size=param.data.size(),
dtype=param.data.dtype,
device=param.device,
generator=self.qg,

)
state = self.g.get_state(state)

D ADDITIONAL EXPERIMENT RESULTS

D.1 LARGER MODELS

We report the performance of AdaMeZO on larger models to demonstrate the scalability of the
optimizer as Table §]and Table[9]

D.2 TIME EFFICIENCY

AdaMeZO incurs longer per-step runtime compared to MeZO, mainly due to a) the additional PRNG
calls for past gradient regeneration, and b) the weighted gradient accumulation for moment recovery.
We report a runtime profile as Table [I0] We can observe that the main contributor to AdaMeZO’s
additional runtime is the accumulation of regenerated past gradients. Dedicated optimization during
the deployment of this accumulation process can speed up the algorithm.
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Table 8: Main results on LLaMA-7B over language tasks.

Task SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP Average
Type ——classification ————— — multiple choice — — generation —
Zero-shot 59.7 49.8 482 65.0 56.7 50.6 50.5 84.0 79.9 586 175 564

FO (12 X memory) 95.0 86.0 94.1 83.1 54.5 662 79.3 81.2 75.4 89.2 397 767
0.5) (22) (L.7) (0.5) (5.8) 49 3.00 (22 (2.3) (1.0) (1.0) -

MeZO 85.7 54.7°58.8 683 58.1 569 609 825 780 719 300~ 64.2
(19) 05 @38 (1.5 29 (1.7 @7 (12 (18 @5 @1 -
MeZO-switch 872 552 60.6 687 60.2 568 60.5 840 803 78.8 323 658
0.7) (1.2)(63) (12) (12) (0.5 (3) (08 (05 (32 1.1 -
AdaMeZO 914 612 629 709 60.5 57.6 621 845  80.5 849 362 684

25 2.6)(1.6) 22) 20 (1.1) @6 @G (09 (09 @1 -

Table 9: Main results on OPT-13B over language tasks.

Task SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP Average
Type ——classification ————— — multiple choice — — generation —
Zero-shot 58.8 59.6 464 59.0 385 550 469  80.0 81.2 462 146 532
FO (12 X memory) 92.0 70.8 83.9 77.1 63.5 55.0 71.1 79.0 74.1 849 313 71.1
MezO 92.1 60.4 67.8 655 56.6 549 567 870 802 821 306 667
0.5) (0.6) (14) (3.0) (7.9 (L) (0.8 (1.1) (1.0 1.3)  (15) -
MeZO-switch 92.6 61.6 669 662 569 554 575 86.0 80.5 834 305 670
(0.2) 2.5)(1L0) 3.7) (84) (0.7) (05 27) (1.1 0.8) (09 -
AdaMeZO 92.7 63.0 67.8 70.6 584 558 583 87.0 80.1 837 310 68.0

0.5 (6.1)(2.5) 3B.6) (7.5 0.6) (0.3 (1.1) (©O7 1.3 (0.9 -

D.3 MEMORY EFFICIENCY

AdaMeZO incurs a small additional memory due to block-wise moment caching. We report a run-
time profile as Table[IT] We can observe that, compared to optimizers that maintain actual moments,
the additional memory cost is significantly reduced.

D.4 HYPERPARAMETERS

We report AdaMeZO’s performance with different hyperparameter settings as in Table[I2] It can be
observed that the first moments can improve the performance of MeZO, and the second moments can
further improve it. The performance gain is robust against reasonable choices of the hyperparameter

(B1, B2).

D.5 COMPARISON WITH BASELINE THAT MAINTAINS SECOND MOMENT

We report the performance comparison with HiZOO, a second-moment-aided zeroth-order optimizer
for LLM fine-tuning that maintains the second moment in GPU memory, as in Table It is demon-
strated that second moments can enhance the performance of fine-tuned models, and AdaMeZO can
perform on par with or even better than HiZOO on specific tasks, while requiring substantially less
memory.
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Table 10: Runtime profile (sec/step) on standard PyTorch build, measured on OPT-1.3b, batch
size=1.

Optimizer SST2 COPA SQuAD
MeZO 0.21 0.18 0.21
HiZOO 0.23 0.24 0.25
MeZO + a. 0.23 0.23 0.24

MeZO + a. +b. (AdaMeZO)  0.46 0.42 0.45

Table 11: Memory profile (MB) on standard PyTorch build, measured on OPT-1.3b, batch size=1.
Measured via nvidia—smi.

Optimizer SST2 COPA SQuAD
MeZO 5016 5058 5040
HiZOO 7532 7535 7396
AdaMeZO 5410 5452 5434

Table 12: Performance comparison with different (31, 32).

(51 5 ﬁg) SST2 COPA SQuAD
(0.7, 0.9) 91.6 (0.3) 75.5(4.0) 76.1(0.7)
(0.7, 0.99) 90.9(0.9) 753(29) 75.6(0.9)
(0.6, 0.9) 91.1 (0.6) 75.8(2.9) 75.6(1.2)
(0.8, 0.9) 91.5(0.7) 743(2.9) 75.6(1.5)

(0.7,0.0), mSGD  90.9(0.9) 75.3(29) 75.6(0.9)
(0.0,0.0), MeZO 909 (0.3) 7453.6) 73.3(0.2)

Table 13: Performance comparison with baseline that maintains second moment. The apparent
memory cost of HiZOO is approximately 1.6x that of other methods. We report the performance of
the best hyperparameter in Ir={1e-5, le-6, le-7} x steps={5k, 20k, 40k}.

Optimizer SST2 COPA SQuAD
Adam (first-order, as in paper) 90.9 (1.2) 74.0(2.9) 80.4(1.5)
MeZO 90.9 (0.3) 74.5@3.6) 73.3(0.2)
AdaMeZO 91.6 (0.3) 75.5@4.0) 76.1(0.7)
MeZO-mSGD 909 (0.9) 75329 75.6(0.9)
HiZOO 92.3(0.4) 769 (1.8) 74.8(0.6)
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E DETAILED CONVERGENCE ANALYSIS

We employ the following widely adopted assumptions to facilitate an analysis.

Assumption E.1 (L-smooth). For any weight vector wy,wy € R?, fora 0 < L < oo it holds that
£ws) < Llwn) + (VE(wi) w2 — w1) + 5 s — i
Assumption E.2 (Bounded gradient variance). The stochastic gradient V L(wy, B;) has no bias and
o2 variance due to batch stochasticity, specifically
Eg, [VL(we, By)] — VL(w;) =0, ®)
Eg, [[VL(w:, B3 — [VL@w)|3 < o7, o1 < o,

Assumption E.3 (Bounded second moment,|Zhao et al.|(2024b)). Each entry of 3; lies in the range
[S1, Su] With 0 < s; < 8, < 00.

Assumption E.4 (Gradient stationary within horizon). The gradients within the moment horizon h
are stationary, specifically,

Eo<i<n[VL(wi—;)] = VL(wy).

Lemma E.5 (Magnus et al|(1978)). Let A and B be two symmetric matrices, z ~ N (0, 1;). Define
x =z Azz " Bz, then it holds that

E; = (trA)(trB) + 2tr(AB).
Assumption E.6 (Local r-effective rank, Malladi et al| (2023)). Let G(w;) =
maxg |g|—1 ||VL(we, B)||. There is a matrix H(w,) = Llg satisfying:
1. For all w such that |w — w; |2 < ndG(wy), it holds that V2L (w) =< H (wy).

2. The effective rank of H(wy), specifically, tr(H(wy))/||H(wy)]|op, is at most .

Lemma E.7 (Update expectations). Given Theorem[E2|to[E.4|and Theorem|E.3| for warm-up steps,
it holds that

Elug) = L(w) + O(1). ©
Bl < X (v L)} + %) + o). )

After warm-up steps, it holds that
Elu] = 2,7 'V L(w,) + O(p), ®)
Efllwl3] < (26(377) + 45y D(IVL(wo) 31 + 0%) + O(?). )

Proof. The bounds for the warm-up phase follow Proof of Lemma 2 in Malladi et al.[(2023).

After the warm-up case, by the definition of u,;, we have

h—1 n

L(wi—i + pzij, Br) — L(wi—i — pzij, Bt) o
=22 s P B% 2y
=0 j=1 H

_hzjli 280V T L(wi—i, B)z; Xz + O(u?)
2nu
1=0 j=1

h—1 - on
/Bi 2
:;Z;Et zjz] By Vﬁ(wt i Be) +O(p),

h—1 5i
Blu] =Y ©I5 VL(we—) + O(n)
=0
= N7V L(w) + O(w),
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where

h—1 n
i g 1 T
¥ =B Z Badiag - Z;gtﬂ‘,j O Gt—ig |, Grj = z; VL(wy, Bi)zj,
= iz

with (,, is a normalizing factor connected to (3; and (35 to cancel out all 5; and (35 related terms.

Moreover,

E [||Ut||§]

1 n _1 1
=Epg, 2, ”ﬁ Zzt 2zjz] BT2VL(wy, By) + O ()3

(@)
<2Eg, - +O0(1?)

1 n
1> B e VL, B
i=1

)
< QZEM (157 22,27 959w, B ] + 002

(92tr(2 YEg, [V L(wy, B)S; 'VL(wy, By)| + 4Eg, [V L(w,) S, 2V L(w,)] + O(1?)

(d)
<(2tr(S7) +4s; DEg, [V L(we, B) S, ' VL(we, By)] + O(1?)

C2tr(s) + s ) (I LB + 5702) + O(2).

where (a) is by [la + b||3 < |lall3 + ||b]I3 + 2||ab||2 < 2[ja|% + 2||b|3; (b) is by the convexity of
the function | - ||; (¢) is by setting A = Eg, |2, 2VT£(wt7Bt)V£(wt7Bt)Z 2} and B = %; 1,
then apply Theorem (d) is by Theorem [E.3; finally (e) by Theorem O

Finally, we establish Theorem .1}

Proof. Split the full summation into the warm-up phase and the post-warm-up phase as follows.

T T, T

1 1 1

2 IVE@)3 = =Y VL@ 5+ D VL.
t=1 t=1 t=T,+1

warm-—up

Choose

1 1 1
< min , , ,
1= {s(tth_l +2s; VT LO(r)VT ' sE[L(w;)] — E[ﬁ(wT)]\/T}
Equation (6) and equation [7| with Theorem [E.I] yields

Bl w,)] < £(wy) — n| VL3 + T (19 L0w) 3+ 0%) + 0()
< L{wyg) — gHVﬁ(wt)H% + w +O(p?).

Equation (8) and equation [0 with Theorem [E.T] yields
B (wean)] < Llaw) — n| VL) %1 + (e + 257 (IVL@w)|3 1 +0%) +O?)

< L(wy) — gnvc(wtm;;l + Lo (St + 2s71) + O(u?).
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So, for the warm-up phase,

Tw 2 r
IV} < 2 (etwn) ~ Elttwn,)) + P og), o

t=1
and for the post-warm-up phase, Equation (8) and equation 9 with Theorem [E-1] yields

T

1
T IV
t=Tw+1
s T
<7 2 VL@l
t=Ty+1
25, $u(T — T Lno2(trE; 1 4+ 2571
<2 (8] (wn, )] - BlL(wr)) + TS B0 o).

Take s = max{1, s, }, combine Equation (10) and equation

2 T.,nLc20
e <22 Bltwn)] ~ i) + RO gt o)+ 00)
Lo? 2 T,02
+0(1?),

=yt Tt

arriving at the target.
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